xref: /openbmc/linux/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c (revision 3d40aed862874db14e1dd41fd6f12636dcfdcc3e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/pkt_cls.h>
43 #include <net/xdp_sock_drv.h>
44 #include "stmmac_ptp.h"
45 #include "stmmac.h"
46 #include "stmmac_xdp.h"
47 #include <linux/reset.h>
48 #include <linux/of_mdio.h>
49 #include "dwmac1000.h"
50 #include "dwxgmac2.h"
51 #include "hwif.h"
52 
53 /* As long as the interface is active, we keep the timestamping counter enabled
54  * with fine resolution and binary rollover. This avoid non-monotonic behavior
55  * (clock jumps) when changing timestamping settings at runtime.
56  */
57 #define STMMAC_HWTS_ACTIVE	(PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
58 				 PTP_TCR_TSCTRLSSR)
59 
60 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
61 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
62 
63 /* Module parameters */
64 #define TX_TIMEO	5000
65 static int watchdog = TX_TIMEO;
66 module_param(watchdog, int, 0644);
67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
68 
69 static int debug = -1;
70 module_param(debug, int, 0644);
71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
72 
73 static int phyaddr = -1;
74 module_param(phyaddr, int, 0444);
75 MODULE_PARM_DESC(phyaddr, "Physical device address");
76 
77 #define STMMAC_TX_THRESH(x)	((x)->dma_conf.dma_tx_size / 4)
78 #define STMMAC_RX_THRESH(x)	((x)->dma_conf.dma_rx_size / 4)
79 
80 /* Limit to make sure XDP TX and slow path can coexist */
81 #define STMMAC_XSK_TX_BUDGET_MAX	256
82 #define STMMAC_TX_XSK_AVAIL		16
83 #define STMMAC_RX_FILL_BATCH		16
84 
85 #define STMMAC_XDP_PASS		0
86 #define STMMAC_XDP_CONSUMED	BIT(0)
87 #define STMMAC_XDP_TX		BIT(1)
88 #define STMMAC_XDP_REDIRECT	BIT(2)
89 
90 static int flow_ctrl = FLOW_AUTO;
91 module_param(flow_ctrl, int, 0644);
92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
93 
94 static int pause = PAUSE_TIME;
95 module_param(pause, int, 0644);
96 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
97 
98 #define TC_DEFAULT 64
99 static int tc = TC_DEFAULT;
100 module_param(tc, int, 0644);
101 MODULE_PARM_DESC(tc, "DMA threshold control value");
102 
103 #define	DEFAULT_BUFSIZE	1536
104 static int buf_sz = DEFAULT_BUFSIZE;
105 module_param(buf_sz, int, 0644);
106 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
107 
108 #define	STMMAC_RX_COPYBREAK	256
109 
110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
111 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
112 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
113 
114 #define STMMAC_DEFAULT_LPI_TIMER	1000
115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
116 module_param(eee_timer, int, 0644);
117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
119 
120 /* By default the driver will use the ring mode to manage tx and rx descriptors,
121  * but allow user to force to use the chain instead of the ring
122  */
123 static unsigned int chain_mode;
124 module_param(chain_mode, int, 0444);
125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
126 
127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
128 /* For MSI interrupts handling */
129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
133 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue);
134 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue);
135 static void stmmac_reset_queues_param(struct stmmac_priv *priv);
136 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
137 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
138 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
139 					  u32 rxmode, u32 chan);
140 
141 #ifdef CONFIG_DEBUG_FS
142 static const struct net_device_ops stmmac_netdev_ops;
143 static void stmmac_init_fs(struct net_device *dev);
144 static void stmmac_exit_fs(struct net_device *dev);
145 #endif
146 
147 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
148 
149 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
150 {
151 	int ret = 0;
152 
153 	if (enabled) {
154 		ret = clk_prepare_enable(priv->plat->stmmac_clk);
155 		if (ret)
156 			return ret;
157 		ret = clk_prepare_enable(priv->plat->pclk);
158 		if (ret) {
159 			clk_disable_unprepare(priv->plat->stmmac_clk);
160 			return ret;
161 		}
162 		if (priv->plat->clks_config) {
163 			ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
164 			if (ret) {
165 				clk_disable_unprepare(priv->plat->stmmac_clk);
166 				clk_disable_unprepare(priv->plat->pclk);
167 				return ret;
168 			}
169 		}
170 	} else {
171 		clk_disable_unprepare(priv->plat->stmmac_clk);
172 		clk_disable_unprepare(priv->plat->pclk);
173 		if (priv->plat->clks_config)
174 			priv->plat->clks_config(priv->plat->bsp_priv, enabled);
175 	}
176 
177 	return ret;
178 }
179 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
180 
181 /**
182  * stmmac_verify_args - verify the driver parameters.
183  * Description: it checks the driver parameters and set a default in case of
184  * errors.
185  */
186 static void stmmac_verify_args(void)
187 {
188 	if (unlikely(watchdog < 0))
189 		watchdog = TX_TIMEO;
190 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
191 		buf_sz = DEFAULT_BUFSIZE;
192 	if (unlikely(flow_ctrl > 1))
193 		flow_ctrl = FLOW_AUTO;
194 	else if (likely(flow_ctrl < 0))
195 		flow_ctrl = FLOW_OFF;
196 	if (unlikely((pause < 0) || (pause > 0xffff)))
197 		pause = PAUSE_TIME;
198 	if (eee_timer < 0)
199 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
200 }
201 
202 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
203 {
204 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
205 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
206 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
207 	u32 queue;
208 
209 	for (queue = 0; queue < maxq; queue++) {
210 		struct stmmac_channel *ch = &priv->channel[queue];
211 
212 		if (stmmac_xdp_is_enabled(priv) &&
213 		    test_bit(queue, priv->af_xdp_zc_qps)) {
214 			napi_disable(&ch->rxtx_napi);
215 			continue;
216 		}
217 
218 		if (queue < rx_queues_cnt)
219 			napi_disable(&ch->rx_napi);
220 		if (queue < tx_queues_cnt)
221 			napi_disable(&ch->tx_napi);
222 	}
223 }
224 
225 /**
226  * stmmac_disable_all_queues - Disable all queues
227  * @priv: driver private structure
228  */
229 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
230 {
231 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
232 	struct stmmac_rx_queue *rx_q;
233 	u32 queue;
234 
235 	/* synchronize_rcu() needed for pending XDP buffers to drain */
236 	for (queue = 0; queue < rx_queues_cnt; queue++) {
237 		rx_q = &priv->dma_conf.rx_queue[queue];
238 		if (rx_q->xsk_pool) {
239 			synchronize_rcu();
240 			break;
241 		}
242 	}
243 
244 	__stmmac_disable_all_queues(priv);
245 }
246 
247 /**
248  * stmmac_enable_all_queues - Enable all queues
249  * @priv: driver private structure
250  */
251 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
252 {
253 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
254 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
255 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
256 	u32 queue;
257 
258 	for (queue = 0; queue < maxq; queue++) {
259 		struct stmmac_channel *ch = &priv->channel[queue];
260 
261 		if (stmmac_xdp_is_enabled(priv) &&
262 		    test_bit(queue, priv->af_xdp_zc_qps)) {
263 			napi_enable(&ch->rxtx_napi);
264 			continue;
265 		}
266 
267 		if (queue < rx_queues_cnt)
268 			napi_enable(&ch->rx_napi);
269 		if (queue < tx_queues_cnt)
270 			napi_enable(&ch->tx_napi);
271 	}
272 }
273 
274 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
275 {
276 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
277 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
278 		queue_work(priv->wq, &priv->service_task);
279 }
280 
281 static void stmmac_global_err(struct stmmac_priv *priv)
282 {
283 	netif_carrier_off(priv->dev);
284 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
285 	stmmac_service_event_schedule(priv);
286 }
287 
288 /**
289  * stmmac_clk_csr_set - dynamically set the MDC clock
290  * @priv: driver private structure
291  * Description: this is to dynamically set the MDC clock according to the csr
292  * clock input.
293  * Note:
294  *	If a specific clk_csr value is passed from the platform
295  *	this means that the CSR Clock Range selection cannot be
296  *	changed at run-time and it is fixed (as reported in the driver
297  *	documentation). Viceversa the driver will try to set the MDC
298  *	clock dynamically according to the actual clock input.
299  */
300 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
301 {
302 	u32 clk_rate;
303 
304 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
305 
306 	/* Platform provided default clk_csr would be assumed valid
307 	 * for all other cases except for the below mentioned ones.
308 	 * For values higher than the IEEE 802.3 specified frequency
309 	 * we can not estimate the proper divider as it is not known
310 	 * the frequency of clk_csr_i. So we do not change the default
311 	 * divider.
312 	 */
313 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
314 		if (clk_rate < CSR_F_35M)
315 			priv->clk_csr = STMMAC_CSR_20_35M;
316 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
317 			priv->clk_csr = STMMAC_CSR_35_60M;
318 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
319 			priv->clk_csr = STMMAC_CSR_60_100M;
320 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
321 			priv->clk_csr = STMMAC_CSR_100_150M;
322 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
323 			priv->clk_csr = STMMAC_CSR_150_250M;
324 		else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
325 			priv->clk_csr = STMMAC_CSR_250_300M;
326 	}
327 
328 	if (priv->plat->flags & STMMAC_FLAG_HAS_SUN8I) {
329 		if (clk_rate > 160000000)
330 			priv->clk_csr = 0x03;
331 		else if (clk_rate > 80000000)
332 			priv->clk_csr = 0x02;
333 		else if (clk_rate > 40000000)
334 			priv->clk_csr = 0x01;
335 		else
336 			priv->clk_csr = 0;
337 	}
338 
339 	if (priv->plat->has_xgmac) {
340 		if (clk_rate > 400000000)
341 			priv->clk_csr = 0x5;
342 		else if (clk_rate > 350000000)
343 			priv->clk_csr = 0x4;
344 		else if (clk_rate > 300000000)
345 			priv->clk_csr = 0x3;
346 		else if (clk_rate > 250000000)
347 			priv->clk_csr = 0x2;
348 		else if (clk_rate > 150000000)
349 			priv->clk_csr = 0x1;
350 		else
351 			priv->clk_csr = 0x0;
352 	}
353 }
354 
355 static void print_pkt(unsigned char *buf, int len)
356 {
357 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
358 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
359 }
360 
361 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
362 {
363 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
364 	u32 avail;
365 
366 	if (tx_q->dirty_tx > tx_q->cur_tx)
367 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
368 	else
369 		avail = priv->dma_conf.dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
370 
371 	return avail;
372 }
373 
374 /**
375  * stmmac_rx_dirty - Get RX queue dirty
376  * @priv: driver private structure
377  * @queue: RX queue index
378  */
379 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
380 {
381 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
382 	u32 dirty;
383 
384 	if (rx_q->dirty_rx <= rx_q->cur_rx)
385 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
386 	else
387 		dirty = priv->dma_conf.dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
388 
389 	return dirty;
390 }
391 
392 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
393 {
394 	int tx_lpi_timer;
395 
396 	/* Clear/set the SW EEE timer flag based on LPI ET enablement */
397 	priv->eee_sw_timer_en = en ? 0 : 1;
398 	tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
399 	stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
400 }
401 
402 /**
403  * stmmac_enable_eee_mode - check and enter in LPI mode
404  * @priv: driver private structure
405  * Description: this function is to verify and enter in LPI mode in case of
406  * EEE.
407  */
408 static int stmmac_enable_eee_mode(struct stmmac_priv *priv)
409 {
410 	u32 tx_cnt = priv->plat->tx_queues_to_use;
411 	u32 queue;
412 
413 	/* check if all TX queues have the work finished */
414 	for (queue = 0; queue < tx_cnt; queue++) {
415 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
416 
417 		if (tx_q->dirty_tx != tx_q->cur_tx)
418 			return -EBUSY; /* still unfinished work */
419 	}
420 
421 	/* Check and enter in LPI mode */
422 	if (!priv->tx_path_in_lpi_mode)
423 		stmmac_set_eee_mode(priv, priv->hw,
424 			priv->plat->flags & STMMAC_FLAG_EN_TX_LPI_CLOCKGATING);
425 	return 0;
426 }
427 
428 /**
429  * stmmac_disable_eee_mode - disable and exit from LPI mode
430  * @priv: driver private structure
431  * Description: this function is to exit and disable EEE in case of
432  * LPI state is true. This is called by the xmit.
433  */
434 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
435 {
436 	if (!priv->eee_sw_timer_en) {
437 		stmmac_lpi_entry_timer_config(priv, 0);
438 		return;
439 	}
440 
441 	stmmac_reset_eee_mode(priv, priv->hw);
442 	del_timer_sync(&priv->eee_ctrl_timer);
443 	priv->tx_path_in_lpi_mode = false;
444 }
445 
446 /**
447  * stmmac_eee_ctrl_timer - EEE TX SW timer.
448  * @t:  timer_list struct containing private info
449  * Description:
450  *  if there is no data transfer and if we are not in LPI state,
451  *  then MAC Transmitter can be moved to LPI state.
452  */
453 static void stmmac_eee_ctrl_timer(struct timer_list *t)
454 {
455 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
456 
457 	if (stmmac_enable_eee_mode(priv))
458 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
459 }
460 
461 /**
462  * stmmac_eee_init - init EEE
463  * @priv: driver private structure
464  * Description:
465  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
466  *  can also manage EEE, this function enable the LPI state and start related
467  *  timer.
468  */
469 bool stmmac_eee_init(struct stmmac_priv *priv)
470 {
471 	int eee_tw_timer = priv->eee_tw_timer;
472 
473 	/* Using PCS we cannot dial with the phy registers at this stage
474 	 * so we do not support extra feature like EEE.
475 	 */
476 	if (priv->hw->pcs == STMMAC_PCS_TBI ||
477 	    priv->hw->pcs == STMMAC_PCS_RTBI)
478 		return false;
479 
480 	/* Check if MAC core supports the EEE feature. */
481 	if (!priv->dma_cap.eee)
482 		return false;
483 
484 	mutex_lock(&priv->lock);
485 
486 	/* Check if it needs to be deactivated */
487 	if (!priv->eee_active) {
488 		if (priv->eee_enabled) {
489 			netdev_dbg(priv->dev, "disable EEE\n");
490 			stmmac_lpi_entry_timer_config(priv, 0);
491 			del_timer_sync(&priv->eee_ctrl_timer);
492 			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
493 			if (priv->hw->xpcs)
494 				xpcs_config_eee(priv->hw->xpcs,
495 						priv->plat->mult_fact_100ns,
496 						false);
497 		}
498 		mutex_unlock(&priv->lock);
499 		return false;
500 	}
501 
502 	if (priv->eee_active && !priv->eee_enabled) {
503 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
504 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
505 				     eee_tw_timer);
506 		if (priv->hw->xpcs)
507 			xpcs_config_eee(priv->hw->xpcs,
508 					priv->plat->mult_fact_100ns,
509 					true);
510 	}
511 
512 	if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
513 		del_timer_sync(&priv->eee_ctrl_timer);
514 		priv->tx_path_in_lpi_mode = false;
515 		stmmac_lpi_entry_timer_config(priv, 1);
516 	} else {
517 		stmmac_lpi_entry_timer_config(priv, 0);
518 		mod_timer(&priv->eee_ctrl_timer,
519 			  STMMAC_LPI_T(priv->tx_lpi_timer));
520 	}
521 
522 	mutex_unlock(&priv->lock);
523 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
524 	return true;
525 }
526 
527 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
528  * @priv: driver private structure
529  * @p : descriptor pointer
530  * @skb : the socket buffer
531  * Description :
532  * This function will read timestamp from the descriptor & pass it to stack.
533  * and also perform some sanity checks.
534  */
535 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
536 				   struct dma_desc *p, struct sk_buff *skb)
537 {
538 	struct skb_shared_hwtstamps shhwtstamp;
539 	bool found = false;
540 	u64 ns = 0;
541 
542 	if (!priv->hwts_tx_en)
543 		return;
544 
545 	/* exit if skb doesn't support hw tstamp */
546 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
547 		return;
548 
549 	/* check tx tstamp status */
550 	if (stmmac_get_tx_timestamp_status(priv, p)) {
551 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
552 		found = true;
553 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
554 		found = true;
555 	}
556 
557 	if (found) {
558 		ns -= priv->plat->cdc_error_adj;
559 
560 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
561 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
562 
563 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
564 		/* pass tstamp to stack */
565 		skb_tstamp_tx(skb, &shhwtstamp);
566 	}
567 }
568 
569 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
570  * @priv: driver private structure
571  * @p : descriptor pointer
572  * @np : next descriptor pointer
573  * @skb : the socket buffer
574  * Description :
575  * This function will read received packet's timestamp from the descriptor
576  * and pass it to stack. It also perform some sanity checks.
577  */
578 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
579 				   struct dma_desc *np, struct sk_buff *skb)
580 {
581 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
582 	struct dma_desc *desc = p;
583 	u64 ns = 0;
584 
585 	if (!priv->hwts_rx_en)
586 		return;
587 	/* For GMAC4, the valid timestamp is from CTX next desc. */
588 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
589 		desc = np;
590 
591 	/* Check if timestamp is available */
592 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
593 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
594 
595 		ns -= priv->plat->cdc_error_adj;
596 
597 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
598 		shhwtstamp = skb_hwtstamps(skb);
599 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
600 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
601 	} else  {
602 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
603 	}
604 }
605 
606 /**
607  *  stmmac_hwtstamp_set - control hardware timestamping.
608  *  @dev: device pointer.
609  *  @ifr: An IOCTL specific structure, that can contain a pointer to
610  *  a proprietary structure used to pass information to the driver.
611  *  Description:
612  *  This function configures the MAC to enable/disable both outgoing(TX)
613  *  and incoming(RX) packets time stamping based on user input.
614  *  Return Value:
615  *  0 on success and an appropriate -ve integer on failure.
616  */
617 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
618 {
619 	struct stmmac_priv *priv = netdev_priv(dev);
620 	struct hwtstamp_config config;
621 	u32 ptp_v2 = 0;
622 	u32 tstamp_all = 0;
623 	u32 ptp_over_ipv4_udp = 0;
624 	u32 ptp_over_ipv6_udp = 0;
625 	u32 ptp_over_ethernet = 0;
626 	u32 snap_type_sel = 0;
627 	u32 ts_master_en = 0;
628 	u32 ts_event_en = 0;
629 
630 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
631 		netdev_alert(priv->dev, "No support for HW time stamping\n");
632 		priv->hwts_tx_en = 0;
633 		priv->hwts_rx_en = 0;
634 
635 		return -EOPNOTSUPP;
636 	}
637 
638 	if (copy_from_user(&config, ifr->ifr_data,
639 			   sizeof(config)))
640 		return -EFAULT;
641 
642 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
643 		   __func__, config.flags, config.tx_type, config.rx_filter);
644 
645 	if (config.tx_type != HWTSTAMP_TX_OFF &&
646 	    config.tx_type != HWTSTAMP_TX_ON)
647 		return -ERANGE;
648 
649 	if (priv->adv_ts) {
650 		switch (config.rx_filter) {
651 		case HWTSTAMP_FILTER_NONE:
652 			/* time stamp no incoming packet at all */
653 			config.rx_filter = HWTSTAMP_FILTER_NONE;
654 			break;
655 
656 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
657 			/* PTP v1, UDP, any kind of event packet */
658 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
659 			/* 'xmac' hardware can support Sync, Pdelay_Req and
660 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
661 			 * This leaves Delay_Req timestamps out.
662 			 * Enable all events *and* general purpose message
663 			 * timestamping
664 			 */
665 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
666 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
667 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
668 			break;
669 
670 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
671 			/* PTP v1, UDP, Sync packet */
672 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
673 			/* take time stamp for SYNC messages only */
674 			ts_event_en = PTP_TCR_TSEVNTENA;
675 
676 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
677 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
678 			break;
679 
680 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
681 			/* PTP v1, UDP, Delay_req packet */
682 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
683 			/* take time stamp for Delay_Req messages only */
684 			ts_master_en = PTP_TCR_TSMSTRENA;
685 			ts_event_en = PTP_TCR_TSEVNTENA;
686 
687 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
688 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
689 			break;
690 
691 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
692 			/* PTP v2, UDP, any kind of event packet */
693 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
694 			ptp_v2 = PTP_TCR_TSVER2ENA;
695 			/* take time stamp for all event messages */
696 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
697 
698 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
699 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
700 			break;
701 
702 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
703 			/* PTP v2, UDP, Sync packet */
704 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
705 			ptp_v2 = PTP_TCR_TSVER2ENA;
706 			/* take time stamp for SYNC messages only */
707 			ts_event_en = PTP_TCR_TSEVNTENA;
708 
709 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
710 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
711 			break;
712 
713 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
714 			/* PTP v2, UDP, Delay_req packet */
715 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
716 			ptp_v2 = PTP_TCR_TSVER2ENA;
717 			/* take time stamp for Delay_Req messages only */
718 			ts_master_en = PTP_TCR_TSMSTRENA;
719 			ts_event_en = PTP_TCR_TSEVNTENA;
720 
721 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
722 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
723 			break;
724 
725 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
726 			/* PTP v2/802.AS1 any layer, any kind of event packet */
727 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
728 			ptp_v2 = PTP_TCR_TSVER2ENA;
729 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
730 			if (priv->synopsys_id < DWMAC_CORE_4_10)
731 				ts_event_en = PTP_TCR_TSEVNTENA;
732 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
733 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
734 			ptp_over_ethernet = PTP_TCR_TSIPENA;
735 			break;
736 
737 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
738 			/* PTP v2/802.AS1, any layer, Sync packet */
739 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
740 			ptp_v2 = PTP_TCR_TSVER2ENA;
741 			/* take time stamp for SYNC messages only */
742 			ts_event_en = PTP_TCR_TSEVNTENA;
743 
744 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
745 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
746 			ptp_over_ethernet = PTP_TCR_TSIPENA;
747 			break;
748 
749 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
750 			/* PTP v2/802.AS1, any layer, Delay_req packet */
751 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
752 			ptp_v2 = PTP_TCR_TSVER2ENA;
753 			/* take time stamp for Delay_Req messages only */
754 			ts_master_en = PTP_TCR_TSMSTRENA;
755 			ts_event_en = PTP_TCR_TSEVNTENA;
756 
757 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
758 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
759 			ptp_over_ethernet = PTP_TCR_TSIPENA;
760 			break;
761 
762 		case HWTSTAMP_FILTER_NTP_ALL:
763 		case HWTSTAMP_FILTER_ALL:
764 			/* time stamp any incoming packet */
765 			config.rx_filter = HWTSTAMP_FILTER_ALL;
766 			tstamp_all = PTP_TCR_TSENALL;
767 			break;
768 
769 		default:
770 			return -ERANGE;
771 		}
772 	} else {
773 		switch (config.rx_filter) {
774 		case HWTSTAMP_FILTER_NONE:
775 			config.rx_filter = HWTSTAMP_FILTER_NONE;
776 			break;
777 		default:
778 			/* PTP v1, UDP, any kind of event packet */
779 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
780 			break;
781 		}
782 	}
783 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
784 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
785 
786 	priv->systime_flags = STMMAC_HWTS_ACTIVE;
787 
788 	if (priv->hwts_tx_en || priv->hwts_rx_en) {
789 		priv->systime_flags |= tstamp_all | ptp_v2 |
790 				       ptp_over_ethernet | ptp_over_ipv6_udp |
791 				       ptp_over_ipv4_udp | ts_event_en |
792 				       ts_master_en | snap_type_sel;
793 	}
794 
795 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
796 
797 	memcpy(&priv->tstamp_config, &config, sizeof(config));
798 
799 	return copy_to_user(ifr->ifr_data, &config,
800 			    sizeof(config)) ? -EFAULT : 0;
801 }
802 
803 /**
804  *  stmmac_hwtstamp_get - read hardware timestamping.
805  *  @dev: device pointer.
806  *  @ifr: An IOCTL specific structure, that can contain a pointer to
807  *  a proprietary structure used to pass information to the driver.
808  *  Description:
809  *  This function obtain the current hardware timestamping settings
810  *  as requested.
811  */
812 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
813 {
814 	struct stmmac_priv *priv = netdev_priv(dev);
815 	struct hwtstamp_config *config = &priv->tstamp_config;
816 
817 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
818 		return -EOPNOTSUPP;
819 
820 	return copy_to_user(ifr->ifr_data, config,
821 			    sizeof(*config)) ? -EFAULT : 0;
822 }
823 
824 /**
825  * stmmac_init_tstamp_counter - init hardware timestamping counter
826  * @priv: driver private structure
827  * @systime_flags: timestamping flags
828  * Description:
829  * Initialize hardware counter for packet timestamping.
830  * This is valid as long as the interface is open and not suspended.
831  * Will be rerun after resuming from suspend, case in which the timestamping
832  * flags updated by stmmac_hwtstamp_set() also need to be restored.
833  */
834 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
835 {
836 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
837 	struct timespec64 now;
838 	u32 sec_inc = 0;
839 	u64 temp = 0;
840 
841 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
842 		return -EOPNOTSUPP;
843 
844 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
845 	priv->systime_flags = systime_flags;
846 
847 	/* program Sub Second Increment reg */
848 	stmmac_config_sub_second_increment(priv, priv->ptpaddr,
849 					   priv->plat->clk_ptp_rate,
850 					   xmac, &sec_inc);
851 	temp = div_u64(1000000000ULL, sec_inc);
852 
853 	/* Store sub second increment for later use */
854 	priv->sub_second_inc = sec_inc;
855 
856 	/* calculate default added value:
857 	 * formula is :
858 	 * addend = (2^32)/freq_div_ratio;
859 	 * where, freq_div_ratio = 1e9ns/sec_inc
860 	 */
861 	temp = (u64)(temp << 32);
862 	priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
863 	stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
864 
865 	/* initialize system time */
866 	ktime_get_real_ts64(&now);
867 
868 	/* lower 32 bits of tv_sec are safe until y2106 */
869 	stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
870 
871 	return 0;
872 }
873 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
874 
875 /**
876  * stmmac_init_ptp - init PTP
877  * @priv: driver private structure
878  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
879  * This is done by looking at the HW cap. register.
880  * This function also registers the ptp driver.
881  */
882 static int stmmac_init_ptp(struct stmmac_priv *priv)
883 {
884 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
885 	int ret;
886 
887 	if (priv->plat->ptp_clk_freq_config)
888 		priv->plat->ptp_clk_freq_config(priv);
889 
890 	ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
891 	if (ret)
892 		return ret;
893 
894 	priv->adv_ts = 0;
895 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
896 	if (xmac && priv->dma_cap.atime_stamp)
897 		priv->adv_ts = 1;
898 	/* Dwmac 3.x core with extend_desc can support adv_ts */
899 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
900 		priv->adv_ts = 1;
901 
902 	if (priv->dma_cap.time_stamp)
903 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
904 
905 	if (priv->adv_ts)
906 		netdev_info(priv->dev,
907 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
908 
909 	priv->hwts_tx_en = 0;
910 	priv->hwts_rx_en = 0;
911 
912 	return 0;
913 }
914 
915 static void stmmac_release_ptp(struct stmmac_priv *priv)
916 {
917 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
918 	stmmac_ptp_unregister(priv);
919 }
920 
921 /**
922  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
923  *  @priv: driver private structure
924  *  @duplex: duplex passed to the next function
925  *  Description: It is used for configuring the flow control in all queues
926  */
927 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
928 {
929 	u32 tx_cnt = priv->plat->tx_queues_to_use;
930 
931 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
932 			priv->pause, tx_cnt);
933 }
934 
935 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config,
936 						 phy_interface_t interface)
937 {
938 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
939 
940 	if (priv->hw->xpcs)
941 		return &priv->hw->xpcs->pcs;
942 
943 	if (priv->hw->lynx_pcs)
944 		return priv->hw->lynx_pcs;
945 
946 	return NULL;
947 }
948 
949 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
950 			      const struct phylink_link_state *state)
951 {
952 	/* Nothing to do, xpcs_config() handles everything */
953 }
954 
955 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
956 {
957 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
958 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
959 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
960 	bool *hs_enable = &fpe_cfg->hs_enable;
961 
962 	if (is_up && *hs_enable) {
963 		stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
964 	} else {
965 		*lo_state = FPE_STATE_OFF;
966 		*lp_state = FPE_STATE_OFF;
967 	}
968 }
969 
970 static void stmmac_mac_link_down(struct phylink_config *config,
971 				 unsigned int mode, phy_interface_t interface)
972 {
973 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
974 
975 	stmmac_mac_set(priv, priv->ioaddr, false);
976 	priv->eee_active = false;
977 	priv->tx_lpi_enabled = false;
978 	priv->eee_enabled = stmmac_eee_init(priv);
979 	stmmac_set_eee_pls(priv, priv->hw, false);
980 
981 	if (priv->dma_cap.fpesel)
982 		stmmac_fpe_link_state_handle(priv, false);
983 }
984 
985 static void stmmac_mac_link_up(struct phylink_config *config,
986 			       struct phy_device *phy,
987 			       unsigned int mode, phy_interface_t interface,
988 			       int speed, int duplex,
989 			       bool tx_pause, bool rx_pause)
990 {
991 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
992 	u32 old_ctrl, ctrl;
993 
994 	if ((priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) &&
995 	    priv->plat->serdes_powerup)
996 		priv->plat->serdes_powerup(priv->dev, priv->plat->bsp_priv);
997 
998 	old_ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
999 	ctrl = old_ctrl & ~priv->hw->link.speed_mask;
1000 
1001 	if (interface == PHY_INTERFACE_MODE_USXGMII) {
1002 		switch (speed) {
1003 		case SPEED_10000:
1004 			ctrl |= priv->hw->link.xgmii.speed10000;
1005 			break;
1006 		case SPEED_5000:
1007 			ctrl |= priv->hw->link.xgmii.speed5000;
1008 			break;
1009 		case SPEED_2500:
1010 			ctrl |= priv->hw->link.xgmii.speed2500;
1011 			break;
1012 		default:
1013 			return;
1014 		}
1015 	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1016 		switch (speed) {
1017 		case SPEED_100000:
1018 			ctrl |= priv->hw->link.xlgmii.speed100000;
1019 			break;
1020 		case SPEED_50000:
1021 			ctrl |= priv->hw->link.xlgmii.speed50000;
1022 			break;
1023 		case SPEED_40000:
1024 			ctrl |= priv->hw->link.xlgmii.speed40000;
1025 			break;
1026 		case SPEED_25000:
1027 			ctrl |= priv->hw->link.xlgmii.speed25000;
1028 			break;
1029 		case SPEED_10000:
1030 			ctrl |= priv->hw->link.xgmii.speed10000;
1031 			break;
1032 		case SPEED_2500:
1033 			ctrl |= priv->hw->link.speed2500;
1034 			break;
1035 		case SPEED_1000:
1036 			ctrl |= priv->hw->link.speed1000;
1037 			break;
1038 		default:
1039 			return;
1040 		}
1041 	} else {
1042 		switch (speed) {
1043 		case SPEED_2500:
1044 			ctrl |= priv->hw->link.speed2500;
1045 			break;
1046 		case SPEED_1000:
1047 			ctrl |= priv->hw->link.speed1000;
1048 			break;
1049 		case SPEED_100:
1050 			ctrl |= priv->hw->link.speed100;
1051 			break;
1052 		case SPEED_10:
1053 			ctrl |= priv->hw->link.speed10;
1054 			break;
1055 		default:
1056 			return;
1057 		}
1058 	}
1059 
1060 	priv->speed = speed;
1061 
1062 	if (priv->plat->fix_mac_speed)
1063 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1064 
1065 	if (!duplex)
1066 		ctrl &= ~priv->hw->link.duplex;
1067 	else
1068 		ctrl |= priv->hw->link.duplex;
1069 
1070 	/* Flow Control operation */
1071 	if (rx_pause && tx_pause)
1072 		priv->flow_ctrl = FLOW_AUTO;
1073 	else if (rx_pause && !tx_pause)
1074 		priv->flow_ctrl = FLOW_RX;
1075 	else if (!rx_pause && tx_pause)
1076 		priv->flow_ctrl = FLOW_TX;
1077 	else
1078 		priv->flow_ctrl = FLOW_OFF;
1079 
1080 	stmmac_mac_flow_ctrl(priv, duplex);
1081 
1082 	if (ctrl != old_ctrl)
1083 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1084 
1085 	stmmac_mac_set(priv, priv->ioaddr, true);
1086 	if (phy && priv->dma_cap.eee) {
1087 		priv->eee_active =
1088 			phy_init_eee(phy, !(priv->plat->flags &
1089 				STMMAC_FLAG_RX_CLK_RUNS_IN_LPI)) >= 0;
1090 		priv->eee_enabled = stmmac_eee_init(priv);
1091 		priv->tx_lpi_enabled = priv->eee_enabled;
1092 		stmmac_set_eee_pls(priv, priv->hw, true);
1093 	}
1094 
1095 	if (priv->dma_cap.fpesel)
1096 		stmmac_fpe_link_state_handle(priv, true);
1097 }
1098 
1099 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1100 	.mac_select_pcs = stmmac_mac_select_pcs,
1101 	.mac_config = stmmac_mac_config,
1102 	.mac_link_down = stmmac_mac_link_down,
1103 	.mac_link_up = stmmac_mac_link_up,
1104 };
1105 
1106 /**
1107  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1108  * @priv: driver private structure
1109  * Description: this is to verify if the HW supports the PCS.
