xref: /openbmc/linux/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c (revision 2eb0f624b709e78ec8e2f4c3412947703db99301)
1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   The full GNU General Public License is included in this distribution in
17   the file called "COPYING".
18 
19   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
20 
21   Documentation available at:
22 	http://www.stlinux.com
23   Support available at:
24 	https://bugzilla.stlinux.com/
25 *******************************************************************************/
26 
27 #include <linux/clk.h>
28 #include <linux/kernel.h>
29 #include <linux/interrupt.h>
30 #include <linux/ip.h>
31 #include <linux/tcp.h>
32 #include <linux/skbuff.h>
33 #include <linux/ethtool.h>
34 #include <linux/if_ether.h>
35 #include <linux/crc32.h>
36 #include <linux/mii.h>
37 #include <linux/if.h>
38 #include <linux/if_vlan.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/slab.h>
41 #include <linux/prefetch.h>
42 #include <linux/pinctrl/consumer.h>
43 #ifdef CONFIG_DEBUG_FS
44 #include <linux/debugfs.h>
45 #include <linux/seq_file.h>
46 #endif /* CONFIG_DEBUG_FS */
47 #include <linux/net_tstamp.h>
48 #include "stmmac_ptp.h"
49 #include "stmmac.h"
50 #include <linux/reset.h>
51 #include <linux/of_mdio.h>
52 #include "dwmac1000.h"
53 #include "hwif.h"
54 
55 #define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
56 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
57 
58 /* Module parameters */
59 #define TX_TIMEO	5000
60 static int watchdog = TX_TIMEO;
61 module_param(watchdog, int, 0644);
62 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
63 
64 static int debug = -1;
65 module_param(debug, int, 0644);
66 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
67 
68 static int phyaddr = -1;
69 module_param(phyaddr, int, 0444);
70 MODULE_PARM_DESC(phyaddr, "Physical device address");
71 
72 #define STMMAC_TX_THRESH	(DMA_TX_SIZE / 4)
73 #define STMMAC_RX_THRESH	(DMA_RX_SIZE / 4)
74 
75 static int flow_ctrl = FLOW_OFF;
76 module_param(flow_ctrl, int, 0644);
77 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
78 
79 static int pause = PAUSE_TIME;
80 module_param(pause, int, 0644);
81 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
82 
83 #define TC_DEFAULT 64
84 static int tc = TC_DEFAULT;
85 module_param(tc, int, 0644);
86 MODULE_PARM_DESC(tc, "DMA threshold control value");
87 
88 #define	DEFAULT_BUFSIZE	1536
89 static int buf_sz = DEFAULT_BUFSIZE;
90 module_param(buf_sz, int, 0644);
91 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
92 
93 #define	STMMAC_RX_COPYBREAK	256
94 
95 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
96 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
97 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
98 
99 #define STMMAC_DEFAULT_LPI_TIMER	1000
100 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
101 module_param(eee_timer, int, 0644);
102 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
103 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
104 
105 /* By default the driver will use the ring mode to manage tx and rx descriptors,
106  * but allow user to force to use the chain instead of the ring
107  */
108 static unsigned int chain_mode;
109 module_param(chain_mode, int, 0444);
110 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
111 
112 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
113 
114 #ifdef CONFIG_DEBUG_FS
115 static int stmmac_init_fs(struct net_device *dev);
116 static void stmmac_exit_fs(struct net_device *dev);
117 #endif
118 
119 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
120 
121 /**
122  * stmmac_verify_args - verify the driver parameters.
123  * Description: it checks the driver parameters and set a default in case of
124  * errors.
125  */
126 static void stmmac_verify_args(void)
127 {
128 	if (unlikely(watchdog < 0))
129 		watchdog = TX_TIMEO;
130 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
131 		buf_sz = DEFAULT_BUFSIZE;
132 	if (unlikely(flow_ctrl > 1))
133 		flow_ctrl = FLOW_AUTO;
134 	else if (likely(flow_ctrl < 0))
135 		flow_ctrl = FLOW_OFF;
136 	if (unlikely((pause < 0) || (pause > 0xffff)))
137 		pause = PAUSE_TIME;
138 	if (eee_timer < 0)
139 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
140 }
141 
142 /**
143  * stmmac_disable_all_queues - Disable all queues
144  * @priv: driver private structure
145  */
146 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
147 {
148 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
149 	u32 queue;
150 
151 	for (queue = 0; queue < rx_queues_cnt; queue++) {
152 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
153 
154 		napi_disable(&rx_q->napi);
155 	}
156 }
157 
158 /**
159  * stmmac_enable_all_queues - Enable all queues
160  * @priv: driver private structure
161  */
162 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
163 {
164 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
165 	u32 queue;
166 
167 	for (queue = 0; queue < rx_queues_cnt; queue++) {
168 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
169 
170 		napi_enable(&rx_q->napi);
171 	}
172 }
173 
174 /**
175  * stmmac_stop_all_queues - Stop all queues
176  * @priv: driver private structure
177  */
178 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
179 {
180 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
181 	u32 queue;
182 
183 	for (queue = 0; queue < tx_queues_cnt; queue++)
184 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
185 }
186 
187 /**
188  * stmmac_start_all_queues - Start all queues
189  * @priv: driver private structure
190  */
191 static void stmmac_start_all_queues(struct stmmac_priv *priv)
192 {
193 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
194 	u32 queue;
195 
196 	for (queue = 0; queue < tx_queues_cnt; queue++)
197 		netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
198 }
199 
200 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
201 {
202 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
203 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
204 		queue_work(priv->wq, &priv->service_task);
205 }
206 
207 static void stmmac_global_err(struct stmmac_priv *priv)
208 {
209 	netif_carrier_off(priv->dev);
210 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
211 	stmmac_service_event_schedule(priv);
212 }
213 
214 /**
215  * stmmac_clk_csr_set - dynamically set the MDC clock
216  * @priv: driver private structure
217  * Description: this is to dynamically set the MDC clock according to the csr
218  * clock input.
219  * Note:
220  *	If a specific clk_csr value is passed from the platform
221  *	this means that the CSR Clock Range selection cannot be
222  *	changed at run-time and it is fixed (as reported in the driver
223  *	documentation). Viceversa the driver will try to set the MDC
224  *	clock dynamically according to the actual clock input.
225  */
226 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
227 {
228 	u32 clk_rate;
229 
230 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
231 
232 	/* Platform provided default clk_csr would be assumed valid
233 	 * for all other cases except for the below mentioned ones.
234 	 * For values higher than the IEEE 802.3 specified frequency
235 	 * we can not estimate the proper divider as it is not known
236 	 * the frequency of clk_csr_i. So we do not change the default
237 	 * divider.
238 	 */
239 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
240 		if (clk_rate < CSR_F_35M)
241 			priv->clk_csr = STMMAC_CSR_20_35M;
242 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
243 			priv->clk_csr = STMMAC_CSR_35_60M;
244 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
245 			priv->clk_csr = STMMAC_CSR_60_100M;
246 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
247 			priv->clk_csr = STMMAC_CSR_100_150M;
248 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
249 			priv->clk_csr = STMMAC_CSR_150_250M;
250 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
251 			priv->clk_csr = STMMAC_CSR_250_300M;
252 	}
253 
254 	if (priv->plat->has_sun8i) {
255 		if (clk_rate > 160000000)
256 			priv->clk_csr = 0x03;
257 		else if (clk_rate > 80000000)
258 			priv->clk_csr = 0x02;
259 		else if (clk_rate > 40000000)
260 			priv->clk_csr = 0x01;
261 		else
262 			priv->clk_csr = 0;
263 	}
264 }
265 
266 static void print_pkt(unsigned char *buf, int len)
267 {
268 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
269 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
270 }
271 
272 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
273 {
274 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
275 	u32 avail;
276 
277 	if (tx_q->dirty_tx > tx_q->cur_tx)
278 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
279 	else
280 		avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
281 
282 	return avail;
283 }
284 
285 /**
286  * stmmac_rx_dirty - Get RX queue dirty
287  * @priv: driver private structure
288  * @queue: RX queue index
289  */
290 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
291 {
292 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
293 	u32 dirty;
294 
295 	if (rx_q->dirty_rx <= rx_q->cur_rx)
296 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
297 	else
298 		dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
299 
300 	return dirty;
301 }
302 
303 /**
304  * stmmac_hw_fix_mac_speed - callback for speed selection
305  * @priv: driver private structure
306  * Description: on some platforms (e.g. ST), some HW system configuration
307  * registers have to be set according to the link speed negotiated.
308  */
309 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
310 {
311 	struct net_device *ndev = priv->dev;
312 	struct phy_device *phydev = ndev->phydev;
313 
314 	if (likely(priv->plat->fix_mac_speed))
315 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
316 }
317 
318 /**
319  * stmmac_enable_eee_mode - check and enter in LPI mode
320  * @priv: driver private structure
321  * Description: this function is to verify and enter in LPI mode in case of
322  * EEE.
323  */
324 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
325 {
326 	u32 tx_cnt = priv->plat->tx_queues_to_use;
327 	u32 queue;
328 
329 	/* check if all TX queues have the work finished */
330 	for (queue = 0; queue < tx_cnt; queue++) {
331 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
332 
333 		if (tx_q->dirty_tx != tx_q->cur_tx)
334 			return; /* still unfinished work */
335 	}
336 
337 	/* Check and enter in LPI mode */
338 	if (!priv->tx_path_in_lpi_mode)
339 		stmmac_set_eee_mode(priv, priv->hw,
340 				priv->plat->en_tx_lpi_clockgating);
341 }
342 
343 /**
344  * stmmac_disable_eee_mode - disable and exit from LPI mode
345  * @priv: driver private structure
346  * Description: this function is to exit and disable EEE in case of
347  * LPI state is true. This is called by the xmit.
