1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22 
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24 
25   Documentation available at:
26 	http://www.stlinux.com
27   Support available at:
28 	https://bugzilla.stlinux.com/
29 *******************************************************************************/
30 
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55 #include <linux/of_mdio.h>
56 #include "dwmac1000.h"
57 
58 #define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
59 
60 /* Module parameters */
61 #define TX_TIMEO	5000
62 static int watchdog = TX_TIMEO;
63 module_param(watchdog, int, S_IRUGO | S_IWUSR);
64 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
65 
66 static int debug = -1;
67 module_param(debug, int, S_IRUGO | S_IWUSR);
68 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
69 
70 static int phyaddr = -1;
71 module_param(phyaddr, int, S_IRUGO);
72 MODULE_PARM_DESC(phyaddr, "Physical device address");
73 
74 #define STMMAC_TX_THRESH	(DMA_TX_SIZE / 4)
75 #define STMMAC_RX_THRESH	(DMA_RX_SIZE / 4)
76 
77 static int flow_ctrl = FLOW_OFF;
78 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
79 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
80 
81 static int pause = PAUSE_TIME;
82 module_param(pause, int, S_IRUGO | S_IWUSR);
83 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
84 
85 #define TC_DEFAULT 64
86 static int tc = TC_DEFAULT;
87 module_param(tc, int, S_IRUGO | S_IWUSR);
88 MODULE_PARM_DESC(tc, "DMA threshold control value");
89 
90 #define	DEFAULT_BUFSIZE	1536
91 static int buf_sz = DEFAULT_BUFSIZE;
92 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
93 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
94 
95 #define	STMMAC_RX_COPYBREAK	256
96 
97 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
98 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
99 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
100 
101 #define STMMAC_DEFAULT_LPI_TIMER	1000
102 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
103 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
104 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
105 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
106 
107 /* By default the driver will use the ring mode to manage tx and rx descriptors
108  * but passing this value so user can force to use the chain instead of the ring
109  */
110 static unsigned int chain_mode;
111 module_param(chain_mode, int, S_IRUGO);
112 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
113 
114 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
115 
116 #ifdef CONFIG_DEBUG_FS
117 static int stmmac_init_fs(struct net_device *dev);
118 static void stmmac_exit_fs(struct net_device *dev);
119 #endif
120 
121 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
122 
123 /**
124  * stmmac_verify_args - verify the driver parameters.
125  * Description: it checks the driver parameters and set a default in case of
126  * errors.
127  */
128 static void stmmac_verify_args(void)
129 {
130 	if (unlikely(watchdog < 0))
131 		watchdog = TX_TIMEO;
132 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
133 		buf_sz = DEFAULT_BUFSIZE;
134 	if (unlikely(flow_ctrl > 1))
135 		flow_ctrl = FLOW_AUTO;
136 	else if (likely(flow_ctrl < 0))
137 		flow_ctrl = FLOW_OFF;
138 	if (unlikely((pause < 0) || (pause > 0xffff)))
139 		pause = PAUSE_TIME;
140 	if (eee_timer < 0)
141 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
142 }
143 
144 /**
145  * stmmac_clk_csr_set - dynamically set the MDC clock
146  * @priv: driver private structure
147  * Description: this is to dynamically set the MDC clock according to the csr
148  * clock input.
149  * Note:
150  *	If a specific clk_csr value is passed from the platform
151  *	this means that the CSR Clock Range selection cannot be
152  *	changed at run-time and it is fixed (as reported in the driver
153  *	documentation). Viceversa the driver will try to set the MDC
154  *	clock dynamically according to the actual clock input.
155  */
156 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
157 {
158 	u32 clk_rate;
159 
160 	clk_rate = clk_get_rate(priv->stmmac_clk);
161 
162 	/* Platform provided default clk_csr would be assumed valid
163 	 * for all other cases except for the below mentioned ones.
164 	 * For values higher than the IEEE 802.3 specified frequency
165 	 * we can not estimate the proper divider as it is not known
166 	 * the frequency of clk_csr_i. So we do not change the default
167 	 * divider.
168 	 */
169 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
170 		if (clk_rate < CSR_F_35M)
171 			priv->clk_csr = STMMAC_CSR_20_35M;
172 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
173 			priv->clk_csr = STMMAC_CSR_35_60M;
174 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
175 			priv->clk_csr = STMMAC_CSR_60_100M;
176 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
177 			priv->clk_csr = STMMAC_CSR_100_150M;
178 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
179 			priv->clk_csr = STMMAC_CSR_150_250M;
180 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
181 			priv->clk_csr = STMMAC_CSR_250_300M;
182 	}
183 }
184 
185 static void print_pkt(unsigned char *buf, int len)
186 {
187 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
188 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
189 }
190 
191 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
192 {
193 	unsigned avail;
194 
195 	if (priv->dirty_tx > priv->cur_tx)
196 		avail = priv->dirty_tx - priv->cur_tx - 1;
197 	else
198 		avail = DMA_TX_SIZE - priv->cur_tx + priv->dirty_tx - 1;
199 
200 	return avail;
201 }
202 
203 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv)
204 {
205 	unsigned dirty;
206 
207 	if (priv->dirty_rx <= priv->cur_rx)
208 		dirty = priv->cur_rx - priv->dirty_rx;
209 	else
210 		dirty = DMA_RX_SIZE - priv->dirty_rx + priv->cur_rx;
211 
212 	return dirty;
213 }
214 
215 /**
216  * stmmac_hw_fix_mac_speed - callback for speed selection
217  * @priv: driver private structure
218  * Description: on some platforms (e.g. ST), some HW system configuraton
219  * registers have to be set according to the link speed negotiated.
220  */
221 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
222 {
223 	struct phy_device *phydev = priv->phydev;
224 
225 	if (likely(priv->plat->fix_mac_speed))
226 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
227 }
228 
229 /**
230  * stmmac_enable_eee_mode - check and enter in LPI mode
231  * @priv: driver private structure
232  * Description: this function is to verify and enter in LPI mode in case of
233  * EEE.
234  */
235 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
236 {
237 	/* Check and enter in LPI mode */
238 	if ((priv->dirty_tx == priv->cur_tx) &&
239 	    (priv->tx_path_in_lpi_mode == false))
240 		priv->hw->mac->set_eee_mode(priv->hw);
241 }
242 
243 /**
244  * stmmac_disable_eee_mode - disable and exit from LPI mode
245  * @priv: driver private structure
246  * Description: this function is to exit and disable EEE in case of
247  * LPI state is true. This is called by the xmit.
248  */
249 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
250 {
251 	priv->hw->mac->reset_eee_mode(priv->hw);
252 	del_timer_sync(&priv->eee_ctrl_timer);
253 	priv->tx_path_in_lpi_mode = false;
254 }
255 
256 /**
257  * stmmac_eee_ctrl_timer - EEE TX SW timer.
258  * @arg : data hook
259  * Description:
260  *  if there is no data transfer and if we are not in LPI state,
261  *  then MAC Transmitter can be moved to LPI state.
262  */
263 static void stmmac_eee_ctrl_timer(unsigned long arg)
264 {
265 	struct stmmac_priv *priv = (struct stmmac_priv *)arg;
266 
267 	stmmac_enable_eee_mode(priv);
268 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
269 }
270 
271 /**
272  * stmmac_eee_init - init EEE
273  * @priv: driver private structure
274  * Description:
275  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
276  *  can also manage EEE, this function enable the LPI state and start related
277  *  timer.
278  */
279 bool stmmac_eee_init(struct stmmac_priv *priv)
280 {
281 	char *phy_bus_name = priv->plat->phy_bus_name;
282 	unsigned long flags;
283 	bool ret = false;
284 
285 	/* Using PCS we cannot dial with the phy registers at this stage
286 	 * so we do not support extra feature like EEE.
287 	 */
288 	if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
289 	    (priv->pcs == STMMAC_PCS_RTBI))
290 		goto out;
291 
292 	/* Never init EEE in case of a switch is attached */
293 	if (phy_bus_name && (!strcmp(phy_bus_name, "fixed")))
294 		goto out;
295 
296 	/* MAC core supports the EEE feature. */
297 	if (priv->dma_cap.eee) {
298 		int tx_lpi_timer = priv->tx_lpi_timer;
299 
300 		/* Check if the PHY supports EEE */
301 		if (phy_init_eee(priv->phydev, 1)) {
302 			/* To manage at run-time if the EEE cannot be supported
303 			 * anymore (for example because the lp caps have been
304 			 * changed).
305 			 * In that case the driver disable own timers.
306 			 */
307 			spin_lock_irqsave(&priv->lock, flags);
308 			if (priv->eee_active) {
309 				pr_debug("stmmac: disable EEE\n");
310 				del_timer_sync(&priv->eee_ctrl_timer);
311 				priv->hw->mac->set_eee_timer(priv->hw, 0,
312 							     tx_lpi_timer);
313 			}
314 			priv->eee_active = 0;
315 			spin_unlock_irqrestore(&priv->lock, flags);
316 			goto out;
317 		}
318 		/* Activate the EEE and start timers */
319 		spin_lock_irqsave(&priv->lock, flags);
320 		if (!priv->eee_active) {
321 			priv->eee_active = 1;
322 			setup_timer(&priv->eee_ctrl_timer,
323 				    stmmac_eee_ctrl_timer,
324 				    (unsigned long)priv);
325 			mod_timer(&priv->eee_ctrl_timer,
326 				  STMMAC_LPI_T(eee_timer));
327 
328 			priv->hw->mac->set_eee_timer(priv->hw,
329 						     STMMAC_DEFAULT_LIT_LS,
330 						     tx_lpi_timer);
331 		}
332 		/* Set HW EEE according to the speed */
333 		priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
334 
335 		ret = true;
336 		spin_unlock_irqrestore(&priv->lock, flags);
337 
338 		pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
339 	}
340 out:
341 	return ret;
342 }
343 
344 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
345  * @priv: driver private structure
346  * @entry : descriptor index to be used.
347  * @skb : the socket buffer
348  * Description :
349  * This function will read timestamp from the descriptor & pass it to stack.
350  * and also perform some sanity checks.
351  */
352 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
353 				   unsigned int entry, struct sk_buff *skb)
354 {
355 	struct skb_shared_hwtstamps shhwtstamp;
356 	u64 ns;
357 	void *desc = NULL;
358 
359 	if (!priv->hwts_tx_en)
360 		return;
361 
362 	/* exit if skb doesn't support hw tstamp */
363 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
364 		return;
365 
366 	if (priv->adv_ts)
367 		desc = (priv->dma_etx + entry);
368 	else
369 		desc = (priv->dma_tx + entry);
370 
371 	/* check tx tstamp status */
372 	if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
373 		return;
374 
375 	/* get the valid tstamp */
376 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
377 
378 	memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
379 	shhwtstamp.hwtstamp = ns_to_ktime(ns);
380 	/* pass tstamp to stack */
381 	skb_tstamp_tx(skb, &shhwtstamp);
382 
383 	return;
384 }
385 
386 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
387  * @priv: driver private structure
388  * @entry : descriptor index to be used.
389  * @skb : the socket buffer
390  * Description :
391  * This function will read received packet's timestamp from the descriptor
392  * and pass it to stack. It also perform some sanity checks.
393  */
394 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
395 				   unsigned int entry, struct sk_buff *skb)
396 {
397 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
398 	u64 ns;
399 	void *desc = NULL;
400 
401 	if (!priv->hwts_rx_en)
402 		return;
403 
404 	if (priv->adv_ts)
405 		desc = (priv->dma_erx + entry);
406 	else
407 		desc = (priv->dma_rx + entry);
408 
409 	/* exit if rx tstamp is not valid */
410 	if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
411 		return;
412 
413 	/* get valid tstamp */
414 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
415 	shhwtstamp = skb_hwtstamps(skb);
416 	memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
417 	shhwtstamp->hwtstamp = ns_to_ktime(ns);
418 }
419 
420 /**
421  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
422  *  @dev: device pointer.
423  *  @ifr: An IOCTL specefic structure, that can contain a pointer to
424  *  a proprietary structure used to pass information to the driver.
425  *  Description:
426  *  This function configures the MAC to enable/disable both outgoing(TX)
427  *  and incoming(RX) packets time stamping based on user input.
428  *  Return Value:
429  *  0 on success and an appropriate -ve integer on failure.