1110  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1111  * configured for the TBI, RTBI, or SGMII PHY interface.
1112  */
1113 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1114 {
1115 	int interface = priv->plat->interface;
1116 
1117 	if (priv->dma_cap.pcs) {
1118 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1119 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1120 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1121 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1122 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1123 			priv->hw->pcs = STMMAC_PCS_RGMII;
1124 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1125 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1126 			priv->hw->pcs = STMMAC_PCS_SGMII;
1127 		}
1128 	}
1129 }
1130 
1131 /**
1132  * stmmac_init_phy - PHY initialization
1133  * @dev: net device structure
1134  * Description: it initializes the driver's PHY state, and attaches the PHY
1135  * to the mac driver.
1136  *  Return value:
1137  *  0 on success
1138  */
1139 static int stmmac_init_phy(struct net_device *dev)
1140 {
1141 	struct stmmac_priv *priv = netdev_priv(dev);
1142 	struct fwnode_handle *phy_fwnode;
1143 	struct fwnode_handle *fwnode;
1144 	int ret;
1145 
1146 	if (!phylink_expects_phy(priv->phylink))
1147 		return 0;
1148 
1149 	fwnode = of_fwnode_handle(priv->plat->phylink_node);
1150 	if (!fwnode)
1151 		fwnode = dev_fwnode(priv->device);
1152 
1153 	if (fwnode)
1154 		phy_fwnode = fwnode_get_phy_node(fwnode);
1155 	else
1156 		phy_fwnode = NULL;
1157 
1158 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1159 	 * manually parse it
1160 	 */
1161 	if (!phy_fwnode || IS_ERR(phy_fwnode)) {
1162 		int addr = priv->plat->phy_addr;
1163 		struct phy_device *phydev;
1164 
1165 		if (addr < 0) {
1166 			netdev_err(priv->dev, "no phy found\n");
1167 			return -ENODEV;
1168 		}
1169 
1170 		phydev = mdiobus_get_phy(priv->mii, addr);
1171 		if (!phydev) {
1172 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1173 			return -ENODEV;
1174 		}
1175 
1176 		ret = phylink_connect_phy(priv->phylink, phydev);
1177 	} else {
1178 		fwnode_handle_put(phy_fwnode);
1179 		ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0);
1180 	}
1181 
1182 	if (!priv->plat->pmt) {
1183 		struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1184 
1185 		phylink_ethtool_get_wol(priv->phylink, &wol);
1186 		device_set_wakeup_capable(priv->device, !!wol.supported);
1187 		device_set_wakeup_enable(priv->device, !!wol.wolopts);
1188 	}
1189 
1190 	return ret;
1191 }
1192 
1193 static int stmmac_phy_setup(struct stmmac_priv *priv)
1194 {
1195 	struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1196 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1197 	int max_speed = priv->plat->max_speed;
1198 	int mode = priv->plat->phy_interface;
1199 	struct phylink *phylink;
1200 
1201 	priv->phylink_config.dev = &priv->dev->dev;
1202 	priv->phylink_config.type = PHYLINK_NETDEV;
1203 	if (priv->plat->mdio_bus_data)
1204 		priv->phylink_config.ovr_an_inband =
1205 			mdio_bus_data->xpcs_an_inband;
1206 
1207 	if (!fwnode)
1208 		fwnode = dev_fwnode(priv->device);
1209 
1210 	/* Set the platform/firmware specified interface mode */
1211 	__set_bit(mode, priv->phylink_config.supported_interfaces);
1212 
1213 	/* If we have an xpcs, it defines which PHY interfaces are supported. */
1214 	if (priv->hw->xpcs)
1215 		xpcs_get_interfaces(priv->hw->xpcs,
1216 				    priv->phylink_config.supported_interfaces);
1217 
1218 	priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1219 		MAC_10 | MAC_100;
1220 
1221 	if (!max_speed || max_speed >= 1000)
1222 		priv->phylink_config.mac_capabilities |= MAC_1000;
1223 
1224 	if (priv->plat->has_gmac4) {
1225 		if (!max_speed || max_speed >= 2500)
1226 			priv->phylink_config.mac_capabilities |= MAC_2500FD;
1227 	} else if (priv->plat->has_xgmac) {
1228 		if (!max_speed || max_speed >= 2500)
1229 			priv->phylink_config.mac_capabilities |= MAC_2500FD;
1230 		if (!max_speed || max_speed >= 5000)
1231 			priv->phylink_config.mac_capabilities |= MAC_5000FD;
1232 		if (!max_speed || max_speed >= 10000)
1233 			priv->phylink_config.mac_capabilities |= MAC_10000FD;
1234 		if (!max_speed || max_speed >= 25000)
1235 			priv->phylink_config.mac_capabilities |= MAC_25000FD;
1236 		if (!max_speed || max_speed >= 40000)
1237 			priv->phylink_config.mac_capabilities |= MAC_40000FD;
1238 		if (!max_speed || max_speed >= 50000)
1239 			priv->phylink_config.mac_capabilities |= MAC_50000FD;
1240 		if (!max_speed || max_speed >= 100000)
1241 			priv->phylink_config.mac_capabilities |= MAC_100000FD;
1242 	}
1243 
1244 	/* Half-Duplex can only work with single queue */
1245 	if (priv->plat->tx_queues_to_use > 1)
1246 		priv->phylink_config.mac_capabilities &=
1247 			~(MAC_10HD | MAC_100HD | MAC_1000HD);
1248 	priv->phylink_config.mac_managed_pm = true;
1249 
1250 	phylink = phylink_create(&priv->phylink_config, fwnode,
1251 				 mode, &stmmac_phylink_mac_ops);
1252 	if (IS_ERR(phylink))
1253 		return PTR_ERR(phylink);
1254 
1255 	priv->phylink = phylink;
1256 	return 0;
1257 }
1258 
1259 static void stmmac_display_rx_rings(struct stmmac_priv *priv,
1260 				    struct stmmac_dma_conf *dma_conf)
1261 {
1262 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1263 	unsigned int desc_size;
1264 	void *head_rx;
1265 	u32 queue;
1266 
1267 	/* Display RX rings */
1268 	for (queue = 0; queue < rx_cnt; queue++) {
1269 		struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1270 
1271 		pr_info("\tRX Queue %u rings\n", queue);
1272 
1273 		if (priv->extend_desc) {
1274 			head_rx = (void *)rx_q->dma_erx;
1275 			desc_size = sizeof(struct dma_extended_desc);
1276 		} else {
1277 			head_rx = (void *)rx_q->dma_rx;
1278 			desc_size = sizeof(struct dma_desc);
1279 		}
1280 
1281 		/* Display RX ring */
1282 		stmmac_display_ring(priv, head_rx, dma_conf->dma_rx_size, true,
1283 				    rx_q->dma_rx_phy, desc_size);
1284 	}
1285 }
1286 
1287 static void stmmac_display_tx_rings(struct stmmac_priv *priv,
1288 				    struct stmmac_dma_conf *dma_conf)
1289 {
1290 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1291 	unsigned int desc_size;
1292 	void *head_tx;
1293 	u32 queue;
1294 
1295 	/* Display TX rings */
1296 	for (queue = 0; queue < tx_cnt; queue++) {
1297 		struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1298 
1299 		pr_info("\tTX Queue %d rings\n", queue);
1300 
1301 		if (priv->extend_desc) {
1302 			head_tx = (void *)tx_q->dma_etx;
1303 			desc_size = sizeof(struct dma_extended_desc);
1304 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1305 			head_tx = (void *)tx_q->dma_entx;
1306 			desc_size = sizeof(struct dma_edesc);
1307 		} else {
1308 			head_tx = (void *)tx_q->dma_tx;
1309 			desc_size = sizeof(struct dma_desc);
1310 		}
1311 
1312 		stmmac_display_ring(priv, head_tx, dma_conf->dma_tx_size, false,
1313 				    tx_q->dma_tx_phy, desc_size);
1314 	}
1315 }
1316 
1317 static void stmmac_display_rings(struct stmmac_priv *priv,
1318 				 struct stmmac_dma_conf *dma_conf)
1319 {
1320 	/* Display RX ring */
1321 	stmmac_display_rx_rings(priv, dma_conf);
1322 
1323 	/* Display TX ring */
1324 	stmmac_display_tx_rings(priv, dma_conf);
1325 }
1326 
1327 static int stmmac_set_bfsize(int mtu, int bufsize)
1328 {
1329 	int ret = bufsize;
1330 
1331 	if (mtu >= BUF_SIZE_8KiB)
1332 		ret = BUF_SIZE_16KiB;
1333 	else if (mtu >= BUF_SIZE_4KiB)
1334 		ret = BUF_SIZE_8KiB;
1335 	else if (mtu >= BUF_SIZE_2KiB)
1336 		ret = BUF_SIZE_4KiB;
1337 	else if (mtu > DEFAULT_BUFSIZE)
1338 		ret = BUF_SIZE_2KiB;
1339 	else
1340 		ret = DEFAULT_BUFSIZE;
1341 
1342 	return ret;
1343 }
1344 
1345 /**
1346  * stmmac_clear_rx_descriptors - clear RX descriptors
1347  * @priv: driver private structure
1348  * @dma_conf: structure to take the dma data
1349  * @queue: RX queue index
1350  * Description: this function is called to clear the RX descriptors
1351  * in case of both basic and extended descriptors are used.
1352  */
1353 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv,
1354 					struct stmmac_dma_conf *dma_conf,
1355 					u32 queue)
1356 {
1357 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1358 	int i;
1359 
1360 	/* Clear the RX descriptors */
1361 	for (i = 0; i < dma_conf->dma_rx_size; i++)
1362 		if (priv->extend_desc)
1363 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1364 					priv->use_riwt, priv->mode,
1365 					(i == dma_conf->dma_rx_size - 1),
1366 					dma_conf->dma_buf_sz);
1367 		else
1368 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1369 					priv->use_riwt, priv->mode,
1370 					(i == dma_conf->dma_rx_size - 1),
1371 					dma_conf->dma_buf_sz);
1372 }
1373 
1374 /**
1375  * stmmac_clear_tx_descriptors - clear tx descriptors
1376  * @priv: driver private structure
1377  * @dma_conf: structure to take the dma data
1378  * @queue: TX queue index.
1379  * Description: this function is called to clear the TX descriptors
1380  * in case of both basic and extended descriptors are used.
1381  */
1382 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv,
1383 					struct stmmac_dma_conf *dma_conf,
1384 					u32 queue)
1385 {
1386 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1387 	int i;
1388 
1389 	/* Clear the TX descriptors */
1390 	for (i = 0; i < dma_conf->dma_tx_size; i++) {
1391 		int last = (i == (dma_conf->dma_tx_size - 1));
1392 		struct dma_desc *p;
1393 
1394 		if (priv->extend_desc)
1395 			p = &tx_q->dma_etx[i].basic;
1396 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1397 			p = &tx_q->dma_entx[i].basic;
1398 		else
1399 			p = &tx_q->dma_tx[i];
1400 
1401 		stmmac_init_tx_desc(priv, p, priv->mode, last);
1402 	}
1403 }
1404 
1405 /**
1406  * stmmac_clear_descriptors - clear descriptors
1407  * @priv: driver private structure
1408  * @dma_conf: structure to take the dma data
1409  * Description: this function is called to clear the TX and RX descriptors
1410  * in case of both basic and extended descriptors are used.
1411  */
1412 static void stmmac_clear_descriptors(struct stmmac_priv *priv,
1413 				     struct stmmac_dma_conf *dma_conf)
1414 {
1415 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1416 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1417 	u32 queue;
1418 
1419 	/* Clear the RX descriptors */
1420 	for (queue = 0; queue < rx_queue_cnt; queue++)
1421 		stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1422 
1423 	/* Clear the TX descriptors */
1424 	for (queue = 0; queue < tx_queue_cnt; queue++)
1425 		stmmac_clear_tx_descriptors(priv, dma_conf, queue);
1426 }
1427 
1428 /**
1429  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1430  * @priv: driver private structure
1431  * @dma_conf: structure to take the dma data
1432  * @p: descriptor pointer
1433  * @i: descriptor index
1434  * @flags: gfp flag
1435  * @queue: RX queue index
1436  * Description: this function is called to allocate a receive buffer, perform
1437  * the DMA mapping and init the descriptor.
1438  */
1439 static int stmmac_init_rx_buffers(struct stmmac_priv *priv,
1440 				  struct stmmac_dma_conf *dma_conf,
1441 				  struct dma_desc *p,
1442 				  int i, gfp_t flags, u32 queue)
1443 {
1444 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1445 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1446 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1447 
1448 	if (priv->dma_cap.host_dma_width <= 32)
1449 		gfp |= GFP_DMA32;
1450 
1451 	if (!buf->page) {
1452 		buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1453 		if (!buf->page)
1454 			return -ENOMEM;
1455 		buf->page_offset = stmmac_rx_offset(priv);
1456 	}
1457 
1458 	if (priv->sph && !buf->sec_page) {
1459 		buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1460 		if (!buf->sec_page)
1461 			return -ENOMEM;
1462 
1463 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1464 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1465 	} else {
1466 		buf->sec_page = NULL;
1467 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1468 	}
1469 
1470 	buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1471 
1472 	stmmac_set_desc_addr(priv, p, buf->addr);
1473 	if (dma_conf->dma_buf_sz == BUF_SIZE_16KiB)
1474 		stmmac_init_desc3(priv, p);
1475 
1476 	return 0;
1477 }
1478 
1479 /**
1480  * stmmac_free_rx_buffer - free RX dma buffers
1481  * @priv: private structure
1482  * @rx_q: RX queue
1483  * @i: buffer index.
1484  */
1485 static void stmmac_free_rx_buffer(struct stmmac_priv *priv,
1486 				  struct stmmac_rx_queue *rx_q,
1487 				  int i)
1488 {
1489 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1490 
1491 	if (buf->page)
1492 		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1493 	buf->page = NULL;
1494 
1495 	if (buf->sec_page)
1496 		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1497 	buf->sec_page = NULL;
1498 }
1499 
1500 /**
1501  * stmmac_free_tx_buffer - free RX dma buffers
1502  * @priv: private structure
1503  * @dma_conf: structure to take the dma data
1504  * @queue: RX queue index
1505  * @i: buffer index.
1506  */
1507 static void stmmac_free_tx_buffer(struct stmmac_priv *priv,
1508 				  struct stmmac_dma_conf *dma_conf,
1509 				  u32 queue, int i)
1510 {
1511 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1512 
1513 	if (tx_q->tx_skbuff_dma[i].buf &&
1514 	    tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1515 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1516 			dma_unmap_page(priv->device,
1517 				       tx_q->tx_skbuff_dma[i].buf,
1518 				       tx_q->tx_skbuff_dma[i].len,
1519 				       DMA_TO_DEVICE);
1520 		else
1521 			dma_unmap_single(priv->device,
1522 					 tx_q->tx_skbuff_dma[i].buf,
1523 					 tx_q->tx_skbuff_dma[i].len,
1524 					 DMA_TO_DEVICE);
1525 	}
1526 
1527 	if (tx_q->xdpf[i] &&
1528 	    (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1529 	     tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1530 		xdp_return_frame(tx_q->xdpf[i]);
1531 		tx_q->xdpf[i] = NULL;
1532 	}
1533 
1534 	if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1535 		tx_q->xsk_frames_done++;
1536 
1537 	if (tx_q->tx_skbuff[i] &&
1538 	    tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1539 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1540 		tx_q->tx_skbuff[i] = NULL;
1541 	}
1542 
1543 	tx_q->tx_skbuff_dma[i].buf = 0;
1544 	tx_q->tx_skbuff_dma[i].map_as_page = false;
1545 }
1546 
1547 /**
1548  * dma_free_rx_skbufs - free RX dma buffers
1549  * @priv: private structure
1550  * @dma_conf: structure to take the dma data
1551  * @queue: RX queue index
1552  */
1553 static void dma_free_rx_skbufs(struct stmmac_priv *priv,
1554 			       struct stmmac_dma_conf *dma_conf,
1555 			       u32 queue)
1556 {
1557 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1558 	int i;
1559 
1560 	for (i = 0; i < dma_conf->dma_rx_size; i++)
1561 		stmmac_free_rx_buffer(priv, rx_q, i);
1562 }
1563 
1564 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv,
1565 				   struct stmmac_dma_conf *dma_conf,
1566 				   u32 queue, gfp_t flags)
1567 {
1568 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1569 	int i;
1570 
1571 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1572 		struct dma_desc *p;
1573 		int ret;
1574 
1575 		if (priv->extend_desc)
1576 			p = &((rx_q->dma_erx + i)->basic);
1577 		else
1578 			p = rx_q->dma_rx + i;
1579 
1580 		ret = stmmac_init_rx_buffers(priv, dma_conf, p, i, flags,
1581 					     queue);
1582 		if (ret)
1583 			return ret;
1584 
1585 		rx_q->buf_alloc_num++;
1586 	}
1587 
1588 	return 0;
1589 }
1590 
1591 /**
1592  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1593  * @priv: private structure
1594  * @dma_conf: structure to take the dma data
1595  * @queue: RX queue index
1596  */
1597 static void dma_free_rx_xskbufs(struct stmmac_priv *priv,
1598 				struct stmmac_dma_conf *dma_conf,
1599 				u32 queue)
1600 {
1601 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1602 	int i;
1603 
1604 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1605 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1606 
1607 		if (!buf->xdp)
1608 			continue;
1609 
1610 		xsk_buff_free(buf->xdp);
1611 		buf->xdp = NULL;
1612 	}
1613 }
1614 
1615 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv,
1616 				      struct stmmac_dma_conf *dma_conf,
1617 				      u32 queue)
1618 {
1619 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1620 	int i;
1621 
1622 	/* struct stmmac_xdp_buff is using cb field (maximum size of 24 bytes)
1623 	 * in struct xdp_buff_xsk to stash driver specific information. Thus,
1624 	 * use this macro to make sure no size violations.
1625 	 */
1626 	XSK_CHECK_PRIV_TYPE(struct stmmac_xdp_buff);
1627 
1628 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1629 		struct stmmac_rx_buffer *buf;
1630 		dma_addr_t dma_addr;
1631 		struct dma_desc *p;
1632 
1633 		if (priv->extend_desc)
1634 			p = (struct dma_desc *)(rx_q->dma_erx + i);
1635 		else
1636 			p = rx_q->dma_rx + i;
1637 
1638 		buf = &rx_q->buf_pool[i];
1639 
1640 		buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1641 		if (!buf->xdp)
1642 			return -ENOMEM;
1643 
1644 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1645 		stmmac_set_desc_addr(priv, p, dma_addr);
1646 		rx_q->buf_alloc_num++;
1647 	}
1648 
1649 	return 0;
1650 }
1651 
1652 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1653 {
1654 	if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1655 		return NULL;
1656 
1657 	return xsk_get_pool_from_qid(priv->dev, queue);
1658 }
1659 
1660 /**
1661  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1662  * @priv: driver private structure
1663  * @dma_conf: structure to take the dma data
1664  * @queue: RX queue index
1665  * @flags: gfp flag.
1666  * Description: this function initializes the DMA RX descriptors
1667  * and allocates the socket buffers. It supports the chained and ring
1668  * modes.
1669  */
1670 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv,
1671 				    struct stmmac_dma_conf *dma_conf,
1672 				    u32 queue, gfp_t flags)
1673 {
1674 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1675 	int ret;
1676 
1677 	netif_dbg(priv, probe, priv->dev,
1678 		  "(%s) dma_rx_phy=0x%08x\n", __func__,
1679 		  (u32)rx_q->dma_rx_phy);
1680 
1681 	stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1682 
1683 	xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1684 
1685 	rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1686 
1687 	if (rx_q->xsk_pool) {
1688 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1689 						   MEM_TYPE_XSK_BUFF_POOL,
1690 						   NULL));
1691 		netdev_info(priv->dev,
1692 			    "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1693 			    rx_q->queue_index);
1694 		xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1695 	} else {
1696 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1697 						   MEM_TYPE_PAGE_POOL,
1698 						   rx_q->page_pool));
1699 		netdev_info(priv->dev,
1700 			    "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1701 			    rx_q->queue_index);
1702 	}
1703 
1704 	if (rx_q->xsk_pool) {
1705 		/* RX XDP ZC buffer pool may not be populated, e.g.
1706 		 * xdpsock TX-only.
1707 		 */
1708 		stmmac_alloc_rx_buffers_zc(priv, dma_conf, queue);
1709 	} else {
1710 		ret = stmmac_alloc_rx_buffers(priv, dma_conf, queue, flags);
1711 		if (ret < 0)
1712 			return -ENOMEM;
1713 	}
1714 
1715 	/* Setup the chained descriptor addresses */
1716 	if (priv->mode == STMMAC_CHAIN_MODE) {
1717 		if (priv->extend_desc)
1718 			stmmac_mode_init(priv, rx_q->dma_erx,
1719 					 rx_q->dma_rx_phy,
1720 					 dma_conf->dma_rx_size, 1);
1721 		else
1722 			stmmac_mode_init(priv, rx_q->dma_rx,
1723 					 rx_q->dma_rx_phy,
1724 					 dma_conf->dma_rx_size, 0);
1725 	}
1726 
1727 	return 0;
1728 }
1729 
1730 static int init_dma_rx_desc_rings(struct net_device *dev,
1731 				  struct stmmac_dma_conf *dma_conf,
1732 				  gfp_t flags)
1733 {
1734 	struct stmmac_priv *priv = netdev_priv(dev);
1735 	u32 rx_count = priv->plat->rx_queues_to_use;
1736 	int queue;
1737 	int ret;
1738 
1739 	/* RX INITIALIZATION */
1740 	netif_dbg(priv, probe, priv->dev,
1741 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1742 
1743 	for (queue = 0; queue < rx_count; queue++) {
1744 		ret = __init_dma_rx_desc_rings(priv, dma_conf, queue, flags);
1745 		if (ret)
1746 			goto err_init_rx_buffers;
1747 	}
1748 
1749 	return 0;
1750 
1751 err_init_rx_buffers:
1752 	while (queue >= 0) {
1753 		struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1754 
1755 		if (rx_q->xsk_pool)
1756 			dma_free_rx_xskbufs(priv, dma_conf, queue);
1757 		else
1758 			dma_free_rx_skbufs(priv, dma_conf, queue);
1759 
1760 		rx_q->buf_alloc_num = 0;
1761 		rx_q->xsk_pool = NULL;
1762 
1763 		queue--;
1764 	}
1765 
1766 	return ret;
1767 }
1768 
1769 /**
1770  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1771  * @priv: driver private structure
1772  * @dma_conf: structure to take the dma data
1773  * @queue: TX queue index
1774  * Description: this function initializes the DMA TX descriptors
1775  * and allocates the socket buffers. It supports the chained and ring
1776  * modes.
1777  */
1778 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv,
1779 				    struct stmmac_dma_conf *dma_conf,
1780 				    u32 queue)
1781 {
1782 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1783 	int i;
1784 
1785 	netif_dbg(priv, probe, priv->dev,
1786 		  "(%s) dma_tx_phy=0x%08x\n", __func__,
1787 		  (u32)tx_q->dma_tx_phy);
1788 
1789 	/* Setup the chained descriptor addresses */
1790 	if (priv->mode == STMMAC_CHAIN_MODE) {
1791 		if (priv->extend_desc)
1792 			stmmac_mode_init(priv, tx_q->dma_etx,
1793 					 tx_q->dma_tx_phy,
1794 					 dma_conf->dma_tx_size, 1);
1795 		else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1796 			stmmac_mode_init(priv, tx_q->dma_tx,
1797 					 tx_q->dma_tx_phy,
1798 					 dma_conf->dma_tx_size, 0);
1799 	}
1800 
1801 	tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1802 
1803 	for (i = 0; i < dma_conf->dma_tx_size; i++) {
1804 		struct dma_desc *p;
1805 
1806 		if (priv->extend_desc)
1807 			p = &((tx_q->dma_etx + i)->basic);
1808 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1809 			p = &((tx_q->dma_entx + i)->basic);
1810 		else
1811 			p = tx_q->dma_tx + i;
1812 
1813 		stmmac_clear_desc(priv, p);
1814 
1815 		tx_q->tx_skbuff_dma[i].buf = 0;
1816 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1817 		tx_q->tx_skbuff_dma[i].len = 0;
1818 		tx_q->tx_skbuff_dma[i].last_segment = false;
1819 		tx_q->tx_skbuff[i] = NULL;
1820 	}
1821 
1822 	return 0;
1823 }
1824 
1825 static int init_dma_tx_desc_rings(struct net_device *dev,
1826 				  struct stmmac_dma_conf *dma_conf)
1827 {
1828 	struct stmmac_priv *priv = netdev_priv(dev);
1829 	u32 tx_queue_cnt;
1830 	u32 queue;
1831 
1832 	tx_queue_cnt = priv->plat->tx_queues_to_use;
1833 
1834 	for (queue = 0; queue < tx_queue_cnt; queue++)
1835 		__init_dma_tx_desc_rings(priv, dma_conf, queue);
1836 
1837 	return 0;
1838 }
1839 
1840 /**
1841  * init_dma_desc_rings - init the RX/TX descriptor rings
1842  * @dev: net device structure
1843  * @dma_conf: structure to take the dma data
1844  * @flags: gfp flag.
1845  * Description: this function initializes the DMA RX/TX descriptors
1846  * and allocates the socket buffers. It supports the chained and ring
1847  * modes.
1848  */
1849 static int init_dma_desc_rings(struct net_device *dev,
1850 			       struct stmmac_dma_conf *dma_conf,
1851 			       gfp_t flags)
1852 {
1853 	struct stmmac_priv *priv = netdev_priv(dev);
1854 	int ret;
1855 
1856 	ret = init_dma_rx_desc_rings(dev, dma_conf, flags);
1857 	if (ret)
1858 		return ret;
1859 
1860 	ret = init_dma_tx_desc_rings(dev, dma_conf);
1861 
1862 	stmmac_clear_descriptors(priv, dma_conf);
1863 
1864 	if (netif_msg_hw(priv))
1865 		stmmac_display_rings(priv, dma_conf);
1866 
1867 	return ret;
1868 }
1869 
1870 /**
1871  * dma_free_tx_skbufs - free TX dma buffers
1872  * @priv: private structure
1873  * @dma_conf: structure to take the dma data
1874  * @queue: TX queue index
1875  */
1876 static void dma_free_tx_skbufs(struct stmmac_priv *priv,
1877 			       struct stmmac_dma_conf *dma_conf,
1878 			       u32 queue)
1879 {
1880 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1881 	int i;
1882 
1883 	tx_q->xsk_frames_done = 0;
1884 
1885 	for (i = 0; i < dma_conf->dma_tx_size; i++)
1886 		stmmac_free_tx_buffer(priv, dma_conf, queue, i);
1887 
1888 	if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1889 		xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1890 		tx_q->xsk_frames_done = 0;
1891 		tx_q->xsk_pool = NULL;
1892 	}
1893 }
1894 
1895 /**
1896  * stmmac_free_tx_skbufs - free TX skb buffers
1897  * @priv: private structure
1898  */
1899 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1900 {
1901 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1902 	u32 queue;
1903 
1904 	for (queue = 0; queue < tx_queue_cnt; queue++)
1905 		dma_free_tx_skbufs(priv, &priv->dma_conf, queue);
1906 }
1907 
1908 /**
1909  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1910  * @priv: private structure
1911  * @dma_conf: structure to take the dma data
1912  * @queue: RX queue index
1913  */
1914 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv,
1915 					 struct stmmac_dma_conf *dma_conf,
1916 					 u32 queue)
1917 {
1918 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1919 
1920 	/* Release the DMA RX socket buffers */
1921 	if (rx_q->xsk_pool)
1922 		dma_free_rx_xskbufs(priv, dma_conf, queue);
1923 	else
1924 		dma_free_rx_skbufs(priv, dma_conf, queue);
1925 
1926 	rx_q->buf_alloc_num = 0;
1927 	rx_q->xsk_pool = NULL;
1928 
1929 	/* Free DMA regions of consistent memory previously allocated */
1930 	if (!priv->extend_desc)
1931 		dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1932 				  sizeof(struct dma_desc),
1933 				  rx_q->dma_rx, rx_q->dma_rx_phy);
1934 	else
1935 		dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1936 				  sizeof(struct dma_extended_desc),
1937 				  rx_q->dma_erx, rx_q->dma_rx_phy);
1938 
1939 	if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1940 		xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1941 
1942 	kfree(rx_q->buf_pool);
1943 	if (rx_q->page_pool)
1944 		page_pool_destroy(rx_q->page_pool);
1945 }
1946 
1947 static void free_dma_rx_desc_resources(struct stmmac_priv *priv,
1948 				       struct stmmac_dma_conf *dma_conf)
1949 {
1950 	u32 rx_count = priv->plat->rx_queues_to_use;
1951 	u32 queue;
1952 
1953 	/* Free RX queue resources */
1954 	for (queue = 0; queue < rx_count; queue++)
1955 		__free_dma_rx_desc_resources(priv, dma_conf, queue);
1956 }
1957 
1958 /**
1959  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1960  * @priv: private structure
1961  * @dma_conf: structure to take the dma data
1962  * @queue: TX queue index
1963  */
1964 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv,
1965 					 struct stmmac_dma_conf *dma_conf,
1966 					 u32 queue)
1967 {
1968 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1969 	size_t size;
1970 	void *addr;
1971 
1972 	/* Release the DMA TX socket buffers */
1973 	dma_free_tx_skbufs(priv, dma_conf, queue);
1974 
1975 	if (priv->extend_desc) {
1976 		size = sizeof(struct dma_extended_desc);
1977 		addr = tx_q->dma_etx;
1978 	} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1979 		size = sizeof(struct dma_edesc);
1980 		addr = tx_q->dma_entx;
1981 	} else {
1982 		size = sizeof(struct dma_desc);
1983 		addr = tx_q->dma_tx;
1984 	}
1985 
1986 	size *= dma_conf->dma_tx_size;
1987 
1988 	dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1989 
1990 	kfree(tx_q->tx_skbuff_dma);
1991 	kfree(tx_q->tx_skbuff);
1992 }
1993 
1994 static void free_dma_tx_desc_resources(struct stmmac_priv *priv,
1995 				       struct stmmac_dma_conf *dma_conf)
1996 {
1997 	u32 tx_count = priv->plat->tx_queues_to_use;
1998 	u32 queue;
1999 
2000 	/* Free TX queue resources */
2001 	for (queue = 0; queue < tx_count; queue++)
2002 		__free_dma_tx_desc_resources(priv, dma_conf, queue);
2003 }
2004 
2005 /**
2006  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
2007  * @priv: private structure
2008  * @dma_conf: structure to take the dma data
2009  * @queue: RX queue index
2010  * Description: according to which descriptor can be used (extend or basic)
2011  * this function allocates the resources for TX and RX paths. In case of
2012  * reception, for example, it pre-allocated the RX socket buffer in order to
2013  * allow zero-copy mechanism.
