1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/pkt_cls.h>
43 #include <net/xdp_sock_drv.h>
44 #include "stmmac_ptp.h"
45 #include "stmmac.h"
46 #include "stmmac_xdp.h"
47 #include <linux/reset.h>
48 #include <linux/of_mdio.h>
49 #include "dwmac1000.h"
50 #include "dwxgmac2.h"
51 #include "hwif.h"
52 
53 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
54 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
55 
56 /* Module parameters */
57 #define TX_TIMEO	5000
58 static int watchdog = TX_TIMEO;
59 module_param(watchdog, int, 0644);
60 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
61 
62 static int debug = -1;
63 module_param(debug, int, 0644);
64 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
65 
66 static int phyaddr = -1;
67 module_param(phyaddr, int, 0444);
68 MODULE_PARM_DESC(phyaddr, "Physical device address");
69 
70 #define STMMAC_TX_THRESH(x)	((x)->dma_tx_size / 4)
71 #define STMMAC_RX_THRESH(x)	((x)->dma_rx_size / 4)
72 
73 /* Limit to make sure XDP TX and slow path can coexist */
74 #define STMMAC_XSK_TX_BUDGET_MAX	256
75 #define STMMAC_TX_XSK_AVAIL		16
76 #define STMMAC_RX_FILL_BATCH		16
77 
78 #define STMMAC_XDP_PASS		0
79 #define STMMAC_XDP_CONSUMED	BIT(0)
80 #define STMMAC_XDP_TX		BIT(1)
81 #define STMMAC_XDP_REDIRECT	BIT(2)
82 
83 static int flow_ctrl = FLOW_AUTO;
84 module_param(flow_ctrl, int, 0644);
85 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
86 
87 static int pause = PAUSE_TIME;
88 module_param(pause, int, 0644);
89 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
90 
91 #define TC_DEFAULT 64
92 static int tc = TC_DEFAULT;
93 module_param(tc, int, 0644);
94 MODULE_PARM_DESC(tc, "DMA threshold control value");
95 
96 #define	DEFAULT_BUFSIZE	1536
97 static int buf_sz = DEFAULT_BUFSIZE;
98 module_param(buf_sz, int, 0644);
99 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
100 
101 #define	STMMAC_RX_COPYBREAK	256
102 
103 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
104 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
105 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
106 
107 #define STMMAC_DEFAULT_LPI_TIMER	1000
108 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
109 module_param(eee_timer, int, 0644);
110 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
111 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
112 
113 /* By default the driver will use the ring mode to manage tx and rx descriptors,
114  * but allow user to force to use the chain instead of the ring
115  */
116 static unsigned int chain_mode;
117 module_param(chain_mode, int, 0444);
118 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
119 
120 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
121 /* For MSI interrupts handling */
122 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
123 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
124 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
125 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
126 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
127 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
128 
129 #ifdef CONFIG_DEBUG_FS
130 static const struct net_device_ops stmmac_netdev_ops;
131 static void stmmac_init_fs(struct net_device *dev);
132 static void stmmac_exit_fs(struct net_device *dev);
133 #endif
134 
135 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
136 
137 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
138 {
139 	int ret = 0;
140 
141 	if (enabled) {
142 		ret = clk_prepare_enable(priv->plat->stmmac_clk);
143 		if (ret)
144 			return ret;
145 		ret = clk_prepare_enable(priv->plat->pclk);
146 		if (ret) {
147 			clk_disable_unprepare(priv->plat->stmmac_clk);
148 			return ret;
149 		}
150 		if (priv->plat->clks_config) {
151 			ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
152 			if (ret) {
153 				clk_disable_unprepare(priv->plat->stmmac_clk);
154 				clk_disable_unprepare(priv->plat->pclk);
155 				return ret;
156 			}
157 		}
158 	} else {
159 		clk_disable_unprepare(priv->plat->stmmac_clk);
160 		clk_disable_unprepare(priv->plat->pclk);
161 		if (priv->plat->clks_config)
162 			priv->plat->clks_config(priv->plat->bsp_priv, enabled);
163 	}
164 
165 	return ret;
166 }
167 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
168 
169 /**
170  * stmmac_verify_args - verify the driver parameters.
171  * Description: it checks the driver parameters and set a default in case of
172  * errors.
173  */
174 static void stmmac_verify_args(void)
175 {
176 	if (unlikely(watchdog < 0))
177 		watchdog = TX_TIMEO;
178 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
179 		buf_sz = DEFAULT_BUFSIZE;
180 	if (unlikely(flow_ctrl > 1))
181 		flow_ctrl = FLOW_AUTO;
182 	else if (likely(flow_ctrl < 0))
183 		flow_ctrl = FLOW_OFF;
184 	if (unlikely((pause < 0) || (pause > 0xffff)))
185 		pause = PAUSE_TIME;
186 	if (eee_timer < 0)
187 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
188 }
189 
190 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
191 {
192 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
193 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
194 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
195 	u32 queue;
196 
197 	for (queue = 0; queue < maxq; queue++) {
198 		struct stmmac_channel *ch = &priv->channel[queue];
199 
200 		if (stmmac_xdp_is_enabled(priv) &&
201 		    test_bit(queue, priv->af_xdp_zc_qps)) {
202 			napi_disable(&ch->rxtx_napi);
203 			continue;
204 		}
205 
206 		if (queue < rx_queues_cnt)
207 			napi_disable(&ch->rx_napi);
208 		if (queue < tx_queues_cnt)
209 			napi_disable(&ch->tx_napi);
210 	}
211 }
212 
213 /**
214  * stmmac_disable_all_queues - Disable all queues
215  * @priv: driver private structure
216  */
217 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
218 {
219 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
220 	struct stmmac_rx_queue *rx_q;
221 	u32 queue;
222 
223 	/* synchronize_rcu() needed for pending XDP buffers to drain */
224 	for (queue = 0; queue < rx_queues_cnt; queue++) {
225 		rx_q = &priv->rx_queue[queue];
226 		if (rx_q->xsk_pool) {
227 			synchronize_rcu();
228 			break;
229 		}
230 	}
231 
232 	__stmmac_disable_all_queues(priv);
233 }
234 
235 /**
236  * stmmac_enable_all_queues - Enable all queues
237  * @priv: driver private structure
238  */
239 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
240 {
241 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
242 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
243 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
244 	u32 queue;
245 
246 	for (queue = 0; queue < maxq; queue++) {
247 		struct stmmac_channel *ch = &priv->channel[queue];
248 
249 		if (stmmac_xdp_is_enabled(priv) &&
250 		    test_bit(queue, priv->af_xdp_zc_qps)) {
251 			napi_enable(&ch->rxtx_napi);
252 			continue;
253 		}
254 
255 		if (queue < rx_queues_cnt)
256 			napi_enable(&ch->rx_napi);
257 		if (queue < tx_queues_cnt)
258 			napi_enable(&ch->tx_napi);
259 	}
260 }
261 
262 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
263 {
264 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
265 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
266 		queue_work(priv->wq, &priv->service_task);
267 }
268 
269 static void stmmac_global_err(struct stmmac_priv *priv)
270 {
271 	netif_carrier_off(priv->dev);
272 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
273 	stmmac_service_event_schedule(priv);
274 }
275 
276 /**
277  * stmmac_clk_csr_set - dynamically set the MDC clock
278  * @priv: driver private structure
279  * Description: this is to dynamically set the MDC clock according to the csr
280  * clock input.
281  * Note:
282  *	If a specific clk_csr value is passed from the platform
283  *	this means that the CSR Clock Range selection cannot be
284  *	changed at run-time and it is fixed (as reported in the driver
285  *	documentation). Viceversa the driver will try to set the MDC
286  *	clock dynamically according to the actual clock input.
287  */
288 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
289 {
290 	u32 clk_rate;
291 
292 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
293 
294 	/* Platform provided default clk_csr would be assumed valid
295 	 * for all other cases except for the below mentioned ones.
296 	 * For values higher than the IEEE 802.3 specified frequency
297 	 * we can not estimate the proper divider as it is not known
298 	 * the frequency of clk_csr_i. So we do not change the default
299 	 * divider.
300 	 */
301 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
302 		if (clk_rate < CSR_F_35M)
303 			priv->clk_csr = STMMAC_CSR_20_35M;
304 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
305 			priv->clk_csr = STMMAC_CSR_35_60M;
306 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
307 			priv->clk_csr = STMMAC_CSR_60_100M;
308 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
309 			priv->clk_csr = STMMAC_CSR_100_150M;
310 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
311 			priv->clk_csr = STMMAC_CSR_150_250M;
312 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
313 			priv->clk_csr = STMMAC_CSR_250_300M;
314 	}
315 
316 	if (priv->plat->has_sun8i) {
317 		if (clk_rate > 160000000)
318 			priv->clk_csr = 0x03;
319 		else if (clk_rate > 80000000)
320 			priv->clk_csr = 0x02;
321 		else if (clk_rate > 40000000)
322 			priv->clk_csr = 0x01;
323 		else
324 			priv->clk_csr = 0;
325 	}
326 
327 	if (priv->plat->has_xgmac) {
328 		if (clk_rate > 400000000)
329 			priv->clk_csr = 0x5;
330 		else if (clk_rate > 350000000)
331 			priv->clk_csr = 0x4;
332 		else if (clk_rate > 300000000)
333 			priv->clk_csr = 0x3;
334 		else if (clk_rate > 250000000)
335 			priv->clk_csr = 0x2;
336 		else if (clk_rate > 150000000)
337 			priv->clk_csr = 0x1;
338 		else
339 			priv->clk_csr = 0x0;
340 	}
341 }
342 
343 static void print_pkt(unsigned char *buf, int len)
344 {
345 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
346 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
347 }
348 
349 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
350 {
351 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
352 	u32 avail;
353 
354 	if (tx_q->dirty_tx > tx_q->cur_tx)
355 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
356 	else
357 		avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
358 
359 	return avail;
360 }
361 
362 /**
363  * stmmac_rx_dirty - Get RX queue dirty
364  * @priv: driver private structure
365  * @queue: RX queue index
366  */
367 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
368 {
369 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
370 	u32 dirty;
371 
372 	if (rx_q->dirty_rx <= rx_q->cur_rx)
373 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
374 	else
375 		dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
376 
377 	return dirty;
378 }
379 
380 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
381 {
382 	int tx_lpi_timer;
383 
384 	/* Clear/set the SW EEE timer flag based on LPI ET enablement */
385 	priv->eee_sw_timer_en = en ? 0 : 1;
386 	tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
387 	stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
388 }
389 
390 /**
391  * stmmac_enable_eee_mode - check and enter in LPI mode
392  * @priv: driver private structure
393  * Description: this function is to verify and enter in LPI mode in case of
394  * EEE.
395  */
396 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
397 {
398 	u32 tx_cnt = priv->plat->tx_queues_to_use;
399 	u32 queue;
400 
401 	/* check if all TX queues have the work finished */
402 	for (queue = 0; queue < tx_cnt; queue++) {
403 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
404 
405 		if (tx_q->dirty_tx != tx_q->cur_tx)
406 			return; /* still unfinished work */
407 	}
408 
409 	/* Check and enter in LPI mode */
410 	if (!priv->tx_path_in_lpi_mode)
411 		stmmac_set_eee_mode(priv, priv->hw,
412 				priv->plat->en_tx_lpi_clockgating);
413 }
414 
415 /**
416  * stmmac_disable_eee_mode - disable and exit from LPI mode
417  * @priv: driver private structure
418  * Description: this function is to exit and disable EEE in case of
419  * LPI state is true. This is called by the xmit.
420  */
421 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
422 {
423 	if (!priv->eee_sw_timer_en) {
424 		stmmac_lpi_entry_timer_config(priv, 0);
425 		return;
426 	}
427 
428 	stmmac_reset_eee_mode(priv, priv->hw);
429 	del_timer_sync(&priv->eee_ctrl_timer);
430 	priv->tx_path_in_lpi_mode = false;
431 }
432 
433 /**
434  * stmmac_eee_ctrl_timer - EEE TX SW timer.
435  * @t:  timer_list struct containing private info
436  * Description:
437  *  if there is no data transfer and if we are not in LPI state,
438  *  then MAC Transmitter can be moved to LPI state.
439  */
440 static void stmmac_eee_ctrl_timer(struct timer_list *t)
441 {
442 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
443 
444 	stmmac_enable_eee_mode(priv);
445 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
446 }
447 
448 /**
449  * stmmac_eee_init - init EEE
450  * @priv: driver private structure
451  * Description:
452  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
453  *  can also manage EEE, this function enable the LPI state and start related
454  *  timer.
455  */
456 bool stmmac_eee_init(struct stmmac_priv *priv)
457 {
458 	int eee_tw_timer = priv->eee_tw_timer;
459 
460 	/* Using PCS we cannot dial with the phy registers at this stage
461 	 * so we do not support extra feature like EEE.
462 	 */
463 	if (priv->hw->pcs == STMMAC_PCS_TBI ||
464 	    priv->hw->pcs == STMMAC_PCS_RTBI)
465 		return false;
466 
467 	/* Check if MAC core supports the EEE feature. */
468 	if (!priv->dma_cap.eee)
469 		return false;
470 
471 	mutex_lock(&priv->lock);
472 
473 	/* Check if it needs to be deactivated */
474 	if (!priv->eee_active) {
475 		if (priv->eee_enabled) {
476 			netdev_dbg(priv->dev, "disable EEE\n");
477 			stmmac_lpi_entry_timer_config(priv, 0);
478 			del_timer_sync(&priv->eee_ctrl_timer);
479 			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
480 		}
481 		mutex_unlock(&priv->lock);
482 		return false;
483 	}
484 
485 	if (priv->eee_active && !priv->eee_enabled) {
486 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
487 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
488 				     eee_tw_timer);
489 	}
490 
491 	if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
492 		del_timer_sync(&priv->eee_ctrl_timer);
493 		priv->tx_path_in_lpi_mode = false;
494 		stmmac_lpi_entry_timer_config(priv, 1);
495 	} else {
496 		stmmac_lpi_entry_timer_config(priv, 0);
497 		mod_timer(&priv->eee_ctrl_timer,
498 			  STMMAC_LPI_T(priv->tx_lpi_timer));
499 	}
500 
501 	mutex_unlock(&priv->lock);
502 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
503 	return true;
504 }
505 
506 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
507  * @priv: driver private structure
508  * @p : descriptor pointer
509  * @skb : the socket buffer
510  * Description :
511  * This function will read timestamp from the descriptor & pass it to stack.
512  * and also perform some sanity checks.
513  */
514 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
515 				   struct dma_desc *p, struct sk_buff *skb)
516 {
517 	struct skb_shared_hwtstamps shhwtstamp;
518 	bool found = false;
519 	s64 adjust = 0;
520 	u64 ns = 0;
521 
522 	if (!priv->hwts_tx_en)
523 		return;
524 
525 	/* exit if skb doesn't support hw tstamp */
526 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
527 		return;
528 
529 	/* check tx tstamp status */
530 	if (stmmac_get_tx_timestamp_status(priv, p)) {
531 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
532 		found = true;
533 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
534 		found = true;
535 	}
536 
537 	if (found) {
538 		/* Correct the clk domain crossing(CDC) error */
539 		if (priv->plat->has_gmac4 && priv->plat->clk_ptp_rate) {
540 			adjust += -(2 * (NSEC_PER_SEC /
541 					 priv->plat->clk_ptp_rate));
542 			ns += adjust;
543 		}
544 
545 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
546 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
547 
548 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
549 		/* pass tstamp to stack */
550 		skb_tstamp_tx(skb, &shhwtstamp);
551 	}
552 }
553 
554 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
555  * @priv: driver private structure
556  * @p : descriptor pointer
557  * @np : next descriptor pointer
558  * @skb : the socket buffer
559  * Description :
560  * This function will read received packet's timestamp from the descriptor
561  * and pass it to stack. It also perform some sanity checks.
562  */
563 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
564 				   struct dma_desc *np, struct sk_buff *skb)
565 {
566 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
567 	struct dma_desc *desc = p;
568 	u64 adjust = 0;
569 	u64 ns = 0;
570 
571 	if (!priv->hwts_rx_en)
572 		return;
573 	/* For GMAC4, the valid timestamp is from CTX next desc. */
574 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
575 		desc = np;
576 
577 	/* Check if timestamp is available */
578 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
579 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
580 
581 		/* Correct the clk domain crossing(CDC) error */
582 		if (priv->plat->has_gmac4 && priv->plat->clk_ptp_rate) {
583 			adjust += 2 * (NSEC_PER_SEC / priv->plat->clk_ptp_rate);
584 			ns -= adjust;
585 		}
586 
587 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
588 		shhwtstamp = skb_hwtstamps(skb);
589 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
590 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
591 	} else  {
592 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
593 	}
594 }
595 
596 /**
597  *  stmmac_hwtstamp_set - control hardware timestamping.
598  *  @dev: device pointer.
599  *  @ifr: An IOCTL specific structure, that can contain a pointer to
600  *  a proprietary structure used to pass information to the driver.
601  *  Description:
602  *  This function configures the MAC to enable/disable both outgoing(TX)
603  *  and incoming(RX) packets time stamping based on user input.
604  *  Return Value:
605  *  0 on success and an appropriate -ve integer on failure.
606  */
607 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
608 {
609 	struct stmmac_priv *priv = netdev_priv(dev);
610 	struct hwtstamp_config config;
611 	struct timespec64 now;
612 	u64 temp = 0;
613 	u32 ptp_v2 = 0;
614 	u32 tstamp_all = 0;
615 	u32 ptp_over_ipv4_udp = 0;
616 	u32 ptp_over_ipv6_udp = 0;
617 	u32 ptp_over_ethernet = 0;
618 	u32 snap_type_sel = 0;
619 	u32 ts_master_en = 0;
620 	u32 ts_event_en = 0;
621 	u32 sec_inc = 0;
622 	u32 value = 0;
623 	bool xmac;
624 
625 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
626 
627 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
628 		netdev_alert(priv->dev, "No support for HW time stamping\n");
629 		priv->hwts_tx_en = 0;
630 		priv->hwts_rx_en = 0;
631 
632 		return -EOPNOTSUPP;
633 	}
634 
635 	if (copy_from_user(&config, ifr->ifr_data,
636 			   sizeof(config)))
637 		return -EFAULT;
638 
639 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
640 		   __func__, config.flags, config.tx_type, config.rx_filter);
641 
642 	/* reserved for future extensions */
643 	if (config.flags)
644 		return -EINVAL;
645 
646 	if (config.tx_type != HWTSTAMP_TX_OFF &&
647 	    config.tx_type != HWTSTAMP_TX_ON)
648 		return -ERANGE;
649 
650 	if (priv->adv_ts) {
651 		switch (config.rx_filter) {
652 		case HWTSTAMP_FILTER_NONE:
653 			/* time stamp no incoming packet at all */
654 			config.rx_filter = HWTSTAMP_FILTER_NONE;
655 			break;
656 
657 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
658 			/* PTP v1, UDP, any kind of event packet */
659 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
660 			/* 'xmac' hardware can support Sync, Pdelay_Req and
661 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
662 			 * This leaves Delay_Req timestamps out.
663 			 * Enable all events *and* general purpose message
664 			 * timestamping
665 			 */
666 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
667 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
668 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
669 			break;
670 
671 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
672 			/* PTP v1, UDP, Sync packet */
673 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
674 			/* take time stamp for SYNC messages only */
675 			ts_event_en = PTP_TCR_TSEVNTENA;
676 
677 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
678 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
679 			break;
680 
681 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
682 			/* PTP v1, UDP, Delay_req packet */
683 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
684 			/* take time stamp for Delay_Req messages only */
685 			ts_master_en = PTP_TCR_TSMSTRENA;
686 			ts_event_en = PTP_TCR_TSEVNTENA;
687 
688 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
689 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
690 			break;
691 
692 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
693 			/* PTP v2, UDP, any kind of event packet */
694 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
695 			ptp_v2 = PTP_TCR_TSVER2ENA;
696 			/* take time stamp for all event messages */
697 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
698 
699 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
700 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
701 			break;
702 
703 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
704 			/* PTP v2, UDP, Sync packet */
705 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
706 			ptp_v2 = PTP_TCR_TSVER2ENA;
707 			/* take time stamp for SYNC messages only */
708 			ts_event_en = PTP_TCR_TSEVNTENA;
709 
710 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
711 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
712 			break;
713 
714 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
715 			/* PTP v2, UDP, Delay_req packet */
716 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
717 			ptp_v2 = PTP_TCR_TSVER2ENA;
718 			/* take time stamp for Delay_Req messages only */
719 			ts_master_en = PTP_TCR_TSMSTRENA;
720 			ts_event_en = PTP_TCR_TSEVNTENA;
721 
722 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
723 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
724 			break;
725 
726 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
727 			/* PTP v2/802.AS1 any layer, any kind of event packet */
728 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
729 			ptp_v2 = PTP_TCR_TSVER2ENA;
730 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
731 			if (priv->synopsys_id != DWMAC_CORE_5_10)
732 				ts_event_en = PTP_TCR_TSEVNTENA;
733 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
734 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
735 			ptp_over_ethernet = PTP_TCR_TSIPENA;
736 			break;
737 
738 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
739 			/* PTP v2/802.AS1, any layer, Sync packet */
740 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
741 			ptp_v2 = PTP_TCR_TSVER2ENA;
742 			/* take time stamp for SYNC messages only */
743 			ts_event_en = PTP_TCR_TSEVNTENA;
744 
745 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
746 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
747 			ptp_over_ethernet = PTP_TCR_TSIPENA;
748 			break;
749 
750 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
751 			/* PTP v2/802.AS1, any layer, Delay_req packet */
752 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
753 			ptp_v2 = PTP_TCR_TSVER2ENA;
754 			/* take time stamp for Delay_Req messages only */
755 			ts_master_en = PTP_TCR_TSMSTRENA;
756 			ts_event_en = PTP_TCR_TSEVNTENA;
757 
758 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
759 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
760 			ptp_over_ethernet = PTP_TCR_TSIPENA;
761 			break;
762 
763 		case HWTSTAMP_FILTER_NTP_ALL:
764 		case HWTSTAMP_FILTER_ALL:
765 			/* time stamp any incoming packet */
766 			config.rx_filter = HWTSTAMP_FILTER_ALL;
767 			tstamp_all = PTP_TCR_TSENALL;
768 			break;
769 
770 		default:
771 			return -ERANGE;
772 		}
773 	} else {
774 		switch (config.rx_filter) {
775 		case HWTSTAMP_FILTER_NONE:
776 			config.rx_filter = HWTSTAMP_FILTER_NONE;
777 			break;
778 		default:
779 			/* PTP v1, UDP, any kind of event packet */
780 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
781 			break;
782 		}
783 	}
784 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
785 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
786 
787 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
788 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
789 	else {
790 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
791 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
792 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
793 			 ts_master_en | snap_type_sel);
794 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
795 
796 		/* program Sub Second Increment reg */
797 		stmmac_config_sub_second_increment(priv,
798 				priv->ptpaddr, priv->plat->clk_ptp_rate,
799 				xmac, &sec_inc);
800 		temp = div_u64(1000000000ULL, sec_inc);
801 
802 		/* Store sub second increment and flags for later use */
803 		priv->sub_second_inc = sec_inc;
804 		priv->systime_flags = value;
805 
806 		/* calculate default added value:
807 		 * formula is :
808 		 * addend = (2^32)/freq_div_ratio;
809 		 * where, freq_div_ratio = 1e9ns/sec_inc
810 		 */
811 		temp = (u64)(temp << 32);
812 		priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
813 		stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
814 
815 		/* initialize system time */
816 		ktime_get_real_ts64(&now);
817 
818 		/* lower 32 bits of tv_sec are safe until y2106 */
819 		stmmac_init_systime(priv, priv->ptpaddr,
820 				(u32)now.tv_sec, now.tv_nsec);
821 	}
822 
823 	memcpy(&priv->tstamp_config, &config, sizeof(config));
824 
825 	return copy_to_user(ifr->ifr_data, &config,
826 			    sizeof(config)) ? -EFAULT : 0;
827 }
828 
829 /**
830  *  stmmac_hwtstamp_get - read hardware timestamping.
831  *  @dev: device pointer.
832  *  @ifr: An IOCTL specific structure, that can contain a pointer to
833  *  a proprietary structure used to pass information to the driver.
834  *  Description:
835  *  This function obtain the current hardware timestamping settings
836  *  as requested.
837  */
838 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
839 {
840 	struct stmmac_priv *priv = netdev_priv(dev);
841 	struct hwtstamp_config *config = &priv->tstamp_config;
842 
843 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
844 		return -EOPNOTSUPP;
845 
846 	return copy_to_user(ifr->ifr_data, config,
847 			    sizeof(*config)) ? -EFAULT : 0;
848 }
849 
850 /**
851  * stmmac_init_ptp - init PTP
852  * @priv: driver private structure
853  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
854  * This is done by looking at the HW cap. register.
855  * This function also registers the ptp driver.