430  */
431 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
432 {
433 	struct stmmac_priv *priv = netdev_priv(dev);
434 	struct hwtstamp_config config;
435 	struct timespec64 now;
436 	u64 temp = 0;
437 	u32 ptp_v2 = 0;
438 	u32 tstamp_all = 0;
439 	u32 ptp_over_ipv4_udp = 0;
440 	u32 ptp_over_ipv6_udp = 0;
441 	u32 ptp_over_ethernet = 0;
442 	u32 snap_type_sel = 0;
443 	u32 ts_master_en = 0;
444 	u32 ts_event_en = 0;
445 	u32 value = 0;
446 	u32 sec_inc;
447 
448 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
449 		netdev_alert(priv->dev, "No support for HW time stamping\n");
450 		priv->hwts_tx_en = 0;
451 		priv->hwts_rx_en = 0;
452 
453 		return -EOPNOTSUPP;
454 	}
455 
456 	if (copy_from_user(&config, ifr->ifr_data,
457 			   sizeof(struct hwtstamp_config)))
458 		return -EFAULT;
459 
460 	pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
461 		 __func__, config.flags, config.tx_type, config.rx_filter);
462 
463 	/* reserved for future extensions */
464 	if (config.flags)
465 		return -EINVAL;
466 
467 	if (config.tx_type != HWTSTAMP_TX_OFF &&
468 	    config.tx_type != HWTSTAMP_TX_ON)
469 		return -ERANGE;
470 
471 	if (priv->adv_ts) {
472 		switch (config.rx_filter) {
473 		case HWTSTAMP_FILTER_NONE:
474 			/* time stamp no incoming packet at all */
475 			config.rx_filter = HWTSTAMP_FILTER_NONE;
476 			break;
477 
478 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
479 			/* PTP v1, UDP, any kind of event packet */
480 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
481 			/* take time stamp for all event messages */
482 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
483 
484 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
485 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
486 			break;
487 
488 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
489 			/* PTP v1, UDP, Sync packet */
490 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
491 			/* take time stamp for SYNC messages only */
492 			ts_event_en = PTP_TCR_TSEVNTENA;
493 
494 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
495 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
496 			break;
497 
498 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
499 			/* PTP v1, UDP, Delay_req packet */
500 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
501 			/* take time stamp for Delay_Req messages only */
502 			ts_master_en = PTP_TCR_TSMSTRENA;
503 			ts_event_en = PTP_TCR_TSEVNTENA;
504 
505 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
506 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
507 			break;
508 
509 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
510 			/* PTP v2, UDP, any kind of event packet */
511 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
512 			ptp_v2 = PTP_TCR_TSVER2ENA;
513 			/* take time stamp for all event messages */
514 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
515 
516 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
517 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
518 			break;
519 
520 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
521 			/* PTP v2, UDP, Sync packet */
522 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
523 			ptp_v2 = PTP_TCR_TSVER2ENA;
524 			/* take time stamp for SYNC messages only */
525 			ts_event_en = PTP_TCR_TSEVNTENA;
526 
527 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
528 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
529 			break;
530 
531 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
532 			/* PTP v2, UDP, Delay_req packet */
533 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
534 			ptp_v2 = PTP_TCR_TSVER2ENA;
535 			/* take time stamp for Delay_Req messages only */
536 			ts_master_en = PTP_TCR_TSMSTRENA;
537 			ts_event_en = PTP_TCR_TSEVNTENA;
538 
539 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
540 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
541 			break;
542 
543 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
544 			/* PTP v2/802.AS1 any layer, any kind of event packet */
545 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
546 			ptp_v2 = PTP_TCR_TSVER2ENA;
547 			/* take time stamp for all event messages */
548 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
549 
550 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
551 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
552 			ptp_over_ethernet = PTP_TCR_TSIPENA;
553 			break;
554 
555 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
556 			/* PTP v2/802.AS1, any layer, Sync packet */
557 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
558 			ptp_v2 = PTP_TCR_TSVER2ENA;
559 			/* take time stamp for SYNC messages only */
560 			ts_event_en = PTP_TCR_TSEVNTENA;
561 
562 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
563 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
564 			ptp_over_ethernet = PTP_TCR_TSIPENA;
565 			break;
566 
567 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
568 			/* PTP v2/802.AS1, any layer, Delay_req packet */
569 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
570 			ptp_v2 = PTP_TCR_TSVER2ENA;
571 			/* take time stamp for Delay_Req messages only */
572 			ts_master_en = PTP_TCR_TSMSTRENA;
573 			ts_event_en = PTP_TCR_TSEVNTENA;
574 
575 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
576 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
577 			ptp_over_ethernet = PTP_TCR_TSIPENA;
578 			break;
579 
580 		case HWTSTAMP_FILTER_ALL:
581 			/* time stamp any incoming packet */
582 			config.rx_filter = HWTSTAMP_FILTER_ALL;
583 			tstamp_all = PTP_TCR_TSENALL;
584 			break;
585 
586 		default:
587 			return -ERANGE;
588 		}
589 	} else {
590 		switch (config.rx_filter) {
591 		case HWTSTAMP_FILTER_NONE:
592 			config.rx_filter = HWTSTAMP_FILTER_NONE;
593 			break;
594 		default:
595 			/* PTP v1, UDP, any kind of event packet */
596 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
597 			break;
598 		}
599 	}
600 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
601 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
602 
603 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
604 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
605 	else {
606 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
607 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
608 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
609 			 ts_master_en | snap_type_sel);
610 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
611 
612 		/* program Sub Second Increment reg */
613 		sec_inc = priv->hw->ptp->config_sub_second_increment(
614 			priv->ioaddr, priv->clk_ptp_rate);
615 		temp = div_u64(1000000000ULL, sec_inc);
616 
617 		/* calculate default added value:
618 		 * formula is :
619 		 * addend = (2^32)/freq_div_ratio;
620 		 * where, freq_div_ratio = 1e9ns/sec_inc
621 		 */
622 		temp = (u64)(temp << 32);
623 		priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
624 		priv->hw->ptp->config_addend(priv->ioaddr,
625 					     priv->default_addend);
626 
627 		/* initialize system time */
628 		ktime_get_real_ts64(&now);
629 
630 		/* lower 32 bits of tv_sec are safe until y2106 */
631 		priv->hw->ptp->init_systime(priv->ioaddr, (u32)now.tv_sec,
632 					    now.tv_nsec);
633 	}
634 
635 	return copy_to_user(ifr->ifr_data, &config,
636 			    sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
637 }
638 
639 /**
640  * stmmac_init_ptp - init PTP
641  * @priv: driver private structure
642  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
643  * This is done by looking at the HW cap. register.
644  * This function also registers the ptp driver.
645  */
646 static int stmmac_init_ptp(struct stmmac_priv *priv)
647 {
648 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
649 		return -EOPNOTSUPP;
650 
651 	/* Fall-back to main clock in case of no PTP ref is passed */
652 	priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
653 	if (IS_ERR(priv->clk_ptp_ref)) {
654 		priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
655 		priv->clk_ptp_ref = NULL;
656 	} else {
657 		clk_prepare_enable(priv->clk_ptp_ref);
658 		priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
659 	}
660 
661 	priv->adv_ts = 0;
662 	if (priv->dma_cap.atime_stamp && priv->extend_desc)
663 		priv->adv_ts = 1;
664 
665 	if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
666 		pr_debug("IEEE 1588-2002 Time Stamp supported\n");
667 
668 	if (netif_msg_hw(priv) && priv->adv_ts)
669 		pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
670 
671 	priv->hw->ptp = &stmmac_ptp;
672 	priv->hwts_tx_en = 0;
673 	priv->hwts_rx_en = 0;
674 
675 	return stmmac_ptp_register(priv);
676 }
677 
678 static void stmmac_release_ptp(struct stmmac_priv *priv)
679 {
680 	if (priv->clk_ptp_ref)
681 		clk_disable_unprepare(priv->clk_ptp_ref);
682 	stmmac_ptp_unregister(priv);
683 }
684 
685 /**
686  * stmmac_adjust_link - adjusts the link parameters
687  * @dev: net device structure
688  * Description: this is the helper called by the physical abstraction layer
689  * drivers to communicate the phy link status. According the speed and duplex
690  * this driver can invoke registered glue-logic as well.
691  * It also invoke the eee initialization because it could happen when switch
692  * on different networks (that are eee capable).
693  */
694 static void stmmac_adjust_link(struct net_device *dev)
695 {
696 	struct stmmac_priv *priv = netdev_priv(dev);
697 	struct phy_device *phydev = priv->phydev;
698 	unsigned long flags;
699 	int new_state = 0;
700 	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
701 
702 	if (phydev == NULL)
703 		return;
704 
705 	spin_lock_irqsave(&priv->lock, flags);
706 
707 	if (phydev->link) {
708 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
709 
710 		/* Now we make sure that we can be in full duplex mode.
711 		 * If not, we operate in half-duplex mode. */
712 		if (phydev->duplex != priv->oldduplex) {
713 			new_state = 1;
714 			if (!(phydev->duplex))
715 				ctrl &= ~priv->hw->link.duplex;
716 			else
717 				ctrl |= priv->hw->link.duplex;
718 			priv->oldduplex = phydev->duplex;
719 		}
720 		/* Flow Control operation */
721 		if (phydev->pause)
722 			priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
723 						 fc, pause_time);
724 
725 		if (phydev->speed != priv->speed) {
726 			new_state = 1;
727 			switch (phydev->speed) {
728 			case 1000:
729 				if (likely(priv->plat->has_gmac))
730 					ctrl &= ~priv->hw->link.port;
731 				stmmac_hw_fix_mac_speed(priv);
732 				break;
733 			case 100:
734 			case 10:
735 				if (priv->plat->has_gmac) {
736 					ctrl |= priv->hw->link.port;
737 					if (phydev->speed == SPEED_100) {
738 						ctrl |= priv->hw->link.speed;
739 					} else {
740 						ctrl &= ~(priv->hw->link.speed);
741 					}
742 				} else {
743 					ctrl &= ~priv->hw->link.port;
744 				}
745 				stmmac_hw_fix_mac_speed(priv);
746 				break;
747 			default:
748 				if (netif_msg_link(priv))
749 					pr_warn("%s: Speed (%d) not 10/100\n",
750 						dev->name, phydev->speed);
751 				break;
752 			}
753 
754 			priv->speed = phydev->speed;
755 		}
756 
757 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
758 
759 		if (!priv->oldlink) {
760 			new_state = 1;
761 			priv->oldlink = 1;
762 		}
763 	} else if (priv->oldlink) {
764 		new_state = 1;
765 		priv->oldlink = 0;
766 		priv->speed = 0;
767 		priv->oldduplex = -1;
768 	}
769 
770 	if (new_state && netif_msg_link(priv))
771 		phy_print_status(phydev);
772 
773 	spin_unlock_irqrestore(&priv->lock, flags);
774 
775 	/* At this stage, it could be needed to setup the EEE or adjust some
776 	 * MAC related HW registers.
777 	 */
778 	priv->eee_enabled = stmmac_eee_init(priv);
779 }
780 
781 /**
782  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
783  * @priv: driver private structure
784  * Description: this is to verify if the HW supports the PCS.
785  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
786  * configured for the TBI, RTBI, or SGMII PHY interface.
787  */
788 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
789 {
790 	int interface = priv->plat->interface;
791 
792 	if (priv->dma_cap.pcs) {
793 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
794 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
795 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
796 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
797 			pr_debug("STMMAC: PCS RGMII support enable\n");
798 			priv->pcs = STMMAC_PCS_RGMII;
799 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
800 			pr_debug("STMMAC: PCS SGMII support enable\n");
801 			priv->pcs = STMMAC_PCS_SGMII;
802 		}
803 	}
804 }
805 
806 /**
807  * stmmac_init_phy - PHY initialization
808  * @dev: net device structure
809  * Description: it initializes the driver's PHY state, and attaches the PHY
810  * to the mac driver.
811  *  Return value:
812  *  0 on success
813  */
814 static int stmmac_init_phy(struct net_device *dev)
815 {
816 	struct stmmac_priv *priv = netdev_priv(dev);
817 	struct phy_device *phydev;
818 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
819 	char bus_id[MII_BUS_ID_SIZE];
820 	int interface = priv->plat->interface;
821 	int max_speed = priv->plat->max_speed;
822 	priv->oldlink = 0;
823 	priv->speed = 0;
824 	priv->oldduplex = -1;
825 
826 	if (priv->plat->phy_node) {
827 		phydev = of_phy_connect(dev, priv->plat->phy_node,
828 					&stmmac_adjust_link, 0, interface);
829 	} else {
830 		if (priv->plat->phy_bus_name)
831 			snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
832 				 priv->plat->phy_bus_name, priv->plat->bus_id);
833 		else
834 			snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
835 				 priv->plat->bus_id);
836 
837 		snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
838 			 priv->plat->phy_addr);
839 		pr_debug("stmmac_init_phy:  trying to attach to %s\n",
840 			 phy_id_fmt);
841 
842 		phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
843 				     interface);
844 	}
845 
846 	if (IS_ERR_OR_NULL(phydev)) {
847 		pr_err("%s: Could not attach to PHY\n", dev->name);
848 		if (!phydev)
849 			return -ENODEV;
850 
851 		return PTR_ERR(phydev);
852 	}
853 
854 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
855 	if ((interface == PHY_INTERFACE_MODE_MII) ||
856 	    (interface == PHY_INTERFACE_MODE_RMII) ||
857 		(max_speed < 1000 && max_speed > 0))
858 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
859 					 SUPPORTED_1000baseT_Full);
860 
861 	/*
862 	 * Broken HW is sometimes missing the pull-up resistor on the
863 	 * MDIO line, which results in reads to non-existent devices returning
864 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
865 	 * device as well.
866 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
867 	 */
868 	if (!priv->plat->phy_node && phydev->phy_id == 0) {
869 		phy_disconnect(phydev);
870 		return -ENODEV;
871 	}
872 
873 	/* If attached to a switch, there is no reason to poll phy handler */
874 	if (priv->plat->phy_bus_name)
875 		if (!strcmp(priv->plat->phy_bus_name, "fixed"))
876 			phydev->irq = PHY_IGNORE_INTERRUPT;
877 
878 	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
879 		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
880 
881 	priv->phydev = phydev;
882 
883 	return 0;
884 }
885 
886 /**
887  * stmmac_display_ring - display ring
888  * @head: pointer to the head of the ring passed.
889  * @size: size of the ring.
890  * @extend_desc: to verify if extended descriptors are used.
891  * Description: display the control/status and buffer descriptors.
