1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22 
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24 
25   Documentation available at:
26 	http://www.stlinux.com
27   Support available at:
28 	https://bugzilla.stlinux.com/
29 *******************************************************************************/
30 
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_STMMAC_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_STMMAC_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55 
56 #define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
57 
58 /* Module parameters */
59 #define TX_TIMEO	5000
60 static int watchdog = TX_TIMEO;
61 module_param(watchdog, int, S_IRUGO | S_IWUSR);
62 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
63 
64 static int debug = -1;
65 module_param(debug, int, S_IRUGO | S_IWUSR);
66 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
67 
68 static int phyaddr = -1;
69 module_param(phyaddr, int, S_IRUGO);
70 MODULE_PARM_DESC(phyaddr, "Physical device address");
71 
72 #define DMA_TX_SIZE 256
73 static int dma_txsize = DMA_TX_SIZE;
74 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
75 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
76 
77 #define DMA_RX_SIZE 256
78 static int dma_rxsize = DMA_RX_SIZE;
79 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
80 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
81 
82 static int flow_ctrl = FLOW_OFF;
83 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
84 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
85 
86 static int pause = PAUSE_TIME;
87 module_param(pause, int, S_IRUGO | S_IWUSR);
88 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
89 
90 #define TC_DEFAULT 64
91 static int tc = TC_DEFAULT;
92 module_param(tc, int, S_IRUGO | S_IWUSR);
93 MODULE_PARM_DESC(tc, "DMA threshold control value");
94 
95 #define DMA_BUFFER_SIZE	BUF_SIZE_4KiB
96 static int buf_sz = DMA_BUFFER_SIZE;
97 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
98 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
99 
100 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
101 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
102 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
103 
104 #define STMMAC_DEFAULT_LPI_TIMER	1000
105 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
106 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
108 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
109 
110 /* By default the driver will use the ring mode to manage tx and rx descriptors
111  * but passing this value so user can force to use the chain instead of the ring
112  */
113 static unsigned int chain_mode;
114 module_param(chain_mode, int, S_IRUGO);
115 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
116 
117 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
118 
119 #ifdef CONFIG_STMMAC_DEBUG_FS
120 static int stmmac_init_fs(struct net_device *dev);
121 static void stmmac_exit_fs(void);
122 #endif
123 
124 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
125 
126 /**
127  * stmmac_verify_args - verify the driver parameters.
128  * Description: it verifies if some wrong parameter is passed to the driver.
129  * Note that wrong parameters are replaced with the default values.
130  */
131 static void stmmac_verify_args(void)
132 {
133 	if (unlikely(watchdog < 0))
134 		watchdog = TX_TIMEO;
135 	if (unlikely(dma_rxsize < 0))
136 		dma_rxsize = DMA_RX_SIZE;
137 	if (unlikely(dma_txsize < 0))
138 		dma_txsize = DMA_TX_SIZE;
139 	if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
140 		buf_sz = DMA_BUFFER_SIZE;
141 	if (unlikely(flow_ctrl > 1))
142 		flow_ctrl = FLOW_AUTO;
143 	else if (likely(flow_ctrl < 0))
144 		flow_ctrl = FLOW_OFF;
145 	if (unlikely((pause < 0) || (pause > 0xffff)))
146 		pause = PAUSE_TIME;
147 	if (eee_timer < 0)
148 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
149 }
150 
151 /**
152  * stmmac_clk_csr_set - dynamically set the MDC clock
153  * @priv: driver private structure
154  * Description: this is to dynamically set the MDC clock according to the csr
155  * clock input.
156  * Note:
157  *	If a specific clk_csr value is passed from the platform
158  *	this means that the CSR Clock Range selection cannot be
159  *	changed at run-time and it is fixed (as reported in the driver
160  *	documentation). Viceversa the driver will try to set the MDC
161  *	clock dynamically according to the actual clock input.
162  */
163 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
164 {
165 	u32 clk_rate;
166 
167 	clk_rate = clk_get_rate(priv->stmmac_clk);
168 
169 	/* Platform provided default clk_csr would be assumed valid
170 	 * for all other cases except for the below mentioned ones.
171 	 * For values higher than the IEEE 802.3 specified frequency
172 	 * we can not estimate the proper divider as it is not known
173 	 * the frequency of clk_csr_i. So we do not change the default
174 	 * divider.
175 	 */
176 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
177 		if (clk_rate < CSR_F_35M)
178 			priv->clk_csr = STMMAC_CSR_20_35M;
179 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
180 			priv->clk_csr = STMMAC_CSR_35_60M;
181 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
182 			priv->clk_csr = STMMAC_CSR_60_100M;
183 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
184 			priv->clk_csr = STMMAC_CSR_100_150M;
185 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
186 			priv->clk_csr = STMMAC_CSR_150_250M;
187 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
188 			priv->clk_csr = STMMAC_CSR_250_300M;
189 	}
190 }
191 
192 static void print_pkt(unsigned char *buf, int len)
193 {
194 	int j;
195 	pr_debug("len = %d byte, buf addr: 0x%p", len, buf);
196 	for (j = 0; j < len; j++) {
197 		if ((j % 16) == 0)
198 			pr_debug("\n %03x:", j);
199 		pr_debug(" %02x", buf[j]);
200 	}
201 	pr_debug("\n");
202 }
203 
204 /* minimum number of free TX descriptors required to wake up TX process */
205 #define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)
206 
207 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
208 {
209 	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
210 }
211 
212 /**
213  * stmmac_hw_fix_mac_speed: callback for speed selection
214  * @priv: driver private structure
215  * Description: on some platforms (e.g. ST), some HW system configuraton
216  * registers have to be set according to the link speed negotiated.
217  */
218 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
219 {
220 	struct phy_device *phydev = priv->phydev;
221 
222 	if (likely(priv->plat->fix_mac_speed))
223 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
224 }
225 
226 /**
227  * stmmac_enable_eee_mode: Check and enter in LPI mode
228  * @priv: driver private structure
229  * Description: this function is to verify and enter in LPI mode for EEE.
230  */
231 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
232 {
233 	/* Check and enter in LPI mode */
234 	if ((priv->dirty_tx == priv->cur_tx) &&
235 	    (priv->tx_path_in_lpi_mode == false))
236 		priv->hw->mac->set_eee_mode(priv->ioaddr);
237 }
238 
239 /**
240  * stmmac_disable_eee_mode: disable/exit from EEE
241  * @priv: driver private structure
242  * Description: this function is to exit and disable EEE in case of
243  * LPI state is true. This is called by the xmit.
244  */
245 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
246 {
247 	priv->hw->mac->reset_eee_mode(priv->ioaddr);
248 	del_timer_sync(&priv->eee_ctrl_timer);
249 	priv->tx_path_in_lpi_mode = false;
250 }
251 
252 /**
253  * stmmac_eee_ctrl_timer: EEE TX SW timer.
254  * @arg : data hook
255  * Description:
256  *  if there is no data transfer and if we are not in LPI state,
257  *  then MAC Transmitter can be moved to LPI state.
258  */
259 static void stmmac_eee_ctrl_timer(unsigned long arg)
260 {
261 	struct stmmac_priv *priv = (struct stmmac_priv *)arg;
262 
263 	stmmac_enable_eee_mode(priv);
264 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
265 }
266 
267 /**
268  * stmmac_eee_init: init EEE
269  * @priv: driver private structure
270  * Description:
271  *  If the EEE support has been enabled while configuring the driver,
272  *  if the GMAC actually supports the EEE (from the HW cap reg) and the
273  *  phy can also manage EEE, so enable the LPI state and start the timer
274  *  to verify if the tx path can enter in LPI state.
275  */
276 bool stmmac_eee_init(struct stmmac_priv *priv)
277 {
278 	bool ret = false;
279 
280 	/* Using PCS we cannot dial with the phy registers at this stage
281 	 * so we do not support extra feature like EEE.
282 	 */
283 	if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
284 	    (priv->pcs == STMMAC_PCS_RTBI))
285 		goto out;
286 
287 	/* MAC core supports the EEE feature. */
288 	if (priv->dma_cap.eee) {
289 		/* Check if the PHY supports EEE */
290 		if (phy_init_eee(priv->phydev, 1))
291 			goto out;
292 
293 		if (!priv->eee_active) {
294 			priv->eee_active = 1;
295 			init_timer(&priv->eee_ctrl_timer);
296 			priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
297 			priv->eee_ctrl_timer.data = (unsigned long)priv;
298 			priv->eee_ctrl_timer.expires = STMMAC_LPI_T(eee_timer);
299 			add_timer(&priv->eee_ctrl_timer);
300 
301 			priv->hw->mac->set_eee_timer(priv->ioaddr,
302 						     STMMAC_DEFAULT_LIT_LS,
303 						     priv->tx_lpi_timer);
304 		} else
305 			/* Set HW EEE according to the speed */
306 			priv->hw->mac->set_eee_pls(priv->ioaddr,
307 						   priv->phydev->link);
308 
309 		pr_info("stmmac: Energy-Efficient Ethernet initialized\n");
310 
311 		ret = true;
312 	}
313 out:
314 	return ret;
315 }
316 
317 /* stmmac_get_tx_hwtstamp: get HW TX timestamps
318  * @priv: driver private structure
319  * @entry : descriptor index to be used.
320  * @skb : the socket buffer
321  * Description :
322  * This function will read timestamp from the descriptor & pass it to stack.
323  * and also perform some sanity checks.
324  */
325 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
326 				   unsigned int entry, struct sk_buff *skb)
327 {
328 	struct skb_shared_hwtstamps shhwtstamp;
329 	u64 ns;
330 	void *desc = NULL;
331 
332 	if (!priv->hwts_tx_en)
333 		return;
334 
335 	/* exit if skb doesn't support hw tstamp */
336 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
337 		return;
338 
339 	if (priv->adv_ts)
340 		desc = (priv->dma_etx + entry);
341 	else
342 		desc = (priv->dma_tx + entry);
343 
344 	/* check tx tstamp status */
345 	if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
346 		return;
347 
348 	/* get the valid tstamp */
349 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
350 
351 	memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
352 	shhwtstamp.hwtstamp = ns_to_ktime(ns);
353 	/* pass tstamp to stack */
354 	skb_tstamp_tx(skb, &shhwtstamp);
355 
356 	return;
357 }
358 
359 /* stmmac_get_rx_hwtstamp: get HW RX timestamps
360  * @priv: driver private structure
361  * @entry : descriptor index to be used.
362  * @skb : the socket buffer
363  * Description :
364  * This function will read received packet's timestamp from the descriptor
365  * and pass it to stack. It also perform some sanity checks.
366  */
367 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
368 				   unsigned int entry, struct sk_buff *skb)
369 {
370 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
371 	u64 ns;
372 	void *desc = NULL;
373 
374 	if (!priv->hwts_rx_en)
375 		return;
376 
377 	if (priv->adv_ts)
378 		desc = (priv->dma_erx + entry);
379 	else
380 		desc = (priv->dma_rx + entry);
381 
382 	/* exit if rx tstamp is not valid */
383 	if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
384 		return;
385 
386 	/* get valid tstamp */
387 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
388 	shhwtstamp = skb_hwtstamps(skb);
389 	memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
390 	shhwtstamp->hwtstamp = ns_to_ktime(ns);
391 }
392 
393 /**
394  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
395  *  @dev: device pointer.
396  *  @ifr: An IOCTL specefic structure, that can contain a pointer to
397  *  a proprietary structure used to pass information to the driver.
398  *  Description:
399  *  This function configures the MAC to enable/disable both outgoing(TX)
400  *  and incoming(RX) packets time stamping based on user input.
401  *  Return Value:
402  *  0 on success and an appropriate -ve integer on failure.