348  */
349 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
350 {
351 	stmmac_reset_eee_mode(priv, priv->hw);
352 	del_timer_sync(&priv->eee_ctrl_timer);
353 	priv->tx_path_in_lpi_mode = false;
354 }
355 
356 /**
357  * stmmac_eee_ctrl_timer - EEE TX SW timer.
358  * @arg : data hook
359  * Description:
360  *  if there is no data transfer and if we are not in LPI state,
361  *  then MAC Transmitter can be moved to LPI state.
362  */
363 static void stmmac_eee_ctrl_timer(struct timer_list *t)
364 {
365 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
366 
367 	stmmac_enable_eee_mode(priv);
368 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
369 }
370 
371 /**
372  * stmmac_eee_init - init EEE
373  * @priv: driver private structure
374  * Description:
375  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
376  *  can also manage EEE, this function enable the LPI state and start related
377  *  timer.
378  */
379 bool stmmac_eee_init(struct stmmac_priv *priv)
380 {
381 	struct net_device *ndev = priv->dev;
382 	int interface = priv->plat->interface;
383 	unsigned long flags;
384 	bool ret = false;
385 
386 	if ((interface != PHY_INTERFACE_MODE_MII) &&
387 	    (interface != PHY_INTERFACE_MODE_GMII) &&
388 	    !phy_interface_mode_is_rgmii(interface))
389 		goto out;
390 
391 	/* Using PCS we cannot dial with the phy registers at this stage
392 	 * so we do not support extra feature like EEE.
393 	 */
394 	if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
395 	    (priv->hw->pcs == STMMAC_PCS_TBI) ||
396 	    (priv->hw->pcs == STMMAC_PCS_RTBI))
397 		goto out;
398 
399 	/* MAC core supports the EEE feature. */
400 	if (priv->dma_cap.eee) {
401 		int tx_lpi_timer = priv->tx_lpi_timer;
402 
403 		/* Check if the PHY supports EEE */
404 		if (phy_init_eee(ndev->phydev, 1)) {
405 			/* To manage at run-time if the EEE cannot be supported
406 			 * anymore (for example because the lp caps have been
407 			 * changed).
408 			 * In that case the driver disable own timers.
409 			 */
410 			spin_lock_irqsave(&priv->lock, flags);
411 			if (priv->eee_active) {
412 				netdev_dbg(priv->dev, "disable EEE\n");
413 				del_timer_sync(&priv->eee_ctrl_timer);
414 				stmmac_set_eee_timer(priv, priv->hw, 0,
415 						tx_lpi_timer);
416 			}
417 			priv->eee_active = 0;
418 			spin_unlock_irqrestore(&priv->lock, flags);
419 			goto out;
420 		}
421 		/* Activate the EEE and start timers */
422 		spin_lock_irqsave(&priv->lock, flags);
423 		if (!priv->eee_active) {
424 			priv->eee_active = 1;
425 			timer_setup(&priv->eee_ctrl_timer,
426 				    stmmac_eee_ctrl_timer, 0);
427 			mod_timer(&priv->eee_ctrl_timer,
428 				  STMMAC_LPI_T(eee_timer));
429 
430 			stmmac_set_eee_timer(priv, priv->hw,
431 					STMMAC_DEFAULT_LIT_LS, tx_lpi_timer);
432 		}
433 		/* Set HW EEE according to the speed */
434 		stmmac_set_eee_pls(priv, priv->hw, ndev->phydev->link);
435 
436 		ret = true;
437 		spin_unlock_irqrestore(&priv->lock, flags);
438 
439 		netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
440 	}
441 out:
442 	return ret;
443 }
444 
445 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
446  * @priv: driver private structure
447  * @p : descriptor pointer
448  * @skb : the socket buffer
449  * Description :
450  * This function will read timestamp from the descriptor & pass it to stack.
451  * and also perform some sanity checks.
452  */
453 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
454 				   struct dma_desc *p, struct sk_buff *skb)
455 {
456 	struct skb_shared_hwtstamps shhwtstamp;
457 	u64 ns;
458 
459 	if (!priv->hwts_tx_en)
460 		return;
461 
462 	/* exit if skb doesn't support hw tstamp */
463 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
464 		return;
465 
466 	/* check tx tstamp status */
467 	if (stmmac_get_tx_timestamp_status(priv, p)) {
468 		/* get the valid tstamp */
469 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
470 
471 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
472 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
473 
474 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
475 		/* pass tstamp to stack */
476 		skb_tstamp_tx(skb, &shhwtstamp);
477 	}
478 
479 	return;
480 }
481 
482 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
483  * @priv: driver private structure
484  * @p : descriptor pointer
485  * @np : next descriptor pointer
486  * @skb : the socket buffer
487  * Description :
488  * This function will read received packet's timestamp from the descriptor
489  * and pass it to stack. It also perform some sanity checks.
490  */
491 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
492 				   struct dma_desc *np, struct sk_buff *skb)
493 {
494 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
495 	struct dma_desc *desc = p;
496 	u64 ns;
497 
498 	if (!priv->hwts_rx_en)
499 		return;
500 	/* For GMAC4, the valid timestamp is from CTX next desc. */
501 	if (priv->plat->has_gmac4)
502 		desc = np;
503 
504 	/* Check if timestamp is available */
505 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
506 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
507 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
508 		shhwtstamp = skb_hwtstamps(skb);
509 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
510 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
511 	} else  {
512 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
513 	}
514 }
515 
516 /**
517  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
518  *  @dev: device pointer.
519  *  @ifr: An IOCTL specific structure, that can contain a pointer to
520  *  a proprietary structure used to pass information to the driver.
521  *  Description:
522  *  This function configures the MAC to enable/disable both outgoing(TX)
523  *  and incoming(RX) packets time stamping based on user input.
524  *  Return Value:
525  *  0 on success and an appropriate -ve integer on failure.
526  */
527 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
528 {
529 	struct stmmac_priv *priv = netdev_priv(dev);
530 	struct hwtstamp_config config;
531 	struct timespec64 now;
532 	u64 temp = 0;
533 	u32 ptp_v2 = 0;
534 	u32 tstamp_all = 0;
535 	u32 ptp_over_ipv4_udp = 0;
536 	u32 ptp_over_ipv6_udp = 0;
537 	u32 ptp_over_ethernet = 0;
538 	u32 snap_type_sel = 0;
539 	u32 ts_master_en = 0;
540 	u32 ts_event_en = 0;
541 	u32 value = 0;
542 	u32 sec_inc;
543 
544 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
545 		netdev_alert(priv->dev, "No support for HW time stamping\n");
546 		priv->hwts_tx_en = 0;
547 		priv->hwts_rx_en = 0;
548 
549 		return -EOPNOTSUPP;
550 	}
551 
552 	if (copy_from_user(&config, ifr->ifr_data,
553 			   sizeof(struct hwtstamp_config)))
554 		return -EFAULT;
555 
556 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
557 		   __func__, config.flags, config.tx_type, config.rx_filter);
558 
559 	/* reserved for future extensions */
560 	if (config.flags)
561 		return -EINVAL;
562 
563 	if (config.tx_type != HWTSTAMP_TX_OFF &&
564 	    config.tx_type != HWTSTAMP_TX_ON)
565 		return -ERANGE;
566 
567 	if (priv->adv_ts) {
568 		switch (config.rx_filter) {
569 		case HWTSTAMP_FILTER_NONE:
570 			/* time stamp no incoming packet at all */
571 			config.rx_filter = HWTSTAMP_FILTER_NONE;
572 			break;
573 
574 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
575 			/* PTP v1, UDP, any kind of event packet */
576 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
577 			/* take time stamp for all event messages */
578 			if (priv->plat->has_gmac4)
579 				snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1;
580 			else
581 				snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
582 
583 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
584 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
585 			break;
586 
587 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
588 			/* PTP v1, UDP, Sync packet */
589 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
590 			/* take time stamp for SYNC messages only */
591 			ts_event_en = PTP_TCR_TSEVNTENA;
592 
593 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
594 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
595 			break;
596 
597 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
598 			/* PTP v1, UDP, Delay_req packet */
599 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
600 			/* take time stamp for Delay_Req messages only */
601 			ts_master_en = PTP_TCR_TSMSTRENA;
602 			ts_event_en = PTP_TCR_TSEVNTENA;
603 
604 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
605 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
606 			break;
607 
608 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
609 			/* PTP v2, UDP, any kind of event packet */
610 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
611 			ptp_v2 = PTP_TCR_TSVER2ENA;
612 			/* take time stamp for all event messages */
613 			if (priv->plat->has_gmac4)
614 				snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1;
615 			else
616 				snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
617 
618 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
619 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
620 			break;
621 
622 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
623 			/* PTP v2, UDP, Sync packet */
624 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
625 			ptp_v2 = PTP_TCR_TSVER2ENA;
626 			/* take time stamp for SYNC messages only */
627 			ts_event_en = PTP_TCR_TSEVNTENA;
628 
629 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
630 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
631 			break;
632 
633 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