892  */
893 static void stmmac_display_ring(void *head, int size, int extend_desc)
894 {
895 	int i;
896 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
897 	struct dma_desc *p = (struct dma_desc *)head;
898 
899 	for (i = 0; i < size; i++) {
900 		u64 x;
901 		if (extend_desc) {
902 			x = *(u64 *) ep;
903 			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
904 				i, (unsigned int)virt_to_phys(ep),
905 				(unsigned int)x, (unsigned int)(x >> 32),
906 				ep->basic.des2, ep->basic.des3);
907 			ep++;
908 		} else {
909 			x = *(u64 *) p;
910 			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
911 				i, (unsigned int)virt_to_phys(p),
912 				(unsigned int)x, (unsigned int)(x >> 32),
913 				p->des2, p->des3);
914 			p++;
915 		}
916 		pr_info("\n");
917 	}
918 }
919 
920 static void stmmac_display_rings(struct stmmac_priv *priv)
921 {
922 	if (priv->extend_desc) {
923 		pr_info("Extended RX descriptor ring:\n");
924 		stmmac_display_ring((void *)priv->dma_erx, DMA_RX_SIZE, 1);
925 		pr_info("Extended TX descriptor ring:\n");
926 		stmmac_display_ring((void *)priv->dma_etx, DMA_TX_SIZE, 1);
927 	} else {
928 		pr_info("RX descriptor ring:\n");
929 		stmmac_display_ring((void *)priv->dma_rx, DMA_RX_SIZE, 0);
930 		pr_info("TX descriptor ring:\n");
931 		stmmac_display_ring((void *)priv->dma_tx, DMA_TX_SIZE, 0);
932 	}
933 }
934 
935 static int stmmac_set_bfsize(int mtu, int bufsize)
936 {
937 	int ret = bufsize;
938 
939 	if (mtu >= BUF_SIZE_4KiB)
940 		ret = BUF_SIZE_8KiB;
941 	else if (mtu >= BUF_SIZE_2KiB)
942 		ret = BUF_SIZE_4KiB;
943 	else if (mtu > DEFAULT_BUFSIZE)
944 		ret = BUF_SIZE_2KiB;
945 	else
946 		ret = DEFAULT_BUFSIZE;
947 
948 	return ret;
949 }
950 
951 /**
952  * stmmac_clear_descriptors - clear descriptors
953  * @priv: driver private structure
954  * Description: this function is called to clear the tx and rx descriptors
955  * in case of both basic and extended descriptors are used.
956  */
957 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
958 {
959 	int i;
960 
961 	/* Clear the Rx/Tx descriptors */
962 	for (i = 0; i < DMA_RX_SIZE; i++)
963 		if (priv->extend_desc)
964 			priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
965 						     priv->use_riwt, priv->mode,
966 						     (i == DMA_RX_SIZE - 1));
967 		else
968 			priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
969 						     priv->use_riwt, priv->mode,
970 						     (i == DMA_RX_SIZE - 1));
971 	for (i = 0; i < DMA_TX_SIZE; i++)
972 		if (priv->extend_desc)
973 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
974 						     priv->mode,
975 						     (i == DMA_TX_SIZE - 1));
976 		else
977 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
978 						     priv->mode,
979 						     (i == DMA_TX_SIZE - 1));
980 }
981 
982 /**
983  * stmmac_init_rx_buffers - init the RX descriptor buffer.
984  * @priv: driver private structure
985  * @p: descriptor pointer
986  * @i: descriptor index
987  * @flags: gfp flag.
988  * Description: this function is called to allocate a receive buffer, perform
989  * the DMA mapping and init the descriptor.
990  */
991 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
992 				  int i, gfp_t flags)
993 {
994 	struct sk_buff *skb;
995 
996 	skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
997 	if (!skb) {
998 		pr_err("%s: Rx init fails; skb is NULL\n", __func__);
999 		return -ENOMEM;
1000 	}
1001 	priv->rx_skbuff[i] = skb;
1002 	priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
1003 						priv->dma_buf_sz,
1004 						DMA_FROM_DEVICE);
1005 	if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
1006 		pr_err("%s: DMA mapping error\n", __func__);
1007 		dev_kfree_skb_any(skb);
1008 		return -EINVAL;
1009 	}
1010 
1011 	p->des2 = priv->rx_skbuff_dma[i];
1012 
1013 	if ((priv->hw->mode->init_desc3) &&
1014 	    (priv->dma_buf_sz == BUF_SIZE_16KiB))
1015 		priv->hw->mode->init_desc3(p);
1016 
1017 	return 0;
1018 }
1019 
1020 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
1021 {
1022 	if (priv->rx_skbuff[i]) {
1023 		dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1024 				 priv->dma_buf_sz, DMA_FROM_DEVICE);
1025 		dev_kfree_skb_any(priv->rx_skbuff[i]);
1026 	}
1027 	priv->rx_skbuff[i] = NULL;
1028 }
1029 
1030 /**
1031  * init_dma_desc_rings - init the RX/TX descriptor rings
1032  * @dev: net device structure
1033  * @flags: gfp flag.
1034  * Description: this function initializes the DMA RX/TX descriptors
1035  * and allocates the socket buffers. It suppors the chained and ring
1036  * modes.
1037  */
1038 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1039 {
1040 	int i;
1041 	struct stmmac_priv *priv = netdev_priv(dev);
1042 	unsigned int bfsize = 0;
1043 	int ret = -ENOMEM;
1044 
1045 	if (priv->hw->mode->set_16kib_bfsize)
1046 		bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1047 
1048 	if (bfsize < BUF_SIZE_16KiB)
1049 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1050 
1051 	priv->dma_buf_sz = bfsize;
1052 
1053 	if (netif_msg_probe(priv)) {
1054 		pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1055 			 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1056 
1057 		/* RX INITIALIZATION */
1058 		pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1059 	}
1060 	for (i = 0; i < DMA_RX_SIZE; i++) {
1061 		struct dma_desc *p;
1062 		if (priv->extend_desc)
1063 			p = &((priv->dma_erx + i)->basic);
1064 		else
1065 			p = priv->dma_rx + i;
1066 
1067 		ret = stmmac_init_rx_buffers(priv, p, i, flags);
1068 		if (ret)
1069 			goto err_init_rx_buffers;
1070 
1071 		if (netif_msg_probe(priv))
1072 			pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1073 				 priv->rx_skbuff[i]->data,
1074 				 (unsigned int)priv->rx_skbuff_dma[i]);
1075 	}
1076 	priv->cur_rx = 0;
1077 	priv->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1078 	buf_sz = bfsize;
1079 
1080 	/* Setup the chained descriptor addresses */
1081 	if (priv->mode == STMMAC_CHAIN_MODE) {
1082 		if (priv->extend_desc) {
1083 			priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1084 					     DMA_RX_SIZE, 1);
1085 			priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1086 					     DMA_TX_SIZE, 1);
1087 		} else {
1088 			priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1089 					     DMA_RX_SIZE, 0);
1090 			priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1091 					     DMA_TX_SIZE, 0);
1092 		}
1093 	}
1094 
1095 	/* TX INITIALIZATION */
1096 	for (i = 0; i < DMA_TX_SIZE; i++) {
1097 		struct dma_desc *p;
1098 		if (priv->extend_desc)
1099 			p = &((priv->dma_etx + i)->basic);
1100 		else
1101 			p = priv->dma_tx + i;
1102 		p->des2 = 0;
1103 		priv->tx_skbuff_dma[i].buf = 0;
1104 		priv->tx_skbuff_dma[i].map_as_page = false;
1105 		priv->tx_skbuff_dma[i].len = 0;
1106 		priv->tx_skbuff_dma[i].last_segment = false;
1107 		priv->tx_skbuff[i] = NULL;
1108 	}
1109 
1110 	priv->dirty_tx = 0;
1111 	priv->cur_tx = 0;
1112 	netdev_reset_queue(priv->dev);
1113 
1114 	stmmac_clear_descriptors(priv);
1115 
1116 	if (netif_msg_hw(priv))
1117 		stmmac_display_rings(priv);
1118 
1119 	return 0;
1120 err_init_rx_buffers:
1121 	while (--i >= 0)
1122 		stmmac_free_rx_buffers(priv, i);
1123 	return ret;
1124 }
1125 
1126 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1127 {
1128 	int i;
1129 
1130 	for (i = 0; i < DMA_RX_SIZE; i++)
1131 		stmmac_free_rx_buffers(priv, i);
1132 }
1133 
1134 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1135 {
1136 	int i;
1137 
1138 	for (i = 0; i < DMA_TX_SIZE; i++) {
1139 		struct dma_desc *p;
1140 
1141 		if (priv->extend_desc)
1142 			p = &((priv->dma_etx + i)->basic);
1143 		else
1144 			p = priv->dma_tx + i;
1145 
1146 		if (priv->tx_skbuff_dma[i].buf) {
1147 			if (priv->tx_skbuff_dma[i].map_as_page)
1148 				dma_unmap_page(priv->device,
1149 					       priv->tx_skbuff_dma[i].buf,
1150 					       priv->tx_skbuff_dma[i].len,
1151 					       DMA_TO_DEVICE);
1152 			else
1153 				dma_unmap_single(priv->device,
1154 						 priv->tx_skbuff_dma[i].buf,
1155 						 priv->tx_skbuff_dma[i].len,
1156 						 DMA_TO_DEVICE);
1157 		}
1158 
1159 		if (priv->tx_skbuff[i] != NULL) {
1160 			dev_kfree_skb_any(priv->tx_skbuff[i]);
1161 			priv->tx_skbuff[i] = NULL;
1162 			priv->tx_skbuff_dma[i].buf = 0;
1163 			priv->tx_skbuff_dma[i].map_as_page = false;
1164 		}
1165 	}
1166 }
1167 
1168 /**
1169  * alloc_dma_desc_resources - alloc TX/RX resources.
1170  * @priv: private structure
1171  * Description: according to which descriptor can be used (extend or basic)
1172  * this function allocates the resources for TX and RX paths. In case of
1173  * reception, for example, it pre-allocated the RX socket buffer in order to
1174  * allow zero-copy mechanism.
1175  */
1176 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1177 {
1178 	int ret = -ENOMEM;
1179 
1180 	priv->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE, sizeof(dma_addr_t),
1181 					    GFP_KERNEL);
1182 	if (!priv->rx_skbuff_dma)
1183 		return -ENOMEM;
1184 
1185 	priv->rx_skbuff = kmalloc_array(DMA_RX_SIZE, sizeof(struct sk_buff *),
1186 					GFP_KERNEL);
1187 	if (!priv->rx_skbuff)
1188 		goto err_rx_skbuff;
1189 
1190 	priv->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1191 					    sizeof(*priv->tx_skbuff_dma),
1192 					    GFP_KERNEL);
1193 	if (!priv->tx_skbuff_dma)
1194 		goto err_tx_skbuff_dma;
1195 
1196 	priv->tx_skbuff = kmalloc_array(DMA_TX_SIZE, sizeof(struct sk_buff *),
1197 					GFP_KERNEL);
1198 	if (!priv->tx_skbuff)
1199 		goto err_tx_skbuff;
1200 
1201 	if (priv->extend_desc) {
1202 		priv->dma_erx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1203 						    sizeof(struct
1204 							   dma_extended_desc),
1205 						    &priv->dma_rx_phy,
1206 						    GFP_KERNEL);
1207 		if (!priv->dma_erx)
1208 			goto err_dma;
1209 
1210 		priv->dma_etx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1211 						    sizeof(struct
1212 							   dma_extended_desc),
1213 						    &priv->dma_tx_phy,
1214 						    GFP_KERNEL);
1215 		if (!priv->dma_etx) {
1216 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1217 					  sizeof(struct dma_extended_desc),
1218 					  priv->dma_erx, priv->dma_rx_phy);
1219 			goto err_dma;
1220 		}
1221 	} else {
1222 		priv->dma_rx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1223 						   sizeof(struct dma_desc),
1224 						   &priv->dma_rx_phy,
1225 						   GFP_KERNEL);
1226 		if (!priv->dma_rx)
1227 			goto err_dma;
1228 
1229 		priv->dma_tx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1230 						   sizeof(struct dma_desc),
1231 						   &priv->dma_tx_phy,
1232 						   GFP_KERNEL);
1233 		if (!priv->dma_tx) {
1234 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1235 					  sizeof(struct dma_desc),
1236 					  priv->dma_rx, priv->dma_rx_phy);
1237 			goto err_dma;
1238 		}
1239 	}
1240 
1241 	return 0;
1242 
1243 err_dma:
1244 	kfree(priv->tx_skbuff);
1245 err_tx_skbuff:
1246 	kfree(priv->tx_skbuff_dma);
1247 err_tx_skbuff_dma:
1248 	kfree(priv->rx_skbuff);
1249 err_rx_skbuff:
1250 	kfree(priv->rx_skbuff_dma);
1251 	return ret;
1252 }
1253 
1254 static void free_dma_desc_resources(struct stmmac_priv *priv)
1255 {
1256 	/* Release the DMA TX/RX socket buffers */
1257 	dma_free_rx_skbufs(priv);
1258 	dma_free_tx_skbufs(priv);
1259 
1260 	/* Free DMA regions of consistent memory previously allocated */
1261 	if (!priv->extend_desc) {
1262 		dma_free_coherent(priv->device,
1263 				  DMA_TX_SIZE * sizeof(struct dma_desc),
1264 				  priv->dma_tx, priv->dma_tx_phy);
1265 		dma_free_coherent(priv->device,
1266 				  DMA_RX_SIZE * sizeof(struct dma_desc),
1267 				  priv->dma_rx, priv->dma_rx_phy);
1268 	} else {
1269 		dma_free_coherent(priv->device, DMA_TX_SIZE *
1270 				  sizeof(struct dma_extended_desc),
1271 				  priv->dma_etx, priv->dma_tx_phy);
1272 		dma_free_coherent(priv->device, DMA_RX_SIZE *
1273 				  sizeof(struct dma_extended_desc),
1274 				  priv->dma_erx, priv->dma_rx_phy);
1275 	}
1276 	kfree(priv->rx_skbuff_dma);
1277 	kfree(priv->rx_skbuff);
1278 	kfree(priv->tx_skbuff_dma);
1279 	kfree(priv->tx_skbuff);
1280 }
1281 
1282 /**
1283  *  stmmac_dma_operation_mode - HW DMA operation mode
1284  *  @priv: driver private structure
1285  *  Description: it is used for configuring the DMA operation mode register in
1286  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1287  */
1288 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1289 {
1290 	int rxfifosz = priv->plat->rx_fifo_size;
1291 
1292 	if (priv->plat->force_thresh_dma_mode)
1293 		priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz);
1294 	else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1295 		/*
1296 		 * In case of GMAC, SF mode can be enabled
1297 		 * to perform the TX COE in HW. This depends on:
1298 		 * 1) TX COE if actually supported
1299 		 * 2) There is no bugged Jumbo frame support
1300 		 *    that needs to not insert csum in the TDES.
1301 		 */
1302 		priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE,
1303 					rxfifosz);
1304 		priv->xstats.threshold = SF_DMA_MODE;
1305 	} else
1306 		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE,
1307 					rxfifosz);
1308 }
1309 
1310 /**
1311  * stmmac_tx_clean - to manage the transmission completion
1312  * @priv: driver private structure
1313  * Description: it reclaims the transmit resources after transmission completes.