2014  */
2015 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
2016 					 struct stmmac_dma_conf *dma_conf,
2017 					 u32 queue)
2018 {
2019 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
2020 	struct stmmac_channel *ch = &priv->channel[queue];
2021 	bool xdp_prog = stmmac_xdp_is_enabled(priv);
2022 	struct page_pool_params pp_params = { 0 };
2023 	unsigned int num_pages;
2024 	unsigned int napi_id;
2025 	int ret;
2026 
2027 	rx_q->queue_index = queue;
2028 	rx_q->priv_data = priv;
2029 
2030 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
2031 	pp_params.pool_size = dma_conf->dma_rx_size;
2032 	num_pages = DIV_ROUND_UP(dma_conf->dma_buf_sz, PAGE_SIZE);
2033 	pp_params.order = ilog2(num_pages);
2034 	pp_params.nid = dev_to_node(priv->device);
2035 	pp_params.dev = priv->device;
2036 	pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
2037 	pp_params.offset = stmmac_rx_offset(priv);
2038 	pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
2039 
2040 	rx_q->page_pool = page_pool_create(&pp_params);
2041 	if (IS_ERR(rx_q->page_pool)) {
2042 		ret = PTR_ERR(rx_q->page_pool);
2043 		rx_q->page_pool = NULL;
2044 		return ret;
2045 	}
2046 
2047 	rx_q->buf_pool = kcalloc(dma_conf->dma_rx_size,
2048 				 sizeof(*rx_q->buf_pool),
2049 				 GFP_KERNEL);
2050 	if (!rx_q->buf_pool)
2051 		return -ENOMEM;
2052 
2053 	if (priv->extend_desc) {
2054 		rx_q->dma_erx = dma_alloc_coherent(priv->device,
2055 						   dma_conf->dma_rx_size *
2056 						   sizeof(struct dma_extended_desc),
2057 						   &rx_q->dma_rx_phy,
2058 						   GFP_KERNEL);
2059 		if (!rx_q->dma_erx)
2060 			return -ENOMEM;
2061 
2062 	} else {
2063 		rx_q->dma_rx = dma_alloc_coherent(priv->device,
2064 						  dma_conf->dma_rx_size *
2065 						  sizeof(struct dma_desc),
2066 						  &rx_q->dma_rx_phy,
2067 						  GFP_KERNEL);
2068 		if (!rx_q->dma_rx)
2069 			return -ENOMEM;
2070 	}
2071 
2072 	if (stmmac_xdp_is_enabled(priv) &&
2073 	    test_bit(queue, priv->af_xdp_zc_qps))
2074 		napi_id = ch->rxtx_napi.napi_id;
2075 	else
2076 		napi_id = ch->rx_napi.napi_id;
2077 
2078 	ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2079 			       rx_q->queue_index,
2080 			       napi_id);
2081 	if (ret) {
2082 		netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2083 		return -EINVAL;
2084 	}
2085 
2086 	return 0;
2087 }
2088 
2089 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
2090 				       struct stmmac_dma_conf *dma_conf)
2091 {
2092 	u32 rx_count = priv->plat->rx_queues_to_use;
2093 	u32 queue;
2094 	int ret;
2095 
2096 	/* RX queues buffers and DMA */
2097 	for (queue = 0; queue < rx_count; queue++) {
2098 		ret = __alloc_dma_rx_desc_resources(priv, dma_conf, queue);
2099 		if (ret)
2100 			goto err_dma;
2101 	}
2102 
2103 	return 0;
2104 
2105 err_dma:
2106 	free_dma_rx_desc_resources(priv, dma_conf);
2107 
2108 	return ret;
2109 }
2110 
2111 /**
2112  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2113  * @priv: private structure
2114  * @dma_conf: structure to take the dma data
2115  * @queue: TX queue index
2116  * Description: according to which descriptor can be used (extend or basic)
2117  * this function allocates the resources for TX and RX paths. In case of
2118  * reception, for example, it pre-allocated the RX socket buffer in order to
2119  * allow zero-copy mechanism.
2120  */
2121 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2122 					 struct stmmac_dma_conf *dma_conf,
2123 					 u32 queue)
2124 {
2125 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
2126 	size_t size;
2127 	void *addr;
2128 
2129 	tx_q->queue_index = queue;
2130 	tx_q->priv_data = priv;
2131 
2132 	tx_q->tx_skbuff_dma = kcalloc(dma_conf->dma_tx_size,
2133 				      sizeof(*tx_q->tx_skbuff_dma),
2134 				      GFP_KERNEL);
2135 	if (!tx_q->tx_skbuff_dma)
2136 		return -ENOMEM;
2137 
2138 	tx_q->tx_skbuff = kcalloc(dma_conf->dma_tx_size,
2139 				  sizeof(struct sk_buff *),
2140 				  GFP_KERNEL);
2141 	if (!tx_q->tx_skbuff)
2142 		return -ENOMEM;
2143 
2144 	if (priv->extend_desc)
2145 		size = sizeof(struct dma_extended_desc);
2146 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2147 		size = sizeof(struct dma_edesc);
2148 	else
2149 		size = sizeof(struct dma_desc);
2150 
2151 	size *= dma_conf->dma_tx_size;
2152 
2153 	addr = dma_alloc_coherent(priv->device, size,
2154 				  &tx_q->dma_tx_phy, GFP_KERNEL);
2155 	if (!addr)
2156 		return -ENOMEM;
2157 
2158 	if (priv->extend_desc)
2159 		tx_q->dma_etx = addr;
2160 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2161 		tx_q->dma_entx = addr;
2162 	else
2163 		tx_q->dma_tx = addr;
2164 
2165 	return 0;
2166 }
2167 
2168 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2169 				       struct stmmac_dma_conf *dma_conf)
2170 {
2171 	u32 tx_count = priv->plat->tx_queues_to_use;
2172 	u32 queue;
2173 	int ret;
2174 
2175 	/* TX queues buffers and DMA */
2176 	for (queue = 0; queue < tx_count; queue++) {
2177 		ret = __alloc_dma_tx_desc_resources(priv, dma_conf, queue);
2178 		if (ret)
2179 			goto err_dma;
2180 	}
2181 
2182 	return 0;
2183 
2184 err_dma:
2185 	free_dma_tx_desc_resources(priv, dma_conf);
2186 	return ret;
2187 }
2188 
2189 /**
2190  * alloc_dma_desc_resources - alloc TX/RX resources.
2191  * @priv: private structure
2192  * @dma_conf: structure to take the dma data
2193  * Description: according to which descriptor can be used (extend or basic)
2194  * this function allocates the resources for TX and RX paths. In case of
2195  * reception, for example, it pre-allocated the RX socket buffer in order to
2196  * allow zero-copy mechanism.
2197  */
2198 static int alloc_dma_desc_resources(struct stmmac_priv *priv,
2199 				    struct stmmac_dma_conf *dma_conf)
2200 {
2201 	/* RX Allocation */
2202 	int ret = alloc_dma_rx_desc_resources(priv, dma_conf);
2203 
2204 	if (ret)
2205 		return ret;
2206 
2207 	ret = alloc_dma_tx_desc_resources(priv, dma_conf);
2208 
2209 	return ret;
2210 }
2211 
2212 /**
2213  * free_dma_desc_resources - free dma desc resources
2214  * @priv: private structure
2215  * @dma_conf: structure to take the dma data
2216  */
2217 static void free_dma_desc_resources(struct stmmac_priv *priv,
2218 				    struct stmmac_dma_conf *dma_conf)
2219 {
2220 	/* Release the DMA TX socket buffers */
2221 	free_dma_tx_desc_resources(priv, dma_conf);
2222 
2223 	/* Release the DMA RX socket buffers later
2224 	 * to ensure all pending XDP_TX buffers are returned.
2225 	 */
2226 	free_dma_rx_desc_resources(priv, dma_conf);
2227 }
2228 
2229 /**
2230  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2231  *  @priv: driver private structure
2232  *  Description: It is used for enabling the rx queues in the MAC
2233  */
2234 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2235 {
2236 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2237 	int queue;
2238 	u8 mode;
2239 
2240 	for (queue = 0; queue < rx_queues_count; queue++) {
2241 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2242 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2243 	}
2244 }
2245 
2246 /**
2247  * stmmac_start_rx_dma - start RX DMA channel
2248  * @priv: driver private structure
2249  * @chan: RX channel index
2250  * Description:
2251  * This starts a RX DMA channel
2252  */
2253 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2254 {
2255 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2256 	stmmac_start_rx(priv, priv->ioaddr, chan);
2257 }
2258 
2259 /**
2260  * stmmac_start_tx_dma - start TX DMA channel
2261  * @priv: driver private structure
2262  * @chan: TX channel index
2263  * Description:
2264  * This starts a TX DMA channel
2265  */
2266 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2267 {
2268 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2269 	stmmac_start_tx(priv, priv->ioaddr, chan);
2270 }
2271 
2272 /**
2273  * stmmac_stop_rx_dma - stop RX DMA channel
2274  * @priv: driver private structure
2275  * @chan: RX channel index
2276  * Description:
2277  * This stops a RX DMA channel
2278  */
2279 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2280 {
2281 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2282 	stmmac_stop_rx(priv, priv->ioaddr, chan);
2283 }
2284 
2285 /**
2286  * stmmac_stop_tx_dma - stop TX DMA channel
2287  * @priv: driver private structure
2288  * @chan: TX channel index
2289  * Description:
2290  * This stops a TX DMA channel
2291  */
2292 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2293 {
2294 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2295 	stmmac_stop_tx(priv, priv->ioaddr, chan);
2296 }
2297 
2298 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv)
2299 {
2300 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2301 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2302 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2303 	u32 chan;
2304 
2305 	for (chan = 0; chan < dma_csr_ch; chan++) {
2306 		struct stmmac_channel *ch = &priv->channel[chan];
2307 		unsigned long flags;
2308 
2309 		spin_lock_irqsave(&ch->lock, flags);
2310 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2311 		spin_unlock_irqrestore(&ch->lock, flags);
2312 	}
2313 }
2314 
2315 /**
2316  * stmmac_start_all_dma - start all RX and TX DMA channels
2317  * @priv: driver private structure
2318  * Description:
2319  * This starts all the RX and TX DMA channels
2320  */
2321 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2322 {
2323 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2324 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2325 	u32 chan = 0;
2326 
2327 	for (chan = 0; chan < rx_channels_count; chan++)
2328 		stmmac_start_rx_dma(priv, chan);
2329 
2330 	for (chan = 0; chan < tx_channels_count; chan++)
2331 		stmmac_start_tx_dma(priv, chan);
2332 }
2333 
2334 /**
2335  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2336  * @priv: driver private structure
2337  * Description:
2338  * This stops the RX and TX DMA channels
2339  */
2340 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2341 {
2342 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2343 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2344 	u32 chan = 0;
2345 
2346 	for (chan = 0; chan < rx_channels_count; chan++)
2347 		stmmac_stop_rx_dma(priv, chan);
2348 
2349 	for (chan = 0; chan < tx_channels_count; chan++)
2350 		stmmac_stop_tx_dma(priv, chan);
2351 }
2352 
2353 /**
2354  *  stmmac_dma_operation_mode - HW DMA operation mode
2355  *  @priv: driver private structure
2356  *  Description: it is used for configuring the DMA operation mode register in
2357  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2358  */
2359 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2360 {
2361 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2362 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2363 	int rxfifosz = priv->plat->rx_fifo_size;
2364 	int txfifosz = priv->plat->tx_fifo_size;
2365 	u32 txmode = 0;
2366 	u32 rxmode = 0;
2367 	u32 chan = 0;
2368 	u8 qmode = 0;
2369 
2370 	if (rxfifosz == 0)
2371 		rxfifosz = priv->dma_cap.rx_fifo_size;
2372 	if (txfifosz == 0)
2373 		txfifosz = priv->dma_cap.tx_fifo_size;
2374 
2375 	/* Adjust for real per queue fifo size */
2376 	rxfifosz /= rx_channels_count;
2377 	txfifosz /= tx_channels_count;
2378 
2379 	if (priv->plat->force_thresh_dma_mode) {
2380 		txmode = tc;
2381 		rxmode = tc;
2382 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2383 		/*
2384 		 * In case of GMAC, SF mode can be enabled
2385 		 * to perform the TX COE in HW. This depends on:
2386 		 * 1) TX COE if actually supported
2387 		 * 2) There is no bugged Jumbo frame support
2388 		 *    that needs to not insert csum in the TDES.
2389 		 */
2390 		txmode = SF_DMA_MODE;
2391 		rxmode = SF_DMA_MODE;
2392 		priv->xstats.threshold = SF_DMA_MODE;
2393 	} else {
2394 		txmode = tc;
2395 		rxmode = SF_DMA_MODE;
2396 	}
2397 
2398 	/* configure all channels */
2399 	for (chan = 0; chan < rx_channels_count; chan++) {
2400 		struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2401 		u32 buf_size;
2402 
2403 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2404 
2405 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2406 				rxfifosz, qmode);
2407 
2408 		if (rx_q->xsk_pool) {
2409 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2410 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2411 					      buf_size,
2412 					      chan);
2413 		} else {
2414 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2415 					      priv->dma_conf.dma_buf_sz,
2416 					      chan);
2417 		}
2418 	}
2419 
2420 	for (chan = 0; chan < tx_channels_count; chan++) {
2421 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2422 
2423 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2424 				txfifosz, qmode);
2425 	}
2426 }
2427 
2428 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2429 {
2430 	struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2431 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2432 	struct xsk_buff_pool *pool = tx_q->xsk_pool;
2433 	unsigned int entry = tx_q->cur_tx;
2434 	struct dma_desc *tx_desc = NULL;
2435 	struct xdp_desc xdp_desc;
2436 	bool work_done = true;
2437 	u32 tx_set_ic_bit = 0;
2438 	unsigned long flags;
2439 
2440 	/* Avoids TX time-out as we are sharing with slow path */
2441 	txq_trans_cond_update(nq);
2442 
2443 	budget = min(budget, stmmac_tx_avail(priv, queue));
2444 
2445 	while (budget-- > 0) {
2446 		dma_addr_t dma_addr;
2447 		bool set_ic;
2448 
2449 		/* We are sharing with slow path and stop XSK TX desc submission when
2450 		 * available TX ring is less than threshold.
2451 		 */
2452 		if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2453 		    !netif_carrier_ok(priv->dev)) {
2454 			work_done = false;
2455 			break;
2456 		}
2457 
2458 		if (!xsk_tx_peek_desc(pool, &xdp_desc))
2459 			break;
2460 
2461 		if (likely(priv->extend_desc))
2462 			tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2463 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2464 			tx_desc = &tx_q->dma_entx[entry].basic;
2465 		else
2466 			tx_desc = tx_q->dma_tx + entry;
2467 
2468 		dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2469 		xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2470 
2471 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2472 
2473 		/* To return XDP buffer to XSK pool, we simple call
2474 		 * xsk_tx_completed(), so we don't need to fill up
2475 		 * 'buf' and 'xdpf'.
2476 		 */
2477 		tx_q->tx_skbuff_dma[entry].buf = 0;
2478 		tx_q->xdpf[entry] = NULL;
2479 
2480 		tx_q->tx_skbuff_dma[entry].map_as_page = false;
2481 		tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2482 		tx_q->tx_skbuff_dma[entry].last_segment = true;
2483 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2484 
2485 		stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2486 
2487 		tx_q->tx_count_frames++;
2488 
2489 		if (!priv->tx_coal_frames[queue])
2490 			set_ic = false;
2491 		else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2492 			set_ic = true;
2493 		else
2494 			set_ic = false;
2495 
2496 		if (set_ic) {
2497 			tx_q->tx_count_frames = 0;
2498 			stmmac_set_tx_ic(priv, tx_desc);
2499 			tx_set_ic_bit++;
2500 		}
2501 
2502 		stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2503 				       true, priv->mode, true, true,
2504 				       xdp_desc.len);
2505 
2506 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
2507 
2508 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
2509 		entry = tx_q->cur_tx;
2510 	}
2511 	flags = u64_stats_update_begin_irqsave(&tx_q->txq_stats.syncp);
2512 	tx_q->txq_stats.tx_set_ic_bit += tx_set_ic_bit;
2513 	u64_stats_update_end_irqrestore(&tx_q->txq_stats.syncp, flags);
2514 
2515 	if (tx_desc) {
2516 		stmmac_flush_tx_descriptors(priv, queue);
2517 		xsk_tx_release(pool);
2518 	}
2519 
2520 	/* Return true if all of the 3 conditions are met
2521 	 *  a) TX Budget is still available
2522 	 *  b) work_done = true when XSK TX desc peek is empty (no more
2523 	 *     pending XSK TX for transmission)
2524 	 */
2525 	return !!budget && work_done;
2526 }
2527 
2528 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
2529 {
2530 	if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
2531 		tc += 64;
2532 
2533 		if (priv->plat->force_thresh_dma_mode)
2534 			stmmac_set_dma_operation_mode(priv, tc, tc, chan);
2535 		else
2536 			stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
2537 						      chan);
2538 
2539 		priv->xstats.threshold = tc;
2540 	}
2541 }
2542 
2543 /**
2544  * stmmac_tx_clean - to manage the transmission completion
2545  * @priv: driver private structure
2546  * @budget: napi budget limiting this functions packet handling
2547  * @queue: TX queue index
2548  * Description: it reclaims the transmit resources after transmission completes.
2549  */
2550 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2551 {
2552 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2553 	unsigned int bytes_compl = 0, pkts_compl = 0;
2554 	unsigned int entry, xmits = 0, count = 0;
2555 	u32 tx_packets = 0, tx_errors = 0;
2556 	unsigned long flags;
2557 
2558 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2559 
2560 	tx_q->xsk_frames_done = 0;
2561 
2562 	entry = tx_q->dirty_tx;
2563 
2564 	/* Try to clean all TX complete frame in 1 shot */
2565 	while ((entry != tx_q->cur_tx) && count < priv->dma_conf.dma_tx_size) {
2566 		struct xdp_frame *xdpf;
2567 		struct sk_buff *skb;
2568 		struct dma_desc *p;
2569 		int status;
2570 
2571 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2572 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2573 			xdpf = tx_q->xdpf[entry];
2574 			skb = NULL;
2575 		} else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2576 			xdpf = NULL;
2577 			skb = tx_q->tx_skbuff[entry];
2578 		} else {
2579 			xdpf = NULL;
2580 			skb = NULL;
2581 		}
2582 
2583 		if (priv->extend_desc)
2584 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
2585 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2586 			p = &tx_q->dma_entx[entry].basic;
2587 		else
2588 			p = tx_q->dma_tx + entry;
2589 
2590 		status = stmmac_tx_status(priv,	&priv->xstats, p, priv->ioaddr);
2591 		/* Check if the descriptor is owned by the DMA */
2592 		if (unlikely(status & tx_dma_own))
2593 			break;
2594 
2595 		count++;
2596 
2597 		/* Make sure descriptor fields are read after reading
2598 		 * the own bit.
2599 		 */
2600 		dma_rmb();
2601 
2602 		/* Just consider the last segment and ...*/
2603 		if (likely(!(status & tx_not_ls))) {
2604 			/* ... verify the status error condition */
2605 			if (unlikely(status & tx_err)) {
2606 				tx_errors++;
2607 				if (unlikely(status & tx_err_bump_tc))
2608 					stmmac_bump_dma_threshold(priv, queue);
2609 			} else {
2610 				tx_packets++;
2611 			}
2612 			if (skb)
2613 				stmmac_get_tx_hwtstamp(priv, p, skb);
2614 		}
2615 
2616 		if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2617 			   tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2618 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2619 				dma_unmap_page(priv->device,
2620 					       tx_q->tx_skbuff_dma[entry].buf,
2621 					       tx_q->tx_skbuff_dma[entry].len,
2622 					       DMA_TO_DEVICE);
2623 			else
2624 				dma_unmap_single(priv->device,
2625 						 tx_q->tx_skbuff_dma[entry].buf,
2626 						 tx_q->tx_skbuff_dma[entry].len,
2627 						 DMA_TO_DEVICE);
2628 			tx_q->tx_skbuff_dma[entry].buf = 0;
2629 			tx_q->tx_skbuff_dma[entry].len = 0;
2630 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2631 		}
2632 
2633 		stmmac_clean_desc3(priv, tx_q, p);
2634 
2635 		tx_q->tx_skbuff_dma[entry].last_segment = false;
2636 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2637 
2638 		if (xdpf &&
2639 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2640 			xdp_return_frame_rx_napi(xdpf);
2641 			tx_q->xdpf[entry] = NULL;
2642 		}
2643 
2644 		if (xdpf &&
2645 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2646 			xdp_return_frame(xdpf);
2647 			tx_q->xdpf[entry] = NULL;
2648 		}
2649 
2650 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2651 			tx_q->xsk_frames_done++;
2652 
2653 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2654 			if (likely(skb)) {
2655 				pkts_compl++;
2656 				bytes_compl += skb->len;
2657 				dev_consume_skb_any(skb);
2658 				tx_q->tx_skbuff[entry] = NULL;
2659 			}
2660 		}
2661 
2662 		stmmac_release_tx_desc(priv, p, priv->mode);
2663 
2664 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
2665 	}
2666 	tx_q->dirty_tx = entry;
2667 
2668 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2669 				  pkts_compl, bytes_compl);
2670 
2671 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2672 								queue))) &&
2673 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2674 
2675 		netif_dbg(priv, tx_done, priv->dev,
2676 			  "%s: restart transmit\n", __func__);
2677 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2678 	}
2679 
2680 	if (tx_q->xsk_pool) {
2681 		bool work_done;
2682 
2683 		if (tx_q->xsk_frames_done)
2684 			xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2685 
2686 		if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2687 			xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2688 
2689 		/* For XSK TX, we try to send as many as possible.
2690 		 * If XSK work done (XSK TX desc empty and budget still
2691 		 * available), return "budget - 1" to reenable TX IRQ.
2692 		 * Else, return "budget" to make NAPI continue polling.
2693 		 */
2694 		work_done = stmmac_xdp_xmit_zc(priv, queue,
2695 					       STMMAC_XSK_TX_BUDGET_MAX);
2696 		if (work_done)
2697 			xmits = budget - 1;
2698 		else
2699 			xmits = budget;
2700 	}
2701 
2702 	if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2703 	    priv->eee_sw_timer_en) {
2704 		if (stmmac_enable_eee_mode(priv))
2705 			mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2706 	}
2707 
2708 	/* We still have pending packets, let's call for a new scheduling */
2709 	if (tx_q->dirty_tx != tx_q->cur_tx)
2710 		hrtimer_start(&tx_q->txtimer,
2711 			      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2712 			      HRTIMER_MODE_REL);
2713 
2714 	flags = u64_stats_update_begin_irqsave(&tx_q->txq_stats.syncp);
2715 	tx_q->txq_stats.tx_packets += tx_packets;
2716 	tx_q->txq_stats.tx_pkt_n += tx_packets;
2717 	tx_q->txq_stats.tx_clean++;
2718 	u64_stats_update_end_irqrestore(&tx_q->txq_stats.syncp, flags);
2719 
2720 	priv->xstats.tx_errors += tx_errors;
2721 
2722 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2723 
2724 	/* Combine decisions from TX clean and XSK TX */
2725 	return max(count, xmits);
2726 }
2727 
2728 /**
2729  * stmmac_tx_err - to manage the tx error
2730  * @priv: driver private structure
2731  * @chan: channel index
2732  * Description: it cleans the descriptors and restarts the transmission
2733  * in case of transmission errors.
2734  */
2735 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2736 {
2737 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2738 
2739 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2740 
2741 	stmmac_stop_tx_dma(priv, chan);
2742 	dma_free_tx_skbufs(priv, &priv->dma_conf, chan);
2743 	stmmac_clear_tx_descriptors(priv, &priv->dma_conf, chan);
2744 	stmmac_reset_tx_queue(priv, chan);
2745 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2746 			    tx_q->dma_tx_phy, chan);
2747 	stmmac_start_tx_dma(priv, chan);
2748 
2749 	priv->xstats.tx_errors++;
2750 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2751 }
2752 
2753 /**
2754  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2755  *  @priv: driver private structure
2756  *  @txmode: TX operating mode
2757  *  @rxmode: RX operating mode
2758  *  @chan: channel index
2759  *  Description: it is used for configuring of the DMA operation mode in
2760  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2761  *  mode.
2762  */
2763 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2764 					  u32 rxmode, u32 chan)
2765 {
2766 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2767 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2768 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2769 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2770 	int rxfifosz = priv->plat->rx_fifo_size;
2771 	int txfifosz = priv->plat->tx_fifo_size;
2772 
2773 	if (rxfifosz == 0)
2774 		rxfifosz = priv->dma_cap.rx_fifo_size;
2775 	if (txfifosz == 0)
2776 		txfifosz = priv->dma_cap.tx_fifo_size;
2777 
2778 	/* Adjust for real per queue fifo size */
2779 	rxfifosz /= rx_channels_count;
2780 	txfifosz /= tx_channels_count;
2781 
2782 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2783 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2784 }
2785 
2786 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2787 {
2788 	int ret;
2789 
2790 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2791 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2792 	if (ret && (ret != -EINVAL)) {
2793 		stmmac_global_err(priv);
2794 		return true;
2795 	}
2796 
2797 	return false;
2798 }
2799 
2800 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2801 {
2802 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2803 						 &priv->xstats, chan, dir);
2804 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2805 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2806 	struct stmmac_channel *ch = &priv->channel[chan];
2807 	struct napi_struct *rx_napi;
2808 	struct napi_struct *tx_napi;
2809 	unsigned long flags;
2810 
2811 	rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2812 	tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2813 
2814 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2815 		if (napi_schedule_prep(rx_napi)) {
2816 			spin_lock_irqsave(&ch->lock, flags);
2817 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2818 			spin_unlock_irqrestore(&ch->lock, flags);
2819 			__napi_schedule(rx_napi);
2820 		}
2821 	}
2822 
2823 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2824 		if (napi_schedule_prep(tx_napi)) {
2825 			spin_lock_irqsave(&ch->lock, flags);
2826 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2827 			spin_unlock_irqrestore(&ch->lock, flags);
2828 			__napi_schedule(tx_napi);
2829 		}
2830 	}
2831 
2832 	return status;
2833 }
2834 
2835 /**
2836  * stmmac_dma_interrupt - DMA ISR
2837  * @priv: driver private structure
2838  * Description: this is the DMA ISR. It is called by the main ISR.
2839  * It calls the dwmac dma routine and schedule poll method in case of some
2840  * work can be done.
2841  */
2842 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2843 {
2844 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2845 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2846 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2847 				tx_channel_count : rx_channel_count;
2848 	u32 chan;
2849 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2850 
2851 	/* Make sure we never check beyond our status buffer. */
2852 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2853 		channels_to_check = ARRAY_SIZE(status);
2854 
2855 	for (chan = 0; chan < channels_to_check; chan++)
2856 		status[chan] = stmmac_napi_check(priv, chan,
2857 						 DMA_DIR_RXTX);
2858 
2859 	for (chan = 0; chan < tx_channel_count; chan++) {
2860 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2861 			/* Try to bump up the dma threshold on this failure */
2862 			stmmac_bump_dma_threshold(priv, chan);
2863 		} else if (unlikely(status[chan] == tx_hard_error)) {
2864 			stmmac_tx_err(priv, chan);
2865 		}
2866 	}
2867 }
2868 
2869 /**
2870  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2871  * @priv: driver private structure
2872  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2873  */
2874 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2875 {
2876 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2877 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2878 
2879 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2880 
2881 	if (priv->dma_cap.rmon) {
2882 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2883 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2884 	} else
2885 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2886 }
2887 
2888 /**
2889  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2890  * @priv: driver private structure
2891  * Description:
2892  *  new GMAC chip generations have a new register to indicate the
2893  *  presence of the optional feature/functions.
2894  *  This can be also used to override the value passed through the
2895  *  platform and necessary for old MAC10/100 and GMAC chips.
2896  */
2897 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2898 {
2899 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2900 }
2901 
2902 /**
2903  * stmmac_check_ether_addr - check if the MAC addr is valid
2904  * @priv: driver private structure
2905  * Description:
2906  * it is to verify if the MAC address is valid, in case of failures it
2907  * generates a random MAC address
2908  */
2909 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2910 {
2911 	u8 addr[ETH_ALEN];
2912 
2913 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2914 		stmmac_get_umac_addr(priv, priv->hw, addr, 0);
2915 		if (is_valid_ether_addr(addr))
2916 			eth_hw_addr_set(priv->dev, addr);
2917 		else
2918 			eth_hw_addr_random(priv->dev);
2919 		dev_info(priv->device, "device MAC address %pM\n",
2920 			 priv->dev->dev_addr);
2921 	}
2922 }
2923 
2924 /**
2925  * stmmac_init_dma_engine - DMA init.
2926  * @priv: driver private structure
2927  * Description:
2928  * It inits the DMA invoking the specific MAC/GMAC callback.
2929  * Some DMA parameters can be passed from the platform;
2930  * in case of these are not passed a default is kept for the MAC or GMAC.
2931  */
2932 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2933 {
2934 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2935 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2936 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2937 	struct stmmac_rx_queue *rx_q;
2938 	struct stmmac_tx_queue *tx_q;
2939 	u32 chan = 0;
2940 	int atds = 0;
2941 	int ret = 0;
2942 
2943 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2944 		dev_err(priv->device, "Invalid DMA configuration\n");
2945 		return -EINVAL;
2946 	}
2947 
2948 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2949 		atds = 1;
2950 
2951 	ret = stmmac_reset(priv, priv->ioaddr);
2952 	if (ret) {
2953 		dev_err(priv->device, "Failed to reset the dma\n");
2954 		return ret;
2955 	}
2956 
2957 	/* DMA Configuration */
2958 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2959 
2960 	if (priv->plat->axi)
2961 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2962 
2963 	/* DMA CSR Channel configuration */
2964 	for (chan = 0; chan < dma_csr_ch; chan++) {
2965 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2966 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2967 	}
2968 
2969 	/* DMA RX Channel Configuration */
2970 	for (chan = 0; chan < rx_channels_count; chan++) {
2971 		rx_q = &priv->dma_conf.rx_queue[chan];
2972 
2973 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2974 				    rx_q->dma_rx_phy, chan);
2975 
2976 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2977 				     (rx_q->buf_alloc_num *
2978 				      sizeof(struct dma_desc));
2979 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2980 				       rx_q->rx_tail_addr, chan);
2981 	}
2982 
2983 	/* DMA TX Channel Configuration */
2984 	for (chan = 0; chan < tx_channels_count; chan++) {
2985 		tx_q = &priv->dma_conf.tx_queue[chan];
2986 
2987 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2988 				    tx_q->dma_tx_phy, chan);
2989 
2990 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2991 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2992 				       tx_q->tx_tail_addr, chan);
2993 	}
2994 
2995 	return ret;
2996 }
2997 
2998 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2999 {
3000 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
3001 
3002 	hrtimer_start(&tx_q->txtimer,
3003 		      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
3004 		      HRTIMER_MODE_REL);
3005 }
3006 
3007 /**
3008  * stmmac_tx_timer - mitigation sw timer for tx.
3009  * @t: data pointer
3010  * Description:
3011  * This is the timer handler to directly invoke the stmmac_tx_clean.
3012  */
3013 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
3014 {
3015 	struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
3016 	struct stmmac_priv *priv = tx_q->priv_data;
3017 	struct stmmac_channel *ch;
3018 	struct napi_struct *napi;
3019 
3020 	ch = &priv->channel[tx_q->queue_index];
3021 	napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
3022 
3023 	if (likely(napi_schedule_prep(napi))) {
3024 		unsigned long flags;
3025 
3026 		spin_lock_irqsave(&ch->lock, flags);
3027 		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
3028 		spin_unlock_irqrestore(&ch->lock, flags);
3029 		__napi_schedule(napi);
3030 	}
3031 
3032 	return HRTIMER_NORESTART;
3033 }
3034 
3035 /**
3036  * stmmac_init_coalesce - init mitigation options.
3037  * @priv: driver private structure
3038  * Description:
3039  * This inits the coalesce parameters: i.e. timer rate,
3040  * timer handler and default threshold used for enabling the
3041  * interrupt on completion bit.