634 			/* PTP v2, UDP, Delay_req packet */
635 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
636 			ptp_v2 = PTP_TCR_TSVER2ENA;
637 			/* take time stamp for Delay_Req messages only */
638 			ts_master_en = PTP_TCR_TSMSTRENA;
639 			ts_event_en = PTP_TCR_TSEVNTENA;
640 
641 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
642 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
643 			break;
644 
645 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
646 			/* PTP v2/802.AS1 any layer, any kind of event packet */
647 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
648 			ptp_v2 = PTP_TCR_TSVER2ENA;
649 			/* take time stamp for all event messages */
650 			if (priv->plat->has_gmac4)
651 				snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1;
652 			else
653 				snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
654 
655 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
656 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
657 			ptp_over_ethernet = PTP_TCR_TSIPENA;
658 			break;
659 
660 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
661 			/* PTP v2/802.AS1, any layer, Sync packet */
662 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
663 			ptp_v2 = PTP_TCR_TSVER2ENA;
664 			/* take time stamp for SYNC messages only */
665 			ts_event_en = PTP_TCR_TSEVNTENA;
666 
667 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
668 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
669 			ptp_over_ethernet = PTP_TCR_TSIPENA;
670 			break;
671 
672 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
673 			/* PTP v2/802.AS1, any layer, Delay_req packet */
674 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
675 			ptp_v2 = PTP_TCR_TSVER2ENA;
676 			/* take time stamp for Delay_Req messages only */
677 			ts_master_en = PTP_TCR_TSMSTRENA;
678 			ts_event_en = PTP_TCR_TSEVNTENA;
679 
680 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
681 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
682 			ptp_over_ethernet = PTP_TCR_TSIPENA;
683 			break;
684 
685 		case HWTSTAMP_FILTER_NTP_ALL:
686 		case HWTSTAMP_FILTER_ALL:
687 			/* time stamp any incoming packet */
688 			config.rx_filter = HWTSTAMP_FILTER_ALL;
689 			tstamp_all = PTP_TCR_TSENALL;
690 			break;
691 
692 		default:
693 			return -ERANGE;
694 		}
695 	} else {
696 		switch (config.rx_filter) {
697 		case HWTSTAMP_FILTER_NONE:
698 			config.rx_filter = HWTSTAMP_FILTER_NONE;
699 			break;
700 		default:
701 			/* PTP v1, UDP, any kind of event packet */
702 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
703 			break;
704 		}
705 	}
706 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
707 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
708 
709 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
710 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
711 	else {
712 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
713 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
714 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
715 			 ts_master_en | snap_type_sel);
716 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
717 
718 		/* program Sub Second Increment reg */
719 		stmmac_config_sub_second_increment(priv,
720 				priv->ptpaddr, priv->plat->clk_ptp_rate,
721 				priv->plat->has_gmac4, &sec_inc);
722 		temp = div_u64(1000000000ULL, sec_inc);
723 
724 		/* calculate default added value:
725 		 * formula is :
726 		 * addend = (2^32)/freq_div_ratio;
727 		 * where, freq_div_ratio = 1e9ns/sec_inc
728 		 */
729 		temp = (u64)(temp << 32);
730 		priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
731 		stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
732 
733 		/* initialize system time */
734 		ktime_get_real_ts64(&now);
735 
736 		/* lower 32 bits of tv_sec are safe until y2106 */
737 		stmmac_init_systime(priv, priv->ptpaddr,
738 				(u32)now.tv_sec, now.tv_nsec);
739 	}
740 
741 	return copy_to_user(ifr->ifr_data, &config,
742 			    sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
743 }
744 
745 /**
746  * stmmac_init_ptp - init PTP
747  * @priv: driver private structure
748  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
749  * This is done by looking at the HW cap. register.
750  * This function also registers the ptp driver.
751  */
752 static int stmmac_init_ptp(struct stmmac_priv *priv)
753 {
754 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
755 		return -EOPNOTSUPP;
756 
757 	priv->adv_ts = 0;
758 	/* Check if adv_ts can be enabled for dwmac 4.x core */
759 	if (priv->plat->has_gmac4 && priv->dma_cap.atime_stamp)
760 		priv->adv_ts = 1;
761 	/* Dwmac 3.x core with extend_desc can support adv_ts */
762 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
763 		priv->adv_ts = 1;
764 
765 	if (priv->dma_cap.time_stamp)
766 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
767 
768 	if (priv->adv_ts)
769 		netdev_info(priv->dev,
770 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
771 
772 	priv->hw->ptp = &stmmac_ptp;
773 	priv->hwts_tx_en = 0;
774 	priv->hwts_rx_en = 0;
775 
776 	stmmac_ptp_register(priv);
777 
778 	return 0;
779 }
780 
781 static void stmmac_release_ptp(struct stmmac_priv *priv)
782 {
783 	if (priv->plat->clk_ptp_ref)
784 		clk_disable_unprepare(priv->plat->clk_ptp_ref);
785 	stmmac_ptp_unregister(priv);
786 }
787 
788 /**
789  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
790  *  @priv: driver private structure
791  *  Description: It is used for configuring the flow control in all queues
792  */
793 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
794 {
795 	u32 tx_cnt = priv->plat->tx_queues_to_use;
796 
797 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
798 			priv->pause, tx_cnt);
799 }
800 
801 /**
802  * stmmac_adjust_link - adjusts the link parameters
803  * @dev: net device structure
804  * Description: this is the helper called by the physical abstraction layer
805  * drivers to communicate the phy link status. According the speed and duplex
806  * this driver can invoke registered glue-logic as well.
807  * It also invoke the eee initialization because it could happen when switch
808  * on different networks (that are eee capable).
809  */
810 static void stmmac_adjust_link(struct net_device *dev)
811 {
812 	struct stmmac_priv *priv = netdev_priv(dev);
813 	struct phy_device *phydev = dev->phydev;
814 	unsigned long flags;
815 	bool new_state = false;
816 
817 	if (!phydev)
818 		return;
819 
820 	spin_lock_irqsave(&priv->lock, flags);
821 
822 	if (phydev->link) {
823 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
824 
825 		/* Now we make sure that we can be in full duplex mode.
826 		 * If not, we operate in half-duplex mode. */
827 		if (phydev->duplex != priv->oldduplex) {
828 			new_state = true;
829 			if (!phydev->duplex)
830 				ctrl &= ~priv->hw->link.duplex;
831 			else
832 				ctrl |= priv->hw->link.duplex;
833 			priv->oldduplex = phydev->duplex;
834 		}
835 		/* Flow Control operation */
836 		if (phydev->pause)
837 			stmmac_mac_flow_ctrl(priv, phydev->duplex);
838 
839 		if (phydev->speed != priv->speed) {
840 			new_state = true;
841 			ctrl &= ~priv->hw->link.speed_mask;
842 			switch (phydev->speed) {
843 			case SPEED_1000:
844 				ctrl |= priv->hw->link.speed1000;
845 				break;
846 			case SPEED_100:
847 				ctrl |= priv->hw->link.speed100;
848 				break;
849 			case SPEED_10:
850 				ctrl |= priv->hw->link.speed10;
851 				break;
852 			default:
853 				netif_warn(priv, link, priv->dev,
854 					   "broken speed: %d\n", phydev->speed);
855 				phydev->speed = SPEED_UNKNOWN;
856 				break;
857 			}
858 			if (phydev->speed != SPEED_UNKNOWN)
859 				stmmac_hw_fix_mac_speed(priv);
860 			priv->speed = phydev->speed;
861 		}
862 
863 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
864 
865 		if (!priv->oldlink) {
866 			new_state = true;
867 			priv->oldlink = true;
868 		}
869 	} else if (priv->oldlink) {
870 		new_state = true;
871 		priv->oldlink = false;
872 		priv->speed = SPEED_UNKNOWN;
873 		priv->oldduplex = DUPLEX_UNKNOWN;
874 	}
875 
876 	if (new_state && netif_msg_link(priv))
877 		phy_print_status(phydev);
878 
879 	spin_unlock_irqrestore(&priv->lock, flags);
880 
881 	if (phydev->is_pseudo_fixed_link)
882 		/* Stop PHY layer to call the hook to adjust the link in case
883 		 * of a switch is attached to the stmmac driver.
884 		 */
885 		phydev->irq = PHY_IGNORE_INTERRUPT;
886 	else
887 		/* At this stage, init the EEE if supported.
888 		 * Never called in case of fixed_link.
889 		 */
890 		priv->eee_enabled = stmmac_eee_init(priv);
891 }
892 
893 /**
894  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
895  * @priv: driver private structure
896  * Description: this is to verify if the HW supports the PCS.
897  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
898  * configured for the TBI, RTBI, or SGMII PHY interface.
899  */
900 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
901 {
902 	int interface = priv->plat->interface;
903 
904 	if (priv->dma_cap.pcs) {
905 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
906 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
907 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
908 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
909 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
910 			priv->hw->pcs = STMMAC_PCS_RGMII;
911 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
912 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
913 			priv->hw->pcs = STMMAC_PCS_SGMII;
914 		}
915 	}
916 }
917 
918 /**
919  * stmmac_init_phy - PHY initialization
920  * @dev: net device structure
921  * Description: it initializes the driver's PHY state, and attaches the PHY
922  * to the mac driver.