1314  */
1315 static void stmmac_tx_clean(struct stmmac_priv *priv)
1316 {
1317 	unsigned int bytes_compl = 0, pkts_compl = 0;
1318 	unsigned int entry = priv->dirty_tx;
1319 
1320 	spin_lock(&priv->tx_lock);
1321 
1322 	priv->xstats.tx_clean++;
1323 
1324 	while (entry != priv->cur_tx) {
1325 		struct sk_buff *skb = priv->tx_skbuff[entry];
1326 		struct dma_desc *p;
1327 		int status;
1328 
1329 		if (priv->extend_desc)
1330 			p = (struct dma_desc *)(priv->dma_etx + entry);
1331 		else
1332 			p = priv->dma_tx + entry;
1333 
1334 		status = priv->hw->desc->tx_status(&priv->dev->stats,
1335 						      &priv->xstats, p,
1336 						      priv->ioaddr);
1337 		/* Check if the descriptor is owned by the DMA */
1338 		if (unlikely(status & tx_dma_own))
1339 			break;
1340 
1341 		/* Just consider the last segment and ...*/
1342 		if (likely(!(status & tx_not_ls))) {
1343 			/* ... verify the status error condition */
1344 			if (unlikely(status & tx_err)) {
1345 				priv->dev->stats.tx_errors++;
1346 			} else {
1347 				priv->dev->stats.tx_packets++;
1348 				priv->xstats.tx_pkt_n++;
1349 			}
1350 			stmmac_get_tx_hwtstamp(priv, entry, skb);
1351 		}
1352 
1353 		if (likely(priv->tx_skbuff_dma[entry].buf)) {
1354 			if (priv->tx_skbuff_dma[entry].map_as_page)
1355 				dma_unmap_page(priv->device,
1356 					       priv->tx_skbuff_dma[entry].buf,
1357 					       priv->tx_skbuff_dma[entry].len,
1358 					       DMA_TO_DEVICE);
1359 			else
1360 				dma_unmap_single(priv->device,
1361 						 priv->tx_skbuff_dma[entry].buf,
1362 						 priv->tx_skbuff_dma[entry].len,
1363 						 DMA_TO_DEVICE);
1364 			priv->tx_skbuff_dma[entry].buf = 0;
1365 			priv->tx_skbuff_dma[entry].map_as_page = false;
1366 		}
1367 		priv->hw->mode->clean_desc3(priv, p);
1368 		priv->tx_skbuff_dma[entry].last_segment = false;
1369 		priv->tx_skbuff_dma[entry].is_jumbo = false;
1370 
1371 		if (likely(skb != NULL)) {
1372 			pkts_compl++;
1373 			bytes_compl += skb->len;
1374 			dev_consume_skb_any(skb);
1375 			priv->tx_skbuff[entry] = NULL;
1376 		}
1377 
1378 		priv->hw->desc->release_tx_desc(p, priv->mode);
1379 
1380 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1381 	}
1382 	priv->dirty_tx = entry;
1383 
1384 	netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1385 
1386 	if (unlikely(netif_queue_stopped(priv->dev) &&
1387 		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH)) {
1388 		netif_tx_lock(priv->dev);
1389 		if (netif_queue_stopped(priv->dev) &&
1390 		    stmmac_tx_avail(priv) > STMMAC_TX_THRESH) {
1391 			if (netif_msg_tx_done(priv))
1392 				pr_debug("%s: restart transmit\n", __func__);
1393 			netif_wake_queue(priv->dev);
1394 		}
1395 		netif_tx_unlock(priv->dev);
1396 	}
1397 
1398 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1399 		stmmac_enable_eee_mode(priv);
1400 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1401 	}
1402 	spin_unlock(&priv->tx_lock);
1403 }
1404 
1405 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1406 {
1407 	priv->hw->dma->enable_dma_irq(priv->ioaddr);
1408 }
1409 
1410 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1411 {
1412 	priv->hw->dma->disable_dma_irq(priv->ioaddr);
1413 }
1414 
1415 /**
1416  * stmmac_tx_err - to manage the tx error
1417  * @priv: driver private structure
1418  * Description: it cleans the descriptors and restarts the transmission
1419  * in case of transmission errors.
1420  */
1421 static void stmmac_tx_err(struct stmmac_priv *priv)
1422 {
1423 	int i;
1424 	netif_stop_queue(priv->dev);
1425 
1426 	priv->hw->dma->stop_tx(priv->ioaddr);
1427 	dma_free_tx_skbufs(priv);
1428 	for (i = 0; i < DMA_TX_SIZE; i++)
1429 		if (priv->extend_desc)
1430 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1431 						     priv->mode,
1432 						     (i == DMA_TX_SIZE - 1));
1433 		else
1434 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1435 						     priv->mode,
1436 						     (i == DMA_TX_SIZE - 1));
1437 	priv->dirty_tx = 0;
1438 	priv->cur_tx = 0;
1439 	netdev_reset_queue(priv->dev);
1440 	priv->hw->dma->start_tx(priv->ioaddr);
1441 
1442 	priv->dev->stats.tx_errors++;
1443 	netif_wake_queue(priv->dev);
1444 }
1445 
1446 /**
1447  * stmmac_dma_interrupt - DMA ISR
1448  * @priv: driver private structure
1449  * Description: this is the DMA ISR. It is called by the main ISR.
1450  * It calls the dwmac dma routine and schedule poll method in case of some
1451  * work can be done.
1452  */
1453 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1454 {
1455 	int status;
1456 	int rxfifosz = priv->plat->rx_fifo_size;
1457 
1458 	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1459 	if (likely((status & handle_rx)) || (status & handle_tx)) {
1460 		if (likely(napi_schedule_prep(&priv->napi))) {
1461 			stmmac_disable_dma_irq(priv);
1462 			__napi_schedule(&priv->napi);
1463 		}
1464 	}
1465 	if (unlikely(status & tx_hard_error_bump_tc)) {
1466 		/* Try to bump up the dma threshold on this failure */
1467 		if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1468 		    (tc <= 256)) {
1469 			tc += 64;
1470 			if (priv->plat->force_thresh_dma_mode)
1471 				priv->hw->dma->dma_mode(priv->ioaddr, tc, tc,
1472 							rxfifosz);
1473 			else
1474 				priv->hw->dma->dma_mode(priv->ioaddr, tc,
1475 							SF_DMA_MODE, rxfifosz);
1476 			priv->xstats.threshold = tc;
1477 		}
1478 	} else if (unlikely(status == tx_hard_error))
1479 		stmmac_tx_err(priv);
1480 }
1481 
1482 /**
1483  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1484  * @priv: driver private structure
1485  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1486  */
1487 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1488 {
1489 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1490 	    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1491 
1492 	dwmac_mmc_intr_all_mask(priv->ioaddr);
1493 
1494 	if (priv->dma_cap.rmon) {
1495 		dwmac_mmc_ctrl(priv->ioaddr, mode);
1496 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1497 	} else
1498 		pr_info(" No MAC Management Counters available\n");
1499 }
1500 
1501 /**
1502  * stmmac_get_synopsys_id - return the SYINID.
1503  * @priv: driver private structure
1504  * Description: this simple function is to decode and return the SYINID
1505  * starting from the HW core register.
1506  */
1507 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1508 {
1509 	u32 hwid = priv->hw->synopsys_uid;
1510 
1511 	/* Check Synopsys Id (not available on old chips) */
1512 	if (likely(hwid)) {
1513 		u32 uid = ((hwid & 0x0000ff00) >> 8);
1514 		u32 synid = (hwid & 0x000000ff);
1515 
1516 		pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1517 			uid, synid);
1518 
1519 		return synid;
1520 	}
1521 	return 0;
1522 }
1523 
1524 /**
1525  * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1526  * @priv: driver private structure
1527  * Description: select the Enhanced/Alternate or Normal descriptors.
1528  * In case of Enhanced/Alternate, it checks if the extended descriptors are
1529  * supported by the HW capability register.
1530  */
1531 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1532 {
1533 	if (priv->plat->enh_desc) {
1534 		pr_info(" Enhanced/Alternate descriptors\n");
1535 
1536 		/* GMAC older than 3.50 has no extended descriptors */
1537 		if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1538 			pr_info("\tEnabled extended descriptors\n");
1539 			priv->extend_desc = 1;
1540 		} else
1541 			pr_warn("Extended descriptors not supported\n");
1542 
1543 		priv->hw->desc = &enh_desc_ops;
1544 	} else {
1545 		pr_info(" Normal descriptors\n");
1546 		priv->hw->desc = &ndesc_ops;
1547 	}
1548 }
1549 
1550 /**
1551  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1552  * @priv: driver private structure
1553  * Description:
1554  *  new GMAC chip generations have a new register to indicate the
1555  *  presence of the optional feature/functions.
1556  *  This can be also used to override the value passed through the
1557  *  platform and necessary for old MAC10/100 and GMAC chips.
1558  */
1559 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1560 {
1561 	u32 hw_cap = 0;
1562 
1563 	if (priv->hw->dma->get_hw_feature) {
1564 		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1565 
1566 		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1567 		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1568 		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1569 		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1570 		priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1571 		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1572 		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1573 		priv->dma_cap.pmt_remote_wake_up =
1574 		    (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1575 		priv->dma_cap.pmt_magic_frame =
1576 		    (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1577 		/* MMC */
1578 		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1579 		/* IEEE 1588-2002 */
1580 		priv->dma_cap.time_stamp =
1581 		    (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1582 		/* IEEE 1588-2008 */
1583 		priv->dma_cap.atime_stamp =
1584 		    (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1585 		/* 802.3az - Energy-Efficient Ethernet (EEE) */
1586 		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1587 		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1588 		/* TX and RX csum */
1589 		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1590 		priv->dma_cap.rx_coe_type1 =
1591 		    (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1592 		priv->dma_cap.rx_coe_type2 =
1593 		    (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1594 		priv->dma_cap.rxfifo_over_2048 =
1595 		    (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1596 		/* TX and RX number of channels */
1597 		priv->dma_cap.number_rx_channel =
1598 		    (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1599 		priv->dma_cap.number_tx_channel =
1600 		    (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1601 		/* Alternate (enhanced) DESC mode */
1602 		priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1603 	}
1604 
1605 	return hw_cap;
1606 }
1607 
1608 /**
1609  * stmmac_check_ether_addr - check if the MAC addr is valid
1610  * @priv: driver private structure
1611  * Description:
1612  * it is to verify if the MAC address is valid, in case of failures it
1613  * generates a random MAC address
1614  */
1615 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1616 {
1617 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1618 		priv->hw->mac->get_umac_addr(priv->hw,
1619 					     priv->dev->dev_addr, 0);
1620 		if (!is_valid_ether_addr(priv->dev->dev_addr))
1621 			eth_hw_addr_random(priv->dev);
1622 		pr_info("%s: device MAC address %pM\n", priv->dev->name,
1623 			priv->dev->dev_addr);
1624 	}
1625 }
1626 
1627 /**
1628  * stmmac_init_dma_engine - DMA init.
1629  * @priv: driver private structure
1630  * Description:
1631  * It inits the DMA invoking the specific MAC/GMAC callback.
1632  * Some DMA parameters can be passed from the platform;
1633  * in case of these are not passed a default is kept for the MAC or GMAC.
1634  */
1635 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1636 {
1637 	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, aal = 0;
1638 	int mixed_burst = 0;
1639 	int atds = 0;
1640 	int ret = 0;
1641 
1642 	if (priv->plat->dma_cfg) {
1643 		pbl = priv->plat->dma_cfg->pbl;
1644 		fixed_burst = priv->plat->dma_cfg->fixed_burst;
1645 		mixed_burst = priv->plat->dma_cfg->mixed_burst;
1646 		aal = priv->plat->dma_cfg->aal;
1647 	}
1648 
1649 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1650 		atds = 1;
1651 
1652 	ret = priv->hw->dma->reset(priv->ioaddr);
1653 	if (ret) {
1654 		dev_err(priv->device, "Failed to reset the dma\n");
1655 		return ret;
1656 	}
1657 
1658 	priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1659 			    aal, priv->dma_tx_phy, priv->dma_rx_phy, atds);
1660 
1661 	if ((priv->synopsys_id >= DWMAC_CORE_3_50) &&
1662 	    (priv->plat->axi && priv->hw->dma->axi))
1663 		priv->hw->dma->axi(priv->ioaddr, priv->plat->axi);
1664 
1665 	return ret;
1666 }
1667 
1668 /**
1669  * stmmac_tx_timer - mitigation sw timer for tx.
1670  * @data: data pointer
1671  * Description:
1672  * This is the timer handler to directly invoke the stmmac_tx_clean.
1673  */
1674 static void stmmac_tx_timer(unsigned long data)
1675 {
1676 	struct stmmac_priv *priv = (struct stmmac_priv *)data;
1677 
1678 	stmmac_tx_clean(priv);
1679 }
1680 
1681 /**
1682  * stmmac_init_tx_coalesce - init tx mitigation options.
1683  * @priv: driver private structure
1684  * Description:
1685  * This inits the transmit coalesce parameters: i.e. timer rate,
1686  * timer handler and default threshold used for enabling the
1687  * interrupt on completion bit.
1688  */
1689 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1690 {
1691 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
1692 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1693 	init_timer(&priv->txtimer);
1694 	priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1695 	priv->txtimer.data = (unsigned long)priv;
1696 	priv->txtimer.function = stmmac_tx_timer;
1697 	add_timer(&priv->txtimer);
1698 }
1699 
1700 /**
1701  * stmmac_hw_setup - setup mac in a usable state.
1702  *  @dev : pointer to the device structure.
1703  *  Description:
1704  *  this is the main function to setup the HW in a usable state because the
1705  *  dma engine is reset, the core registers are configured (e.g. AXI,
1706  *  Checksum features, timers). The DMA is ready to start receiving and
1707  *  transmitting.