3042  */
3043 static void stmmac_init_coalesce(struct stmmac_priv *priv)
3044 {
3045 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
3046 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
3047 	u32 chan;
3048 
3049 	for (chan = 0; chan < tx_channel_count; chan++) {
3050 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3051 
3052 		priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
3053 		priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
3054 
3055 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3056 		tx_q->txtimer.function = stmmac_tx_timer;
3057 	}
3058 
3059 	for (chan = 0; chan < rx_channel_count; chan++)
3060 		priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
3061 }
3062 
3063 static void stmmac_set_rings_length(struct stmmac_priv *priv)
3064 {
3065 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
3066 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
3067 	u32 chan;
3068 
3069 	/* set TX ring length */
3070 	for (chan = 0; chan < tx_channels_count; chan++)
3071 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
3072 				       (priv->dma_conf.dma_tx_size - 1), chan);
3073 
3074 	/* set RX ring length */
3075 	for (chan = 0; chan < rx_channels_count; chan++)
3076 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
3077 				       (priv->dma_conf.dma_rx_size - 1), chan);
3078 }
3079 
3080 /**
3081  *  stmmac_set_tx_queue_weight - Set TX queue weight
3082  *  @priv: driver private structure
3083  *  Description: It is used for setting TX queues weight
3084  */
3085 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
3086 {
3087 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3088 	u32 weight;
3089 	u32 queue;
3090 
3091 	for (queue = 0; queue < tx_queues_count; queue++) {
3092 		weight = priv->plat->tx_queues_cfg[queue].weight;
3093 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
3094 	}
3095 }
3096 
3097 /**
3098  *  stmmac_configure_cbs - Configure CBS in TX queue
3099  *  @priv: driver private structure
3100  *  Description: It is used for configuring CBS in AVB TX queues
3101  */
3102 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3103 {
3104 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3105 	u32 mode_to_use;
3106 	u32 queue;
3107 
3108 	/* queue 0 is reserved for legacy traffic */
3109 	for (queue = 1; queue < tx_queues_count; queue++) {
3110 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3111 		if (mode_to_use == MTL_QUEUE_DCB)
3112 			continue;
3113 
3114 		stmmac_config_cbs(priv, priv->hw,
3115 				priv->plat->tx_queues_cfg[queue].send_slope,
3116 				priv->plat->tx_queues_cfg[queue].idle_slope,
3117 				priv->plat->tx_queues_cfg[queue].high_credit,
3118 				priv->plat->tx_queues_cfg[queue].low_credit,
3119 				queue);
3120 	}
3121 }
3122 
3123 /**
3124  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3125  *  @priv: driver private structure
3126  *  Description: It is used for mapping RX queues to RX dma channels
3127  */
3128 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3129 {
3130 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3131 	u32 queue;
3132 	u32 chan;
3133 
3134 	for (queue = 0; queue < rx_queues_count; queue++) {
3135 		chan = priv->plat->rx_queues_cfg[queue].chan;
3136 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3137 	}
3138 }
3139 
3140 /**
3141  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3142  *  @priv: driver private structure
3143  *  Description: It is used for configuring the RX Queue Priority
3144  */
3145 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3146 {
3147 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3148 	u32 queue;
3149 	u32 prio;
3150 
3151 	for (queue = 0; queue < rx_queues_count; queue++) {
3152 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
3153 			continue;
3154 
3155 		prio = priv->plat->rx_queues_cfg[queue].prio;
3156 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3157 	}
3158 }
3159 
3160 /**
3161  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3162  *  @priv: driver private structure
3163  *  Description: It is used for configuring the TX Queue Priority
3164  */
3165 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3166 {
3167 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3168 	u32 queue;
3169 	u32 prio;
3170 
3171 	for (queue = 0; queue < tx_queues_count; queue++) {
3172 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
3173 			continue;
3174 
3175 		prio = priv->plat->tx_queues_cfg[queue].prio;
3176 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3177 	}
3178 }
3179 
3180 /**
3181  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3182  *  @priv: driver private structure
3183  *  Description: It is used for configuring the RX queue routing
3184  */
3185 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3186 {
3187 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3188 	u32 queue;
3189 	u8 packet;
3190 
3191 	for (queue = 0; queue < rx_queues_count; queue++) {
3192 		/* no specific packet type routing specified for the queue */
3193 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3194 			continue;
3195 
3196 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3197 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3198 	}
3199 }
3200 
3201 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3202 {
3203 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3204 		priv->rss.enable = false;
3205 		return;
3206 	}
3207 
3208 	if (priv->dev->features & NETIF_F_RXHASH)
3209 		priv->rss.enable = true;
3210 	else
3211 		priv->rss.enable = false;
3212 
3213 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
3214 			     priv->plat->rx_queues_to_use);
3215 }
3216 
3217 /**
3218  *  stmmac_mtl_configuration - Configure MTL
3219  *  @priv: driver private structure
3220  *  Description: It is used for configurring MTL
3221  */
3222 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3223 {
3224 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3225 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3226 
3227 	if (tx_queues_count > 1)
3228 		stmmac_set_tx_queue_weight(priv);
3229 
3230 	/* Configure MTL RX algorithms */
3231 	if (rx_queues_count > 1)
3232 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3233 				priv->plat->rx_sched_algorithm);
3234 
3235 	/* Configure MTL TX algorithms */
3236 	if (tx_queues_count > 1)
3237 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3238 				priv->plat->tx_sched_algorithm);
3239 
3240 	/* Configure CBS in AVB TX queues */
3241 	if (tx_queues_count > 1)
3242 		stmmac_configure_cbs(priv);
3243 
3244 	/* Map RX MTL to DMA channels */
3245 	stmmac_rx_queue_dma_chan_map(priv);
3246 
3247 	/* Enable MAC RX Queues */
3248 	stmmac_mac_enable_rx_queues(priv);
3249 
3250 	/* Set RX priorities */
3251 	if (rx_queues_count > 1)
3252 		stmmac_mac_config_rx_queues_prio(priv);
3253 
3254 	/* Set TX priorities */
3255 	if (tx_queues_count > 1)
3256 		stmmac_mac_config_tx_queues_prio(priv);
3257 
3258 	/* Set RX routing */
3259 	if (rx_queues_count > 1)
3260 		stmmac_mac_config_rx_queues_routing(priv);
3261 
3262 	/* Receive Side Scaling */
3263 	if (rx_queues_count > 1)
3264 		stmmac_mac_config_rss(priv);
3265 }
3266 
3267 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3268 {
3269 	if (priv->dma_cap.asp) {
3270 		netdev_info(priv->dev, "Enabling Safety Features\n");
3271 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3272 					  priv->plat->safety_feat_cfg);
3273 	} else {
3274 		netdev_info(priv->dev, "No Safety Features support found\n");
3275 	}
3276 }
3277 
3278 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3279 {
3280 	char *name;
3281 
3282 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3283 	clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3284 
3285 	name = priv->wq_name;
3286 	sprintf(name, "%s-fpe", priv->dev->name);
3287 
3288 	priv->fpe_wq = create_singlethread_workqueue(name);
3289 	if (!priv->fpe_wq) {
3290 		netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3291 
3292 		return -ENOMEM;
3293 	}
3294 	netdev_info(priv->dev, "FPE workqueue start");
3295 
3296 	return 0;
3297 }
3298 
3299 /**
3300  * stmmac_hw_setup - setup mac in a usable state.
3301  *  @dev : pointer to the device structure.
3302  *  @ptp_register: register PTP if set
3303  *  Description:
3304  *  this is the main function to setup the HW in a usable state because the
3305  *  dma engine is reset, the core registers are configured (e.g. AXI,
3306  *  Checksum features, timers). The DMA is ready to start receiving and
3307  *  transmitting.
3308  *  Return value:
3309  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3310  *  file on failure.
3311  */
3312 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
3313 {
3314 	struct stmmac_priv *priv = netdev_priv(dev);
3315 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3316 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3317 	bool sph_en;
3318 	u32 chan;
3319 	int ret;
3320 
3321 	/* DMA initialization and SW reset */
3322 	ret = stmmac_init_dma_engine(priv);
3323 	if (ret < 0) {
3324 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3325 			   __func__);
3326 		return ret;
3327 	}
3328 
3329 	/* Copy the MAC addr into the HW  */
3330 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3331 
3332 	/* PS and related bits will be programmed according to the speed */
3333 	if (priv->hw->pcs) {
3334 		int speed = priv->plat->mac_port_sel_speed;
3335 
3336 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
3337 		    (speed == SPEED_1000)) {
3338 			priv->hw->ps = speed;
3339 		} else {
3340 			dev_warn(priv->device, "invalid port speed\n");
3341 			priv->hw->ps = 0;
3342 		}
3343 	}
3344 
3345 	/* Initialize the MAC Core */
3346 	stmmac_core_init(priv, priv->hw, dev);
3347 
3348 	/* Initialize MTL*/
3349 	stmmac_mtl_configuration(priv);
3350 
3351 	/* Initialize Safety Features */
3352 	stmmac_safety_feat_configuration(priv);
3353 
3354 	ret = stmmac_rx_ipc(priv, priv->hw);
3355 	if (!ret) {
3356 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3357 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3358 		priv->hw->rx_csum = 0;
3359 	}
3360 
3361 	/* Enable the MAC Rx/Tx */
3362 	stmmac_mac_set(priv, priv->ioaddr, true);
3363 
3364 	/* Set the HW DMA mode and the COE */
3365 	stmmac_dma_operation_mode(priv);
3366 
3367 	stmmac_mmc_setup(priv);
3368 
3369 	if (ptp_register) {
3370 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3371 		if (ret < 0)
3372 			netdev_warn(priv->dev,
3373 				    "failed to enable PTP reference clock: %pe\n",
3374 				    ERR_PTR(ret));
3375 	}
3376 
3377 	ret = stmmac_init_ptp(priv);
3378 	if (ret == -EOPNOTSUPP)
3379 		netdev_info(priv->dev, "PTP not supported by HW\n");
3380 	else if (ret)
3381 		netdev_warn(priv->dev, "PTP init failed\n");
3382 	else if (ptp_register)
3383 		stmmac_ptp_register(priv);
3384 
3385 	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3386 
3387 	/* Convert the timer from msec to usec */
3388 	if (!priv->tx_lpi_timer)
3389 		priv->tx_lpi_timer = eee_timer * 1000;
3390 
3391 	if (priv->use_riwt) {
3392 		u32 queue;
3393 
3394 		for (queue = 0; queue < rx_cnt; queue++) {
3395 			if (!priv->rx_riwt[queue])
3396 				priv->rx_riwt[queue] = DEF_DMA_RIWT;
3397 
3398 			stmmac_rx_watchdog(priv, priv->ioaddr,
3399 					   priv->rx_riwt[queue], queue);
3400 		}
3401 	}
3402 
3403 	if (priv->hw->pcs)
3404 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3405 
3406 	/* set TX and RX rings length */
3407 	stmmac_set_rings_length(priv);
3408 
3409 	/* Enable TSO */
3410 	if (priv->tso) {
3411 		for (chan = 0; chan < tx_cnt; chan++) {
3412 			struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3413 
3414 			/* TSO and TBS cannot co-exist */
3415 			if (tx_q->tbs & STMMAC_TBS_AVAIL)
3416 				continue;
3417 
3418 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3419 		}
3420 	}
3421 
3422 	/* Enable Split Header */
3423 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3424 	for (chan = 0; chan < rx_cnt; chan++)
3425 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3426 
3427 
3428 	/* VLAN Tag Insertion */
3429 	if (priv->dma_cap.vlins)
3430 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3431 
3432 	/* TBS */
3433 	for (chan = 0; chan < tx_cnt; chan++) {
3434 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3435 		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3436 
3437 		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3438 	}
3439 
3440 	/* Configure real RX and TX queues */
3441 	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3442 	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3443 
3444 	/* Start the ball rolling... */
3445 	stmmac_start_all_dma(priv);
3446 
3447 	if (priv->dma_cap.fpesel) {
3448 		stmmac_fpe_start_wq(priv);
3449 
3450 		if (priv->plat->fpe_cfg->enable)
3451 			stmmac_fpe_handshake(priv, true);
3452 	}
3453 
3454 	return 0;
3455 }
3456 
3457 static void stmmac_hw_teardown(struct net_device *dev)
3458 {
3459 	struct stmmac_priv *priv = netdev_priv(dev);
3460 
3461 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
3462 }
3463 
3464 static void stmmac_free_irq(struct net_device *dev,
3465 			    enum request_irq_err irq_err, int irq_idx)
3466 {
3467 	struct stmmac_priv *priv = netdev_priv(dev);
3468 	int j;
3469 
3470 	switch (irq_err) {
3471 	case REQ_IRQ_ERR_ALL:
3472 		irq_idx = priv->plat->tx_queues_to_use;
3473 		fallthrough;
3474 	case REQ_IRQ_ERR_TX:
3475 		for (j = irq_idx - 1; j >= 0; j--) {
3476 			if (priv->tx_irq[j] > 0) {
3477 				irq_set_affinity_hint(priv->tx_irq[j], NULL);
3478 				free_irq(priv->tx_irq[j], &priv->dma_conf.tx_queue[j]);
3479 			}
3480 		}
3481 		irq_idx = priv->plat->rx_queues_to_use;
3482 		fallthrough;
3483 	case REQ_IRQ_ERR_RX:
3484 		for (j = irq_idx - 1; j >= 0; j--) {
3485 			if (priv->rx_irq[j] > 0) {
3486 				irq_set_affinity_hint(priv->rx_irq[j], NULL);
3487 				free_irq(priv->rx_irq[j], &priv->dma_conf.rx_queue[j]);
3488 			}
3489 		}
3490 
3491 		if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3492 			free_irq(priv->sfty_ue_irq, dev);
3493 		fallthrough;
3494 	case REQ_IRQ_ERR_SFTY_UE:
3495 		if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3496 			free_irq(priv->sfty_ce_irq, dev);
3497 		fallthrough;
3498 	case REQ_IRQ_ERR_SFTY_CE:
3499 		if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3500 			free_irq(priv->lpi_irq, dev);
3501 		fallthrough;
3502 	case REQ_IRQ_ERR_LPI:
3503 		if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3504 			free_irq(priv->wol_irq, dev);
3505 		fallthrough;
3506 	case REQ_IRQ_ERR_WOL:
3507 		free_irq(dev->irq, dev);
3508 		fallthrough;
3509 	case REQ_IRQ_ERR_MAC:
3510 	case REQ_IRQ_ERR_NO:
3511 		/* If MAC IRQ request error, no more IRQ to free */
3512 		break;
3513 	}
3514 }
3515 
3516 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3517 {
3518 	struct stmmac_priv *priv = netdev_priv(dev);
3519 	enum request_irq_err irq_err;
3520 	cpumask_t cpu_mask;
3521 	int irq_idx = 0;
3522 	char *int_name;
3523 	int ret;
3524 	int i;
3525 
3526 	/* For common interrupt */
3527 	int_name = priv->int_name_mac;
3528 	sprintf(int_name, "%s:%s", dev->name, "mac");
3529 	ret = request_irq(dev->irq, stmmac_mac_interrupt,
3530 			  0, int_name, dev);
3531 	if (unlikely(ret < 0)) {
3532 		netdev_err(priv->dev,
3533 			   "%s: alloc mac MSI %d (error: %d)\n",
3534 			   __func__, dev->irq, ret);
3535 		irq_err = REQ_IRQ_ERR_MAC;
3536 		goto irq_error;
3537 	}
3538 
3539 	/* Request the Wake IRQ in case of another line
3540 	 * is used for WoL
3541 	 */
3542 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3543 		int_name = priv->int_name_wol;
3544 		sprintf(int_name, "%s:%s", dev->name, "wol");
3545 		ret = request_irq(priv->wol_irq,
3546 				  stmmac_mac_interrupt,
3547 				  0, int_name, dev);
3548 		if (unlikely(ret < 0)) {
3549 			netdev_err(priv->dev,
3550 				   "%s: alloc wol MSI %d (error: %d)\n",
3551 				   __func__, priv->wol_irq, ret);
3552 			irq_err = REQ_IRQ_ERR_WOL;
3553 			goto irq_error;
3554 		}
3555 	}
3556 
3557 	/* Request the LPI IRQ in case of another line
3558 	 * is used for LPI
3559 	 */
3560 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3561 		int_name = priv->int_name_lpi;
3562 		sprintf(int_name, "%s:%s", dev->name, "lpi");
3563 		ret = request_irq(priv->lpi_irq,
3564 				  stmmac_mac_interrupt,
3565 				  0, int_name, dev);
3566 		if (unlikely(ret < 0)) {
3567 			netdev_err(priv->dev,
3568 				   "%s: alloc lpi MSI %d (error: %d)\n",
3569 				   __func__, priv->lpi_irq, ret);
3570 			irq_err = REQ_IRQ_ERR_LPI;
3571 			goto irq_error;
3572 		}
3573 	}
3574 
3575 	/* Request the Safety Feature Correctible Error line in
3576 	 * case of another line is used
3577 	 */
3578 	if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3579 		int_name = priv->int_name_sfty_ce;
3580 		sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3581 		ret = request_irq(priv->sfty_ce_irq,
3582 				  stmmac_safety_interrupt,
3583 				  0, int_name, dev);
3584 		if (unlikely(ret < 0)) {
3585 			netdev_err(priv->dev,
3586 				   "%s: alloc sfty ce MSI %d (error: %d)\n",
3587 				   __func__, priv->sfty_ce_irq, ret);
3588 			irq_err = REQ_IRQ_ERR_SFTY_CE;
3589 			goto irq_error;
3590 		}
3591 	}
3592 
3593 	/* Request the Safety Feature Uncorrectible Error line in
3594 	 * case of another line is used
3595 	 */
3596 	if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3597 		int_name = priv->int_name_sfty_ue;
3598 		sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3599 		ret = request_irq(priv->sfty_ue_irq,
3600 				  stmmac_safety_interrupt,
3601 				  0, int_name, dev);
3602 		if (unlikely(ret < 0)) {
3603 			netdev_err(priv->dev,
3604 				   "%s: alloc sfty ue MSI %d (error: %d)\n",
3605 				   __func__, priv->sfty_ue_irq, ret);
3606 			irq_err = REQ_IRQ_ERR_SFTY_UE;
3607 			goto irq_error;
3608 		}
3609 	}
3610 
3611 	/* Request Rx MSI irq */
3612 	for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3613 		if (i >= MTL_MAX_RX_QUEUES)
3614 			break;
3615 		if (priv->rx_irq[i] == 0)
3616 			continue;
3617 
3618 		int_name = priv->int_name_rx_irq[i];
3619 		sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3620 		ret = request_irq(priv->rx_irq[i],
3621 				  stmmac_msi_intr_rx,
3622 				  0, int_name, &priv->dma_conf.rx_queue[i]);
3623 		if (unlikely(ret < 0)) {
3624 			netdev_err(priv->dev,
3625 				   "%s: alloc rx-%d  MSI %d (error: %d)\n",
3626 				   __func__, i, priv->rx_irq[i], ret);
3627 			irq_err = REQ_IRQ_ERR_RX;
3628 			irq_idx = i;
3629 			goto irq_error;
3630 		}
3631 		cpumask_clear(&cpu_mask);
3632 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3633 		irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3634 	}
3635 
3636 	/* Request Tx MSI irq */
3637 	for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3638 		if (i >= MTL_MAX_TX_QUEUES)
3639 			break;
3640 		if (priv->tx_irq[i] == 0)
3641 			continue;
3642 
3643 		int_name = priv->int_name_tx_irq[i];
3644 		sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3645 		ret = request_irq(priv->tx_irq[i],
3646 				  stmmac_msi_intr_tx,
3647 				  0, int_name, &priv->dma_conf.tx_queue[i]);
3648 		if (unlikely(ret < 0)) {
3649 			netdev_err(priv->dev,
3650 				   "%s: alloc tx-%d  MSI %d (error: %d)\n",
3651 				   __func__, i, priv->tx_irq[i], ret);
3652 			irq_err = REQ_IRQ_ERR_TX;
3653 			irq_idx = i;
3654 			goto irq_error;
3655 		}
3656 		cpumask_clear(&cpu_mask);
3657 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3658 		irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3659 	}
3660 
3661 	return 0;
3662 
3663 irq_error:
3664 	stmmac_free_irq(dev, irq_err, irq_idx);
3665 	return ret;
3666 }
3667 
3668 static int stmmac_request_irq_single(struct net_device *dev)
3669 {
3670 	struct stmmac_priv *priv = netdev_priv(dev);
3671 	enum request_irq_err irq_err;
3672 	int ret;
3673 
3674 	ret = request_irq(dev->irq, stmmac_interrupt,
3675 			  IRQF_SHARED, dev->name, dev);
3676 	if (unlikely(ret < 0)) {
3677 		netdev_err(priv->dev,
3678 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3679 			   __func__, dev->irq, ret);
3680 		irq_err = REQ_IRQ_ERR_MAC;
3681 		goto irq_error;
3682 	}
3683 
3684 	/* Request the Wake IRQ in case of another line
3685 	 * is used for WoL
3686 	 */
3687 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3688 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
3689 				  IRQF_SHARED, dev->name, dev);
3690 		if (unlikely(ret < 0)) {
3691 			netdev_err(priv->dev,
3692 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3693 				   __func__, priv->wol_irq, ret);
3694 			irq_err = REQ_IRQ_ERR_WOL;
3695 			goto irq_error;
3696 		}
3697 	}
3698 
3699 	/* Request the IRQ lines */
3700 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3701 		ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3702 				  IRQF_SHARED, dev->name, dev);
3703 		if (unlikely(ret < 0)) {
3704 			netdev_err(priv->dev,
3705 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3706 				   __func__, priv->lpi_irq, ret);
3707 			irq_err = REQ_IRQ_ERR_LPI;
3708 			goto irq_error;
3709 		}
3710 	}
3711 
3712 	return 0;
3713 
3714 irq_error:
3715 	stmmac_free_irq(dev, irq_err, 0);
3716 	return ret;
3717 }
3718 
3719 static int stmmac_request_irq(struct net_device *dev)
3720 {
3721 	struct stmmac_priv *priv = netdev_priv(dev);
3722 	int ret;
3723 
3724 	/* Request the IRQ lines */
3725 	if (priv->plat->flags & STMMAC_FLAG_MULTI_MSI_EN)
3726 		ret = stmmac_request_irq_multi_msi(dev);
3727 	else
3728 		ret = stmmac_request_irq_single(dev);
3729 
3730 	return ret;
3731 }
3732 
3733 /**
3734  *  stmmac_setup_dma_desc - Generate a dma_conf and allocate DMA queue
3735  *  @priv: driver private structure
3736  *  @mtu: MTU to setup the dma queue and buf with
3737  *  Description: Allocate and generate a dma_conf based on the provided MTU.
3738  *  Allocate the Tx/Rx DMA queue and init them.
3739  *  Return value:
3740  *  the dma_conf allocated struct on success and an appropriate ERR_PTR on failure.
3741  */
3742 static struct stmmac_dma_conf *
3743 stmmac_setup_dma_desc(struct stmmac_priv *priv, unsigned int mtu)
3744 {
3745 	struct stmmac_dma_conf *dma_conf;
3746 	int chan, bfsize, ret;
3747 
3748 	dma_conf = kzalloc(sizeof(*dma_conf), GFP_KERNEL);
3749 	if (!dma_conf) {
3750 		netdev_err(priv->dev, "%s: DMA conf allocation failed\n",
3751 			   __func__);
3752 		return ERR_PTR(-ENOMEM);
3753 	}
3754 
3755 	bfsize = stmmac_set_16kib_bfsize(priv, mtu);
3756 	if (bfsize < 0)
3757 		bfsize = 0;
3758 
3759 	if (bfsize < BUF_SIZE_16KiB)
3760 		bfsize = stmmac_set_bfsize(mtu, 0);
3761 
3762 	dma_conf->dma_buf_sz = bfsize;
3763 	/* Chose the tx/rx size from the already defined one in the
3764 	 * priv struct. (if defined)
3765 	 */
3766 	dma_conf->dma_tx_size = priv->dma_conf.dma_tx_size;
3767 	dma_conf->dma_rx_size = priv->dma_conf.dma_rx_size;
3768 
3769 	if (!dma_conf->dma_tx_size)
3770 		dma_conf->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3771 	if (!dma_conf->dma_rx_size)
3772 		dma_conf->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3773 
3774 	/* Earlier check for TBS */
3775 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3776 		struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[chan];
3777 		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3778 
3779 		/* Setup per-TXQ tbs flag before TX descriptor alloc */
3780 		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3781 	}
3782 
3783 	ret = alloc_dma_desc_resources(priv, dma_conf);
3784 	if (ret < 0) {
3785 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3786 			   __func__);
3787 		goto alloc_error;
3788 	}
3789 
3790 	ret = init_dma_desc_rings(priv->dev, dma_conf, GFP_KERNEL);
3791 	if (ret < 0) {
3792 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3793 			   __func__);
3794 		goto init_error;
3795 	}
3796 
3797 	return dma_conf;
3798 
3799 init_error:
3800 	free_dma_desc_resources(priv, dma_conf);
3801 alloc_error:
3802 	kfree(dma_conf);
3803 	return ERR_PTR(ret);
3804 }
3805 
3806 /**
3807  *  __stmmac_open - open entry point of the driver
3808  *  @dev : pointer to the device structure.
3809  *  @dma_conf :  structure to take the dma data
3810  *  Description:
3811  *  This function is the open entry point of the driver.
3812  *  Return value:
3813  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3814  *  file on failure.
3815  */
3816 static int __stmmac_open(struct net_device *dev,
3817 			 struct stmmac_dma_conf *dma_conf)
3818 {
3819 	struct stmmac_priv *priv = netdev_priv(dev);
3820 	int mode = priv->plat->phy_interface;
3821 	u32 chan;
3822 	int ret;
3823 
3824 	ret = pm_runtime_resume_and_get(priv->device);
3825 	if (ret < 0)
3826 		return ret;
3827 
3828 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
3829 	    priv->hw->pcs != STMMAC_PCS_RTBI &&
3830 	    (!priv->hw->xpcs ||
3831 	     xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73) &&
3832 	    !priv->hw->lynx_pcs) {
3833 		ret = stmmac_init_phy(dev);
3834 		if (ret) {
3835 			netdev_err(priv->dev,
3836 				   "%s: Cannot attach to PHY (error: %d)\n",
3837 				   __func__, ret);
3838 			goto init_phy_error;
3839 		}
3840 	}
3841 
3842 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3843 
3844 	buf_sz = dma_conf->dma_buf_sz;
3845 	memcpy(&priv->dma_conf, dma_conf, sizeof(*dma_conf));
3846 
3847 	stmmac_reset_queues_param(priv);
3848 
3849 	if (!(priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) &&
3850 	    priv->plat->serdes_powerup) {
3851 		ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv);
3852 		if (ret < 0) {
3853 			netdev_err(priv->dev, "%s: Serdes powerup failed\n",
3854 				   __func__);
3855 			goto init_error;
3856 		}
3857 	}
3858 
3859 	ret = stmmac_hw_setup(dev, true);
3860 	if (ret < 0) {
3861 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3862 		goto init_error;
3863 	}
3864 
3865 	stmmac_init_coalesce(priv);
3866 
3867 	phylink_start(priv->phylink);
3868 	/* We may have called phylink_speed_down before */
3869 	phylink_speed_up(priv->phylink);
3870 
3871 	ret = stmmac_request_irq(dev);
3872 	if (ret)
3873 		goto irq_error;
3874 
3875 	stmmac_enable_all_queues(priv);
3876 	netif_tx_start_all_queues(priv->dev);
3877 	stmmac_enable_all_dma_irq(priv);
3878 
3879 	return 0;
3880 
3881 irq_error:
3882 	phylink_stop(priv->phylink);
3883 
3884 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3885 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3886 
3887 	stmmac_hw_teardown(dev);
3888 init_error:
3889 	phylink_disconnect_phy(priv->phylink);
3890 init_phy_error:
3891 	pm_runtime_put(priv->device);
3892 	return ret;
3893 }
3894 
3895 static int stmmac_open(struct net_device *dev)
3896 {
3897 	struct stmmac_priv *priv = netdev_priv(dev);
3898 	struct stmmac_dma_conf *dma_conf;
3899 	int ret;
3900 
3901 	dma_conf = stmmac_setup_dma_desc(priv, dev->mtu);
3902 	if (IS_ERR(dma_conf))
3903 		return PTR_ERR(dma_conf);
3904 
3905 	ret = __stmmac_open(dev, dma_conf);
3906 	if (ret)
3907 		free_dma_desc_resources(priv, dma_conf);
3908 
3909 	kfree(dma_conf);
3910 	return ret;
3911 }
3912 
3913 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3914 {
3915 	set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3916 
3917 	if (priv->fpe_wq)
3918 		destroy_workqueue(priv->fpe_wq);
3919 
3920 	netdev_info(priv->dev, "FPE workqueue stop");
3921 }
3922 
3923 /**
3924  *  stmmac_release - close entry point of the driver
3925  *  @dev : device pointer.
3926  *  Description:
3927  *  This is the stop entry point of the driver.
3928  */
3929 static int stmmac_release(struct net_device *dev)
3930 {
3931 	struct stmmac_priv *priv = netdev_priv(dev);
3932 	u32 chan;
3933 
3934 	if (device_may_wakeup(priv->device))
3935 		phylink_speed_down(priv->phylink, false);
3936 	/* Stop and disconnect the PHY */
3937 	phylink_stop(priv->phylink);
3938 	phylink_disconnect_phy(priv->phylink);
3939 
3940 	stmmac_disable_all_queues(priv);
3941 
3942 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3943 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3944 
3945 	netif_tx_disable(dev);
3946 
3947 	/* Free the IRQ lines */
3948 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3949 
3950 	if (priv->eee_enabled) {
3951 		priv->tx_path_in_lpi_mode = false;
3952 		del_timer_sync(&priv->eee_ctrl_timer);
3953 	}
3954 
3955 	/* Stop TX/RX DMA and clear the descriptors */
3956 	stmmac_stop_all_dma(priv);
3957 
3958 	/* Release and free the Rx/Tx resources */
3959 	free_dma_desc_resources(priv, &priv->dma_conf);
3960 
3961 	/* Disable the MAC Rx/Tx */
3962 	stmmac_mac_set(priv, priv->ioaddr, false);
3963 
3964 	/* Powerdown Serdes if there is */
3965 	if (priv->plat->serdes_powerdown)
3966 		priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv);
3967 
3968 	netif_carrier_off(dev);
3969 
3970 	stmmac_release_ptp(priv);
3971 
3972 	pm_runtime_put(priv->device);
3973 
3974 	if (priv->dma_cap.fpesel)
3975 		stmmac_fpe_stop_wq(priv);
3976 
3977 	return 0;
3978 }
3979 
3980 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3981 			       struct stmmac_tx_queue *tx_q)
3982 {
3983 	u16 tag = 0x0, inner_tag = 0x0;
3984 	u32 inner_type = 0x0;
3985 	struct dma_desc *p;
3986 
3987 	if (!priv->dma_cap.vlins)
3988 		return false;
3989 	if (!skb_vlan_tag_present(skb))
3990 		return false;
3991 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3992 		inner_tag = skb_vlan_tag_get(skb);
3993 		inner_type = STMMAC_VLAN_INSERT;
3994 	}
3995 
3996 	tag = skb_vlan_tag_get(skb);
3997 
3998 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3999 		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
4000 	else
4001 		p = &tx_q->dma_tx[tx_q->cur_tx];
4002 
4003 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
4004 		return false;
4005 
4006 	stmmac_set_tx_owner(priv, p);
4007 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
4008 	return true;
4009 }
4010 
4011 /**
4012  *  stmmac_tso_allocator - close entry point of the driver
4013  *  @priv: driver private structure
4014  *  @des: buffer start address
4015  *  @total_len: total length to fill in descriptors
4016  *  @last_segment: condition for the last descriptor
4017  *  @queue: TX queue index
4018  *  Description:
4019  *  This function fills descriptor and request new descriptors according to
4020  *  buffer length to fill
4021  */
4022 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
4023 				 int total_len, bool last_segment, u32 queue)
4024 {
4025 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4026 	struct dma_desc *desc;
4027 	u32 buff_size;
4028 	int tmp_len;
4029 
4030 	tmp_len = total_len;
4031 
4032 	while (tmp_len > 0) {
4033 		dma_addr_t curr_addr;
4034 
4035 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4036 						priv->dma_conf.dma_tx_size);
4037 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4038 
4039 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4040 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4041 		else
4042 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4043 
4044 		curr_addr = des + (total_len - tmp_len);
4045 		if (priv->dma_cap.addr64 <= 32)
4046 			desc->des0 = cpu_to_le32(curr_addr);
4047 		else
4048 			stmmac_set_desc_addr(priv, desc, curr_addr);
4049 
4050 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
4051 			    TSO_MAX_BUFF_SIZE : tmp_len;
4052 
4053 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
4054 				0, 1,
4055 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
4056 				0, 0);
4057 
4058 		tmp_len -= TSO_MAX_BUFF_SIZE;
4059 	}
4060 }
4061 
4062 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
4063 {
4064 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4065 	int desc_size;
4066 
4067 	if (likely(priv->extend_desc))
4068 		desc_size = sizeof(struct dma_extended_desc);
4069 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4070 		desc_size = sizeof(struct dma_edesc);
4071 	else
4072 		desc_size = sizeof(struct dma_desc);
4073 
4074 	/* The own bit must be the latest setting done when prepare the
4075 	 * descriptor and then barrier is needed to make sure that
4076 	 * all is coherent before granting the DMA engine.