923  *  Return value:
924  *  0 on success
925  */
926 static int stmmac_init_phy(struct net_device *dev)
927 {
928 	struct stmmac_priv *priv = netdev_priv(dev);
929 	struct phy_device *phydev;
930 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
931 	char bus_id[MII_BUS_ID_SIZE];
932 	int interface = priv->plat->interface;
933 	int max_speed = priv->plat->max_speed;
934 	priv->oldlink = false;
935 	priv->speed = SPEED_UNKNOWN;
936 	priv->oldduplex = DUPLEX_UNKNOWN;
937 
938 	if (priv->plat->phy_node) {
939 		phydev = of_phy_connect(dev, priv->plat->phy_node,
940 					&stmmac_adjust_link, 0, interface);
941 	} else {
942 		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
943 			 priv->plat->bus_id);
944 
945 		snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
946 			 priv->plat->phy_addr);
947 		netdev_dbg(priv->dev, "%s: trying to attach to %s\n", __func__,
948 			   phy_id_fmt);
949 
950 		phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
951 				     interface);
952 	}
953 
954 	if (IS_ERR_OR_NULL(phydev)) {
955 		netdev_err(priv->dev, "Could not attach to PHY\n");
956 		if (!phydev)
957 			return -ENODEV;
958 
959 		return PTR_ERR(phydev);
960 	}
961 
962 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
963 	if ((interface == PHY_INTERFACE_MODE_MII) ||
964 	    (interface == PHY_INTERFACE_MODE_RMII) ||
965 		(max_speed < 1000 && max_speed > 0))
966 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
967 					 SUPPORTED_1000baseT_Full);
968 
969 	/*
970 	 * Broken HW is sometimes missing the pull-up resistor on the
971 	 * MDIO line, which results in reads to non-existent devices returning
972 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
973 	 * device as well.
974 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
975 	 */
976 	if (!priv->plat->phy_node && phydev->phy_id == 0) {
977 		phy_disconnect(phydev);
978 		return -ENODEV;
979 	}
980 
981 	/* stmmac_adjust_link will change this to PHY_IGNORE_INTERRUPT to avoid
982 	 * subsequent PHY polling, make sure we force a link transition if
983 	 * we have a UP/DOWN/UP transition
984 	 */
985 	if (phydev->is_pseudo_fixed_link)
986 		phydev->irq = PHY_POLL;
987 
988 	phy_attached_info(phydev);
989 	return 0;
990 }
991 
992 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
993 {
994 	u32 rx_cnt = priv->plat->rx_queues_to_use;
995 	void *head_rx;
996 	u32 queue;
997 
998 	/* Display RX rings */
999 	for (queue = 0; queue < rx_cnt; queue++) {
1000 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1001 
1002 		pr_info("\tRX Queue %u rings\n", queue);
1003 
1004 		if (priv->extend_desc)
1005 			head_rx = (void *)rx_q->dma_erx;
1006 		else
1007 			head_rx = (void *)rx_q->dma_rx;
1008 
1009 		/* Display RX ring */
1010 		stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1011 	}
1012 }
1013 
1014 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1015 {
1016 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1017 	void *head_tx;
1018 	u32 queue;
1019 
1020 	/* Display TX rings */
1021 	for (queue = 0; queue < tx_cnt; queue++) {
1022 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1023 
1024 		pr_info("\tTX Queue %d rings\n", queue);
1025 
1026 		if (priv->extend_desc)
1027 			head_tx = (void *)tx_q->dma_etx;
1028 		else
1029 			head_tx = (void *)tx_q->dma_tx;
1030 
1031 		stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1032 	}
1033 }
1034 
1035 static void stmmac_display_rings(struct stmmac_priv *priv)
1036 {
1037 	/* Display RX ring */
1038 	stmmac_display_rx_rings(priv);
1039 
1040 	/* Display TX ring */
1041 	stmmac_display_tx_rings(priv);
1042 }
1043 
1044 static int stmmac_set_bfsize(int mtu, int bufsize)
1045 {
1046 	int ret = bufsize;
1047 
1048 	if (mtu >= BUF_SIZE_4KiB)
1049 		ret = BUF_SIZE_8KiB;
1050 	else if (mtu >= BUF_SIZE_2KiB)
1051 		ret = BUF_SIZE_4KiB;
1052 	else if (mtu > DEFAULT_BUFSIZE)
1053 		ret = BUF_SIZE_2KiB;
1054 	else
1055 		ret = DEFAULT_BUFSIZE;
1056 
1057 	return ret;
1058 }
1059 
1060 /**
1061  * stmmac_clear_rx_descriptors - clear RX descriptors
1062  * @priv: driver private structure
1063  * @queue: RX queue index
1064  * Description: this function is called to clear the RX descriptors
1065  * in case of both basic and extended descriptors are used.
1066  */
1067 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1068 {
1069 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1070 	int i;
1071 
1072 	/* Clear the RX descriptors */
1073 	for (i = 0; i < DMA_RX_SIZE; i++)
1074 		if (priv->extend_desc)
1075 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1076 					priv->use_riwt, priv->mode,
1077 					(i == DMA_RX_SIZE - 1));
1078 		else
1079 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1080 					priv->use_riwt, priv->mode,
1081 					(i == DMA_RX_SIZE - 1));
1082 }
1083 
1084 /**
1085  * stmmac_clear_tx_descriptors - clear tx descriptors
1086  * @priv: driver private structure
1087  * @queue: TX queue index.
1088  * Description: this function is called to clear the TX descriptors
1089  * in case of both basic and extended descriptors are used.
1090  */
1091 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1092 {
1093 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1094 	int i;
1095 
1096 	/* Clear the TX descriptors */
1097 	for (i = 0; i < DMA_TX_SIZE; i++)
1098 		if (priv->extend_desc)
1099 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1100 					priv->mode, (i == DMA_TX_SIZE - 1));
1101 		else
1102 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1103 					priv->mode, (i == DMA_TX_SIZE - 1));
1104 }
1105 
1106 /**
1107  * stmmac_clear_descriptors - clear descriptors
1108  * @priv: driver private structure
1109  * Description: this function is called to clear the TX and RX descriptors
1110  * in case of both basic and extended descriptors are used.
1111  */
1112 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1113 {
1114 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1115 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1116 	u32 queue;
1117 
1118 	/* Clear the RX descriptors */
1119 	for (queue = 0; queue < rx_queue_cnt; queue++)
1120 		stmmac_clear_rx_descriptors(priv, queue);
1121 
1122 	/* Clear the TX descriptors */
1123 	for (queue = 0; queue < tx_queue_cnt; queue++)
1124 		stmmac_clear_tx_descriptors(priv, queue);
1125 }
1126 
1127 /**
1128  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1129  * @priv: driver private structure
1130  * @p: descriptor pointer
1131  * @i: descriptor index
1132  * @flags: gfp flag
1133  * @queue: RX queue index
1134  * Description: this function is called to allocate a receive buffer, perform
1135  * the DMA mapping and init the descriptor.
1136  */
1137 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1138 				  int i, gfp_t flags, u32 queue)
1139 {
1140 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1141 	struct sk_buff *skb;
1142 
1143 	skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
1144 	if (!skb) {
1145 		netdev_err(priv->dev,
1146 			   "%s: Rx init fails; skb is NULL\n", __func__);
1147 		return -ENOMEM;
1148 	}
1149 	rx_q->rx_skbuff[i] = skb;
1150 	rx_q->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
1151 						priv->dma_buf_sz,
1152 						DMA_FROM_DEVICE);
1153 	if (dma_mapping_error(priv->device, rx_q->rx_skbuff_dma[i])) {
1154 		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
1155 		dev_kfree_skb_any(skb);
1156 		return -EINVAL;
1157 	}
1158 
1159 	if (priv->synopsys_id >= DWMAC_CORE_4_00)
1160 		p->des0 = cpu_to_le32(rx_q->rx_skbuff_dma[i]);
1161 	else
1162 		p->des2 = cpu_to_le32(rx_q->rx_skbuff_dma[i]);
1163 
1164 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1165 		stmmac_init_desc3(priv, p);
1166 
1167 	return 0;
1168 }
1169 
1170 /**
1171  * stmmac_free_rx_buffer - free RX dma buffers
1172  * @priv: private structure
1173  * @queue: RX queue index
1174  * @i: buffer index.
1175  */
1176 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1177 {
1178 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1179 
1180 	if (rx_q->rx_skbuff[i]) {
1181 		dma_unmap_single(priv->device, rx_q->rx_skbuff_dma[i],
1182 				 priv->dma_buf_sz, DMA_FROM_DEVICE);
1183 		dev_kfree_skb_any(rx_q->rx_skbuff[i]);
1184 	}
1185 	rx_q->rx_skbuff[i] = NULL;
1186 }
1187 
1188 /**
1189  * stmmac_free_tx_buffer - free RX dma buffers
1190  * @priv: private structure
1191  * @queue: RX queue index
1192  * @i: buffer index.
1193  */
1194 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1195 {
1196 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1197 
1198 	if (tx_q->tx_skbuff_dma[i].buf) {
1199 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1200 			dma_unmap_page(priv->device,
1201 				       tx_q->tx_skbuff_dma[i].buf,
1202 				       tx_q->tx_skbuff_dma[i].len,
1203 				       DMA_TO_DEVICE);
1204 		else
1205 			dma_unmap_single(priv->device,
1206 					 tx_q->tx_skbuff_dma[i].buf,
1207 					 tx_q->tx_skbuff_dma[i].len,
1208 					 DMA_TO_DEVICE);
1209 	}
1210 
1211 	if (tx_q->tx_skbuff[i]) {
1212 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1213 		tx_q->tx_skbuff[i] = NULL;
1214 		tx_q->tx_skbuff_dma[i].buf = 0;
1215 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1216 	}
1217 }
1218 
1219 /**
1220  * init_dma_rx_desc_rings - init the RX descriptor rings
1221  * @dev: net device structure
1222  * @flags: gfp flag.