856  */
857 static int stmmac_init_ptp(struct stmmac_priv *priv)
858 {
859 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
860 
861 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
862 		return -EOPNOTSUPP;
863 
864 	priv->adv_ts = 0;
865 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
866 	if (xmac && priv->dma_cap.atime_stamp)
867 		priv->adv_ts = 1;
868 	/* Dwmac 3.x core with extend_desc can support adv_ts */
869 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
870 		priv->adv_ts = 1;
871 
872 	if (priv->dma_cap.time_stamp)
873 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
874 
875 	if (priv->adv_ts)
876 		netdev_info(priv->dev,
877 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
878 
879 	priv->hwts_tx_en = 0;
880 	priv->hwts_rx_en = 0;
881 
882 	stmmac_ptp_register(priv);
883 
884 	return 0;
885 }
886 
887 static void stmmac_release_ptp(struct stmmac_priv *priv)
888 {
889 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
890 	stmmac_ptp_unregister(priv);
891 }
892 
893 /**
894  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
895  *  @priv: driver private structure
896  *  @duplex: duplex passed to the next function
897  *  Description: It is used for configuring the flow control in all queues
898  */
899 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
900 {
901 	u32 tx_cnt = priv->plat->tx_queues_to_use;
902 
903 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
904 			priv->pause, tx_cnt);
905 }
906 
907 static void stmmac_validate(struct phylink_config *config,
908 			    unsigned long *supported,
909 			    struct phylink_link_state *state)
910 {
911 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
912 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
913 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
914 	int tx_cnt = priv->plat->tx_queues_to_use;
915 	int max_speed = priv->plat->max_speed;
916 
917 	phylink_set(mac_supported, 10baseT_Half);
918 	phylink_set(mac_supported, 10baseT_Full);
919 	phylink_set(mac_supported, 100baseT_Half);
920 	phylink_set(mac_supported, 100baseT_Full);
921 	phylink_set(mac_supported, 1000baseT_Half);
922 	phylink_set(mac_supported, 1000baseT_Full);
923 	phylink_set(mac_supported, 1000baseKX_Full);
924 
925 	phylink_set(mac_supported, Autoneg);
926 	phylink_set(mac_supported, Pause);
927 	phylink_set(mac_supported, Asym_Pause);
928 	phylink_set_port_modes(mac_supported);
929 
930 	/* Cut down 1G if asked to */
931 	if ((max_speed > 0) && (max_speed < 1000)) {
932 		phylink_set(mask, 1000baseT_Full);
933 		phylink_set(mask, 1000baseX_Full);
934 	} else if (priv->plat->has_gmac4) {
935 		if (!max_speed || max_speed >= 2500) {
936 			phylink_set(mac_supported, 2500baseT_Full);
937 			phylink_set(mac_supported, 2500baseX_Full);
938 		}
939 	} else if (priv->plat->has_xgmac) {
940 		if (!max_speed || (max_speed >= 2500)) {
941 			phylink_set(mac_supported, 2500baseT_Full);
942 			phylink_set(mac_supported, 2500baseX_Full);
943 		}
944 		if (!max_speed || (max_speed >= 5000)) {
945 			phylink_set(mac_supported, 5000baseT_Full);
946 		}
947 		if (!max_speed || (max_speed >= 10000)) {
948 			phylink_set(mac_supported, 10000baseSR_Full);
949 			phylink_set(mac_supported, 10000baseLR_Full);
950 			phylink_set(mac_supported, 10000baseER_Full);
951 			phylink_set(mac_supported, 10000baseLRM_Full);
952 			phylink_set(mac_supported, 10000baseT_Full);
953 			phylink_set(mac_supported, 10000baseKX4_Full);
954 			phylink_set(mac_supported, 10000baseKR_Full);
955 		}
956 		if (!max_speed || (max_speed >= 25000)) {
957 			phylink_set(mac_supported, 25000baseCR_Full);
958 			phylink_set(mac_supported, 25000baseKR_Full);
959 			phylink_set(mac_supported, 25000baseSR_Full);
960 		}
961 		if (!max_speed || (max_speed >= 40000)) {
962 			phylink_set(mac_supported, 40000baseKR4_Full);
963 			phylink_set(mac_supported, 40000baseCR4_Full);
964 			phylink_set(mac_supported, 40000baseSR4_Full);
965 			phylink_set(mac_supported, 40000baseLR4_Full);
966 		}
967 		if (!max_speed || (max_speed >= 50000)) {
968 			phylink_set(mac_supported, 50000baseCR2_Full);
969 			phylink_set(mac_supported, 50000baseKR2_Full);
970 			phylink_set(mac_supported, 50000baseSR2_Full);
971 			phylink_set(mac_supported, 50000baseKR_Full);
972 			phylink_set(mac_supported, 50000baseSR_Full);
973 			phylink_set(mac_supported, 50000baseCR_Full);
974 			phylink_set(mac_supported, 50000baseLR_ER_FR_Full);
975 			phylink_set(mac_supported, 50000baseDR_Full);
976 		}
977 		if (!max_speed || (max_speed >= 100000)) {
978 			phylink_set(mac_supported, 100000baseKR4_Full);
979 			phylink_set(mac_supported, 100000baseSR4_Full);
980 			phylink_set(mac_supported, 100000baseCR4_Full);
981 			phylink_set(mac_supported, 100000baseLR4_ER4_Full);
982 			phylink_set(mac_supported, 100000baseKR2_Full);
983 			phylink_set(mac_supported, 100000baseSR2_Full);
984 			phylink_set(mac_supported, 100000baseCR2_Full);
985 			phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full);
986 			phylink_set(mac_supported, 100000baseDR2_Full);
987 		}
988 	}
989 
990 	/* Half-Duplex can only work with single queue */
991 	if (tx_cnt > 1) {
992 		phylink_set(mask, 10baseT_Half);
993 		phylink_set(mask, 100baseT_Half);
994 		phylink_set(mask, 1000baseT_Half);
995 	}
996 
997 	linkmode_and(supported, supported, mac_supported);
998 	linkmode_andnot(supported, supported, mask);
999 
1000 	linkmode_and(state->advertising, state->advertising, mac_supported);
1001 	linkmode_andnot(state->advertising, state->advertising, mask);
1002 
1003 	/* If PCS is supported, check which modes it supports. */
1004 	if (priv->hw->xpcs)
1005 		xpcs_validate(priv->hw->xpcs, supported, state);
1006 }
1007 
1008 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
1009 			      const struct phylink_link_state *state)
1010 {
1011 	/* Nothing to do, xpcs_config() handles everything */
1012 }
1013 
1014 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
1015 {
1016 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
1017 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
1018 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
1019 	bool *hs_enable = &fpe_cfg->hs_enable;
1020 
1021 	if (is_up && *hs_enable) {
1022 		stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
1023 	} else {
1024 		*lo_state = FPE_STATE_OFF;
1025 		*lp_state = FPE_STATE_OFF;
1026 	}
1027 }
1028 
1029 static void stmmac_mac_link_down(struct phylink_config *config,
1030 				 unsigned int mode, phy_interface_t interface)
1031 {
1032 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
1033 
1034 	stmmac_mac_set(priv, priv->ioaddr, false);
1035 	priv->eee_active = false;
1036 	priv->tx_lpi_enabled = false;
1037 	stmmac_eee_init(priv);
1038 	stmmac_set_eee_pls(priv, priv->hw, false);
1039 
1040 	if (priv->dma_cap.fpesel)
1041 		stmmac_fpe_link_state_handle(priv, false);
1042 }
1043 
1044 static void stmmac_mac_link_up(struct phylink_config *config,
1045 			       struct phy_device *phy,
1046 			       unsigned int mode, phy_interface_t interface,
1047 			       int speed, int duplex,
1048 			       bool tx_pause, bool rx_pause)
1049 {
1050 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
1051 	u32 ctrl;
1052 
1053 	ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
1054 	ctrl &= ~priv->hw->link.speed_mask;
1055 
1056 	if (interface == PHY_INTERFACE_MODE_USXGMII) {
1057 		switch (speed) {
1058 		case SPEED_10000:
1059 			ctrl |= priv->hw->link.xgmii.speed10000;
1060 			break;
1061 		case SPEED_5000:
1062 			ctrl |= priv->hw->link.xgmii.speed5000;
1063 			break;
1064 		case SPEED_2500:
1065 			ctrl |= priv->hw->link.xgmii.speed2500;
1066 			break;
1067 		default:
1068 			return;
1069 		}
1070 	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1071 		switch (speed) {
1072 		case SPEED_100000:
1073 			ctrl |= priv->hw->link.xlgmii.speed100000;
1074 			break;
1075 		case SPEED_50000:
1076 			ctrl |= priv->hw->link.xlgmii.speed50000;
1077 			break;
1078 		case SPEED_40000:
1079 			ctrl |= priv->hw->link.xlgmii.speed40000;
1080 			break;
1081 		case SPEED_25000:
1082 			ctrl |= priv->hw->link.xlgmii.speed25000;
1083 			break;
1084 		case SPEED_10000:
1085 			ctrl |= priv->hw->link.xgmii.speed10000;
1086 			break;
1087 		case SPEED_2500:
1088 			ctrl |= priv->hw->link.speed2500;
1089 			break;
1090 		case SPEED_1000:
1091 			ctrl |= priv->hw->link.speed1000;
1092 			break;
1093 		default:
1094 			return;
1095 		}
1096 	} else {
1097 		switch (speed) {
1098 		case SPEED_2500:
1099 			ctrl |= priv->hw->link.speed2500;
1100 			break;
1101 		case SPEED_1000:
1102 			ctrl |= priv->hw->link.speed1000;
1103 			break;
1104 		case SPEED_100:
1105 			ctrl |= priv->hw->link.speed100;
1106 			break;
1107 		case SPEED_10:
1108 			ctrl |= priv->hw->link.speed10;
1109 			break;
1110 		default:
1111 			return;
1112 		}
1113 	}
1114 
1115 	priv->speed = speed;
1116 
1117 	if (priv->plat->fix_mac_speed)
1118 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1119 
1120 	if (!duplex)
1121 		ctrl &= ~priv->hw->link.duplex;
1122 	else
1123 		ctrl |= priv->hw->link.duplex;
1124 
1125 	/* Flow Control operation */
1126 	if (tx_pause && rx_pause)
1127 		stmmac_mac_flow_ctrl(priv, duplex);
1128 
1129 	writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1130 
1131 	stmmac_mac_set(priv, priv->ioaddr, true);
1132 	if (phy && priv->dma_cap.eee) {
1133 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
1134 		priv->eee_enabled = stmmac_eee_init(priv);
1135 		priv->tx_lpi_enabled = priv->eee_enabled;
1136 		stmmac_set_eee_pls(priv, priv->hw, true);
1137 	}
1138 
1139 	if (priv->dma_cap.fpesel)
1140 		stmmac_fpe_link_state_handle(priv, true);
1141 }
1142 
1143 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1144 	.validate = stmmac_validate,
1145 	.mac_config = stmmac_mac_config,
1146 	.mac_link_down = stmmac_mac_link_down,
1147 	.mac_link_up = stmmac_mac_link_up,
1148 };
1149 
1150 /**
1151  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1152  * @priv: driver private structure
1153  * Description: this is to verify if the HW supports the PCS.
1154  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1155  * configured for the TBI, RTBI, or SGMII PHY interface.
1156  */
1157 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1158 {
1159 	int interface = priv->plat->interface;
1160 
1161 	if (priv->dma_cap.pcs) {
1162 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1163 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1164 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1165 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1166 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1167 			priv->hw->pcs = STMMAC_PCS_RGMII;
1168 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1169 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1170 			priv->hw->pcs = STMMAC_PCS_SGMII;
1171 		}
1172 	}
1173 }
1174 
1175 /**
1176  * stmmac_init_phy - PHY initialization
1177  * @dev: net device structure
1178  * Description: it initializes the driver's PHY state, and attaches the PHY
1179  * to the mac driver.
1180  *  Return value:
1181  *  0 on success
1182  */
1183 static int stmmac_init_phy(struct net_device *dev)
1184 {
1185 	struct stmmac_priv *priv = netdev_priv(dev);
1186 	struct device_node *node;
1187 	int ret;
1188 
1189 	node = priv->plat->phylink_node;
1190 
1191 	if (node)
1192 		ret = phylink_of_phy_connect(priv->phylink, node, 0);
1193 
1194 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1195 	 * manually parse it
1196 	 */
1197 	if (!node || ret) {
1198 		int addr = priv->plat->phy_addr;
1199 		struct phy_device *phydev;
1200 
1201 		phydev = mdiobus_get_phy(priv->mii, addr);
1202 		if (!phydev) {
1203 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1204 			return -ENODEV;
1205 		}
1206 
1207 		ret = phylink_connect_phy(priv->phylink, phydev);
1208 	}
1209 
1210 	if (!priv->plat->pmt) {
1211 		struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1212 
1213 		phylink_ethtool_get_wol(priv->phylink, &wol);
1214 		device_set_wakeup_capable(priv->device, !!wol.supported);
1215 	}
1216 
1217 	return ret;
1218 }
1219 
1220 static int stmmac_phy_setup(struct stmmac_priv *priv)
1221 {
1222 	struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1223 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1224 	int mode = priv->plat->phy_interface;
1225 	struct phylink *phylink;
1226 
1227 	priv->phylink_config.dev = &priv->dev->dev;
1228 	priv->phylink_config.type = PHYLINK_NETDEV;
1229 	priv->phylink_config.pcs_poll = true;
1230 	if (priv->plat->mdio_bus_data)
1231 		priv->phylink_config.ovr_an_inband =
1232 			mdio_bus_data->xpcs_an_inband;
1233 
1234 	if (!fwnode)
1235 		fwnode = dev_fwnode(priv->device);
1236 
1237 	phylink = phylink_create(&priv->phylink_config, fwnode,
1238 				 mode, &stmmac_phylink_mac_ops);
1239 	if (IS_ERR(phylink))
1240 		return PTR_ERR(phylink);
1241 
1242 	if (priv->hw->xpcs)
1243 		phylink_set_pcs(phylink, &priv->hw->xpcs->pcs);
1244 
1245 	priv->phylink = phylink;
1246 	return 0;
1247 }
1248 
1249 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1250 {
1251 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1252 	unsigned int desc_size;
1253 	void *head_rx;
1254 	u32 queue;
1255 
1256 	/* Display RX rings */
1257 	for (queue = 0; queue < rx_cnt; queue++) {
1258 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1259 
1260 		pr_info("\tRX Queue %u rings\n", queue);
1261 
1262 		if (priv->extend_desc) {
1263 			head_rx = (void *)rx_q->dma_erx;
1264 			desc_size = sizeof(struct dma_extended_desc);
1265 		} else {
1266 			head_rx = (void *)rx_q->dma_rx;
1267 			desc_size = sizeof(struct dma_desc);
1268 		}
1269 
1270 		/* Display RX ring */
1271 		stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true,
1272 				    rx_q->dma_rx_phy, desc_size);
1273 	}
1274 }
1275 
1276 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1277 {
1278 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1279 	unsigned int desc_size;
1280 	void *head_tx;
1281 	u32 queue;
1282 
1283 	/* Display TX rings */
1284 	for (queue = 0; queue < tx_cnt; queue++) {
1285 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1286 
1287 		pr_info("\tTX Queue %d rings\n", queue);
1288 
1289 		if (priv->extend_desc) {
1290 			head_tx = (void *)tx_q->dma_etx;
1291 			desc_size = sizeof(struct dma_extended_desc);
1292 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1293 			head_tx = (void *)tx_q->dma_entx;
1294 			desc_size = sizeof(struct dma_edesc);
1295 		} else {
1296 			head_tx = (void *)tx_q->dma_tx;
1297 			desc_size = sizeof(struct dma_desc);
1298 		}
1299 
1300 		stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false,
1301 				    tx_q->dma_tx_phy, desc_size);
1302 	}
1303 }
1304 
1305 static void stmmac_display_rings(struct stmmac_priv *priv)
1306 {
1307 	/* Display RX ring */
1308 	stmmac_display_rx_rings(priv);
1309 
1310 	/* Display TX ring */
1311 	stmmac_display_tx_rings(priv);
1312 }
1313 
1314 static int stmmac_set_bfsize(int mtu, int bufsize)
1315 {
1316 	int ret = bufsize;
1317 
1318 	if (mtu >= BUF_SIZE_8KiB)
1319 		ret = BUF_SIZE_16KiB;
1320 	else if (mtu >= BUF_SIZE_4KiB)
1321 		ret = BUF_SIZE_8KiB;
1322 	else if (mtu >= BUF_SIZE_2KiB)
1323 		ret = BUF_SIZE_4KiB;
1324 	else if (mtu > DEFAULT_BUFSIZE)
1325 		ret = BUF_SIZE_2KiB;
1326 	else
1327 		ret = DEFAULT_BUFSIZE;
1328 
1329 	return ret;
1330 }
1331 
1332 /**
1333  * stmmac_clear_rx_descriptors - clear RX descriptors
1334  * @priv: driver private structure
1335  * @queue: RX queue index
1336  * Description: this function is called to clear the RX descriptors
1337  * in case of both basic and extended descriptors are used.
1338  */
1339 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1340 {
1341 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1342 	int i;
1343 
1344 	/* Clear the RX descriptors */
1345 	for (i = 0; i < priv->dma_rx_size; i++)
1346 		if (priv->extend_desc)
1347 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1348 					priv->use_riwt, priv->mode,
1349 					(i == priv->dma_rx_size - 1),
1350 					priv->dma_buf_sz);
1351 		else
1352 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1353 					priv->use_riwt, priv->mode,
1354 					(i == priv->dma_rx_size - 1),
1355 					priv->dma_buf_sz);
1356 }
1357 
1358 /**
1359  * stmmac_clear_tx_descriptors - clear tx descriptors
1360  * @priv: driver private structure
1361  * @queue: TX queue index.
1362  * Description: this function is called to clear the TX descriptors
1363  * in case of both basic and extended descriptors are used.
1364  */
1365 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1366 {
1367 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1368 	int i;
1369 
1370 	/* Clear the TX descriptors */
1371 	for (i = 0; i < priv->dma_tx_size; i++) {
1372 		int last = (i == (priv->dma_tx_size - 1));
1373 		struct dma_desc *p;
1374 
1375 		if (priv->extend_desc)
1376 			p = &tx_q->dma_etx[i].basic;
1377 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1378 			p = &tx_q->dma_entx[i].basic;
1379 		else
1380 			p = &tx_q->dma_tx[i];
1381 
1382 		stmmac_init_tx_desc(priv, p, priv->mode, last);
1383 	}
1384 }
1385 
1386 /**
1387  * stmmac_clear_descriptors - clear descriptors
1388  * @priv: driver private structure
1389  * Description: this function is called to clear the TX and RX descriptors
1390  * in case of both basic and extended descriptors are used.
1391  */
1392 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1393 {
1394 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1395 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1396 	u32 queue;
1397 
1398 	/* Clear the RX descriptors */
1399 	for (queue = 0; queue < rx_queue_cnt; queue++)
1400 		stmmac_clear_rx_descriptors(priv, queue);
1401 
1402 	/* Clear the TX descriptors */
1403 	for (queue = 0; queue < tx_queue_cnt; queue++)
1404 		stmmac_clear_tx_descriptors(priv, queue);
1405 }
1406 
1407 /**
1408  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1409  * @priv: driver private structure
1410  * @p: descriptor pointer
1411  * @i: descriptor index
1412  * @flags: gfp flag
1413  * @queue: RX queue index
1414  * Description: this function is called to allocate a receive buffer, perform
1415  * the DMA mapping and init the descriptor.
1416  */
1417 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1418 				  int i, gfp_t flags, u32 queue)
1419 {
1420 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1421 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1422 
1423 	if (!buf->page) {
1424 		buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1425 		if (!buf->page)
1426 			return -ENOMEM;
1427 		buf->page_offset = stmmac_rx_offset(priv);
1428 	}
1429 
1430 	if (priv->sph && !buf->sec_page) {
1431 		buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1432 		if (!buf->sec_page)
1433 			return -ENOMEM;
1434 
1435 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1436 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1437 	} else {
1438 		buf->sec_page = NULL;
1439 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1440 	}
1441 
1442 	buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1443 
1444 	stmmac_set_desc_addr(priv, p, buf->addr);
1445 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1446 		stmmac_init_desc3(priv, p);
1447 
1448 	return 0;
1449 }
1450 
1451 /**
1452  * stmmac_free_rx_buffer - free RX dma buffers
1453  * @priv: private structure
1454  * @queue: RX queue index
1455  * @i: buffer index.
1456  */
1457 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1458 {
1459 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1460 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1461 
1462 	if (buf->page)
1463 		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1464 	buf->page = NULL;
1465 
1466 	if (buf->sec_page)
1467 		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1468 	buf->sec_page = NULL;
1469 }
1470 
1471 /**
1472  * stmmac_free_tx_buffer - free RX dma buffers
1473  * @priv: private structure
1474  * @queue: RX queue index
1475  * @i: buffer index.
1476  */
1477 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1478 {
1479 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1480 
1481 	if (tx_q->tx_skbuff_dma[i].buf &&
1482 	    tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1483 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1484 			dma_unmap_page(priv->device,
1485 				       tx_q->tx_skbuff_dma[i].buf,
1486 				       tx_q->tx_skbuff_dma[i].len,
1487 				       DMA_TO_DEVICE);
1488 		else
1489 			dma_unmap_single(priv->device,
1490 					 tx_q->tx_skbuff_dma[i].buf,
1491 					 tx_q->tx_skbuff_dma[i].len,
1492 					 DMA_TO_DEVICE);
1493 	}
1494 
1495 	if (tx_q->xdpf[i] &&
1496 	    (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1497 	     tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1498 		xdp_return_frame(tx_q->xdpf[i]);
1499 		tx_q->xdpf[i] = NULL;
1500 	}
1501 
1502 	if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1503 		tx_q->xsk_frames_done++;
1504 
1505 	if (tx_q->tx_skbuff[i] &&
1506 	    tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1507 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1508 		tx_q->tx_skbuff[i] = NULL;
1509 	}
1510 
1511 	tx_q->tx_skbuff_dma[i].buf = 0;
1512 	tx_q->tx_skbuff_dma[i].map_as_page = false;
1513 }
1514 
1515 /**
1516  * dma_free_rx_skbufs - free RX dma buffers
1517  * @priv: private structure
1518  * @queue: RX queue index
1519  */
1520 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1521 {
1522 	int i;
1523 
1524 	for (i = 0; i < priv->dma_rx_size; i++)
1525 		stmmac_free_rx_buffer(priv, queue, i);
1526 }
1527 
1528 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, u32 queue,
1529 				   gfp_t flags)
1530 {
1531 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1532 	int i;
1533 
1534 	for (i = 0; i < priv->dma_rx_size; i++) {
1535 		struct dma_desc *p;
1536 		int ret;
1537 
1538 		if (priv->extend_desc)
1539 			p = &((rx_q->dma_erx + i)->basic);
1540 		else
1541 			p = rx_q->dma_rx + i;
1542 
1543 		ret = stmmac_init_rx_buffers(priv, p, i, flags,
1544 					     queue);
1545 		if (ret)
1546 			return ret;
1547 
1548 		rx_q->buf_alloc_num++;
1549 	}
1550 
1551 	return 0;
1552 }
1553 
1554 /**
1555  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1556  * @priv: private structure
1557  * @queue: RX queue index
1558  */
1559 static void dma_free_rx_xskbufs(struct stmmac_priv *priv, u32 queue)
1560 {
1561 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1562 	int i;
1563 
1564 	for (i = 0; i < priv->dma_rx_size; i++) {
1565 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1566 
1567 		if (!buf->xdp)
1568 			continue;
1569 
1570 		xsk_buff_free(buf->xdp);
1571 		buf->xdp = NULL;
1572 	}
1573 }
1574 
1575 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, u32 queue)
1576 {
1577 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1578 	int i;
1579 
1580 	for (i = 0; i < priv->dma_rx_size; i++) {
1581 		struct stmmac_rx_buffer *buf;
1582 		dma_addr_t dma_addr;
1583 		struct dma_desc *p;
1584 
1585 		if (priv->extend_desc)
1586 			p = (struct dma_desc *)(rx_q->dma_erx + i);
1587 		else
1588 			p = rx_q->dma_rx + i;
1589 
1590 		buf = &rx_q->buf_pool[i];
1591 
1592 		buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1593 		if (!buf->xdp)
1594 			return -ENOMEM;
1595 
1596 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1597 		stmmac_set_desc_addr(priv, p, dma_addr);
1598 		rx_q->buf_alloc_num++;
1599 	}
1600 
1601 	return 0;
1602 }
1603 
1604 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1605 {
1606 	if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1607 		return NULL;
1608 
1609 	return xsk_get_pool_from_qid(priv->dev, queue);
1610 }
1611 
1612 /**
1613  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1614  * @priv: driver private structure
1615  * @queue: RX queue index
1616  * @flags: gfp flag.
1617  * Description: this function initializes the DMA RX descriptors
1618  * and allocates the socket buffers. It supports the chained and ring
1619  * modes.
1620  */
1621 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, u32 queue, gfp_t flags)
1622 {
1623 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1624 	int ret;
1625 
1626 	netif_dbg(priv, probe, priv->dev,
1627 		  "(%s) dma_rx_phy=0x%08x\n", __func__,
1628 		  (u32)rx_q->dma_rx_phy);
1629 
1630 	stmmac_clear_rx_descriptors(priv, queue);
1631 
1632 	xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1633 
1634 	rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1635 
1636 	if (rx_q->xsk_pool) {
1637 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1638 						   MEM_TYPE_XSK_BUFF_POOL,
1639 						   NULL));
1640 		netdev_info(priv->dev,
1641 			    "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1642 			    rx_q->queue_index);
1643 		xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1644 	} else {
1645 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1646 						   MEM_TYPE_PAGE_POOL,
1647 						   rx_q->page_pool));
1648 		netdev_info(priv->dev,
1649 			    "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1650 			    rx_q->queue_index);
1651 	}
1652 
1653 	if (rx_q->xsk_pool) {
1654 		/* RX XDP ZC buffer pool may not be populated, e.g.
1655 		 * xdpsock TX-only.
1656 		 */
1657 		stmmac_alloc_rx_buffers_zc(priv, queue);
1658 	} else {
1659 		ret = stmmac_alloc_rx_buffers(priv, queue, flags);
1660 		if (ret < 0)
1661 			return -ENOMEM;
1662 	}
1663 
1664 	rx_q->cur_rx = 0;
1665 	rx_q->dirty_rx = 0;
1666 
1667 	/* Setup the chained descriptor addresses */
1668 	if (priv->mode == STMMAC_CHAIN_MODE) {
1669 		if (priv->extend_desc)
1670 			stmmac_mode_init(priv, rx_q->dma_erx,
1671 					 rx_q->dma_rx_phy,
1672 					 priv->dma_rx_size, 1);
1673 		else
1674 			stmmac_mode_init(priv, rx_q->dma_rx,
1675 					 rx_q->dma_rx_phy,
1676 					 priv->dma_rx_size, 0);
1677 	}
1678 
1679 	return 0;
1680 }
1681 
1682 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1683 {
1684 	struct stmmac_priv *priv = netdev_priv(dev);
1685 	u32 rx_count = priv->plat->rx_queues_to_use;
1686 	u32 queue;
1687 	int ret;
1688 
1689 	/* RX INITIALIZATION */
1690 	netif_dbg(priv, probe, priv->dev,
1691 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1692 
1693 	for (queue = 0; queue < rx_count; queue++) {
1694 		ret = __init_dma_rx_desc_rings(priv, queue, flags);
1695 		if (ret)
1696 			goto err_init_rx_buffers;
1697 	}
1698 
1699 	return 0;
1700 
1701 err_init_rx_buffers:
1702 	while (queue >= 0) {
1703 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1704 
1705 		if (rx_q->xsk_pool)
1706 			dma_free_rx_xskbufs(priv, queue);
1707 		else
1708 			dma_free_rx_skbufs(priv, queue);
1709 
1710 		rx_q->buf_alloc_num = 0;
1711 		rx_q->xsk_pool = NULL;
1712 
1713 		if (queue == 0)
1714 			break;
1715 
1716 		queue--;
1717 	}
1718 
1719 	return ret;
1720 }
1721 
1722 /**
1723  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1724  * @priv: driver private structure
1725  * @queue : TX queue index
1726  * Description: this function initializes the DMA TX descriptors
1727  * and allocates the socket buffers. It supports the chained and ring
1728  * modes.
1729  */
1730 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, u32 queue)
1731 {
1732 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1733 	int i;
1734 
1735 	netif_dbg(priv, probe, priv->dev,
1736 		  "(%s) dma_tx_phy=0x%08x\n", __func__,
1737 		  (u32)tx_q->dma_tx_phy);
1738 
1739 	/* Setup the chained descriptor addresses */
1740 	if (priv->mode == STMMAC_CHAIN_MODE) {
1741 		if (priv->extend_desc)
1742 			stmmac_mode_init(priv, tx_q->dma_etx,
1743 					 tx_q->dma_tx_phy,
1744 					 priv->dma_tx_size, 1);
1745 		else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1746 			stmmac_mode_init(priv, tx_q->dma_tx,
1747 					 tx_q->dma_tx_phy,
1748 					 priv->dma_tx_size, 0);
1749 	}
1750 
1751 	tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1752 
1753 	for (i = 0; i < priv->dma_tx_size; i++) {
1754 		struct dma_desc *p;
1755 
1756 		if (priv->extend_desc)
1757 			p = &((tx_q->dma_etx + i)->basic);
1758 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1759 			p = &((tx_q->dma_entx + i)->basic);
1760 		else
1761 			p = tx_q->dma_tx + i;
1762 
1763 		stmmac_clear_desc(priv, p);
1764 
1765 		tx_q->tx_skbuff_dma[i].buf = 0;
1766 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1767 		tx_q->tx_skbuff_dma[i].len = 0;
1768 		tx_q->tx_skbuff_dma[i].last_segment = false;
1769 		tx_q->tx_skbuff[i] = NULL;
1770 	}
1771 
1772 	tx_q->dirty_tx = 0;
1773 	tx_q->cur_tx = 0;
1774 	tx_q->mss = 0;
1775 
1776 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1777 
1778 	return 0;
1779 }
1780 
1781 static int init_dma_tx_desc_rings(struct net_device *dev)
1782 {
1783 	struct stmmac_priv *priv = netdev_priv(dev);
1784 	u32 tx_queue_cnt;
1785 	u32 queue;
1786 
1787 	tx_queue_cnt = priv->plat->tx_queues_to_use;
1788 
1789 	for (queue = 0; queue < tx_queue_cnt; queue++)
1790 		__init_dma_tx_desc_rings(priv, queue);
1791 
1792 	return 0;
1793 }
1794 
1795 /**
1796  * init_dma_desc_rings - init the RX/TX descriptor rings
1797  * @dev: net device structure
1798  * @flags: gfp flag.
1799  * Description: this function initializes the DMA RX/TX descriptors
1800  * and allocates the socket buffers. It supports the chained and ring
1801  * modes.