4077 	 */
4078 	wmb();
4079 
4080 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
4081 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
4082 }
4083 
4084 /**
4085  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
4086  *  @skb : the socket buffer
4087  *  @dev : device pointer
4088  *  Description: this is the transmit function that is called on TSO frames
4089  *  (support available on GMAC4 and newer chips).
4090  *  Diagram below show the ring programming in case of TSO frames:
4091  *
4092  *  First Descriptor
4093  *   --------
4094  *   | DES0 |---> buffer1 = L2/L3/L4 header
4095  *   | DES1 |---> TCP Payload (can continue on next descr...)
4096  *   | DES2 |---> buffer 1 and 2 len
4097  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
4098  *   --------
4099  *	|
4100  *     ...
4101  *	|
4102  *   --------
4103  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
4104  *   | DES1 | --|
4105  *   | DES2 | --> buffer 1 and 2 len
4106  *   | DES3 |
4107  *   --------
4108  *
4109  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
4110  */
4111 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
4112 {
4113 	struct dma_desc *desc, *first, *mss_desc = NULL;
4114 	struct stmmac_priv *priv = netdev_priv(dev);
4115 	int nfrags = skb_shinfo(skb)->nr_frags;
4116 	u32 queue = skb_get_queue_mapping(skb);
4117 	unsigned int first_entry, tx_packets;
4118 	int tmp_pay_len = 0, first_tx;
4119 	struct stmmac_tx_queue *tx_q;
4120 	bool has_vlan, set_ic;
4121 	u8 proto_hdr_len, hdr;
4122 	unsigned long flags;
4123 	u32 pay_len, mss;
4124 	dma_addr_t des;
4125 	int i;
4126 
4127 	tx_q = &priv->dma_conf.tx_queue[queue];
4128 	first_tx = tx_q->cur_tx;
4129 
4130 	/* Compute header lengths */
4131 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
4132 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
4133 		hdr = sizeof(struct udphdr);
4134 	} else {
4135 		proto_hdr_len = skb_tcp_all_headers(skb);
4136 		hdr = tcp_hdrlen(skb);
4137 	}
4138 
4139 	/* Desc availability based on threshold should be enough safe */
4140 	if (unlikely(stmmac_tx_avail(priv, queue) <
4141 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
4142 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4143 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4144 								queue));
4145 			/* This is a hard error, log it. */
4146 			netdev_err(priv->dev,
4147 				   "%s: Tx Ring full when queue awake\n",
4148 				   __func__);
4149 		}
4150 		return NETDEV_TX_BUSY;
4151 	}
4152 
4153 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
4154 
4155 	mss = skb_shinfo(skb)->gso_size;
4156 
4157 	/* set new MSS value if needed */
4158 	if (mss != tx_q->mss) {
4159 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4160 			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4161 		else
4162 			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
4163 
4164 		stmmac_set_mss(priv, mss_desc, mss);
4165 		tx_q->mss = mss;
4166 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4167 						priv->dma_conf.dma_tx_size);
4168 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4169 	}
4170 
4171 	if (netif_msg_tx_queued(priv)) {
4172 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
4173 			__func__, hdr, proto_hdr_len, pay_len, mss);
4174 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4175 			skb->data_len);
4176 	}
4177 
4178 	/* Check if VLAN can be inserted by HW */
4179 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4180 
4181 	first_entry = tx_q->cur_tx;
4182 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4183 
4184 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
4185 		desc = &tx_q->dma_entx[first_entry].basic;
4186 	else
4187 		desc = &tx_q->dma_tx[first_entry];
4188 	first = desc;
4189 
4190 	if (has_vlan)
4191 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4192 
4193 	/* first descriptor: fill Headers on Buf1 */
4194 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4195 			     DMA_TO_DEVICE);
4196 	if (dma_mapping_error(priv->device, des))
4197 		goto dma_map_err;
4198 
4199 	tx_q->tx_skbuff_dma[first_entry].buf = des;
4200 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4201 	tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4202 	tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4203 
4204 	if (priv->dma_cap.addr64 <= 32) {
4205 		first->des0 = cpu_to_le32(des);
4206 
4207 		/* Fill start of payload in buff2 of first descriptor */
4208 		if (pay_len)
4209 			first->des1 = cpu_to_le32(des + proto_hdr_len);
4210 
4211 		/* If needed take extra descriptors to fill the remaining payload */
4212 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4213 	} else {
4214 		stmmac_set_desc_addr(priv, first, des);
4215 		tmp_pay_len = pay_len;
4216 		des += proto_hdr_len;
4217 		pay_len = 0;
4218 	}
4219 
4220 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4221 
4222 	/* Prepare fragments */
4223 	for (i = 0; i < nfrags; i++) {
4224 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4225 
4226 		des = skb_frag_dma_map(priv->device, frag, 0,
4227 				       skb_frag_size(frag),
4228 				       DMA_TO_DEVICE);
4229 		if (dma_mapping_error(priv->device, des))
4230 			goto dma_map_err;
4231 
4232 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4233 				     (i == nfrags - 1), queue);
4234 
4235 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4236 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4237 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4238 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4239 	}
4240 
4241 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4242 
4243 	/* Only the last descriptor gets to point to the skb. */
4244 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4245 	tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4246 
4247 	/* Manage tx mitigation */
4248 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
4249 	tx_q->tx_count_frames += tx_packets;
4250 
4251 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4252 		set_ic = true;
4253 	else if (!priv->tx_coal_frames[queue])
4254 		set_ic = false;
4255 	else if (tx_packets > priv->tx_coal_frames[queue])
4256 		set_ic = true;
4257 	else if ((tx_q->tx_count_frames %
4258 		  priv->tx_coal_frames[queue]) < tx_packets)
4259 		set_ic = true;
4260 	else
4261 		set_ic = false;
4262 
4263 	if (set_ic) {
4264 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4265 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4266 		else
4267 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4268 
4269 		tx_q->tx_count_frames = 0;
4270 		stmmac_set_tx_ic(priv, desc);
4271 	}
4272 
4273 	/* We've used all descriptors we need for this skb, however,
4274 	 * advance cur_tx so that it references a fresh descriptor.
4275 	 * ndo_start_xmit will fill this descriptor the next time it's
4276 	 * called and stmmac_tx_clean may clean up to this descriptor.
4277 	 */
4278 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
4279 
4280 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4281 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4282 			  __func__);
4283 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4284 	}
4285 
4286 	flags = u64_stats_update_begin_irqsave(&tx_q->txq_stats.syncp);
4287 	tx_q->txq_stats.tx_bytes += skb->len;
4288 	tx_q->txq_stats.tx_tso_frames++;
4289 	tx_q->txq_stats.tx_tso_nfrags += nfrags;
4290 	if (set_ic)
4291 		tx_q->txq_stats.tx_set_ic_bit++;
4292 	u64_stats_update_end_irqrestore(&tx_q->txq_stats.syncp, flags);
4293 
4294 	if (priv->sarc_type)
4295 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4296 
4297 	skb_tx_timestamp(skb);
4298 
4299 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4300 		     priv->hwts_tx_en)) {
4301 		/* declare that device is doing timestamping */
4302 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4303 		stmmac_enable_tx_timestamp(priv, first);
4304 	}
4305 
4306 	/* Complete the first descriptor before granting the DMA */
4307 	stmmac_prepare_tso_tx_desc(priv, first, 1,
4308 			proto_hdr_len,
4309 			pay_len,
4310 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4311 			hdr / 4, (skb->len - proto_hdr_len));
4312 
4313 	/* If context desc is used to change MSS */
4314 	if (mss_desc) {
4315 		/* Make sure that first descriptor has been completely
4316 		 * written, including its own bit. This is because MSS is
4317 		 * actually before first descriptor, so we need to make
4318 		 * sure that MSS's own bit is the last thing written.
4319 		 */
4320 		dma_wmb();
4321 		stmmac_set_tx_owner(priv, mss_desc);
4322 	}
4323 
4324 	if (netif_msg_pktdata(priv)) {
4325 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4326 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4327 			tx_q->cur_tx, first, nfrags);
4328 		pr_info(">>> frame to be transmitted: ");
4329 		print_pkt(skb->data, skb_headlen(skb));
4330 	}
4331 
4332 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4333 
4334 	stmmac_flush_tx_descriptors(priv, queue);
4335 	stmmac_tx_timer_arm(priv, queue);
4336 
4337 	return NETDEV_TX_OK;
4338 
4339 dma_map_err:
4340 	dev_err(priv->device, "Tx dma map failed\n");
4341 	dev_kfree_skb(skb);
4342 	priv->xstats.tx_dropped++;
4343 	return NETDEV_TX_OK;
4344 }
4345 
4346 /**
4347  *  stmmac_xmit - Tx entry point of the driver
4348  *  @skb : the socket buffer
4349  *  @dev : device pointer
4350  *  Description : this is the tx entry point of the driver.
4351  *  It programs the chain or the ring and supports oversized frames
4352  *  and SG feature.
4353  */
4354 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4355 {
4356 	unsigned int first_entry, tx_packets, enh_desc;
4357 	struct stmmac_priv *priv = netdev_priv(dev);
4358 	unsigned int nopaged_len = skb_headlen(skb);
4359 	int i, csum_insertion = 0, is_jumbo = 0;
4360 	u32 queue = skb_get_queue_mapping(skb);
4361 	int nfrags = skb_shinfo(skb)->nr_frags;
4362 	int gso = skb_shinfo(skb)->gso_type;
4363 	struct dma_edesc *tbs_desc = NULL;
4364 	struct dma_desc *desc, *first;
4365 	struct stmmac_tx_queue *tx_q;
4366 	bool has_vlan, set_ic;
4367 	int entry, first_tx;
4368 	unsigned long flags;
4369 	dma_addr_t des;
4370 
4371 	tx_q = &priv->dma_conf.tx_queue[queue];
4372 	first_tx = tx_q->cur_tx;
4373 
4374 	if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4375 		stmmac_disable_eee_mode(priv);
4376 
4377 	/* Manage oversized TCP frames for GMAC4 device */
4378 	if (skb_is_gso(skb) && priv->tso) {
4379 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4380 			return stmmac_tso_xmit(skb, dev);
4381 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4382 			return stmmac_tso_xmit(skb, dev);
4383 	}
4384 
4385 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4386 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4387 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4388 								queue));
4389 			/* This is a hard error, log it. */
4390 			netdev_err(priv->dev,
4391 				   "%s: Tx Ring full when queue awake\n",
4392 				   __func__);
4393 		}
4394 		return NETDEV_TX_BUSY;
4395 	}
4396 
4397 	/* Check if VLAN can be inserted by HW */
4398 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4399 
4400 	entry = tx_q->cur_tx;
4401 	first_entry = entry;
4402 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4403 
4404 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4405 
4406 	if (likely(priv->extend_desc))
4407 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4408 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4409 		desc = &tx_q->dma_entx[entry].basic;
4410 	else
4411 		desc = tx_q->dma_tx + entry;
4412 
4413 	first = desc;
4414 
4415 	if (has_vlan)
4416 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4417 
4418 	enh_desc = priv->plat->enh_desc;
4419 	/* To program the descriptors according to the size of the frame */
4420 	if (enh_desc)
4421 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4422 
4423 	if (unlikely(is_jumbo)) {
4424 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4425 		if (unlikely(entry < 0) && (entry != -EINVAL))
4426 			goto dma_map_err;
4427 	}
4428 
4429 	for (i = 0; i < nfrags; i++) {
4430 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4431 		int len = skb_frag_size(frag);
4432 		bool last_segment = (i == (nfrags - 1));
4433 
4434 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4435 		WARN_ON(tx_q->tx_skbuff[entry]);
4436 
4437 		if (likely(priv->extend_desc))
4438 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4439 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4440 			desc = &tx_q->dma_entx[entry].basic;
4441 		else
4442 			desc = tx_q->dma_tx + entry;
4443 
4444 		des = skb_frag_dma_map(priv->device, frag, 0, len,
4445 				       DMA_TO_DEVICE);
4446 		if (dma_mapping_error(priv->device, des))
4447 			goto dma_map_err; /* should reuse desc w/o issues */
4448 
4449 		tx_q->tx_skbuff_dma[entry].buf = des;
4450 
4451 		stmmac_set_desc_addr(priv, desc, des);
4452 
4453 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
4454 		tx_q->tx_skbuff_dma[entry].len = len;
4455 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4456 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4457 
4458 		/* Prepare the descriptor and set the own bit too */
4459 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4460 				priv->mode, 1, last_segment, skb->len);
4461 	}
4462 
4463 	/* Only the last descriptor gets to point to the skb. */
4464 	tx_q->tx_skbuff[entry] = skb;
4465 	tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4466 
4467 	/* According to the coalesce parameter the IC bit for the latest
4468 	 * segment is reset and the timer re-started to clean the tx status.
4469 	 * This approach takes care about the fragments: desc is the first
4470 	 * element in case of no SG.
4471 	 */
4472 	tx_packets = (entry + 1) - first_tx;
4473 	tx_q->tx_count_frames += tx_packets;
4474 
4475 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4476 		set_ic = true;
4477 	else if (!priv->tx_coal_frames[queue])
4478 		set_ic = false;
4479 	else if (tx_packets > priv->tx_coal_frames[queue])
4480 		set_ic = true;
4481 	else if ((tx_q->tx_count_frames %
4482 		  priv->tx_coal_frames[queue]) < tx_packets)
4483 		set_ic = true;
4484 	else
4485 		set_ic = false;
4486 
4487 	if (set_ic) {
4488 		if (likely(priv->extend_desc))
4489 			desc = &tx_q->dma_etx[entry].basic;
4490 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4491 			desc = &tx_q->dma_entx[entry].basic;
4492 		else
4493 			desc = &tx_q->dma_tx[entry];
4494 
4495 		tx_q->tx_count_frames = 0;
4496 		stmmac_set_tx_ic(priv, desc);
4497 	}
4498 
4499 	/* We've used all descriptors we need for this skb, however,
4500 	 * advance cur_tx so that it references a fresh descriptor.
4501 	 * ndo_start_xmit will fill this descriptor the next time it's
4502 	 * called and stmmac_tx_clean may clean up to this descriptor.
4503 	 */
4504 	entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4505 	tx_q->cur_tx = entry;
4506 
4507 	if (netif_msg_pktdata(priv)) {
4508 		netdev_dbg(priv->dev,
4509 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4510 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4511 			   entry, first, nfrags);
4512 
4513 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4514 		print_pkt(skb->data, skb->len);
4515 	}
4516 
4517 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4518 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4519 			  __func__);
4520 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4521 	}
4522 
4523 	flags = u64_stats_update_begin_irqsave(&tx_q->txq_stats.syncp);
4524 	tx_q->txq_stats.tx_bytes += skb->len;
4525 	if (set_ic)
4526 		tx_q->txq_stats.tx_set_ic_bit++;
4527 	u64_stats_update_end_irqrestore(&tx_q->txq_stats.syncp, flags);
4528 
4529 	if (priv->sarc_type)
4530 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4531 
4532 	skb_tx_timestamp(skb);
4533 
4534 	/* Ready to fill the first descriptor and set the OWN bit w/o any
4535 	 * problems because all the descriptors are actually ready to be
4536 	 * passed to the DMA engine.
4537 	 */
4538 	if (likely(!is_jumbo)) {
4539 		bool last_segment = (nfrags == 0);
4540 
4541 		des = dma_map_single(priv->device, skb->data,
4542 				     nopaged_len, DMA_TO_DEVICE);
4543 		if (dma_mapping_error(priv->device, des))
4544 			goto dma_map_err;
4545 
4546 		tx_q->tx_skbuff_dma[first_entry].buf = des;
4547 		tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4548 		tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4549 
4550 		stmmac_set_desc_addr(priv, first, des);
4551 
4552 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4553 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4554 
4555 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4556 			     priv->hwts_tx_en)) {
4557 			/* declare that device is doing timestamping */
4558 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4559 			stmmac_enable_tx_timestamp(priv, first);
4560 		}
4561 
4562 		/* Prepare the first descriptor setting the OWN bit too */
4563 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4564 				csum_insertion, priv->mode, 0, last_segment,
4565 				skb->len);
4566 	}
4567 
4568 	if (tx_q->tbs & STMMAC_TBS_EN) {
4569 		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4570 
4571 		tbs_desc = &tx_q->dma_entx[first_entry];
4572 		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4573 	}
4574 
4575 	stmmac_set_tx_owner(priv, first);
4576 
4577 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4578 
4579 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4580 
4581 	stmmac_flush_tx_descriptors(priv, queue);
4582 	stmmac_tx_timer_arm(priv, queue);
4583 
4584 	return NETDEV_TX_OK;
4585 
4586 dma_map_err:
4587 	netdev_err(priv->dev, "Tx DMA map failed\n");
4588 	dev_kfree_skb(skb);
4589 	priv->xstats.tx_dropped++;
4590 	return NETDEV_TX_OK;
4591 }
4592 
4593 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4594 {
4595 	struct vlan_ethhdr *veth = skb_vlan_eth_hdr(skb);
4596 	__be16 vlan_proto = veth->h_vlan_proto;
4597 	u16 vlanid;
4598 
4599 	if ((vlan_proto == htons(ETH_P_8021Q) &&
4600 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4601 	    (vlan_proto == htons(ETH_P_8021AD) &&
4602 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4603 		/* pop the vlan tag */
4604 		vlanid = ntohs(veth->h_vlan_TCI);
4605 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4606 		skb_pull(skb, VLAN_HLEN);
4607 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4608 	}
4609 }
4610 
4611 /**
4612  * stmmac_rx_refill - refill used skb preallocated buffers
4613  * @priv: driver private structure
4614  * @queue: RX queue index
4615  * Description : this is to reallocate the skb for the reception process
4616  * that is based on zero-copy.
4617  */
4618 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4619 {
4620 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4621 	int dirty = stmmac_rx_dirty(priv, queue);
4622 	unsigned int entry = rx_q->dirty_rx;
4623 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
4624 
4625 	if (priv->dma_cap.host_dma_width <= 32)
4626 		gfp |= GFP_DMA32;
4627 
4628 	while (dirty-- > 0) {
4629 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4630 		struct dma_desc *p;
4631 		bool use_rx_wd;
4632 
4633 		if (priv->extend_desc)
4634 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4635 		else
4636 			p = rx_q->dma_rx + entry;
4637 
4638 		if (!buf->page) {
4639 			buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4640 			if (!buf->page)
4641 				break;
4642 		}
4643 
4644 		if (priv->sph && !buf->sec_page) {
4645 			buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4646 			if (!buf->sec_page)
4647 				break;
4648 
4649 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4650 		}
4651 
4652 		buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4653 
4654 		stmmac_set_desc_addr(priv, p, buf->addr);
4655 		if (priv->sph)
4656 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4657 		else
4658 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4659 		stmmac_refill_desc3(priv, rx_q, p);
4660 
4661 		rx_q->rx_count_frames++;
4662 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4663 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4664 			rx_q->rx_count_frames = 0;
4665 
4666 		use_rx_wd = !priv->rx_coal_frames[queue];
4667 		use_rx_wd |= rx_q->rx_count_frames > 0;
4668 		if (!priv->use_riwt)
4669 			use_rx_wd = false;
4670 
4671 		dma_wmb();
4672 		stmmac_set_rx_owner(priv, p, use_rx_wd);
4673 
4674 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4675 	}
4676 	rx_q->dirty_rx = entry;
4677 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4678 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
4679 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4680 }
4681 
4682 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4683 				       struct dma_desc *p,
4684 				       int status, unsigned int len)
4685 {
4686 	unsigned int plen = 0, hlen = 0;
4687 	int coe = priv->hw->rx_csum;
4688 
4689 	/* Not first descriptor, buffer is always zero */
4690 	if (priv->sph && len)
4691 		return 0;
4692 
4693 	/* First descriptor, get split header length */
4694 	stmmac_get_rx_header_len(priv, p, &hlen);
4695 	if (priv->sph && hlen) {
4696 		priv->xstats.rx_split_hdr_pkt_n++;
4697 		return hlen;
4698 	}
4699 
4700 	/* First descriptor, not last descriptor and not split header */
4701 	if (status & rx_not_ls)
4702 		return priv->dma_conf.dma_buf_sz;
4703 
4704 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4705 
4706 	/* First descriptor and last descriptor and not split header */
4707 	return min_t(unsigned int, priv->dma_conf.dma_buf_sz, plen);
4708 }
4709 
4710 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4711 				       struct dma_desc *p,
4712 				       int status, unsigned int len)
4713 {
4714 	int coe = priv->hw->rx_csum;
4715 	unsigned int plen = 0;
4716 
4717 	/* Not split header, buffer is not available */
4718 	if (!priv->sph)
4719 		return 0;
4720 
4721 	/* Not last descriptor */
4722 	if (status & rx_not_ls)
4723 		return priv->dma_conf.dma_buf_sz;
4724 
4725 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4726 
4727 	/* Last descriptor */
4728 	return plen - len;
4729 }
4730 
4731 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4732 				struct xdp_frame *xdpf, bool dma_map)
4733 {
4734 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4735 	unsigned int entry = tx_q->cur_tx;
4736 	struct dma_desc *tx_desc;
4737 	dma_addr_t dma_addr;
4738 	bool set_ic;
4739 
4740 	if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4741 		return STMMAC_XDP_CONSUMED;
4742 
4743 	if (likely(priv->extend_desc))
4744 		tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4745 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4746 		tx_desc = &tx_q->dma_entx[entry].basic;
4747 	else
4748 		tx_desc = tx_q->dma_tx + entry;
4749 
4750 	if (dma_map) {
4751 		dma_addr = dma_map_single(priv->device, xdpf->data,
4752 					  xdpf->len, DMA_TO_DEVICE);
4753 		if (dma_mapping_error(priv->device, dma_addr))
4754 			return STMMAC_XDP_CONSUMED;
4755 
4756 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4757 	} else {
4758 		struct page *page = virt_to_page(xdpf->data);
4759 
4760 		dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4761 			   xdpf->headroom;
4762 		dma_sync_single_for_device(priv->device, dma_addr,
4763 					   xdpf->len, DMA_BIDIRECTIONAL);
4764 
4765 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4766 	}
4767 
4768 	tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4769 	tx_q->tx_skbuff_dma[entry].map_as_page = false;
4770 	tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4771 	tx_q->tx_skbuff_dma[entry].last_segment = true;
4772 	tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4773 
4774 	tx_q->xdpf[entry] = xdpf;
4775 
4776 	stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4777 
4778 	stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4779 			       true, priv->mode, true, true,
4780 			       xdpf->len);
4781 
4782 	tx_q->tx_count_frames++;
4783 
4784 	if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4785 		set_ic = true;
4786 	else
4787 		set_ic = false;
4788 
4789 	if (set_ic) {
4790 		unsigned long flags;
4791 		tx_q->tx_count_frames = 0;
4792 		stmmac_set_tx_ic(priv, tx_desc);
4793 		flags = u64_stats_update_begin_irqsave(&tx_q->txq_stats.syncp);
4794 		tx_q->txq_stats.tx_set_ic_bit++;
4795 		u64_stats_update_end_irqrestore(&tx_q->txq_stats.syncp, flags);
4796 	}
4797 
4798 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4799 
4800 	entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4801 	tx_q->cur_tx = entry;
4802 
4803 	return STMMAC_XDP_TX;
4804 }
4805 
4806 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4807 				   int cpu)
4808 {
4809 	int index = cpu;
4810 
4811 	if (unlikely(index < 0))
4812 		index = 0;
4813 
4814 	while (index >= priv->plat->tx_queues_to_use)
4815 		index -= priv->plat->tx_queues_to_use;
4816 
4817 	return index;
4818 }
4819 
4820 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4821 				struct xdp_buff *xdp)
4822 {
4823 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4824 	int cpu = smp_processor_id();
4825 	struct netdev_queue *nq;
4826 	int queue;
4827 	int res;
4828 
4829 	if (unlikely(!xdpf))
4830 		return STMMAC_XDP_CONSUMED;
4831 
4832 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4833 	nq = netdev_get_tx_queue(priv->dev, queue);
4834 
4835 	__netif_tx_lock(nq, cpu);
4836 	/* Avoids TX time-out as we are sharing with slow path */
4837 	txq_trans_cond_update(nq);
4838 
4839 	res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4840 	if (res == STMMAC_XDP_TX)
4841 		stmmac_flush_tx_descriptors(priv, queue);
4842 
4843 	__netif_tx_unlock(nq);
4844 
4845 	return res;
4846 }
4847 
4848 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4849 				 struct bpf_prog *prog,
4850 				 struct xdp_buff *xdp)
4851 {
4852 	u32 act;
4853 	int res;
4854 
4855 	act = bpf_prog_run_xdp(prog, xdp);
4856 	switch (act) {
4857 	case XDP_PASS:
4858 		res = STMMAC_XDP_PASS;
4859 		break;
4860 	case XDP_TX:
4861 		res = stmmac_xdp_xmit_back(priv, xdp);
4862 		break;
4863 	case XDP_REDIRECT:
4864 		if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4865 			res = STMMAC_XDP_CONSUMED;
4866 		else
4867 			res = STMMAC_XDP_REDIRECT;
4868 		break;
4869 	default:
4870 		bpf_warn_invalid_xdp_action(priv->dev, prog, act);
4871 		fallthrough;
4872 	case XDP_ABORTED:
4873 		trace_xdp_exception(priv->dev, prog, act);
4874 		fallthrough;
4875 	case XDP_DROP:
4876 		res = STMMAC_XDP_CONSUMED;
4877 		break;
4878 	}
4879 
4880 	return res;
4881 }
4882 
4883 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4884 					   struct xdp_buff *xdp)
4885 {
4886 	struct bpf_prog *prog;
4887 	int res;
4888 
4889 	prog = READ_ONCE(priv->xdp_prog);
4890 	if (!prog) {
4891 		res = STMMAC_XDP_PASS;
4892 		goto out;
4893 	}
4894 
4895 	res = __stmmac_xdp_run_prog(priv, prog, xdp);
4896 out:
4897 	return ERR_PTR(-res);
4898 }
4899 
4900 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4901 				   int xdp_status)
4902 {
4903 	int cpu = smp_processor_id();
4904 	int queue;
4905 
4906 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4907 
4908 	if (xdp_status & STMMAC_XDP_TX)
4909 		stmmac_tx_timer_arm(priv, queue);
4910 
4911 	if (xdp_status & STMMAC_XDP_REDIRECT)
4912 		xdp_do_flush();
4913 }
4914 
4915 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4916 					       struct xdp_buff *xdp)
4917 {
4918 	unsigned int metasize = xdp->data - xdp->data_meta;
4919 	unsigned int datasize = xdp->data_end - xdp->data;
4920 	struct sk_buff *skb;
4921 
4922 	skb = __napi_alloc_skb(&ch->rxtx_napi,
4923 			       xdp->data_end - xdp->data_hard_start,
4924 			       GFP_ATOMIC | __GFP_NOWARN);
4925 	if (unlikely(!skb))
4926 		return NULL;
4927 
4928 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
4929 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4930 	if (metasize)
4931 		skb_metadata_set(skb, metasize);
4932 
4933 	return skb;
4934 }
4935 
4936 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4937 				   struct dma_desc *p, struct dma_desc *np,
4938 				   struct xdp_buff *xdp)
4939 {
4940 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4941 	struct stmmac_channel *ch = &priv->channel[queue];
4942 	unsigned int len = xdp->data_end - xdp->data;
4943 	enum pkt_hash_types hash_type;
4944 	int coe = priv->hw->rx_csum;
4945 	unsigned long flags;
4946 	struct sk_buff *skb;
4947 	u32 hash;
4948 
4949 	skb = stmmac_construct_skb_zc(ch, xdp);
4950 	if (!skb) {
4951 		priv->xstats.rx_dropped++;
4952 		return;
4953 	}
4954 
4955 	stmmac_get_rx_hwtstamp(priv, p, np, skb);
4956 	stmmac_rx_vlan(priv->dev, skb);
4957 	skb->protocol = eth_type_trans(skb, priv->dev);
4958 
4959 	if (unlikely(!coe))
4960 		skb_checksum_none_assert(skb);
4961 	else
4962 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4963 
4964 	if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4965 		skb_set_hash(skb, hash, hash_type);
4966 
4967 	skb_record_rx_queue(skb, queue);
4968 	napi_gro_receive(&ch->rxtx_napi, skb);
4969 
4970 	flags = u64_stats_update_begin_irqsave(&rx_q->rxq_stats.syncp);
4971 	rx_q->rxq_stats.rx_pkt_n++;
4972 	rx_q->rxq_stats.rx_bytes += len;
4973 	u64_stats_update_end_irqrestore(&rx_q->rxq_stats.syncp, flags);
4974 }
4975 
4976 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4977 {
4978 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4979 	unsigned int entry = rx_q->dirty_rx;
4980 	struct dma_desc *rx_desc = NULL;
4981 	bool ret = true;
4982 
4983 	budget = min(budget, stmmac_rx_dirty(priv, queue));
4984 
4985 	while (budget-- > 0 && entry != rx_q->cur_rx) {
4986 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4987 		dma_addr_t dma_addr;
4988 		bool use_rx_wd;
4989 
4990 		if (!buf->xdp) {
4991 			buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4992 			if (!buf->xdp) {
4993 				ret = false;
4994 				break;
4995 			}
4996 		}
4997 
4998 		if (priv->extend_desc)
4999 			rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
5000 		else
5001 			rx_desc = rx_q->dma_rx + entry;
5002 
5003 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
5004 		stmmac_set_desc_addr(priv, rx_desc, dma_addr);
5005 		stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
5006 		stmmac_refill_desc3(priv, rx_q, rx_desc);
5007 
5008 		rx_q->rx_count_frames++;
5009 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
5010 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
5011 			rx_q->rx_count_frames = 0;
5012 
5013 		use_rx_wd = !priv->rx_coal_frames[queue];
5014 		use_rx_wd |= rx_q->rx_count_frames > 0;
5015 		if (!priv->use_riwt)
5016 			use_rx_wd = false;
5017 
5018 		dma_wmb();
5019 		stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
5020 
5021 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
5022 	}
5023 
5024 	if (rx_desc) {
5025 		rx_q->dirty_rx = entry;
5026 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
5027 				     (rx_q->dirty_rx * sizeof(struct dma_desc));
5028 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
5029 	}
5030 
5031 	return ret;
5032 }
5033 
5034 static struct stmmac_xdp_buff *xsk_buff_to_stmmac_ctx(struct xdp_buff *xdp)
5035 {
5036 	/* In XDP zero copy data path, xdp field in struct xdp_buff_xsk is used
5037 	 * to represent incoming packet, whereas cb field in the same structure
5038 	 * is used to store driver specific info. Thus, struct stmmac_xdp_buff
5039 	 * is laid on top of xdp and cb fields of struct xdp_buff_xsk.