1223  * Description: this function initializes the DMA RX descriptors
1224  * and allocates the socket buffers. It supports the chained and ring
1225  * modes.
1226  */
1227 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1228 {
1229 	struct stmmac_priv *priv = netdev_priv(dev);
1230 	u32 rx_count = priv->plat->rx_queues_to_use;
1231 	int ret = -ENOMEM;
1232 	int bfsize = 0;
1233 	int queue;
1234 	int i;
1235 
1236 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
1237 	if (bfsize < 0)
1238 		bfsize = 0;
1239 
1240 	if (bfsize < BUF_SIZE_16KiB)
1241 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1242 
1243 	priv->dma_buf_sz = bfsize;
1244 
1245 	/* RX INITIALIZATION */
1246 	netif_dbg(priv, probe, priv->dev,
1247 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1248 
1249 	for (queue = 0; queue < rx_count; queue++) {
1250 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1251 
1252 		netif_dbg(priv, probe, priv->dev,
1253 			  "(%s) dma_rx_phy=0x%08x\n", __func__,
1254 			  (u32)rx_q->dma_rx_phy);
1255 
1256 		for (i = 0; i < DMA_RX_SIZE; i++) {
1257 			struct dma_desc *p;
1258 
1259 			if (priv->extend_desc)
1260 				p = &((rx_q->dma_erx + i)->basic);
1261 			else
1262 				p = rx_q->dma_rx + i;
1263 
1264 			ret = stmmac_init_rx_buffers(priv, p, i, flags,
1265 						     queue);
1266 			if (ret)
1267 				goto err_init_rx_buffers;
1268 
1269 			netif_dbg(priv, probe, priv->dev, "[%p]\t[%p]\t[%x]\n",
1270 				  rx_q->rx_skbuff[i], rx_q->rx_skbuff[i]->data,
1271 				  (unsigned int)rx_q->rx_skbuff_dma[i]);
1272 		}
1273 
1274 		rx_q->cur_rx = 0;
1275 		rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1276 
1277 		stmmac_clear_rx_descriptors(priv, queue);
1278 
1279 		/* Setup the chained descriptor addresses */
1280 		if (priv->mode == STMMAC_CHAIN_MODE) {
1281 			if (priv->extend_desc)
1282 				stmmac_mode_init(priv, rx_q->dma_erx,
1283 						rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1284 			else
1285 				stmmac_mode_init(priv, rx_q->dma_rx,
1286 						rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1287 		}
1288 	}
1289 
1290 	buf_sz = bfsize;
1291 
1292 	return 0;
1293 
1294 err_init_rx_buffers:
1295 	while (queue >= 0) {
1296 		while (--i >= 0)
1297 			stmmac_free_rx_buffer(priv, queue, i);
1298 
1299 		if (queue == 0)
1300 			break;
1301 
1302 		i = DMA_RX_SIZE;
1303 		queue--;
1304 	}
1305 
1306 	return ret;
1307 }
1308 
1309 /**
1310  * init_dma_tx_desc_rings - init the TX descriptor rings
1311  * @dev: net device structure.
1312  * Description: this function initializes the DMA TX descriptors
1313  * and allocates the socket buffers. It supports the chained and ring
1314  * modes.
1315  */
1316 static int init_dma_tx_desc_rings(struct net_device *dev)
1317 {
1318 	struct stmmac_priv *priv = netdev_priv(dev);
1319 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1320 	u32 queue;
1321 	int i;
1322 
1323 	for (queue = 0; queue < tx_queue_cnt; queue++) {
1324 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1325 
1326 		netif_dbg(priv, probe, priv->dev,
1327 			  "(%s) dma_tx_phy=0x%08x\n", __func__,
1328 			 (u32)tx_q->dma_tx_phy);
1329 
1330 		/* Setup the chained descriptor addresses */
1331 		if (priv->mode == STMMAC_CHAIN_MODE) {
1332 			if (priv->extend_desc)
1333 				stmmac_mode_init(priv, tx_q->dma_etx,
1334 						tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1335 			else
1336 				stmmac_mode_init(priv, tx_q->dma_tx,
1337 						tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1338 		}
1339 
1340 		for (i = 0; i < DMA_TX_SIZE; i++) {
1341 			struct dma_desc *p;
1342 			if (priv->extend_desc)
1343 				p = &((tx_q->dma_etx + i)->basic);
1344 			else
1345 				p = tx_q->dma_tx + i;
1346 
1347 			if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1348 				p->des0 = 0;
1349 				p->des1 = 0;
1350 				p->des2 = 0;
1351 				p->des3 = 0;
1352 			} else {
1353 				p->des2 = 0;
1354 			}
1355 
1356 			tx_q->tx_skbuff_dma[i].buf = 0;
1357 			tx_q->tx_skbuff_dma[i].map_as_page = false;
1358 			tx_q->tx_skbuff_dma[i].len = 0;
1359 			tx_q->tx_skbuff_dma[i].last_segment = false;
1360 			tx_q->tx_skbuff[i] = NULL;
1361 		}
1362 
1363 		tx_q->dirty_tx = 0;
1364 		tx_q->cur_tx = 0;
1365 		tx_q->mss = 0;
1366 
1367 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1368 	}
1369 
1370 	return 0;
1371 }
1372 
1373 /**
1374  * init_dma_desc_rings - init the RX/TX descriptor rings
1375  * @dev: net device structure
1376  * @flags: gfp flag.
1377  * Description: this function initializes the DMA RX/TX descriptors
1378  * and allocates the socket buffers. It supports the chained and ring
1379  * modes.
1380  */
1381 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1382 {
1383 	struct stmmac_priv *priv = netdev_priv(dev);
1384 	int ret;
1385 
1386 	ret = init_dma_rx_desc_rings(dev, flags);
1387 	if (ret)
1388 		return ret;
1389 
1390 	ret = init_dma_tx_desc_rings(dev);
1391 
1392 	stmmac_clear_descriptors(priv);
1393 
1394 	if (netif_msg_hw(priv))
1395 		stmmac_display_rings(priv);
1396 
1397 	return ret;
1398 }
1399 
1400 /**
1401  * dma_free_rx_skbufs - free RX dma buffers
1402  * @priv: private structure
1403  * @queue: RX queue index
1404  */
1405 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1406 {
1407 	int i;
1408 
1409 	for (i = 0; i < DMA_RX_SIZE; i++)
1410 		stmmac_free_rx_buffer(priv, queue, i);
1411 }
1412 
1413 /**
1414  * dma_free_tx_skbufs - free TX dma buffers
1415  * @priv: private structure
1416  * @queue: TX queue index
1417  */
1418 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1419 {
1420 	int i;
1421 
1422 	for (i = 0; i < DMA_TX_SIZE; i++)
1423 		stmmac_free_tx_buffer(priv, queue, i);
1424 }
1425 
1426 /**
1427  * free_dma_rx_desc_resources - free RX dma desc resources
1428  * @priv: private structure
1429  */
1430 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1431 {
1432 	u32 rx_count = priv->plat->rx_queues_to_use;
1433 	u32 queue;
1434 
1435 	/* Free RX queue resources */
1436 	for (queue = 0; queue < rx_count; queue++) {
1437 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1438 
1439 		/* Release the DMA RX socket buffers */
1440 		dma_free_rx_skbufs(priv, queue);
1441 
1442 		/* Free DMA regions of consistent memory previously allocated */
1443 		if (!priv->extend_desc)
1444 			dma_free_coherent(priv->device,
1445 					  DMA_RX_SIZE * sizeof(struct dma_desc),
1446 					  rx_q->dma_rx, rx_q->dma_rx_phy);
1447 		else
1448 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1449 					  sizeof(struct dma_extended_desc),
1450 					  rx_q->dma_erx, rx_q->dma_rx_phy);
1451 
1452 		kfree(rx_q->rx_skbuff_dma);
1453 		kfree(rx_q->rx_skbuff);
1454 	}
1455 }
1456 
1457 /**
1458  * free_dma_tx_desc_resources - free TX dma desc resources
1459  * @priv: private structure
1460  */
1461 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1462 {
1463 	u32 tx_count = priv->plat->tx_queues_to_use;
1464 	u32 queue;
1465 
1466 	/* Free TX queue resources */
1467 	for (queue = 0; queue < tx_count; queue++) {
1468 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1469 
1470 		/* Release the DMA TX socket buffers */
1471 		dma_free_tx_skbufs(priv, queue);
1472 
1473 		/* Free DMA regions of consistent memory previously allocated */
1474 		if (!priv->extend_desc)
1475 			dma_free_coherent(priv->device,
1476 					  DMA_TX_SIZE * sizeof(struct dma_desc),
1477 					  tx_q->dma_tx, tx_q->dma_tx_phy);
1478 		else
1479 			dma_free_coherent(priv->device, DMA_TX_SIZE *
1480 					  sizeof(struct dma_extended_desc),
1481 					  tx_q->dma_etx, tx_q->dma_tx_phy);
1482 
1483 		kfree(tx_q->tx_skbuff_dma);
1484 		kfree(tx_q->tx_skbuff);
1485 	}
1486 }
1487 
1488 /**
1489  * alloc_dma_rx_desc_resources - alloc RX resources.