403  */
404 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
405 {
406 	struct stmmac_priv *priv = netdev_priv(dev);
407 	struct hwtstamp_config config;
408 	struct timespec now;
409 	u64 temp = 0;
410 	u32 ptp_v2 = 0;
411 	u32 tstamp_all = 0;
412 	u32 ptp_over_ipv4_udp = 0;
413 	u32 ptp_over_ipv6_udp = 0;
414 	u32 ptp_over_ethernet = 0;
415 	u32 snap_type_sel = 0;
416 	u32 ts_master_en = 0;
417 	u32 ts_event_en = 0;
418 	u32 value = 0;
419 
420 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
421 		netdev_alert(priv->dev, "No support for HW time stamping\n");
422 		priv->hwts_tx_en = 0;
423 		priv->hwts_rx_en = 0;
424 
425 		return -EOPNOTSUPP;
426 	}
427 
428 	if (copy_from_user(&config, ifr->ifr_data,
429 			   sizeof(struct hwtstamp_config)))
430 		return -EFAULT;
431 
432 	pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
433 		 __func__, config.flags, config.tx_type, config.rx_filter);
434 
435 	/* reserved for future extensions */
436 	if (config.flags)
437 		return -EINVAL;
438 
439 	if (config.tx_type != HWTSTAMP_TX_OFF &&
440 	    config.tx_type != HWTSTAMP_TX_ON)
441 		return -ERANGE;
442 
443 	if (priv->adv_ts) {
444 		switch (config.rx_filter) {
445 		case HWTSTAMP_FILTER_NONE:
446 			/* time stamp no incoming packet at all */
447 			config.rx_filter = HWTSTAMP_FILTER_NONE;
448 			break;
449 
450 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
451 			/* PTP v1, UDP, any kind of event packet */
452 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
453 			/* take time stamp for all event messages */
454 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
455 
456 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
457 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
458 			break;
459 
460 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
461 			/* PTP v1, UDP, Sync packet */
462 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
463 			/* take time stamp for SYNC messages only */
464 			ts_event_en = PTP_TCR_TSEVNTENA;
465 
466 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
467 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
468 			break;
469 
470 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
471 			/* PTP v1, UDP, Delay_req packet */
472 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
473 			/* take time stamp for Delay_Req messages only */
474 			ts_master_en = PTP_TCR_TSMSTRENA;
475 			ts_event_en = PTP_TCR_TSEVNTENA;
476 
477 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
478 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
479 			break;
480 
481 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
482 			/* PTP v2, UDP, any kind of event packet */
483 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
484 			ptp_v2 = PTP_TCR_TSVER2ENA;
485 			/* take time stamp for all event messages */
486 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
487 
488 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
489 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
490 			break;
491 
492 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
493 			/* PTP v2, UDP, Sync packet */
494 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
495 			ptp_v2 = PTP_TCR_TSVER2ENA;
496 			/* take time stamp for SYNC messages only */
497 			ts_event_en = PTP_TCR_TSEVNTENA;
498 
499 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
500 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
501 			break;
502 
503 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
504 			/* PTP v2, UDP, Delay_req packet */
505 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
506 			ptp_v2 = PTP_TCR_TSVER2ENA;
507 			/* take time stamp for Delay_Req messages only */
508 			ts_master_en = PTP_TCR_TSMSTRENA;
509 			ts_event_en = PTP_TCR_TSEVNTENA;
510 
511 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
512 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
513 			break;
514 
515 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
516 			/* PTP v2/802.AS1 any layer, any kind of event packet */
517 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
518 			ptp_v2 = PTP_TCR_TSVER2ENA;
519 			/* take time stamp for all event messages */
520 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
521 
522 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
523 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
524 			ptp_over_ethernet = PTP_TCR_TSIPENA;
525 			break;
526 
527 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
528 			/* PTP v2/802.AS1, any layer, Sync packet */
529 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
530 			ptp_v2 = PTP_TCR_TSVER2ENA;
531 			/* take time stamp for SYNC messages only */
532 			ts_event_en = PTP_TCR_TSEVNTENA;
533 
534 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
535 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
536 			ptp_over_ethernet = PTP_TCR_TSIPENA;
537 			break;
538 
539 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
540 			/* PTP v2/802.AS1, any layer, Delay_req packet */
541 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
542 			ptp_v2 = PTP_TCR_TSVER2ENA;
543 			/* take time stamp for Delay_Req messages only */
544 			ts_master_en = PTP_TCR_TSMSTRENA;
545 			ts_event_en = PTP_TCR_TSEVNTENA;
546 
547 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
548 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
549 			ptp_over_ethernet = PTP_TCR_TSIPENA;
550 			break;
551 
552 		case HWTSTAMP_FILTER_ALL:
553 			/* time stamp any incoming packet */
554 			config.rx_filter = HWTSTAMP_FILTER_ALL;
555 			tstamp_all = PTP_TCR_TSENALL;
556 			break;
557 
558 		default:
559 			return -ERANGE;
560 		}
561 	} else {
562 		switch (config.rx_filter) {
563 		case HWTSTAMP_FILTER_NONE:
564 			config.rx_filter = HWTSTAMP_FILTER_NONE;
565 			break;
566 		default:
567 			/* PTP v1, UDP, any kind of event packet */
568 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
569 			break;
570 		}
571 	}
572 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
573 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
574 
575 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
576 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
577 	else {
578 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
579 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
580 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
581 			 ts_master_en | snap_type_sel);
582 
583 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
584 
585 		/* program Sub Second Increment reg */
586 		priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
587 
588 		/* calculate default added value:
589 		 * formula is :
590 		 * addend = (2^32)/freq_div_ratio;
591 		 * where, freq_div_ratio = STMMAC_SYSCLOCK/50MHz
592 		 * hence, addend = ((2^32) * 50MHz)/STMMAC_SYSCLOCK;
593 		 * NOTE: STMMAC_SYSCLOCK should be >= 50MHz to
594 		 *       achive 20ns accuracy.
595 		 *
596 		 * 2^x * y == (y << x), hence
597 		 * 2^32 * 50000000 ==> (50000000 << 32)
598 		 */
599 		temp = (u64) (50000000ULL << 32);
600 		priv->default_addend = div_u64(temp, STMMAC_SYSCLOCK);
601 		priv->hw->ptp->config_addend(priv->ioaddr,
602 					     priv->default_addend);
603 
604 		/* initialize system time */
605 		getnstimeofday(&now);
606 		priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
607 					    now.tv_nsec);
608 	}
609 
610 	return copy_to_user(ifr->ifr_data, &config,
611 			    sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
612 }
613 
614 /**
615  * stmmac_init_ptp: init PTP
616  * @priv: driver private structure
617  * Description: this is to verify if the HW supports the PTPv1 or v2.
618  * This is done by looking at the HW cap. register.
619  * Also it registers the ptp driver.
620  */
621 static int stmmac_init_ptp(struct stmmac_priv *priv)
622 {
623 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
624 		return -EOPNOTSUPP;
625 
626 	priv->adv_ts = 0;
627 	if (priv->dma_cap.atime_stamp && priv->extend_desc)
628 		priv->adv_ts = 1;
629 
630 	if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
631 		pr_debug("IEEE 1588-2002 Time Stamp supported\n");
632 
633 	if (netif_msg_hw(priv) && priv->adv_ts)
634 		pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
635 
636 	priv->hw->ptp = &stmmac_ptp;
637 	priv->hwts_tx_en = 0;
638 	priv->hwts_rx_en = 0;
639 
640 	return stmmac_ptp_register(priv);
641 }
642 
643 static void stmmac_release_ptp(struct stmmac_priv *priv)
644 {
645 	stmmac_ptp_unregister(priv);
646 }
647 
648 /**
649  * stmmac_adjust_link
650  * @dev: net device structure
651  * Description: it adjusts the link parameters.
652  */
653 static void stmmac_adjust_link(struct net_device *dev)
654 {
655 	struct stmmac_priv *priv = netdev_priv(dev);
656 	struct phy_device *phydev = priv->phydev;
657 	unsigned long flags;
658 	int new_state = 0;
659 	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
660 
661 	if (phydev == NULL)
662 		return;
663 
664 	spin_lock_irqsave(&priv->lock, flags);
665 
666 	if (phydev->link) {
667 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
668 
669 		/* Now we make sure that we can be in full duplex mode.
670 		 * If not, we operate in half-duplex mode. */
671 		if (phydev->duplex != priv->oldduplex) {
672 			new_state = 1;
673 			if (!(phydev->duplex))
674 				ctrl &= ~priv->hw->link.duplex;
675 			else
676 				ctrl |= priv->hw->link.duplex;
677 			priv->oldduplex = phydev->duplex;
678 		}
679 		/* Flow Control operation */
680 		if (phydev->pause)
681 			priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
682 						 fc, pause_time);
683 
684 		if (phydev->speed != priv->speed) {
685 			new_state = 1;
686 			switch (phydev->speed) {
687 			case 1000:
688 				if (likely(priv->plat->has_gmac))
689 					ctrl &= ~priv->hw->link.port;
690 				stmmac_hw_fix_mac_speed(priv);
691 				break;
692 			case 100:
693 			case 10:
694 				if (priv->plat->has_gmac) {
695 					ctrl |= priv->hw->link.port;
696 					if (phydev->speed == SPEED_100) {
697 						ctrl |= priv->hw->link.speed;
698 					} else {
699 						ctrl &= ~(priv->hw->link.speed);
700 					}
701 				} else {
702 					ctrl &= ~priv->hw->link.port;
703 				}
704 				stmmac_hw_fix_mac_speed(priv);
705 				break;
706 			default:
707 				if (netif_msg_link(priv))
708 					pr_warn("%s: Speed (%d) not 10/100\n",
709 						dev->name, phydev->speed);
710 				break;
711 			}
712 
713 			priv->speed = phydev->speed;
714 		}
715 
716 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
717 
718 		if (!priv->oldlink) {
719 			new_state = 1;
720 			priv->oldlink = 1;
721 		}
722 	} else if (priv->oldlink) {
723 		new_state = 1;
724 		priv->oldlink = 0;
725 		priv->speed = 0;
726 		priv->oldduplex = -1;
727 	}
728 
729 	if (new_state && netif_msg_link(priv))
730 		phy_print_status(phydev);
731 
732 	/* At this stage, it could be needed to setup the EEE or adjust some
733 	 * MAC related HW registers.
734 	 */
735 	priv->eee_enabled = stmmac_eee_init(priv);
736 
737 	spin_unlock_irqrestore(&priv->lock, flags);
738 }
739 
740 /**
741  * stmmac_check_pcs_mode: verify if RGMII/SGMII is supported
742  * @priv: driver private structure
743  * Description: this is to verify if the HW supports the PCS.
744  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
745  * configured for the TBI, RTBI, or SGMII PHY interface.
746  */
747 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
748 {
749 	int interface = priv->plat->interface;
750 
751 	if (priv->dma_cap.pcs) {
752 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
753 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
754 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
755 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
756 			pr_debug("STMMAC: PCS RGMII support enable\n");
757 			priv->pcs = STMMAC_PCS_RGMII;
758 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
759 			pr_debug("STMMAC: PCS SGMII support enable\n");
760 			priv->pcs = STMMAC_PCS_SGMII;
761 		}
762 	}
763 }
764 
765 /**
766  * stmmac_init_phy - PHY initialization
767  * @dev: net device structure
768  * Description: it initializes the driver's PHY state, and attaches the PHY
769  * to the mac driver.
770  *  Return value:
771  *  0 on success
772  */
773 static int stmmac_init_phy(struct net_device *dev)
774 {
775 	struct stmmac_priv *priv = netdev_priv(dev);
776 	struct phy_device *phydev;
777 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
778 	char bus_id[MII_BUS_ID_SIZE];
779 	int interface = priv->plat->interface;
780 	int max_speed = priv->plat->max_speed;
781 	priv->oldlink = 0;
782 	priv->speed = 0;
783 	priv->oldduplex = -1;
784 
785 	if (priv->plat->phy_bus_name)
786 		snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
787 			 priv->plat->phy_bus_name, priv->plat->bus_id);
788 	else
789 		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
790 			 priv->plat->bus_id);
791 
792 	snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
793 		 priv->plat->phy_addr);
794 	pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id_fmt);
795 
796 	phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
797 
798 	if (IS_ERR(phydev)) {
799 		pr_err("%s: Could not attach to PHY\n", dev->name);
800 		return PTR_ERR(phydev);
801 	}
802 
803 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
804 	if ((interface == PHY_INTERFACE_MODE_MII) ||
805 	    (interface == PHY_INTERFACE_MODE_RMII) ||
806 		(max_speed < 1000 &&  max_speed > 0))
807 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
808 					 SUPPORTED_1000baseT_Full);
809 
810 	/*
811 	 * Broken HW is sometimes missing the pull-up resistor on the
812 	 * MDIO line, which results in reads to non-existent devices returning
813 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
814 	 * device as well.
815 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
816 	 */
817 	if (phydev->phy_id == 0) {
818 		phy_disconnect(phydev);
819 		return -ENODEV;
820 	}
821 	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
822 		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
823 
824 	priv->phydev = phydev;
825 
826 	return 0;
827 }
828 
829 /**
830  * stmmac_display_ring: display ring
831  * @head: pointer to the head of the ring passed.
832  * @size: size of the ring.
833  * @extend_desc: to verify if extended descriptors are used.
834  * Description: display the control/status and buffer descriptors.