1708  *  Return value:
1709  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1710  *  file on failure.
1711  */
1712 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1713 {
1714 	struct stmmac_priv *priv = netdev_priv(dev);
1715 	int ret;
1716 
1717 	/* DMA initialization and SW reset */
1718 	ret = stmmac_init_dma_engine(priv);
1719 	if (ret < 0) {
1720 		pr_err("%s: DMA engine initialization failed\n", __func__);
1721 		return ret;
1722 	}
1723 
1724 	/* Copy the MAC addr into the HW  */
1725 	priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1726 
1727 	/* If required, perform hw setup of the bus. */
1728 	if (priv->plat->bus_setup)
1729 		priv->plat->bus_setup(priv->ioaddr);
1730 
1731 	/* Initialize the MAC Core */
1732 	priv->hw->mac->core_init(priv->hw, dev->mtu);
1733 
1734 	ret = priv->hw->mac->rx_ipc(priv->hw);
1735 	if (!ret) {
1736 		pr_warn(" RX IPC Checksum Offload disabled\n");
1737 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1738 		priv->hw->rx_csum = 0;
1739 	}
1740 
1741 	/* Enable the MAC Rx/Tx */
1742 	stmmac_set_mac(priv->ioaddr, true);
1743 
1744 	/* Set the HW DMA mode and the COE */
1745 	stmmac_dma_operation_mode(priv);
1746 
1747 	stmmac_mmc_setup(priv);
1748 
1749 	if (init_ptp) {
1750 		ret = stmmac_init_ptp(priv);
1751 		if (ret && ret != -EOPNOTSUPP)
1752 			pr_warn("%s: failed PTP initialisation\n", __func__);
1753 	}
1754 
1755 #ifdef CONFIG_DEBUG_FS
1756 	ret = stmmac_init_fs(dev);
1757 	if (ret < 0)
1758 		pr_warn("%s: failed debugFS registration\n", __func__);
1759 #endif
1760 	/* Start the ball rolling... */
1761 	pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1762 	priv->hw->dma->start_tx(priv->ioaddr);
1763 	priv->hw->dma->start_rx(priv->ioaddr);
1764 
1765 	/* Dump DMA/MAC registers */
1766 	if (netif_msg_hw(priv)) {
1767 		priv->hw->mac->dump_regs(priv->hw);
1768 		priv->hw->dma->dump_regs(priv->ioaddr);
1769 	}
1770 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1771 
1772 	if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1773 		priv->rx_riwt = MAX_DMA_RIWT;
1774 		priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1775 	}
1776 
1777 	if (priv->pcs && priv->hw->mac->ctrl_ane)
1778 		priv->hw->mac->ctrl_ane(priv->hw, 0);
1779 
1780 	return 0;
1781 }
1782 
1783 /**
1784  *  stmmac_open - open entry point of the driver
1785  *  @dev : pointer to the device structure.
1786  *  Description:
1787  *  This function is the open entry point of the driver.
1788  *  Return value:
1789  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1790  *  file on failure.
1791  */
1792 static int stmmac_open(struct net_device *dev)
1793 {
1794 	struct stmmac_priv *priv = netdev_priv(dev);
1795 	int ret;
1796 
1797 	stmmac_check_ether_addr(priv);
1798 
1799 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1800 	    priv->pcs != STMMAC_PCS_RTBI) {
1801 		ret = stmmac_init_phy(dev);
1802 		if (ret) {
1803 			pr_err("%s: Cannot attach to PHY (error: %d)\n",
1804 			       __func__, ret);
1805 			return ret;
1806 		}
1807 	}
1808 
1809 	/* Extra statistics */
1810 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1811 	priv->xstats.threshold = tc;
1812 
1813 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1814 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
1815 
1816 	ret = alloc_dma_desc_resources(priv);
1817 	if (ret < 0) {
1818 		pr_err("%s: DMA descriptors allocation failed\n", __func__);
1819 		goto dma_desc_error;
1820 	}
1821 
1822 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
1823 	if (ret < 0) {
1824 		pr_err("%s: DMA descriptors initialization failed\n", __func__);
1825 		goto init_error;
1826 	}
1827 
1828 	ret = stmmac_hw_setup(dev, true);
1829 	if (ret < 0) {
1830 		pr_err("%s: Hw setup failed\n", __func__);
1831 		goto init_error;
1832 	}
1833 
1834 	stmmac_init_tx_coalesce(priv);
1835 
1836 	if (priv->phydev)
1837 		phy_start(priv->phydev);
1838 
1839 	/* Request the IRQ lines */
1840 	ret = request_irq(dev->irq, stmmac_interrupt,
1841 			  IRQF_SHARED, dev->name, dev);
1842 	if (unlikely(ret < 0)) {
1843 		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1844 		       __func__, dev->irq, ret);
1845 		goto init_error;
1846 	}
1847 
1848 	/* Request the Wake IRQ in case of another line is used for WoL */
1849 	if (priv->wol_irq != dev->irq) {
1850 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
1851 				  IRQF_SHARED, dev->name, dev);
1852 		if (unlikely(ret < 0)) {
1853 			pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1854 			       __func__, priv->wol_irq, ret);
1855 			goto wolirq_error;
1856 		}
1857 	}
1858 
1859 	/* Request the IRQ lines */
1860 	if (priv->lpi_irq > 0) {
1861 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1862 				  dev->name, dev);
1863 		if (unlikely(ret < 0)) {
1864 			pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1865 			       __func__, priv->lpi_irq, ret);
1866 			goto lpiirq_error;
1867 		}
1868 	}
1869 
1870 	napi_enable(&priv->napi);
1871 	netif_start_queue(dev);
1872 
1873 	return 0;
1874 
1875 lpiirq_error:
1876 	if (priv->wol_irq != dev->irq)
1877 		free_irq(priv->wol_irq, dev);
1878 wolirq_error:
1879 	free_irq(dev->irq, dev);
1880 
1881 init_error:
1882 	free_dma_desc_resources(priv);
1883 dma_desc_error:
1884 	if (priv->phydev)
1885 		phy_disconnect(priv->phydev);
1886 
1887 	return ret;
1888 }
1889 
1890 /**
1891  *  stmmac_release - close entry point of the driver
1892  *  @dev : device pointer.
1893  *  Description:
1894  *  This is the stop entry point of the driver.
1895  */
1896 static int stmmac_release(struct net_device *dev)
1897 {
1898 	struct stmmac_priv *priv = netdev_priv(dev);
1899 
1900 	if (priv->eee_enabled)
1901 		del_timer_sync(&priv->eee_ctrl_timer);
1902 
1903 	/* Stop and disconnect the PHY */
1904 	if (priv->phydev) {
1905 		phy_stop(priv->phydev);
1906 		phy_disconnect(priv->phydev);
1907 		priv->phydev = NULL;
1908 	}
1909 
1910 	netif_stop_queue(dev);
1911 
1912 	napi_disable(&priv->napi);
1913 
1914 	del_timer_sync(&priv->txtimer);
1915 
1916 	/* Free the IRQ lines */
1917 	free_irq(dev->irq, dev);
1918 	if (priv->wol_irq != dev->irq)
1919 		free_irq(priv->wol_irq, dev);
1920 	if (priv->lpi_irq > 0)
1921 		free_irq(priv->lpi_irq, dev);
1922 
1923 	/* Stop TX/RX DMA and clear the descriptors */
1924 	priv->hw->dma->stop_tx(priv->ioaddr);
1925 	priv->hw->dma->stop_rx(priv->ioaddr);
1926 
1927 	/* Release and free the Rx/Tx resources */
1928 	free_dma_desc_resources(priv);
1929 
1930 	/* Disable the MAC Rx/Tx */
1931 	stmmac_set_mac(priv->ioaddr, false);
1932 
1933 	netif_carrier_off(dev);
1934 
1935 #ifdef CONFIG_DEBUG_FS
1936 	stmmac_exit_fs(dev);
1937 #endif
1938 
1939 	stmmac_release_ptp(priv);
1940 
1941 	return 0;
1942 }
1943 
1944 /**
1945  *  stmmac_xmit - Tx entry point of the driver
1946  *  @skb : the socket buffer
1947  *  @dev : device pointer
1948  *  Description : this is the tx entry point of the driver.
1949  *  It programs the chain or the ring and supports oversized frames
1950  *  and SG feature.
1951  */
1952 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1953 {
1954 	struct stmmac_priv *priv = netdev_priv(dev);
1955 	unsigned int nopaged_len = skb_headlen(skb);
1956 	int i, csum_insertion = 0, is_jumbo = 0;
1957 	int nfrags = skb_shinfo(skb)->nr_frags;
1958 	unsigned int entry, first_entry;
1959 	struct dma_desc *desc, *first;
1960 	unsigned int enh_desc;
1961 
1962 	spin_lock(&priv->tx_lock);
1963 
1964 	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1965 		spin_unlock(&priv->tx_lock);
1966 		if (!netif_queue_stopped(dev)) {
1967 			netif_stop_queue(dev);
1968 			/* This is a hard error, log it. */
1969 			pr_err("%s: Tx Ring full when queue awake\n", __func__);
1970 		}
1971 		return NETDEV_TX_BUSY;
1972 	}
1973 
1974 	if (priv->tx_path_in_lpi_mode)
1975 		stmmac_disable_eee_mode(priv);
1976 
1977 	entry = priv->cur_tx;
1978 	first_entry = entry;
1979 
1980 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1981 
1982 	if (likely(priv->extend_desc))
1983 		desc = (struct dma_desc *)(priv->dma_etx + entry);
1984 	else
1985 		desc = priv->dma_tx + entry;
1986 
1987 	first = desc;
1988 
1989 	priv->tx_skbuff[first_entry] = skb;
1990 
1991 	enh_desc = priv->plat->enh_desc;
1992 	/* To program the descriptors according to the size of the frame */
1993 	if (enh_desc)
1994 		is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
1995 
1996 	if (unlikely(is_jumbo)) {
1997 		entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
1998 		if (unlikely(entry < 0))
1999 			goto dma_map_err;
2000 	}
2001 
2002 	for (i = 0; i < nfrags; i++) {
2003 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2004 		int len = skb_frag_size(frag);
2005 		bool last_segment = (i == (nfrags - 1));
2006 
2007 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2008 
2009 		if (likely(priv->extend_desc))
2010 			desc = (struct dma_desc *)(priv->dma_etx + entry);
2011 		else
2012 			desc = priv->dma_tx + entry;
2013 
2014 		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
2015 					      DMA_TO_DEVICE);
2016 		if (dma_mapping_error(priv->device, desc->des2))
2017 			goto dma_map_err; /* should reuse desc w/o issues */
2018 
2019 		priv->tx_skbuff[entry] = NULL;
2020 		priv->tx_skbuff_dma[entry].buf = desc->des2;
2021 		priv->tx_skbuff_dma[entry].map_as_page = true;
2022 		priv->tx_skbuff_dma[entry].len = len;
2023 		priv->tx_skbuff_dma[entry].last_segment = last_segment;
2024 
2025 		/* Prepare the descriptor and set the own bit too */
2026 		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
2027 						priv->mode, 1, last_segment);
2028 	}
2029 
2030 	entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2031 
2032 	priv->cur_tx = entry;
2033 
2034 	if (netif_msg_pktdata(priv)) {
2035 		pr_debug("%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
2036 			 __func__, priv->cur_tx, priv->dirty_tx, first_entry,
2037 			 entry, first, nfrags);
2038 
2039 		if (priv->extend_desc)
2040 			stmmac_display_ring((void *)priv->dma_etx,
2041 					    DMA_TX_SIZE, 1);
2042 		else
2043 			stmmac_display_ring((void *)priv->dma_tx,
2044 					    DMA_TX_SIZE, 0);
2045 
2046 		pr_debug(">>> frame to be transmitted: ");
2047 		print_pkt(skb->data, skb->len);
2048 	}
2049 
2050 	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2051 		if (netif_msg_hw(priv))
2052 			pr_debug("%s: stop transmitted packets\n", __func__);
2053 		netif_stop_queue(dev);
2054 	}
2055 
2056 	dev->stats.tx_bytes += skb->len;
2057 
2058 	/* According to the coalesce parameter the IC bit for the latest
2059 	 * segment is reset and the timer re-started to clean the tx status.
2060 	 * This approach takes care about the fragments: desc is the first
2061 	 * element in case of no SG.
2062 	 */
2063 	priv->tx_count_frames += nfrags + 1;
2064 	if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
2065 		mod_timer(&priv->txtimer,
2066 			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
2067 	} else {
2068 		priv->tx_count_frames = 0;
2069 		priv->hw->desc->set_tx_ic(desc);
2070 		priv->xstats.tx_set_ic_bit++;
2071 	}
2072 
2073 	if (!priv->hwts_tx_en)
2074 		skb_tx_timestamp(skb);
2075 
2076 	/* Ready to fill the first descriptor and set the OWN bit w/o any
2077 	 * problems because all the descriptors are actually ready to be
2078 	 * passed to the DMA engine.
2079 	 */
2080 	if (likely(!is_jumbo)) {
2081 		bool last_segment = (nfrags == 0);
2082 
2083 		first->des2 = dma_map_single(priv->device, skb->data,
2084 					     nopaged_len, DMA_TO_DEVICE);
2085 		if (dma_mapping_error(priv->device, first->des2))
2086 			goto dma_map_err;
2087 
2088 		priv->tx_skbuff_dma[first_entry].buf = first->des2;
2089 		priv->tx_skbuff_dma[first_entry].len = nopaged_len;
2090 		priv->tx_skbuff_dma[first_entry].last_segment = last_segment;
2091 
2092 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2093 			     priv->hwts_tx_en)) {
2094 			/* declare that device is doing timestamping */
2095 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2096 			priv->hw->desc->enable_tx_timestamp(first);
2097 		}
2098 
2099 		/* Prepare the first descriptor setting the OWN bit too */
2100 		priv->hw->desc->prepare_tx_desc(first, 1, nopaged_len,
2101 						csum_insertion, priv->mode, 1,
2102 						last_segment);
2103 
2104 		/* The own bit must be the latest setting done when prepare the
2105 		 * descriptor and then barrier is needed to make sure that
2106 		 * all is coherent before granting the DMA engine.