1802  */
1803 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1804 {
1805 	struct stmmac_priv *priv = netdev_priv(dev);
1806 	int ret;
1807 
1808 	ret = init_dma_rx_desc_rings(dev, flags);
1809 	if (ret)
1810 		return ret;
1811 
1812 	ret = init_dma_tx_desc_rings(dev);
1813 
1814 	stmmac_clear_descriptors(priv);
1815 
1816 	if (netif_msg_hw(priv))
1817 		stmmac_display_rings(priv);
1818 
1819 	return ret;
1820 }
1821 
1822 /**
1823  * dma_free_tx_skbufs - free TX dma buffers
1824  * @priv: private structure
1825  * @queue: TX queue index
1826  */
1827 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1828 {
1829 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1830 	int i;
1831 
1832 	tx_q->xsk_frames_done = 0;
1833 
1834 	for (i = 0; i < priv->dma_tx_size; i++)
1835 		stmmac_free_tx_buffer(priv, queue, i);
1836 
1837 	if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1838 		xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1839 		tx_q->xsk_frames_done = 0;
1840 		tx_q->xsk_pool = NULL;
1841 	}
1842 }
1843 
1844 /**
1845  * stmmac_free_tx_skbufs - free TX skb buffers
1846  * @priv: private structure
1847  */
1848 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1849 {
1850 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1851 	u32 queue;
1852 
1853 	for (queue = 0; queue < tx_queue_cnt; queue++)
1854 		dma_free_tx_skbufs(priv, queue);
1855 }
1856 
1857 /**
1858  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1859  * @priv: private structure
1860  * @queue: RX queue index
1861  */
1862 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1863 {
1864 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1865 
1866 	/* Release the DMA RX socket buffers */
1867 	if (rx_q->xsk_pool)
1868 		dma_free_rx_xskbufs(priv, queue);
1869 	else
1870 		dma_free_rx_skbufs(priv, queue);
1871 
1872 	rx_q->buf_alloc_num = 0;
1873 	rx_q->xsk_pool = NULL;
1874 
1875 	/* Free DMA regions of consistent memory previously allocated */
1876 	if (!priv->extend_desc)
1877 		dma_free_coherent(priv->device, priv->dma_rx_size *
1878 				  sizeof(struct dma_desc),
1879 				  rx_q->dma_rx, rx_q->dma_rx_phy);
1880 	else
1881 		dma_free_coherent(priv->device, priv->dma_rx_size *
1882 				  sizeof(struct dma_extended_desc),
1883 				  rx_q->dma_erx, rx_q->dma_rx_phy);
1884 
1885 	if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1886 		xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1887 
1888 	kfree(rx_q->buf_pool);
1889 	if (rx_q->page_pool)
1890 		page_pool_destroy(rx_q->page_pool);
1891 }
1892 
1893 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1894 {
1895 	u32 rx_count = priv->plat->rx_queues_to_use;
1896 	u32 queue;
1897 
1898 	/* Free RX queue resources */
1899 	for (queue = 0; queue < rx_count; queue++)
1900 		__free_dma_rx_desc_resources(priv, queue);
1901 }
1902 
1903 /**
1904  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1905  * @priv: private structure
1906  * @queue: TX queue index
1907  */
1908 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
1909 {
1910 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1911 	size_t size;
1912 	void *addr;
1913 
1914 	/* Release the DMA TX socket buffers */
1915 	dma_free_tx_skbufs(priv, queue);
1916 
1917 	if (priv->extend_desc) {
1918 		size = sizeof(struct dma_extended_desc);
1919 		addr = tx_q->dma_etx;
1920 	} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1921 		size = sizeof(struct dma_edesc);
1922 		addr = tx_q->dma_entx;
1923 	} else {
1924 		size = sizeof(struct dma_desc);
1925 		addr = tx_q->dma_tx;
1926 	}
1927 
1928 	size *= priv->dma_tx_size;
1929 
1930 	dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1931 
1932 	kfree(tx_q->tx_skbuff_dma);
1933 	kfree(tx_q->tx_skbuff);
1934 }
1935 
1936 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1937 {
1938 	u32 tx_count = priv->plat->tx_queues_to_use;
1939 	u32 queue;
1940 
1941 	/* Free TX queue resources */
1942 	for (queue = 0; queue < tx_count; queue++)
1943 		__free_dma_tx_desc_resources(priv, queue);
1944 }
1945 
1946 /**
1947  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1948  * @priv: private structure
1949  * @queue: RX queue index
1950  * Description: according to which descriptor can be used (extend or basic)
1951  * this function allocates the resources for TX and RX paths. In case of
1952  * reception, for example, it pre-allocated the RX socket buffer in order to
1953  * allow zero-copy mechanism.
1954  */
1955 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1956 {
1957 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1958 	struct stmmac_channel *ch = &priv->channel[queue];
1959 	bool xdp_prog = stmmac_xdp_is_enabled(priv);
1960 	struct page_pool_params pp_params = { 0 };
1961 	unsigned int num_pages;
1962 	unsigned int napi_id;
1963 	int ret;
1964 
1965 	rx_q->queue_index = queue;
1966 	rx_q->priv_data = priv;
1967 
1968 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
1969 	pp_params.pool_size = priv->dma_rx_size;
1970 	num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1971 	pp_params.order = ilog2(num_pages);
1972 	pp_params.nid = dev_to_node(priv->device);
1973 	pp_params.dev = priv->device;
1974 	pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
1975 	pp_params.offset = stmmac_rx_offset(priv);
1976 	pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
1977 
1978 	rx_q->page_pool = page_pool_create(&pp_params);
1979 	if (IS_ERR(rx_q->page_pool)) {
1980 		ret = PTR_ERR(rx_q->page_pool);
1981 		rx_q->page_pool = NULL;
1982 		return ret;
1983 	}
1984 
1985 	rx_q->buf_pool = kcalloc(priv->dma_rx_size,
1986 				 sizeof(*rx_q->buf_pool),
1987 				 GFP_KERNEL);
1988 	if (!rx_q->buf_pool)
1989 		return -ENOMEM;
1990 
1991 	if (priv->extend_desc) {
1992 		rx_q->dma_erx = dma_alloc_coherent(priv->device,
1993 						   priv->dma_rx_size *
1994 						   sizeof(struct dma_extended_desc),
1995 						   &rx_q->dma_rx_phy,
1996 						   GFP_KERNEL);
1997 		if (!rx_q->dma_erx)
1998 			return -ENOMEM;
1999 
2000 	} else {
2001 		rx_q->dma_rx = dma_alloc_coherent(priv->device,
2002 						  priv->dma_rx_size *
2003 						  sizeof(struct dma_desc),
2004 						  &rx_q->dma_rx_phy,
2005 						  GFP_KERNEL);
2006 		if (!rx_q->dma_rx)
2007 			return -ENOMEM;
2008 	}
2009 
2010 	if (stmmac_xdp_is_enabled(priv) &&
2011 	    test_bit(queue, priv->af_xdp_zc_qps))
2012 		napi_id = ch->rxtx_napi.napi_id;
2013 	else
2014 		napi_id = ch->rx_napi.napi_id;
2015 
2016 	ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2017 			       rx_q->queue_index,
2018 			       napi_id);
2019 	if (ret) {
2020 		netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2021 		return -EINVAL;
2022 	}
2023 
2024 	return 0;
2025 }
2026 
2027 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
2028 {
2029 	u32 rx_count = priv->plat->rx_queues_to_use;
2030 	u32 queue;
2031 	int ret;
2032 
2033 	/* RX queues buffers and DMA */
2034 	for (queue = 0; queue < rx_count; queue++) {
2035 		ret = __alloc_dma_rx_desc_resources(priv, queue);
2036 		if (ret)
2037 			goto err_dma;
2038 	}
2039 
2040 	return 0;
2041 
2042 err_dma:
2043 	free_dma_rx_desc_resources(priv);
2044 
2045 	return ret;
2046 }
2047 
2048 /**
2049  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2050  * @priv: private structure
2051  * @queue: TX queue index
2052  * Description: according to which descriptor can be used (extend or basic)
2053  * this function allocates the resources for TX and RX paths. In case of
2054  * reception, for example, it pre-allocated the RX socket buffer in order to
2055  * allow zero-copy mechanism.
2056  */
2057 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
2058 {
2059 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2060 	size_t size;
2061 	void *addr;
2062 
2063 	tx_q->queue_index = queue;
2064 	tx_q->priv_data = priv;
2065 
2066 	tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size,
2067 				      sizeof(*tx_q->tx_skbuff_dma),
2068 				      GFP_KERNEL);
2069 	if (!tx_q->tx_skbuff_dma)
2070 		return -ENOMEM;
2071 
2072 	tx_q->tx_skbuff = kcalloc(priv->dma_tx_size,
2073 				  sizeof(struct sk_buff *),
2074 				  GFP_KERNEL);
2075 	if (!tx_q->tx_skbuff)
2076 		return -ENOMEM;
2077 
2078 	if (priv->extend_desc)
2079 		size = sizeof(struct dma_extended_desc);
2080 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2081 		size = sizeof(struct dma_edesc);
2082 	else
2083 		size = sizeof(struct dma_desc);
2084 
2085 	size *= priv->dma_tx_size;
2086 
2087 	addr = dma_alloc_coherent(priv->device, size,
2088 				  &tx_q->dma_tx_phy, GFP_KERNEL);
2089 	if (!addr)
2090 		return -ENOMEM;
2091 
2092 	if (priv->extend_desc)
2093 		tx_q->dma_etx = addr;
2094 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2095 		tx_q->dma_entx = addr;
2096 	else
2097 		tx_q->dma_tx = addr;
2098 
2099 	return 0;
2100 }
2101 
2102 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
2103 {
2104 	u32 tx_count = priv->plat->tx_queues_to_use;
2105 	u32 queue;
2106 	int ret;
2107 
2108 	/* TX queues buffers and DMA */
2109 	for (queue = 0; queue < tx_count; queue++) {
2110 		ret = __alloc_dma_tx_desc_resources(priv, queue);
2111 		if (ret)
2112 			goto err_dma;
2113 	}
2114 
2115 	return 0;
2116 
2117 err_dma:
2118 	free_dma_tx_desc_resources(priv);
2119 	return ret;
2120 }
2121 
2122 /**
2123  * alloc_dma_desc_resources - alloc TX/RX resources.
2124  * @priv: private structure
2125  * Description: according to which descriptor can be used (extend or basic)
2126  * this function allocates the resources for TX and RX paths. In case of
2127  * reception, for example, it pre-allocated the RX socket buffer in order to
2128  * allow zero-copy mechanism.
2129  */
2130 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
2131 {
2132 	/* RX Allocation */
2133 	int ret = alloc_dma_rx_desc_resources(priv);
2134 
2135 	if (ret)
2136 		return ret;
2137 
2138 	ret = alloc_dma_tx_desc_resources(priv);
2139 
2140 	return ret;
2141 }
2142 
2143 /**
2144  * free_dma_desc_resources - free dma desc resources
2145  * @priv: private structure
2146  */
2147 static void free_dma_desc_resources(struct stmmac_priv *priv)
2148 {
2149 	/* Release the DMA TX socket buffers */
2150 	free_dma_tx_desc_resources(priv);
2151 
2152 	/* Release the DMA RX socket buffers later
2153 	 * to ensure all pending XDP_TX buffers are returned.
2154 	 */
2155 	free_dma_rx_desc_resources(priv);
2156 }
2157 
2158 /**
2159  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2160  *  @priv: driver private structure
2161  *  Description: It is used for enabling the rx queues in the MAC
2162  */
2163 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2164 {
2165 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2166 	int queue;
2167 	u8 mode;
2168 
2169 	for (queue = 0; queue < rx_queues_count; queue++) {
2170 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2171 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2172 	}
2173 }
2174 
2175 /**
2176  * stmmac_start_rx_dma - start RX DMA channel
2177  * @priv: driver private structure
2178  * @chan: RX channel index
2179  * Description:
2180  * This starts a RX DMA channel
2181  */
2182 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2183 {
2184 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2185 	stmmac_start_rx(priv, priv->ioaddr, chan);
2186 }
2187 
2188 /**
2189  * stmmac_start_tx_dma - start TX DMA channel
2190  * @priv: driver private structure
2191  * @chan: TX channel index
2192  * Description:
2193  * This starts a TX DMA channel
2194  */
2195 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2196 {
2197 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2198 	stmmac_start_tx(priv, priv->ioaddr, chan);
2199 }
2200 
2201 /**
2202  * stmmac_stop_rx_dma - stop RX DMA channel
2203  * @priv: driver private structure
2204  * @chan: RX channel index
2205  * Description:
2206  * This stops a RX DMA channel
2207  */
2208 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2209 {
2210 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2211 	stmmac_stop_rx(priv, priv->ioaddr, chan);
2212 }
2213 
2214 /**
2215  * stmmac_stop_tx_dma - stop TX DMA channel
2216  * @priv: driver private structure
2217  * @chan: TX channel index
2218  * Description:
2219  * This stops a TX DMA channel
2220  */
2221 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2222 {
2223 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2224 	stmmac_stop_tx(priv, priv->ioaddr, chan);
2225 }
2226 
2227 /**
2228  * stmmac_start_all_dma - start all RX and TX DMA channels
2229  * @priv: driver private structure
2230  * Description:
2231  * This starts all the RX and TX DMA channels
2232  */
2233 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2234 {
2235 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2236 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2237 	u32 chan = 0;
2238 
2239 	for (chan = 0; chan < rx_channels_count; chan++)
2240 		stmmac_start_rx_dma(priv, chan);
2241 
2242 	for (chan = 0; chan < tx_channels_count; chan++)
2243 		stmmac_start_tx_dma(priv, chan);
2244 }
2245 
2246 /**
2247  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2248  * @priv: driver private structure
2249  * Description:
2250  * This stops the RX and TX DMA channels
2251  */
2252 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2253 {
2254 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2255 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2256 	u32 chan = 0;
2257 
2258 	for (chan = 0; chan < rx_channels_count; chan++)
2259 		stmmac_stop_rx_dma(priv, chan);
2260 
2261 	for (chan = 0; chan < tx_channels_count; chan++)
2262 		stmmac_stop_tx_dma(priv, chan);
2263 }
2264 
2265 /**
2266  *  stmmac_dma_operation_mode - HW DMA operation mode
2267  *  @priv: driver private structure
2268  *  Description: it is used for configuring the DMA operation mode register in
2269  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2270  */
2271 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2272 {
2273 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2274 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2275 	int rxfifosz = priv->plat->rx_fifo_size;
2276 	int txfifosz = priv->plat->tx_fifo_size;
2277 	u32 txmode = 0;
2278 	u32 rxmode = 0;
2279 	u32 chan = 0;
2280 	u8 qmode = 0;
2281 
2282 	if (rxfifosz == 0)
2283 		rxfifosz = priv->dma_cap.rx_fifo_size;
2284 	if (txfifosz == 0)
2285 		txfifosz = priv->dma_cap.tx_fifo_size;
2286 
2287 	/* Adjust for real per queue fifo size */
2288 	rxfifosz /= rx_channels_count;
2289 	txfifosz /= tx_channels_count;
2290 
2291 	if (priv->plat->force_thresh_dma_mode) {
2292 		txmode = tc;
2293 		rxmode = tc;
2294 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2295 		/*
2296 		 * In case of GMAC, SF mode can be enabled
2297 		 * to perform the TX COE in HW. This depends on:
2298 		 * 1) TX COE if actually supported
2299 		 * 2) There is no bugged Jumbo frame support
2300 		 *    that needs to not insert csum in the TDES.
2301 		 */
2302 		txmode = SF_DMA_MODE;
2303 		rxmode = SF_DMA_MODE;
2304 		priv->xstats.threshold = SF_DMA_MODE;
2305 	} else {
2306 		txmode = tc;
2307 		rxmode = SF_DMA_MODE;
2308 	}
2309 
2310 	/* configure all channels */
2311 	for (chan = 0; chan < rx_channels_count; chan++) {
2312 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2313 		u32 buf_size;
2314 
2315 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2316 
2317 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2318 				rxfifosz, qmode);
2319 
2320 		if (rx_q->xsk_pool) {
2321 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2322 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2323 					      buf_size,
2324 					      chan);
2325 		} else {
2326 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2327 					      priv->dma_buf_sz,
2328 					      chan);
2329 		}
2330 	}
2331 
2332 	for (chan = 0; chan < tx_channels_count; chan++) {
2333 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2334 
2335 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2336 				txfifosz, qmode);
2337 	}
2338 }
2339 
2340 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2341 {
2342 	struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2343 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2344 	struct xsk_buff_pool *pool = tx_q->xsk_pool;
2345 	unsigned int entry = tx_q->cur_tx;
2346 	struct dma_desc *tx_desc = NULL;
2347 	struct xdp_desc xdp_desc;
2348 	bool work_done = true;
2349 
2350 	/* Avoids TX time-out as we are sharing with slow path */
2351 	nq->trans_start = jiffies;
2352 
2353 	budget = min(budget, stmmac_tx_avail(priv, queue));
2354 
2355 	while (budget-- > 0) {
2356 		dma_addr_t dma_addr;
2357 		bool set_ic;
2358 
2359 		/* We are sharing with slow path and stop XSK TX desc submission when
2360 		 * available TX ring is less than threshold.
2361 		 */
2362 		if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2363 		    !netif_carrier_ok(priv->dev)) {
2364 			work_done = false;
2365 			break;
2366 		}
2367 
2368 		if (!xsk_tx_peek_desc(pool, &xdp_desc))
2369 			break;
2370 
2371 		if (likely(priv->extend_desc))
2372 			tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2373 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2374 			tx_desc = &tx_q->dma_entx[entry].basic;
2375 		else
2376 			tx_desc = tx_q->dma_tx + entry;
2377 
2378 		dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2379 		xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2380 
2381 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2382 
2383 		/* To return XDP buffer to XSK pool, we simple call
2384 		 * xsk_tx_completed(), so we don't need to fill up
2385 		 * 'buf' and 'xdpf'.
2386 		 */
2387 		tx_q->tx_skbuff_dma[entry].buf = 0;
2388 		tx_q->xdpf[entry] = NULL;
2389 
2390 		tx_q->tx_skbuff_dma[entry].map_as_page = false;
2391 		tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2392 		tx_q->tx_skbuff_dma[entry].last_segment = true;
2393 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2394 
2395 		stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2396 
2397 		tx_q->tx_count_frames++;
2398 
2399 		if (!priv->tx_coal_frames[queue])
2400 			set_ic = false;
2401 		else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2402 			set_ic = true;
2403 		else
2404 			set_ic = false;
2405 
2406 		if (set_ic) {
2407 			tx_q->tx_count_frames = 0;
2408 			stmmac_set_tx_ic(priv, tx_desc);
2409 			priv->xstats.tx_set_ic_bit++;
2410 		}
2411 
2412 		stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2413 				       true, priv->mode, true, true,
2414 				       xdp_desc.len);
2415 
2416 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
2417 
2418 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
2419 		entry = tx_q->cur_tx;
2420 	}
2421 
2422 	if (tx_desc) {
2423 		stmmac_flush_tx_descriptors(priv, queue);
2424 		xsk_tx_release(pool);
2425 	}
2426 
2427 	/* Return true if all of the 3 conditions are met
2428 	 *  a) TX Budget is still available
2429 	 *  b) work_done = true when XSK TX desc peek is empty (no more
2430 	 *     pending XSK TX for transmission)
2431 	 */
2432 	return !!budget && work_done;
2433 }
2434 
2435 /**
2436  * stmmac_tx_clean - to manage the transmission completion
2437  * @priv: driver private structure
2438  * @budget: napi budget limiting this functions packet handling
2439  * @queue: TX queue index
2440  * Description: it reclaims the transmit resources after transmission completes.
2441  */
2442 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2443 {
2444 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2445 	unsigned int bytes_compl = 0, pkts_compl = 0;
2446 	unsigned int entry, xmits = 0, count = 0;
2447 
2448 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2449 
2450 	priv->xstats.tx_clean++;
2451 
2452 	tx_q->xsk_frames_done = 0;
2453 
2454 	entry = tx_q->dirty_tx;
2455 
2456 	/* Try to clean all TX complete frame in 1 shot */
2457 	while ((entry != tx_q->cur_tx) && count < priv->dma_tx_size) {
2458 		struct xdp_frame *xdpf;
2459 		struct sk_buff *skb;
2460 		struct dma_desc *p;
2461 		int status;
2462 
2463 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2464 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2465 			xdpf = tx_q->xdpf[entry];
2466 			skb = NULL;
2467 		} else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2468 			xdpf = NULL;
2469 			skb = tx_q->tx_skbuff[entry];
2470 		} else {
2471 			xdpf = NULL;
2472 			skb = NULL;
2473 		}
2474 
2475 		if (priv->extend_desc)
2476 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
2477 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2478 			p = &tx_q->dma_entx[entry].basic;
2479 		else
2480 			p = tx_q->dma_tx + entry;
2481 
2482 		status = stmmac_tx_status(priv, &priv->dev->stats,
2483 				&priv->xstats, p, priv->ioaddr);
2484 		/* Check if the descriptor is owned by the DMA */
2485 		if (unlikely(status & tx_dma_own))
2486 			break;
2487 
2488 		count++;
2489 
2490 		/* Make sure descriptor fields are read after reading
2491 		 * the own bit.
2492 		 */
2493 		dma_rmb();
2494 
2495 		/* Just consider the last segment and ...*/
2496 		if (likely(!(status & tx_not_ls))) {
2497 			/* ... verify the status error condition */
2498 			if (unlikely(status & tx_err)) {
2499 				priv->dev->stats.tx_errors++;
2500 			} else {
2501 				priv->dev->stats.tx_packets++;
2502 				priv->xstats.tx_pkt_n++;
2503 				priv->xstats.txq_stats[queue].tx_pkt_n++;
2504 			}
2505 			if (skb)
2506 				stmmac_get_tx_hwtstamp(priv, p, skb);
2507 		}
2508 
2509 		if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2510 			   tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2511 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2512 				dma_unmap_page(priv->device,
2513 					       tx_q->tx_skbuff_dma[entry].buf,
2514 					       tx_q->tx_skbuff_dma[entry].len,
2515 					       DMA_TO_DEVICE);
2516 			else
2517 				dma_unmap_single(priv->device,
2518 						 tx_q->tx_skbuff_dma[entry].buf,
2519 						 tx_q->tx_skbuff_dma[entry].len,
2520 						 DMA_TO_DEVICE);
2521 			tx_q->tx_skbuff_dma[entry].buf = 0;
2522 			tx_q->tx_skbuff_dma[entry].len = 0;
2523 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2524 		}
2525 
2526 		stmmac_clean_desc3(priv, tx_q, p);
2527 
2528 		tx_q->tx_skbuff_dma[entry].last_segment = false;
2529 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2530 
2531 		if (xdpf &&
2532 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2533 			xdp_return_frame_rx_napi(xdpf);
2534 			tx_q->xdpf[entry] = NULL;
2535 		}
2536 
2537 		if (xdpf &&
2538 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2539 			xdp_return_frame(xdpf);
2540 			tx_q->xdpf[entry] = NULL;
2541 		}
2542 
2543 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2544 			tx_q->xsk_frames_done++;
2545 
2546 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2547 			if (likely(skb)) {
2548 				pkts_compl++;
2549 				bytes_compl += skb->len;
2550 				dev_consume_skb_any(skb);
2551 				tx_q->tx_skbuff[entry] = NULL;
2552 			}
2553 		}
2554 
2555 		stmmac_release_tx_desc(priv, p, priv->mode);
2556 
2557 		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
2558 	}
2559 	tx_q->dirty_tx = entry;
2560 
2561 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2562 				  pkts_compl, bytes_compl);
2563 
2564 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2565 								queue))) &&
2566 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2567 
2568 		netif_dbg(priv, tx_done, priv->dev,
2569 			  "%s: restart transmit\n", __func__);
2570 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2571 	}
2572 
2573 	if (tx_q->xsk_pool) {
2574 		bool work_done;
2575 
2576 		if (tx_q->xsk_frames_done)
2577 			xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2578 
2579 		if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2580 			xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2581 
2582 		/* For XSK TX, we try to send as many as possible.
2583 		 * If XSK work done (XSK TX desc empty and budget still
2584 		 * available), return "budget - 1" to reenable TX IRQ.
2585 		 * Else, return "budget" to make NAPI continue polling.
2586 		 */
2587 		work_done = stmmac_xdp_xmit_zc(priv, queue,
2588 					       STMMAC_XSK_TX_BUDGET_MAX);
2589 		if (work_done)
2590 			xmits = budget - 1;
2591 		else
2592 			xmits = budget;
2593 	}
2594 
2595 	if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2596 	    priv->eee_sw_timer_en) {
2597 		stmmac_enable_eee_mode(priv);
2598 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2599 	}
2600 
2601 	/* We still have pending packets, let's call for a new scheduling */
2602 	if (tx_q->dirty_tx != tx_q->cur_tx)
2603 		hrtimer_start(&tx_q->txtimer,
2604 			      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2605 			      HRTIMER_MODE_REL);
2606 
2607 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2608 
2609 	/* Combine decisions from TX clean and XSK TX */
2610 	return max(count, xmits);
2611 }
2612 
2613 /**
2614  * stmmac_tx_err - to manage the tx error
2615  * @priv: driver private structure
2616  * @chan: channel index
2617  * Description: it cleans the descriptors and restarts the transmission
2618  * in case of transmission errors.
2619  */
2620 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2621 {
2622 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2623 
2624 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2625 
2626 	stmmac_stop_tx_dma(priv, chan);
2627 	dma_free_tx_skbufs(priv, chan);
2628 	stmmac_clear_tx_descriptors(priv, chan);
2629 	tx_q->dirty_tx = 0;
2630 	tx_q->cur_tx = 0;
2631 	tx_q->mss = 0;
2632 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2633 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2634 			    tx_q->dma_tx_phy, chan);
2635 	stmmac_start_tx_dma(priv, chan);
2636 
2637 	priv->dev->stats.tx_errors++;
2638 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2639 }
2640 
2641 /**
2642  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2643  *  @priv: driver private structure
2644  *  @txmode: TX operating mode
2645  *  @rxmode: RX operating mode
2646  *  @chan: channel index
2647  *  Description: it is used for configuring of the DMA operation mode in
2648  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2649  *  mode.
2650  */
2651 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2652 					  u32 rxmode, u32 chan)
2653 {
2654 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2655 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2656 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2657 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2658 	int rxfifosz = priv->plat->rx_fifo_size;
2659 	int txfifosz = priv->plat->tx_fifo_size;
2660 
2661 	if (rxfifosz == 0)
2662 		rxfifosz = priv->dma_cap.rx_fifo_size;
2663 	if (txfifosz == 0)
2664 		txfifosz = priv->dma_cap.tx_fifo_size;
2665 
2666 	/* Adjust for real per queue fifo size */
2667 	rxfifosz /= rx_channels_count;
2668 	txfifosz /= tx_channels_count;
2669 
2670 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2671 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2672 }
2673 
2674 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2675 {
2676 	int ret;
2677 
2678 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2679 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2680 	if (ret && (ret != -EINVAL)) {
2681 		stmmac_global_err(priv);
2682 		return true;
2683 	}
2684 
2685 	return false;
2686 }
2687 
2688 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2689 {
2690 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2691 						 &priv->xstats, chan, dir);
2692 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2693 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2694 	struct stmmac_channel *ch = &priv->channel[chan];
2695 	struct napi_struct *rx_napi;
2696 	struct napi_struct *tx_napi;
2697 	unsigned long flags;
2698 
2699 	rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2700 	tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2701 
2702 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2703 		if (napi_schedule_prep(rx_napi)) {
2704 			spin_lock_irqsave(&ch->lock, flags);
2705 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2706 			spin_unlock_irqrestore(&ch->lock, flags);
2707 			__napi_schedule(rx_napi);
2708 		}
2709 	}
2710 
2711 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2712 		if (napi_schedule_prep(tx_napi)) {
2713 			spin_lock_irqsave(&ch->lock, flags);
2714 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2715 			spin_unlock_irqrestore(&ch->lock, flags);
2716 			__napi_schedule(tx_napi);
2717 		}
2718 	}
2719 
2720 	return status;
2721 }
2722 
2723 /**
2724  * stmmac_dma_interrupt - DMA ISR
2725  * @priv: driver private structure
2726  * Description: this is the DMA ISR. It is called by the main ISR.
2727  * It calls the dwmac dma routine and schedule poll method in case of some
2728  * work can be done.
2729  */
2730 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2731 {
2732 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2733 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2734 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2735 				tx_channel_count : rx_channel_count;
2736 	u32 chan;
2737 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2738 
2739 	/* Make sure we never check beyond our status buffer. */
2740 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2741 		channels_to_check = ARRAY_SIZE(status);
2742 
2743 	for (chan = 0; chan < channels_to_check; chan++)
2744 		status[chan] = stmmac_napi_check(priv, chan,
2745 						 DMA_DIR_RXTX);
2746 
2747 	for (chan = 0; chan < tx_channel_count; chan++) {
2748 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2749 			/* Try to bump up the dma threshold on this failure */
2750 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2751 			    (tc <= 256)) {
2752 				tc += 64;
2753 				if (priv->plat->force_thresh_dma_mode)
2754 					stmmac_set_dma_operation_mode(priv,
2755 								      tc,
2756 								      tc,
2757 								      chan);
2758 				else
2759 					stmmac_set_dma_operation_mode(priv,
2760 								    tc,
2761 								    SF_DMA_MODE,
2762 								    chan);
2763 				priv->xstats.threshold = tc;
2764 			}
2765 		} else if (unlikely(status[chan] == tx_hard_error)) {
2766 			stmmac_tx_err(priv, chan);
2767 		}
2768 	}
2769 }
2770 
2771 /**
2772  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2773  * @priv: driver private structure
2774  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2775  */
2776 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2777 {
2778 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2779 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2780 
2781 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2782 
2783 	if (priv->dma_cap.rmon) {
2784 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2785 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2786 	} else
2787 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2788 }
2789 
2790 /**
2791  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2792  * @priv: driver private structure
2793  * Description:
2794  *  new GMAC chip generations have a new register to indicate the
2795  *  presence of the optional feature/functions.
2796  *  This can be also used to override the value passed through the
2797  *  platform and necessary for old MAC10/100 and GMAC chips.
2798  */
2799 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2800 {
2801 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2802 }
2803 
2804 /**
2805  * stmmac_check_ether_addr - check if the MAC addr is valid
2806  * @priv: driver private structure
2807  * Description:
2808  * it is to verify if the MAC address is valid, in case of failures it
2809  * generates a random MAC address
2810  */
2811 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2812 {
2813 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2814 		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2815 		if (!is_valid_ether_addr(priv->dev->dev_addr))
2816 			eth_hw_addr_random(priv->dev);
2817 		dev_info(priv->device, "device MAC address %pM\n",
2818 			 priv->dev->dev_addr);
2819 	}
2820 }
2821 
2822 /**
2823  * stmmac_init_dma_engine - DMA init.