835  */
836 static void stmmac_display_ring(void *head, int size, int extend_desc)
837 {
838 	int i;
839 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
840 	struct dma_desc *p = (struct dma_desc *)head;
841 
842 	for (i = 0; i < size; i++) {
843 		u64 x;
844 		if (extend_desc) {
845 			x = *(u64 *) ep;
846 			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
847 				i, (unsigned int)virt_to_phys(ep),
848 				(unsigned int)x, (unsigned int)(x >> 32),
849 				ep->basic.des2, ep->basic.des3);
850 			ep++;
851 		} else {
852 			x = *(u64 *) p;
853 			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
854 				i, (unsigned int)virt_to_phys(p),
855 				(unsigned int)x, (unsigned int)(x >> 32),
856 				p->des2, p->des3);
857 			p++;
858 		}
859 		pr_info("\n");
860 	}
861 }
862 
863 static void stmmac_display_rings(struct stmmac_priv *priv)
864 {
865 	unsigned int txsize = priv->dma_tx_size;
866 	unsigned int rxsize = priv->dma_rx_size;
867 
868 	if (priv->extend_desc) {
869 		pr_info("Extended RX descriptor ring:\n");
870 		stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
871 		pr_info("Extended TX descriptor ring:\n");
872 		stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
873 	} else {
874 		pr_info("RX descriptor ring:\n");
875 		stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
876 		pr_info("TX descriptor ring:\n");
877 		stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
878 	}
879 }
880 
881 static int stmmac_set_bfsize(int mtu, int bufsize)
882 {
883 	int ret = bufsize;
884 
885 	if (mtu >= BUF_SIZE_4KiB)
886 		ret = BUF_SIZE_8KiB;
887 	else if (mtu >= BUF_SIZE_2KiB)
888 		ret = BUF_SIZE_4KiB;
889 	else if (mtu >= DMA_BUFFER_SIZE)
890 		ret = BUF_SIZE_2KiB;
891 	else
892 		ret = DMA_BUFFER_SIZE;
893 
894 	return ret;
895 }
896 
897 /**
898  * stmmac_clear_descriptors: clear descriptors
899  * @priv: driver private structure
900  * Description: this function is called to clear the tx and rx descriptors
901  * in case of both basic and extended descriptors are used.
902  */
903 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
904 {
905 	int i;
906 	unsigned int txsize = priv->dma_tx_size;
907 	unsigned int rxsize = priv->dma_rx_size;
908 
909 	/* Clear the Rx/Tx descriptors */
910 	for (i = 0; i < rxsize; i++)
911 		if (priv->extend_desc)
912 			priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
913 						     priv->use_riwt, priv->mode,
914 						     (i == rxsize - 1));
915 		else
916 			priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
917 						     priv->use_riwt, priv->mode,
918 						     (i == rxsize - 1));
919 	for (i = 0; i < txsize; i++)
920 		if (priv->extend_desc)
921 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
922 						     priv->mode,
923 						     (i == txsize - 1));
924 		else
925 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
926 						     priv->mode,
927 						     (i == txsize - 1));
928 }
929 
930 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
931 				  int i)
932 {
933 	struct sk_buff *skb;
934 
935 	skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN,
936 				 GFP_KERNEL);
937 	if (!skb) {
938 		pr_err("%s: Rx init fails; skb is NULL\n", __func__);
939 		return -ENOMEM;
940 	}
941 	skb_reserve(skb, NET_IP_ALIGN);
942 	priv->rx_skbuff[i] = skb;
943 	priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
944 						priv->dma_buf_sz,
945 						DMA_FROM_DEVICE);
946 	if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
947 		pr_err("%s: DMA mapping error\n", __func__);
948 		dev_kfree_skb_any(skb);
949 		return -EINVAL;
950 	}
951 
952 	p->des2 = priv->rx_skbuff_dma[i];
953 
954 	if ((priv->mode == STMMAC_RING_MODE) &&
955 	    (priv->dma_buf_sz == BUF_SIZE_16KiB))
956 		priv->hw->ring->init_desc3(p);
957 
958 	return 0;
959 }
960 
961 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
962 {
963 	if (priv->rx_skbuff[i]) {
964 		dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
965 				 priv->dma_buf_sz, DMA_FROM_DEVICE);
966 		dev_kfree_skb_any(priv->rx_skbuff[i]);
967 	}
968 	priv->rx_skbuff[i] = NULL;
969 }
970 
971 /**
972  * init_dma_desc_rings - init the RX/TX descriptor rings
973  * @dev: net device structure
974  * Description:  this function initializes the DMA RX/TX descriptors
975  * and allocates the socket buffers. It suppors the chained and ring
976  * modes.
977  */
978 static int init_dma_desc_rings(struct net_device *dev)
979 {
980 	int i;
981 	struct stmmac_priv *priv = netdev_priv(dev);
982 	unsigned int txsize = priv->dma_tx_size;
983 	unsigned int rxsize = priv->dma_rx_size;
984 	unsigned int bfsize = 0;
985 	int ret = -ENOMEM;
986 
987 	/* Set the max buffer size according to the DESC mode
988 	 * and the MTU. Note that RING mode allows 16KiB bsize.
989 	 */
990 	if (priv->mode == STMMAC_RING_MODE)
991 		bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
992 
993 	if (bfsize < BUF_SIZE_16KiB)
994 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
995 
996 	priv->dma_buf_sz = bfsize;
997 
998 	if (netif_msg_probe(priv))
999 		pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__,
1000 			 txsize, rxsize, bfsize);
1001 
1002 	if (netif_msg_probe(priv)) {
1003 		pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1004 			 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1005 
1006 		/* RX INITIALIZATION */
1007 		pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1008 	}
1009 	for (i = 0; i < rxsize; i++) {
1010 		struct dma_desc *p;
1011 		if (priv->extend_desc)
1012 			p = &((priv->dma_erx + i)->basic);
1013 		else
1014 			p = priv->dma_rx + i;
1015 
1016 		ret = stmmac_init_rx_buffers(priv, p, i);
1017 		if (ret)
1018 			goto err_init_rx_buffers;
1019 
1020 		if (netif_msg_probe(priv))
1021 			pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1022 				 priv->rx_skbuff[i]->data,
1023 				 (unsigned int)priv->rx_skbuff_dma[i]);
1024 	}
1025 	priv->cur_rx = 0;
1026 	priv->dirty_rx = (unsigned int)(i - rxsize);
1027 	buf_sz = bfsize;
1028 
1029 	/* Setup the chained descriptor addresses */
1030 	if (priv->mode == STMMAC_CHAIN_MODE) {
1031 		if (priv->extend_desc) {
1032 			priv->hw->chain->init(priv->dma_erx, priv->dma_rx_phy,
1033 					      rxsize, 1);
1034 			priv->hw->chain->init(priv->dma_etx, priv->dma_tx_phy,
1035 					      txsize, 1);
1036 		} else {
1037 			priv->hw->chain->init(priv->dma_rx, priv->dma_rx_phy,
1038 					      rxsize, 0);
1039 			priv->hw->chain->init(priv->dma_tx, priv->dma_tx_phy,
1040 					      txsize, 0);
1041 		}
1042 	}
1043 
1044 	/* TX INITIALIZATION */
1045 	for (i = 0; i < txsize; i++) {
1046 		struct dma_desc *p;
1047 		if (priv->extend_desc)
1048 			p = &((priv->dma_etx + i)->basic);
1049 		else
1050 			p = priv->dma_tx + i;
1051 		p->des2 = 0;
1052 		priv->tx_skbuff_dma[i] = 0;
1053 		priv->tx_skbuff[i] = NULL;
1054 	}
1055 
1056 	priv->dirty_tx = 0;
1057 	priv->cur_tx = 0;
1058 
1059 	stmmac_clear_descriptors(priv);
1060 
1061 	if (netif_msg_hw(priv))
1062 		stmmac_display_rings(priv);
1063 
1064 	return 0;
1065 err_init_rx_buffers:
1066 	while (--i >= 0)
1067 		stmmac_free_rx_buffers(priv, i);
1068 	return ret;
1069 }
1070 
1071 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1072 {
1073 	int i;
1074 
1075 	for (i = 0; i < priv->dma_rx_size; i++)
1076 		stmmac_free_rx_buffers(priv, i);
1077 }
1078 
1079 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1080 {
1081 	int i;
1082 
1083 	for (i = 0; i < priv->dma_tx_size; i++) {
1084 		struct dma_desc *p;
1085 
1086 		if (priv->extend_desc)
1087 			p = &((priv->dma_etx + i)->basic);
1088 		else
1089 			p = priv->dma_tx + i;
1090 
1091 		if (priv->tx_skbuff_dma[i]) {
1092 			dma_unmap_single(priv->device,
1093 					 priv->tx_skbuff_dma[i],
1094 					 priv->hw->desc->get_tx_len(p),
1095 					 DMA_TO_DEVICE);
1096 			priv->tx_skbuff_dma[i] = 0;
1097 		}
1098 
1099 		if (priv->tx_skbuff[i] != NULL) {
1100 			dev_kfree_skb_any(priv->tx_skbuff[i]);
1101 			priv->tx_skbuff[i] = NULL;
1102 		}
1103 	}
1104 }
1105 
1106 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1107 {
1108 	unsigned int txsize = priv->dma_tx_size;
1109 	unsigned int rxsize = priv->dma_rx_size;
1110 	int ret = -ENOMEM;
1111 
1112 	priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1113 					    GFP_KERNEL);
1114 	if (!priv->rx_skbuff_dma)
1115 		return -ENOMEM;
1116 
1117 	priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1118 					GFP_KERNEL);
1119 	if (!priv->rx_skbuff)
1120 		goto err_rx_skbuff;
1121 
1122 	priv->tx_skbuff_dma = kmalloc_array(txsize, sizeof(dma_addr_t),
1123 					    GFP_KERNEL);
1124 	if (!priv->tx_skbuff_dma)
1125 		goto err_tx_skbuff_dma;
1126 
1127 	priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1128 					GFP_KERNEL);
1129 	if (!priv->tx_skbuff)
1130 		goto err_tx_skbuff;
1131 
1132 	if (priv->extend_desc) {
1133 		priv->dma_erx = dma_alloc_coherent(priv->device, rxsize *
1134 						   sizeof(struct
1135 							  dma_extended_desc),
1136 						   &priv->dma_rx_phy,
1137 						   GFP_KERNEL);
1138 		if (!priv->dma_erx)
1139 			goto err_dma;
1140 
1141 		priv->dma_etx = dma_alloc_coherent(priv->device, txsize *
1142 						   sizeof(struct
1143 							  dma_extended_desc),
1144 						   &priv->dma_tx_phy,
1145 						   GFP_KERNEL);
1146 		if (!priv->dma_etx) {
1147 			dma_free_coherent(priv->device, priv->dma_rx_size *
1148 					sizeof(struct dma_extended_desc),
1149 					priv->dma_erx, priv->dma_rx_phy);
1150 			goto err_dma;
1151 		}
1152 	} else {
1153 		priv->dma_rx = dma_alloc_coherent(priv->device, rxsize *
1154 						  sizeof(struct dma_desc),
1155 						  &priv->dma_rx_phy,
1156 						  GFP_KERNEL);
1157 		if (!priv->dma_rx)
1158 			goto err_dma;
1159 
1160 		priv->dma_tx = dma_alloc_coherent(priv->device, txsize *
1161 						  sizeof(struct dma_desc),
1162 						  &priv->dma_tx_phy,
1163 						  GFP_KERNEL);
1164 		if (!priv->dma_tx) {
1165 			dma_free_coherent(priv->device, priv->dma_rx_size *
1166 					sizeof(struct dma_desc),
1167 					priv->dma_rx, priv->dma_rx_phy);
1168 			goto err_dma;
1169 		}
1170 	}
1171 
1172 	return 0;
1173 
1174 err_dma:
1175 	kfree(priv->tx_skbuff);
1176 err_tx_skbuff:
1177 	kfree(priv->tx_skbuff_dma);
1178 err_tx_skbuff_dma:
1179 	kfree(priv->rx_skbuff);
1180 err_rx_skbuff:
1181 	kfree(priv->rx_skbuff_dma);
1182 	return ret;
1183 }
1184 
1185 static void free_dma_desc_resources(struct stmmac_priv *priv)
1186 {
1187 	/* Release the DMA TX/RX socket buffers */
1188 	dma_free_rx_skbufs(priv);
1189 	dma_free_tx_skbufs(priv);
1190 
1191 	/* Free DMA regions of consistent memory previously allocated */
1192 	if (!priv->extend_desc) {
1193 		dma_free_coherent(priv->device,
1194 				  priv->dma_tx_size * sizeof(struct dma_desc),
1195 				  priv->dma_tx, priv->dma_tx_phy);
1196 		dma_free_coherent(priv->device,
1197 				  priv->dma_rx_size * sizeof(struct dma_desc),
1198 				  priv->dma_rx, priv->dma_rx_phy);
1199 	} else {
1200 		dma_free_coherent(priv->device, priv->dma_tx_size *
1201 				  sizeof(struct dma_extended_desc),
1202 				  priv->dma_etx, priv->dma_tx_phy);
1203 		dma_free_coherent(priv->device, priv->dma_rx_size *
1204 				  sizeof(struct dma_extended_desc),
1205 				  priv->dma_erx, priv->dma_rx_phy);
1206 	}
1207 	kfree(priv->rx_skbuff_dma);
1208 	kfree(priv->rx_skbuff);
1209 	kfree(priv->tx_skbuff_dma);
1210 	kfree(priv->tx_skbuff);
1211 }
1212 
1213 /**
1214  *  stmmac_dma_operation_mode - HW DMA operation mode
1215  *  @priv: driver private structure
1216  *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
1217  *  or Store-And-Forward capability.