1490  * @priv: private structure
1491  * Description: according to which descriptor can be used (extend or basic)
1492  * this function allocates the resources for TX and RX paths. In case of
1493  * reception, for example, it pre-allocated the RX socket buffer in order to
1494  * allow zero-copy mechanism.
1495  */
1496 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1497 {
1498 	u32 rx_count = priv->plat->rx_queues_to_use;
1499 	int ret = -ENOMEM;
1500 	u32 queue;
1501 
1502 	/* RX queues buffers and DMA */
1503 	for (queue = 0; queue < rx_count; queue++) {
1504 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1505 
1506 		rx_q->queue_index = queue;
1507 		rx_q->priv_data = priv;
1508 
1509 		rx_q->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE,
1510 						    sizeof(dma_addr_t),
1511 						    GFP_KERNEL);
1512 		if (!rx_q->rx_skbuff_dma)
1513 			goto err_dma;
1514 
1515 		rx_q->rx_skbuff = kmalloc_array(DMA_RX_SIZE,
1516 						sizeof(struct sk_buff *),
1517 						GFP_KERNEL);
1518 		if (!rx_q->rx_skbuff)
1519 			goto err_dma;
1520 
1521 		if (priv->extend_desc) {
1522 			rx_q->dma_erx = dma_zalloc_coherent(priv->device,
1523 							    DMA_RX_SIZE *
1524 							    sizeof(struct
1525 							    dma_extended_desc),
1526 							    &rx_q->dma_rx_phy,
1527 							    GFP_KERNEL);
1528 			if (!rx_q->dma_erx)
1529 				goto err_dma;
1530 
1531 		} else {
1532 			rx_q->dma_rx = dma_zalloc_coherent(priv->device,
1533 							   DMA_RX_SIZE *
1534 							   sizeof(struct
1535 							   dma_desc),
1536 							   &rx_q->dma_rx_phy,
1537 							   GFP_KERNEL);
1538 			if (!rx_q->dma_rx)
1539 				goto err_dma;
1540 		}
1541 	}
1542 
1543 	return 0;
1544 
1545 err_dma:
1546 	free_dma_rx_desc_resources(priv);
1547 
1548 	return ret;
1549 }
1550 
1551 /**
1552  * alloc_dma_tx_desc_resources - alloc TX resources.
1553  * @priv: private structure
1554  * Description: according to which descriptor can be used (extend or basic)
1555  * this function allocates the resources for TX and RX paths. In case of
1556  * reception, for example, it pre-allocated the RX socket buffer in order to
1557  * allow zero-copy mechanism.
1558  */
1559 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1560 {
1561 	u32 tx_count = priv->plat->tx_queues_to_use;
1562 	int ret = -ENOMEM;
1563 	u32 queue;
1564 
1565 	/* TX queues buffers and DMA */
1566 	for (queue = 0; queue < tx_count; queue++) {
1567 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1568 
1569 		tx_q->queue_index = queue;
1570 		tx_q->priv_data = priv;
1571 
1572 		tx_q->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1573 						    sizeof(*tx_q->tx_skbuff_dma),
1574 						    GFP_KERNEL);
1575 		if (!tx_q->tx_skbuff_dma)
1576 			goto err_dma;
1577 
1578 		tx_q->tx_skbuff = kmalloc_array(DMA_TX_SIZE,
1579 						sizeof(struct sk_buff *),
1580 						GFP_KERNEL);
1581 		if (!tx_q->tx_skbuff)
1582 			goto err_dma;
1583 
1584 		if (priv->extend_desc) {
1585 			tx_q->dma_etx = dma_zalloc_coherent(priv->device,
1586 							    DMA_TX_SIZE *
1587 							    sizeof(struct
1588 							    dma_extended_desc),
1589 							    &tx_q->dma_tx_phy,
1590 							    GFP_KERNEL);
1591 			if (!tx_q->dma_etx)
1592 				goto err_dma;
1593 		} else {
1594 			tx_q->dma_tx = dma_zalloc_coherent(priv->device,
1595 							   DMA_TX_SIZE *
1596 							   sizeof(struct
1597 								  dma_desc),
1598 							   &tx_q->dma_tx_phy,
1599 							   GFP_KERNEL);
1600 			if (!tx_q->dma_tx)
1601 				goto err_dma;
1602 		}
1603 	}
1604 
1605 	return 0;
1606 
1607 err_dma:
1608 	free_dma_tx_desc_resources(priv);
1609 
1610 	return ret;
1611 }
1612 
1613 /**
1614  * alloc_dma_desc_resources - alloc TX/RX resources.
1615  * @priv: private structure
1616  * Description: according to which descriptor can be used (extend or basic)
1617  * this function allocates the resources for TX and RX paths. In case of
1618  * reception, for example, it pre-allocated the RX socket buffer in order to
1619  * allow zero-copy mechanism.
1620  */
1621 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1622 {
1623 	/* RX Allocation */
1624 	int ret = alloc_dma_rx_desc_resources(priv);
1625 
1626 	if (ret)
1627 		return ret;
1628 
1629 	ret = alloc_dma_tx_desc_resources(priv);
1630 
1631 	return ret;
1632 }
1633 
1634 /**
1635  * free_dma_desc_resources - free dma desc resources
1636  * @priv: private structure
1637  */
1638 static void free_dma_desc_resources(struct stmmac_priv *priv)
1639 {
1640 	/* Release the DMA RX socket buffers */
1641 	free_dma_rx_desc_resources(priv);
1642 
1643 	/* Release the DMA TX socket buffers */
1644 	free_dma_tx_desc_resources(priv);
1645 }
1646 
1647 /**
1648  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1649  *  @priv: driver private structure
1650  *  Description: It is used for enabling the rx queues in the MAC
1651  */
1652 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1653 {
1654 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
1655 	int queue;
1656 	u8 mode;
1657 
1658 	for (queue = 0; queue < rx_queues_count; queue++) {
1659 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1660 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1661 	}
1662 }
1663 
1664 /**
1665  * stmmac_start_rx_dma - start RX DMA channel
1666  * @priv: driver private structure
1667  * @chan: RX channel index
1668  * Description:
1669  * This starts a RX DMA channel
1670  */
1671 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1672 {
1673 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1674 	stmmac_start_rx(priv, priv->ioaddr, chan);
1675 }
1676 
1677 /**
1678  * stmmac_start_tx_dma - start TX DMA channel
1679  * @priv: driver private structure
1680  * @chan: TX channel index
1681  * Description:
1682  * This starts a TX DMA channel
1683  */
1684 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1685 {
1686 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1687 	stmmac_start_tx(priv, priv->ioaddr, chan);
1688 }
1689 
1690 /**
1691  * stmmac_stop_rx_dma - stop RX DMA channel
1692  * @priv: driver private structure
1693  * @chan: RX channel index
1694  * Description:
1695  * This stops a RX DMA channel
1696  */
1697 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1698 {
1699 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1700 	stmmac_stop_rx(priv, priv->ioaddr, chan);
1701 }
1702 
1703 /**
1704  * stmmac_stop_tx_dma - stop TX DMA channel
1705  * @priv: driver private structure
1706  * @chan: TX channel index
1707  * Description:
1708  * This stops a TX DMA channel
1709  */
1710 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1711 {
1712 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1713 	stmmac_stop_tx(priv, priv->ioaddr, chan);
1714 }
1715 
1716 /**
1717  * stmmac_start_all_dma - start all RX and TX DMA channels
1718  * @priv: driver private structure
1719  * Description:
1720  * This starts all the RX and TX DMA channels
1721  */
1722 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1723 {
1724 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1725 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1726 	u32 chan = 0;
1727 
1728 	for (chan = 0; chan < rx_channels_count; chan++)
1729 		stmmac_start_rx_dma(priv, chan);
1730 
1731 	for (chan = 0; chan < tx_channels_count; chan++)
1732 		stmmac_start_tx_dma(priv, chan);
1733 }
1734 
1735 /**
1736  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1737  * @priv: driver private structure
1738  * Description:
1739  * This stops the RX and TX DMA channels
1740  */
1741 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1742 {
1743 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1744 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1745 	u32 chan = 0;
1746 
1747 	for (chan = 0; chan < rx_channels_count; chan++)
1748 		stmmac_stop_rx_dma(priv, chan);
1749 
1750 	for (chan = 0; chan < tx_channels_count; chan++)
1751 		stmmac_stop_tx_dma(priv, chan);
1752 }
1753 
1754 /**
1755  *  stmmac_dma_operation_mode - HW DMA operation mode
1756  *  @priv: driver private structure
1757  *  Description: it is used for configuring the DMA operation mode register in
1758  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1759  */
1760 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1761 {
1762 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1763 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1764 	int rxfifosz = priv->plat->rx_fifo_size;
1765 	int txfifosz = priv->plat->tx_fifo_size;
1766 	u32 txmode = 0;
1767 	u32 rxmode = 0;
1768 	u32 chan = 0;
1769 	u8 qmode = 0;
1770 
1771 	if (rxfifosz == 0)
1772 		rxfifosz = priv->dma_cap.rx_fifo_size;
1773 	if (txfifosz == 0)
1774 		txfifosz = priv->dma_cap.tx_fifo_size;
1775 
1776 	/* Adjust for real per queue fifo size */
1777 	rxfifosz /= rx_channels_count;
1778 	txfifosz /= tx_channels_count;
1779 
1780 	if (priv->plat->force_thresh_dma_mode) {
1781 		txmode = tc;
1782 		rxmode = tc;
1783 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1784 		/*
1785 		 * In case of GMAC, SF mode can be enabled
1786 		 * to perform the TX COE in HW. This depends on:
1787 		 * 1) TX COE if actually supported
1788 		 * 2) There is no bugged Jumbo frame support
1789 		 *    that needs to not insert csum in the TDES.