2824  * @priv: driver private structure
2825  * Description:
2826  * It inits the DMA invoking the specific MAC/GMAC callback.
2827  * Some DMA parameters can be passed from the platform;
2828  * in case of these are not passed a default is kept for the MAC or GMAC.
2829  */
2830 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2831 {
2832 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2833 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2834 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2835 	struct stmmac_rx_queue *rx_q;
2836 	struct stmmac_tx_queue *tx_q;
2837 	u32 chan = 0;
2838 	int atds = 0;
2839 	int ret = 0;
2840 
2841 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2842 		dev_err(priv->device, "Invalid DMA configuration\n");
2843 		return -EINVAL;
2844 	}
2845 
2846 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2847 		atds = 1;
2848 
2849 	ret = stmmac_reset(priv, priv->ioaddr);
2850 	if (ret) {
2851 		dev_err(priv->device, "Failed to reset the dma\n");
2852 		return ret;
2853 	}
2854 
2855 	/* DMA Configuration */
2856 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2857 
2858 	if (priv->plat->axi)
2859 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2860 
2861 	/* DMA CSR Channel configuration */
2862 	for (chan = 0; chan < dma_csr_ch; chan++)
2863 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2864 
2865 	/* DMA RX Channel Configuration */
2866 	for (chan = 0; chan < rx_channels_count; chan++) {
2867 		rx_q = &priv->rx_queue[chan];
2868 
2869 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2870 				    rx_q->dma_rx_phy, chan);
2871 
2872 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2873 				     (rx_q->buf_alloc_num *
2874 				      sizeof(struct dma_desc));
2875 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2876 				       rx_q->rx_tail_addr, chan);
2877 	}
2878 
2879 	/* DMA TX Channel Configuration */
2880 	for (chan = 0; chan < tx_channels_count; chan++) {
2881 		tx_q = &priv->tx_queue[chan];
2882 
2883 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2884 				    tx_q->dma_tx_phy, chan);
2885 
2886 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2887 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2888 				       tx_q->tx_tail_addr, chan);
2889 	}
2890 
2891 	return ret;
2892 }
2893 
2894 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2895 {
2896 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2897 
2898 	hrtimer_start(&tx_q->txtimer,
2899 		      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2900 		      HRTIMER_MODE_REL);
2901 }
2902 
2903 /**
2904  * stmmac_tx_timer - mitigation sw timer for tx.
2905  * @t: data pointer
2906  * Description:
2907  * This is the timer handler to directly invoke the stmmac_tx_clean.
2908  */
2909 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2910 {
2911 	struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2912 	struct stmmac_priv *priv = tx_q->priv_data;
2913 	struct stmmac_channel *ch;
2914 	struct napi_struct *napi;
2915 
2916 	ch = &priv->channel[tx_q->queue_index];
2917 	napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2918 
2919 	if (likely(napi_schedule_prep(napi))) {
2920 		unsigned long flags;
2921 
2922 		spin_lock_irqsave(&ch->lock, flags);
2923 		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2924 		spin_unlock_irqrestore(&ch->lock, flags);
2925 		__napi_schedule(napi);
2926 	}
2927 
2928 	return HRTIMER_NORESTART;
2929 }
2930 
2931 /**
2932  * stmmac_init_coalesce - init mitigation options.
2933  * @priv: driver private structure
2934  * Description:
2935  * This inits the coalesce parameters: i.e. timer rate,
2936  * timer handler and default threshold used for enabling the
2937  * interrupt on completion bit.
2938  */
2939 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2940 {
2941 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2942 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2943 	u32 chan;
2944 
2945 	for (chan = 0; chan < tx_channel_count; chan++) {
2946 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2947 
2948 		priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
2949 		priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
2950 
2951 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2952 		tx_q->txtimer.function = stmmac_tx_timer;
2953 	}
2954 
2955 	for (chan = 0; chan < rx_channel_count; chan++)
2956 		priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
2957 }
2958 
2959 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2960 {
2961 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2962 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2963 	u32 chan;
2964 
2965 	/* set TX ring length */
2966 	for (chan = 0; chan < tx_channels_count; chan++)
2967 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2968 				       (priv->dma_tx_size - 1), chan);
2969 
2970 	/* set RX ring length */
2971 	for (chan = 0; chan < rx_channels_count; chan++)
2972 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2973 				       (priv->dma_rx_size - 1), chan);
2974 }
2975 
2976 /**
2977  *  stmmac_set_tx_queue_weight - Set TX queue weight
2978  *  @priv: driver private structure
2979  *  Description: It is used for setting TX queues weight
2980  */
2981 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2982 {
2983 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2984 	u32 weight;
2985 	u32 queue;
2986 
2987 	for (queue = 0; queue < tx_queues_count; queue++) {
2988 		weight = priv->plat->tx_queues_cfg[queue].weight;
2989 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2990 	}
2991 }
2992 
2993 /**
2994  *  stmmac_configure_cbs - Configure CBS in TX queue
2995  *  @priv: driver private structure
2996  *  Description: It is used for configuring CBS in AVB TX queues
2997  */
2998 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2999 {
3000 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3001 	u32 mode_to_use;
3002 	u32 queue;
3003 
3004 	/* queue 0 is reserved for legacy traffic */
3005 	for (queue = 1; queue < tx_queues_count; queue++) {
3006 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3007 		if (mode_to_use == MTL_QUEUE_DCB)
3008 			continue;
3009 
3010 		stmmac_config_cbs(priv, priv->hw,
3011 				priv->plat->tx_queues_cfg[queue].send_slope,
3012 				priv->plat->tx_queues_cfg[queue].idle_slope,
3013 				priv->plat->tx_queues_cfg[queue].high_credit,
3014 				priv->plat->tx_queues_cfg[queue].low_credit,
3015 				queue);
3016 	}
3017 }
3018 
3019 /**
3020  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3021  *  @priv: driver private structure
3022  *  Description: It is used for mapping RX queues to RX dma channels
3023  */
3024 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3025 {
3026 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3027 	u32 queue;
3028 	u32 chan;
3029 
3030 	for (queue = 0; queue < rx_queues_count; queue++) {
3031 		chan = priv->plat->rx_queues_cfg[queue].chan;
3032 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3033 	}
3034 }
3035 
3036 /**
3037  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3038  *  @priv: driver private structure
3039  *  Description: It is used for configuring the RX Queue Priority
3040  */
3041 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3042 {
3043 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3044 	u32 queue;
3045 	u32 prio;
3046 
3047 	for (queue = 0; queue < rx_queues_count; queue++) {
3048 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
3049 			continue;
3050 
3051 		prio = priv->plat->rx_queues_cfg[queue].prio;
3052 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3053 	}
3054 }
3055 
3056 /**
3057  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3058  *  @priv: driver private structure
3059  *  Description: It is used for configuring the TX Queue Priority
3060  */
3061 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3062 {
3063 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3064 	u32 queue;
3065 	u32 prio;
3066 
3067 	for (queue = 0; queue < tx_queues_count; queue++) {
3068 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
3069 			continue;
3070 
3071 		prio = priv->plat->tx_queues_cfg[queue].prio;
3072 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3073 	}
3074 }
3075 
3076 /**
3077  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3078  *  @priv: driver private structure
3079  *  Description: It is used for configuring the RX queue routing
3080  */
3081 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3082 {
3083 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3084 	u32 queue;
3085 	u8 packet;
3086 
3087 	for (queue = 0; queue < rx_queues_count; queue++) {
3088 		/* no specific packet type routing specified for the queue */
3089 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3090 			continue;
3091 
3092 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3093 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3094 	}
3095 }
3096 
3097 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3098 {
3099 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3100 		priv->rss.enable = false;
3101 		return;
3102 	}
3103 
3104 	if (priv->dev->features & NETIF_F_RXHASH)
3105 		priv->rss.enable = true;
3106 	else
3107 		priv->rss.enable = false;
3108 
3109 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
3110 			     priv->plat->rx_queues_to_use);
3111 }
3112 
3113 /**
3114  *  stmmac_mtl_configuration - Configure MTL
3115  *  @priv: driver private structure
3116  *  Description: It is used for configurring MTL
3117  */
3118 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3119 {
3120 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3121 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3122 
3123 	if (tx_queues_count > 1)
3124 		stmmac_set_tx_queue_weight(priv);
3125 
3126 	/* Configure MTL RX algorithms */
3127 	if (rx_queues_count > 1)
3128 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3129 				priv->plat->rx_sched_algorithm);
3130 
3131 	/* Configure MTL TX algorithms */
3132 	if (tx_queues_count > 1)
3133 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3134 				priv->plat->tx_sched_algorithm);
3135 
3136 	/* Configure CBS in AVB TX queues */
3137 	if (tx_queues_count > 1)
3138 		stmmac_configure_cbs(priv);
3139 
3140 	/* Map RX MTL to DMA channels */
3141 	stmmac_rx_queue_dma_chan_map(priv);
3142 
3143 	/* Enable MAC RX Queues */
3144 	stmmac_mac_enable_rx_queues(priv);
3145 
3146 	/* Set RX priorities */
3147 	if (rx_queues_count > 1)
3148 		stmmac_mac_config_rx_queues_prio(priv);
3149 
3150 	/* Set TX priorities */
3151 	if (tx_queues_count > 1)
3152 		stmmac_mac_config_tx_queues_prio(priv);
3153 
3154 	/* Set RX routing */
3155 	if (rx_queues_count > 1)
3156 		stmmac_mac_config_rx_queues_routing(priv);
3157 
3158 	/* Receive Side Scaling */
3159 	if (rx_queues_count > 1)
3160 		stmmac_mac_config_rss(priv);
3161 }
3162 
3163 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3164 {
3165 	if (priv->dma_cap.asp) {
3166 		netdev_info(priv->dev, "Enabling Safety Features\n");
3167 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3168 					  priv->plat->safety_feat_cfg);
3169 	} else {
3170 		netdev_info(priv->dev, "No Safety Features support found\n");
3171 	}
3172 }
3173 
3174 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3175 {
3176 	char *name;
3177 
3178 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3179 	clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3180 
3181 	name = priv->wq_name;
3182 	sprintf(name, "%s-fpe", priv->dev->name);
3183 
3184 	priv->fpe_wq = create_singlethread_workqueue(name);
3185 	if (!priv->fpe_wq) {
3186 		netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3187 
3188 		return -ENOMEM;
3189 	}
3190 	netdev_info(priv->dev, "FPE workqueue start");
3191 
3192 	return 0;
3193 }
3194 
3195 /**
3196  * stmmac_hw_setup - setup mac in a usable state.
3197  *  @dev : pointer to the device structure.
3198  *  @init_ptp: initialize PTP if set
3199  *  Description:
3200  *  this is the main function to setup the HW in a usable state because the
3201  *  dma engine is reset, the core registers are configured (e.g. AXI,
3202  *  Checksum features, timers). The DMA is ready to start receiving and
3203  *  transmitting.
3204  *  Return value:
3205  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3206  *  file on failure.
3207  */
3208 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
3209 {
3210 	struct stmmac_priv *priv = netdev_priv(dev);
3211 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3212 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3213 	bool sph_en;
3214 	u32 chan;
3215 	int ret;
3216 
3217 	/* DMA initialization and SW reset */
3218 	ret = stmmac_init_dma_engine(priv);
3219 	if (ret < 0) {
3220 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3221 			   __func__);
3222 		return ret;
3223 	}
3224 
3225 	/* Copy the MAC addr into the HW  */
3226 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3227 
3228 	/* PS and related bits will be programmed according to the speed */
3229 	if (priv->hw->pcs) {
3230 		int speed = priv->plat->mac_port_sel_speed;
3231 
3232 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
3233 		    (speed == SPEED_1000)) {
3234 			priv->hw->ps = speed;
3235 		} else {
3236 			dev_warn(priv->device, "invalid port speed\n");
3237 			priv->hw->ps = 0;
3238 		}
3239 	}
3240 
3241 	/* Initialize the MAC Core */
3242 	stmmac_core_init(priv, priv->hw, dev);
3243 
3244 	/* Initialize MTL*/
3245 	stmmac_mtl_configuration(priv);
3246 
3247 	/* Initialize Safety Features */
3248 	stmmac_safety_feat_configuration(priv);
3249 
3250 	ret = stmmac_rx_ipc(priv, priv->hw);
3251 	if (!ret) {
3252 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3253 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3254 		priv->hw->rx_csum = 0;
3255 	}
3256 
3257 	/* Enable the MAC Rx/Tx */
3258 	stmmac_mac_set(priv, priv->ioaddr, true);
3259 
3260 	/* Set the HW DMA mode and the COE */
3261 	stmmac_dma_operation_mode(priv);
3262 
3263 	stmmac_mmc_setup(priv);
3264 
3265 	if (init_ptp) {
3266 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3267 		if (ret < 0)
3268 			netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
3269 
3270 		ret = stmmac_init_ptp(priv);
3271 		if (ret == -EOPNOTSUPP)
3272 			netdev_warn(priv->dev, "PTP not supported by HW\n");
3273 		else if (ret)
3274 			netdev_warn(priv->dev, "PTP init failed\n");
3275 	}
3276 
3277 	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3278 
3279 	/* Convert the timer from msec to usec */
3280 	if (!priv->tx_lpi_timer)
3281 		priv->tx_lpi_timer = eee_timer * 1000;
3282 
3283 	if (priv->use_riwt) {
3284 		u32 queue;
3285 
3286 		for (queue = 0; queue < rx_cnt; queue++) {
3287 			if (!priv->rx_riwt[queue])
3288 				priv->rx_riwt[queue] = DEF_DMA_RIWT;
3289 
3290 			stmmac_rx_watchdog(priv, priv->ioaddr,
3291 					   priv->rx_riwt[queue], queue);
3292 		}
3293 	}
3294 
3295 	if (priv->hw->pcs)
3296 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3297 
3298 	/* set TX and RX rings length */
3299 	stmmac_set_rings_length(priv);
3300 
3301 	/* Enable TSO */
3302 	if (priv->tso) {
3303 		for (chan = 0; chan < tx_cnt; chan++) {
3304 			struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3305 
3306 			/* TSO and TBS cannot co-exist */
3307 			if (tx_q->tbs & STMMAC_TBS_AVAIL)
3308 				continue;
3309 
3310 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3311 		}
3312 	}
3313 
3314 	/* Enable Split Header */
3315 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3316 	for (chan = 0; chan < rx_cnt; chan++)
3317 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3318 
3319 
3320 	/* VLAN Tag Insertion */
3321 	if (priv->dma_cap.vlins)
3322 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3323 
3324 	/* TBS */
3325 	for (chan = 0; chan < tx_cnt; chan++) {
3326 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3327 		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3328 
3329 		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3330 	}
3331 
3332 	/* Configure real RX and TX queues */
3333 	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3334 	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3335 
3336 	/* Start the ball rolling... */
3337 	stmmac_start_all_dma(priv);
3338 
3339 	if (priv->dma_cap.fpesel) {
3340 		stmmac_fpe_start_wq(priv);
3341 
3342 		if (priv->plat->fpe_cfg->enable)
3343 			stmmac_fpe_handshake(priv, true);
3344 	}
3345 
3346 	return 0;
3347 }
3348 
3349 static void stmmac_hw_teardown(struct net_device *dev)
3350 {
3351 	struct stmmac_priv *priv = netdev_priv(dev);
3352 
3353 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
3354 }
3355 
3356 static void stmmac_free_irq(struct net_device *dev,
3357 			    enum request_irq_err irq_err, int irq_idx)
3358 {
3359 	struct stmmac_priv *priv = netdev_priv(dev);
3360 	int j;
3361 
3362 	switch (irq_err) {
3363 	case REQ_IRQ_ERR_ALL:
3364 		irq_idx = priv->plat->tx_queues_to_use;
3365 		fallthrough;
3366 	case REQ_IRQ_ERR_TX:
3367 		for (j = irq_idx - 1; j >= 0; j--) {
3368 			if (priv->tx_irq[j] > 0) {
3369 				irq_set_affinity_hint(priv->tx_irq[j], NULL);
3370 				free_irq(priv->tx_irq[j], &priv->tx_queue[j]);
3371 			}
3372 		}
3373 		irq_idx = priv->plat->rx_queues_to_use;
3374 		fallthrough;
3375 	case REQ_IRQ_ERR_RX:
3376 		for (j = irq_idx - 1; j >= 0; j--) {
3377 			if (priv->rx_irq[j] > 0) {
3378 				irq_set_affinity_hint(priv->rx_irq[j], NULL);
3379 				free_irq(priv->rx_irq[j], &priv->rx_queue[j]);
3380 			}
3381 		}
3382 
3383 		if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3384 			free_irq(priv->sfty_ue_irq, dev);
3385 		fallthrough;
3386 	case REQ_IRQ_ERR_SFTY_UE:
3387 		if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3388 			free_irq(priv->sfty_ce_irq, dev);
3389 		fallthrough;
3390 	case REQ_IRQ_ERR_SFTY_CE:
3391 		if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3392 			free_irq(priv->lpi_irq, dev);
3393 		fallthrough;
3394 	case REQ_IRQ_ERR_LPI:
3395 		if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3396 			free_irq(priv->wol_irq, dev);
3397 		fallthrough;
3398 	case REQ_IRQ_ERR_WOL:
3399 		free_irq(dev->irq, dev);
3400 		fallthrough;
3401 	case REQ_IRQ_ERR_MAC:
3402 	case REQ_IRQ_ERR_NO:
3403 		/* If MAC IRQ request error, no more IRQ to free */
3404 		break;
3405 	}
3406 }
3407 
3408 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3409 {
3410 	struct stmmac_priv *priv = netdev_priv(dev);
3411 	enum request_irq_err irq_err;
3412 	cpumask_t cpu_mask;
3413 	int irq_idx = 0;
3414 	char *int_name;
3415 	int ret;
3416 	int i;
3417 
3418 	/* For common interrupt */
3419 	int_name = priv->int_name_mac;
3420 	sprintf(int_name, "%s:%s", dev->name, "mac");
3421 	ret = request_irq(dev->irq, stmmac_mac_interrupt,
3422 			  0, int_name, dev);
3423 	if (unlikely(ret < 0)) {
3424 		netdev_err(priv->dev,
3425 			   "%s: alloc mac MSI %d (error: %d)\n",
3426 			   __func__, dev->irq, ret);
3427 		irq_err = REQ_IRQ_ERR_MAC;
3428 		goto irq_error;
3429 	}
3430 
3431 	/* Request the Wake IRQ in case of another line
3432 	 * is used for WoL
3433 	 */
3434 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3435 		int_name = priv->int_name_wol;
3436 		sprintf(int_name, "%s:%s", dev->name, "wol");
3437 		ret = request_irq(priv->wol_irq,
3438 				  stmmac_mac_interrupt,
3439 				  0, int_name, dev);
3440 		if (unlikely(ret < 0)) {
3441 			netdev_err(priv->dev,
3442 				   "%s: alloc wol MSI %d (error: %d)\n",
3443 				   __func__, priv->wol_irq, ret);
3444 			irq_err = REQ_IRQ_ERR_WOL;
3445 			goto irq_error;
3446 		}
3447 	}
3448 
3449 	/* Request the LPI IRQ in case of another line
3450 	 * is used for LPI
3451 	 */
3452 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3453 		int_name = priv->int_name_lpi;
3454 		sprintf(int_name, "%s:%s", dev->name, "lpi");
3455 		ret = request_irq(priv->lpi_irq,
3456 				  stmmac_mac_interrupt,
3457 				  0, int_name, dev);
3458 		if (unlikely(ret < 0)) {
3459 			netdev_err(priv->dev,
3460 				   "%s: alloc lpi MSI %d (error: %d)\n",
3461 				   __func__, priv->lpi_irq, ret);
3462 			irq_err = REQ_IRQ_ERR_LPI;
3463 			goto irq_error;
3464 		}
3465 	}
3466 
3467 	/* Request the Safety Feature Correctible Error line in
3468 	 * case of another line is used
3469 	 */
3470 	if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3471 		int_name = priv->int_name_sfty_ce;
3472 		sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3473 		ret = request_irq(priv->sfty_ce_irq,
3474 				  stmmac_safety_interrupt,
3475 				  0, int_name, dev);
3476 		if (unlikely(ret < 0)) {
3477 			netdev_err(priv->dev,
3478 				   "%s: alloc sfty ce MSI %d (error: %d)\n",
3479 				   __func__, priv->sfty_ce_irq, ret);
3480 			irq_err = REQ_IRQ_ERR_SFTY_CE;
3481 			goto irq_error;
3482 		}
3483 	}
3484 
3485 	/* Request the Safety Feature Uncorrectible Error line in
3486 	 * case of another line is used
3487 	 */
3488 	if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3489 		int_name = priv->int_name_sfty_ue;
3490 		sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3491 		ret = request_irq(priv->sfty_ue_irq,
3492 				  stmmac_safety_interrupt,
3493 				  0, int_name, dev);
3494 		if (unlikely(ret < 0)) {
3495 			netdev_err(priv->dev,
3496 				   "%s: alloc sfty ue MSI %d (error: %d)\n",
3497 				   __func__, priv->sfty_ue_irq, ret);
3498 			irq_err = REQ_IRQ_ERR_SFTY_UE;
3499 			goto irq_error;
3500 		}
3501 	}
3502 
3503 	/* Request Rx MSI irq */
3504 	for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3505 		if (priv->rx_irq[i] == 0)
3506 			continue;
3507 
3508 		int_name = priv->int_name_rx_irq[i];
3509 		sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3510 		ret = request_irq(priv->rx_irq[i],
3511 				  stmmac_msi_intr_rx,
3512 				  0, int_name, &priv->rx_queue[i]);
3513 		if (unlikely(ret < 0)) {
3514 			netdev_err(priv->dev,
3515 				   "%s: alloc rx-%d  MSI %d (error: %d)\n",
3516 				   __func__, i, priv->rx_irq[i], ret);
3517 			irq_err = REQ_IRQ_ERR_RX;
3518 			irq_idx = i;
3519 			goto irq_error;
3520 		}
3521 		cpumask_clear(&cpu_mask);
3522 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3523 		irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3524 	}
3525 
3526 	/* Request Tx MSI irq */
3527 	for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3528 		if (priv->tx_irq[i] == 0)
3529 			continue;
3530 
3531 		int_name = priv->int_name_tx_irq[i];
3532 		sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3533 		ret = request_irq(priv->tx_irq[i],
3534 				  stmmac_msi_intr_tx,
3535 				  0, int_name, &priv->tx_queue[i]);
3536 		if (unlikely(ret < 0)) {
3537 			netdev_err(priv->dev,
3538 				   "%s: alloc tx-%d  MSI %d (error: %d)\n",
3539 				   __func__, i, priv->tx_irq[i], ret);
3540 			irq_err = REQ_IRQ_ERR_TX;
3541 			irq_idx = i;
3542 			goto irq_error;
3543 		}
3544 		cpumask_clear(&cpu_mask);
3545 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3546 		irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3547 	}
3548 
3549 	return 0;
3550 
3551 irq_error:
3552 	stmmac_free_irq(dev, irq_err, irq_idx);
3553 	return ret;
3554 }
3555 
3556 static int stmmac_request_irq_single(struct net_device *dev)
3557 {
3558 	struct stmmac_priv *priv = netdev_priv(dev);
3559 	enum request_irq_err irq_err;
3560 	int ret;
3561 
3562 	ret = request_irq(dev->irq, stmmac_interrupt,
3563 			  IRQF_SHARED, dev->name, dev);
3564 	if (unlikely(ret < 0)) {
3565 		netdev_err(priv->dev,
3566 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3567 			   __func__, dev->irq, ret);
3568 		irq_err = REQ_IRQ_ERR_MAC;
3569 		goto irq_error;
3570 	}
3571 
3572 	/* Request the Wake IRQ in case of another line
3573 	 * is used for WoL
3574 	 */
3575 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3576 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
3577 				  IRQF_SHARED, dev->name, dev);
3578 		if (unlikely(ret < 0)) {
3579 			netdev_err(priv->dev,
3580 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3581 				   __func__, priv->wol_irq, ret);
3582 			irq_err = REQ_IRQ_ERR_WOL;
3583 			goto irq_error;
3584 		}
3585 	}
3586 
3587 	/* Request the IRQ lines */
3588 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3589 		ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3590 				  IRQF_SHARED, dev->name, dev);
3591 		if (unlikely(ret < 0)) {
3592 			netdev_err(priv->dev,
3593 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3594 				   __func__, priv->lpi_irq, ret);
3595 			irq_err = REQ_IRQ_ERR_LPI;
3596 			goto irq_error;
3597 		}
3598 	}
3599 
3600 	return 0;
3601 
3602 irq_error:
3603 	stmmac_free_irq(dev, irq_err, 0);
3604 	return ret;
3605 }
3606 
3607 static int stmmac_request_irq(struct net_device *dev)
3608 {
3609 	struct stmmac_priv *priv = netdev_priv(dev);
3610 	int ret;
3611 
3612 	/* Request the IRQ lines */
3613 	if (priv->plat->multi_msi_en)
3614 		ret = stmmac_request_irq_multi_msi(dev);
3615 	else
3616 		ret = stmmac_request_irq_single(dev);
3617 
3618 	return ret;
3619 }
3620 
3621 /**
3622  *  stmmac_open - open entry point of the driver
3623  *  @dev : pointer to the device structure.
3624  *  Description:
3625  *  This function is the open entry point of the driver.
3626  *  Return value:
3627  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3628  *  file on failure.
3629  */
3630 int stmmac_open(struct net_device *dev)
3631 {
3632 	struct stmmac_priv *priv = netdev_priv(dev);
3633 	int mode = priv->plat->phy_interface;
3634 	int bfsize = 0;
3635 	u32 chan;
3636 	int ret;
3637 
3638 	ret = pm_runtime_get_sync(priv->device);
3639 	if (ret < 0) {
3640 		pm_runtime_put_noidle(priv->device);
3641 		return ret;
3642 	}
3643 
3644 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
3645 	    priv->hw->pcs != STMMAC_PCS_RTBI &&
3646 	    (!priv->hw->xpcs ||
3647 	     xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
3648 		ret = stmmac_init_phy(dev);
3649 		if (ret) {
3650 			netdev_err(priv->dev,
3651 				   "%s: Cannot attach to PHY (error: %d)\n",
3652 				   __func__, ret);
3653 			goto init_phy_error;
3654 		}
3655 	}
3656 
3657 	/* Extra statistics */
3658 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3659 	priv->xstats.threshold = tc;
3660 
3661 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
3662 	if (bfsize < 0)
3663 		bfsize = 0;
3664 
3665 	if (bfsize < BUF_SIZE_16KiB)
3666 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
3667 
3668 	priv->dma_buf_sz = bfsize;
3669 	buf_sz = bfsize;
3670 
3671 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3672 
3673 	if (!priv->dma_tx_size)
3674 		priv->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3675 	if (!priv->dma_rx_size)
3676 		priv->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3677 
3678 	/* Earlier check for TBS */
3679 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3680 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3681 		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3682 
3683 		/* Setup per-TXQ tbs flag before TX descriptor alloc */
3684 		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3685 	}
3686 
3687 	ret = alloc_dma_desc_resources(priv);
3688 	if (ret < 0) {
3689 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3690 			   __func__);
3691 		goto dma_desc_error;
3692 	}
3693 
3694 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
3695 	if (ret < 0) {
3696 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3697 			   __func__);
3698 		goto init_error;
3699 	}
3700 
3701 	ret = stmmac_hw_setup(dev, true);
3702 	if (ret < 0) {
3703 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3704 		goto init_error;
3705 	}
3706 
3707 	stmmac_init_coalesce(priv);
3708 
3709 	phylink_start(priv->phylink);
3710 	/* We may have called phylink_speed_down before */
3711 	phylink_speed_up(priv->phylink);
3712 
3713 	ret = stmmac_request_irq(dev);
3714 	if (ret)
3715 		goto irq_error;
3716 
3717 	stmmac_enable_all_queues(priv);
3718 	netif_tx_start_all_queues(priv->dev);
3719 
3720 	return 0;
3721 
3722 irq_error:
3723 	phylink_stop(priv->phylink);
3724 
3725 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3726 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3727 
3728 	stmmac_hw_teardown(dev);
3729 init_error:
3730 	free_dma_desc_resources(priv);
3731 dma_desc_error:
3732 	phylink_disconnect_phy(priv->phylink);
3733 init_phy_error:
3734 	pm_runtime_put(priv->device);
3735 	return ret;
3736 }
3737 
3738 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3739 {
3740 	set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3741 
3742 	if (priv->fpe_wq)
3743 		destroy_workqueue(priv->fpe_wq);
3744 
3745 	netdev_info(priv->dev, "FPE workqueue stop");
3746 }
3747 
3748 /**
3749  *  stmmac_release - close entry point of the driver
3750  *  @dev : device pointer.
3751  *  Description:
3752  *  This is the stop entry point of the driver.