2107 		 */
2108 		smp_wmb();
2109 	}
2110 
2111 	netdev_sent_queue(dev, skb->len);
2112 	priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2113 
2114 	spin_unlock(&priv->tx_lock);
2115 	return NETDEV_TX_OK;
2116 
2117 dma_map_err:
2118 	spin_unlock(&priv->tx_lock);
2119 	dev_err(priv->device, "Tx dma map failed\n");
2120 	dev_kfree_skb(skb);
2121 	priv->dev->stats.tx_dropped++;
2122 	return NETDEV_TX_OK;
2123 }
2124 
2125 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2126 {
2127 	struct ethhdr *ehdr;
2128 	u16 vlanid;
2129 
2130 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2131 	    NETIF_F_HW_VLAN_CTAG_RX &&
2132 	    !__vlan_get_tag(skb, &vlanid)) {
2133 		/* pop the vlan tag */
2134 		ehdr = (struct ethhdr *)skb->data;
2135 		memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2136 		skb_pull(skb, VLAN_HLEN);
2137 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2138 	}
2139 }
2140 
2141 
2142 static inline int stmmac_rx_threshold_count(struct stmmac_priv *priv)
2143 {
2144 	if (priv->rx_zeroc_thresh < STMMAC_RX_THRESH)
2145 		return 0;
2146 
2147 	return 1;
2148 }
2149 
2150 /**
2151  * stmmac_rx_refill - refill used skb preallocated buffers
2152  * @priv: driver private structure
2153  * Description : this is to reallocate the skb for the reception process
2154  * that is based on zero-copy.
2155  */
2156 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2157 {
2158 	int bfsize = priv->dma_buf_sz;
2159 	unsigned int entry = priv->dirty_rx;
2160 	int dirty = stmmac_rx_dirty(priv);
2161 
2162 	while (dirty-- > 0) {
2163 		struct dma_desc *p;
2164 
2165 		if (priv->extend_desc)
2166 			p = (struct dma_desc *)(priv->dma_erx + entry);
2167 		else
2168 			p = priv->dma_rx + entry;
2169 
2170 		if (likely(priv->rx_skbuff[entry] == NULL)) {
2171 			struct sk_buff *skb;
2172 
2173 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2174 			if (unlikely(!skb)) {
2175 				/* so for a while no zero-copy! */
2176 				priv->rx_zeroc_thresh = STMMAC_RX_THRESH;
2177 				if (unlikely(net_ratelimit()))
2178 					dev_err(priv->device,
2179 						"fail to alloc skb entry %d\n",
2180 						entry);
2181 				break;
2182 			}
2183 
2184 			priv->rx_skbuff[entry] = skb;
2185 			priv->rx_skbuff_dma[entry] =
2186 			    dma_map_single(priv->device, skb->data, bfsize,
2187 					   DMA_FROM_DEVICE);
2188 			if (dma_mapping_error(priv->device,
2189 					      priv->rx_skbuff_dma[entry])) {
2190 				dev_err(priv->device, "Rx dma map failed\n");
2191 				dev_kfree_skb(skb);
2192 				break;
2193 			}
2194 			p->des2 = priv->rx_skbuff_dma[entry];
2195 
2196 			priv->hw->mode->refill_desc3(priv, p);
2197 
2198 			if (priv->rx_zeroc_thresh > 0)
2199 				priv->rx_zeroc_thresh--;
2200 
2201 			if (netif_msg_rx_status(priv))
2202 				pr_debug("\trefill entry #%d\n", entry);
2203 		}
2204 
2205 		wmb();
2206 		priv->hw->desc->set_rx_owner(p);
2207 		wmb();
2208 
2209 		entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
2210 	}
2211 	priv->dirty_rx = entry;
2212 }
2213 
2214 /**
2215  * stmmac_rx - manage the receive process
2216  * @priv: driver private structure
2217  * @limit: napi bugget.
2218  * Description :  this the function called by the napi poll method.
2219  * It gets all the frames inside the ring.
2220  */
2221 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2222 {
2223 	unsigned int entry = priv->cur_rx;
2224 	unsigned int next_entry;
2225 	unsigned int count = 0;
2226 	int coe = priv->hw->rx_csum;
2227 
2228 	if (netif_msg_rx_status(priv)) {
2229 		pr_debug("%s: descriptor ring:\n", __func__);
2230 		if (priv->extend_desc)
2231 			stmmac_display_ring((void *)priv->dma_erx,
2232 					    DMA_RX_SIZE, 1);
2233 		else
2234 			stmmac_display_ring((void *)priv->dma_rx,
2235 					    DMA_RX_SIZE, 0);
2236 	}
2237 	while (count < limit) {
2238 		int status;
2239 		struct dma_desc *p;
2240 
2241 		if (priv->extend_desc)
2242 			p = (struct dma_desc *)(priv->dma_erx + entry);
2243 		else
2244 			p = priv->dma_rx + entry;
2245 
2246 		/* read the status of the incoming frame */
2247 		status = priv->hw->desc->rx_status(&priv->dev->stats,
2248 						   &priv->xstats, p);
2249 		/* check if managed by the DMA otherwise go ahead */
2250 		if (unlikely(status & dma_own))
2251 			break;
2252 
2253 		count++;
2254 
2255 		priv->cur_rx = STMMAC_GET_ENTRY(priv->cur_rx, DMA_RX_SIZE);
2256 		next_entry = priv->cur_rx;
2257 
2258 		if (priv->extend_desc)
2259 			prefetch(priv->dma_erx + next_entry);
2260 		else
2261 			prefetch(priv->dma_rx + next_entry);
2262 
2263 		if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2264 			priv->hw->desc->rx_extended_status(&priv->dev->stats,
2265 							   &priv->xstats,
2266 							   priv->dma_erx +
2267 							   entry);
2268 		if (unlikely(status == discard_frame)) {
2269 			priv->dev->stats.rx_errors++;
2270 			if (priv->hwts_rx_en && !priv->extend_desc) {
2271 				/* DESC2 & DESC3 will be overwitten by device
2272 				 * with timestamp value, hence reinitialize
2273 				 * them in stmmac_rx_refill() function so that
2274 				 * device can reuse it.
2275 				 */
2276 				priv->rx_skbuff[entry] = NULL;
2277 				dma_unmap_single(priv->device,
2278 						 priv->rx_skbuff_dma[entry],
2279 						 priv->dma_buf_sz,
2280 						 DMA_FROM_DEVICE);
2281 			}
2282 		} else {
2283 			struct sk_buff *skb;
2284 			int frame_len;
2285 
2286 			frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2287 
2288 			/*  check if frame_len fits the preallocated memory */
2289 			if (frame_len > priv->dma_buf_sz) {
2290 				priv->dev->stats.rx_length_errors++;
2291 				break;
2292 			}
2293 
2294 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2295 			 * Type frames (LLC/LLC-SNAP)
2296 			 */
2297 			if (unlikely(status != llc_snap))
2298 				frame_len -= ETH_FCS_LEN;
2299 
2300 			if (netif_msg_rx_status(priv)) {
2301 				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2302 					 p, entry, p->des2);
2303 				if (frame_len > ETH_FRAME_LEN)
2304 					pr_debug("\tframe size %d, COE: %d\n",
2305 						 frame_len, status);
2306 			}
2307 
2308 			if (unlikely((frame_len < priv->rx_copybreak) ||
2309 				     stmmac_rx_threshold_count(priv))) {
2310 				skb = netdev_alloc_skb_ip_align(priv->dev,
2311 								frame_len);
2312 				if (unlikely(!skb)) {
2313 					if (net_ratelimit())
2314 						dev_warn(priv->device,
2315 							 "packet dropped\n");
2316 					priv->dev->stats.rx_dropped++;
2317 					break;
2318 				}
2319 
2320 				dma_sync_single_for_cpu(priv->device,
2321 							priv->rx_skbuff_dma
2322 							[entry], frame_len,
2323 							DMA_FROM_DEVICE);
2324 				skb_copy_to_linear_data(skb,
2325 							priv->
2326 							rx_skbuff[entry]->data,
2327 							frame_len);
2328 
2329 				skb_put(skb, frame_len);
2330 				dma_sync_single_for_device(priv->device,
2331 							   priv->rx_skbuff_dma
2332 							   [entry], frame_len,
2333 							   DMA_FROM_DEVICE);
2334 			} else {
2335 				skb = priv->rx_skbuff[entry];
2336 				if (unlikely(!skb)) {
2337 					pr_err("%s: Inconsistent Rx chain\n",
2338 					       priv->dev->name);
2339 					priv->dev->stats.rx_dropped++;
2340 					break;
2341 				}
2342 				prefetch(skb->data - NET_IP_ALIGN);
2343 				priv->rx_skbuff[entry] = NULL;
2344 				priv->rx_zeroc_thresh++;
2345 
2346 				skb_put(skb, frame_len);
2347 				dma_unmap_single(priv->device,
2348 						 priv->rx_skbuff_dma[entry],
2349 						 priv->dma_buf_sz,
2350 						 DMA_FROM_DEVICE);
2351 			}
2352 
2353 			stmmac_get_rx_hwtstamp(priv, entry, skb);
2354 
2355 			if (netif_msg_pktdata(priv)) {
2356 				pr_debug("frame received (%dbytes)", frame_len);
2357 				print_pkt(skb->data, frame_len);
2358 			}
2359 
2360 			stmmac_rx_vlan(priv->dev, skb);
2361 
2362 			skb->protocol = eth_type_trans(skb, priv->dev);
2363 
2364 			if (unlikely(!coe))
2365 				skb_checksum_none_assert(skb);
2366 			else
2367 				skb->ip_summed = CHECKSUM_UNNECESSARY;
2368 
2369 			napi_gro_receive(&priv->napi, skb);
2370 
2371 			priv->dev->stats.rx_packets++;
2372 			priv->dev->stats.rx_bytes += frame_len;
2373 		}
2374 		entry = next_entry;
2375 	}
2376 
2377 	stmmac_rx_refill(priv);
2378 
2379 	priv->xstats.rx_pkt_n += count;
2380 
2381 	return count;
2382 }
2383 
2384 /**
2385  *  stmmac_poll - stmmac poll method (NAPI)
2386  *  @napi : pointer to the napi structure.
2387  *  @budget : maximum number of packets that the current CPU can receive from
2388  *	      all interfaces.
2389  *  Description :
2390  *  To look at the incoming frames and clear the tx resources.
2391  */
2392 static int stmmac_poll(struct napi_struct *napi, int budget)
2393 {
2394 	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2395 	int work_done = 0;
2396 
2397 	priv->xstats.napi_poll++;
2398 	stmmac_tx_clean(priv);
2399 
2400 	work_done = stmmac_rx(priv, budget);
2401 	if (work_done < budget) {
2402 		napi_complete(napi);
2403 		stmmac_enable_dma_irq(priv);
2404 	}
2405 	return work_done;
2406 }
2407 
2408 /**
2409  *  stmmac_tx_timeout
2410  *  @dev : Pointer to net device structure
2411  *  Description: this function is called when a packet transmission fails to
2412  *   complete within a reasonable time. The driver will mark the error in the
2413  *   netdev structure and arrange for the device to be reset to a sane state
2414  *   in order to transmit a new packet.
2415  */
2416 static void stmmac_tx_timeout(struct net_device *dev)
2417 {
2418 	struct stmmac_priv *priv = netdev_priv(dev);
2419 
2420 	/* Clear Tx resources and restart transmitting again */
2421 	stmmac_tx_err(priv);
2422 }
2423 
2424 /**
2425  *  stmmac_set_rx_mode - entry point for multicast addressing
2426  *  @dev : pointer to the device structure
2427  *  Description:
2428  *  This function is a driver entry point which gets called by the kernel
2429  *  whenever multicast addresses must be enabled/disabled.
2430  *  Return value:
2431  *  void.
2432  */
2433 static void stmmac_set_rx_mode(struct net_device *dev)
2434 {
2435 	struct stmmac_priv *priv = netdev_priv(dev);
2436 
2437 	priv->hw->mac->set_filter(priv->hw, dev);
2438 }
2439 
2440 /**
2441  *  stmmac_change_mtu - entry point to change MTU size for the device.
2442  *  @dev : device pointer.
2443  *  @new_mtu : the new MTU size for the device.
2444  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
2445  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
2446  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
2447  *  Return value:
2448  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2449  *  file on failure.
2450  */
2451 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2452 {
2453 	struct stmmac_priv *priv = netdev_priv(dev);
2454 	int max_mtu;
2455 
2456 	if (netif_running(dev)) {
2457 		pr_err("%s: must be stopped to change its MTU\n", dev->name);
2458 		return -EBUSY;
2459 	}
2460 
2461 	if (priv->plat->enh_desc)
2462 		max_mtu = JUMBO_LEN;
2463 	else
2464 		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2465 
2466 	if (priv->plat->maxmtu < max_mtu)
2467 		max_mtu = priv->plat->maxmtu;
2468 
2469 	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2470 		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2471 		return -EINVAL;
2472 	}
2473 
2474 	dev->mtu = new_mtu;
2475 	netdev_update_features(dev);
2476 
2477 	return 0;
2478 }
2479 
2480 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2481 					     netdev_features_t features)
2482 {
2483 	struct stmmac_priv *priv = netdev_priv(dev);
2484 
2485 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2486 		features &= ~NETIF_F_RXCSUM;
2487 
2488 	if (!priv->plat->tx_coe)
2489 		features &= ~NETIF_F_CSUM_MASK;
2490 
2491 	/* Some GMAC devices have a bugged Jumbo frame support that
2492 	 * needs to have the Tx COE disabled for oversized frames
2493 	 * (due to limited buffer sizes). In this case we disable
2494 	 * the TX csum insertionin the TDES and not use SF.