1218  */
1219 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1220 {
1221 	if (priv->plat->force_thresh_dma_mode)
1222 		priv->hw->dma->dma_mode(priv->ioaddr, tc, tc);
1223 	else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1224 		/*
1225 		 * In case of GMAC, SF mode can be enabled
1226 		 * to perform the TX COE in HW. This depends on:
1227 		 * 1) TX COE if actually supported
1228 		 * 2) There is no bugged Jumbo frame support
1229 		 *    that needs to not insert csum in the TDES.
1230 		 */
1231 		priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE);
1232 		tc = SF_DMA_MODE;
1233 	} else
1234 		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1235 }
1236 
1237 /**
1238  * stmmac_tx_clean:
1239  * @priv: driver private structure
1240  * Description: it reclaims resources after transmission completes.
1241  */
1242 static void stmmac_tx_clean(struct stmmac_priv *priv)
1243 {
1244 	unsigned int txsize = priv->dma_tx_size;
1245 
1246 	spin_lock(&priv->tx_lock);
1247 
1248 	priv->xstats.tx_clean++;
1249 
1250 	while (priv->dirty_tx != priv->cur_tx) {
1251 		int last;
1252 		unsigned int entry = priv->dirty_tx % txsize;
1253 		struct sk_buff *skb = priv->tx_skbuff[entry];
1254 		struct dma_desc *p;
1255 
1256 		if (priv->extend_desc)
1257 			p = (struct dma_desc *)(priv->dma_etx + entry);
1258 		else
1259 			p = priv->dma_tx + entry;
1260 
1261 		/* Check if the descriptor is owned by the DMA. */
1262 		if (priv->hw->desc->get_tx_owner(p))
1263 			break;
1264 
1265 		/* Verify tx error by looking at the last segment. */
1266 		last = priv->hw->desc->get_tx_ls(p);
1267 		if (likely(last)) {
1268 			int tx_error =
1269 			    priv->hw->desc->tx_status(&priv->dev->stats,
1270 						      &priv->xstats, p,
1271 						      priv->ioaddr);
1272 			if (likely(tx_error == 0)) {
1273 				priv->dev->stats.tx_packets++;
1274 				priv->xstats.tx_pkt_n++;
1275 			} else
1276 				priv->dev->stats.tx_errors++;
1277 
1278 			stmmac_get_tx_hwtstamp(priv, entry, skb);
1279 		}
1280 		if (netif_msg_tx_done(priv))
1281 			pr_debug("%s: curr %d, dirty %d\n", __func__,
1282 				 priv->cur_tx, priv->dirty_tx);
1283 
1284 		if (likely(priv->tx_skbuff_dma[entry])) {
1285 			dma_unmap_single(priv->device,
1286 					 priv->tx_skbuff_dma[entry],
1287 					 priv->hw->desc->get_tx_len(p),
1288 					 DMA_TO_DEVICE);
1289 			priv->tx_skbuff_dma[entry] = 0;
1290 		}
1291 		priv->hw->ring->clean_desc3(priv, p);
1292 
1293 		if (likely(skb != NULL)) {
1294 			dev_kfree_skb(skb);
1295 			priv->tx_skbuff[entry] = NULL;
1296 		}
1297 
1298 		priv->hw->desc->release_tx_desc(p, priv->mode);
1299 
1300 		priv->dirty_tx++;
1301 	}
1302 	if (unlikely(netif_queue_stopped(priv->dev) &&
1303 		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1304 		netif_tx_lock(priv->dev);
1305 		if (netif_queue_stopped(priv->dev) &&
1306 		    stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1307 			if (netif_msg_tx_done(priv))
1308 				pr_debug("%s: restart transmit\n", __func__);
1309 			netif_wake_queue(priv->dev);
1310 		}
1311 		netif_tx_unlock(priv->dev);
1312 	}
1313 
1314 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1315 		stmmac_enable_eee_mode(priv);
1316 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1317 	}
1318 	spin_unlock(&priv->tx_lock);
1319 }
1320 
1321 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1322 {
1323 	priv->hw->dma->enable_dma_irq(priv->ioaddr);
1324 }
1325 
1326 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1327 {
1328 	priv->hw->dma->disable_dma_irq(priv->ioaddr);
1329 }
1330 
1331 /**
1332  * stmmac_tx_err: irq tx error mng function
1333  * @priv: driver private structure
1334  * Description: it cleans the descriptors and restarts the transmission
1335  * in case of errors.
1336  */
1337 static void stmmac_tx_err(struct stmmac_priv *priv)
1338 {
1339 	int i;
1340 	int txsize = priv->dma_tx_size;
1341 	netif_stop_queue(priv->dev);
1342 
1343 	priv->hw->dma->stop_tx(priv->ioaddr);
1344 	dma_free_tx_skbufs(priv);
1345 	for (i = 0; i < txsize; i++)
1346 		if (priv->extend_desc)
1347 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1348 						     priv->mode,
1349 						     (i == txsize - 1));
1350 		else
1351 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1352 						     priv->mode,
1353 						     (i == txsize - 1));
1354 	priv->dirty_tx = 0;
1355 	priv->cur_tx = 0;
1356 	priv->hw->dma->start_tx(priv->ioaddr);
1357 
1358 	priv->dev->stats.tx_errors++;
1359 	netif_wake_queue(priv->dev);
1360 }
1361 
1362 /**
1363  * stmmac_dma_interrupt: DMA ISR
1364  * @priv: driver private structure
1365  * Description: this is the DMA ISR. It is called by the main ISR.
1366  * It calls the dwmac dma routine to understand which type of interrupt
1367  * happened. In case of there is a Normal interrupt and either TX or RX
1368  * interrupt happened so the NAPI is scheduled.
1369  */
1370 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1371 {
1372 	int status;
1373 
1374 	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1375 	if (likely((status & handle_rx)) || (status & handle_tx)) {
1376 		if (likely(napi_schedule_prep(&priv->napi))) {
1377 			stmmac_disable_dma_irq(priv);
1378 			__napi_schedule(&priv->napi);
1379 		}
1380 	}
1381 	if (unlikely(status & tx_hard_error_bump_tc)) {
1382 		/* Try to bump up the dma threshold on this failure */
1383 		if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
1384 			tc += 64;
1385 			priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1386 			priv->xstats.threshold = tc;
1387 		}
1388 	} else if (unlikely(status == tx_hard_error))
1389 		stmmac_tx_err(priv);
1390 }
1391 
1392 /**
1393  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1394  * @priv: driver private structure
1395  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1396  */
1397 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1398 {
1399 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1400 	    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1401 
1402 	dwmac_mmc_intr_all_mask(priv->ioaddr);
1403 
1404 	if (priv->dma_cap.rmon) {
1405 		dwmac_mmc_ctrl(priv->ioaddr, mode);
1406 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1407 	} else
1408 		pr_info(" No MAC Management Counters available\n");
1409 }
1410 
1411 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1412 {
1413 	u32 hwid = priv->hw->synopsys_uid;
1414 
1415 	/* Check Synopsys Id (not available on old chips) */
1416 	if (likely(hwid)) {
1417 		u32 uid = ((hwid & 0x0000ff00) >> 8);
1418 		u32 synid = (hwid & 0x000000ff);
1419 
1420 		pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1421 			uid, synid);
1422 
1423 		return synid;
1424 	}
1425 	return 0;
1426 }
1427 
1428 /**
1429  * stmmac_selec_desc_mode: to select among: normal/alternate/extend descriptors
1430  * @priv: driver private structure
1431  * Description: select the Enhanced/Alternate or Normal descriptors.
1432  * In case of Enhanced/Alternate, it looks at the extended descriptors are
1433  * supported by the HW cap. register.
1434  */
1435 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1436 {
1437 	if (priv->plat->enh_desc) {
1438 		pr_info(" Enhanced/Alternate descriptors\n");
1439 
1440 		/* GMAC older than 3.50 has no extended descriptors */
1441 		if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1442 			pr_info("\tEnabled extended descriptors\n");
1443 			priv->extend_desc = 1;
1444 		} else
1445 			pr_warn("Extended descriptors not supported\n");
1446 
1447 		priv->hw->desc = &enh_desc_ops;
1448 	} else {
1449 		pr_info(" Normal descriptors\n");
1450 		priv->hw->desc = &ndesc_ops;
1451 	}
1452 }
1453 
1454 /**
1455  * stmmac_get_hw_features: get MAC capabilities from the HW cap. register.
1456  * @priv: driver private structure
1457  * Description:
1458  *  new GMAC chip generations have a new register to indicate the
1459  *  presence of the optional feature/functions.
1460  *  This can be also used to override the value passed through the
1461  *  platform and necessary for old MAC10/100 and GMAC chips.
1462  */
1463 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1464 {
1465 	u32 hw_cap = 0;
1466 
1467 	if (priv->hw->dma->get_hw_feature) {
1468 		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1469 
1470 		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1471 		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1472 		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1473 		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1474 		priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1475 		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1476 		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1477 		priv->dma_cap.pmt_remote_wake_up =
1478 		    (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1479 		priv->dma_cap.pmt_magic_frame =
1480 		    (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1481 		/* MMC */
1482 		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1483 		/* IEEE 1588-2002 */
1484 		priv->dma_cap.time_stamp =
1485 		    (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1486 		/* IEEE 1588-2008 */
1487 		priv->dma_cap.atime_stamp =
1488 		    (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1489 		/* 802.3az - Energy-Efficient Ethernet (EEE) */
1490 		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1491 		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1492 		/* TX and RX csum */
1493 		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1494 		priv->dma_cap.rx_coe_type1 =
1495 		    (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1496 		priv->dma_cap.rx_coe_type2 =
1497 		    (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1498 		priv->dma_cap.rxfifo_over_2048 =
1499 		    (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1500 		/* TX and RX number of channels */
1501 		priv->dma_cap.number_rx_channel =
1502 		    (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1503 		priv->dma_cap.number_tx_channel =
1504 		    (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1505 		/* Alternate (enhanced) DESC mode */
1506 		priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1507 	}
1508 
1509 	return hw_cap;
1510 }
1511 
1512 /**
1513  * stmmac_check_ether_addr: check if the MAC addr is valid
1514  * @priv: driver private structure
1515  * Description:
1516  * it is to verify if the MAC address is valid, in case of failures it
1517  * generates a random MAC address
1518  */
1519 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1520 {
1521 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1522 		priv->hw->mac->get_umac_addr((void __iomem *)
1523 					     priv->dev->base_addr,
1524 					     priv->dev->dev_addr, 0);
1525 		if (!is_valid_ether_addr(priv->dev->dev_addr))
1526 			eth_hw_addr_random(priv->dev);
1527 		pr_info("%s: device MAC address %pM\n", priv->dev->name,
1528 			priv->dev->dev_addr);
1529 	}
1530 }
1531 
1532 /**
1533  * stmmac_init_dma_engine: DMA init.
1534  * @priv: driver private structure
1535  * Description:
1536  * It inits the DMA invoking the specific MAC/GMAC callback.
1537  * Some DMA parameters can be passed from the platform;
1538  * in case of these are not passed a default is kept for the MAC or GMAC.
1539  */
1540 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1541 {
1542 	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1543 	int mixed_burst = 0;
1544 	int atds = 0;
1545 
1546 	if (priv->plat->dma_cfg) {
1547 		pbl = priv->plat->dma_cfg->pbl;
1548 		fixed_burst = priv->plat->dma_cfg->fixed_burst;
1549 		mixed_burst = priv->plat->dma_cfg->mixed_burst;
1550 		burst_len = priv->plat->dma_cfg->burst_len;
1551 	}
1552 
1553 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1554 		atds = 1;
1555 
1556 	return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1557 				   burst_len, priv->dma_tx_phy,
1558 				   priv->dma_rx_phy, atds);
1559 }
1560 
1561 /**
1562  * stmmac_tx_timer: mitigation sw timer for tx.
1563  * @data: data pointer
1564  * Description:
1565  * This is the timer handler to directly invoke the stmmac_tx_clean.
1566  */
1567 static void stmmac_tx_timer(unsigned long data)
1568 {
1569 	struct stmmac_priv *priv = (struct stmmac_priv *)data;
1570 
1571 	stmmac_tx_clean(priv);
1572 }
1573 
1574 /**
1575  * stmmac_init_tx_coalesce: init tx mitigation options.