3753  */
3754 int stmmac_release(struct net_device *dev)
3755 {
3756 	struct stmmac_priv *priv = netdev_priv(dev);
3757 	u32 chan;
3758 
3759 	if (device_may_wakeup(priv->device))
3760 		phylink_speed_down(priv->phylink, false);
3761 	/* Stop and disconnect the PHY */
3762 	phylink_stop(priv->phylink);
3763 	phylink_disconnect_phy(priv->phylink);
3764 
3765 	stmmac_disable_all_queues(priv);
3766 
3767 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3768 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3769 
3770 	/* Free the IRQ lines */
3771 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3772 
3773 	if (priv->eee_enabled) {
3774 		priv->tx_path_in_lpi_mode = false;
3775 		del_timer_sync(&priv->eee_ctrl_timer);
3776 	}
3777 
3778 	/* Stop TX/RX DMA and clear the descriptors */
3779 	stmmac_stop_all_dma(priv);
3780 
3781 	/* Release and free the Rx/Tx resources */
3782 	free_dma_desc_resources(priv);
3783 
3784 	/* Disable the MAC Rx/Tx */
3785 	stmmac_mac_set(priv, priv->ioaddr, false);
3786 
3787 	netif_carrier_off(dev);
3788 
3789 	stmmac_release_ptp(priv);
3790 
3791 	pm_runtime_put(priv->device);
3792 
3793 	if (priv->dma_cap.fpesel)
3794 		stmmac_fpe_stop_wq(priv);
3795 
3796 	return 0;
3797 }
3798 
3799 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3800 			       struct stmmac_tx_queue *tx_q)
3801 {
3802 	u16 tag = 0x0, inner_tag = 0x0;
3803 	u32 inner_type = 0x0;
3804 	struct dma_desc *p;
3805 
3806 	if (!priv->dma_cap.vlins)
3807 		return false;
3808 	if (!skb_vlan_tag_present(skb))
3809 		return false;
3810 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3811 		inner_tag = skb_vlan_tag_get(skb);
3812 		inner_type = STMMAC_VLAN_INSERT;
3813 	}
3814 
3815 	tag = skb_vlan_tag_get(skb);
3816 
3817 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3818 		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3819 	else
3820 		p = &tx_q->dma_tx[tx_q->cur_tx];
3821 
3822 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3823 		return false;
3824 
3825 	stmmac_set_tx_owner(priv, p);
3826 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3827 	return true;
3828 }
3829 
3830 /**
3831  *  stmmac_tso_allocator - close entry point of the driver
3832  *  @priv: driver private structure
3833  *  @des: buffer start address
3834  *  @total_len: total length to fill in descriptors
3835  *  @last_segment: condition for the last descriptor
3836  *  @queue: TX queue index
3837  *  Description:
3838  *  This function fills descriptor and request new descriptors according to
3839  *  buffer length to fill
3840  */
3841 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3842 				 int total_len, bool last_segment, u32 queue)
3843 {
3844 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3845 	struct dma_desc *desc;
3846 	u32 buff_size;
3847 	int tmp_len;
3848 
3849 	tmp_len = total_len;
3850 
3851 	while (tmp_len > 0) {
3852 		dma_addr_t curr_addr;
3853 
3854 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3855 						priv->dma_tx_size);
3856 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3857 
3858 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3859 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3860 		else
3861 			desc = &tx_q->dma_tx[tx_q->cur_tx];
3862 
3863 		curr_addr = des + (total_len - tmp_len);
3864 		if (priv->dma_cap.addr64 <= 32)
3865 			desc->des0 = cpu_to_le32(curr_addr);
3866 		else
3867 			stmmac_set_desc_addr(priv, desc, curr_addr);
3868 
3869 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
3870 			    TSO_MAX_BUFF_SIZE : tmp_len;
3871 
3872 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3873 				0, 1,
3874 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3875 				0, 0);
3876 
3877 		tmp_len -= TSO_MAX_BUFF_SIZE;
3878 	}
3879 }
3880 
3881 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
3882 {
3883 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3884 	int desc_size;
3885 
3886 	if (likely(priv->extend_desc))
3887 		desc_size = sizeof(struct dma_extended_desc);
3888 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3889 		desc_size = sizeof(struct dma_edesc);
3890 	else
3891 		desc_size = sizeof(struct dma_desc);
3892 
3893 	/* The own bit must be the latest setting done when prepare the
3894 	 * descriptor and then barrier is needed to make sure that
3895 	 * all is coherent before granting the DMA engine.
3896 	 */
3897 	wmb();
3898 
3899 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3900 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3901 }
3902 
3903 /**
3904  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3905  *  @skb : the socket buffer
3906  *  @dev : device pointer
3907  *  Description: this is the transmit function that is called on TSO frames
3908  *  (support available on GMAC4 and newer chips).
3909  *  Diagram below show the ring programming in case of TSO frames:
3910  *
3911  *  First Descriptor
3912  *   --------
3913  *   | DES0 |---> buffer1 = L2/L3/L4 header
3914  *   | DES1 |---> TCP Payload (can continue on next descr...)
3915  *   | DES2 |---> buffer 1 and 2 len
3916  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3917  *   --------
3918  *	|
3919  *     ...
3920  *	|
3921  *   --------
3922  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
3923  *   | DES1 | --|
3924  *   | DES2 | --> buffer 1 and 2 len
3925  *   | DES3 |
3926  *   --------
3927  *
3928  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3929  */
3930 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3931 {
3932 	struct dma_desc *desc, *first, *mss_desc = NULL;
3933 	struct stmmac_priv *priv = netdev_priv(dev);
3934 	int nfrags = skb_shinfo(skb)->nr_frags;
3935 	u32 queue = skb_get_queue_mapping(skb);
3936 	unsigned int first_entry, tx_packets;
3937 	int tmp_pay_len = 0, first_tx;
3938 	struct stmmac_tx_queue *tx_q;
3939 	bool has_vlan, set_ic;
3940 	u8 proto_hdr_len, hdr;
3941 	u32 pay_len, mss;
3942 	dma_addr_t des;
3943 	int i;
3944 
3945 	tx_q = &priv->tx_queue[queue];
3946 	first_tx = tx_q->cur_tx;
3947 
3948 	/* Compute header lengths */
3949 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3950 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
3951 		hdr = sizeof(struct udphdr);
3952 	} else {
3953 		proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3954 		hdr = tcp_hdrlen(skb);
3955 	}
3956 
3957 	/* Desc availability based on threshold should be enough safe */
3958 	if (unlikely(stmmac_tx_avail(priv, queue) <
3959 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3960 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3961 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3962 								queue));
3963 			/* This is a hard error, log it. */
3964 			netdev_err(priv->dev,
3965 				   "%s: Tx Ring full when queue awake\n",
3966 				   __func__);
3967 		}
3968 		return NETDEV_TX_BUSY;
3969 	}
3970 
3971 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3972 
3973 	mss = skb_shinfo(skb)->gso_size;
3974 
3975 	/* set new MSS value if needed */
3976 	if (mss != tx_q->mss) {
3977 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3978 			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3979 		else
3980 			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3981 
3982 		stmmac_set_mss(priv, mss_desc, mss);
3983 		tx_q->mss = mss;
3984 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3985 						priv->dma_tx_size);
3986 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3987 	}
3988 
3989 	if (netif_msg_tx_queued(priv)) {
3990 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
3991 			__func__, hdr, proto_hdr_len, pay_len, mss);
3992 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
3993 			skb->data_len);
3994 	}
3995 
3996 	/* Check if VLAN can be inserted by HW */
3997 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3998 
3999 	first_entry = tx_q->cur_tx;
4000 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4001 
4002 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
4003 		desc = &tx_q->dma_entx[first_entry].basic;
4004 	else
4005 		desc = &tx_q->dma_tx[first_entry];
4006 	first = desc;
4007 
4008 	if (has_vlan)
4009 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4010 
4011 	/* first descriptor: fill Headers on Buf1 */
4012 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4013 			     DMA_TO_DEVICE);
4014 	if (dma_mapping_error(priv->device, des))
4015 		goto dma_map_err;
4016 
4017 	tx_q->tx_skbuff_dma[first_entry].buf = des;
4018 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4019 	tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4020 	tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4021 
4022 	if (priv->dma_cap.addr64 <= 32) {
4023 		first->des0 = cpu_to_le32(des);
4024 
4025 		/* Fill start of payload in buff2 of first descriptor */
4026 		if (pay_len)
4027 			first->des1 = cpu_to_le32(des + proto_hdr_len);
4028 
4029 		/* If needed take extra descriptors to fill the remaining payload */
4030 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4031 	} else {
4032 		stmmac_set_desc_addr(priv, first, des);
4033 		tmp_pay_len = pay_len;
4034 		des += proto_hdr_len;
4035 		pay_len = 0;
4036 	}
4037 
4038 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4039 
4040 	/* Prepare fragments */
4041 	for (i = 0; i < nfrags; i++) {
4042 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4043 
4044 		des = skb_frag_dma_map(priv->device, frag, 0,
4045 				       skb_frag_size(frag),
4046 				       DMA_TO_DEVICE);
4047 		if (dma_mapping_error(priv->device, des))
4048 			goto dma_map_err;
4049 
4050 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4051 				     (i == nfrags - 1), queue);
4052 
4053 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4054 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4055 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4056 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4057 	}
4058 
4059 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4060 
4061 	/* Only the last descriptor gets to point to the skb. */
4062 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4063 	tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4064 
4065 	/* Manage tx mitigation */
4066 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
4067 	tx_q->tx_count_frames += tx_packets;
4068 
4069 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4070 		set_ic = true;
4071 	else if (!priv->tx_coal_frames[queue])
4072 		set_ic = false;
4073 	else if (tx_packets > priv->tx_coal_frames[queue])
4074 		set_ic = true;
4075 	else if ((tx_q->tx_count_frames %
4076 		  priv->tx_coal_frames[queue]) < tx_packets)
4077 		set_ic = true;
4078 	else
4079 		set_ic = false;
4080 
4081 	if (set_ic) {
4082 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4083 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4084 		else
4085 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4086 
4087 		tx_q->tx_count_frames = 0;
4088 		stmmac_set_tx_ic(priv, desc);
4089 		priv->xstats.tx_set_ic_bit++;
4090 	}
4091 
4092 	/* We've used all descriptors we need for this skb, however,
4093 	 * advance cur_tx so that it references a fresh descriptor.
4094 	 * ndo_start_xmit will fill this descriptor the next time it's
4095 	 * called and stmmac_tx_clean may clean up to this descriptor.
4096 	 */
4097 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
4098 
4099 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4100 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4101 			  __func__);
4102 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4103 	}
4104 
4105 	dev->stats.tx_bytes += skb->len;
4106 	priv->xstats.tx_tso_frames++;
4107 	priv->xstats.tx_tso_nfrags += nfrags;
4108 
4109 	if (priv->sarc_type)
4110 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4111 
4112 	skb_tx_timestamp(skb);
4113 
4114 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4115 		     priv->hwts_tx_en)) {
4116 		/* declare that device is doing timestamping */
4117 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4118 		stmmac_enable_tx_timestamp(priv, first);
4119 	}
4120 
4121 	/* Complete the first descriptor before granting the DMA */
4122 	stmmac_prepare_tso_tx_desc(priv, first, 1,
4123 			proto_hdr_len,
4124 			pay_len,
4125 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4126 			hdr / 4, (skb->len - proto_hdr_len));
4127 
4128 	/* If context desc is used to change MSS */
4129 	if (mss_desc) {
4130 		/* Make sure that first descriptor has been completely
4131 		 * written, including its own bit. This is because MSS is
4132 		 * actually before first descriptor, so we need to make
4133 		 * sure that MSS's own bit is the last thing written.
4134 		 */
4135 		dma_wmb();
4136 		stmmac_set_tx_owner(priv, mss_desc);
4137 	}
4138 
4139 	if (netif_msg_pktdata(priv)) {
4140 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4141 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4142 			tx_q->cur_tx, first, nfrags);
4143 		pr_info(">>> frame to be transmitted: ");
4144 		print_pkt(skb->data, skb_headlen(skb));
4145 	}
4146 
4147 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4148 
4149 	stmmac_flush_tx_descriptors(priv, queue);
4150 	stmmac_tx_timer_arm(priv, queue);
4151 
4152 	return NETDEV_TX_OK;
4153 
4154 dma_map_err:
4155 	dev_err(priv->device, "Tx dma map failed\n");
4156 	dev_kfree_skb(skb);
4157 	priv->dev->stats.tx_dropped++;
4158 	return NETDEV_TX_OK;
4159 }
4160 
4161 /**
4162  *  stmmac_xmit - Tx entry point of the driver
4163  *  @skb : the socket buffer
4164  *  @dev : device pointer
4165  *  Description : this is the tx entry point of the driver.
4166  *  It programs the chain or the ring and supports oversized frames
4167  *  and SG feature.
4168  */
4169 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4170 {
4171 	unsigned int first_entry, tx_packets, enh_desc;
4172 	struct stmmac_priv *priv = netdev_priv(dev);
4173 	unsigned int nopaged_len = skb_headlen(skb);
4174 	int i, csum_insertion = 0, is_jumbo = 0;
4175 	u32 queue = skb_get_queue_mapping(skb);
4176 	int nfrags = skb_shinfo(skb)->nr_frags;
4177 	int gso = skb_shinfo(skb)->gso_type;
4178 	struct dma_edesc *tbs_desc = NULL;
4179 	struct dma_desc *desc, *first;
4180 	struct stmmac_tx_queue *tx_q;
4181 	bool has_vlan, set_ic;
4182 	int entry, first_tx;
4183 	dma_addr_t des;
4184 
4185 	tx_q = &priv->tx_queue[queue];
4186 	first_tx = tx_q->cur_tx;
4187 
4188 	if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4189 		stmmac_disable_eee_mode(priv);
4190 
4191 	/* Manage oversized TCP frames for GMAC4 device */
4192 	if (skb_is_gso(skb) && priv->tso) {
4193 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4194 			return stmmac_tso_xmit(skb, dev);
4195 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4196 			return stmmac_tso_xmit(skb, dev);
4197 	}
4198 
4199 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4200 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4201 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4202 								queue));
4203 			/* This is a hard error, log it. */
4204 			netdev_err(priv->dev,
4205 				   "%s: Tx Ring full when queue awake\n",
4206 				   __func__);
4207 		}
4208 		return NETDEV_TX_BUSY;
4209 	}
4210 
4211 	/* Check if VLAN can be inserted by HW */
4212 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4213 
4214 	entry = tx_q->cur_tx;
4215 	first_entry = entry;
4216 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4217 
4218 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4219 
4220 	if (likely(priv->extend_desc))
4221 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4222 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4223 		desc = &tx_q->dma_entx[entry].basic;
4224 	else
4225 		desc = tx_q->dma_tx + entry;
4226 
4227 	first = desc;
4228 
4229 	if (has_vlan)
4230 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4231 
4232 	enh_desc = priv->plat->enh_desc;
4233 	/* To program the descriptors according to the size of the frame */
4234 	if (enh_desc)
4235 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4236 
4237 	if (unlikely(is_jumbo)) {
4238 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4239 		if (unlikely(entry < 0) && (entry != -EINVAL))
4240 			goto dma_map_err;
4241 	}
4242 
4243 	for (i = 0; i < nfrags; i++) {
4244 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4245 		int len = skb_frag_size(frag);
4246 		bool last_segment = (i == (nfrags - 1));
4247 
4248 		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4249 		WARN_ON(tx_q->tx_skbuff[entry]);
4250 
4251 		if (likely(priv->extend_desc))
4252 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4253 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4254 			desc = &tx_q->dma_entx[entry].basic;
4255 		else
4256 			desc = tx_q->dma_tx + entry;
4257 
4258 		des = skb_frag_dma_map(priv->device, frag, 0, len,
4259 				       DMA_TO_DEVICE);
4260 		if (dma_mapping_error(priv->device, des))
4261 			goto dma_map_err; /* should reuse desc w/o issues */
4262 
4263 		tx_q->tx_skbuff_dma[entry].buf = des;
4264 
4265 		stmmac_set_desc_addr(priv, desc, des);
4266 
4267 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
4268 		tx_q->tx_skbuff_dma[entry].len = len;
4269 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4270 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4271 
4272 		/* Prepare the descriptor and set the own bit too */
4273 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4274 				priv->mode, 1, last_segment, skb->len);
4275 	}
4276 
4277 	/* Only the last descriptor gets to point to the skb. */
4278 	tx_q->tx_skbuff[entry] = skb;
4279 	tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4280 
4281 	/* According to the coalesce parameter the IC bit for the latest
4282 	 * segment is reset and the timer re-started to clean the tx status.
4283 	 * This approach takes care about the fragments: desc is the first
4284 	 * element in case of no SG.
4285 	 */
4286 	tx_packets = (entry + 1) - first_tx;
4287 	tx_q->tx_count_frames += tx_packets;
4288 
4289 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4290 		set_ic = true;
4291 	else if (!priv->tx_coal_frames[queue])
4292 		set_ic = false;
4293 	else if (tx_packets > priv->tx_coal_frames[queue])
4294 		set_ic = true;
4295 	else if ((tx_q->tx_count_frames %
4296 		  priv->tx_coal_frames[queue]) < tx_packets)
4297 		set_ic = true;
4298 	else
4299 		set_ic = false;
4300 
4301 	if (set_ic) {
4302 		if (likely(priv->extend_desc))
4303 			desc = &tx_q->dma_etx[entry].basic;
4304 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4305 			desc = &tx_q->dma_entx[entry].basic;
4306 		else
4307 			desc = &tx_q->dma_tx[entry];
4308 
4309 		tx_q->tx_count_frames = 0;
4310 		stmmac_set_tx_ic(priv, desc);
4311 		priv->xstats.tx_set_ic_bit++;
4312 	}
4313 
4314 	/* We've used all descriptors we need for this skb, however,
4315 	 * advance cur_tx so that it references a fresh descriptor.
4316 	 * ndo_start_xmit will fill this descriptor the next time it's
4317 	 * called and stmmac_tx_clean may clean up to this descriptor.
4318 	 */
4319 	entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4320 	tx_q->cur_tx = entry;
4321 
4322 	if (netif_msg_pktdata(priv)) {
4323 		netdev_dbg(priv->dev,
4324 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4325 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4326 			   entry, first, nfrags);
4327 
4328 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4329 		print_pkt(skb->data, skb->len);
4330 	}
4331 
4332 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4333 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4334 			  __func__);
4335 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4336 	}
4337 
4338 	dev->stats.tx_bytes += skb->len;
4339 
4340 	if (priv->sarc_type)
4341 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4342 
4343 	skb_tx_timestamp(skb);
4344 
4345 	/* Ready to fill the first descriptor and set the OWN bit w/o any
4346 	 * problems because all the descriptors are actually ready to be
4347 	 * passed to the DMA engine.
4348 	 */
4349 	if (likely(!is_jumbo)) {
4350 		bool last_segment = (nfrags == 0);
4351 
4352 		des = dma_map_single(priv->device, skb->data,
4353 				     nopaged_len, DMA_TO_DEVICE);
4354 		if (dma_mapping_error(priv->device, des))
4355 			goto dma_map_err;
4356 
4357 		tx_q->tx_skbuff_dma[first_entry].buf = des;
4358 		tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4359 		tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4360 
4361 		stmmac_set_desc_addr(priv, first, des);
4362 
4363 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4364 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4365 
4366 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4367 			     priv->hwts_tx_en)) {
4368 			/* declare that device is doing timestamping */
4369 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4370 			stmmac_enable_tx_timestamp(priv, first);
4371 		}
4372 
4373 		/* Prepare the first descriptor setting the OWN bit too */
4374 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4375 				csum_insertion, priv->mode, 0, last_segment,
4376 				skb->len);
4377 	}
4378 
4379 	if (tx_q->tbs & STMMAC_TBS_EN) {
4380 		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4381 
4382 		tbs_desc = &tx_q->dma_entx[first_entry];
4383 		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4384 	}
4385 
4386 	stmmac_set_tx_owner(priv, first);
4387 
4388 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4389 
4390 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4391 
4392 	stmmac_flush_tx_descriptors(priv, queue);
4393 	stmmac_tx_timer_arm(priv, queue);
4394 
4395 	return NETDEV_TX_OK;
4396 
4397 dma_map_err:
4398 	netdev_err(priv->dev, "Tx DMA map failed\n");
4399 	dev_kfree_skb(skb);
4400 	priv->dev->stats.tx_dropped++;
4401 	return NETDEV_TX_OK;
4402 }
4403 
4404 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4405 {
4406 	struct vlan_ethhdr *veth;
4407 	__be16 vlan_proto;
4408 	u16 vlanid;
4409 
4410 	veth = (struct vlan_ethhdr *)skb->data;
4411 	vlan_proto = veth->h_vlan_proto;
4412 
4413 	if ((vlan_proto == htons(ETH_P_8021Q) &&
4414 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4415 	    (vlan_proto == htons(ETH_P_8021AD) &&
4416 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4417 		/* pop the vlan tag */
4418 		vlanid = ntohs(veth->h_vlan_TCI);
4419 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4420 		skb_pull(skb, VLAN_HLEN);
4421 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4422 	}
4423 }
4424 
4425 /**
4426  * stmmac_rx_refill - refill used skb preallocated buffers
4427  * @priv: driver private structure
4428  * @queue: RX queue index
4429  * Description : this is to reallocate the skb for the reception process
4430  * that is based on zero-copy.