5040 	 */
5041 	return (struct stmmac_xdp_buff *)xdp;
5042 }
5043 
5044 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
5045 {
5046 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5047 	unsigned int count = 0, error = 0, len = 0;
5048 	int dirty = stmmac_rx_dirty(priv, queue);
5049 	unsigned int next_entry = rx_q->cur_rx;
5050 	u32 rx_errors = 0, rx_dropped = 0;
5051 	unsigned int desc_size;
5052 	struct bpf_prog *prog;
5053 	bool failure = false;
5054 	unsigned long flags;
5055 	int xdp_status = 0;
5056 	int status = 0;
5057 
5058 	if (netif_msg_rx_status(priv)) {
5059 		void *rx_head;
5060 
5061 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5062 		if (priv->extend_desc) {
5063 			rx_head = (void *)rx_q->dma_erx;
5064 			desc_size = sizeof(struct dma_extended_desc);
5065 		} else {
5066 			rx_head = (void *)rx_q->dma_rx;
5067 			desc_size = sizeof(struct dma_desc);
5068 		}
5069 
5070 		stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5071 				    rx_q->dma_rx_phy, desc_size);
5072 	}
5073 	while (count < limit) {
5074 		struct stmmac_rx_buffer *buf;
5075 		struct stmmac_xdp_buff *ctx;
5076 		unsigned int buf1_len = 0;
5077 		struct dma_desc *np, *p;
5078 		int entry;
5079 		int res;
5080 
5081 		if (!count && rx_q->state_saved) {
5082 			error = rx_q->state.error;
5083 			len = rx_q->state.len;
5084 		} else {
5085 			rx_q->state_saved = false;
5086 			error = 0;
5087 			len = 0;
5088 		}
5089 
5090 		if (count >= limit)
5091 			break;
5092 
5093 read_again:
5094 		buf1_len = 0;
5095 		entry = next_entry;
5096 		buf = &rx_q->buf_pool[entry];
5097 
5098 		if (dirty >= STMMAC_RX_FILL_BATCH) {
5099 			failure = failure ||
5100 				  !stmmac_rx_refill_zc(priv, queue, dirty);
5101 			dirty = 0;
5102 		}
5103 
5104 		if (priv->extend_desc)
5105 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5106 		else
5107 			p = rx_q->dma_rx + entry;
5108 
5109 		/* read the status of the incoming frame */
5110 		status = stmmac_rx_status(priv, &priv->xstats, p);
5111 		/* check if managed by the DMA otherwise go ahead */
5112 		if (unlikely(status & dma_own))
5113 			break;
5114 
5115 		/* Prefetch the next RX descriptor */
5116 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5117 						priv->dma_conf.dma_rx_size);
5118 		next_entry = rx_q->cur_rx;
5119 
5120 		if (priv->extend_desc)
5121 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5122 		else
5123 			np = rx_q->dma_rx + next_entry;
5124 
5125 		prefetch(np);
5126 
5127 		/* Ensure a valid XSK buffer before proceed */
5128 		if (!buf->xdp)
5129 			break;
5130 
5131 		if (priv->extend_desc)
5132 			stmmac_rx_extended_status(priv, &priv->xstats,
5133 						  rx_q->dma_erx + entry);
5134 		if (unlikely(status == discard_frame)) {
5135 			xsk_buff_free(buf->xdp);
5136 			buf->xdp = NULL;
5137 			dirty++;
5138 			error = 1;
5139 			if (!priv->hwts_rx_en)
5140 				rx_errors++;
5141 		}
5142 
5143 		if (unlikely(error && (status & rx_not_ls)))
5144 			goto read_again;
5145 		if (unlikely(error)) {
5146 			count++;
5147 			continue;
5148 		}
5149 
5150 		/* XSK pool expects RX frame 1:1 mapped to XSK buffer */
5151 		if (likely(status & rx_not_ls)) {
5152 			xsk_buff_free(buf->xdp);
5153 			buf->xdp = NULL;
5154 			dirty++;
5155 			count++;
5156 			goto read_again;
5157 		}
5158 
5159 		ctx = xsk_buff_to_stmmac_ctx(buf->xdp);
5160 		ctx->priv = priv;
5161 		ctx->desc = p;
5162 		ctx->ndesc = np;
5163 
5164 		/* XDP ZC Frame only support primary buffers for now */
5165 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5166 		len += buf1_len;
5167 
5168 		/* ACS is disabled; strip manually. */
5169 		if (likely(!(status & rx_not_ls))) {
5170 			buf1_len -= ETH_FCS_LEN;
5171 			len -= ETH_FCS_LEN;
5172 		}
5173 
5174 		/* RX buffer is good and fit into a XSK pool buffer */
5175 		buf->xdp->data_end = buf->xdp->data + buf1_len;
5176 		xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
5177 
5178 		prog = READ_ONCE(priv->xdp_prog);
5179 		res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
5180 
5181 		switch (res) {
5182 		case STMMAC_XDP_PASS:
5183 			stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
5184 			xsk_buff_free(buf->xdp);
5185 			break;
5186 		case STMMAC_XDP_CONSUMED:
5187 			xsk_buff_free(buf->xdp);
5188 			rx_dropped++;
5189 			break;
5190 		case STMMAC_XDP_TX:
5191 		case STMMAC_XDP_REDIRECT:
5192 			xdp_status |= res;
5193 			break;
5194 		}
5195 
5196 		buf->xdp = NULL;
5197 		dirty++;
5198 		count++;
5199 	}
5200 
5201 	if (status & rx_not_ls) {
5202 		rx_q->state_saved = true;
5203 		rx_q->state.error = error;
5204 		rx_q->state.len = len;
5205 	}
5206 
5207 	stmmac_finalize_xdp_rx(priv, xdp_status);
5208 
5209 	flags = u64_stats_update_begin_irqsave(&rx_q->rxq_stats.syncp);
5210 	rx_q->rxq_stats.rx_pkt_n += count;
5211 	u64_stats_update_end_irqrestore(&rx_q->rxq_stats.syncp, flags);
5212 
5213 	priv->xstats.rx_dropped += rx_dropped;
5214 	priv->xstats.rx_errors += rx_errors;
5215 
5216 	if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5217 		if (failure || stmmac_rx_dirty(priv, queue) > 0)
5218 			xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5219 		else
5220 			xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5221 
5222 		return (int)count;
5223 	}
5224 
5225 	return failure ? limit : (int)count;
5226 }
5227 
5228 /**
5229  * stmmac_rx - manage the receive process
5230  * @priv: driver private structure
5231  * @limit: napi bugget
5232  * @queue: RX queue index.
5233  * Description :  this the function called by the napi poll method.
5234  * It gets all the frames inside the ring.
5235  */
5236 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5237 {
5238 	u32 rx_errors = 0, rx_dropped = 0, rx_bytes = 0, rx_packets = 0;
5239 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5240 	struct stmmac_channel *ch = &priv->channel[queue];
5241 	unsigned int count = 0, error = 0, len = 0;
5242 	int status = 0, coe = priv->hw->rx_csum;
5243 	unsigned int next_entry = rx_q->cur_rx;
5244 	enum dma_data_direction dma_dir;
5245 	unsigned int desc_size;
5246 	struct sk_buff *skb = NULL;
5247 	struct stmmac_xdp_buff ctx;
5248 	unsigned long flags;
5249 	int xdp_status = 0;
5250 	int buf_sz;
5251 
5252 	dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5253 	buf_sz = DIV_ROUND_UP(priv->dma_conf.dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5254 
5255 	if (netif_msg_rx_status(priv)) {
5256 		void *rx_head;
5257 
5258 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5259 		if (priv->extend_desc) {
5260 			rx_head = (void *)rx_q->dma_erx;
5261 			desc_size = sizeof(struct dma_extended_desc);
5262 		} else {
5263 			rx_head = (void *)rx_q->dma_rx;
5264 			desc_size = sizeof(struct dma_desc);
5265 		}
5266 
5267 		stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5268 				    rx_q->dma_rx_phy, desc_size);
5269 	}
5270 	while (count < limit) {
5271 		unsigned int buf1_len = 0, buf2_len = 0;
5272 		enum pkt_hash_types hash_type;
5273 		struct stmmac_rx_buffer *buf;
5274 		struct dma_desc *np, *p;
5275 		int entry;
5276 		u32 hash;
5277 
5278 		if (!count && rx_q->state_saved) {
5279 			skb = rx_q->state.skb;
5280 			error = rx_q->state.error;
5281 			len = rx_q->state.len;
5282 		} else {
5283 			rx_q->state_saved = false;
5284 			skb = NULL;
5285 			error = 0;
5286 			len = 0;
5287 		}
5288 
5289 		if (count >= limit)
5290 			break;
5291 
5292 read_again:
5293 		buf1_len = 0;
5294 		buf2_len = 0;
5295 		entry = next_entry;
5296 		buf = &rx_q->buf_pool[entry];
5297 
5298 		if (priv->extend_desc)
5299 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5300 		else
5301 			p = rx_q->dma_rx + entry;
5302 
5303 		/* read the status of the incoming frame */
5304 		status = stmmac_rx_status(priv, &priv->xstats, p);
5305 		/* check if managed by the DMA otherwise go ahead */
5306 		if (unlikely(status & dma_own))
5307 			break;
5308 
5309 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5310 						priv->dma_conf.dma_rx_size);
5311 		next_entry = rx_q->cur_rx;
5312 
5313 		if (priv->extend_desc)
5314 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5315 		else
5316 			np = rx_q->dma_rx + next_entry;
5317 
5318 		prefetch(np);
5319 
5320 		if (priv->extend_desc)
5321 			stmmac_rx_extended_status(priv, &priv->xstats, rx_q->dma_erx + entry);
5322 		if (unlikely(status == discard_frame)) {
5323 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5324 			buf->page = NULL;
5325 			error = 1;
5326 			if (!priv->hwts_rx_en)
5327 				rx_errors++;
5328 		}
5329 
5330 		if (unlikely(error && (status & rx_not_ls)))
5331 			goto read_again;
5332 		if (unlikely(error)) {
5333 			dev_kfree_skb(skb);
5334 			skb = NULL;
5335 			count++;
5336 			continue;
5337 		}
5338 
5339 		/* Buffer is good. Go on. */
5340 
5341 		prefetch(page_address(buf->page) + buf->page_offset);
5342 		if (buf->sec_page)
5343 			prefetch(page_address(buf->sec_page));
5344 
5345 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5346 		len += buf1_len;
5347 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5348 		len += buf2_len;
5349 
5350 		/* ACS is disabled; strip manually. */
5351 		if (likely(!(status & rx_not_ls))) {
5352 			if (buf2_len) {
5353 				buf2_len -= ETH_FCS_LEN;
5354 				len -= ETH_FCS_LEN;
5355 			} else if (buf1_len) {
5356 				buf1_len -= ETH_FCS_LEN;
5357 				len -= ETH_FCS_LEN;
5358 			}
5359 		}
5360 
5361 		if (!skb) {
5362 			unsigned int pre_len, sync_len;
5363 
5364 			dma_sync_single_for_cpu(priv->device, buf->addr,
5365 						buf1_len, dma_dir);
5366 
5367 			xdp_init_buff(&ctx.xdp, buf_sz, &rx_q->xdp_rxq);
5368 			xdp_prepare_buff(&ctx.xdp, page_address(buf->page),
5369 					 buf->page_offset, buf1_len, true);
5370 
5371 			pre_len = ctx.xdp.data_end - ctx.xdp.data_hard_start -
5372 				  buf->page_offset;
5373 
5374 			ctx.priv = priv;
5375 			ctx.desc = p;
5376 			ctx.ndesc = np;
5377 
5378 			skb = stmmac_xdp_run_prog(priv, &ctx.xdp);
5379 			/* Due xdp_adjust_tail: DMA sync for_device
5380 			 * cover max len CPU touch
5381 			 */
5382 			sync_len = ctx.xdp.data_end - ctx.xdp.data_hard_start -
5383 				   buf->page_offset;
5384 			sync_len = max(sync_len, pre_len);
5385 
5386 			/* For Not XDP_PASS verdict */
5387 			if (IS_ERR(skb)) {
5388 				unsigned int xdp_res = -PTR_ERR(skb);
5389 
5390 				if (xdp_res & STMMAC_XDP_CONSUMED) {
5391 					page_pool_put_page(rx_q->page_pool,
5392 							   virt_to_head_page(ctx.xdp.data),
5393 							   sync_len, true);
5394 					buf->page = NULL;
5395 					rx_dropped++;
5396 
5397 					/* Clear skb as it was set as
5398 					 * status by XDP program.
5399 					 */
5400 					skb = NULL;
5401 
5402 					if (unlikely((status & rx_not_ls)))
5403 						goto read_again;
5404 
5405 					count++;
5406 					continue;
5407 				} else if (xdp_res & (STMMAC_XDP_TX |
5408 						      STMMAC_XDP_REDIRECT)) {
5409 					xdp_status |= xdp_res;
5410 					buf->page = NULL;
5411 					skb = NULL;
5412 					count++;
5413 					continue;
5414 				}
5415 			}
5416 		}
5417 
5418 		if (!skb) {
5419 			/* XDP program may expand or reduce tail */
5420 			buf1_len = ctx.xdp.data_end - ctx.xdp.data;
5421 
5422 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5423 			if (!skb) {
5424 				rx_dropped++;
5425 				count++;
5426 				goto drain_data;
5427 			}
5428 
5429 			/* XDP program may adjust header */
5430 			skb_copy_to_linear_data(skb, ctx.xdp.data, buf1_len);
5431 			skb_put(skb, buf1_len);
5432 
5433 			/* Data payload copied into SKB, page ready for recycle */
5434 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5435 			buf->page = NULL;
5436 		} else if (buf1_len) {
5437 			dma_sync_single_for_cpu(priv->device, buf->addr,
5438 						buf1_len, dma_dir);
5439 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5440 					buf->page, buf->page_offset, buf1_len,
5441 					priv->dma_conf.dma_buf_sz);
5442 
5443 			/* Data payload appended into SKB */
5444 			skb_mark_for_recycle(skb);
5445 			buf->page = NULL;
5446 		}
5447 
5448 		if (buf2_len) {
5449 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5450 						buf2_len, dma_dir);
5451 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5452 					buf->sec_page, 0, buf2_len,
5453 					priv->dma_conf.dma_buf_sz);
5454 
5455 			/* Data payload appended into SKB */
5456 			skb_mark_for_recycle(skb);
5457 			buf->sec_page = NULL;
5458 		}
5459 
5460 drain_data:
5461 		if (likely(status & rx_not_ls))
5462 			goto read_again;
5463 		if (!skb)
5464 			continue;
5465 
5466 		/* Got entire packet into SKB. Finish it. */
5467 
5468 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
5469 		stmmac_rx_vlan(priv->dev, skb);
5470 		skb->protocol = eth_type_trans(skb, priv->dev);
5471 
5472 		if (unlikely(!coe))
5473 			skb_checksum_none_assert(skb);
5474 		else
5475 			skb->ip_summed = CHECKSUM_UNNECESSARY;
5476 
5477 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5478 			skb_set_hash(skb, hash, hash_type);
5479 
5480 		skb_record_rx_queue(skb, queue);
5481 		napi_gro_receive(&ch->rx_napi, skb);
5482 		skb = NULL;
5483 
5484 		rx_packets++;
5485 		rx_bytes += len;
5486 		count++;
5487 	}
5488 
5489 	if (status & rx_not_ls || skb) {
5490 		rx_q->state_saved = true;
5491 		rx_q->state.skb = skb;
5492 		rx_q->state.error = error;
5493 		rx_q->state.len = len;
5494 	}
5495 
5496 	stmmac_finalize_xdp_rx(priv, xdp_status);
5497 
5498 	stmmac_rx_refill(priv, queue);
5499 
5500 	flags = u64_stats_update_begin_irqsave(&rx_q->rxq_stats.syncp);
5501 	rx_q->rxq_stats.rx_packets += rx_packets;
5502 	rx_q->rxq_stats.rx_bytes += rx_bytes;
5503 	rx_q->rxq_stats.rx_pkt_n += count;
5504 	u64_stats_update_end_irqrestore(&rx_q->rxq_stats.syncp, flags);
5505 
5506 	priv->xstats.rx_dropped += rx_dropped;
5507 	priv->xstats.rx_errors += rx_errors;
5508 
5509 	return count;
5510 }
5511 
5512 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5513 {
5514 	struct stmmac_channel *ch =
5515 		container_of(napi, struct stmmac_channel, rx_napi);
5516 	struct stmmac_priv *priv = ch->priv_data;
5517 	struct stmmac_rx_queue *rx_q;
5518 	u32 chan = ch->index;
5519 	unsigned long flags;
5520 	int work_done;
5521 
5522 	rx_q = &priv->dma_conf.rx_queue[chan];
5523 	flags = u64_stats_update_begin_irqsave(&rx_q->rxq_stats.syncp);
5524 	rx_q->rxq_stats.napi_poll++;
5525 	u64_stats_update_end_irqrestore(&rx_q->rxq_stats.syncp, flags);
5526 
5527 	work_done = stmmac_rx(priv, budget, chan);
5528 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5529 		unsigned long flags;
5530 
5531 		spin_lock_irqsave(&ch->lock, flags);
5532 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5533 		spin_unlock_irqrestore(&ch->lock, flags);
5534 	}
5535 
5536 	return work_done;
5537 }
5538 
5539 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5540 {
5541 	struct stmmac_channel *ch =
5542 		container_of(napi, struct stmmac_channel, tx_napi);
5543 	struct stmmac_priv *priv = ch->priv_data;
5544 	struct stmmac_tx_queue *tx_q;
5545 	u32 chan = ch->index;
5546 	unsigned long flags;
5547 	int work_done;
5548 
5549 	tx_q = &priv->dma_conf.tx_queue[chan];
5550 	flags = u64_stats_update_begin_irqsave(&tx_q->txq_stats.syncp);
5551 	tx_q->txq_stats.napi_poll++;
5552 	u64_stats_update_end_irqrestore(&tx_q->txq_stats.syncp, flags);
5553 
5554 	work_done = stmmac_tx_clean(priv, budget, chan);
5555 	work_done = min(work_done, budget);
5556 
5557 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5558 		unsigned long flags;
5559 
5560 		spin_lock_irqsave(&ch->lock, flags);
5561 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5562 		spin_unlock_irqrestore(&ch->lock, flags);
5563 	}
5564 
5565 	return work_done;
5566 }
5567 
5568 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5569 {
5570 	struct stmmac_channel *ch =
5571 		container_of(napi, struct stmmac_channel, rxtx_napi);
5572 	struct stmmac_priv *priv = ch->priv_data;
5573 	int rx_done, tx_done, rxtx_done;
5574 	struct stmmac_rx_queue *rx_q;
5575 	struct stmmac_tx_queue *tx_q;
5576 	u32 chan = ch->index;
5577 	unsigned long flags;
5578 
5579 	rx_q = &priv->dma_conf.rx_queue[chan];
5580 	flags = u64_stats_update_begin_irqsave(&rx_q->rxq_stats.syncp);
5581 	rx_q->rxq_stats.napi_poll++;
5582 	u64_stats_update_end_irqrestore(&rx_q->rxq_stats.syncp, flags);
5583 
5584 	tx_q = &priv->dma_conf.tx_queue[chan];
5585 	flags = u64_stats_update_begin_irqsave(&tx_q->txq_stats.syncp);
5586 	tx_q->txq_stats.napi_poll++;
5587 	u64_stats_update_end_irqrestore(&tx_q->txq_stats.syncp, flags);
5588 
5589 	tx_done = stmmac_tx_clean(priv, budget, chan);
5590 	tx_done = min(tx_done, budget);
5591 
5592 	rx_done = stmmac_rx_zc(priv, budget, chan);
5593 
5594 	rxtx_done = max(tx_done, rx_done);
5595 
5596 	/* If either TX or RX work is not complete, return budget
5597 	 * and keep pooling
5598 	 */
5599 	if (rxtx_done >= budget)
5600 		return budget;
5601 
5602 	/* all work done, exit the polling mode */
5603 	if (napi_complete_done(napi, rxtx_done)) {
5604 		unsigned long flags;
5605 
5606 		spin_lock_irqsave(&ch->lock, flags);
5607 		/* Both RX and TX work done are compelte,
5608 		 * so enable both RX & TX IRQs.
5609 		 */
5610 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5611 		spin_unlock_irqrestore(&ch->lock, flags);
5612 	}
5613 
5614 	return min(rxtx_done, budget - 1);
5615 }
5616 
5617 /**
5618  *  stmmac_tx_timeout
5619  *  @dev : Pointer to net device structure
5620  *  @txqueue: the index of the hanging transmit queue
5621  *  Description: this function is called when a packet transmission fails to
5622  *   complete within a reasonable time. The driver will mark the error in the
5623  *   netdev structure and arrange for the device to be reset to a sane state
5624  *   in order to transmit a new packet.
5625  */
5626 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5627 {
5628 	struct stmmac_priv *priv = netdev_priv(dev);
5629 
5630 	stmmac_global_err(priv);
5631 }
5632 
5633 /**
5634  *  stmmac_set_rx_mode - entry point for multicast addressing
5635  *  @dev : pointer to the device structure
5636  *  Description:
5637  *  This function is a driver entry point which gets called by the kernel
5638  *  whenever multicast addresses must be enabled/disabled.
5639  *  Return value:
5640  *  void.
5641  */
5642 static void stmmac_set_rx_mode(struct net_device *dev)
5643 {
5644 	struct stmmac_priv *priv = netdev_priv(dev);
5645 
5646 	stmmac_set_filter(priv, priv->hw, dev);
5647 }
5648 
5649 /**
5650  *  stmmac_change_mtu - entry point to change MTU size for the device.
5651  *  @dev : device pointer.
5652  *  @new_mtu : the new MTU size for the device.
5653  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5654  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5655  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5656  *  Return value:
5657  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5658  *  file on failure.
5659  */
5660 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5661 {
5662 	struct stmmac_priv *priv = netdev_priv(dev);
5663 	int txfifosz = priv->plat->tx_fifo_size;
5664 	struct stmmac_dma_conf *dma_conf;
5665 	const int mtu = new_mtu;
5666 	int ret;
5667 
5668 	if (txfifosz == 0)
5669 		txfifosz = priv->dma_cap.tx_fifo_size;
5670 
5671 	txfifosz /= priv->plat->tx_queues_to_use;
5672 
5673 	if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5674 		netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5675 		return -EINVAL;
5676 	}
5677 
5678 	new_mtu = STMMAC_ALIGN(new_mtu);
5679 
5680 	/* If condition true, FIFO is too small or MTU too large */
5681 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5682 		return -EINVAL;
5683 
5684 	if (netif_running(dev)) {
5685 		netdev_dbg(priv->dev, "restarting interface to change its MTU\n");
5686 		/* Try to allocate the new DMA conf with the new mtu */
5687 		dma_conf = stmmac_setup_dma_desc(priv, mtu);
5688 		if (IS_ERR(dma_conf)) {
5689 			netdev_err(priv->dev, "failed allocating new dma conf for new MTU %d\n",
5690 				   mtu);
5691 			return PTR_ERR(dma_conf);
5692 		}
5693 
5694 		stmmac_release(dev);
5695 
5696 		ret = __stmmac_open(dev, dma_conf);
5697 		if (ret) {
5698 			free_dma_desc_resources(priv, dma_conf);
5699 			kfree(dma_conf);
5700 			netdev_err(priv->dev, "failed reopening the interface after MTU change\n");
5701 			return ret;
5702 		}
5703 
5704 		kfree(dma_conf);
5705 
5706 		stmmac_set_rx_mode(dev);
5707 	}
5708 
5709 	dev->mtu = mtu;
5710 	netdev_update_features(dev);
5711 
5712 	return 0;
5713 }
5714 
5715 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5716 					     netdev_features_t features)
5717 {
5718 	struct stmmac_priv *priv = netdev_priv(dev);
5719 
5720 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5721 		features &= ~NETIF_F_RXCSUM;
5722 
5723 	if (!priv->plat->tx_coe)
5724 		features &= ~NETIF_F_CSUM_MASK;
5725 
5726 	/* Some GMAC devices have a bugged Jumbo frame support that
5727 	 * needs to have the Tx COE disabled for oversized frames
5728 	 * (due to limited buffer sizes). In this case we disable
5729 	 * the TX csum insertion in the TDES and not use SF.
5730 	 */
5731 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5732 		features &= ~NETIF_F_CSUM_MASK;
5733 
5734 	/* Disable tso if asked by ethtool */
5735 	if ((priv->plat->flags & STMMAC_FLAG_TSO_EN) && (priv->dma_cap.tsoen)) {
5736 		if (features & NETIF_F_TSO)
5737 			priv->tso = true;
5738 		else
5739 			priv->tso = false;
5740 	}
5741 
5742 	return features;
5743 }
5744 
5745 static int stmmac_set_features(struct net_device *netdev,
5746 			       netdev_features_t features)
5747 {
5748 	struct stmmac_priv *priv = netdev_priv(netdev);
5749 
5750 	/* Keep the COE Type in case of csum is supporting */
5751 	if (features & NETIF_F_RXCSUM)
5752 		priv->hw->rx_csum = priv->plat->rx_coe;
5753 	else
5754 		priv->hw->rx_csum = 0;
5755 	/* No check needed because rx_coe has been set before and it will be
5756 	 * fixed in case of issue.
5757 	 */
5758 	stmmac_rx_ipc(priv, priv->hw);
5759 
5760 	if (priv->sph_cap) {
5761 		bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5762 		u32 chan;
5763 
5764 		for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5765 			stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5766 	}
5767 
5768 	return 0;
5769 }
5770 
5771 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5772 {
5773 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5774 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5775 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5776 	bool *hs_enable = &fpe_cfg->hs_enable;
5777 
5778 	if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5779 		return;
5780 
5781 	/* If LP has sent verify mPacket, LP is FPE capable */
5782 	if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5783 		if (*lp_state < FPE_STATE_CAPABLE)
5784 			*lp_state = FPE_STATE_CAPABLE;
5785 
5786 		/* If user has requested FPE enable, quickly response */
5787 		if (*hs_enable)
5788 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5789 						MPACKET_RESPONSE);
5790 	}
5791 
5792 	/* If Local has sent verify mPacket, Local is FPE capable */
5793 	if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5794 		if (*lo_state < FPE_STATE_CAPABLE)
5795 			*lo_state = FPE_STATE_CAPABLE;
5796 	}
5797 
5798 	/* If LP has sent response mPacket, LP is entering FPE ON */
5799 	if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5800 		*lp_state = FPE_STATE_ENTERING_ON;
5801 
5802 	/* If Local has sent response mPacket, Local is entering FPE ON */
5803 	if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5804 		*lo_state = FPE_STATE_ENTERING_ON;
5805 
5806 	if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5807 	    !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5808 	    priv->fpe_wq) {
5809 		queue_work(priv->fpe_wq, &priv->fpe_task);
5810 	}
5811 }
5812 
5813 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5814 {
5815 	u32 rx_cnt = priv->plat->rx_queues_to_use;
5816 	u32 tx_cnt = priv->plat->tx_queues_to_use;
5817 	u32 queues_count;
5818 	u32 queue;
5819 	bool xmac;
5820 
5821 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5822 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5823 
5824 	if (priv->irq_wake)
5825 		pm_wakeup_event(priv->device, 0);
5826 
5827 	if (priv->dma_cap.estsel)
5828 		stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5829 				      &priv->xstats, tx_cnt);
5830 
5831 	if (priv->dma_cap.fpesel) {
5832 		int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5833 						   priv->dev);
5834 
5835 		stmmac_fpe_event_status(priv, status);
5836 	}
5837 
5838 	/* To handle GMAC own interrupts */
5839 	if ((priv->plat->has_gmac) || xmac) {
5840 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5841 
5842 		if (unlikely(status)) {
5843 			/* For LPI we need to save the tx status */
5844 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5845 				priv->tx_path_in_lpi_mode = true;
5846 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5847 				priv->tx_path_in_lpi_mode = false;
5848 		}
5849 
5850 		for (queue = 0; queue < queues_count; queue++) {
5851 			status = stmmac_host_mtl_irq_status(priv, priv->hw,
5852 							    queue);
5853 		}
5854 
5855 		/* PCS link status */
5856 		if (priv->hw->pcs &&
5857 		    !(priv->plat->flags & STMMAC_FLAG_HAS_INTEGRATED_PCS)) {
5858 			if (priv->xstats.pcs_link)
5859 				netif_carrier_on(priv->dev);
5860 			else
5861 				netif_carrier_off(priv->dev);
5862 		}
5863 
5864 		stmmac_timestamp_interrupt(priv, priv);
5865 	}
5866 }
5867 
5868 /**
5869  *  stmmac_interrupt - main ISR
5870  *  @irq: interrupt number.
5871  *  @dev_id: to pass the net device pointer.
5872  *  Description: this is the main driver interrupt service routine.
5873  *  It can call:
5874  *  o DMA service routine (to manage incoming frame reception and transmission
5875  *    status)
5876  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5877  *    interrupts.
5878  */
5879 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5880 {
5881 	struct net_device *dev = (struct net_device *)dev_id;
5882 	struct stmmac_priv *priv = netdev_priv(dev);
5883 
5884 	/* Check if adapter is up */
5885 	if (test_bit(STMMAC_DOWN, &priv->state))
5886 		return IRQ_HANDLED;
5887 
5888 	/* Check if a fatal error happened */
5889 	if (stmmac_safety_feat_interrupt(priv))
5890 		return IRQ_HANDLED;
5891 
5892 	/* To handle Common interrupts */
5893 	stmmac_common_interrupt(priv);
5894 
5895 	/* To handle DMA interrupts */
5896 	stmmac_dma_interrupt(priv);
5897 
5898 	return IRQ_HANDLED;
5899 }
5900 
5901 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5902 {
5903 	struct net_device *dev = (struct net_device *)dev_id;
5904 	struct stmmac_priv *priv = netdev_priv(dev);
5905 
5906 	if (unlikely(!dev)) {
5907 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5908 		return IRQ_NONE;
5909 	}
5910 
5911 	/* Check if adapter is up */
5912 	if (test_bit(STMMAC_DOWN, &priv->state))
5913 		return IRQ_HANDLED;
5914 
5915 	/* To handle Common interrupts */
5916 	stmmac_common_interrupt(priv);
5917 
5918 	return IRQ_HANDLED;
5919 }
5920 
5921 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5922 {
5923 	struct net_device *dev = (struct net_device *)dev_id;
5924 	struct stmmac_priv *priv = netdev_priv(dev);
5925 
5926 	if (unlikely(!dev)) {
5927 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5928 		return IRQ_NONE;
5929 	}
5930 
5931 	/* Check if adapter is up */
5932 	if (test_bit(STMMAC_DOWN, &priv->state))
5933 		return IRQ_HANDLED;
5934 
5935 	/* Check if a fatal error happened */
5936 	stmmac_safety_feat_interrupt(priv);
5937 
5938 	return IRQ_HANDLED;
5939 }
5940 
5941 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5942 {
5943 	struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5944 	struct stmmac_dma_conf *dma_conf;
5945 	int chan = tx_q->queue_index;
5946 	struct stmmac_priv *priv;
5947 	int status;
5948 
5949 	dma_conf = container_of(tx_q, struct stmmac_dma_conf, tx_queue[chan]);
5950 	priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5951 
5952 	if (unlikely(!data)) {
5953 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5954 		return IRQ_NONE;
5955 	}
5956 
5957 	/* Check if adapter is up */
5958 	if (test_bit(STMMAC_DOWN, &priv->state))
5959 		return IRQ_HANDLED;
5960 
5961 	status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5962 
5963 	if (unlikely(status & tx_hard_error_bump_tc)) {
5964 		/* Try to bump up the dma threshold on this failure */
5965 		stmmac_bump_dma_threshold(priv, chan);
5966 	} else if (unlikely(status == tx_hard_error)) {
5967 		stmmac_tx_err(priv, chan);
5968 	}
5969 
5970 	return IRQ_HANDLED;
5971 }
5972 
5973 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5974 {
5975 	struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5976 	struct stmmac_dma_conf *dma_conf;
5977 	int chan = rx_q->queue_index;
5978 	struct stmmac_priv *priv;
5979 
5980 	dma_conf = container_of(rx_q, struct stmmac_dma_conf, rx_queue[chan]);
5981 	priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5982 
5983 	if (unlikely(!data)) {
5984 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5985 		return IRQ_NONE;
5986 	}
5987 
5988 	/* Check if adapter is up */
5989 	if (test_bit(STMMAC_DOWN, &priv->state))
5990 		return IRQ_HANDLED;
5991 
5992 	stmmac_napi_check(priv, chan, DMA_DIR_RX);
5993 
5994 	return IRQ_HANDLED;
5995 }
5996 
5997 #ifdef CONFIG_NET_POLL_CONTROLLER
5998 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5999  * to allow network I/O with interrupts disabled.