1576  * @priv: driver private structure
1577  * Description:
1578  * This inits the transmit coalesce parameters: i.e. timer rate,
1579  * timer handler and default threshold used for enabling the
1580  * interrupt on completion bit.
1581  */
1582 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1583 {
1584 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
1585 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1586 	init_timer(&priv->txtimer);
1587 	priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1588 	priv->txtimer.data = (unsigned long)priv;
1589 	priv->txtimer.function = stmmac_tx_timer;
1590 	add_timer(&priv->txtimer);
1591 }
1592 
1593 /**
1594  * stmmac_hw_setup: setup mac in a usable state.
1595  *  @dev : pointer to the device structure.
1596  *  Description:
1597  *  This function sets up the ip in a usable state.
1598  *  Return value:
1599  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1600  *  file on failure.
1601  */
1602 static int stmmac_hw_setup(struct net_device *dev)
1603 {
1604 	struct stmmac_priv *priv = netdev_priv(dev);
1605 	int ret;
1606 
1607 	ret = init_dma_desc_rings(dev);
1608 	if (ret < 0) {
1609 		pr_err("%s: DMA descriptors initialization failed\n", __func__);
1610 		return ret;
1611 	}
1612 	/* DMA initialization and SW reset */
1613 	ret = stmmac_init_dma_engine(priv);
1614 	if (ret < 0) {
1615 		pr_err("%s: DMA engine initialization failed\n", __func__);
1616 		return ret;
1617 	}
1618 
1619 	/* Copy the MAC addr into the HW  */
1620 	priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1621 
1622 	/* If required, perform hw setup of the bus. */
1623 	if (priv->plat->bus_setup)
1624 		priv->plat->bus_setup(priv->ioaddr);
1625 
1626 	/* Initialize the MAC Core */
1627 	priv->hw->mac->core_init(priv->ioaddr, dev->mtu);
1628 
1629 	/* Enable the MAC Rx/Tx */
1630 	stmmac_set_mac(priv->ioaddr, true);
1631 
1632 	/* Set the HW DMA mode and the COE */
1633 	stmmac_dma_operation_mode(priv);
1634 
1635 	stmmac_mmc_setup(priv);
1636 
1637 	ret = stmmac_init_ptp(priv);
1638 	if (ret && ret != -EOPNOTSUPP)
1639 		pr_warn("%s: failed PTP initialisation\n", __func__);
1640 
1641 #ifdef CONFIG_STMMAC_DEBUG_FS
1642 	ret = stmmac_init_fs(dev);
1643 	if (ret < 0)
1644 		pr_warn("%s: failed debugFS registration\n", __func__);
1645 #endif
1646 	/* Start the ball rolling... */
1647 	pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1648 	priv->hw->dma->start_tx(priv->ioaddr);
1649 	priv->hw->dma->start_rx(priv->ioaddr);
1650 
1651 	/* Dump DMA/MAC registers */
1652 	if (netif_msg_hw(priv)) {
1653 		priv->hw->mac->dump_regs(priv->ioaddr);
1654 		priv->hw->dma->dump_regs(priv->ioaddr);
1655 	}
1656 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1657 
1658 	priv->eee_enabled = stmmac_eee_init(priv);
1659 
1660 	stmmac_init_tx_coalesce(priv);
1661 
1662 	if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1663 		priv->rx_riwt = MAX_DMA_RIWT;
1664 		priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1665 	}
1666 
1667 	if (priv->pcs && priv->hw->mac->ctrl_ane)
1668 		priv->hw->mac->ctrl_ane(priv->ioaddr, 0);
1669 
1670 	return 0;
1671 }
1672 
1673 /**
1674  *  stmmac_open - open entry point of the driver
1675  *  @dev : pointer to the device structure.
1676  *  Description:
1677  *  This function is the open entry point of the driver.
1678  *  Return value:
1679  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1680  *  file on failure.
1681  */
1682 static int stmmac_open(struct net_device *dev)
1683 {
1684 	struct stmmac_priv *priv = netdev_priv(dev);
1685 	int ret;
1686 
1687 	stmmac_check_ether_addr(priv);
1688 
1689 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1690 	    priv->pcs != STMMAC_PCS_RTBI) {
1691 		ret = stmmac_init_phy(dev);
1692 		if (ret) {
1693 			pr_err("%s: Cannot attach to PHY (error: %d)\n",
1694 			       __func__, ret);
1695 			goto phy_error;
1696 		}
1697 	}
1698 
1699 	/* Extra statistics */
1700 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1701 	priv->xstats.threshold = tc;
1702 
1703 	/* Create and initialize the TX/RX descriptors chains. */
1704 	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1705 	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1706 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1707 
1708 	alloc_dma_desc_resources(priv);
1709 	if (ret < 0) {
1710 		pr_err("%s: DMA descriptors allocation failed\n", __func__);
1711 		goto dma_desc_error;
1712 	}
1713 
1714 	ret = stmmac_hw_setup(dev);
1715 	if (ret < 0) {
1716 		pr_err("%s: Hw setup failed\n", __func__);
1717 		goto init_error;
1718 	}
1719 
1720 	if (priv->phydev)
1721 		phy_start(priv->phydev);
1722 
1723 	/* Request the IRQ lines */
1724 	ret = request_irq(dev->irq, stmmac_interrupt,
1725 			  IRQF_SHARED, dev->name, dev);
1726 	if (unlikely(ret < 0)) {
1727 		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1728 		       __func__, dev->irq, ret);
1729 		goto init_error;
1730 	}
1731 
1732 	/* Request the Wake IRQ in case of another line is used for WoL */
1733 	if (priv->wol_irq != dev->irq) {
1734 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
1735 				  IRQF_SHARED, dev->name, dev);
1736 		if (unlikely(ret < 0)) {
1737 			pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1738 			       __func__, priv->wol_irq, ret);
1739 			goto wolirq_error;
1740 		}
1741 	}
1742 
1743 	/* Request the IRQ lines */
1744 	if (priv->lpi_irq != -ENXIO) {
1745 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1746 				  dev->name, dev);
1747 		if (unlikely(ret < 0)) {
1748 			pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1749 			       __func__, priv->lpi_irq, ret);
1750 			goto lpiirq_error;
1751 		}
1752 	}
1753 
1754 	napi_enable(&priv->napi);
1755 	netif_start_queue(dev);
1756 
1757 	return 0;
1758 
1759 lpiirq_error:
1760 	if (priv->wol_irq != dev->irq)
1761 		free_irq(priv->wol_irq, dev);
1762 wolirq_error:
1763 	free_irq(dev->irq, dev);
1764 
1765 init_error:
1766 	free_dma_desc_resources(priv);
1767 dma_desc_error:
1768 	if (priv->phydev)
1769 		phy_disconnect(priv->phydev);
1770 phy_error:
1771 	clk_disable_unprepare(priv->stmmac_clk);
1772 
1773 	return ret;
1774 }
1775 
1776 /**
1777  *  stmmac_release - close entry point of the driver
1778  *  @dev : device pointer.
1779  *  Description:
1780  *  This is the stop entry point of the driver.
1781  */
1782 static int stmmac_release(struct net_device *dev)
1783 {
1784 	struct stmmac_priv *priv = netdev_priv(dev);
1785 
1786 	if (priv->eee_enabled)
1787 		del_timer_sync(&priv->eee_ctrl_timer);
1788 
1789 	/* Stop and disconnect the PHY */
1790 	if (priv->phydev) {
1791 		phy_stop(priv->phydev);
1792 		phy_disconnect(priv->phydev);
1793 		priv->phydev = NULL;
1794 	}
1795 
1796 	netif_stop_queue(dev);
1797 
1798 	napi_disable(&priv->napi);
1799 
1800 	del_timer_sync(&priv->txtimer);
1801 
1802 	/* Free the IRQ lines */
1803 	free_irq(dev->irq, dev);
1804 	if (priv->wol_irq != dev->irq)
1805 		free_irq(priv->wol_irq, dev);
1806 	if (priv->lpi_irq != -ENXIO)
1807 		free_irq(priv->lpi_irq, dev);
1808 
1809 	/* Stop TX/RX DMA and clear the descriptors */
1810 	priv->hw->dma->stop_tx(priv->ioaddr);
1811 	priv->hw->dma->stop_rx(priv->ioaddr);
1812 
1813 	/* Release and free the Rx/Tx resources */
1814 	free_dma_desc_resources(priv);
1815 
1816 	/* Disable the MAC Rx/Tx */
1817 	stmmac_set_mac(priv->ioaddr, false);
1818 
1819 	netif_carrier_off(dev);
1820 
1821 #ifdef CONFIG_STMMAC_DEBUG_FS
1822 	stmmac_exit_fs();
1823 #endif
1824 
1825 	stmmac_release_ptp(priv);
1826 
1827 	return 0;
1828 }
1829 
1830 /**
1831  *  stmmac_xmit: Tx entry point of the driver
1832  *  @skb : the socket buffer
1833  *  @dev : device pointer
1834  *  Description : this is the tx entry point of the driver.
1835  *  It programs the chain or the ring and supports oversized frames
1836  *  and SG feature.
1837  */
1838 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1839 {
1840 	struct stmmac_priv *priv = netdev_priv(dev);
1841 	unsigned int txsize = priv->dma_tx_size;
1842 	unsigned int entry;
1843 	int i, csum_insertion = 0, is_jumbo = 0;
1844 	int nfrags = skb_shinfo(skb)->nr_frags;
1845 	struct dma_desc *desc, *first;
1846 	unsigned int nopaged_len = skb_headlen(skb);
1847 
1848 	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1849 		if (!netif_queue_stopped(dev)) {
1850 			netif_stop_queue(dev);
1851 			/* This is a hard error, log it. */
1852 			pr_err("%s: Tx Ring full when queue awake\n", __func__);
1853 		}
1854 		return NETDEV_TX_BUSY;
1855 	}
1856 
1857 	spin_lock(&priv->tx_lock);
1858 
1859 	if (priv->tx_path_in_lpi_mode)
1860 		stmmac_disable_eee_mode(priv);
1861 
1862 	entry = priv->cur_tx % txsize;
1863 
1864 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1865 
1866 	if (priv->extend_desc)
1867 		desc = (struct dma_desc *)(priv->dma_etx + entry);
1868 	else
1869 		desc = priv->dma_tx + entry;
1870 
1871 	first = desc;
1872 
1873 	/* To program the descriptors according to the size of the frame */
1874 	if (priv->mode == STMMAC_RING_MODE) {
1875 		is_jumbo = priv->hw->ring->is_jumbo_frm(skb->len,
1876 							priv->plat->enh_desc);
1877 		if (unlikely(is_jumbo))
1878 			entry = priv->hw->ring->jumbo_frm(priv, skb,
1879 							  csum_insertion);
1880 	} else {
1881 		is_jumbo = priv->hw->chain->is_jumbo_frm(skb->len,
1882 							 priv->plat->enh_desc);
1883 		if (unlikely(is_jumbo))
1884 			entry = priv->hw->chain->jumbo_frm(priv, skb,
1885 							   csum_insertion);
1886 	}
1887 	if (likely(!is_jumbo)) {
1888 		desc->des2 = dma_map_single(priv->device, skb->data,
1889 					    nopaged_len, DMA_TO_DEVICE);
1890 		priv->tx_skbuff_dma[entry] = desc->des2;
1891 		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1892 						csum_insertion, priv->mode);
1893 	} else
1894 		desc = first;
1895 
1896 	for (i = 0; i < nfrags; i++) {
1897 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1898 		int len = skb_frag_size(frag);
1899 
1900 		priv->tx_skbuff[entry] = NULL;
1901 		entry = (++priv->cur_tx) % txsize;
1902 		if (priv->extend_desc)
1903 			desc = (struct dma_desc *)(priv->dma_etx + entry);
1904 		else
1905 			desc = priv->dma_tx + entry;
1906 
1907 		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1908 					      DMA_TO_DEVICE);
1909 		priv->tx_skbuff_dma[entry] = desc->des2;
1910 		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
1911 						priv->mode);
1912 		wmb();
1913 		priv->hw->desc->set_tx_owner(desc);
1914 		wmb();
1915 	}
1916 
1917 	priv->tx_skbuff[entry] = skb;
1918 
1919 	/* Finalize the latest segment. */
1920 	priv->hw->desc->close_tx_desc(desc);
1921 
1922 	wmb();
1923 	/* According to the coalesce parameter the IC bit for the latest
1924 	 * segment could be reset and the timer re-started to invoke the
1925 	 * stmmac_tx function. This approach takes care about the fragments.