2495 	 */
2496 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2497 		features &= ~NETIF_F_CSUM_MASK;
2498 
2499 	return features;
2500 }
2501 
2502 static int stmmac_set_features(struct net_device *netdev,
2503 			       netdev_features_t features)
2504 {
2505 	struct stmmac_priv *priv = netdev_priv(netdev);
2506 
2507 	/* Keep the COE Type in case of csum is supporting */
2508 	if (features & NETIF_F_RXCSUM)
2509 		priv->hw->rx_csum = priv->plat->rx_coe;
2510 	else
2511 		priv->hw->rx_csum = 0;
2512 	/* No check needed because rx_coe has been set before and it will be
2513 	 * fixed in case of issue.
2514 	 */
2515 	priv->hw->mac->rx_ipc(priv->hw);
2516 
2517 	return 0;
2518 }
2519 
2520 /**
2521  *  stmmac_interrupt - main ISR
2522  *  @irq: interrupt number.
2523  *  @dev_id: to pass the net device pointer.
2524  *  Description: this is the main driver interrupt service routine.
2525  *  It can call:
2526  *  o DMA service routine (to manage incoming frame reception and transmission
2527  *    status)
2528  *  o Core interrupts to manage: remote wake-up, management counter, LPI
2529  *    interrupts.
2530  */
2531 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2532 {
2533 	struct net_device *dev = (struct net_device *)dev_id;
2534 	struct stmmac_priv *priv = netdev_priv(dev);
2535 
2536 	if (priv->irq_wake)
2537 		pm_wakeup_event(priv->device, 0);
2538 
2539 	if (unlikely(!dev)) {
2540 		pr_err("%s: invalid dev pointer\n", __func__);
2541 		return IRQ_NONE;
2542 	}
2543 
2544 	/* To handle GMAC own interrupts */
2545 	if (priv->plat->has_gmac) {
2546 		int status = priv->hw->mac->host_irq_status(priv->hw,
2547 							    &priv->xstats);
2548 		if (unlikely(status)) {
2549 			/* For LPI we need to save the tx status */
2550 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2551 				priv->tx_path_in_lpi_mode = true;
2552 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2553 				priv->tx_path_in_lpi_mode = false;
2554 		}
2555 	}
2556 
2557 	/* To handle DMA interrupts */
2558 	stmmac_dma_interrupt(priv);
2559 
2560 	return IRQ_HANDLED;
2561 }
2562 
2563 #ifdef CONFIG_NET_POLL_CONTROLLER
2564 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2565  * to allow network I/O with interrupts disabled.
2566  */
2567 static void stmmac_poll_controller(struct net_device *dev)
2568 {
2569 	disable_irq(dev->irq);
2570 	stmmac_interrupt(dev->irq, dev);
2571 	enable_irq(dev->irq);
2572 }
2573 #endif
2574 
2575 /**
2576  *  stmmac_ioctl - Entry point for the Ioctl
2577  *  @dev: Device pointer.
2578  *  @rq: An IOCTL specefic structure, that can contain a pointer to
2579  *  a proprietary structure used to pass information to the driver.
2580  *  @cmd: IOCTL command
2581  *  Description:
2582  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2583  */
2584 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2585 {
2586 	struct stmmac_priv *priv = netdev_priv(dev);
2587 	int ret = -EOPNOTSUPP;
2588 
2589 	if (!netif_running(dev))
2590 		return -EINVAL;
2591 
2592 	switch (cmd) {
2593 	case SIOCGMIIPHY:
2594 	case SIOCGMIIREG:
2595 	case SIOCSMIIREG:
2596 		if (!priv->phydev)
2597 			return -EINVAL;
2598 		ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2599 		break;
2600 	case SIOCSHWTSTAMP:
2601 		ret = stmmac_hwtstamp_ioctl(dev, rq);
2602 		break;
2603 	default:
2604 		break;
2605 	}
2606 
2607 	return ret;
2608 }
2609 
2610 #ifdef CONFIG_DEBUG_FS
2611 static struct dentry *stmmac_fs_dir;
2612 
2613 static void sysfs_display_ring(void *head, int size, int extend_desc,
2614 			       struct seq_file *seq)
2615 {
2616 	int i;
2617 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2618 	struct dma_desc *p = (struct dma_desc *)head;
2619 
2620 	for (i = 0; i < size; i++) {
2621 		u64 x;
2622 		if (extend_desc) {
2623 			x = *(u64 *) ep;
2624 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2625 				   i, (unsigned int)virt_to_phys(ep),
2626 				   (unsigned int)x, (unsigned int)(x >> 32),
2627 				   ep->basic.des2, ep->basic.des3);
2628 			ep++;
2629 		} else {
2630 			x = *(u64 *) p;
2631 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2632 				   i, (unsigned int)virt_to_phys(ep),
2633 				   (unsigned int)x, (unsigned int)(x >> 32),
2634 				   p->des2, p->des3);
2635 			p++;
2636 		}
2637 		seq_printf(seq, "\n");
2638 	}
2639 }
2640 
2641 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2642 {
2643 	struct net_device *dev = seq->private;
2644 	struct stmmac_priv *priv = netdev_priv(dev);
2645 
2646 	if (priv->extend_desc) {
2647 		seq_printf(seq, "Extended RX descriptor ring:\n");
2648 		sysfs_display_ring((void *)priv->dma_erx, DMA_RX_SIZE, 1, seq);
2649 		seq_printf(seq, "Extended TX descriptor ring:\n");
2650 		sysfs_display_ring((void *)priv->dma_etx, DMA_TX_SIZE, 1, seq);
2651 	} else {
2652 		seq_printf(seq, "RX descriptor ring:\n");
2653 		sysfs_display_ring((void *)priv->dma_rx, DMA_RX_SIZE, 0, seq);
2654 		seq_printf(seq, "TX descriptor ring:\n");
2655 		sysfs_display_ring((void *)priv->dma_tx, DMA_TX_SIZE, 0, seq);
2656 	}
2657 
2658 	return 0;
2659 }
2660 
2661 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2662 {
2663 	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2664 }
2665 
2666 static const struct file_operations stmmac_rings_status_fops = {
2667 	.owner = THIS_MODULE,
2668 	.open = stmmac_sysfs_ring_open,
2669 	.read = seq_read,
2670 	.llseek = seq_lseek,
2671 	.release = single_release,
2672 };
2673 
2674 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2675 {
2676 	struct net_device *dev = seq->private;
2677 	struct stmmac_priv *priv = netdev_priv(dev);
2678 
2679 	if (!priv->hw_cap_support) {
2680 		seq_printf(seq, "DMA HW features not supported\n");
2681 		return 0;
2682 	}
2683 
2684 	seq_printf(seq, "==============================\n");
2685 	seq_printf(seq, "\tDMA HW features\n");
2686 	seq_printf(seq, "==============================\n");
2687 
2688 	seq_printf(seq, "\t10/100 Mbps %s\n",
2689 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2690 	seq_printf(seq, "\t1000 Mbps %s\n",
2691 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
2692 	seq_printf(seq, "\tHalf duple %s\n",
2693 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
2694 	seq_printf(seq, "\tHash Filter: %s\n",
2695 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
2696 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2697 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
2698 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2699 		   (priv->dma_cap.pcs) ? "Y" : "N");
2700 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2701 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
2702 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
2703 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2704 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
2705 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2706 	seq_printf(seq, "\tRMON module: %s\n",
2707 		   (priv->dma_cap.rmon) ? "Y" : "N");
2708 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2709 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
2710 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2711 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
2712 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2713 		   (priv->dma_cap.eee) ? "Y" : "N");
2714 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2715 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2716 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
2717 	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2718 		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2719 	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2720 		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2721 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2722 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2723 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2724 		   priv->dma_cap.number_rx_channel);
2725 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2726 		   priv->dma_cap.number_tx_channel);
2727 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
2728 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
2729 
2730 	return 0;
2731 }
2732 
2733 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2734 {
2735 	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2736 }
2737 
2738 static const struct file_operations stmmac_dma_cap_fops = {
2739 	.owner = THIS_MODULE,
2740 	.open = stmmac_sysfs_dma_cap_open,
2741 	.read = seq_read,
2742 	.llseek = seq_lseek,
2743 	.release = single_release,
2744 };
2745 
2746 static int stmmac_init_fs(struct net_device *dev)
2747 {
2748 	struct stmmac_priv *priv = netdev_priv(dev);
2749 
2750 	/* Create per netdev entries */
2751 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
2752 
2753 	if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
2754 		pr_err("ERROR %s/%s, debugfs create directory failed\n",
2755 		       STMMAC_RESOURCE_NAME, dev->name);
2756 
2757 		return -ENOMEM;
2758 	}
2759 
2760 	/* Entry to report DMA RX/TX rings */
2761 	priv->dbgfs_rings_status =
2762 		debugfs_create_file("descriptors_status", S_IRUGO,
2763 				    priv->dbgfs_dir, dev,
2764 				    &stmmac_rings_status_fops);
2765 
2766 	if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
2767 		pr_info("ERROR creating stmmac ring debugfs file\n");
2768 		debugfs_remove_recursive(priv->dbgfs_dir);
2769 
2770 		return -ENOMEM;
2771 	}
2772 
2773 	/* Entry to report the DMA HW features */
2774 	priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
2775 					    priv->dbgfs_dir,
2776 					    dev, &stmmac_dma_cap_fops);
2777 
2778 	if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
2779 		pr_info("ERROR creating stmmac MMC debugfs file\n");
2780 		debugfs_remove_recursive(priv->dbgfs_dir);
2781 
2782 		return -ENOMEM;
2783 	}
2784 
2785 	return 0;
2786 }
2787 
2788 static void stmmac_exit_fs(struct net_device *dev)
2789 {
2790 	struct stmmac_priv *priv = netdev_priv(dev);
2791 
2792 	debugfs_remove_recursive(priv->dbgfs_dir);
2793 }
2794 #endif /* CONFIG_DEBUG_FS */
2795 
2796 static const struct net_device_ops stmmac_netdev_ops = {
2797 	.ndo_open = stmmac_open,
2798 	.ndo_start_xmit = stmmac_xmit,
2799 	.ndo_stop = stmmac_release,
2800 	.ndo_change_mtu = stmmac_change_mtu,
2801 	.ndo_fix_features = stmmac_fix_features,
2802 	.ndo_set_features = stmmac_set_features,
2803 	.ndo_set_rx_mode = stmmac_set_rx_mode,
2804 	.ndo_tx_timeout = stmmac_tx_timeout,
2805 	.ndo_do_ioctl = stmmac_ioctl,
2806 #ifdef CONFIG_NET_POLL_CONTROLLER
2807 	.ndo_poll_controller = stmmac_poll_controller,
2808 #endif
2809 	.ndo_set_mac_address = eth_mac_addr,
2810 };
2811 
2812 /**
2813  *  stmmac_hw_init - Init the MAC device
2814  *  @priv: driver private structure
2815  *  Description: this function is to configure the MAC device according to
2816  *  some platform parameters or the HW capability register. It prepares the
2817  *  driver to use either ring or chain modes and to setup either enhanced or
2818  *  normal descriptors.
2819  */
2820 static int stmmac_hw_init(struct stmmac_priv *priv)
2821 {
2822 	struct mac_device_info *mac;
2823 
2824 	/* Identify the MAC HW device */
2825 	if (priv->plat->has_gmac) {
2826 		priv->dev->priv_flags |= IFF_UNICAST_FLT;
2827 		mac = dwmac1000_setup(priv->ioaddr,
2828 				      priv->plat->multicast_filter_bins,
2829 				      priv->plat->unicast_filter_entries);
2830 	} else {
2831 		mac = dwmac100_setup(priv->ioaddr);
2832 	}
2833 	if (!mac)
2834 		return -ENOMEM;
2835 
2836 	priv->hw = mac;
2837 
2838 	/* Get and dump the chip ID */
2839 	priv->synopsys_id = stmmac_get_synopsys_id(priv);
2840 
2841 	/* To use the chained or ring mode */
2842 	if (chain_mode) {
2843 		priv->hw->mode = &chain_mode_ops;
2844 		pr_info(" Chain mode enabled\n");
2845 		priv->mode = STMMAC_CHAIN_MODE;
2846 	} else {
2847 		priv->hw->mode = &ring_mode_ops;
2848 		pr_info(" Ring mode enabled\n");
2849 		priv->mode = STMMAC_RING_MODE;
2850 	}
2851 
2852 	/* Get the HW capability (new GMAC newer than 3.50a) */
2853 	priv->hw_cap_support = stmmac_get_hw_features(priv);
2854 	if (priv->hw_cap_support) {
2855 		pr_info(" DMA HW capability register supported");
2856 
2857 		/* We can override some gmac/dma configuration fields: e.g.
2858 		 * enh_desc, tx_coe (e.g. that are passed through the
2859 		 * platform) with the values from the HW capability
2860 		 * register (if supported).
2861 		 */
2862 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
2863 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2864 
2865 		/* TXCOE doesn't work in thresh DMA mode */
2866 		if (priv->plat->force_thresh_dma_mode)
2867 			priv->plat->tx_coe = 0;
2868 		else
2869 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
2870 
2871 		if (priv->dma_cap.rx_coe_type2)
2872 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2873 		else if (priv->dma_cap.rx_coe_type1)
2874 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2875 
2876 	} else
2877 		pr_info(" No HW DMA feature register supported");
2878 
2879 	/* To use alternate (extended) or normal descriptor structures */
2880 	stmmac_selec_desc_mode(priv);
2881 
2882 	if (priv->plat->rx_coe) {
2883 		priv->hw->rx_csum = priv->plat->rx_coe;
2884 		pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2885 			priv->plat->rx_coe);
2886 	}
2887 	if (priv->plat->tx_coe)
2888 		pr_info(" TX Checksum insertion supported\n");
2889 
2890 	if (priv->plat->pmt) {
2891 		pr_info(" Wake-Up On Lan supported\n");
2892 		device_set_wakeup_capable(priv->device, 1);
2893 	}
2894 
2895 	return 0;
2896 }
2897 
2898 /**
2899  * stmmac_dvr_probe
2900  * @device: device pointer
2901  * @plat_dat: platform data pointer
2902  * @res: stmmac resource pointer
2903  * Description: this is the main probe function used to
2904  * call the alloc_etherdev, allocate the priv structure.