4431  */
4432 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4433 {
4434 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4435 	int dirty = stmmac_rx_dirty(priv, queue);
4436 	unsigned int entry = rx_q->dirty_rx;
4437 
4438 	while (dirty-- > 0) {
4439 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4440 		struct dma_desc *p;
4441 		bool use_rx_wd;
4442 
4443 		if (priv->extend_desc)
4444 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4445 		else
4446 			p = rx_q->dma_rx + entry;
4447 
4448 		if (!buf->page) {
4449 			buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
4450 			if (!buf->page)
4451 				break;
4452 		}
4453 
4454 		if (priv->sph && !buf->sec_page) {
4455 			buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
4456 			if (!buf->sec_page)
4457 				break;
4458 
4459 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4460 		}
4461 
4462 		buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4463 
4464 		stmmac_set_desc_addr(priv, p, buf->addr);
4465 		if (priv->sph)
4466 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4467 		else
4468 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4469 		stmmac_refill_desc3(priv, rx_q, p);
4470 
4471 		rx_q->rx_count_frames++;
4472 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4473 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4474 			rx_q->rx_count_frames = 0;
4475 
4476 		use_rx_wd = !priv->rx_coal_frames[queue];
4477 		use_rx_wd |= rx_q->rx_count_frames > 0;
4478 		if (!priv->use_riwt)
4479 			use_rx_wd = false;
4480 
4481 		dma_wmb();
4482 		stmmac_set_rx_owner(priv, p, use_rx_wd);
4483 
4484 		entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4485 	}
4486 	rx_q->dirty_rx = entry;
4487 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4488 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
4489 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4490 }
4491 
4492 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4493 				       struct dma_desc *p,
4494 				       int status, unsigned int len)
4495 {
4496 	unsigned int plen = 0, hlen = 0;
4497 	int coe = priv->hw->rx_csum;
4498 
4499 	/* Not first descriptor, buffer is always zero */
4500 	if (priv->sph && len)
4501 		return 0;
4502 
4503 	/* First descriptor, get split header length */
4504 	stmmac_get_rx_header_len(priv, p, &hlen);
4505 	if (priv->sph && hlen) {
4506 		priv->xstats.rx_split_hdr_pkt_n++;
4507 		return hlen;
4508 	}
4509 
4510 	/* First descriptor, not last descriptor and not split header */
4511 	if (status & rx_not_ls)
4512 		return priv->dma_buf_sz;
4513 
4514 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4515 
4516 	/* First descriptor and last descriptor and not split header */
4517 	return min_t(unsigned int, priv->dma_buf_sz, plen);
4518 }
4519 
4520 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4521 				       struct dma_desc *p,
4522 				       int status, unsigned int len)
4523 {
4524 	int coe = priv->hw->rx_csum;
4525 	unsigned int plen = 0;
4526 
4527 	/* Not split header, buffer is not available */
4528 	if (!priv->sph)
4529 		return 0;
4530 
4531 	/* Not last descriptor */
4532 	if (status & rx_not_ls)
4533 		return priv->dma_buf_sz;
4534 
4535 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4536 
4537 	/* Last descriptor */
4538 	return plen - len;
4539 }
4540 
4541 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4542 				struct xdp_frame *xdpf, bool dma_map)
4543 {
4544 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4545 	unsigned int entry = tx_q->cur_tx;
4546 	struct dma_desc *tx_desc;
4547 	dma_addr_t dma_addr;
4548 	bool set_ic;
4549 
4550 	if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4551 		return STMMAC_XDP_CONSUMED;
4552 
4553 	if (likely(priv->extend_desc))
4554 		tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4555 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4556 		tx_desc = &tx_q->dma_entx[entry].basic;
4557 	else
4558 		tx_desc = tx_q->dma_tx + entry;
4559 
4560 	if (dma_map) {
4561 		dma_addr = dma_map_single(priv->device, xdpf->data,
4562 					  xdpf->len, DMA_TO_DEVICE);
4563 		if (dma_mapping_error(priv->device, dma_addr))
4564 			return STMMAC_XDP_CONSUMED;
4565 
4566 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4567 	} else {
4568 		struct page *page = virt_to_page(xdpf->data);
4569 
4570 		dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4571 			   xdpf->headroom;
4572 		dma_sync_single_for_device(priv->device, dma_addr,
4573 					   xdpf->len, DMA_BIDIRECTIONAL);
4574 
4575 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4576 	}
4577 
4578 	tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4579 	tx_q->tx_skbuff_dma[entry].map_as_page = false;
4580 	tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4581 	tx_q->tx_skbuff_dma[entry].last_segment = true;
4582 	tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4583 
4584 	tx_q->xdpf[entry] = xdpf;
4585 
4586 	stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4587 
4588 	stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4589 			       true, priv->mode, true, true,
4590 			       xdpf->len);
4591 
4592 	tx_q->tx_count_frames++;
4593 
4594 	if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4595 		set_ic = true;
4596 	else
4597 		set_ic = false;
4598 
4599 	if (set_ic) {
4600 		tx_q->tx_count_frames = 0;
4601 		stmmac_set_tx_ic(priv, tx_desc);
4602 		priv->xstats.tx_set_ic_bit++;
4603 	}
4604 
4605 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4606 
4607 	entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4608 	tx_q->cur_tx = entry;
4609 
4610 	return STMMAC_XDP_TX;
4611 }
4612 
4613 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4614 				   int cpu)
4615 {
4616 	int index = cpu;
4617 
4618 	if (unlikely(index < 0))
4619 		index = 0;
4620 
4621 	while (index >= priv->plat->tx_queues_to_use)
4622 		index -= priv->plat->tx_queues_to_use;
4623 
4624 	return index;
4625 }
4626 
4627 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4628 				struct xdp_buff *xdp)
4629 {
4630 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4631 	int cpu = smp_processor_id();
4632 	struct netdev_queue *nq;
4633 	int queue;
4634 	int res;
4635 
4636 	if (unlikely(!xdpf))
4637 		return STMMAC_XDP_CONSUMED;
4638 
4639 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4640 	nq = netdev_get_tx_queue(priv->dev, queue);
4641 
4642 	__netif_tx_lock(nq, cpu);
4643 	/* Avoids TX time-out as we are sharing with slow path */
4644 	nq->trans_start = jiffies;
4645 
4646 	res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4647 	if (res == STMMAC_XDP_TX)
4648 		stmmac_flush_tx_descriptors(priv, queue);
4649 
4650 	__netif_tx_unlock(nq);
4651 
4652 	return res;
4653 }
4654 
4655 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4656 				 struct bpf_prog *prog,
4657 				 struct xdp_buff *xdp)
4658 {
4659 	u32 act;
4660 	int res;
4661 
4662 	act = bpf_prog_run_xdp(prog, xdp);
4663 	switch (act) {
4664 	case XDP_PASS:
4665 		res = STMMAC_XDP_PASS;
4666 		break;
4667 	case XDP_TX:
4668 		res = stmmac_xdp_xmit_back(priv, xdp);
4669 		break;
4670 	case XDP_REDIRECT:
4671 		if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4672 			res = STMMAC_XDP_CONSUMED;
4673 		else
4674 			res = STMMAC_XDP_REDIRECT;
4675 		break;
4676 	default:
4677 		bpf_warn_invalid_xdp_action(act);
4678 		fallthrough;
4679 	case XDP_ABORTED:
4680 		trace_xdp_exception(priv->dev, prog, act);
4681 		fallthrough;
4682 	case XDP_DROP:
4683 		res = STMMAC_XDP_CONSUMED;
4684 		break;
4685 	}
4686 
4687 	return res;
4688 }
4689 
4690 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4691 					   struct xdp_buff *xdp)
4692 {
4693 	struct bpf_prog *prog;
4694 	int res;
4695 
4696 	prog = READ_ONCE(priv->xdp_prog);
4697 	if (!prog) {
4698 		res = STMMAC_XDP_PASS;
4699 		goto out;
4700 	}
4701 
4702 	res = __stmmac_xdp_run_prog(priv, prog, xdp);
4703 out:
4704 	return ERR_PTR(-res);
4705 }
4706 
4707 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4708 				   int xdp_status)
4709 {
4710 	int cpu = smp_processor_id();
4711 	int queue;
4712 
4713 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4714 
4715 	if (xdp_status & STMMAC_XDP_TX)
4716 		stmmac_tx_timer_arm(priv, queue);
4717 
4718 	if (xdp_status & STMMAC_XDP_REDIRECT)
4719 		xdp_do_flush();
4720 }
4721 
4722 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4723 					       struct xdp_buff *xdp)
4724 {
4725 	unsigned int metasize = xdp->data - xdp->data_meta;
4726 	unsigned int datasize = xdp->data_end - xdp->data;
4727 	struct sk_buff *skb;
4728 
4729 	skb = __napi_alloc_skb(&ch->rxtx_napi,
4730 			       xdp->data_end - xdp->data_hard_start,
4731 			       GFP_ATOMIC | __GFP_NOWARN);
4732 	if (unlikely(!skb))
4733 		return NULL;
4734 
4735 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
4736 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4737 	if (metasize)
4738 		skb_metadata_set(skb, metasize);
4739 
4740 	return skb;
4741 }
4742 
4743 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4744 				   struct dma_desc *p, struct dma_desc *np,
4745 				   struct xdp_buff *xdp)
4746 {
4747 	struct stmmac_channel *ch = &priv->channel[queue];
4748 	unsigned int len = xdp->data_end - xdp->data;
4749 	enum pkt_hash_types hash_type;
4750 	int coe = priv->hw->rx_csum;
4751 	struct sk_buff *skb;
4752 	u32 hash;
4753 
4754 	skb = stmmac_construct_skb_zc(ch, xdp);
4755 	if (!skb) {
4756 		priv->dev->stats.rx_dropped++;
4757 		return;
4758 	}
4759 
4760 	stmmac_get_rx_hwtstamp(priv, p, np, skb);
4761 	stmmac_rx_vlan(priv->dev, skb);
4762 	skb->protocol = eth_type_trans(skb, priv->dev);
4763 
4764 	if (unlikely(!coe))
4765 		skb_checksum_none_assert(skb);
4766 	else
4767 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4768 
4769 	if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4770 		skb_set_hash(skb, hash, hash_type);
4771 
4772 	skb_record_rx_queue(skb, queue);
4773 	napi_gro_receive(&ch->rxtx_napi, skb);
4774 
4775 	priv->dev->stats.rx_packets++;
4776 	priv->dev->stats.rx_bytes += len;
4777 }
4778 
4779 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4780 {
4781 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4782 	unsigned int entry = rx_q->dirty_rx;
4783 	struct dma_desc *rx_desc = NULL;
4784 	bool ret = true;
4785 
4786 	budget = min(budget, stmmac_rx_dirty(priv, queue));
4787 
4788 	while (budget-- > 0 && entry != rx_q->cur_rx) {
4789 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4790 		dma_addr_t dma_addr;
4791 		bool use_rx_wd;
4792 
4793 		if (!buf->xdp) {
4794 			buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4795 			if (!buf->xdp) {
4796 				ret = false;
4797 				break;
4798 			}
4799 		}
4800 
4801 		if (priv->extend_desc)
4802 			rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4803 		else
4804 			rx_desc = rx_q->dma_rx + entry;
4805 
4806 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4807 		stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4808 		stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4809 		stmmac_refill_desc3(priv, rx_q, rx_desc);
4810 
4811 		rx_q->rx_count_frames++;
4812 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4813 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4814 			rx_q->rx_count_frames = 0;
4815 
4816 		use_rx_wd = !priv->rx_coal_frames[queue];
4817 		use_rx_wd |= rx_q->rx_count_frames > 0;
4818 		if (!priv->use_riwt)
4819 			use_rx_wd = false;
4820 
4821 		dma_wmb();
4822 		stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4823 
4824 		entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4825 	}
4826 
4827 	if (rx_desc) {
4828 		rx_q->dirty_rx = entry;
4829 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4830 				     (rx_q->dirty_rx * sizeof(struct dma_desc));
4831 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4832 	}
4833 
4834 	return ret;
4835 }
4836 
4837 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
4838 {
4839 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4840 	unsigned int count = 0, error = 0, len = 0;
4841 	int dirty = stmmac_rx_dirty(priv, queue);
4842 	unsigned int next_entry = rx_q->cur_rx;
4843 	unsigned int desc_size;
4844 	struct bpf_prog *prog;
4845 	bool failure = false;
4846 	int xdp_status = 0;
4847 	int status = 0;
4848 
4849 	if (netif_msg_rx_status(priv)) {
4850 		void *rx_head;
4851 
4852 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
4853 		if (priv->extend_desc) {
4854 			rx_head = (void *)rx_q->dma_erx;
4855 			desc_size = sizeof(struct dma_extended_desc);
4856 		} else {
4857 			rx_head = (void *)rx_q->dma_rx;
4858 			desc_size = sizeof(struct dma_desc);
4859 		}
4860 
4861 		stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
4862 				    rx_q->dma_rx_phy, desc_size);
4863 	}
4864 	while (count < limit) {
4865 		struct stmmac_rx_buffer *buf;
4866 		unsigned int buf1_len = 0;
4867 		struct dma_desc *np, *p;
4868 		int entry;
4869 		int res;
4870 
4871 		if (!count && rx_q->state_saved) {
4872 			error = rx_q->state.error;
4873 			len = rx_q->state.len;
4874 		} else {
4875 			rx_q->state_saved = false;
4876 			error = 0;
4877 			len = 0;
4878 		}
4879 
4880 		if (count >= limit)
4881 			break;
4882 
4883 read_again:
4884 		buf1_len = 0;
4885 		entry = next_entry;
4886 		buf = &rx_q->buf_pool[entry];
4887 
4888 		if (dirty >= STMMAC_RX_FILL_BATCH) {
4889 			failure = failure ||
4890 				  !stmmac_rx_refill_zc(priv, queue, dirty);
4891 			dirty = 0;
4892 		}
4893 
4894 		if (priv->extend_desc)
4895 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4896 		else
4897 			p = rx_q->dma_rx + entry;
4898 
4899 		/* read the status of the incoming frame */
4900 		status = stmmac_rx_status(priv, &priv->dev->stats,
4901 					  &priv->xstats, p);
4902 		/* check if managed by the DMA otherwise go ahead */
4903 		if (unlikely(status & dma_own))
4904 			break;
4905 
4906 		/* Prefetch the next RX descriptor */
4907 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
4908 						priv->dma_rx_size);
4909 		next_entry = rx_q->cur_rx;
4910 
4911 		if (priv->extend_desc)
4912 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
4913 		else
4914 			np = rx_q->dma_rx + next_entry;
4915 
4916 		prefetch(np);
4917 
4918 		/* Ensure a valid XSK buffer before proceed */
4919 		if (!buf->xdp)
4920 			break;
4921 
4922 		if (priv->extend_desc)
4923 			stmmac_rx_extended_status(priv, &priv->dev->stats,
4924 						  &priv->xstats,
4925 						  rx_q->dma_erx + entry);
4926 		if (unlikely(status == discard_frame)) {
4927 			xsk_buff_free(buf->xdp);
4928 			buf->xdp = NULL;
4929 			dirty++;
4930 			error = 1;
4931 			if (!priv->hwts_rx_en)
4932 				priv->dev->stats.rx_errors++;
4933 		}
4934 
4935 		if (unlikely(error && (status & rx_not_ls)))
4936 			goto read_again;
4937 		if (unlikely(error)) {
4938 			count++;
4939 			continue;
4940 		}
4941 
4942 		/* XSK pool expects RX frame 1:1 mapped to XSK buffer */
4943 		if (likely(status & rx_not_ls)) {
4944 			xsk_buff_free(buf->xdp);
4945 			buf->xdp = NULL;
4946 			dirty++;
4947 			count++;
4948 			goto read_again;
4949 		}
4950 
4951 		/* XDP ZC Frame only support primary buffers for now */
4952 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
4953 		len += buf1_len;
4954 
4955 		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
4956 		 * Type frames (LLC/LLC-SNAP)
4957 		 *
4958 		 * llc_snap is never checked in GMAC >= 4, so this ACS
4959 		 * feature is always disabled and packets need to be
4960 		 * stripped manually.
4961 		 */
4962 		if (likely(!(status & rx_not_ls)) &&
4963 		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
4964 		     unlikely(status != llc_snap))) {
4965 			buf1_len -= ETH_FCS_LEN;
4966 			len -= ETH_FCS_LEN;
4967 		}
4968 
4969 		/* RX buffer is good and fit into a XSK pool buffer */
4970 		buf->xdp->data_end = buf->xdp->data + buf1_len;
4971 		xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
4972 
4973 		prog = READ_ONCE(priv->xdp_prog);
4974 		res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
4975 
4976 		switch (res) {
4977 		case STMMAC_XDP_PASS:
4978 			stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
4979 			xsk_buff_free(buf->xdp);
4980 			break;
4981 		case STMMAC_XDP_CONSUMED:
4982 			xsk_buff_free(buf->xdp);
4983 			priv->dev->stats.rx_dropped++;
4984 			break;
4985 		case STMMAC_XDP_TX:
4986 		case STMMAC_XDP_REDIRECT:
4987 			xdp_status |= res;
4988 			break;
4989 		}
4990 
4991 		buf->xdp = NULL;
4992 		dirty++;
4993 		count++;
4994 	}
4995 
4996 	if (status & rx_not_ls) {
4997 		rx_q->state_saved = true;
4998 		rx_q->state.error = error;
4999 		rx_q->state.len = len;
5000 	}
5001 
5002 	stmmac_finalize_xdp_rx(priv, xdp_status);
5003 
5004 	priv->xstats.rx_pkt_n += count;
5005 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5006 
5007 	if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5008 		if (failure || stmmac_rx_dirty(priv, queue) > 0)
5009 			xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5010 		else
5011 			xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5012 
5013 		return (int)count;
5014 	}
5015 
5016 	return failure ? limit : (int)count;
5017 }
5018 
5019 /**
5020  * stmmac_rx - manage the receive process
5021  * @priv: driver private structure
5022  * @limit: napi bugget
5023  * @queue: RX queue index.
5024  * Description :  this the function called by the napi poll method.
5025  * It gets all the frames inside the ring.
5026  */
5027 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5028 {
5029 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5030 	struct stmmac_channel *ch = &priv->channel[queue];
5031 	unsigned int count = 0, error = 0, len = 0;
5032 	int status = 0, coe = priv->hw->rx_csum;
5033 	unsigned int next_entry = rx_q->cur_rx;
5034 	enum dma_data_direction dma_dir;
5035 	unsigned int desc_size;
5036 	struct sk_buff *skb = NULL;
5037 	struct xdp_buff xdp;
5038 	int xdp_status = 0;
5039 	int buf_sz;
5040 
5041 	dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5042 	buf_sz = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5043 
5044 	if (netif_msg_rx_status(priv)) {
5045 		void *rx_head;
5046 
5047 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5048 		if (priv->extend_desc) {
5049 			rx_head = (void *)rx_q->dma_erx;
5050 			desc_size = sizeof(struct dma_extended_desc);
5051 		} else {
5052 			rx_head = (void *)rx_q->dma_rx;
5053 			desc_size = sizeof(struct dma_desc);
5054 		}
5055 
5056 		stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
5057 				    rx_q->dma_rx_phy, desc_size);
5058 	}
5059 	while (count < limit) {
5060 		unsigned int buf1_len = 0, buf2_len = 0;
5061 		enum pkt_hash_types hash_type;
5062 		struct stmmac_rx_buffer *buf;
5063 		struct dma_desc *np, *p;
5064 		int entry;
5065 		u32 hash;
5066 
5067 		if (!count && rx_q->state_saved) {
5068 			skb = rx_q->state.skb;
5069 			error = rx_q->state.error;
5070 			len = rx_q->state.len;
5071 		} else {
5072 			rx_q->state_saved = false;
5073 			skb = NULL;
5074 			error = 0;
5075 			len = 0;
5076 		}
5077 
5078 		if (count >= limit)
5079 			break;
5080 
5081 read_again:
5082 		buf1_len = 0;
5083 		buf2_len = 0;
5084 		entry = next_entry;
5085 		buf = &rx_q->buf_pool[entry];
5086 
5087 		if (priv->extend_desc)
5088 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5089 		else
5090 			p = rx_q->dma_rx + entry;
5091 
5092 		/* read the status of the incoming frame */
5093 		status = stmmac_rx_status(priv, &priv->dev->stats,
5094 				&priv->xstats, p);
5095 		/* check if managed by the DMA otherwise go ahead */
5096 		if (unlikely(status & dma_own))
5097 			break;
5098 
5099 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5100 						priv->dma_rx_size);
5101 		next_entry = rx_q->cur_rx;
5102 
5103 		if (priv->extend_desc)
5104 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5105 		else
5106 			np = rx_q->dma_rx + next_entry;
5107 
5108 		prefetch(np);
5109 
5110 		if (priv->extend_desc)
5111 			stmmac_rx_extended_status(priv, &priv->dev->stats,
5112 					&priv->xstats, rx_q->dma_erx + entry);
5113 		if (unlikely(status == discard_frame)) {
5114 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5115 			buf->page = NULL;
5116 			error = 1;
5117 			if (!priv->hwts_rx_en)
5118 				priv->dev->stats.rx_errors++;
5119 		}
5120 
5121 		if (unlikely(error && (status & rx_not_ls)))
5122 			goto read_again;
5123 		if (unlikely(error)) {
5124 			dev_kfree_skb(skb);
5125 			skb = NULL;
5126 			count++;
5127 			continue;
5128 		}
5129 
5130 		/* Buffer is good. Go on. */
5131 
5132 		prefetch(page_address(buf->page) + buf->page_offset);
5133 		if (buf->sec_page)
5134 			prefetch(page_address(buf->sec_page));
5135 
5136 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5137 		len += buf1_len;
5138 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5139 		len += buf2_len;
5140 
5141 		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
5142 		 * Type frames (LLC/LLC-SNAP)
5143 		 *
5144 		 * llc_snap is never checked in GMAC >= 4, so this ACS
5145 		 * feature is always disabled and packets need to be
5146 		 * stripped manually.
5147 		 */
5148 		if (likely(!(status & rx_not_ls)) &&
5149 		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
5150 		     unlikely(status != llc_snap))) {
5151 			if (buf2_len)
5152 				buf2_len -= ETH_FCS_LEN;
5153 			else
5154 				buf1_len -= ETH_FCS_LEN;
5155 
5156 			len -= ETH_FCS_LEN;
5157 		}
5158 
5159 		if (!skb) {
5160 			unsigned int pre_len, sync_len;
5161 
5162 			dma_sync_single_for_cpu(priv->device, buf->addr,
5163 						buf1_len, dma_dir);
5164 
5165 			xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
5166 			xdp_prepare_buff(&xdp, page_address(buf->page),
5167 					 buf->page_offset, buf1_len, false);
5168 
5169 			pre_len = xdp.data_end - xdp.data_hard_start -
5170 				  buf->page_offset;
5171 			skb = stmmac_xdp_run_prog(priv, &xdp);
5172 			/* Due xdp_adjust_tail: DMA sync for_device
5173 			 * cover max len CPU touch
5174 			 */
5175 			sync_len = xdp.data_end - xdp.data_hard_start -
5176 				   buf->page_offset;
5177 			sync_len = max(sync_len, pre_len);
5178 
5179 			/* For Not XDP_PASS verdict */
5180 			if (IS_ERR(skb)) {
5181 				unsigned int xdp_res = -PTR_ERR(skb);
5182 
5183 				if (xdp_res & STMMAC_XDP_CONSUMED) {
5184 					page_pool_put_page(rx_q->page_pool,
5185 							   virt_to_head_page(xdp.data),
5186 							   sync_len, true);
5187 					buf->page = NULL;
5188 					priv->dev->stats.rx_dropped++;
5189 
5190 					/* Clear skb as it was set as
5191 					 * status by XDP program.
5192 					 */
5193 					skb = NULL;
5194 
5195 					if (unlikely((status & rx_not_ls)))
5196 						goto read_again;
5197 
5198 					count++;
5199 					continue;
5200 				} else if (xdp_res & (STMMAC_XDP_TX |
5201 						      STMMAC_XDP_REDIRECT)) {
5202 					xdp_status |= xdp_res;
5203 					buf->page = NULL;
5204 					skb = NULL;
5205 					count++;
5206 					continue;
5207 				}
5208 			}
5209 		}
5210 
5211 		if (!skb) {
5212 			/* XDP program may expand or reduce tail */
5213 			buf1_len = xdp.data_end - xdp.data;
5214 
5215 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5216 			if (!skb) {
5217 				priv->dev->stats.rx_dropped++;
5218 				count++;
5219 				goto drain_data;
5220 			}
5221 
5222 			/* XDP program may adjust header */
5223 			skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5224 			skb_put(skb, buf1_len);
5225 
5226 			/* Data payload copied into SKB, page ready for recycle */
5227 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5228 			buf->page = NULL;
5229 		} else if (buf1_len) {
5230 			dma_sync_single_for_cpu(priv->device, buf->addr,
5231 						buf1_len, dma_dir);
5232 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5233 					buf->page, buf->page_offset, buf1_len,
5234 					priv->dma_buf_sz);
5235 
5236 			/* Data payload appended into SKB */
5237 			page_pool_release_page(rx_q->page_pool, buf->page);
5238 			buf->page = NULL;
5239 		}
5240 
5241 		if (buf2_len) {
5242 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5243 						buf2_len, dma_dir);
5244 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5245 					buf->sec_page, 0, buf2_len,
5246 					priv->dma_buf_sz);
5247 
5248 			/* Data payload appended into SKB */
5249 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
5250 			buf->sec_page = NULL;
5251 		}
5252 
5253 drain_data:
5254 		if (likely(status & rx_not_ls))
5255 			goto read_again;
5256 		if (!skb)
5257 			continue;
5258 
5259 		/* Got entire packet into SKB. Finish it. */
5260 
5261 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
5262 		stmmac_rx_vlan(priv->dev, skb);
5263 		skb->protocol = eth_type_trans(skb, priv->dev);
5264 
5265 		if (unlikely(!coe))
5266 			skb_checksum_none_assert(skb);
5267 		else
5268 			skb->ip_summed = CHECKSUM_UNNECESSARY;
5269 
5270 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5271 			skb_set_hash(skb, hash, hash_type);
5272 
5273 		skb_record_rx_queue(skb, queue);
5274 		napi_gro_receive(&ch->rx_napi, skb);
5275 		skb = NULL;
5276 
5277 		priv->dev->stats.rx_packets++;
5278 		priv->dev->stats.rx_bytes += len;
5279 		count++;
5280 	}
5281 
5282 	if (status & rx_not_ls || skb) {
5283 		rx_q->state_saved = true;
5284 		rx_q->state.skb = skb;
5285 		rx_q->state.error = error;
5286 		rx_q->state.len = len;
5287 	}
5288 
5289 	stmmac_finalize_xdp_rx(priv, xdp_status);
5290 
5291 	stmmac_rx_refill(priv, queue);
5292 
5293 	priv->xstats.rx_pkt_n += count;
5294 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5295 
5296 	return count;
5297 }
5298 
5299 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5300 {
5301 	struct stmmac_channel *ch =
5302 		container_of(napi, struct stmmac_channel, rx_napi);
5303 	struct stmmac_priv *priv = ch->priv_data;
5304 	u32 chan = ch->index;
5305 	int work_done;
5306 
5307 	priv->xstats.napi_poll++;
5308 
5309 	work_done = stmmac_rx(priv, budget, chan);
5310 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5311 		unsigned long flags;
5312 
5313 		spin_lock_irqsave(&ch->lock, flags);
5314 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5315 		spin_unlock_irqrestore(&ch->lock, flags);
5316 	}
5317 
5318 	return work_done;
5319 }
5320 
5321 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5322 {
5323 	struct stmmac_channel *ch =
5324 		container_of(napi, struct stmmac_channel, tx_napi);
5325 	struct stmmac_priv *priv = ch->priv_data;
5326 	u32 chan = ch->index;
5327 	int work_done;
5328 
5329 	priv->xstats.napi_poll++;
5330 
5331 	work_done = stmmac_tx_clean(priv, budget, chan);
5332 	work_done = min(work_done, budget);
5333 
5334 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5335 		unsigned long flags;
5336 
5337 		spin_lock_irqsave(&ch->lock, flags);
5338 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5339 		spin_unlock_irqrestore(&ch->lock, flags);
5340 	}
5341 
5342 	return work_done;
5343 }
5344 
5345 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5346 {
5347 	struct stmmac_channel *ch =
5348 		container_of(napi, struct stmmac_channel, rxtx_napi);
5349 	struct stmmac_priv *priv = ch->priv_data;
5350 	int rx_done, tx_done;
5351 	u32 chan = ch->index;
5352 
5353 	priv->xstats.napi_poll++;
5354 
5355 	tx_done = stmmac_tx_clean(priv, budget, chan);
5356 	tx_done = min(tx_done, budget);
5357 
5358 	rx_done = stmmac_rx_zc(priv, budget, chan);
5359 
5360 	/* If either TX or RX work is not complete, return budget
5361 	 * and keep pooling
5362 	 */
5363 	if (tx_done >= budget || rx_done >= budget)
5364 		return budget;
5365 
5366 	/* all work done, exit the polling mode */
5367 	if (napi_complete_done(napi, rx_done)) {
5368 		unsigned long flags;
5369 
5370 		spin_lock_irqsave(&ch->lock, flags);
5371 		/* Both RX and TX work done are compelte,
5372 		 * so enable both RX & TX IRQs.
5373 		 */
5374 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5375 		spin_unlock_irqrestore(&ch->lock, flags);
5376 	}
5377 
5378 	return min(rx_done, budget - 1);
5379 }
5380 
5381 /**
5382  *  stmmac_tx_timeout
5383  *  @dev : Pointer to net device structure
5384  *  @txqueue: the index of the hanging transmit queue
5385  *  Description: this function is called when a packet transmission fails to
5386  *   complete within a reasonable time. The driver will mark the error in the
5387  *   netdev structure and arrange for the device to be reset to a sane state
5388  *   in order to transmit a new packet.
5389  */
5390 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5391 {
5392 	struct stmmac_priv *priv = netdev_priv(dev);
5393 
5394 	stmmac_global_err(priv);
5395 }
5396 
5397 /**
5398  *  stmmac_set_rx_mode - entry point for multicast addressing
5399  *  @dev : pointer to the device structure
5400  *  Description:
5401  *  This function is a driver entry point which gets called by the kernel
5402  *  whenever multicast addresses must be enabled/disabled.
5403  *  Return value:
5404  *  void.
5405  */
5406 static void stmmac_set_rx_mode(struct net_device *dev)
5407 {
5408 	struct stmmac_priv *priv = netdev_priv(dev);
5409 
5410 	stmmac_set_filter(priv, priv->hw, dev);
5411 }
5412 
5413 /**
5414  *  stmmac_change_mtu - entry point to change MTU size for the device.
5415  *  @dev : device pointer.
5416  *  @new_mtu : the new MTU size for the device.
5417  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5418  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5419  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5420  *  Return value:
5421  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5422  *  file on failure.
5423  */
5424 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5425 {
5426 	struct stmmac_priv *priv = netdev_priv(dev);
5427 	int txfifosz = priv->plat->tx_fifo_size;
5428 	const int mtu = new_mtu;
5429 
5430 	if (txfifosz == 0)
5431 		txfifosz = priv->dma_cap.tx_fifo_size;
5432 
5433 	txfifosz /= priv->plat->tx_queues_to_use;
5434 
5435 	if (netif_running(dev)) {
5436 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
5437 		return -EBUSY;
5438 	}
5439 
5440 	if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5441 		netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5442 		return -EINVAL;
5443 	}
5444 
5445 	new_mtu = STMMAC_ALIGN(new_mtu);
5446 
5447 	/* If condition true, FIFO is too small or MTU too large */
5448 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5449 		return -EINVAL;
5450 
5451 	dev->mtu = mtu;
5452 
5453 	netdev_update_features(dev);
5454 
5455 	return 0;
5456 }
5457 
5458 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5459 					     netdev_features_t features)
5460 {
5461 	struct stmmac_priv *priv = netdev_priv(dev);
5462 
5463 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5464 		features &= ~NETIF_F_RXCSUM;
5465 
5466 	if (!priv->plat->tx_coe)
5467 		features &= ~NETIF_F_CSUM_MASK;
5468 
5469 	/* Some GMAC devices have a bugged Jumbo frame support that
5470 	 * needs to have the Tx COE disabled for oversized frames
5471 	 * (due to limited buffer sizes). In this case we disable
5472 	 * the TX csum insertion in the TDES and not use SF.
5473 	 */
5474 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5475 		features &= ~NETIF_F_CSUM_MASK;
5476 
5477 	/* Disable tso if asked by ethtool */
5478 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5479 		if (features & NETIF_F_TSO)
5480 			priv->tso = true;
5481 		else
5482 			priv->tso = false;
5483 	}
5484 
5485 	return features;
5486 }
5487 
5488 static int stmmac_set_features(struct net_device *netdev,
5489 			       netdev_features_t features)
5490 {
5491 	struct stmmac_priv *priv = netdev_priv(netdev);
5492 	bool sph_en;
5493 	u32 chan;
5494 
5495 	/* Keep the COE Type in case of csum is supporting */
5496 	if (features & NETIF_F_RXCSUM)
5497 		priv->hw->rx_csum = priv->plat->rx_coe;
5498 	else
5499 		priv->hw->rx_csum = 0;
5500 	/* No check needed because rx_coe has been set before and it will be
5501 	 * fixed in case of issue.
5502 	 */
5503 	stmmac_rx_ipc(priv, priv->hw);
5504 
5505 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5506 
5507 	for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5508 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5509 
5510 	return 0;
5511 }
5512 
5513 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5514 {
5515 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5516 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5517 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5518 	bool *hs_enable = &fpe_cfg->hs_enable;
5519 
5520 	if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5521 		return;
5522 
5523 	/* If LP has sent verify mPacket, LP is FPE capable */
5524 	if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5525 		if (*lp_state < FPE_STATE_CAPABLE)
5526 			*lp_state = FPE_STATE_CAPABLE;
5527 
5528 		/* If user has requested FPE enable, quickly response */
5529 		if (*hs_enable)
5530 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5531 						MPACKET_RESPONSE);
5532 	}
5533 
5534 	/* If Local has sent verify mPacket, Local is FPE capable */
5535 	if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5536 		if (*lo_state < FPE_STATE_CAPABLE)
5537 			*lo_state = FPE_STATE_CAPABLE;
5538 	}
5539 
5540 	/* If LP has sent response mPacket, LP is entering FPE ON */
5541 	if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5542 		*lp_state = FPE_STATE_ENTERING_ON;
5543 
5544 	/* If Local has sent response mPacket, Local is entering FPE ON */
5545 	if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5546 		*lo_state = FPE_STATE_ENTERING_ON;
5547 
5548 	if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5549 	    !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5550 	    priv->fpe_wq) {
5551 		queue_work(priv->fpe_wq, &priv->fpe_task);
5552 	}
5553 }
5554 
5555 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5556 {
5557 	u32 rx_cnt = priv->plat->rx_queues_to_use;
5558 	u32 tx_cnt = priv->plat->tx_queues_to_use;
5559 	u32 queues_count;
5560 	u32 queue;
5561 	bool xmac;
5562 
5563 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5564 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5565 
5566 	if (priv->irq_wake)
5567 		pm_wakeup_event(priv->device, 0);
5568 
5569 	if (priv->dma_cap.estsel)
5570 		stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5571 				      &priv->xstats, tx_cnt);
5572 
5573 	if (priv->dma_cap.fpesel) {
5574 		int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5575 						   priv->dev);
5576 
5577 		stmmac_fpe_event_status(priv, status);
5578 	}
5579 
5580 	/* To handle GMAC own interrupts */
5581 	if ((priv->plat->has_gmac) || xmac) {
5582 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5583 
5584 		if (unlikely(status)) {
5585 			/* For LPI we need to save the tx status */
5586 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5587 				priv->tx_path_in_lpi_mode = true;
5588 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5589 				priv->tx_path_in_lpi_mode = false;
5590 		}
5591 
5592 		for (queue = 0; queue < queues_count; queue++) {
5593 			status = stmmac_host_mtl_irq_status(priv, priv->hw,
5594 							    queue);
5595 		}
5596 
5597 		/* PCS link status */
5598 		if (priv->hw->pcs) {
5599 			if (priv->xstats.pcs_link)
5600 				netif_carrier_on(priv->dev);
5601 			else
5602 				netif_carrier_off(priv->dev);
5603 		}
5604 
5605 		stmmac_timestamp_interrupt(priv, priv);
5606 	}
5607 }
5608 
5609 /**
5610  *  stmmac_interrupt - main ISR
5611  *  @irq: interrupt number.
5612  *  @dev_id: to pass the net device pointer.