1926 	 */
1927 	priv->tx_count_frames += nfrags + 1;
1928 	if (priv->tx_coal_frames > priv->tx_count_frames) {
1929 		priv->hw->desc->clear_tx_ic(desc);
1930 		priv->xstats.tx_reset_ic_bit++;
1931 		mod_timer(&priv->txtimer,
1932 			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
1933 	} else
1934 		priv->tx_count_frames = 0;
1935 
1936 	/* To avoid raise condition */
1937 	priv->hw->desc->set_tx_owner(first);
1938 	wmb();
1939 
1940 	priv->cur_tx++;
1941 
1942 	if (netif_msg_pktdata(priv)) {
1943 		pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
1944 			__func__, (priv->cur_tx % txsize),
1945 			(priv->dirty_tx % txsize), entry, first, nfrags);
1946 
1947 		if (priv->extend_desc)
1948 			stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
1949 		else
1950 			stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
1951 
1952 		pr_debug(">>> frame to be transmitted: ");
1953 		print_pkt(skb->data, skb->len);
1954 	}
1955 	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1956 		if (netif_msg_hw(priv))
1957 			pr_debug("%s: stop transmitted packets\n", __func__);
1958 		netif_stop_queue(dev);
1959 	}
1960 
1961 	dev->stats.tx_bytes += skb->len;
1962 
1963 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1964 		     priv->hwts_tx_en)) {
1965 		/* declare that device is doing timestamping */
1966 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1967 		priv->hw->desc->enable_tx_timestamp(first);
1968 	}
1969 
1970 	if (!priv->hwts_tx_en)
1971 		skb_tx_timestamp(skb);
1972 
1973 	priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1974 
1975 	spin_unlock(&priv->tx_lock);
1976 
1977 	return NETDEV_TX_OK;
1978 }
1979 
1980 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
1981 {
1982 	struct ethhdr *ehdr;
1983 	u16 vlanid;
1984 
1985 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
1986 	    NETIF_F_HW_VLAN_CTAG_RX &&
1987 	    !__vlan_get_tag(skb, &vlanid)) {
1988 		/* pop the vlan tag */
1989 		ehdr = (struct ethhdr *)skb->data;
1990 		memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
1991 		skb_pull(skb, VLAN_HLEN);
1992 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
1993 	}
1994 }
1995 
1996 
1997 /**
1998  * stmmac_rx_refill: refill used skb preallocated buffers
1999  * @priv: driver private structure
2000  * Description : this is to reallocate the skb for the reception process
2001  * that is based on zero-copy.
2002  */
2003 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2004 {
2005 	unsigned int rxsize = priv->dma_rx_size;
2006 	int bfsize = priv->dma_buf_sz;
2007 
2008 	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
2009 		unsigned int entry = priv->dirty_rx % rxsize;
2010 		struct dma_desc *p;
2011 
2012 		if (priv->extend_desc)
2013 			p = (struct dma_desc *)(priv->dma_erx + entry);
2014 		else
2015 			p = priv->dma_rx + entry;
2016 
2017 		if (likely(priv->rx_skbuff[entry] == NULL)) {
2018 			struct sk_buff *skb;
2019 
2020 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2021 
2022 			if (unlikely(skb == NULL))
2023 				break;
2024 
2025 			priv->rx_skbuff[entry] = skb;
2026 			priv->rx_skbuff_dma[entry] =
2027 			    dma_map_single(priv->device, skb->data, bfsize,
2028 					   DMA_FROM_DEVICE);
2029 
2030 			p->des2 = priv->rx_skbuff_dma[entry];
2031 
2032 			priv->hw->ring->refill_desc3(priv, p);
2033 
2034 			if (netif_msg_rx_status(priv))
2035 				pr_debug("\trefill entry #%d\n", entry);
2036 		}
2037 		wmb();
2038 		priv->hw->desc->set_rx_owner(p);
2039 		wmb();
2040 	}
2041 }
2042 
2043 /**
2044  * stmmac_rx_refill: refill used skb preallocated buffers
2045  * @priv: driver private structure
2046  * @limit: napi bugget.
2047  * Description :  this the function called by the napi poll method.
2048  * It gets all the frames inside the ring.
2049  */
2050 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2051 {
2052 	unsigned int rxsize = priv->dma_rx_size;
2053 	unsigned int entry = priv->cur_rx % rxsize;
2054 	unsigned int next_entry;
2055 	unsigned int count = 0;
2056 	int coe = priv->plat->rx_coe;
2057 
2058 	if (netif_msg_rx_status(priv)) {
2059 		pr_debug("%s: descriptor ring:\n", __func__);
2060 		if (priv->extend_desc)
2061 			stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
2062 		else
2063 			stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2064 	}
2065 	while (count < limit) {
2066 		int status;
2067 		struct dma_desc *p;
2068 
2069 		if (priv->extend_desc)
2070 			p = (struct dma_desc *)(priv->dma_erx + entry);
2071 		else
2072 			p = priv->dma_rx + entry;
2073 
2074 		if (priv->hw->desc->get_rx_owner(p))
2075 			break;
2076 
2077 		count++;
2078 
2079 		next_entry = (++priv->cur_rx) % rxsize;
2080 		if (priv->extend_desc)
2081 			prefetch(priv->dma_erx + next_entry);
2082 		else
2083 			prefetch(priv->dma_rx + next_entry);
2084 
2085 		/* read the status of the incoming frame */
2086 		status = priv->hw->desc->rx_status(&priv->dev->stats,
2087 						   &priv->xstats, p);
2088 		if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2089 			priv->hw->desc->rx_extended_status(&priv->dev->stats,
2090 							   &priv->xstats,
2091 							   priv->dma_erx +
2092 							   entry);
2093 		if (unlikely(status == discard_frame)) {
2094 			priv->dev->stats.rx_errors++;
2095 			if (priv->hwts_rx_en && !priv->extend_desc) {
2096 				/* DESC2 & DESC3 will be overwitten by device
2097 				 * with timestamp value, hence reinitialize
2098 				 * them in stmmac_rx_refill() function so that
2099 				 * device can reuse it.
2100 				 */
2101 				priv->rx_skbuff[entry] = NULL;
2102 				dma_unmap_single(priv->device,
2103 						 priv->rx_skbuff_dma[entry],
2104 						 priv->dma_buf_sz,
2105 						 DMA_FROM_DEVICE);
2106 			}
2107 		} else {
2108 			struct sk_buff *skb;
2109 			int frame_len;
2110 
2111 			frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2112 
2113 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2114 			 * Type frames (LLC/LLC-SNAP)
2115 			 */
2116 			if (unlikely(status != llc_snap))
2117 				frame_len -= ETH_FCS_LEN;
2118 
2119 			if (netif_msg_rx_status(priv)) {
2120 				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2121 					 p, entry, p->des2);
2122 				if (frame_len > ETH_FRAME_LEN)
2123 					pr_debug("\tframe size %d, COE: %d\n",
2124 						 frame_len, status);
2125 			}
2126 			skb = priv->rx_skbuff[entry];
2127 			if (unlikely(!skb)) {
2128 				pr_err("%s: Inconsistent Rx descriptor chain\n",
2129 				       priv->dev->name);
2130 				priv->dev->stats.rx_dropped++;
2131 				break;
2132 			}
2133 			prefetch(skb->data - NET_IP_ALIGN);
2134 			priv->rx_skbuff[entry] = NULL;
2135 
2136 			stmmac_get_rx_hwtstamp(priv, entry, skb);
2137 
2138 			skb_put(skb, frame_len);
2139 			dma_unmap_single(priv->device,
2140 					 priv->rx_skbuff_dma[entry],
2141 					 priv->dma_buf_sz, DMA_FROM_DEVICE);
2142 
2143 			if (netif_msg_pktdata(priv)) {
2144 				pr_debug("frame received (%dbytes)", frame_len);
2145 				print_pkt(skb->data, frame_len);
2146 			}
2147 
2148 			stmmac_rx_vlan(priv->dev, skb);
2149 
2150 			skb->protocol = eth_type_trans(skb, priv->dev);
2151 
2152 			if (unlikely(!coe))
2153 				skb_checksum_none_assert(skb);
2154 			else
2155 				skb->ip_summed = CHECKSUM_UNNECESSARY;
2156 
2157 			napi_gro_receive(&priv->napi, skb);
2158 
2159 			priv->dev->stats.rx_packets++;
2160 			priv->dev->stats.rx_bytes += frame_len;
2161 		}
2162 		entry = next_entry;
2163 	}
2164 
2165 	stmmac_rx_refill(priv);
2166 
2167 	priv->xstats.rx_pkt_n += count;
2168 
2169 	return count;
2170 }
2171 
2172 /**
2173  *  stmmac_poll - stmmac poll method (NAPI)
2174  *  @napi : pointer to the napi structure.
2175  *  @budget : maximum number of packets that the current CPU can receive from
2176  *	      all interfaces.
2177  *  Description :
2178  *  To look at the incoming frames and clear the tx resources.
2179  */
2180 static int stmmac_poll(struct napi_struct *napi, int budget)
2181 {
2182 	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2183 	int work_done = 0;
2184 
2185 	priv->xstats.napi_poll++;
2186 	stmmac_tx_clean(priv);
2187 
2188 	work_done = stmmac_rx(priv, budget);
2189 	if (work_done < budget) {
2190 		napi_complete(napi);
2191 		stmmac_enable_dma_irq(priv);
2192 	}
2193 	return work_done;
2194 }
2195 
2196 /**
2197  *  stmmac_tx_timeout
2198  *  @dev : Pointer to net device structure
2199  *  Description: this function is called when a packet transmission fails to
2200  *   complete within a reasonable time. The driver will mark the error in the
2201  *   netdev structure and arrange for the device to be reset to a sane state
2202  *   in order to transmit a new packet.
2203  */
2204 static void stmmac_tx_timeout(struct net_device *dev)
2205 {
2206 	struct stmmac_priv *priv = netdev_priv(dev);
2207 
2208 	/* Clear Tx resources and restart transmitting again */
2209 	stmmac_tx_err(priv);
2210 }
2211 
2212 /* Configuration changes (passed on by ifconfig) */
2213 static int stmmac_config(struct net_device *dev, struct ifmap *map)
2214 {
2215 	if (dev->flags & IFF_UP)	/* can't act on a running interface */
2216 		return -EBUSY;
2217 
2218 	/* Don't allow changing the I/O address */
2219 	if (map->base_addr != dev->base_addr) {
2220 		pr_warn("%s: can't change I/O address\n", dev->name);
2221 		return -EOPNOTSUPP;
2222 	}
2223 
2224 	/* Don't allow changing the IRQ */
2225 	if (map->irq != dev->irq) {
2226 		pr_warn("%s: not change IRQ number %d\n", dev->name, dev->irq);
2227 		return -EOPNOTSUPP;
2228 	}
2229 
2230 	return 0;
2231 }
2232 
2233 /**
2234  *  stmmac_set_rx_mode - entry point for multicast addressing
2235  *  @dev : pointer to the device structure
2236  *  Description:
2237  *  This function is a driver entry point which gets called by the kernel
2238  *  whenever multicast addresses must be enabled/disabled.
2239  *  Return value:
2240  *  void.
2241  */
2242 static void stmmac_set_rx_mode(struct net_device *dev)
2243 {
2244 	struct stmmac_priv *priv = netdev_priv(dev);
2245 
2246 	spin_lock(&priv->lock);
2247 	priv->hw->mac->set_filter(dev, priv->synopsys_id);
2248 	spin_unlock(&priv->lock);
2249 }
2250 
2251 /**
2252  *  stmmac_change_mtu - entry point to change MTU size for the device.
2253  *  @dev : device pointer.
2254  *  @new_mtu : the new MTU size for the device.
2255  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
2256  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
2257  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
2258  *  Return value:
2259  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2260  *  file on failure.
2261  */
2262 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2263 {
2264 	struct stmmac_priv *priv = netdev_priv(dev);
2265 	int max_mtu;
2266 
2267 	if (netif_running(dev)) {
2268 		pr_err("%s: must be stopped to change its MTU\n", dev->name);
2269 		return -EBUSY;
2270 	}
2271 
2272 	if (priv->plat->enh_desc)
2273 		max_mtu = JUMBO_LEN;
2274 	else
2275 		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2276 
2277 	if (priv->plat->maxmtu < max_mtu)
2278 		max_mtu = priv->plat->maxmtu;
2279 
2280 	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2281 		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2282 		return -EINVAL;
2283 	}
2284 
2285 	dev->mtu = new_mtu;
2286 	netdev_update_features(dev);
2287 
2288 	return 0;
2289 }
2290 
2291 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2292 					     netdev_features_t features)
2293 {
2294 	struct stmmac_priv *priv = netdev_priv(dev);
2295 
2296 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2297 		features &= ~NETIF_F_RXCSUM;
2298 	else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
2299 		features &= ~NETIF_F_IPV6_CSUM;
2300 	if (!priv->plat->tx_coe)
2301 		features &= ~NETIF_F_ALL_CSUM;
2302 
2303 	/* Some GMAC devices have a bugged Jumbo frame support that
2304 	 * needs to have the Tx COE disabled for oversized frames
2305 	 * (due to limited buffer sizes). In this case we disable
2306 	 * the TX csum insertionin the TDES and not use SF.