1790 		 */
1791 		txmode = SF_DMA_MODE;
1792 		rxmode = SF_DMA_MODE;
1793 		priv->xstats.threshold = SF_DMA_MODE;
1794 	} else {
1795 		txmode = tc;
1796 		rxmode = SF_DMA_MODE;
1797 	}
1798 
1799 	/* configure all channels */
1800 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1801 		for (chan = 0; chan < rx_channels_count; chan++) {
1802 			qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1803 
1804 			stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1805 					rxfifosz, qmode);
1806 		}
1807 
1808 		for (chan = 0; chan < tx_channels_count; chan++) {
1809 			qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1810 
1811 			stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1812 					txfifosz, qmode);
1813 		}
1814 	} else {
1815 		stmmac_dma_mode(priv, priv->ioaddr, txmode, rxmode, rxfifosz);
1816 	}
1817 }
1818 
1819 /**
1820  * stmmac_tx_clean - to manage the transmission completion
1821  * @priv: driver private structure
1822  * @queue: TX queue index
1823  * Description: it reclaims the transmit resources after transmission completes.
1824  */
1825 static void stmmac_tx_clean(struct stmmac_priv *priv, u32 queue)
1826 {
1827 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1828 	unsigned int bytes_compl = 0, pkts_compl = 0;
1829 	unsigned int entry;
1830 
1831 	netif_tx_lock(priv->dev);
1832 
1833 	priv->xstats.tx_clean++;
1834 
1835 	entry = tx_q->dirty_tx;
1836 	while (entry != tx_q->cur_tx) {
1837 		struct sk_buff *skb = tx_q->tx_skbuff[entry];
1838 		struct dma_desc *p;
1839 		int status;
1840 
1841 		if (priv->extend_desc)
1842 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
1843 		else
1844 			p = tx_q->dma_tx + entry;
1845 
1846 		status = stmmac_tx_status(priv, &priv->dev->stats,
1847 				&priv->xstats, p, priv->ioaddr);
1848 		/* Check if the descriptor is owned by the DMA */
1849 		if (unlikely(status & tx_dma_own))
1850 			break;
1851 
1852 		/* Make sure descriptor fields are read after reading
1853 		 * the own bit.
1854 		 */
1855 		dma_rmb();
1856 
1857 		/* Just consider the last segment and ...*/
1858 		if (likely(!(status & tx_not_ls))) {
1859 			/* ... verify the status error condition */
1860 			if (unlikely(status & tx_err)) {
1861 				priv->dev->stats.tx_errors++;
1862 			} else {
1863 				priv->dev->stats.tx_packets++;
1864 				priv->xstats.tx_pkt_n++;
1865 			}
1866 			stmmac_get_tx_hwtstamp(priv, p, skb);
1867 		}
1868 
1869 		if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1870 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
1871 				dma_unmap_page(priv->device,
1872 					       tx_q->tx_skbuff_dma[entry].buf,
1873 					       tx_q->tx_skbuff_dma[entry].len,
1874 					       DMA_TO_DEVICE);
1875 			else
1876 				dma_unmap_single(priv->device,
1877 						 tx_q->tx_skbuff_dma[entry].buf,
1878 						 tx_q->tx_skbuff_dma[entry].len,
1879 						 DMA_TO_DEVICE);
1880 			tx_q->tx_skbuff_dma[entry].buf = 0;
1881 			tx_q->tx_skbuff_dma[entry].len = 0;
1882 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
1883 		}
1884 
1885 		stmmac_clean_desc3(priv, tx_q, p);
1886 
1887 		tx_q->tx_skbuff_dma[entry].last_segment = false;
1888 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1889 
1890 		if (likely(skb != NULL)) {
1891 			pkts_compl++;
1892 			bytes_compl += skb->len;
1893 			dev_consume_skb_any(skb);
1894 			tx_q->tx_skbuff[entry] = NULL;
1895 		}
1896 
1897 		stmmac_release_tx_desc(priv, p, priv->mode);
1898 
1899 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1900 	}
1901 	tx_q->dirty_tx = entry;
1902 
1903 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1904 				  pkts_compl, bytes_compl);
1905 
1906 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1907 								queue))) &&
1908 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1909 
1910 		netif_dbg(priv, tx_done, priv->dev,
1911 			  "%s: restart transmit\n", __func__);
1912 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1913 	}
1914 
1915 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1916 		stmmac_enable_eee_mode(priv);
1917 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1918 	}
1919 	netif_tx_unlock(priv->dev);
1920 }
1921 
1922 /**
1923  * stmmac_tx_err - to manage the tx error
1924  * @priv: driver private structure
1925  * @chan: channel index
1926  * Description: it cleans the descriptors and restarts the transmission
1927  * in case of transmission errors.
1928  */
1929 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1930 {
1931 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
1932 	int i;
1933 
1934 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
1935 
1936 	stmmac_stop_tx_dma(priv, chan);
1937 	dma_free_tx_skbufs(priv, chan);
1938 	for (i = 0; i < DMA_TX_SIZE; i++)
1939 		if (priv->extend_desc)
1940 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1941 					priv->mode, (i == DMA_TX_SIZE - 1));
1942 		else
1943 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1944 					priv->mode, (i == DMA_TX_SIZE - 1));
1945 	tx_q->dirty_tx = 0;
1946 	tx_q->cur_tx = 0;
1947 	tx_q->mss = 0;
1948 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
1949 	stmmac_start_tx_dma(priv, chan);
1950 
1951 	priv->dev->stats.tx_errors++;
1952 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
1953 }
1954 
1955 /**
1956  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
1957  *  @priv: driver private structure
1958  *  @txmode: TX operating mode
1959  *  @rxmode: RX operating mode
1960  *  @chan: channel index
1961  *  Description: it is used for configuring of the DMA operation mode in
1962  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
1963  *  mode.
1964  */
1965 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
1966 					  u32 rxmode, u32 chan)
1967 {
1968 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1969 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1970 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1971 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1972 	int rxfifosz = priv->plat->rx_fifo_size;
1973 	int txfifosz = priv->plat->tx_fifo_size;
1974 
1975 	if (rxfifosz == 0)
1976 		rxfifosz = priv->dma_cap.rx_fifo_size;
1977 	if (txfifosz == 0)
1978 		txfifosz = priv->dma_cap.tx_fifo_size;
1979 
1980 	/* Adjust for real per queue fifo size */
1981 	rxfifosz /= rx_channels_count;
1982 	txfifosz /= tx_channels_count;
1983 
1984 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1985 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz,
1986 				rxqmode);
1987 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz,
1988 				txqmode);
1989 	} else {
1990 		stmmac_dma_mode(priv, priv->ioaddr, txmode, rxmode, rxfifosz);
1991 	}
1992 }
1993 
1994 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
1995 {
1996 	int ret = false;
1997 
1998 	/* Safety features are only available in cores >= 5.10 */
1999 	if (priv->synopsys_id < DWMAC_CORE_5_10)
2000 		return ret;
2001 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2002 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2003 	if (ret && (ret != -EINVAL)) {
2004 		stmmac_global_err(priv);
2005 		return true;
2006 	}
2007 
2008 	return false;
2009 }
2010 
2011 /**
2012  * stmmac_dma_interrupt - DMA ISR
2013  * @priv: driver private structure
2014  * Description: this is the DMA ISR. It is called by the main ISR.
2015  * It calls the dwmac dma routine and schedule poll method in case of some
2016  * work can be done.
2017  */
2018 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2019 {
2020 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2021 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2022 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2023 				tx_channel_count : rx_channel_count;
2024 	u32 chan;
2025 	bool poll_scheduled = false;
2026 	int status[channels_to_check];
2027 
2028 	/* Each DMA channel can be used for rx and tx simultaneously, yet
2029 	 * napi_struct is embedded in struct stmmac_rx_queue rather than in a
2030 	 * stmmac_channel struct.
2031 	 * Because of this, stmmac_poll currently checks (and possibly wakes)
2032 	 * all tx queues rather than just a single tx queue.
2033 	 */
2034 	for (chan = 0; chan < channels_to_check; chan++)
2035 		status[chan] = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2036 				&priv->xstats, chan);
2037 
2038 	for (chan = 0; chan < rx_channel_count; chan++) {
2039 		if (likely(status[chan] & handle_rx)) {
2040 			struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2041 
2042 			if (likely(napi_schedule_prep(&rx_q->napi))) {
2043 				stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2044 				__napi_schedule(&rx_q->napi);
2045 				poll_scheduled = true;
2046 			}
2047 		}
2048 	}
2049 
2050 	/* If we scheduled poll, we already know that tx queues will be checked.
2051 	 * If we didn't schedule poll, see if any DMA channel (used by tx) has a
2052 	 * completed transmission, if so, call stmmac_poll (once).
2053 	 */
2054 	if (!poll_scheduled) {
2055 		for (chan = 0; chan < tx_channel_count; chan++) {
2056 			if (status[chan] & handle_tx) {
2057 				/* It doesn't matter what rx queue we choose
2058 				 * here. We use 0 since it always exists.