5613  *  Description: this is the main driver interrupt service routine.
5614  *  It can call:
5615  *  o DMA service routine (to manage incoming frame reception and transmission
5616  *    status)
5617  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5618  *    interrupts.
5619  */
5620 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5621 {
5622 	struct net_device *dev = (struct net_device *)dev_id;
5623 	struct stmmac_priv *priv = netdev_priv(dev);
5624 
5625 	/* Check if adapter is up */
5626 	if (test_bit(STMMAC_DOWN, &priv->state))
5627 		return IRQ_HANDLED;
5628 
5629 	/* Check if a fatal error happened */
5630 	if (stmmac_safety_feat_interrupt(priv))
5631 		return IRQ_HANDLED;
5632 
5633 	/* To handle Common interrupts */
5634 	stmmac_common_interrupt(priv);
5635 
5636 	/* To handle DMA interrupts */
5637 	stmmac_dma_interrupt(priv);
5638 
5639 	return IRQ_HANDLED;
5640 }
5641 
5642 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5643 {
5644 	struct net_device *dev = (struct net_device *)dev_id;
5645 	struct stmmac_priv *priv = netdev_priv(dev);
5646 
5647 	if (unlikely(!dev)) {
5648 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5649 		return IRQ_NONE;
5650 	}
5651 
5652 	/* Check if adapter is up */
5653 	if (test_bit(STMMAC_DOWN, &priv->state))
5654 		return IRQ_HANDLED;
5655 
5656 	/* To handle Common interrupts */
5657 	stmmac_common_interrupt(priv);
5658 
5659 	return IRQ_HANDLED;
5660 }
5661 
5662 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5663 {
5664 	struct net_device *dev = (struct net_device *)dev_id;
5665 	struct stmmac_priv *priv = netdev_priv(dev);
5666 
5667 	if (unlikely(!dev)) {
5668 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5669 		return IRQ_NONE;
5670 	}
5671 
5672 	/* Check if adapter is up */
5673 	if (test_bit(STMMAC_DOWN, &priv->state))
5674 		return IRQ_HANDLED;
5675 
5676 	/* Check if a fatal error happened */
5677 	stmmac_safety_feat_interrupt(priv);
5678 
5679 	return IRQ_HANDLED;
5680 }
5681 
5682 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5683 {
5684 	struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5685 	int chan = tx_q->queue_index;
5686 	struct stmmac_priv *priv;
5687 	int status;
5688 
5689 	priv = container_of(tx_q, struct stmmac_priv, tx_queue[chan]);
5690 
5691 	if (unlikely(!data)) {
5692 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5693 		return IRQ_NONE;
5694 	}
5695 
5696 	/* Check if adapter is up */
5697 	if (test_bit(STMMAC_DOWN, &priv->state))
5698 		return IRQ_HANDLED;
5699 
5700 	status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5701 
5702 	if (unlikely(status & tx_hard_error_bump_tc)) {
5703 		/* Try to bump up the dma threshold on this failure */
5704 		if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
5705 		    tc <= 256) {
5706 			tc += 64;
5707 			if (priv->plat->force_thresh_dma_mode)
5708 				stmmac_set_dma_operation_mode(priv,
5709 							      tc,
5710 							      tc,
5711 							      chan);
5712 			else
5713 				stmmac_set_dma_operation_mode(priv,
5714 							      tc,
5715 							      SF_DMA_MODE,
5716 							      chan);
5717 			priv->xstats.threshold = tc;
5718 		}
5719 	} else if (unlikely(status == tx_hard_error)) {
5720 		stmmac_tx_err(priv, chan);
5721 	}
5722 
5723 	return IRQ_HANDLED;
5724 }
5725 
5726 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5727 {
5728 	struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5729 	int chan = rx_q->queue_index;
5730 	struct stmmac_priv *priv;
5731 
5732 	priv = container_of(rx_q, struct stmmac_priv, rx_queue[chan]);
5733 
5734 	if (unlikely(!data)) {
5735 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5736 		return IRQ_NONE;
5737 	}
5738 
5739 	/* Check if adapter is up */
5740 	if (test_bit(STMMAC_DOWN, &priv->state))
5741 		return IRQ_HANDLED;
5742 
5743 	stmmac_napi_check(priv, chan, DMA_DIR_RX);
5744 
5745 	return IRQ_HANDLED;
5746 }
5747 
5748 #ifdef CONFIG_NET_POLL_CONTROLLER
5749 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5750  * to allow network I/O with interrupts disabled.
5751  */
5752 static void stmmac_poll_controller(struct net_device *dev)
5753 {
5754 	struct stmmac_priv *priv = netdev_priv(dev);
5755 	int i;
5756 
5757 	/* If adapter is down, do nothing */
5758 	if (test_bit(STMMAC_DOWN, &priv->state))
5759 		return;
5760 
5761 	if (priv->plat->multi_msi_en) {
5762 		for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5763 			stmmac_msi_intr_rx(0, &priv->rx_queue[i]);
5764 
5765 		for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5766 			stmmac_msi_intr_tx(0, &priv->tx_queue[i]);
5767 	} else {
5768 		disable_irq(dev->irq);
5769 		stmmac_interrupt(dev->irq, dev);
5770 		enable_irq(dev->irq);
5771 	}
5772 }
5773 #endif
5774 
5775 /**
5776  *  stmmac_ioctl - Entry point for the Ioctl
5777  *  @dev: Device pointer.
5778  *  @rq: An IOCTL specefic structure, that can contain a pointer to
5779  *  a proprietary structure used to pass information to the driver.
5780  *  @cmd: IOCTL command
5781  *  Description:
5782  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5783  */
5784 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5785 {
5786 	struct stmmac_priv *priv = netdev_priv (dev);
5787 	int ret = -EOPNOTSUPP;
5788 
5789 	if (!netif_running(dev))
5790 		return -EINVAL;
5791 
5792 	switch (cmd) {
5793 	case SIOCGMIIPHY:
5794 	case SIOCGMIIREG:
5795 	case SIOCSMIIREG:
5796 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5797 		break;
5798 	case SIOCSHWTSTAMP:
5799 		ret = stmmac_hwtstamp_set(dev, rq);
5800 		break;
5801 	case SIOCGHWTSTAMP:
5802 		ret = stmmac_hwtstamp_get(dev, rq);
5803 		break;
5804 	default:
5805 		break;
5806 	}
5807 
5808 	return ret;
5809 }
5810 
5811 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5812 				    void *cb_priv)
5813 {
5814 	struct stmmac_priv *priv = cb_priv;
5815 	int ret = -EOPNOTSUPP;
5816 
5817 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5818 		return ret;
5819 
5820 	__stmmac_disable_all_queues(priv);
5821 
5822 	switch (type) {
5823 	case TC_SETUP_CLSU32:
5824 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5825 		break;
5826 	case TC_SETUP_CLSFLOWER:
5827 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
5828 		break;
5829 	default:
5830 		break;
5831 	}
5832 
5833 	stmmac_enable_all_queues(priv);
5834 	return ret;
5835 }
5836 
5837 static LIST_HEAD(stmmac_block_cb_list);
5838 
5839 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
5840 			   void *type_data)
5841 {
5842 	struct stmmac_priv *priv = netdev_priv(ndev);
5843 
5844 	switch (type) {
5845 	case TC_SETUP_BLOCK:
5846 		return flow_block_cb_setup_simple(type_data,
5847 						  &stmmac_block_cb_list,
5848 						  stmmac_setup_tc_block_cb,
5849 						  priv, priv, true);
5850 	case TC_SETUP_QDISC_CBS:
5851 		return stmmac_tc_setup_cbs(priv, priv, type_data);
5852 	case TC_SETUP_QDISC_TAPRIO:
5853 		return stmmac_tc_setup_taprio(priv, priv, type_data);
5854 	case TC_SETUP_QDISC_ETF:
5855 		return stmmac_tc_setup_etf(priv, priv, type_data);
5856 	default:
5857 		return -EOPNOTSUPP;
5858 	}
5859 }
5860 
5861 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
5862 			       struct net_device *sb_dev)
5863 {
5864 	int gso = skb_shinfo(skb)->gso_type;
5865 
5866 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
5867 		/*
5868 		 * There is no way to determine the number of TSO/USO
5869 		 * capable Queues. Let's use always the Queue 0
5870 		 * because if TSO/USO is supported then at least this
5871 		 * one will be capable.
5872 		 */
5873 		return 0;
5874 	}
5875 
5876 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
5877 }
5878 
5879 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
5880 {
5881 	struct stmmac_priv *priv = netdev_priv(ndev);
5882 	int ret = 0;
5883 
5884 	ret = pm_runtime_get_sync(priv->device);
5885 	if (ret < 0) {
5886 		pm_runtime_put_noidle(priv->device);
5887 		return ret;
5888 	}
5889 
5890 	ret = eth_mac_addr(ndev, addr);
5891 	if (ret)
5892 		goto set_mac_error;
5893 
5894 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
5895 
5896 set_mac_error:
5897 	pm_runtime_put(priv->device);
5898 
5899 	return ret;
5900 }
5901 
5902 #ifdef CONFIG_DEBUG_FS
5903 static struct dentry *stmmac_fs_dir;
5904 
5905 static void sysfs_display_ring(void *head, int size, int extend_desc,
5906 			       struct seq_file *seq, dma_addr_t dma_phy_addr)
5907 {
5908 	int i;
5909 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
5910 	struct dma_desc *p = (struct dma_desc *)head;
5911 	dma_addr_t dma_addr;
5912 
5913 	for (i = 0; i < size; i++) {
5914 		if (extend_desc) {
5915 			dma_addr = dma_phy_addr + i * sizeof(*ep);
5916 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5917 				   i, &dma_addr,
5918 				   le32_to_cpu(ep->basic.des0),
5919 				   le32_to_cpu(ep->basic.des1),
5920 				   le32_to_cpu(ep->basic.des2),
5921 				   le32_to_cpu(ep->basic.des3));
5922 			ep++;
5923 		} else {
5924 			dma_addr = dma_phy_addr + i * sizeof(*p);
5925 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5926 				   i, &dma_addr,
5927 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
5928 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
5929 			p++;
5930 		}
5931 		seq_printf(seq, "\n");
5932 	}
5933 }
5934 
5935 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
5936 {
5937 	struct net_device *dev = seq->private;
5938 	struct stmmac_priv *priv = netdev_priv(dev);
5939 	u32 rx_count = priv->plat->rx_queues_to_use;
5940 	u32 tx_count = priv->plat->tx_queues_to_use;
5941 	u32 queue;
5942 
5943 	if ((dev->flags & IFF_UP) == 0)
5944 		return 0;
5945 
5946 	for (queue = 0; queue < rx_count; queue++) {
5947 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5948 
5949 		seq_printf(seq, "RX Queue %d:\n", queue);
5950 
5951 		if (priv->extend_desc) {
5952 			seq_printf(seq, "Extended descriptor ring:\n");
5953 			sysfs_display_ring((void *)rx_q->dma_erx,
5954 					   priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy);
5955 		} else {
5956 			seq_printf(seq, "Descriptor ring:\n");
5957 			sysfs_display_ring((void *)rx_q->dma_rx,
5958 					   priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy);
5959 		}
5960 	}
5961 
5962 	for (queue = 0; queue < tx_count; queue++) {
5963 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5964 
5965 		seq_printf(seq, "TX Queue %d:\n", queue);
5966 
5967 		if (priv->extend_desc) {
5968 			seq_printf(seq, "Extended descriptor ring:\n");
5969 			sysfs_display_ring((void *)tx_q->dma_etx,
5970 					   priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy);
5971 		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
5972 			seq_printf(seq, "Descriptor ring:\n");
5973 			sysfs_display_ring((void *)tx_q->dma_tx,
5974 					   priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy);
5975 		}
5976 	}
5977 
5978 	return 0;
5979 }
5980 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
5981 
5982 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
5983 {
5984 	struct net_device *dev = seq->private;
5985 	struct stmmac_priv *priv = netdev_priv(dev);
5986 
5987 	if (!priv->hw_cap_support) {
5988 		seq_printf(seq, "DMA HW features not supported\n");
5989 		return 0;
5990 	}
5991 
5992 	seq_printf(seq, "==============================\n");
5993 	seq_printf(seq, "\tDMA HW features\n");
5994 	seq_printf(seq, "==============================\n");
5995 
5996 	seq_printf(seq, "\t10/100 Mbps: %s\n",
5997 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
5998 	seq_printf(seq, "\t1000 Mbps: %s\n",
5999 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
6000 	seq_printf(seq, "\tHalf duplex: %s\n",
6001 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
6002 	seq_printf(seq, "\tHash Filter: %s\n",
6003 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
6004 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6005 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
6006 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6007 		   (priv->dma_cap.pcs) ? "Y" : "N");
6008 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6009 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
6010 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
6011 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6012 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
6013 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6014 	seq_printf(seq, "\tRMON module: %s\n",
6015 		   (priv->dma_cap.rmon) ? "Y" : "N");
6016 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6017 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
6018 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6019 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
6020 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6021 		   (priv->dma_cap.eee) ? "Y" : "N");
6022 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6023 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6024 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
6025 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6026 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6027 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
6028 	} else {
6029 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6030 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6031 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6032 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6033 	}
6034 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6035 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6036 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6037 		   priv->dma_cap.number_rx_channel);
6038 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6039 		   priv->dma_cap.number_tx_channel);
6040 	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6041 		   priv->dma_cap.number_rx_queues);
6042 	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6043 		   priv->dma_cap.number_tx_queues);
6044 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
6045 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
6046 	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6047 	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6048 	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6049 	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6050 	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6051 		   priv->dma_cap.pps_out_num);
6052 	seq_printf(seq, "\tSafety Features: %s\n",
6053 		   priv->dma_cap.asp ? "Y" : "N");
6054 	seq_printf(seq, "\tFlexible RX Parser: %s\n",
6055 		   priv->dma_cap.frpsel ? "Y" : "N");
6056 	seq_printf(seq, "\tEnhanced Addressing: %d\n",
6057 		   priv->dma_cap.addr64);
6058 	seq_printf(seq, "\tReceive Side Scaling: %s\n",
6059 		   priv->dma_cap.rssen ? "Y" : "N");
6060 	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6061 		   priv->dma_cap.vlhash ? "Y" : "N");
6062 	seq_printf(seq, "\tSplit Header: %s\n",
6063 		   priv->dma_cap.sphen ? "Y" : "N");
6064 	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6065 		   priv->dma_cap.vlins ? "Y" : "N");
6066 	seq_printf(seq, "\tDouble VLAN: %s\n",
6067 		   priv->dma_cap.dvlan ? "Y" : "N");
6068 	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6069 		   priv->dma_cap.l3l4fnum);
6070 	seq_printf(seq, "\tARP Offloading: %s\n",
6071 		   priv->dma_cap.arpoffsel ? "Y" : "N");
6072 	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6073 		   priv->dma_cap.estsel ? "Y" : "N");
6074 	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6075 		   priv->dma_cap.fpesel ? "Y" : "N");
6076 	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6077 		   priv->dma_cap.tbssel ? "Y" : "N");
6078 	return 0;
6079 }
6080 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6081 
6082 /* Use network device events to rename debugfs file entries.
6083  */
6084 static int stmmac_device_event(struct notifier_block *unused,
6085 			       unsigned long event, void *ptr)
6086 {
6087 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6088 	struct stmmac_priv *priv = netdev_priv(dev);
6089 
6090 	if (dev->netdev_ops != &stmmac_netdev_ops)
6091 		goto done;
6092 
6093 	switch (event) {
6094 	case NETDEV_CHANGENAME:
6095 		if (priv->dbgfs_dir)
6096 			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6097 							 priv->dbgfs_dir,
6098 							 stmmac_fs_dir,
6099 							 dev->name);
6100 		break;
6101 	}
6102 done:
6103 	return NOTIFY_DONE;
6104 }
6105 
6106 static struct notifier_block stmmac_notifier = {
6107 	.notifier_call = stmmac_device_event,
6108 };
6109 
6110 static void stmmac_init_fs(struct net_device *dev)
6111 {
6112 	struct stmmac_priv *priv = netdev_priv(dev);
6113 
6114 	rtnl_lock();
6115 
6116 	/* Create per netdev entries */
6117 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6118 
6119 	/* Entry to report DMA RX/TX rings */
6120 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6121 			    &stmmac_rings_status_fops);
6122 
6123 	/* Entry to report the DMA HW features */
6124 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6125 			    &stmmac_dma_cap_fops);
6126 
6127 	rtnl_unlock();
6128 }
6129 
6130 static void stmmac_exit_fs(struct net_device *dev)
6131 {
6132 	struct stmmac_priv *priv = netdev_priv(dev);
6133 
6134 	debugfs_remove_recursive(priv->dbgfs_dir);
6135 }
6136 #endif /* CONFIG_DEBUG_FS */
6137 
6138 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6139 {
6140 	unsigned char *data = (unsigned char *)&vid_le;
6141 	unsigned char data_byte = 0;
6142 	u32 crc = ~0x0;
6143 	u32 temp = 0;
6144 	int i, bits;
6145 
6146 	bits = get_bitmask_order(VLAN_VID_MASK);
6147 	for (i = 0; i < bits; i++) {
6148 		if ((i % 8) == 0)
6149 			data_byte = data[i / 8];
6150 
6151 		temp = ((crc & 1) ^ data_byte) & 1;
6152 		crc >>= 1;
6153 		data_byte >>= 1;
6154 
6155 		if (temp)
6156 			crc ^= 0xedb88320;
6157 	}
6158 
6159 	return crc;
6160 }
6161 
6162 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6163 {
6164 	u32 crc, hash = 0;
6165 	__le16 pmatch = 0;
6166 	int count = 0;
6167 	u16 vid = 0;
6168 
6169 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6170 		__le16 vid_le = cpu_to_le16(vid);
6171 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6172 		hash |= (1 << crc);
6173 		count++;
6174 	}
6175 
6176 	if (!priv->dma_cap.vlhash) {
6177 		if (count > 2) /* VID = 0 always passes filter */
6178 			return -EOPNOTSUPP;
6179 
6180 		pmatch = cpu_to_le16(vid);
6181 		hash = 0;
6182 	}
6183 
6184 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6185 }
6186 
6187 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6188 {
6189 	struct stmmac_priv *priv = netdev_priv(ndev);
6190 	bool is_double = false;
6191 	int ret;
6192 
6193 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6194 		is_double = true;
6195 
6196 	set_bit(vid, priv->active_vlans);
6197 	ret = stmmac_vlan_update(priv, is_double);
6198 	if (ret) {
6199 		clear_bit(vid, priv->active_vlans);
6200 		return ret;
6201 	}
6202 
6203 	if (priv->hw->num_vlan) {
6204 		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6205 		if (ret)
6206 			return ret;
6207 	}
6208 
6209 	return 0;
6210 }
6211 
6212 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6213 {
6214 	struct stmmac_priv *priv = netdev_priv(ndev);
6215 	bool is_double = false;
6216 	int ret;
6217 
6218 	ret = pm_runtime_get_sync(priv->device);
6219 	if (ret < 0) {
6220 		pm_runtime_put_noidle(priv->device);
6221 		return ret;
6222 	}
6223 
6224 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6225 		is_double = true;
6226 
6227 	clear_bit(vid, priv->active_vlans);
6228 
6229 	if (priv->hw->num_vlan) {
6230 		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6231 		if (ret)
6232 			goto del_vlan_error;
6233 	}
6234 
6235 	ret = stmmac_vlan_update(priv, is_double);
6236 
6237 del_vlan_error:
6238 	pm_runtime_put(priv->device);
6239 
6240 	return ret;
6241 }
6242 
6243 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6244 {
6245 	struct stmmac_priv *priv = netdev_priv(dev);
6246 
6247 	switch (bpf->command) {
6248 	case XDP_SETUP_PROG:
6249 		return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6250 	case XDP_SETUP_XSK_POOL:
6251 		return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6252 					     bpf->xsk.queue_id);
6253 	default:
6254 		return -EOPNOTSUPP;
6255 	}
6256 }
6257 
6258 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6259 			   struct xdp_frame **frames, u32 flags)
6260 {
6261 	struct stmmac_priv *priv = netdev_priv(dev);
6262 	int cpu = smp_processor_id();
6263 	struct netdev_queue *nq;
6264 	int i, nxmit = 0;
6265 	int queue;
6266 
6267 	if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6268 		return -ENETDOWN;
6269 
6270 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6271 		return -EINVAL;
6272 
6273 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
6274 	nq = netdev_get_tx_queue(priv->dev, queue);
6275 
6276 	__netif_tx_lock(nq, cpu);
6277 	/* Avoids TX time-out as we are sharing with slow path */
6278 	nq->trans_start = jiffies;
6279 
6280 	for (i = 0; i < num_frames; i++) {
6281 		int res;
6282 
6283 		res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6284 		if (res == STMMAC_XDP_CONSUMED)
6285 			break;
6286 
6287 		nxmit++;
6288 	}
6289 
6290 	if (flags & XDP_XMIT_FLUSH) {
6291 		stmmac_flush_tx_descriptors(priv, queue);
6292 		stmmac_tx_timer_arm(priv, queue);
6293 	}
6294 
6295 	__netif_tx_unlock(nq);
6296 
6297 	return nxmit;
6298 }
6299 
6300 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6301 {
6302 	struct stmmac_channel *ch = &priv->channel[queue];
6303 	unsigned long flags;
6304 
6305 	spin_lock_irqsave(&ch->lock, flags);
6306 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6307 	spin_unlock_irqrestore(&ch->lock, flags);
6308 
6309 	stmmac_stop_rx_dma(priv, queue);
6310 	__free_dma_rx_desc_resources(priv, queue);
6311 }
6312 
6313 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6314 {
6315 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
6316 	struct stmmac_channel *ch = &priv->channel[queue];
6317 	unsigned long flags;
6318 	u32 buf_size;
6319 	int ret;
6320 
6321 	ret = __alloc_dma_rx_desc_resources(priv, queue);
6322 	if (ret) {
6323 		netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6324 		return;
6325 	}
6326 
6327 	ret = __init_dma_rx_desc_rings(priv, queue, GFP_KERNEL);
6328 	if (ret) {
6329 		__free_dma_rx_desc_resources(priv, queue);
6330 		netdev_err(priv->dev, "Failed to init RX desc.\n");
6331 		return;
6332 	}
6333 
6334 	stmmac_clear_rx_descriptors(priv, queue);
6335 
6336 	stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6337 			    rx_q->dma_rx_phy, rx_q->queue_index);
6338 
6339 	rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6340 			     sizeof(struct dma_desc));
6341 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6342 			       rx_q->rx_tail_addr, rx_q->queue_index);
6343 
6344 	if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6345 		buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6346 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6347 				      buf_size,
6348 				      rx_q->queue_index);
6349 	} else {
6350 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6351 				      priv->dma_buf_sz,
6352 				      rx_q->queue_index);
6353 	}
6354 
6355 	stmmac_start_rx_dma(priv, queue);
6356 
6357 	spin_lock_irqsave(&ch->lock, flags);
6358 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6359 	spin_unlock_irqrestore(&ch->lock, flags);
6360 }
6361 
6362 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6363 {
6364 	struct stmmac_channel *ch = &priv->channel[queue];
6365 	unsigned long flags;
6366 
6367 	spin_lock_irqsave(&ch->lock, flags);
6368 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6369 	spin_unlock_irqrestore(&ch->lock, flags);
6370 
6371 	stmmac_stop_tx_dma(priv, queue);
6372 	__free_dma_tx_desc_resources(priv, queue);
6373 }
6374 
6375 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6376 {
6377 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
6378 	struct stmmac_channel *ch = &priv->channel[queue];
6379 	unsigned long flags;
6380 	int ret;
6381 
6382 	ret = __alloc_dma_tx_desc_resources(priv, queue);
6383 	if (ret) {
6384 		netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6385 		return;
6386 	}
6387 
6388 	ret = __init_dma_tx_desc_rings(priv, queue);
6389 	if (ret) {
6390 		__free_dma_tx_desc_resources(priv, queue);
6391 		netdev_err(priv->dev, "Failed to init TX desc.\n");
6392 		return;
6393 	}
6394 
6395 	stmmac_clear_tx_descriptors(priv, queue);
6396 
6397 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6398 			    tx_q->dma_tx_phy, tx_q->queue_index);
6399 
6400 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
6401 		stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6402 
6403 	tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6404 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6405 			       tx_q->tx_tail_addr, tx_q->queue_index);
6406 
6407 	stmmac_start_tx_dma(priv, queue);
6408 
6409 	spin_lock_irqsave(&ch->lock, flags);
6410 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6411 	spin_unlock_irqrestore(&ch->lock, flags);
6412 }
6413 
6414 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6415 {
6416 	struct stmmac_priv *priv = netdev_priv(dev);
6417 	struct stmmac_rx_queue *rx_q;
6418 	struct stmmac_tx_queue *tx_q;
6419 	struct stmmac_channel *ch;
6420 
6421 	if (test_bit(STMMAC_DOWN, &priv->state) ||
6422 	    !netif_carrier_ok(priv->dev))
6423 		return -ENETDOWN;
6424 
6425 	if (!stmmac_xdp_is_enabled(priv))
6426 		return -ENXIO;
6427 
6428 	if (queue >= priv->plat->rx_queues_to_use ||
6429 	    queue >= priv->plat->tx_queues_to_use)
6430 		return -EINVAL;
6431 
6432 	rx_q = &priv->rx_queue[queue];
6433 	tx_q = &priv->tx_queue[queue];
6434 	ch = &priv->channel[queue];
6435 
6436 	if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6437 		return -ENXIO;
6438 
6439 	if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6440 		/* EQoS does not have per-DMA channel SW interrupt,
6441 		 * so we schedule RX Napi straight-away.
6442 		 */
6443 		if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6444 			__napi_schedule(&ch->rxtx_napi);
6445 	}
6446 
6447 	return 0;
6448 }
6449 
6450 static const struct net_device_ops stmmac_netdev_ops = {
6451 	.ndo_open = stmmac_open,
6452 	.ndo_start_xmit = stmmac_xmit,
6453 	.ndo_stop = stmmac_release,
6454 	.ndo_change_mtu = stmmac_change_mtu,
6455 	.ndo_fix_features = stmmac_fix_features,
6456 	.ndo_set_features = stmmac_set_features,
6457 	.ndo_set_rx_mode = stmmac_set_rx_mode,
6458 	.ndo_tx_timeout = stmmac_tx_timeout,
6459 	.ndo_eth_ioctl = stmmac_ioctl,
6460 	.ndo_setup_tc = stmmac_setup_tc,
6461 	.ndo_select_queue = stmmac_select_queue,
6462 #ifdef CONFIG_NET_POLL_CONTROLLER
6463 	.ndo_poll_controller = stmmac_poll_controller,
6464 #endif
6465 	.ndo_set_mac_address = stmmac_set_mac_address,
6466 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6467 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6468 	.ndo_bpf = stmmac_bpf,
6469 	.ndo_xdp_xmit = stmmac_xdp_xmit,
6470 	.ndo_xsk_wakeup = stmmac_xsk_wakeup,
6471 };
6472 
6473 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6474 {
6475 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6476 		return;
6477 	if (test_bit(STMMAC_DOWN, &priv->state))
6478 		return;
6479 
6480 	netdev_err(priv->dev, "Reset adapter.\n");
6481 
6482 	rtnl_lock();
6483 	netif_trans_update(priv->dev);
6484 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6485 		usleep_range(1000, 2000);
6486 
6487 	set_bit(STMMAC_DOWN, &priv->state);
6488 	dev_close(priv->dev);
6489 	dev_open(priv->dev, NULL);
6490 	clear_bit(STMMAC_DOWN, &priv->state);
6491 	clear_bit(STMMAC_RESETING, &priv->state);
6492 	rtnl_unlock();
6493 }
6494 
6495 static void stmmac_service_task(struct work_struct *work)
6496 {
6497 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6498 			service_task);
6499 
6500 	stmmac_reset_subtask(priv);
6501 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6502 }
6503 
6504 /**
6505  *  stmmac_hw_init - Init the MAC device
6506  *  @priv: driver private structure
6507  *  Description: this function is to configure the MAC device according to
6508  *  some platform parameters or the HW capability register. It prepares the
6509  *  driver to use either ring or chain modes and to setup either enhanced or
6510  *  normal descriptors.
6511  */
6512 static int stmmac_hw_init(struct stmmac_priv *priv)
6513 {
6514 	int ret;
6515 
6516 	/* dwmac-sun8i only work in chain mode */
6517 	if (priv->plat->has_sun8i)
6518 		chain_mode = 1;
6519 	priv->chain_mode = chain_mode;
6520 
6521 	/* Initialize HW Interface */
6522 	ret = stmmac_hwif_init(priv);
6523 	if (ret)
6524 		return ret;
6525 
6526 	/* Get the HW capability (new GMAC newer than 3.50a) */
6527 	priv->hw_cap_support = stmmac_get_hw_features(priv);
6528 	if (priv->hw_cap_support) {
6529 		dev_info(priv->device, "DMA HW capability register supported\n");
6530 
6531 		/* We can override some gmac/dma configuration fields: e.g.