6000  */
6001 static void stmmac_poll_controller(struct net_device *dev)
6002 {
6003 	struct stmmac_priv *priv = netdev_priv(dev);
6004 	int i;
6005 
6006 	/* If adapter is down, do nothing */
6007 	if (test_bit(STMMAC_DOWN, &priv->state))
6008 		return;
6009 
6010 	if (priv->plat->flags & STMMAC_FLAG_MULTI_MSI_EN) {
6011 		for (i = 0; i < priv->plat->rx_queues_to_use; i++)
6012 			stmmac_msi_intr_rx(0, &priv->dma_conf.rx_queue[i]);
6013 
6014 		for (i = 0; i < priv->plat->tx_queues_to_use; i++)
6015 			stmmac_msi_intr_tx(0, &priv->dma_conf.tx_queue[i]);
6016 	} else {
6017 		disable_irq(dev->irq);
6018 		stmmac_interrupt(dev->irq, dev);
6019 		enable_irq(dev->irq);
6020 	}
6021 }
6022 #endif
6023 
6024 /**
6025  *  stmmac_ioctl - Entry point for the Ioctl
6026  *  @dev: Device pointer.
6027  *  @rq: An IOCTL specefic structure, that can contain a pointer to
6028  *  a proprietary structure used to pass information to the driver.
6029  *  @cmd: IOCTL command
6030  *  Description:
6031  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
6032  */
6033 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6034 {
6035 	struct stmmac_priv *priv = netdev_priv (dev);
6036 	int ret = -EOPNOTSUPP;
6037 
6038 	if (!netif_running(dev))
6039 		return -EINVAL;
6040 
6041 	switch (cmd) {
6042 	case SIOCGMIIPHY:
6043 	case SIOCGMIIREG:
6044 	case SIOCSMIIREG:
6045 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
6046 		break;
6047 	case SIOCSHWTSTAMP:
6048 		ret = stmmac_hwtstamp_set(dev, rq);
6049 		break;
6050 	case SIOCGHWTSTAMP:
6051 		ret = stmmac_hwtstamp_get(dev, rq);
6052 		break;
6053 	default:
6054 		break;
6055 	}
6056 
6057 	return ret;
6058 }
6059 
6060 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
6061 				    void *cb_priv)
6062 {
6063 	struct stmmac_priv *priv = cb_priv;
6064 	int ret = -EOPNOTSUPP;
6065 
6066 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
6067 		return ret;
6068 
6069 	__stmmac_disable_all_queues(priv);
6070 
6071 	switch (type) {
6072 	case TC_SETUP_CLSU32:
6073 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
6074 		break;
6075 	case TC_SETUP_CLSFLOWER:
6076 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
6077 		break;
6078 	default:
6079 		break;
6080 	}
6081 
6082 	stmmac_enable_all_queues(priv);
6083 	return ret;
6084 }
6085 
6086 static LIST_HEAD(stmmac_block_cb_list);
6087 
6088 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
6089 			   void *type_data)
6090 {
6091 	struct stmmac_priv *priv = netdev_priv(ndev);
6092 
6093 	switch (type) {
6094 	case TC_QUERY_CAPS:
6095 		return stmmac_tc_query_caps(priv, priv, type_data);
6096 	case TC_SETUP_BLOCK:
6097 		return flow_block_cb_setup_simple(type_data,
6098 						  &stmmac_block_cb_list,
6099 						  stmmac_setup_tc_block_cb,
6100 						  priv, priv, true);
6101 	case TC_SETUP_QDISC_CBS:
6102 		return stmmac_tc_setup_cbs(priv, priv, type_data);
6103 	case TC_SETUP_QDISC_TAPRIO:
6104 		return stmmac_tc_setup_taprio(priv, priv, type_data);
6105 	case TC_SETUP_QDISC_ETF:
6106 		return stmmac_tc_setup_etf(priv, priv, type_data);
6107 	default:
6108 		return -EOPNOTSUPP;
6109 	}
6110 }
6111 
6112 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
6113 			       struct net_device *sb_dev)
6114 {
6115 	int gso = skb_shinfo(skb)->gso_type;
6116 
6117 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
6118 		/*
6119 		 * There is no way to determine the number of TSO/USO
6120 		 * capable Queues. Let's use always the Queue 0
6121 		 * because if TSO/USO is supported then at least this
6122 		 * one will be capable.
6123 		 */
6124 		return 0;
6125 	}
6126 
6127 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
6128 }
6129 
6130 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
6131 {
6132 	struct stmmac_priv *priv = netdev_priv(ndev);
6133 	int ret = 0;
6134 
6135 	ret = pm_runtime_resume_and_get(priv->device);
6136 	if (ret < 0)
6137 		return ret;
6138 
6139 	ret = eth_mac_addr(ndev, addr);
6140 	if (ret)
6141 		goto set_mac_error;
6142 
6143 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
6144 
6145 set_mac_error:
6146 	pm_runtime_put(priv->device);
6147 
6148 	return ret;
6149 }
6150 
6151 #ifdef CONFIG_DEBUG_FS
6152 static struct dentry *stmmac_fs_dir;
6153 
6154 static void sysfs_display_ring(void *head, int size, int extend_desc,
6155 			       struct seq_file *seq, dma_addr_t dma_phy_addr)
6156 {
6157 	int i;
6158 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
6159 	struct dma_desc *p = (struct dma_desc *)head;
6160 	dma_addr_t dma_addr;
6161 
6162 	for (i = 0; i < size; i++) {
6163 		if (extend_desc) {
6164 			dma_addr = dma_phy_addr + i * sizeof(*ep);
6165 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6166 				   i, &dma_addr,
6167 				   le32_to_cpu(ep->basic.des0),
6168 				   le32_to_cpu(ep->basic.des1),
6169 				   le32_to_cpu(ep->basic.des2),
6170 				   le32_to_cpu(ep->basic.des3));
6171 			ep++;
6172 		} else {
6173 			dma_addr = dma_phy_addr + i * sizeof(*p);
6174 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6175 				   i, &dma_addr,
6176 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
6177 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
6178 			p++;
6179 		}
6180 		seq_printf(seq, "\n");
6181 	}
6182 }
6183 
6184 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
6185 {
6186 	struct net_device *dev = seq->private;
6187 	struct stmmac_priv *priv = netdev_priv(dev);
6188 	u32 rx_count = priv->plat->rx_queues_to_use;
6189 	u32 tx_count = priv->plat->tx_queues_to_use;
6190 	u32 queue;
6191 
6192 	if ((dev->flags & IFF_UP) == 0)
6193 		return 0;
6194 
6195 	for (queue = 0; queue < rx_count; queue++) {
6196 		struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6197 
6198 		seq_printf(seq, "RX Queue %d:\n", queue);
6199 
6200 		if (priv->extend_desc) {
6201 			seq_printf(seq, "Extended descriptor ring:\n");
6202 			sysfs_display_ring((void *)rx_q->dma_erx,
6203 					   priv->dma_conf.dma_rx_size, 1, seq, rx_q->dma_rx_phy);
6204 		} else {
6205 			seq_printf(seq, "Descriptor ring:\n");
6206 			sysfs_display_ring((void *)rx_q->dma_rx,
6207 					   priv->dma_conf.dma_rx_size, 0, seq, rx_q->dma_rx_phy);
6208 		}
6209 	}
6210 
6211 	for (queue = 0; queue < tx_count; queue++) {
6212 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6213 
6214 		seq_printf(seq, "TX Queue %d:\n", queue);
6215 
6216 		if (priv->extend_desc) {
6217 			seq_printf(seq, "Extended descriptor ring:\n");
6218 			sysfs_display_ring((void *)tx_q->dma_etx,
6219 					   priv->dma_conf.dma_tx_size, 1, seq, tx_q->dma_tx_phy);
6220 		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
6221 			seq_printf(seq, "Descriptor ring:\n");
6222 			sysfs_display_ring((void *)tx_q->dma_tx,
6223 					   priv->dma_conf.dma_tx_size, 0, seq, tx_q->dma_tx_phy);
6224 		}
6225 	}
6226 
6227 	return 0;
6228 }
6229 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
6230 
6231 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
6232 {
6233 	struct net_device *dev = seq->private;
6234 	struct stmmac_priv *priv = netdev_priv(dev);
6235 
6236 	if (!priv->hw_cap_support) {
6237 		seq_printf(seq, "DMA HW features not supported\n");
6238 		return 0;
6239 	}
6240 
6241 	seq_printf(seq, "==============================\n");
6242 	seq_printf(seq, "\tDMA HW features\n");
6243 	seq_printf(seq, "==============================\n");
6244 
6245 	seq_printf(seq, "\t10/100 Mbps: %s\n",
6246 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6247 	seq_printf(seq, "\t1000 Mbps: %s\n",
6248 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
6249 	seq_printf(seq, "\tHalf duplex: %s\n",
6250 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
6251 	seq_printf(seq, "\tHash Filter: %s\n",
6252 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
6253 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6254 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
6255 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6256 		   (priv->dma_cap.pcs) ? "Y" : "N");
6257 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6258 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
6259 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
6260 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6261 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
6262 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6263 	seq_printf(seq, "\tRMON module: %s\n",
6264 		   (priv->dma_cap.rmon) ? "Y" : "N");
6265 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6266 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
6267 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6268 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
6269 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6270 		   (priv->dma_cap.eee) ? "Y" : "N");
6271 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6272 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6273 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
6274 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6275 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6276 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
6277 	} else {
6278 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6279 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6280 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6281 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6282 	}
6283 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6284 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6285 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6286 		   priv->dma_cap.number_rx_channel);
6287 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6288 		   priv->dma_cap.number_tx_channel);
6289 	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6290 		   priv->dma_cap.number_rx_queues);
6291 	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6292 		   priv->dma_cap.number_tx_queues);
6293 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
6294 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
6295 	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6296 	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6297 	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6298 	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6299 	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6300 		   priv->dma_cap.pps_out_num);
6301 	seq_printf(seq, "\tSafety Features: %s\n",
6302 		   priv->dma_cap.asp ? "Y" : "N");
6303 	seq_printf(seq, "\tFlexible RX Parser: %s\n",
6304 		   priv->dma_cap.frpsel ? "Y" : "N");
6305 	seq_printf(seq, "\tEnhanced Addressing: %d\n",
6306 		   priv->dma_cap.host_dma_width);
6307 	seq_printf(seq, "\tReceive Side Scaling: %s\n",
6308 		   priv->dma_cap.rssen ? "Y" : "N");
6309 	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6310 		   priv->dma_cap.vlhash ? "Y" : "N");
6311 	seq_printf(seq, "\tSplit Header: %s\n",
6312 		   priv->dma_cap.sphen ? "Y" : "N");
6313 	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6314 		   priv->dma_cap.vlins ? "Y" : "N");
6315 	seq_printf(seq, "\tDouble VLAN: %s\n",
6316 		   priv->dma_cap.dvlan ? "Y" : "N");
6317 	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6318 		   priv->dma_cap.l3l4fnum);
6319 	seq_printf(seq, "\tARP Offloading: %s\n",
6320 		   priv->dma_cap.arpoffsel ? "Y" : "N");
6321 	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6322 		   priv->dma_cap.estsel ? "Y" : "N");
6323 	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6324 		   priv->dma_cap.fpesel ? "Y" : "N");
6325 	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6326 		   priv->dma_cap.tbssel ? "Y" : "N");
6327 	return 0;
6328 }
6329 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6330 
6331 /* Use network device events to rename debugfs file entries.
6332  */
6333 static int stmmac_device_event(struct notifier_block *unused,
6334 			       unsigned long event, void *ptr)
6335 {
6336 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6337 	struct stmmac_priv *priv = netdev_priv(dev);
6338 
6339 	if (dev->netdev_ops != &stmmac_netdev_ops)
6340 		goto done;
6341 
6342 	switch (event) {
6343 	case NETDEV_CHANGENAME:
6344 		if (priv->dbgfs_dir)
6345 			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6346 							 priv->dbgfs_dir,
6347 							 stmmac_fs_dir,
6348 							 dev->name);
6349 		break;
6350 	}
6351 done:
6352 	return NOTIFY_DONE;
6353 }
6354 
6355 static struct notifier_block stmmac_notifier = {
6356 	.notifier_call = stmmac_device_event,
6357 };
6358 
6359 static void stmmac_init_fs(struct net_device *dev)
6360 {
6361 	struct stmmac_priv *priv = netdev_priv(dev);
6362 
6363 	rtnl_lock();
6364 
6365 	/* Create per netdev entries */
6366 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6367 
6368 	/* Entry to report DMA RX/TX rings */
6369 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6370 			    &stmmac_rings_status_fops);
6371 
6372 	/* Entry to report the DMA HW features */
6373 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6374 			    &stmmac_dma_cap_fops);
6375 
6376 	rtnl_unlock();
6377 }
6378 
6379 static void stmmac_exit_fs(struct net_device *dev)
6380 {
6381 	struct stmmac_priv *priv = netdev_priv(dev);
6382 
6383 	debugfs_remove_recursive(priv->dbgfs_dir);
6384 }
6385 #endif /* CONFIG_DEBUG_FS */
6386 
6387 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6388 {
6389 	unsigned char *data = (unsigned char *)&vid_le;
6390 	unsigned char data_byte = 0;
6391 	u32 crc = ~0x0;
6392 	u32 temp = 0;
6393 	int i, bits;
6394 
6395 	bits = get_bitmask_order(VLAN_VID_MASK);
6396 	for (i = 0; i < bits; i++) {
6397 		if ((i % 8) == 0)
6398 			data_byte = data[i / 8];
6399 
6400 		temp = ((crc & 1) ^ data_byte) & 1;
6401 		crc >>= 1;
6402 		data_byte >>= 1;
6403 
6404 		if (temp)
6405 			crc ^= 0xedb88320;
6406 	}
6407 
6408 	return crc;
6409 }
6410 
6411 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6412 {
6413 	u32 crc, hash = 0;
6414 	__le16 pmatch = 0;
6415 	int count = 0;
6416 	u16 vid = 0;
6417 
6418 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6419 		__le16 vid_le = cpu_to_le16(vid);
6420 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6421 		hash |= (1 << crc);
6422 		count++;
6423 	}
6424 
6425 	if (!priv->dma_cap.vlhash) {
6426 		if (count > 2) /* VID = 0 always passes filter */
6427 			return -EOPNOTSUPP;
6428 
6429 		pmatch = cpu_to_le16(vid);
6430 		hash = 0;
6431 	}
6432 
6433 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6434 }
6435 
6436 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6437 {
6438 	struct stmmac_priv *priv = netdev_priv(ndev);
6439 	bool is_double = false;
6440 	int ret;
6441 
6442 	ret = pm_runtime_resume_and_get(priv->device);
6443 	if (ret < 0)
6444 		return ret;
6445 
6446 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6447 		is_double = true;
6448 
6449 	set_bit(vid, priv->active_vlans);
6450 	ret = stmmac_vlan_update(priv, is_double);
6451 	if (ret) {
6452 		clear_bit(vid, priv->active_vlans);
6453 		goto err_pm_put;
6454 	}
6455 
6456 	if (priv->hw->num_vlan) {
6457 		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6458 		if (ret)
6459 			goto err_pm_put;
6460 	}
6461 err_pm_put:
6462 	pm_runtime_put(priv->device);
6463 
6464 	return ret;
6465 }
6466 
6467 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6468 {
6469 	struct stmmac_priv *priv = netdev_priv(ndev);
6470 	bool is_double = false;
6471 	int ret;
6472 
6473 	ret = pm_runtime_resume_and_get(priv->device);
6474 	if (ret < 0)
6475 		return ret;
6476 
6477 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6478 		is_double = true;
6479 
6480 	clear_bit(vid, priv->active_vlans);
6481 
6482 	if (priv->hw->num_vlan) {
6483 		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6484 		if (ret)
6485 			goto del_vlan_error;
6486 	}
6487 
6488 	ret = stmmac_vlan_update(priv, is_double);
6489 
6490 del_vlan_error:
6491 	pm_runtime_put(priv->device);
6492 
6493 	return ret;
6494 }
6495 
6496 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6497 {
6498 	struct stmmac_priv *priv = netdev_priv(dev);
6499 
6500 	switch (bpf->command) {
6501 	case XDP_SETUP_PROG:
6502 		return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6503 	case XDP_SETUP_XSK_POOL:
6504 		return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6505 					     bpf->xsk.queue_id);
6506 	default:
6507 		return -EOPNOTSUPP;
6508 	}
6509 }
6510 
6511 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6512 			   struct xdp_frame **frames, u32 flags)
6513 {
6514 	struct stmmac_priv *priv = netdev_priv(dev);
6515 	int cpu = smp_processor_id();
6516 	struct netdev_queue *nq;
6517 	int i, nxmit = 0;
6518 	int queue;
6519 
6520 	if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6521 		return -ENETDOWN;
6522 
6523 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6524 		return -EINVAL;
6525 
6526 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
6527 	nq = netdev_get_tx_queue(priv->dev, queue);
6528 
6529 	__netif_tx_lock(nq, cpu);
6530 	/* Avoids TX time-out as we are sharing with slow path */
6531 	txq_trans_cond_update(nq);
6532 
6533 	for (i = 0; i < num_frames; i++) {
6534 		int res;
6535 
6536 		res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6537 		if (res == STMMAC_XDP_CONSUMED)
6538 			break;
6539 
6540 		nxmit++;
6541 	}
6542 
6543 	if (flags & XDP_XMIT_FLUSH) {
6544 		stmmac_flush_tx_descriptors(priv, queue);
6545 		stmmac_tx_timer_arm(priv, queue);
6546 	}
6547 
6548 	__netif_tx_unlock(nq);
6549 
6550 	return nxmit;
6551 }
6552 
6553 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6554 {
6555 	struct stmmac_channel *ch = &priv->channel[queue];
6556 	unsigned long flags;
6557 
6558 	spin_lock_irqsave(&ch->lock, flags);
6559 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6560 	spin_unlock_irqrestore(&ch->lock, flags);
6561 
6562 	stmmac_stop_rx_dma(priv, queue);
6563 	__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6564 }
6565 
6566 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6567 {
6568 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6569 	struct stmmac_channel *ch = &priv->channel[queue];
6570 	unsigned long flags;
6571 	u32 buf_size;
6572 	int ret;
6573 
6574 	ret = __alloc_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6575 	if (ret) {
6576 		netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6577 		return;
6578 	}
6579 
6580 	ret = __init_dma_rx_desc_rings(priv, &priv->dma_conf, queue, GFP_KERNEL);
6581 	if (ret) {
6582 		__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6583 		netdev_err(priv->dev, "Failed to init RX desc.\n");
6584 		return;
6585 	}
6586 
6587 	stmmac_reset_rx_queue(priv, queue);
6588 	stmmac_clear_rx_descriptors(priv, &priv->dma_conf, queue);
6589 
6590 	stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6591 			    rx_q->dma_rx_phy, rx_q->queue_index);
6592 
6593 	rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6594 			     sizeof(struct dma_desc));
6595 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6596 			       rx_q->rx_tail_addr, rx_q->queue_index);
6597 
6598 	if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6599 		buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6600 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6601 				      buf_size,
6602 				      rx_q->queue_index);
6603 	} else {
6604 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6605 				      priv->dma_conf.dma_buf_sz,
6606 				      rx_q->queue_index);
6607 	}
6608 
6609 	stmmac_start_rx_dma(priv, queue);
6610 
6611 	spin_lock_irqsave(&ch->lock, flags);
6612 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6613 	spin_unlock_irqrestore(&ch->lock, flags);
6614 }
6615 
6616 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6617 {
6618 	struct stmmac_channel *ch = &priv->channel[queue];
6619 	unsigned long flags;
6620 
6621 	spin_lock_irqsave(&ch->lock, flags);
6622 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6623 	spin_unlock_irqrestore(&ch->lock, flags);
6624 
6625 	stmmac_stop_tx_dma(priv, queue);
6626 	__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6627 }
6628 
6629 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6630 {
6631 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6632 	struct stmmac_channel *ch = &priv->channel[queue];
6633 	unsigned long flags;
6634 	int ret;
6635 
6636 	ret = __alloc_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6637 	if (ret) {
6638 		netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6639 		return;
6640 	}
6641 
6642 	ret = __init_dma_tx_desc_rings(priv,  &priv->dma_conf, queue);
6643 	if (ret) {
6644 		__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6645 		netdev_err(priv->dev, "Failed to init TX desc.\n");
6646 		return;
6647 	}
6648 
6649 	stmmac_reset_tx_queue(priv, queue);
6650 	stmmac_clear_tx_descriptors(priv, &priv->dma_conf, queue);
6651 
6652 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6653 			    tx_q->dma_tx_phy, tx_q->queue_index);
6654 
6655 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
6656 		stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6657 
6658 	tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6659 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6660 			       tx_q->tx_tail_addr, tx_q->queue_index);
6661 
6662 	stmmac_start_tx_dma(priv, queue);
6663 
6664 	spin_lock_irqsave(&ch->lock, flags);
6665 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6666 	spin_unlock_irqrestore(&ch->lock, flags);
6667 }
6668 
6669 void stmmac_xdp_release(struct net_device *dev)
6670 {
6671 	struct stmmac_priv *priv = netdev_priv(dev);
6672 	u32 chan;
6673 
6674 	/* Ensure tx function is not running */
6675 	netif_tx_disable(dev);
6676 
6677 	/* Disable NAPI process */
6678 	stmmac_disable_all_queues(priv);
6679 
6680 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6681 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6682 
6683 	/* Free the IRQ lines */
6684 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
6685 
6686 	/* Stop TX/RX DMA channels */
6687 	stmmac_stop_all_dma(priv);
6688 
6689 	/* Release and free the Rx/Tx resources */
6690 	free_dma_desc_resources(priv, &priv->dma_conf);
6691 
6692 	/* Disable the MAC Rx/Tx */
6693 	stmmac_mac_set(priv, priv->ioaddr, false);
6694 
6695 	/* set trans_start so we don't get spurious
6696 	 * watchdogs during reset
6697 	 */
6698 	netif_trans_update(dev);
6699 	netif_carrier_off(dev);
6700 }
6701 
6702 int stmmac_xdp_open(struct net_device *dev)
6703 {
6704 	struct stmmac_priv *priv = netdev_priv(dev);
6705 	u32 rx_cnt = priv->plat->rx_queues_to_use;
6706 	u32 tx_cnt = priv->plat->tx_queues_to_use;
6707 	u32 dma_csr_ch = max(rx_cnt, tx_cnt);
6708 	struct stmmac_rx_queue *rx_q;
6709 	struct stmmac_tx_queue *tx_q;
6710 	u32 buf_size;
6711 	bool sph_en;
6712 	u32 chan;
6713 	int ret;
6714 
6715 	ret = alloc_dma_desc_resources(priv, &priv->dma_conf);
6716 	if (ret < 0) {
6717 		netdev_err(dev, "%s: DMA descriptors allocation failed\n",
6718 			   __func__);
6719 		goto dma_desc_error;
6720 	}
6721 
6722 	ret = init_dma_desc_rings(dev, &priv->dma_conf, GFP_KERNEL);
6723 	if (ret < 0) {
6724 		netdev_err(dev, "%s: DMA descriptors initialization failed\n",
6725 			   __func__);
6726 		goto init_error;
6727 	}
6728 
6729 	stmmac_reset_queues_param(priv);
6730 
6731 	/* DMA CSR Channel configuration */
6732 	for (chan = 0; chan < dma_csr_ch; chan++) {
6733 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
6734 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
6735 	}
6736 
6737 	/* Adjust Split header */
6738 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
6739 
6740 	/* DMA RX Channel Configuration */
6741 	for (chan = 0; chan < rx_cnt; chan++) {
6742 		rx_q = &priv->dma_conf.rx_queue[chan];
6743 
6744 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6745 				    rx_q->dma_rx_phy, chan);
6746 
6747 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
6748 				     (rx_q->buf_alloc_num *
6749 				      sizeof(struct dma_desc));
6750 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6751 				       rx_q->rx_tail_addr, chan);
6752 
6753 		if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6754 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6755 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6756 					      buf_size,
6757 					      rx_q->queue_index);
6758 		} else {
6759 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6760 					      priv->dma_conf.dma_buf_sz,
6761 					      rx_q->queue_index);
6762 		}
6763 
6764 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
6765 	}
6766 
6767 	/* DMA TX Channel Configuration */
6768 	for (chan = 0; chan < tx_cnt; chan++) {
6769 		tx_q = &priv->dma_conf.tx_queue[chan];
6770 
6771 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6772 				    tx_q->dma_tx_phy, chan);
6773 
6774 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6775 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6776 				       tx_q->tx_tail_addr, chan);
6777 
6778 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6779 		tx_q->txtimer.function = stmmac_tx_timer;
6780 	}
6781 
6782 	/* Enable the MAC Rx/Tx */
6783 	stmmac_mac_set(priv, priv->ioaddr, true);
6784 
6785 	/* Start Rx & Tx DMA Channels */
6786 	stmmac_start_all_dma(priv);
6787 
6788 	ret = stmmac_request_irq(dev);
6789 	if (ret)
6790 		goto irq_error;
6791 
6792 	/* Enable NAPI process*/
6793 	stmmac_enable_all_queues(priv);
6794 	netif_carrier_on(dev);
6795 	netif_tx_start_all_queues(dev);
6796 	stmmac_enable_all_dma_irq(priv);
6797 
6798 	return 0;
6799 
6800 irq_error:
6801 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6802 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6803 
6804 	stmmac_hw_teardown(dev);
6805 init_error:
6806 	free_dma_desc_resources(priv, &priv->dma_conf);
6807 dma_desc_error:
6808 	return ret;
6809 }
6810 
6811 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6812 {
6813 	struct stmmac_priv *priv = netdev_priv(dev);
6814 	struct stmmac_rx_queue *rx_q;
6815 	struct stmmac_tx_queue *tx_q;
6816 	struct stmmac_channel *ch;
6817 
6818 	if (test_bit(STMMAC_DOWN, &priv->state) ||
6819 	    !netif_carrier_ok(priv->dev))
6820 		return -ENETDOWN;
6821 
6822 	if (!stmmac_xdp_is_enabled(priv))
6823 		return -EINVAL;
6824 
6825 	if (queue >= priv->plat->rx_queues_to_use ||
6826 	    queue >= priv->plat->tx_queues_to_use)
6827 		return -EINVAL;
6828 
6829 	rx_q = &priv->dma_conf.rx_queue[queue];
6830 	tx_q = &priv->dma_conf.tx_queue[queue];
6831 	ch = &priv->channel[queue];
6832 
6833 	if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6834 		return -EINVAL;
6835 
6836 	if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6837 		/* EQoS does not have per-DMA channel SW interrupt,
6838 		 * so we schedule RX Napi straight-away.
6839 		 */
6840 		if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6841 			__napi_schedule(&ch->rxtx_napi);
6842 	}
6843 
6844 	return 0;
6845 }
6846 
6847 static void stmmac_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
6848 {
6849 	struct stmmac_priv *priv = netdev_priv(dev);
6850 	u32 tx_cnt = priv->plat->tx_queues_to_use;
6851 	u32 rx_cnt = priv->plat->rx_queues_to_use;
6852 	unsigned int start;
6853 	int q;
6854 
6855 	for (q = 0; q < tx_cnt; q++) {
6856 		struct stmmac_txq_stats *txq_stats = &priv->dma_conf.tx_queue[q].txq_stats;
6857 		u64 tx_packets;
6858 		u64 tx_bytes;
6859 
6860 		do {
6861 			start = u64_stats_fetch_begin(&txq_stats->syncp);
6862 			tx_packets = txq_stats->tx_packets;
6863 			tx_bytes   = txq_stats->tx_bytes;
6864 		} while (u64_stats_fetch_retry(&txq_stats->syncp, start));
6865 
6866 		stats->tx_packets += tx_packets;
6867 		stats->tx_bytes += tx_bytes;
6868 	}
6869 
6870 	for (q = 0; q < rx_cnt; q++) {
6871 		struct stmmac_rxq_stats *rxq_stats = &priv->dma_conf.rx_queue[q].rxq_stats;
6872 		u64 rx_packets;
6873 		u64 rx_bytes;
6874 
6875 		do {
6876 			start = u64_stats_fetch_begin(&rxq_stats->syncp);
6877 			rx_packets = rxq_stats->rx_packets;
6878 			rx_bytes   = rxq_stats->rx_bytes;
6879 		} while (u64_stats_fetch_retry(&rxq_stats->syncp, start));
6880 
6881 		stats->rx_packets += rx_packets;
6882 		stats->rx_bytes += rx_bytes;
6883 	}
6884 
6885 	stats->rx_dropped = priv->xstats.rx_dropped;
6886 	stats->rx_errors = priv->xstats.rx_errors;
6887 	stats->tx_dropped = priv->xstats.tx_dropped;
6888 	stats->tx_errors = priv->xstats.tx_errors;
6889 	stats->tx_carrier_errors = priv->xstats.tx_losscarrier + priv->xstats.tx_carrier;
6890 	stats->collisions = priv->xstats.tx_collision + priv->xstats.rx_collision;
6891 	stats->rx_length_errors = priv->xstats.rx_length;
6892 	stats->rx_crc_errors = priv->xstats.rx_crc_errors;
6893 	stats->rx_over_errors = priv->xstats.rx_overflow_cntr;
6894 	stats->rx_missed_errors = priv->xstats.rx_missed_cntr;
6895 }
6896 
6897 static const struct net_device_ops stmmac_netdev_ops = {
6898 	.ndo_open = stmmac_open,
6899 	.ndo_start_xmit = stmmac_xmit,
6900 	.ndo_stop = stmmac_release,
6901 	.ndo_change_mtu = stmmac_change_mtu,
6902 	.ndo_fix_features = stmmac_fix_features,
6903 	.ndo_set_features = stmmac_set_features,
6904 	.ndo_set_rx_mode = stmmac_set_rx_mode,
6905 	.ndo_tx_timeout = stmmac_tx_timeout,
6906 	.ndo_eth_ioctl = stmmac_ioctl,
6907 	.ndo_get_stats64 = stmmac_get_stats64,
6908 	.ndo_setup_tc = stmmac_setup_tc,
6909 	.ndo_select_queue = stmmac_select_queue,
6910 #ifdef CONFIG_NET_POLL_CONTROLLER
6911 	.ndo_poll_controller = stmmac_poll_controller,
6912 #endif
6913 	.ndo_set_mac_address = stmmac_set_mac_address,
6914 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6915 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6916 	.ndo_bpf = stmmac_bpf,
6917 	.ndo_xdp_xmit = stmmac_xdp_xmit,
6918 	.ndo_xsk_wakeup = stmmac_xsk_wakeup,
6919 };
6920 
6921 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6922 {
6923 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6924 		return;
6925 	if (test_bit(STMMAC_DOWN, &priv->state))
6926 		return;
6927 
6928 	netdev_err(priv->dev, "Reset adapter.\n");
6929 
6930 	rtnl_lock();
6931 	netif_trans_update(priv->dev);
6932 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6933 		usleep_range(1000, 2000);
6934 
6935 	set_bit(STMMAC_DOWN, &priv->state);
6936 	dev_close(priv->dev);
6937 	dev_open(priv->dev, NULL);
6938 	clear_bit(STMMAC_DOWN, &priv->state);
6939 	clear_bit(STMMAC_RESETING, &priv->state);
6940 	rtnl_unlock();
6941 }
6942 
6943 static void stmmac_service_task(struct work_struct *work)
6944 {
6945 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6946 			service_task);
6947 
6948 	stmmac_reset_subtask(priv);
6949 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6950 }
6951 
6952 /**
6953  *  stmmac_hw_init - Init the MAC device
6954  *  @priv: driver private structure
6955  *  Description: this function is to configure the MAC device according to
6956  *  some platform parameters or the HW capability register. It prepares the
6957  *  driver to use either ring or chain modes and to setup either enhanced or
6958  *  normal descriptors.