2307 	 */
2308 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2309 		features &= ~NETIF_F_ALL_CSUM;
2310 
2311 	return features;
2312 }
2313 
2314 /**
2315  *  stmmac_interrupt - main ISR
2316  *  @irq: interrupt number.
2317  *  @dev_id: to pass the net device pointer.
2318  *  Description: this is the main driver interrupt service routine.
2319  *  It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI
2320  *  interrupts.
2321  */
2322 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2323 {
2324 	struct net_device *dev = (struct net_device *)dev_id;
2325 	struct stmmac_priv *priv = netdev_priv(dev);
2326 
2327 	if (priv->irq_wake)
2328 		pm_wakeup_event(priv->device, 0);
2329 
2330 	if (unlikely(!dev)) {
2331 		pr_err("%s: invalid dev pointer\n", __func__);
2332 		return IRQ_NONE;
2333 	}
2334 
2335 	/* To handle GMAC own interrupts */
2336 	if (priv->plat->has_gmac) {
2337 		int status = priv->hw->mac->host_irq_status((void __iomem *)
2338 							    dev->base_addr,
2339 							    &priv->xstats);
2340 		if (unlikely(status)) {
2341 			/* For LPI we need to save the tx status */
2342 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2343 				priv->tx_path_in_lpi_mode = true;
2344 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2345 				priv->tx_path_in_lpi_mode = false;
2346 		}
2347 	}
2348 
2349 	/* To handle DMA interrupts */
2350 	stmmac_dma_interrupt(priv);
2351 
2352 	return IRQ_HANDLED;
2353 }
2354 
2355 #ifdef CONFIG_NET_POLL_CONTROLLER
2356 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2357  * to allow network I/O with interrupts disabled.
2358  */
2359 static void stmmac_poll_controller(struct net_device *dev)
2360 {
2361 	disable_irq(dev->irq);
2362 	stmmac_interrupt(dev->irq, dev);
2363 	enable_irq(dev->irq);
2364 }
2365 #endif
2366 
2367 /**
2368  *  stmmac_ioctl - Entry point for the Ioctl
2369  *  @dev: Device pointer.
2370  *  @rq: An IOCTL specefic structure, that can contain a pointer to
2371  *  a proprietary structure used to pass information to the driver.
2372  *  @cmd: IOCTL command
2373  *  Description:
2374  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2375  */
2376 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2377 {
2378 	struct stmmac_priv *priv = netdev_priv(dev);
2379 	int ret = -EOPNOTSUPP;
2380 
2381 	if (!netif_running(dev))
2382 		return -EINVAL;
2383 
2384 	switch (cmd) {
2385 	case SIOCGMIIPHY:
2386 	case SIOCGMIIREG:
2387 	case SIOCSMIIREG:
2388 		if (!priv->phydev)
2389 			return -EINVAL;
2390 		ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2391 		break;
2392 	case SIOCSHWTSTAMP:
2393 		ret = stmmac_hwtstamp_ioctl(dev, rq);
2394 		break;
2395 	default:
2396 		break;
2397 	}
2398 
2399 	return ret;
2400 }
2401 
2402 #ifdef CONFIG_STMMAC_DEBUG_FS
2403 static struct dentry *stmmac_fs_dir;
2404 static struct dentry *stmmac_rings_status;
2405 static struct dentry *stmmac_dma_cap;
2406 
2407 static void sysfs_display_ring(void *head, int size, int extend_desc,
2408 			       struct seq_file *seq)
2409 {
2410 	int i;
2411 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2412 	struct dma_desc *p = (struct dma_desc *)head;
2413 
2414 	for (i = 0; i < size; i++) {
2415 		u64 x;
2416 		if (extend_desc) {
2417 			x = *(u64 *) ep;
2418 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2419 				   i, (unsigned int)virt_to_phys(ep),
2420 				   (unsigned int)x, (unsigned int)(x >> 32),
2421 				   ep->basic.des2, ep->basic.des3);
2422 			ep++;
2423 		} else {
2424 			x = *(u64 *) p;
2425 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2426 				   i, (unsigned int)virt_to_phys(ep),
2427 				   (unsigned int)x, (unsigned int)(x >> 32),
2428 				   p->des2, p->des3);
2429 			p++;
2430 		}
2431 		seq_printf(seq, "\n");
2432 	}
2433 }
2434 
2435 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2436 {
2437 	struct net_device *dev = seq->private;
2438 	struct stmmac_priv *priv = netdev_priv(dev);
2439 	unsigned int txsize = priv->dma_tx_size;
2440 	unsigned int rxsize = priv->dma_rx_size;
2441 
2442 	if (priv->extend_desc) {
2443 		seq_printf(seq, "Extended RX descriptor ring:\n");
2444 		sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2445 		seq_printf(seq, "Extended TX descriptor ring:\n");
2446 		sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2447 	} else {
2448 		seq_printf(seq, "RX descriptor ring:\n");
2449 		sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2450 		seq_printf(seq, "TX descriptor ring:\n");
2451 		sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2452 	}
2453 
2454 	return 0;
2455 }
2456 
2457 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2458 {
2459 	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2460 }
2461 
2462 static const struct file_operations stmmac_rings_status_fops = {
2463 	.owner = THIS_MODULE,
2464 	.open = stmmac_sysfs_ring_open,
2465 	.read = seq_read,
2466 	.llseek = seq_lseek,
2467 	.release = single_release,
2468 };
2469 
2470 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2471 {
2472 	struct net_device *dev = seq->private;
2473 	struct stmmac_priv *priv = netdev_priv(dev);
2474 
2475 	if (!priv->hw_cap_support) {
2476 		seq_printf(seq, "DMA HW features not supported\n");
2477 		return 0;
2478 	}
2479 
2480 	seq_printf(seq, "==============================\n");
2481 	seq_printf(seq, "\tDMA HW features\n");
2482 	seq_printf(seq, "==============================\n");
2483 
2484 	seq_printf(seq, "\t10/100 Mbps %s\n",
2485 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2486 	seq_printf(seq, "\t1000 Mbps %s\n",
2487 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
2488 	seq_printf(seq, "\tHalf duple %s\n",
2489 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
2490 	seq_printf(seq, "\tHash Filter: %s\n",
2491 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
2492 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2493 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
2494 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2495 		   (priv->dma_cap.pcs) ? "Y" : "N");
2496 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2497 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
2498 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
2499 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2500 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
2501 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2502 	seq_printf(seq, "\tRMON module: %s\n",
2503 		   (priv->dma_cap.rmon) ? "Y" : "N");
2504 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2505 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
2506 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2507 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
2508 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2509 		   (priv->dma_cap.eee) ? "Y" : "N");
2510 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2511 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2512 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
2513 	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2514 		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2515 	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2516 		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2517 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2518 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2519 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2520 		   priv->dma_cap.number_rx_channel);
2521 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2522 		   priv->dma_cap.number_tx_channel);
2523 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
2524 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
2525 
2526 	return 0;
2527 }
2528 
2529 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2530 {
2531 	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2532 }
2533 
2534 static const struct file_operations stmmac_dma_cap_fops = {
2535 	.owner = THIS_MODULE,
2536 	.open = stmmac_sysfs_dma_cap_open,
2537 	.read = seq_read,
2538 	.llseek = seq_lseek,
2539 	.release = single_release,
2540 };
2541 
2542 static int stmmac_init_fs(struct net_device *dev)
2543 {
2544 	/* Create debugfs entries */
2545 	stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
2546 
2547 	if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
2548 		pr_err("ERROR %s, debugfs create directory failed\n",
2549 		       STMMAC_RESOURCE_NAME);
2550 
2551 		return -ENOMEM;
2552 	}
2553 
2554 	/* Entry to report DMA RX/TX rings */
2555 	stmmac_rings_status = debugfs_create_file("descriptors_status",
2556 						  S_IRUGO, stmmac_fs_dir, dev,
2557 						  &stmmac_rings_status_fops);
2558 
2559 	if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
2560 		pr_info("ERROR creating stmmac ring debugfs file\n");
2561 		debugfs_remove(stmmac_fs_dir);
2562 
2563 		return -ENOMEM;
2564 	}
2565 
2566 	/* Entry to report the DMA HW features */
2567 	stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
2568 					     dev, &stmmac_dma_cap_fops);
2569 
2570 	if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
2571 		pr_info("ERROR creating stmmac MMC debugfs file\n");
2572 		debugfs_remove(stmmac_rings_status);
2573 		debugfs_remove(stmmac_fs_dir);
2574 
2575 		return -ENOMEM;
2576 	}
2577 
2578 	return 0;
2579 }
2580 
2581 static void stmmac_exit_fs(void)
2582 {
2583 	debugfs_remove(stmmac_rings_status);
2584 	debugfs_remove(stmmac_dma_cap);
2585 	debugfs_remove(stmmac_fs_dir);
2586 }
2587 #endif /* CONFIG_STMMAC_DEBUG_FS */
2588 
2589 static const struct net_device_ops stmmac_netdev_ops = {
2590 	.ndo_open = stmmac_open,
2591 	.ndo_start_xmit = stmmac_xmit,
2592 	.ndo_stop = stmmac_release,
2593 	.ndo_change_mtu = stmmac_change_mtu,
2594 	.ndo_fix_features = stmmac_fix_features,
2595 	.ndo_set_rx_mode = stmmac_set_rx_mode,
2596 	.ndo_tx_timeout = stmmac_tx_timeout,
2597 	.ndo_do_ioctl = stmmac_ioctl,
2598 	.ndo_set_config = stmmac_config,
2599 #ifdef CONFIG_NET_POLL_CONTROLLER
2600 	.ndo_poll_controller = stmmac_poll_controller,
2601 #endif
2602 	.ndo_set_mac_address = eth_mac_addr,
2603 };
2604 
2605 /**
2606  *  stmmac_hw_init - Init the MAC device
2607  *  @priv: driver private structure
2608  *  Description: this function detects which MAC device
2609  *  (GMAC/MAC10-100) has to attached, checks the HW capability
2610  *  (if supported) and sets the driver's features (for example
2611  *  to use the ring or chaine mode or support the normal/enh
2612  *  descriptor structure).
2613  */
2614 static int stmmac_hw_init(struct stmmac_priv *priv)
2615 {
2616 	int ret;
2617 	struct mac_device_info *mac;
2618 
2619 	/* Identify the MAC HW device */
2620 	if (priv->plat->has_gmac) {
2621 		priv->dev->priv_flags |= IFF_UNICAST_FLT;
2622 		mac = dwmac1000_setup(priv->ioaddr);
2623 	} else {
2624 		mac = dwmac100_setup(priv->ioaddr);
2625 	}
2626 	if (!mac)
2627 		return -ENOMEM;
2628 
2629 	priv->hw = mac;
2630 
2631 	/* Get and dump the chip ID */
2632 	priv->synopsys_id = stmmac_get_synopsys_id(priv);
2633 
2634 	/* To use the chained or ring mode */
2635 	if (chain_mode) {
2636 		priv->hw->chain = &chain_mode_ops;
2637 		pr_info(" Chain mode enabled\n");
2638 		priv->mode = STMMAC_CHAIN_MODE;
2639 	} else {
2640 		priv->hw->ring = &ring_mode_ops;
2641 		pr_info(" Ring mode enabled\n");
2642 		priv->mode = STMMAC_RING_MODE;
2643 	}
2644 
2645 	/* Get the HW capability (new GMAC newer than 3.50a) */
2646 	priv->hw_cap_support = stmmac_get_hw_features(priv);
2647 	if (priv->hw_cap_support) {
2648 		pr_info(" DMA HW capability register supported");
2649 
2650 		/* We can override some gmac/dma configuration fields: e.g.
2651 		 * enh_desc, tx_coe (e.g. that are passed through the
2652 		 * platform) with the values from the HW capability
2653 		 * register (if supported).