6532 		 * enh_desc, tx_coe (e.g. that are passed through the
6533 		 * platform) with the values from the HW capability
6534 		 * register (if supported).
6535 		 */
6536 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
6537 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
6538 				!priv->plat->use_phy_wol;
6539 		priv->hw->pmt = priv->plat->pmt;
6540 		if (priv->dma_cap.hash_tb_sz) {
6541 			priv->hw->multicast_filter_bins =
6542 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
6543 			priv->hw->mcast_bits_log2 =
6544 					ilog2(priv->hw->multicast_filter_bins);
6545 		}
6546 
6547 		/* TXCOE doesn't work in thresh DMA mode */
6548 		if (priv->plat->force_thresh_dma_mode)
6549 			priv->plat->tx_coe = 0;
6550 		else
6551 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
6552 
6553 		/* In case of GMAC4 rx_coe is from HW cap register. */
6554 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
6555 
6556 		if (priv->dma_cap.rx_coe_type2)
6557 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6558 		else if (priv->dma_cap.rx_coe_type1)
6559 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6560 
6561 	} else {
6562 		dev_info(priv->device, "No HW DMA feature register supported\n");
6563 	}
6564 
6565 	if (priv->plat->rx_coe) {
6566 		priv->hw->rx_csum = priv->plat->rx_coe;
6567 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6568 		if (priv->synopsys_id < DWMAC_CORE_4_00)
6569 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6570 	}
6571 	if (priv->plat->tx_coe)
6572 		dev_info(priv->device, "TX Checksum insertion supported\n");
6573 
6574 	if (priv->plat->pmt) {
6575 		dev_info(priv->device, "Wake-Up On Lan supported\n");
6576 		device_set_wakeup_capable(priv->device, 1);
6577 	}
6578 
6579 	if (priv->dma_cap.tsoen)
6580 		dev_info(priv->device, "TSO supported\n");
6581 
6582 	priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6583 	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6584 
6585 	/* Run HW quirks, if any */
6586 	if (priv->hwif_quirks) {
6587 		ret = priv->hwif_quirks(priv);
6588 		if (ret)
6589 			return ret;
6590 	}
6591 
6592 	/* Rx Watchdog is available in the COREs newer than the 3.40.
6593 	 * In some case, for example on bugged HW this feature
6594 	 * has to be disable and this can be done by passing the
6595 	 * riwt_off field from the platform.
6596 	 */
6597 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6598 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6599 		priv->use_riwt = 1;
6600 		dev_info(priv->device,
6601 			 "Enable RX Mitigation via HW Watchdog Timer\n");
6602 	}
6603 
6604 	return 0;
6605 }
6606 
6607 static void stmmac_napi_add(struct net_device *dev)
6608 {
6609 	struct stmmac_priv *priv = netdev_priv(dev);
6610 	u32 queue, maxq;
6611 
6612 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6613 
6614 	for (queue = 0; queue < maxq; queue++) {
6615 		struct stmmac_channel *ch = &priv->channel[queue];
6616 
6617 		ch->priv_data = priv;
6618 		ch->index = queue;
6619 		spin_lock_init(&ch->lock);
6620 
6621 		if (queue < priv->plat->rx_queues_to_use) {
6622 			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
6623 				       NAPI_POLL_WEIGHT);
6624 		}
6625 		if (queue < priv->plat->tx_queues_to_use) {
6626 			netif_tx_napi_add(dev, &ch->tx_napi,
6627 					  stmmac_napi_poll_tx,
6628 					  NAPI_POLL_WEIGHT);
6629 		}
6630 		if (queue < priv->plat->rx_queues_to_use &&
6631 		    queue < priv->plat->tx_queues_to_use) {
6632 			netif_napi_add(dev, &ch->rxtx_napi,
6633 				       stmmac_napi_poll_rxtx,
6634 				       NAPI_POLL_WEIGHT);
6635 		}
6636 	}
6637 }
6638 
6639 static void stmmac_napi_del(struct net_device *dev)
6640 {
6641 	struct stmmac_priv *priv = netdev_priv(dev);
6642 	u32 queue, maxq;
6643 
6644 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6645 
6646 	for (queue = 0; queue < maxq; queue++) {
6647 		struct stmmac_channel *ch = &priv->channel[queue];
6648 
6649 		if (queue < priv->plat->rx_queues_to_use)
6650 			netif_napi_del(&ch->rx_napi);
6651 		if (queue < priv->plat->tx_queues_to_use)
6652 			netif_napi_del(&ch->tx_napi);
6653 		if (queue < priv->plat->rx_queues_to_use &&
6654 		    queue < priv->plat->tx_queues_to_use) {
6655 			netif_napi_del(&ch->rxtx_napi);
6656 		}
6657 	}
6658 }
6659 
6660 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6661 {
6662 	struct stmmac_priv *priv = netdev_priv(dev);
6663 	int ret = 0;
6664 
6665 	if (netif_running(dev))
6666 		stmmac_release(dev);
6667 
6668 	stmmac_napi_del(dev);
6669 
6670 	priv->plat->rx_queues_to_use = rx_cnt;
6671 	priv->plat->tx_queues_to_use = tx_cnt;
6672 
6673 	stmmac_napi_add(dev);
6674 
6675 	if (netif_running(dev))
6676 		ret = stmmac_open(dev);
6677 
6678 	return ret;
6679 }
6680 
6681 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6682 {
6683 	struct stmmac_priv *priv = netdev_priv(dev);
6684 	int ret = 0;
6685 
6686 	if (netif_running(dev))
6687 		stmmac_release(dev);
6688 
6689 	priv->dma_rx_size = rx_size;
6690 	priv->dma_tx_size = tx_size;
6691 
6692 	if (netif_running(dev))
6693 		ret = stmmac_open(dev);
6694 
6695 	return ret;
6696 }
6697 
6698 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
6699 static void stmmac_fpe_lp_task(struct work_struct *work)
6700 {
6701 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6702 						fpe_task);
6703 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
6704 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
6705 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
6706 	bool *hs_enable = &fpe_cfg->hs_enable;
6707 	bool *enable = &fpe_cfg->enable;
6708 	int retries = 20;
6709 
6710 	while (retries-- > 0) {
6711 		/* Bail out immediately if FPE handshake is OFF */
6712 		if (*lo_state == FPE_STATE_OFF || !*hs_enable)
6713 			break;
6714 
6715 		if (*lo_state == FPE_STATE_ENTERING_ON &&
6716 		    *lp_state == FPE_STATE_ENTERING_ON) {
6717 			stmmac_fpe_configure(priv, priv->ioaddr,
6718 					     priv->plat->tx_queues_to_use,
6719 					     priv->plat->rx_queues_to_use,
6720 					     *enable);
6721 
6722 			netdev_info(priv->dev, "configured FPE\n");
6723 
6724 			*lo_state = FPE_STATE_ON;
6725 			*lp_state = FPE_STATE_ON;
6726 			netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
6727 			break;
6728 		}
6729 
6730 		if ((*lo_state == FPE_STATE_CAPABLE ||
6731 		     *lo_state == FPE_STATE_ENTERING_ON) &&
6732 		     *lp_state != FPE_STATE_ON) {
6733 			netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
6734 				    *lo_state, *lp_state);
6735 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6736 						MPACKET_VERIFY);
6737 		}
6738 		/* Sleep then retry */
6739 		msleep(500);
6740 	}
6741 
6742 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
6743 }
6744 
6745 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
6746 {
6747 	if (priv->plat->fpe_cfg->hs_enable != enable) {
6748 		if (enable) {
6749 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6750 						MPACKET_VERIFY);
6751 		} else {
6752 			priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
6753 			priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
6754 		}
6755 
6756 		priv->plat->fpe_cfg->hs_enable = enable;
6757 	}
6758 }
6759 
6760 /**
6761  * stmmac_dvr_probe
6762  * @device: device pointer
6763  * @plat_dat: platform data pointer
6764  * @res: stmmac resource pointer
6765  * Description: this is the main probe function used to
6766  * call the alloc_etherdev, allocate the priv structure.
6767  * Return:
6768  * returns 0 on success, otherwise errno.
6769  */
6770 int stmmac_dvr_probe(struct device *device,
6771 		     struct plat_stmmacenet_data *plat_dat,
6772 		     struct stmmac_resources *res)
6773 {
6774 	struct net_device *ndev = NULL;
6775 	struct stmmac_priv *priv;
6776 	u32 rxq;
6777 	int i, ret = 0;
6778 
6779 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
6780 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
6781 	if (!ndev)
6782 		return -ENOMEM;
6783 
6784 	SET_NETDEV_DEV(ndev, device);
6785 
6786 	priv = netdev_priv(ndev);
6787 	priv->device = device;
6788 	priv->dev = ndev;
6789 
6790 	stmmac_set_ethtool_ops(ndev);
6791 	priv->pause = pause;
6792 	priv->plat = plat_dat;
6793 	priv->ioaddr = res->addr;
6794 	priv->dev->base_addr = (unsigned long)res->addr;
6795 	priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
6796 
6797 	priv->dev->irq = res->irq;
6798 	priv->wol_irq = res->wol_irq;
6799 	priv->lpi_irq = res->lpi_irq;
6800 	priv->sfty_ce_irq = res->sfty_ce_irq;
6801 	priv->sfty_ue_irq = res->sfty_ue_irq;
6802 	for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
6803 		priv->rx_irq[i] = res->rx_irq[i];
6804 	for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
6805 		priv->tx_irq[i] = res->tx_irq[i];
6806 
6807 	if (!is_zero_ether_addr(res->mac))
6808 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
6809 
6810 	dev_set_drvdata(device, priv->dev);
6811 
6812 	/* Verify driver arguments */
6813 	stmmac_verify_args();
6814 
6815 	priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
6816 	if (!priv->af_xdp_zc_qps)
6817 		return -ENOMEM;
6818 
6819 	/* Allocate workqueue */
6820 	priv->wq = create_singlethread_workqueue("stmmac_wq");
6821 	if (!priv->wq) {
6822 		dev_err(priv->device, "failed to create workqueue\n");
6823 		return -ENOMEM;
6824 	}
6825 
6826 	INIT_WORK(&priv->service_task, stmmac_service_task);
6827 
6828 	/* Initialize Link Partner FPE workqueue */
6829 	INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
6830 
6831 	/* Override with kernel parameters if supplied XXX CRS XXX
6832 	 * this needs to have multiple instances
6833 	 */
6834 	if ((phyaddr >= 0) && (phyaddr <= 31))
6835 		priv->plat->phy_addr = phyaddr;
6836 
6837 	if (priv->plat->stmmac_rst) {
6838 		ret = reset_control_assert(priv->plat->stmmac_rst);
6839 		reset_control_deassert(priv->plat->stmmac_rst);
6840 		/* Some reset controllers have only reset callback instead of
6841 		 * assert + deassert callbacks pair.
6842 		 */
6843 		if (ret == -ENOTSUPP)
6844 			reset_control_reset(priv->plat->stmmac_rst);
6845 	}
6846 
6847 	ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
6848 	if (ret == -ENOTSUPP)
6849 		dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
6850 			ERR_PTR(ret));
6851 
6852 	/* Init MAC and get the capabilities */
6853 	ret = stmmac_hw_init(priv);
6854 	if (ret)
6855 		goto error_hw_init;
6856 
6857 	/* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
6858 	 */
6859 	if (priv->synopsys_id < DWMAC_CORE_5_20)
6860 		priv->plat->dma_cfg->dche = false;
6861 
6862 	stmmac_check_ether_addr(priv);
6863 
6864 	ndev->netdev_ops = &stmmac_netdev_ops;
6865 
6866 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6867 			    NETIF_F_RXCSUM;
6868 
6869 	ret = stmmac_tc_init(priv, priv);
6870 	if (!ret) {
6871 		ndev->hw_features |= NETIF_F_HW_TC;
6872 	}
6873 
6874 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
6875 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
6876 		if (priv->plat->has_gmac4)
6877 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
6878 		priv->tso = true;
6879 		dev_info(priv->device, "TSO feature enabled\n");
6880 	}
6881 
6882 	if (priv->dma_cap.sphen) {
6883 		ndev->hw_features |= NETIF_F_GRO;
6884 		priv->sph_cap = true;
6885 		priv->sph = priv->sph_cap;
6886 		dev_info(priv->device, "SPH feature enabled\n");
6887 	}
6888 
6889 	/* The current IP register MAC_HW_Feature1[ADDR64] only define
6890 	 * 32/40/64 bit width, but some SOC support others like i.MX8MP
6891 	 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
6892 	 * So overwrite dma_cap.addr64 according to HW real design.
6893 	 */
6894 	if (priv->plat->addr64)
6895 		priv->dma_cap.addr64 = priv->plat->addr64;
6896 
6897 	if (priv->dma_cap.addr64) {
6898 		ret = dma_set_mask_and_coherent(device,
6899 				DMA_BIT_MASK(priv->dma_cap.addr64));
6900 		if (!ret) {
6901 			dev_info(priv->device, "Using %d bits DMA width\n",
6902 				 priv->dma_cap.addr64);
6903 
6904 			/*
6905 			 * If more than 32 bits can be addressed, make sure to
6906 			 * enable enhanced addressing mode.
6907 			 */
6908 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
6909 				priv->plat->dma_cfg->eame = true;
6910 		} else {
6911 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
6912 			if (ret) {
6913 				dev_err(priv->device, "Failed to set DMA Mask\n");
6914 				goto error_hw_init;
6915 			}
6916 
6917 			priv->dma_cap.addr64 = 32;
6918 		}
6919 	}
6920 
6921 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
6922 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
6923 #ifdef STMMAC_VLAN_TAG_USED
6924 	/* Both mac100 and gmac support receive VLAN tag detection */
6925 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
6926 	if (priv->dma_cap.vlhash) {
6927 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6928 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
6929 	}
6930 	if (priv->dma_cap.vlins) {
6931 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
6932 		if (priv->dma_cap.dvlan)
6933 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
6934 	}
6935 #endif
6936 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
6937 
6938 	/* Initialize RSS */
6939 	rxq = priv->plat->rx_queues_to_use;
6940 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
6941 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
6942 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
6943 
6944 	if (priv->dma_cap.rssen && priv->plat->rss_en)
6945 		ndev->features |= NETIF_F_RXHASH;
6946 
6947 	/* MTU range: 46 - hw-specific max */
6948 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
6949 	if (priv->plat->has_xgmac)
6950 		ndev->max_mtu = XGMAC_JUMBO_LEN;
6951 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
6952 		ndev->max_mtu = JUMBO_LEN;
6953 	else
6954 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
6955 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
6956 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
6957 	 */
6958 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
6959 	    (priv->plat->maxmtu >= ndev->min_mtu))
6960 		ndev->max_mtu = priv->plat->maxmtu;
6961 	else if (priv->plat->maxmtu < ndev->min_mtu)
6962 		dev_warn(priv->device,
6963 			 "%s: warning: maxmtu having invalid value (%d)\n",
6964 			 __func__, priv->plat->maxmtu);
6965 
6966 	if (flow_ctrl)
6967 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
6968 
6969 	/* Setup channels NAPI */
6970 	stmmac_napi_add(ndev);
6971 
6972 	mutex_init(&priv->lock);
6973 
6974 	/* If a specific clk_csr value is passed from the platform
6975 	 * this means that the CSR Clock Range selection cannot be
6976 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
6977 	 * set the MDC clock dynamically according to the csr actual
6978 	 * clock input.
6979 	 */
6980 	if (priv->plat->clk_csr >= 0)
6981 		priv->clk_csr = priv->plat->clk_csr;
6982 	else
6983 		stmmac_clk_csr_set(priv);
6984 
6985 	stmmac_check_pcs_mode(priv);
6986 
6987 	pm_runtime_get_noresume(device);
6988 	pm_runtime_set_active(device);
6989 	pm_runtime_enable(device);
6990 
6991 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
6992 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
6993 		/* MDIO bus Registration */
6994 		ret = stmmac_mdio_register(ndev);
6995 		if (ret < 0) {
6996 			dev_err(priv->device,
6997 				"%s: MDIO bus (id: %d) registration failed",
6998 				__func__, priv->plat->bus_id);
6999 			goto error_mdio_register;
7000 		}
7001 	}
7002 
7003 	if (priv->plat->speed_mode_2500)
7004 		priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7005 
7006 	if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7007 		ret = stmmac_xpcs_setup(priv->mii);
7008 		if (ret)
7009 			goto error_xpcs_setup;
7010 	}
7011 
7012 	ret = stmmac_phy_setup(priv);
7013 	if (ret) {
7014 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7015 		goto error_phy_setup;
7016 	}
7017 
7018 	ret = register_netdev(ndev);
7019 	if (ret) {
7020 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
7021 			__func__, ret);
7022 		goto error_netdev_register;
7023 	}
7024 
7025 	if (priv->plat->serdes_powerup) {
7026 		ret = priv->plat->serdes_powerup(ndev,
7027 						 priv->plat->bsp_priv);
7028 
7029 		if (ret < 0)
7030 			goto error_serdes_powerup;
7031 	}
7032 
7033 #ifdef CONFIG_DEBUG_FS
7034 	stmmac_init_fs(ndev);
7035 #endif
7036 
7037 	/* Let pm_runtime_put() disable the clocks.
7038 	 * If CONFIG_PM is not enabled, the clocks will stay powered.
7039 	 */
7040 	pm_runtime_put(device);
7041 
7042 	return ret;
7043 
7044 error_serdes_powerup:
7045 	unregister_netdev(ndev);
7046 error_netdev_register:
7047 	phylink_destroy(priv->phylink);
7048 error_xpcs_setup:
7049 error_phy_setup:
7050 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7051 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7052 		stmmac_mdio_unregister(ndev);
7053 error_mdio_register:
7054 	stmmac_napi_del(ndev);
7055 error_hw_init:
7056 	destroy_workqueue(priv->wq);
7057 	bitmap_free(priv->af_xdp_zc_qps);
7058 
7059 	return ret;
7060 }
7061 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7062 
7063 /**
7064  * stmmac_dvr_remove
7065  * @dev: device pointer
7066  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7067  * changes the link status, releases the DMA descriptor rings.
7068  */
7069 int stmmac_dvr_remove(struct device *dev)
7070 {
7071 	struct net_device *ndev = dev_get_drvdata(dev);
7072 	struct stmmac_priv *priv = netdev_priv(ndev);
7073 
7074 	netdev_info(priv->dev, "%s: removing driver", __func__);
7075 
7076 	stmmac_stop_all_dma(priv);
7077 	stmmac_mac_set(priv, priv->ioaddr, false);
7078 	netif_carrier_off(ndev);
7079 	unregister_netdev(ndev);
7080 
7081 	/* Serdes power down needs to happen after VLAN filter
7082 	 * is deleted that is triggered by unregister_netdev().
7083 	 */
7084 	if (priv->plat->serdes_powerdown)
7085 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7086 
7087 #ifdef CONFIG_DEBUG_FS
7088 	stmmac_exit_fs(ndev);
7089 #endif
7090 	phylink_destroy(priv->phylink);
7091 	if (priv->plat->stmmac_rst)
7092 		reset_control_assert(priv->plat->stmmac_rst);
7093 	reset_control_assert(priv->plat->stmmac_ahb_rst);
7094 	pm_runtime_put(dev);
7095 	pm_runtime_disable(dev);
7096 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7097 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7098 		stmmac_mdio_unregister(ndev);
7099 	destroy_workqueue(priv->wq);
7100 	mutex_destroy(&priv->lock);
7101 	bitmap_free(priv->af_xdp_zc_qps);
7102 
7103 	return 0;
7104 }
7105 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7106 
7107 /**
7108  * stmmac_suspend - suspend callback
7109  * @dev: device pointer
7110  * Description: this is the function to suspend the device and it is called
7111  * by the platform driver to stop the network queue, release the resources,
7112  * program the PMT register (for WoL), clean and release driver resources.
7113  */
7114 int stmmac_suspend(struct device *dev)
7115 {
7116 	struct net_device *ndev = dev_get_drvdata(dev);
7117 	struct stmmac_priv *priv = netdev_priv(ndev);
7118 	u32 chan;
7119 	int ret;
7120 
7121 	if (!ndev || !netif_running(ndev))
7122 		return 0;
7123 
7124 	phylink_mac_change(priv->phylink, false);
7125 
7126 	mutex_lock(&priv->lock);
7127 
7128 	netif_device_detach(ndev);
7129 
7130 	stmmac_disable_all_queues(priv);
7131 
7132 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7133 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
7134 
7135 	if (priv->eee_enabled) {
7136 		priv->tx_path_in_lpi_mode = false;
7137 		del_timer_sync(&priv->eee_ctrl_timer);
7138 	}
7139 
7140 	/* Stop TX/RX DMA */
7141 	stmmac_stop_all_dma(priv);
7142 
7143 	if (priv->plat->serdes_powerdown)
7144 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7145 
7146 	/* Enable Power down mode by programming the PMT regs */
7147 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7148 		stmmac_pmt(priv, priv->hw, priv->wolopts);
7149 		priv->irq_wake = 1;
7150 	} else {
7151 		mutex_unlock(&priv->lock);
7152 		rtnl_lock();
7153 		if (device_may_wakeup(priv->device))
7154 			phylink_speed_down(priv->phylink, false);
7155 		phylink_stop(priv->phylink);
7156 		rtnl_unlock();
7157 		mutex_lock(&priv->lock);
7158 
7159 		stmmac_mac_set(priv, priv->ioaddr, false);
7160 		pinctrl_pm_select_sleep_state(priv->device);
7161 		/* Disable clock in case of PWM is off */
7162 		clk_disable_unprepare(priv->plat->clk_ptp_ref);
7163 		ret = pm_runtime_force_suspend(dev);
7164 		if (ret) {
7165 			mutex_unlock(&priv->lock);
7166 			return ret;
7167 		}
7168 	}
7169 
7170 	mutex_unlock(&priv->lock);
7171 
7172 	if (priv->dma_cap.fpesel) {
7173 		/* Disable FPE */
7174 		stmmac_fpe_configure(priv, priv->ioaddr,
7175 				     priv->plat->tx_queues_to_use,
7176 				     priv->plat->rx_queues_to_use, false);
7177 
7178 		stmmac_fpe_handshake(priv, false);
7179 		stmmac_fpe_stop_wq(priv);
7180 	}
7181 
7182 	priv->speed = SPEED_UNKNOWN;
7183 	return 0;
7184 }
7185 EXPORT_SYMBOL_GPL(stmmac_suspend);
7186 
7187 /**
7188  * stmmac_reset_queues_param - reset queue parameters
7189  * @priv: device pointer
7190  */
7191 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7192 {
7193 	u32 rx_cnt = priv->plat->rx_queues_to_use;
7194 	u32 tx_cnt = priv->plat->tx_queues_to_use;
7195 	u32 queue;
7196 
7197 	for (queue = 0; queue < rx_cnt; queue++) {
7198 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
7199 
7200 		rx_q->cur_rx = 0;
7201 		rx_q->dirty_rx = 0;
7202 	}
7203 
7204 	for (queue = 0; queue < tx_cnt; queue++) {
7205 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
7206 
7207 		tx_q->cur_tx = 0;
7208 		tx_q->dirty_tx = 0;
7209 		tx_q->mss = 0;
7210 
7211 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7212 	}
7213 }
7214 
7215 /**
7216  * stmmac_resume - resume callback
7217  * @dev: device pointer
7218  * Description: when resume this function is invoked to setup the DMA and CORE
7219  * in a usable state.
7220  */
7221 int stmmac_resume(struct device *dev)
7222 {
7223 	struct net_device *ndev = dev_get_drvdata(dev);
7224 	struct stmmac_priv *priv = netdev_priv(ndev);
7225 	int ret;
7226 
7227 	if (!netif_running(ndev))
7228 		return 0;
7229 
7230 	/* Power Down bit, into the PM register, is cleared
7231 	 * automatically as soon as a magic packet or a Wake-up frame
7232 	 * is received. Anyway, it's better to manually clear
7233 	 * this bit because it can generate problems while resuming
7234 	 * from another devices (e.g. serial console).
7235 	 */
7236 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7237 		mutex_lock(&priv->lock);
7238 		stmmac_pmt(priv, priv->hw, 0);
7239 		mutex_unlock(&priv->lock);
7240 		priv->irq_wake = 0;
7241 	} else {
7242 		pinctrl_pm_select_default_state(priv->device);
7243 		/* enable the clk previously disabled */
7244 		ret = pm_runtime_force_resume(dev);
7245 		if (ret)
7246 			return ret;
7247 		if (priv->plat->clk_ptp_ref)
7248 			clk_prepare_enable(priv->plat->clk_ptp_ref);
7249 		/* reset the phy so that it's ready */
7250 		if (priv->mii)
7251 			stmmac_mdio_reset(priv->mii);
7252 	}
7253 
7254 	if (priv->plat->serdes_powerup) {
7255 		ret = priv->plat->serdes_powerup(ndev,
7256 						 priv->plat->bsp_priv);
7257 
7258 		if (ret < 0)
7259 			return ret;
7260 	}
7261 
7262 	if (!device_may_wakeup(priv->device) || !priv->plat->pmt) {
7263 		rtnl_lock();
7264 		phylink_start(priv->phylink);
7265 		/* We may have called phylink_speed_down before */
7266 		phylink_speed_up(priv->phylink);
7267 		rtnl_unlock();
7268 	}
7269 
7270 	rtnl_lock();
7271 	mutex_lock(&priv->lock);
7272 
7273 	stmmac_reset_queues_param(priv);
7274 
7275 	stmmac_free_tx_skbufs(priv);
7276 	stmmac_clear_descriptors(priv);
7277 
7278 	stmmac_hw_setup(ndev, false);
7279 	stmmac_init_coalesce(priv);
7280 	stmmac_set_rx_mode(ndev);
7281 
7282 	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7283 
7284 	stmmac_enable_all_queues(priv);
7285 
7286 	mutex_unlock(&priv->lock);
7287 	rtnl_unlock();
7288 
7289 	phylink_mac_change(priv->phylink, true);
7290 
7291 	netif_device_attach(ndev);
7292 
7293 	return 0;
7294 }
7295 EXPORT_SYMBOL_GPL(stmmac_resume);
7296 
7297 #ifndef MODULE
7298 static int __init stmmac_cmdline_opt(char *str)
7299 {
7300 	char *opt;
7301 
7302 	if (!str || !*str)
7303 		return -EINVAL;
7304 	while ((opt = strsep(&str, ",")) != NULL) {
7305 		if (!strncmp(opt, "debug:", 6)) {
7306 			if (kstrtoint(opt + 6, 0, &debug))
7307 				goto err;
7308 		} else if (!strncmp(opt, "phyaddr:", 8)) {
7309 			if (kstrtoint(opt + 8, 0, &phyaddr))
7310 				goto err;
7311 		} else if (!strncmp(opt, "buf_sz:", 7)) {
7312 			if (kstrtoint(opt + 7, 0, &buf_sz))
7313 				goto err;
7314 		} else if (!strncmp(opt, "tc:", 3)) {
7315 			if (kstrtoint(opt + 3, 0, &tc))
7316 				goto err;
7317 		} else if (!strncmp(opt, "watchdog:", 9)) {
7318 			if (kstrtoint(opt + 9, 0, &watchdog))
7319 				goto err;
7320 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
7321 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
7322 				goto err;
7323 		} else if (!strncmp(opt, "pause:", 6)) {
7324 			if (kstrtoint(opt + 6, 0, &pause))
7325 				goto err;
7326 		} else if (!strncmp(opt, "eee_timer:", 10)) {
7327 			if (kstrtoint(opt + 10, 0, &eee_timer))
7328 				goto err;
7329 		} else if (!strncmp(opt, "chain_mode:", 11)) {
7330 			if (kstrtoint(opt + 11, 0, &chain_mode))
7331 				goto err;
7332 		}
7333 	}
7334 	return 0;
7335 
7336 err:
7337 	pr_err("%s: ERROR broken module parameter conversion", __func__);
7338 	return -EINVAL;
7339 }
7340 
7341 __setup("stmmaceth=", stmmac_cmdline_opt);
7342 #endif /* MODULE */
7343 
7344 static int __init stmmac_init(void)
7345 {
7346 #ifdef CONFIG_DEBUG_FS
7347 	/* Create debugfs main directory if it doesn't exist yet */
7348 	if (!stmmac_fs_dir)
7349 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7350 	register_netdevice_notifier(&stmmac_notifier);
7351 #endif
7352 
7353 	return 0;
7354 }
7355 
7356 static void __exit stmmac_exit(void)
7357 {
7358 #ifdef CONFIG_DEBUG_FS
7359 	unregister_netdevice_notifier(&stmmac_notifier);
7360 	debugfs_remove_recursive(stmmac_fs_dir);
7361 #endif
7362 }
7363 
7364 module_init(stmmac_init)
7365 module_exit(stmmac_exit)
7366 
7367 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7368 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7369 MODULE_LICENSE("GPL");
7370