2905  * Return:
2906  * returns 0 on success, otherwise errno.
2907  */
2908 int stmmac_dvr_probe(struct device *device,
2909 		     struct plat_stmmacenet_data *plat_dat,
2910 		     struct stmmac_resources *res)
2911 {
2912 	int ret = 0;
2913 	struct net_device *ndev = NULL;
2914 	struct stmmac_priv *priv;
2915 
2916 	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2917 	if (!ndev)
2918 		return -ENOMEM;
2919 
2920 	SET_NETDEV_DEV(ndev, device);
2921 
2922 	priv = netdev_priv(ndev);
2923 	priv->device = device;
2924 	priv->dev = ndev;
2925 
2926 	stmmac_set_ethtool_ops(ndev);
2927 	priv->pause = pause;
2928 	priv->plat = plat_dat;
2929 	priv->ioaddr = res->addr;
2930 	priv->dev->base_addr = (unsigned long)res->addr;
2931 
2932 	priv->dev->irq = res->irq;
2933 	priv->wol_irq = res->wol_irq;
2934 	priv->lpi_irq = res->lpi_irq;
2935 
2936 	if (res->mac)
2937 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
2938 
2939 	dev_set_drvdata(device, priv->dev);
2940 
2941 	/* Verify driver arguments */
2942 	stmmac_verify_args();
2943 
2944 	/* Override with kernel parameters if supplied XXX CRS XXX
2945 	 * this needs to have multiple instances
2946 	 */
2947 	if ((phyaddr >= 0) && (phyaddr <= 31))
2948 		priv->plat->phy_addr = phyaddr;
2949 
2950 	priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
2951 	if (IS_ERR(priv->stmmac_clk)) {
2952 		dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
2953 			 __func__);
2954 		/* If failed to obtain stmmac_clk and specific clk_csr value
2955 		 * is NOT passed from the platform, probe fail.
2956 		 */
2957 		if (!priv->plat->clk_csr) {
2958 			ret = PTR_ERR(priv->stmmac_clk);
2959 			goto error_clk_get;
2960 		} else {
2961 			priv->stmmac_clk = NULL;
2962 		}
2963 	}
2964 	clk_prepare_enable(priv->stmmac_clk);
2965 
2966 	priv->pclk = devm_clk_get(priv->device, "pclk");
2967 	if (IS_ERR(priv->pclk)) {
2968 		if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) {
2969 			ret = -EPROBE_DEFER;
2970 			goto error_pclk_get;
2971 		}
2972 		priv->pclk = NULL;
2973 	}
2974 	clk_prepare_enable(priv->pclk);
2975 
2976 	priv->stmmac_rst = devm_reset_control_get(priv->device,
2977 						  STMMAC_RESOURCE_NAME);
2978 	if (IS_ERR(priv->stmmac_rst)) {
2979 		if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
2980 			ret = -EPROBE_DEFER;
2981 			goto error_hw_init;
2982 		}
2983 		dev_info(priv->device, "no reset control found\n");
2984 		priv->stmmac_rst = NULL;
2985 	}
2986 	if (priv->stmmac_rst)
2987 		reset_control_deassert(priv->stmmac_rst);
2988 
2989 	/* Init MAC and get the capabilities */
2990 	ret = stmmac_hw_init(priv);
2991 	if (ret)
2992 		goto error_hw_init;
2993 
2994 	ndev->netdev_ops = &stmmac_netdev_ops;
2995 
2996 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2997 			    NETIF_F_RXCSUM;
2998 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2999 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
3000 #ifdef STMMAC_VLAN_TAG_USED
3001 	/* Both mac100 and gmac support receive VLAN tag detection */
3002 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3003 #endif
3004 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
3005 
3006 	if (flow_ctrl)
3007 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
3008 
3009 	/* Rx Watchdog is available in the COREs newer than the 3.40.
3010 	 * In some case, for example on bugged HW this feature
3011 	 * has to be disable and this can be done by passing the
3012 	 * riwt_off field from the platform.
3013 	 */
3014 	if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
3015 		priv->use_riwt = 1;
3016 		pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
3017 	}
3018 
3019 	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
3020 
3021 	spin_lock_init(&priv->lock);
3022 	spin_lock_init(&priv->tx_lock);
3023 
3024 	ret = register_netdev(ndev);
3025 	if (ret) {
3026 		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
3027 		goto error_netdev_register;
3028 	}
3029 
3030 	/* If a specific clk_csr value is passed from the platform
3031 	 * this means that the CSR Clock Range selection cannot be
3032 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
3033 	 * set the MDC clock dynamically according to the csr actual
3034 	 * clock input.
3035 	 */
3036 	if (!priv->plat->clk_csr)
3037 		stmmac_clk_csr_set(priv);
3038 	else
3039 		priv->clk_csr = priv->plat->clk_csr;
3040 
3041 	stmmac_check_pcs_mode(priv);
3042 
3043 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
3044 	    priv->pcs != STMMAC_PCS_RTBI) {
3045 		/* MDIO bus Registration */
3046 		ret = stmmac_mdio_register(ndev);
3047 		if (ret < 0) {
3048 			pr_debug("%s: MDIO bus (id: %d) registration failed",
3049 				 __func__, priv->plat->bus_id);
3050 			goto error_mdio_register;
3051 		}
3052 	}
3053 
3054 	return 0;
3055 
3056 error_mdio_register:
3057 	unregister_netdev(ndev);
3058 error_netdev_register:
3059 	netif_napi_del(&priv->napi);
3060 error_hw_init:
3061 	clk_disable_unprepare(priv->pclk);
3062 error_pclk_get:
3063 	clk_disable_unprepare(priv->stmmac_clk);
3064 error_clk_get:
3065 	free_netdev(ndev);
3066 
3067 	return ret;
3068 }
3069 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
3070 
3071 /**
3072  * stmmac_dvr_remove
3073  * @ndev: net device pointer
3074  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
3075  * changes the link status, releases the DMA descriptor rings.
3076  */
3077 int stmmac_dvr_remove(struct net_device *ndev)
3078 {
3079 	struct stmmac_priv *priv = netdev_priv(ndev);
3080 
3081 	pr_info("%s:\n\tremoving driver", __func__);
3082 
3083 	priv->hw->dma->stop_rx(priv->ioaddr);
3084 	priv->hw->dma->stop_tx(priv->ioaddr);
3085 
3086 	stmmac_set_mac(priv->ioaddr, false);
3087 	netif_carrier_off(ndev);
3088 	unregister_netdev(ndev);
3089 	if (priv->stmmac_rst)
3090 		reset_control_assert(priv->stmmac_rst);
3091 	clk_disable_unprepare(priv->pclk);
3092 	clk_disable_unprepare(priv->stmmac_clk);
3093 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
3094 	    priv->pcs != STMMAC_PCS_RTBI)
3095 		stmmac_mdio_unregister(ndev);
3096 	free_netdev(ndev);
3097 
3098 	return 0;
3099 }
3100 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
3101 
3102 /**
3103  * stmmac_suspend - suspend callback
3104  * @ndev: net device pointer
3105  * Description: this is the function to suspend the device and it is called
3106  * by the platform driver to stop the network queue, release the resources,
3107  * program the PMT register (for WoL), clean and release driver resources.
3108  */
3109 int stmmac_suspend(struct net_device *ndev)
3110 {
3111 	struct stmmac_priv *priv = netdev_priv(ndev);
3112 	unsigned long flags;
3113 
3114 	if (!ndev || !netif_running(ndev))
3115 		return 0;
3116 
3117 	if (priv->phydev)
3118 		phy_stop(priv->phydev);
3119 
3120 	spin_lock_irqsave(&priv->lock, flags);
3121 
3122 	netif_device_detach(ndev);
3123 	netif_stop_queue(ndev);
3124 
3125 	napi_disable(&priv->napi);
3126 
3127 	/* Stop TX/RX DMA */
3128 	priv->hw->dma->stop_tx(priv->ioaddr);
3129 	priv->hw->dma->stop_rx(priv->ioaddr);
3130 
3131 	/* Enable Power down mode by programming the PMT regs */
3132 	if (device_may_wakeup(priv->device)) {
3133 		priv->hw->mac->pmt(priv->hw, priv->wolopts);
3134 		priv->irq_wake = 1;
3135 	} else {
3136 		stmmac_set_mac(priv->ioaddr, false);
3137 		pinctrl_pm_select_sleep_state(priv->device);
3138 		/* Disable clock in case of PWM is off */
3139 		clk_disable(priv->pclk);
3140 		clk_disable(priv->stmmac_clk);
3141 	}
3142 	spin_unlock_irqrestore(&priv->lock, flags);
3143 
3144 	priv->oldlink = 0;
3145 	priv->speed = 0;
3146 	priv->oldduplex = -1;
3147 	return 0;
3148 }
3149 EXPORT_SYMBOL_GPL(stmmac_suspend);
3150 
3151 /**
3152  * stmmac_resume - resume callback
3153  * @ndev: net device pointer
3154  * Description: when resume this function is invoked to setup the DMA and CORE
3155  * in a usable state.
3156  */
3157 int stmmac_resume(struct net_device *ndev)
3158 {
3159 	struct stmmac_priv *priv = netdev_priv(ndev);
3160 	unsigned long flags;
3161 
3162 	if (!netif_running(ndev))
3163 		return 0;
3164 
3165 	spin_lock_irqsave(&priv->lock, flags);
3166 
3167 	/* Power Down bit, into the PM register, is cleared
3168 	 * automatically as soon as a magic packet or a Wake-up frame
3169 	 * is received. Anyway, it's better to manually clear
3170 	 * this bit because it can generate problems while resuming
3171 	 * from another devices (e.g. serial console).
3172 	 */
3173 	if (device_may_wakeup(priv->device)) {
3174 		priv->hw->mac->pmt(priv->hw, 0);
3175 		priv->irq_wake = 0;
3176 	} else {
3177 		pinctrl_pm_select_default_state(priv->device);
3178 		/* enable the clk prevously disabled */
3179 		clk_enable(priv->stmmac_clk);
3180 		clk_enable(priv->pclk);
3181 		/* reset the phy so that it's ready */
3182 		if (priv->mii)
3183 			stmmac_mdio_reset(priv->mii);
3184 	}
3185 
3186 	netif_device_attach(ndev);
3187 
3188 	priv->cur_rx = 0;
3189 	priv->dirty_rx = 0;
3190 	priv->dirty_tx = 0;
3191 	priv->cur_tx = 0;
3192 	stmmac_clear_descriptors(priv);
3193 
3194 	stmmac_hw_setup(ndev, false);
3195 	stmmac_init_tx_coalesce(priv);
3196 	stmmac_set_rx_mode(ndev);
3197 
3198 	napi_enable(&priv->napi);
3199 
3200 	netif_start_queue(ndev);
3201 
3202 	spin_unlock_irqrestore(&priv->lock, flags);
3203 
3204 	if (priv->phydev)
3205 		phy_start(priv->phydev);
3206 
3207 	return 0;
3208 }
3209 EXPORT_SYMBOL_GPL(stmmac_resume);
3210 
3211 #ifndef MODULE
3212 static int __init stmmac_cmdline_opt(char *str)
3213 {
3214 	char *opt;
3215 
3216 	if (!str || !*str)
3217 		return -EINVAL;
3218 	while ((opt = strsep(&str, ",")) != NULL) {
3219 		if (!strncmp(opt, "debug:", 6)) {
3220 			if (kstrtoint(opt + 6, 0, &debug))
3221 				goto err;
3222 		} else if (!strncmp(opt, "phyaddr:", 8)) {
3223 			if (kstrtoint(opt + 8, 0, &phyaddr))
3224 				goto err;
3225 		} else if (!strncmp(opt, "buf_sz:", 7)) {
3226 			if (kstrtoint(opt + 7, 0, &buf_sz))
3227 				goto err;
3228 		} else if (!strncmp(opt, "tc:", 3)) {
3229 			if (kstrtoint(opt + 3, 0, &tc))
3230 				goto err;
3231 		} else if (!strncmp(opt, "watchdog:", 9)) {
3232 			if (kstrtoint(opt + 9, 0, &watchdog))
3233 				goto err;
3234 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
3235 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
3236 				goto err;
3237 		} else if (!strncmp(opt, "pause:", 6)) {
3238 			if (kstrtoint(opt + 6, 0, &pause))
3239 				goto err;
3240 		} else if (!strncmp(opt, "eee_timer:", 10)) {
3241 			if (kstrtoint(opt + 10, 0, &eee_timer))
3242 				goto err;
3243 		} else if (!strncmp(opt, "chain_mode:", 11)) {
3244 			if (kstrtoint(opt + 11, 0, &chain_mode))
3245 				goto err;
3246 		}
3247 	}
3248 	return 0;
3249 
3250 err:
3251 	pr_err("%s: ERROR broken module parameter conversion", __func__);
3252 	return -EINVAL;
3253 }
3254 
3255 __setup("stmmaceth=", stmmac_cmdline_opt);
3256 #endif /* MODULE */
3257 
3258 static int __init stmmac_init(void)
3259 {
3260 #ifdef CONFIG_DEBUG_FS
3261 	/* Create debugfs main directory if it doesn't exist yet */
3262 	if (!stmmac_fs_dir) {
3263 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
3264 
3265 		if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
3266 			pr_err("ERROR %s, debugfs create directory failed\n",
3267 			       STMMAC_RESOURCE_NAME);
3268 
3269 			return -ENOMEM;
3270 		}
3271 	}
3272 #endif
3273 
3274 	return 0;
3275 }
3276 
3277 static void __exit stmmac_exit(void)
3278 {
3279 #ifdef CONFIG_DEBUG_FS
3280 	debugfs_remove_recursive(stmmac_fs_dir);
3281 #endif
3282 }
3283 
3284 module_init(stmmac_init)
3285 module_exit(stmmac_exit)
3286 
3287 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3288 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3289 MODULE_LICENSE("GPL");
3290