2654 		 */
2655 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
2656 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2657 
2658 		priv->plat->tx_coe = priv->dma_cap.tx_coe;
2659 
2660 		if (priv->dma_cap.rx_coe_type2)
2661 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2662 		else if (priv->dma_cap.rx_coe_type1)
2663 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2664 
2665 	} else
2666 		pr_info(" No HW DMA feature register supported");
2667 
2668 	/* To use alternate (extended) or normal descriptor structures */
2669 	stmmac_selec_desc_mode(priv);
2670 
2671 	ret = priv->hw->mac->rx_ipc(priv->ioaddr);
2672 	if (!ret) {
2673 		pr_warn(" RX IPC Checksum Offload not configured.\n");
2674 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2675 	}
2676 
2677 	if (priv->plat->rx_coe)
2678 		pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2679 			priv->plat->rx_coe);
2680 	if (priv->plat->tx_coe)
2681 		pr_info(" TX Checksum insertion supported\n");
2682 
2683 	if (priv->plat->pmt) {
2684 		pr_info(" Wake-Up On Lan supported\n");
2685 		device_set_wakeup_capable(priv->device, 1);
2686 	}
2687 
2688 	return 0;
2689 }
2690 
2691 /**
2692  * stmmac_dvr_probe
2693  * @device: device pointer
2694  * @plat_dat: platform data pointer
2695  * @addr: iobase memory address
2696  * Description: this is the main probe function used to
2697  * call the alloc_etherdev, allocate the priv structure.
2698  */
2699 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2700 				     struct plat_stmmacenet_data *plat_dat,
2701 				     void __iomem *addr)
2702 {
2703 	int ret = 0;
2704 	struct net_device *ndev = NULL;
2705 	struct stmmac_priv *priv;
2706 
2707 	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2708 	if (!ndev)
2709 		return NULL;
2710 
2711 	SET_NETDEV_DEV(ndev, device);
2712 
2713 	priv = netdev_priv(ndev);
2714 	priv->device = device;
2715 	priv->dev = ndev;
2716 
2717 	ether_setup(ndev);
2718 
2719 	stmmac_set_ethtool_ops(ndev);
2720 	priv->pause = pause;
2721 	priv->plat = plat_dat;
2722 	priv->ioaddr = addr;
2723 	priv->dev->base_addr = (unsigned long)addr;
2724 
2725 	/* Verify driver arguments */
2726 	stmmac_verify_args();
2727 
2728 	/* Override with kernel parameters if supplied XXX CRS XXX
2729 	 * this needs to have multiple instances
2730 	 */
2731 	if ((phyaddr >= 0) && (phyaddr <= 31))
2732 		priv->plat->phy_addr = phyaddr;
2733 
2734 	priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
2735 	if (IS_ERR(priv->stmmac_clk)) {
2736 		dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
2737 			 __func__);
2738 		ret = PTR_ERR(priv->stmmac_clk);
2739 		goto error_clk_get;
2740 	}
2741 	clk_prepare_enable(priv->stmmac_clk);
2742 
2743 	priv->stmmac_rst = devm_reset_control_get(priv->device,
2744 						  STMMAC_RESOURCE_NAME);
2745 	if (IS_ERR(priv->stmmac_rst)) {
2746 		if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
2747 			ret = -EPROBE_DEFER;
2748 			goto error_hw_init;
2749 		}
2750 		dev_info(priv->device, "no reset control found\n");
2751 		priv->stmmac_rst = NULL;
2752 	}
2753 	if (priv->stmmac_rst)
2754 		reset_control_deassert(priv->stmmac_rst);
2755 
2756 	/* Init MAC and get the capabilities */
2757 	ret = stmmac_hw_init(priv);
2758 	if (ret)
2759 		goto error_hw_init;
2760 
2761 	ndev->netdev_ops = &stmmac_netdev_ops;
2762 
2763 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2764 			    NETIF_F_RXCSUM;
2765 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2766 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2767 #ifdef STMMAC_VLAN_TAG_USED
2768 	/* Both mac100 and gmac support receive VLAN tag detection */
2769 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2770 #endif
2771 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
2772 
2773 	if (flow_ctrl)
2774 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
2775 
2776 	/* Rx Watchdog is available in the COREs newer than the 3.40.
2777 	 * In some case, for example on bugged HW this feature
2778 	 * has to be disable and this can be done by passing the
2779 	 * riwt_off field from the platform.
2780 	 */
2781 	if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2782 		priv->use_riwt = 1;
2783 		pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2784 	}
2785 
2786 	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2787 
2788 	spin_lock_init(&priv->lock);
2789 	spin_lock_init(&priv->tx_lock);
2790 
2791 	ret = register_netdev(ndev);
2792 	if (ret) {
2793 		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2794 		goto error_netdev_register;
2795 	}
2796 
2797 	/* If a specific clk_csr value is passed from the platform
2798 	 * this means that the CSR Clock Range selection cannot be
2799 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
2800 	 * set the MDC clock dynamically according to the csr actual
2801 	 * clock input.
2802 	 */
2803 	if (!priv->plat->clk_csr)
2804 		stmmac_clk_csr_set(priv);
2805 	else
2806 		priv->clk_csr = priv->plat->clk_csr;
2807 
2808 	stmmac_check_pcs_mode(priv);
2809 
2810 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2811 	    priv->pcs != STMMAC_PCS_RTBI) {
2812 		/* MDIO bus Registration */
2813 		ret = stmmac_mdio_register(ndev);
2814 		if (ret < 0) {
2815 			pr_debug("%s: MDIO bus (id: %d) registration failed",
2816 				 __func__, priv->plat->bus_id);
2817 			goto error_mdio_register;
2818 		}
2819 	}
2820 
2821 	return priv;
2822 
2823 error_mdio_register:
2824 	unregister_netdev(ndev);
2825 error_netdev_register:
2826 	netif_napi_del(&priv->napi);
2827 error_hw_init:
2828 	clk_disable_unprepare(priv->stmmac_clk);
2829 error_clk_get:
2830 	free_netdev(ndev);
2831 
2832 	return ERR_PTR(ret);
2833 }
2834 
2835 /**
2836  * stmmac_dvr_remove
2837  * @ndev: net device pointer
2838  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2839  * changes the link status, releases the DMA descriptor rings.
2840  */
2841 int stmmac_dvr_remove(struct net_device *ndev)
2842 {
2843 	struct stmmac_priv *priv = netdev_priv(ndev);
2844 
2845 	pr_info("%s:\n\tremoving driver", __func__);
2846 
2847 	priv->hw->dma->stop_rx(priv->ioaddr);
2848 	priv->hw->dma->stop_tx(priv->ioaddr);
2849 
2850 	stmmac_set_mac(priv->ioaddr, false);
2851 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2852 	    priv->pcs != STMMAC_PCS_RTBI)
2853 		stmmac_mdio_unregister(ndev);
2854 	netif_carrier_off(ndev);
2855 	unregister_netdev(ndev);
2856 	if (priv->stmmac_rst)
2857 		reset_control_assert(priv->stmmac_rst);
2858 	clk_disable_unprepare(priv->stmmac_clk);
2859 	free_netdev(ndev);
2860 
2861 	return 0;
2862 }
2863 
2864 #ifdef CONFIG_PM
2865 int stmmac_suspend(struct net_device *ndev)
2866 {
2867 	struct stmmac_priv *priv = netdev_priv(ndev);
2868 	unsigned long flags;
2869 
2870 	if (!ndev || !netif_running(ndev))
2871 		return 0;
2872 
2873 	if (priv->phydev)
2874 		phy_stop(priv->phydev);
2875 
2876 	spin_lock_irqsave(&priv->lock, flags);
2877 
2878 	netif_device_detach(ndev);
2879 	netif_stop_queue(ndev);
2880 
2881 	napi_disable(&priv->napi);
2882 
2883 	/* Stop TX/RX DMA */
2884 	priv->hw->dma->stop_tx(priv->ioaddr);
2885 	priv->hw->dma->stop_rx(priv->ioaddr);
2886 
2887 	stmmac_clear_descriptors(priv);
2888 
2889 	/* Enable Power down mode by programming the PMT regs */
2890 	if (device_may_wakeup(priv->device)) {
2891 		priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2892 		priv->irq_wake = 1;
2893 	} else {
2894 		stmmac_set_mac(priv->ioaddr, false);
2895 		pinctrl_pm_select_sleep_state(priv->device);
2896 		/* Disable clock in case of PWM is off */
2897 		clk_disable_unprepare(priv->stmmac_clk);
2898 	}
2899 	spin_unlock_irqrestore(&priv->lock, flags);
2900 	return 0;
2901 }
2902 
2903 int stmmac_resume(struct net_device *ndev)
2904 {
2905 	struct stmmac_priv *priv = netdev_priv(ndev);
2906 	unsigned long flags;
2907 
2908 	if (!netif_running(ndev))
2909 		return 0;
2910 
2911 	spin_lock_irqsave(&priv->lock, flags);
2912 
2913 	/* Power Down bit, into the PM register, is cleared
2914 	 * automatically as soon as a magic packet or a Wake-up frame
2915 	 * is received. Anyway, it's better to manually clear
2916 	 * this bit because it can generate problems while resuming
2917 	 * from another devices (e.g. serial console).
2918 	 */
2919 	if (device_may_wakeup(priv->device)) {
2920 		priv->hw->mac->pmt(priv->ioaddr, 0);
2921 		priv->irq_wake = 0;
2922 	} else {
2923 		pinctrl_pm_select_default_state(priv->device);
2924 		/* enable the clk prevously disabled */
2925 		clk_prepare_enable(priv->stmmac_clk);
2926 		/* reset the phy so that it's ready */
2927 		if (priv->mii)
2928 			stmmac_mdio_reset(priv->mii);
2929 	}
2930 
2931 	netif_device_attach(ndev);
2932 
2933 	stmmac_hw_setup(ndev);
2934 
2935 	napi_enable(&priv->napi);
2936 
2937 	netif_start_queue(ndev);
2938 
2939 	spin_unlock_irqrestore(&priv->lock, flags);
2940 
2941 	if (priv->phydev)
2942 		phy_start(priv->phydev);
2943 
2944 	return 0;
2945 }
2946 #endif /* CONFIG_PM */
2947 
2948 /* Driver can be configured w/ and w/ both PCI and Platf drivers
2949  * depending on the configuration selected.
2950  */
2951 static int __init stmmac_init(void)
2952 {
2953 	int ret;
2954 
2955 	ret = stmmac_register_platform();
2956 	if (ret)
2957 		goto err;
2958 	ret = stmmac_register_pci();
2959 	if (ret)
2960 		goto err_pci;
2961 	return 0;
2962 err_pci:
2963 	stmmac_unregister_platform();
2964 err:
2965 	pr_err("stmmac: driver registration failed\n");
2966 	return ret;
2967 }
2968 
2969 static void __exit stmmac_exit(void)
2970 {
2971 	stmmac_unregister_platform();
2972 	stmmac_unregister_pci();
2973 }
2974 
2975 module_init(stmmac_init);
2976 module_exit(stmmac_exit);
2977 
2978 #ifndef MODULE
2979 static int __init stmmac_cmdline_opt(char *str)
2980 {
2981 	char *opt;
2982 
2983 	if (!str || !*str)
2984 		return -EINVAL;
2985 	while ((opt = strsep(&str, ",")) != NULL) {
2986 		if (!strncmp(opt, "debug:", 6)) {
2987 			if (kstrtoint(opt + 6, 0, &debug))
2988 				goto err;
2989 		} else if (!strncmp(opt, "phyaddr:", 8)) {
2990 			if (kstrtoint(opt + 8, 0, &phyaddr))
2991 				goto err;
2992 		} else if (!strncmp(opt, "dma_txsize:", 11)) {
2993 			if (kstrtoint(opt + 11, 0, &dma_txsize))
2994 				goto err;
2995 		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
2996 			if (kstrtoint(opt + 11, 0, &dma_rxsize))
2997 				goto err;
2998 		} else if (!strncmp(opt, "buf_sz:", 7)) {
2999 			if (kstrtoint(opt + 7, 0, &buf_sz))
3000 				goto err;
3001 		} else if (!strncmp(opt, "tc:", 3)) {
3002 			if (kstrtoint(opt + 3, 0, &tc))
3003 				goto err;
3004 		} else if (!strncmp(opt, "watchdog:", 9)) {
3005 			if (kstrtoint(opt + 9, 0, &watchdog))
3006 				goto err;
3007 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
3008 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
3009 				goto err;
3010 		} else if (!strncmp(opt, "pause:", 6)) {
3011 			if (kstrtoint(opt + 6, 0, &pause))
3012 				goto err;
3013 		} else if (!strncmp(opt, "eee_timer:", 10)) {
3014 			if (kstrtoint(opt + 10, 0, &eee_timer))
3015 				goto err;
3016 		} else if (!strncmp(opt, "chain_mode:", 11)) {
3017 			if (kstrtoint(opt + 11, 0, &chain_mode))
3018 				goto err;
3019 		}
3020 	}
3021 	return 0;
3022 
3023 err:
3024 	pr_err("%s: ERROR broken module parameter conversion", __func__);
3025 	return -EINVAL;
3026 }
3027 
3028 __setup("stmmaceth=", stmmac_cmdline_opt);
3029 #endif /* MODULE */
3030 
3031 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3032 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3033 MODULE_LICENSE("GPL");
3034