6959  */
6960 static int stmmac_hw_init(struct stmmac_priv *priv)
6961 {
6962 	int ret;
6963 
6964 	/* dwmac-sun8i only work in chain mode */
6965 	if (priv->plat->flags & STMMAC_FLAG_HAS_SUN8I)
6966 		chain_mode = 1;
6967 	priv->chain_mode = chain_mode;
6968 
6969 	/* Initialize HW Interface */
6970 	ret = stmmac_hwif_init(priv);
6971 	if (ret)
6972 		return ret;
6973 
6974 	/* Get the HW capability (new GMAC newer than 3.50a) */
6975 	priv->hw_cap_support = stmmac_get_hw_features(priv);
6976 	if (priv->hw_cap_support) {
6977 		dev_info(priv->device, "DMA HW capability register supported\n");
6978 
6979 		/* We can override some gmac/dma configuration fields: e.g.
6980 		 * enh_desc, tx_coe (e.g. that are passed through the
6981 		 * platform) with the values from the HW capability
6982 		 * register (if supported).
6983 		 */
6984 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
6985 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
6986 				!(priv->plat->flags & STMMAC_FLAG_USE_PHY_WOL);
6987 		priv->hw->pmt = priv->plat->pmt;
6988 		if (priv->dma_cap.hash_tb_sz) {
6989 			priv->hw->multicast_filter_bins =
6990 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
6991 			priv->hw->mcast_bits_log2 =
6992 					ilog2(priv->hw->multicast_filter_bins);
6993 		}
6994 
6995 		/* TXCOE doesn't work in thresh DMA mode */
6996 		if (priv->plat->force_thresh_dma_mode)
6997 			priv->plat->tx_coe = 0;
6998 		else
6999 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
7000 
7001 		/* In case of GMAC4 rx_coe is from HW cap register. */
7002 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
7003 
7004 		if (priv->dma_cap.rx_coe_type2)
7005 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
7006 		else if (priv->dma_cap.rx_coe_type1)
7007 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
7008 
7009 	} else {
7010 		dev_info(priv->device, "No HW DMA feature register supported\n");
7011 	}
7012 
7013 	if (priv->plat->rx_coe) {
7014 		priv->hw->rx_csum = priv->plat->rx_coe;
7015 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
7016 		if (priv->synopsys_id < DWMAC_CORE_4_00)
7017 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
7018 	}
7019 	if (priv->plat->tx_coe)
7020 		dev_info(priv->device, "TX Checksum insertion supported\n");
7021 
7022 	if (priv->plat->pmt) {
7023 		dev_info(priv->device, "Wake-Up On Lan supported\n");
7024 		device_set_wakeup_capable(priv->device, 1);
7025 	}
7026 
7027 	if (priv->dma_cap.tsoen)
7028 		dev_info(priv->device, "TSO supported\n");
7029 
7030 	priv->hw->vlan_fail_q_en =
7031 		(priv->plat->flags & STMMAC_FLAG_VLAN_FAIL_Q_EN);
7032 	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
7033 
7034 	/* Run HW quirks, if any */
7035 	if (priv->hwif_quirks) {
7036 		ret = priv->hwif_quirks(priv);
7037 		if (ret)
7038 			return ret;
7039 	}
7040 
7041 	/* Rx Watchdog is available in the COREs newer than the 3.40.
7042 	 * In some case, for example on bugged HW this feature
7043 	 * has to be disable and this can be done by passing the
7044 	 * riwt_off field from the platform.
7045 	 */
7046 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
7047 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
7048 		priv->use_riwt = 1;
7049 		dev_info(priv->device,
7050 			 "Enable RX Mitigation via HW Watchdog Timer\n");
7051 	}
7052 
7053 	return 0;
7054 }
7055 
7056 static void stmmac_napi_add(struct net_device *dev)
7057 {
7058 	struct stmmac_priv *priv = netdev_priv(dev);
7059 	u32 queue, maxq;
7060 
7061 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
7062 
7063 	for (queue = 0; queue < maxq; queue++) {
7064 		struct stmmac_channel *ch = &priv->channel[queue];
7065 
7066 		ch->priv_data = priv;
7067 		ch->index = queue;
7068 		spin_lock_init(&ch->lock);
7069 
7070 		if (queue < priv->plat->rx_queues_to_use) {
7071 			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx);
7072 		}
7073 		if (queue < priv->plat->tx_queues_to_use) {
7074 			netif_napi_add_tx(dev, &ch->tx_napi,
7075 					  stmmac_napi_poll_tx);
7076 		}
7077 		if (queue < priv->plat->rx_queues_to_use &&
7078 		    queue < priv->plat->tx_queues_to_use) {
7079 			netif_napi_add(dev, &ch->rxtx_napi,
7080 				       stmmac_napi_poll_rxtx);
7081 		}
7082 	}
7083 }
7084 
7085 static void stmmac_napi_del(struct net_device *dev)
7086 {
7087 	struct stmmac_priv *priv = netdev_priv(dev);
7088 	u32 queue, maxq;
7089 
7090 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
7091 
7092 	for (queue = 0; queue < maxq; queue++) {
7093 		struct stmmac_channel *ch = &priv->channel[queue];
7094 
7095 		if (queue < priv->plat->rx_queues_to_use)
7096 			netif_napi_del(&ch->rx_napi);
7097 		if (queue < priv->plat->tx_queues_to_use)
7098 			netif_napi_del(&ch->tx_napi);
7099 		if (queue < priv->plat->rx_queues_to_use &&
7100 		    queue < priv->plat->tx_queues_to_use) {
7101 			netif_napi_del(&ch->rxtx_napi);
7102 		}
7103 	}
7104 }
7105 
7106 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
7107 {
7108 	struct stmmac_priv *priv = netdev_priv(dev);
7109 	int ret = 0, i;
7110 
7111 	if (netif_running(dev))
7112 		stmmac_release(dev);
7113 
7114 	stmmac_napi_del(dev);
7115 
7116 	priv->plat->rx_queues_to_use = rx_cnt;
7117 	priv->plat->tx_queues_to_use = tx_cnt;
7118 	if (!netif_is_rxfh_configured(dev))
7119 		for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7120 			priv->rss.table[i] = ethtool_rxfh_indir_default(i,
7121 									rx_cnt);
7122 
7123 	stmmac_napi_add(dev);
7124 
7125 	if (netif_running(dev))
7126 		ret = stmmac_open(dev);
7127 
7128 	return ret;
7129 }
7130 
7131 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
7132 {
7133 	struct stmmac_priv *priv = netdev_priv(dev);
7134 	int ret = 0;
7135 
7136 	if (netif_running(dev))
7137 		stmmac_release(dev);
7138 
7139 	priv->dma_conf.dma_rx_size = rx_size;
7140 	priv->dma_conf.dma_tx_size = tx_size;
7141 
7142 	if (netif_running(dev))
7143 		ret = stmmac_open(dev);
7144 
7145 	return ret;
7146 }
7147 
7148 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
7149 static void stmmac_fpe_lp_task(struct work_struct *work)
7150 {
7151 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
7152 						fpe_task);
7153 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
7154 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
7155 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
7156 	bool *hs_enable = &fpe_cfg->hs_enable;
7157 	bool *enable = &fpe_cfg->enable;
7158 	int retries = 20;
7159 
7160 	while (retries-- > 0) {
7161 		/* Bail out immediately if FPE handshake is OFF */
7162 		if (*lo_state == FPE_STATE_OFF || !*hs_enable)
7163 			break;
7164 
7165 		if (*lo_state == FPE_STATE_ENTERING_ON &&
7166 		    *lp_state == FPE_STATE_ENTERING_ON) {
7167 			stmmac_fpe_configure(priv, priv->ioaddr,
7168 					     priv->plat->tx_queues_to_use,
7169 					     priv->plat->rx_queues_to_use,
7170 					     *enable);
7171 
7172 			netdev_info(priv->dev, "configured FPE\n");
7173 
7174 			*lo_state = FPE_STATE_ON;
7175 			*lp_state = FPE_STATE_ON;
7176 			netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
7177 			break;
7178 		}
7179 
7180 		if ((*lo_state == FPE_STATE_CAPABLE ||
7181 		     *lo_state == FPE_STATE_ENTERING_ON) &&
7182 		     *lp_state != FPE_STATE_ON) {
7183 			netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
7184 				    *lo_state, *lp_state);
7185 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7186 						MPACKET_VERIFY);
7187 		}
7188 		/* Sleep then retry */
7189 		msleep(500);
7190 	}
7191 
7192 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
7193 }
7194 
7195 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
7196 {
7197 	if (priv->plat->fpe_cfg->hs_enable != enable) {
7198 		if (enable) {
7199 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7200 						MPACKET_VERIFY);
7201 		} else {
7202 			priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
7203 			priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
7204 		}
7205 
7206 		priv->plat->fpe_cfg->hs_enable = enable;
7207 	}
7208 }
7209 
7210 static int stmmac_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
7211 {
7212 	const struct stmmac_xdp_buff *ctx = (void *)_ctx;
7213 	struct dma_desc *desc_contains_ts = ctx->desc;
7214 	struct stmmac_priv *priv = ctx->priv;
7215 	struct dma_desc *ndesc = ctx->ndesc;
7216 	struct dma_desc *desc = ctx->desc;
7217 	u64 ns = 0;
7218 
7219 	if (!priv->hwts_rx_en)
7220 		return -ENODATA;
7221 
7222 	/* For GMAC4, the valid timestamp is from CTX next desc. */
7223 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
7224 		desc_contains_ts = ndesc;
7225 
7226 	/* Check if timestamp is available */
7227 	if (stmmac_get_rx_timestamp_status(priv, desc, ndesc, priv->adv_ts)) {
7228 		stmmac_get_timestamp(priv, desc_contains_ts, priv->adv_ts, &ns);
7229 		ns -= priv->plat->cdc_error_adj;
7230 		*timestamp = ns_to_ktime(ns);
7231 		return 0;
7232 	}
7233 
7234 	return -ENODATA;
7235 }
7236 
7237 static const struct xdp_metadata_ops stmmac_xdp_metadata_ops = {
7238 	.xmo_rx_timestamp		= stmmac_xdp_rx_timestamp,
7239 };
7240 
7241 /**
7242  * stmmac_dvr_probe
7243  * @device: device pointer
7244  * @plat_dat: platform data pointer
7245  * @res: stmmac resource pointer
7246  * Description: this is the main probe function used to
7247  * call the alloc_etherdev, allocate the priv structure.
7248  * Return:
7249  * returns 0 on success, otherwise errno.
7250  */
7251 int stmmac_dvr_probe(struct device *device,
7252 		     struct plat_stmmacenet_data *plat_dat,
7253 		     struct stmmac_resources *res)
7254 {
7255 	struct net_device *ndev = NULL;
7256 	struct stmmac_priv *priv;
7257 	u32 rxq;
7258 	int i, ret = 0;
7259 
7260 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
7261 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
7262 	if (!ndev)
7263 		return -ENOMEM;
7264 
7265 	SET_NETDEV_DEV(ndev, device);
7266 
7267 	priv = netdev_priv(ndev);
7268 	priv->device = device;
7269 	priv->dev = ndev;
7270 
7271 	for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
7272 		u64_stats_init(&priv->dma_conf.rx_queue[i].rxq_stats.syncp);
7273 	for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
7274 		u64_stats_init(&priv->dma_conf.tx_queue[i].txq_stats.syncp);
7275 
7276 	stmmac_set_ethtool_ops(ndev);
7277 	priv->pause = pause;
7278 	priv->plat = plat_dat;
7279 	priv->ioaddr = res->addr;
7280 	priv->dev->base_addr = (unsigned long)res->addr;
7281 	priv->plat->dma_cfg->multi_msi_en =
7282 		(priv->plat->flags & STMMAC_FLAG_MULTI_MSI_EN);
7283 
7284 	priv->dev->irq = res->irq;
7285 	priv->wol_irq = res->wol_irq;
7286 	priv->lpi_irq = res->lpi_irq;
7287 	priv->sfty_ce_irq = res->sfty_ce_irq;
7288 	priv->sfty_ue_irq = res->sfty_ue_irq;
7289 	for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
7290 		priv->rx_irq[i] = res->rx_irq[i];
7291 	for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
7292 		priv->tx_irq[i] = res->tx_irq[i];
7293 
7294 	if (!is_zero_ether_addr(res->mac))
7295 		eth_hw_addr_set(priv->dev, res->mac);
7296 
7297 	dev_set_drvdata(device, priv->dev);
7298 
7299 	/* Verify driver arguments */
7300 	stmmac_verify_args();
7301 
7302 	priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
7303 	if (!priv->af_xdp_zc_qps)
7304 		return -ENOMEM;
7305 
7306 	/* Allocate workqueue */
7307 	priv->wq = create_singlethread_workqueue("stmmac_wq");
7308 	if (!priv->wq) {
7309 		dev_err(priv->device, "failed to create workqueue\n");
7310 		ret = -ENOMEM;
7311 		goto error_wq_init;
7312 	}
7313 
7314 	INIT_WORK(&priv->service_task, stmmac_service_task);
7315 
7316 	/* Initialize Link Partner FPE workqueue */
7317 	INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
7318 
7319 	/* Override with kernel parameters if supplied XXX CRS XXX
7320 	 * this needs to have multiple instances
7321 	 */
7322 	if ((phyaddr >= 0) && (phyaddr <= 31))
7323 		priv->plat->phy_addr = phyaddr;
7324 
7325 	if (priv->plat->stmmac_rst) {
7326 		ret = reset_control_assert(priv->plat->stmmac_rst);
7327 		reset_control_deassert(priv->plat->stmmac_rst);
7328 		/* Some reset controllers have only reset callback instead of
7329 		 * assert + deassert callbacks pair.
7330 		 */
7331 		if (ret == -ENOTSUPP)
7332 			reset_control_reset(priv->plat->stmmac_rst);
7333 	}
7334 
7335 	ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
7336 	if (ret == -ENOTSUPP)
7337 		dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
7338 			ERR_PTR(ret));
7339 
7340 	/* Init MAC and get the capabilities */
7341 	ret = stmmac_hw_init(priv);
7342 	if (ret)
7343 		goto error_hw_init;
7344 
7345 	/* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
7346 	 */
7347 	if (priv->synopsys_id < DWMAC_CORE_5_20)
7348 		priv->plat->dma_cfg->dche = false;
7349 
7350 	stmmac_check_ether_addr(priv);
7351 
7352 	ndev->netdev_ops = &stmmac_netdev_ops;
7353 
7354 	ndev->xdp_metadata_ops = &stmmac_xdp_metadata_ops;
7355 
7356 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
7357 			    NETIF_F_RXCSUM;
7358 	ndev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
7359 			     NETDEV_XDP_ACT_XSK_ZEROCOPY;
7360 
7361 	ret = stmmac_tc_init(priv, priv);
7362 	if (!ret) {
7363 		ndev->hw_features |= NETIF_F_HW_TC;
7364 	}
7365 
7366 	if ((priv->plat->flags & STMMAC_FLAG_TSO_EN) && (priv->dma_cap.tsoen)) {
7367 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
7368 		if (priv->plat->has_gmac4)
7369 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
7370 		priv->tso = true;
7371 		dev_info(priv->device, "TSO feature enabled\n");
7372 	}
7373 
7374 	if (priv->dma_cap.sphen &&
7375 	    !(priv->plat->flags & STMMAC_FLAG_SPH_DISABLE)) {
7376 		ndev->hw_features |= NETIF_F_GRO;
7377 		priv->sph_cap = true;
7378 		priv->sph = priv->sph_cap;
7379 		dev_info(priv->device, "SPH feature enabled\n");
7380 	}
7381 
7382 	/* Ideally our host DMA address width is the same as for the
7383 	 * device. However, it may differ and then we have to use our
7384 	 * host DMA width for allocation and the device DMA width for
7385 	 * register handling.
7386 	 */
7387 	if (priv->plat->host_dma_width)
7388 		priv->dma_cap.host_dma_width = priv->plat->host_dma_width;
7389 	else
7390 		priv->dma_cap.host_dma_width = priv->dma_cap.addr64;
7391 
7392 	if (priv->dma_cap.host_dma_width) {
7393 		ret = dma_set_mask_and_coherent(device,
7394 				DMA_BIT_MASK(priv->dma_cap.host_dma_width));
7395 		if (!ret) {
7396 			dev_info(priv->device, "Using %d/%d bits DMA host/device width\n",
7397 				 priv->dma_cap.host_dma_width, priv->dma_cap.addr64);
7398 
7399 			/*
7400 			 * If more than 32 bits can be addressed, make sure to
7401 			 * enable enhanced addressing mode.
7402 			 */
7403 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
7404 				priv->plat->dma_cfg->eame = true;
7405 		} else {
7406 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
7407 			if (ret) {
7408 				dev_err(priv->device, "Failed to set DMA Mask\n");
7409 				goto error_hw_init;
7410 			}
7411 
7412 			priv->dma_cap.host_dma_width = 32;
7413 		}
7414 	}
7415 
7416 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
7417 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
7418 #ifdef STMMAC_VLAN_TAG_USED
7419 	/* Both mac100 and gmac support receive VLAN tag detection */
7420 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
7421 	if (priv->dma_cap.vlhash) {
7422 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7423 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
7424 	}
7425 	if (priv->dma_cap.vlins) {
7426 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
7427 		if (priv->dma_cap.dvlan)
7428 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
7429 	}
7430 #endif
7431 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
7432 
7433 	priv->xstats.threshold = tc;
7434 
7435 	/* Initialize RSS */
7436 	rxq = priv->plat->rx_queues_to_use;
7437 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
7438 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7439 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
7440 
7441 	if (priv->dma_cap.rssen && priv->plat->rss_en)
7442 		ndev->features |= NETIF_F_RXHASH;
7443 
7444 	ndev->vlan_features |= ndev->features;
7445 	/* TSO doesn't work on VLANs yet */
7446 	ndev->vlan_features &= ~NETIF_F_TSO;
7447 
7448 	/* MTU range: 46 - hw-specific max */
7449 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
7450 	if (priv->plat->has_xgmac)
7451 		ndev->max_mtu = XGMAC_JUMBO_LEN;
7452 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
7453 		ndev->max_mtu = JUMBO_LEN;
7454 	else
7455 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
7456 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
7457 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
7458 	 */
7459 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
7460 	    (priv->plat->maxmtu >= ndev->min_mtu))
7461 		ndev->max_mtu = priv->plat->maxmtu;
7462 	else if (priv->plat->maxmtu < ndev->min_mtu)
7463 		dev_warn(priv->device,
7464 			 "%s: warning: maxmtu having invalid value (%d)\n",
7465 			 __func__, priv->plat->maxmtu);
7466 
7467 	if (flow_ctrl)
7468 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
7469 
7470 	ndev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
7471 
7472 	/* Setup channels NAPI */
7473 	stmmac_napi_add(ndev);
7474 
7475 	mutex_init(&priv->lock);
7476 
7477 	/* If a specific clk_csr value is passed from the platform
7478 	 * this means that the CSR Clock Range selection cannot be
7479 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
7480 	 * set the MDC clock dynamically according to the csr actual
7481 	 * clock input.
7482 	 */
7483 	if (priv->plat->clk_csr >= 0)
7484 		priv->clk_csr = priv->plat->clk_csr;
7485 	else
7486 		stmmac_clk_csr_set(priv);
7487 
7488 	stmmac_check_pcs_mode(priv);
7489 
7490 	pm_runtime_get_noresume(device);
7491 	pm_runtime_set_active(device);
7492 	if (!pm_runtime_enabled(device))
7493 		pm_runtime_enable(device);
7494 
7495 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7496 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
7497 		/* MDIO bus Registration */
7498 		ret = stmmac_mdio_register(ndev);
7499 		if (ret < 0) {
7500 			dev_err_probe(priv->device, ret,
7501 				      "%s: MDIO bus (id: %d) registration failed\n",
7502 				      __func__, priv->plat->bus_id);
7503 			goto error_mdio_register;
7504 		}
7505 	}
7506 
7507 	if (priv->plat->speed_mode_2500)
7508 		priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7509 
7510 	if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7511 		ret = stmmac_xpcs_setup(priv->mii);
7512 		if (ret)
7513 			goto error_xpcs_setup;
7514 	}
7515 
7516 	ret = stmmac_phy_setup(priv);
7517 	if (ret) {
7518 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7519 		goto error_phy_setup;
7520 	}
7521 
7522 	ret = register_netdev(ndev);
7523 	if (ret) {
7524 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
7525 			__func__, ret);
7526 		goto error_netdev_register;
7527 	}
7528 
7529 #ifdef CONFIG_DEBUG_FS
7530 	stmmac_init_fs(ndev);
7531 #endif
7532 
7533 	if (priv->plat->dump_debug_regs)
7534 		priv->plat->dump_debug_regs(priv->plat->bsp_priv);
7535 
7536 	/* Let pm_runtime_put() disable the clocks.
7537 	 * If CONFIG_PM is not enabled, the clocks will stay powered.
7538 	 */
7539 	pm_runtime_put(device);
7540 
7541 	return ret;
7542 
7543 error_netdev_register:
7544 	phylink_destroy(priv->phylink);
7545 error_xpcs_setup:
7546 error_phy_setup:
7547 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7548 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7549 		stmmac_mdio_unregister(ndev);
7550 error_mdio_register:
7551 	stmmac_napi_del(ndev);
7552 error_hw_init:
7553 	destroy_workqueue(priv->wq);
7554 error_wq_init:
7555 	bitmap_free(priv->af_xdp_zc_qps);
7556 
7557 	return ret;
7558 }
7559 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7560 
7561 /**
7562  * stmmac_dvr_remove
7563  * @dev: device pointer
7564  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7565  * changes the link status, releases the DMA descriptor rings.
7566  */
7567 void stmmac_dvr_remove(struct device *dev)
7568 {
7569 	struct net_device *ndev = dev_get_drvdata(dev);
7570 	struct stmmac_priv *priv = netdev_priv(ndev);
7571 
7572 	netdev_info(priv->dev, "%s: removing driver", __func__);
7573 
7574 	pm_runtime_get_sync(dev);
7575 
7576 	stmmac_stop_all_dma(priv);
7577 	stmmac_mac_set(priv, priv->ioaddr, false);
7578 	netif_carrier_off(ndev);
7579 	unregister_netdev(ndev);
7580 
7581 #ifdef CONFIG_DEBUG_FS
7582 	stmmac_exit_fs(ndev);
7583 #endif
7584 	phylink_destroy(priv->phylink);
7585 	if (priv->plat->stmmac_rst)
7586 		reset_control_assert(priv->plat->stmmac_rst);
7587 	reset_control_assert(priv->plat->stmmac_ahb_rst);
7588 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7589 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7590 		stmmac_mdio_unregister(ndev);
7591 	destroy_workqueue(priv->wq);
7592 	mutex_destroy(&priv->lock);
7593 	bitmap_free(priv->af_xdp_zc_qps);
7594 
7595 	pm_runtime_disable(dev);
7596 	pm_runtime_put_noidle(dev);
7597 }
7598 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7599 
7600 /**
7601  * stmmac_suspend - suspend callback
7602  * @dev: device pointer
7603  * Description: this is the function to suspend the device and it is called
7604  * by the platform driver to stop the network queue, release the resources,
7605  * program the PMT register (for WoL), clean and release driver resources.
7606  */
7607 int stmmac_suspend(struct device *dev)
7608 {
7609 	struct net_device *ndev = dev_get_drvdata(dev);
7610 	struct stmmac_priv *priv = netdev_priv(ndev);
7611 	u32 chan;
7612 
7613 	if (!ndev || !netif_running(ndev))
7614 		return 0;
7615 
7616 	mutex_lock(&priv->lock);
7617 
7618 	netif_device_detach(ndev);
7619 
7620 	stmmac_disable_all_queues(priv);
7621 
7622 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7623 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
7624 
7625 	if (priv->eee_enabled) {
7626 		priv->tx_path_in_lpi_mode = false;
7627 		del_timer_sync(&priv->eee_ctrl_timer);
7628 	}
7629 
7630 	/* Stop TX/RX DMA */
7631 	stmmac_stop_all_dma(priv);
7632 
7633 	if (priv->plat->serdes_powerdown)
7634 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7635 
7636 	/* Enable Power down mode by programming the PMT regs */
7637 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7638 		stmmac_pmt(priv, priv->hw, priv->wolopts);
7639 		priv->irq_wake = 1;
7640 	} else {
7641 		stmmac_mac_set(priv, priv->ioaddr, false);
7642 		pinctrl_pm_select_sleep_state(priv->device);
7643 	}
7644 
7645 	mutex_unlock(&priv->lock);
7646 
7647 	rtnl_lock();
7648 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7649 		phylink_suspend(priv->phylink, true);
7650 	} else {
7651 		if (device_may_wakeup(priv->device))
7652 			phylink_speed_down(priv->phylink, false);
7653 		phylink_suspend(priv->phylink, false);
7654 	}
7655 	rtnl_unlock();
7656 
7657 	if (priv->dma_cap.fpesel) {
7658 		/* Disable FPE */
7659 		stmmac_fpe_configure(priv, priv->ioaddr,
7660 				     priv->plat->tx_queues_to_use,
7661 				     priv->plat->rx_queues_to_use, false);
7662 
7663 		stmmac_fpe_handshake(priv, false);
7664 		stmmac_fpe_stop_wq(priv);
7665 	}
7666 
7667 	priv->speed = SPEED_UNKNOWN;
7668 	return 0;
7669 }
7670 EXPORT_SYMBOL_GPL(stmmac_suspend);
7671 
7672 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue)
7673 {
7674 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
7675 
7676 	rx_q->cur_rx = 0;
7677 	rx_q->dirty_rx = 0;
7678 }
7679 
7680 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue)
7681 {
7682 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
7683 
7684 	tx_q->cur_tx = 0;
7685 	tx_q->dirty_tx = 0;
7686 	tx_q->mss = 0;
7687 
7688 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7689 }
7690 
7691 /**
7692  * stmmac_reset_queues_param - reset queue parameters
7693  * @priv: device pointer
7694  */
7695 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7696 {
7697 	u32 rx_cnt = priv->plat->rx_queues_to_use;
7698 	u32 tx_cnt = priv->plat->tx_queues_to_use;
7699 	u32 queue;
7700 
7701 	for (queue = 0; queue < rx_cnt; queue++)
7702 		stmmac_reset_rx_queue(priv, queue);
7703 
7704 	for (queue = 0; queue < tx_cnt; queue++)
7705 		stmmac_reset_tx_queue(priv, queue);
7706 }
7707 
7708 /**
7709  * stmmac_resume - resume callback
7710  * @dev: device pointer
7711  * Description: when resume this function is invoked to setup the DMA and CORE
7712  * in a usable state.
7713  */
7714 int stmmac_resume(struct device *dev)
7715 {
7716 	struct net_device *ndev = dev_get_drvdata(dev);
7717 	struct stmmac_priv *priv = netdev_priv(ndev);
7718 	int ret;
7719 
7720 	if (!netif_running(ndev))
7721 		return 0;
7722 
7723 	/* Power Down bit, into the PM register, is cleared
7724 	 * automatically as soon as a magic packet or a Wake-up frame
7725 	 * is received. Anyway, it's better to manually clear
7726 	 * this bit because it can generate problems while resuming
7727 	 * from another devices (e.g. serial console).
7728 	 */
7729 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7730 		mutex_lock(&priv->lock);
7731 		stmmac_pmt(priv, priv->hw, 0);
7732 		mutex_unlock(&priv->lock);
7733 		priv->irq_wake = 0;
7734 	} else {
7735 		pinctrl_pm_select_default_state(priv->device);
7736 		/* reset the phy so that it's ready */
7737 		if (priv->mii)
7738 			stmmac_mdio_reset(priv->mii);
7739 	}
7740 
7741 	if (!(priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) &&
7742 	    priv->plat->serdes_powerup) {
7743 		ret = priv->plat->serdes_powerup(ndev,
7744 						 priv->plat->bsp_priv);
7745 
7746 		if (ret < 0)
7747 			return ret;
7748 	}
7749 
7750 	rtnl_lock();
7751 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7752 		phylink_resume(priv->phylink);
7753 	} else {
7754 		phylink_resume(priv->phylink);
7755 		if (device_may_wakeup(priv->device))
7756 			phylink_speed_up(priv->phylink);
7757 	}
7758 	rtnl_unlock();
7759 
7760 	rtnl_lock();
7761 	mutex_lock(&priv->lock);
7762 
7763 	stmmac_reset_queues_param(priv);
7764 
7765 	stmmac_free_tx_skbufs(priv);
7766 	stmmac_clear_descriptors(priv, &priv->dma_conf);
7767 
7768 	stmmac_hw_setup(ndev, false);
7769 	stmmac_init_coalesce(priv);
7770 	stmmac_set_rx_mode(ndev);
7771 
7772 	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7773 
7774 	stmmac_enable_all_queues(priv);
7775 	stmmac_enable_all_dma_irq(priv);
7776 
7777 	mutex_unlock(&priv->lock);
7778 	rtnl_unlock();
7779 
7780 	netif_device_attach(ndev);
7781 
7782 	return 0;
7783 }
7784 EXPORT_SYMBOL_GPL(stmmac_resume);
7785 
7786 #ifndef MODULE
7787 static int __init stmmac_cmdline_opt(char *str)
7788 {
7789 	char *opt;
7790 
7791 	if (!str || !*str)
7792 		return 1;
7793 	while ((opt = strsep(&str, ",")) != NULL) {
7794 		if (!strncmp(opt, "debug:", 6)) {
7795 			if (kstrtoint(opt + 6, 0, &debug))
7796 				goto err;
7797 		} else if (!strncmp(opt, "phyaddr:", 8)) {
7798 			if (kstrtoint(opt + 8, 0, &phyaddr))
7799 				goto err;
7800 		} else if (!strncmp(opt, "buf_sz:", 7)) {
7801 			if (kstrtoint(opt + 7, 0, &buf_sz))
7802 				goto err;
7803 		} else if (!strncmp(opt, "tc:", 3)) {
7804 			if (kstrtoint(opt + 3, 0, &tc))
7805 				goto err;
7806 		} else if (!strncmp(opt, "watchdog:", 9)) {
7807 			if (kstrtoint(opt + 9, 0, &watchdog))
7808 				goto err;
7809 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
7810 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
7811 				goto err;
7812 		} else if (!strncmp(opt, "pause:", 6)) {
7813 			if (kstrtoint(opt + 6, 0, &pause))
7814 				goto err;
7815 		} else if (!strncmp(opt, "eee_timer:", 10)) {
7816 			if (kstrtoint(opt + 10, 0, &eee_timer))
7817 				goto err;
7818 		} else if (!strncmp(opt, "chain_mode:", 11)) {
7819 			if (kstrtoint(opt + 11, 0, &chain_mode))
7820 				goto err;
7821 		}
7822 	}
7823 	return 1;
7824 
7825 err:
7826 	pr_err("%s: ERROR broken module parameter conversion", __func__);
7827 	return 1;
7828 }
7829 
7830 __setup("stmmaceth=", stmmac_cmdline_opt);
7831 #endif /* MODULE */
7832 
7833 static int __init stmmac_init(void)
7834 {
7835 #ifdef CONFIG_DEBUG_FS
7836 	/* Create debugfs main directory if it doesn't exist yet */
7837 	if (!stmmac_fs_dir)
7838 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7839 	register_netdevice_notifier(&stmmac_notifier);
7840 #endif
7841 
7842 	return 0;
7843 }
7844 
7845 static void __exit stmmac_exit(void)
7846 {
7847 #ifdef CONFIG_DEBUG_FS
7848 	unregister_netdevice_notifier(&stmmac_notifier);
7849 	debugfs_remove_recursive(stmmac_fs_dir);
7850 #endif
7851 }
7852 
7853 module_init(stmmac_init)
7854 module_exit(stmmac_exit)
7855 
7856 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7857 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7858 MODULE_LICENSE("GPL");
7859