2059 				 */
2060 				struct stmmac_rx_queue *rx_q =
2061 					&priv->rx_queue[0];
2062 
2063 				if (likely(napi_schedule_prep(&rx_q->napi))) {
2064 					stmmac_disable_dma_irq(priv,
2065 							priv->ioaddr, chan);
2066 					__napi_schedule(&rx_q->napi);
2067 				}
2068 				break;
2069 			}
2070 		}
2071 	}
2072 
2073 	for (chan = 0; chan < tx_channel_count; chan++) {
2074 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2075 			/* Try to bump up the dma threshold on this failure */
2076 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2077 			    (tc <= 256)) {
2078 				tc += 64;
2079 				if (priv->plat->force_thresh_dma_mode)
2080 					stmmac_set_dma_operation_mode(priv,
2081 								      tc,
2082 								      tc,
2083 								      chan);
2084 				else
2085 					stmmac_set_dma_operation_mode(priv,
2086 								    tc,
2087 								    SF_DMA_MODE,
2088 								    chan);
2089 				priv->xstats.threshold = tc;
2090 			}
2091 		} else if (unlikely(status[chan] == tx_hard_error)) {
2092 			stmmac_tx_err(priv, chan);
2093 		}
2094 	}
2095 }
2096 
2097 /**
2098  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2099  * @priv: driver private structure
2100  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2101  */
2102 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2103 {
2104 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2105 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2106 
2107 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
2108 		priv->ptpaddr = priv->ioaddr + PTP_GMAC4_OFFSET;
2109 		priv->mmcaddr = priv->ioaddr + MMC_GMAC4_OFFSET;
2110 	} else {
2111 		priv->ptpaddr = priv->ioaddr + PTP_GMAC3_X_OFFSET;
2112 		priv->mmcaddr = priv->ioaddr + MMC_GMAC3_X_OFFSET;
2113 	}
2114 
2115 	dwmac_mmc_intr_all_mask(priv->mmcaddr);
2116 
2117 	if (priv->dma_cap.rmon) {
2118 		dwmac_mmc_ctrl(priv->mmcaddr, mode);
2119 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2120 	} else
2121 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2122 }
2123 
2124 /**
2125  * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
2126  * @priv: driver private structure
2127  * Description: select the Enhanced/Alternate or Normal descriptors.
2128  * In case of Enhanced/Alternate, it checks if the extended descriptors are
2129  * supported by the HW capability register.
2130  */
2131 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
2132 {
2133 	if (priv->plat->enh_desc) {
2134 		dev_info(priv->device, "Enhanced/Alternate descriptors\n");
2135 
2136 		/* GMAC older than 3.50 has no extended descriptors */
2137 		if (priv->synopsys_id >= DWMAC_CORE_3_50) {
2138 			dev_info(priv->device, "Enabled extended descriptors\n");
2139 			priv->extend_desc = 1;
2140 		} else
2141 			dev_warn(priv->device, "Extended descriptors not supported\n");
2142 
2143 		priv->hw->desc = &enh_desc_ops;
2144 	} else {
2145 		dev_info(priv->device, "Normal descriptors\n");
2146 		priv->hw->desc = &ndesc_ops;
2147 	}
2148 }
2149 
2150 /**
2151  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2152  * @priv: driver private structure
2153  * Description:
2154  *  new GMAC chip generations have a new register to indicate the
2155  *  presence of the optional feature/functions.
2156  *  This can be also used to override the value passed through the
2157  *  platform and necessary for old MAC10/100 and GMAC chips.
2158  */
2159 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2160 {
2161 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2162 }
2163 
2164 /**
2165  * stmmac_check_ether_addr - check if the MAC addr is valid
2166  * @priv: driver private structure
2167  * Description:
2168  * it is to verify if the MAC address is valid, in case of failures it
2169  * generates a random MAC address
2170  */
2171 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2172 {
2173 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2174 		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2175 		if (!is_valid_ether_addr(priv->dev->dev_addr))
2176 			eth_hw_addr_random(priv->dev);
2177 		netdev_info(priv->dev, "device MAC address %pM\n",
2178 			    priv->dev->dev_addr);
2179 	}
2180 }
2181 
2182 /**
2183  * stmmac_init_dma_engine - DMA init.
2184  * @priv: driver private structure
2185  * Description:
2186  * It inits the DMA invoking the specific MAC/GMAC callback.
2187  * Some DMA parameters can be passed from the platform;
2188  * in case of these are not passed a default is kept for the MAC or GMAC.
2189  */
2190 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2191 {
2192 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2193 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2194 	struct stmmac_rx_queue *rx_q;
2195 	struct stmmac_tx_queue *tx_q;
2196 	u32 dummy_dma_rx_phy = 0;
2197 	u32 dummy_dma_tx_phy = 0;
2198 	u32 chan = 0;
2199 	int atds = 0;
2200 	int ret = 0;
2201 
2202 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2203 		dev_err(priv->device, "Invalid DMA configuration\n");
2204 		return -EINVAL;
2205 	}
2206 
2207 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2208 		atds = 1;
2209 
2210 	ret = stmmac_reset(priv, priv->ioaddr);
2211 	if (ret) {
2212 		dev_err(priv->device, "Failed to reset the dma\n");
2213 		return ret;
2214 	}
2215 
2216 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
2217 		/* DMA Configuration */
2218 		stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg,
2219 				dummy_dma_tx_phy, dummy_dma_rx_phy, atds);
2220 
2221 		/* DMA RX Channel Configuration */
2222 		for (chan = 0; chan < rx_channels_count; chan++) {
2223 			rx_q = &priv->rx_queue[chan];
2224 
2225 			stmmac_init_rx_chan(priv, priv->ioaddr,
2226 					priv->plat->dma_cfg, rx_q->dma_rx_phy,
2227 					chan);
2228 
2229 			rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2230 				    (DMA_RX_SIZE * sizeof(struct dma_desc));
2231 			stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2232 					rx_q->rx_tail_addr, chan);
2233 		}
2234 
2235 		/* DMA TX Channel Configuration */
2236 		for (chan = 0; chan < tx_channels_count; chan++) {
2237 			tx_q = &priv->tx_queue[chan];
2238 
2239 			stmmac_init_chan(priv, priv->ioaddr,
2240 					priv->plat->dma_cfg, chan);
2241 
2242 			stmmac_init_tx_chan(priv, priv->ioaddr,
2243 					priv->plat->dma_cfg, tx_q->dma_tx_phy,
2244 					chan);
2245 
2246 			tx_q->tx_tail_addr = tx_q->dma_tx_phy +
2247 				    (DMA_TX_SIZE * sizeof(struct dma_desc));
2248 			stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2249 					tx_q->tx_tail_addr, chan);
2250 		}
2251 	} else {
2252 		rx_q = &priv->rx_queue[chan];
2253 		tx_q = &priv->tx_queue[chan];
2254 		stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg,
2255 				tx_q->dma_tx_phy, rx_q->dma_rx_phy, atds);
2256 	}
2257 
2258 	if (priv->plat->axi)
2259 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2260 
2261 	return ret;
2262 }
2263 
2264 /**
2265  * stmmac_tx_timer - mitigation sw timer for tx.
2266  * @data: data pointer
2267  * Description:
2268  * This is the timer handler to directly invoke the stmmac_tx_clean.
2269  */
2270 static void stmmac_tx_timer(struct timer_list *t)
2271 {
2272 	struct stmmac_priv *priv = from_timer(priv, t, txtimer);
2273 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2274 	u32 queue;
2275 
2276 	/* let's scan all the tx queues */
2277 	for (queue = 0; queue < tx_queues_count; queue++)
2278 		stmmac_tx_clean(priv, queue);
2279 }
2280 
2281 /**
2282  * stmmac_init_tx_coalesce - init tx mitigation options.
2283  * @priv: driver private structure
2284  * Description:
2285  * This inits the transmit coalesce parameters: i.e. timer rate,
2286  * timer handler and default threshold used for enabling the
2287  * interrupt on completion bit.
2288  */
2289 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
2290 {
2291 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
2292 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2293 	timer_setup(&priv->txtimer, stmmac_tx_timer, 0);
2294 	priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
2295 	add_timer(&priv->txtimer);
2296 }
2297 
2298 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2299 {
2300 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2301 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2302 	u32 chan;
2303 
2304 	/* set TX ring length */
2305 	for (chan = 0; chan < tx_channels_count; chan++)
2306 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2307 				(DMA_TX_SIZE - 1), chan);
2308 
2309 	/* set RX ring length */
2310 	for (chan = 0; chan < rx_channels_count; chan++)
2311 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2312 				(DMA_RX_SIZE - 1), chan);
2313 }
2314 
2315 /**
2316  *  stmmac_set_tx_queue_weight - Set TX queue weight
2317  *  @priv: driver private structure
2318  *  Description: It is used for setting TX queues weight
2319  */
2320 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2321 {
2322 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2323 	u32 weight;
2324 	u32 queue;
2325 
2326 	for (queue = 0; queue < tx_queues_count; queue++) {
2327 		weight = priv->plat->tx_queues_cfg[queue].weight;
2328 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2329 	}
2330 }
2331 
2332 /**
2333  *  stmmac_configure_cbs - Configure CBS in TX queue
2334  *  @priv: driver private structure
2335  *  Description: It is used for configuring CBS in AVB TX queues
2336  */
2337 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2338 {
2339 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2340 	u32 mode_to_use;
2341 	u32 queue;
2342 
2343 	/* queue 0 is reserved for legacy traffic */
2344 	for (queue = 1; queue < tx_queues_count; queue++) {
2345 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2346 		if (mode_to_use == MTL_QUEUE_DCB)
2347 			continue;
2348 
2349 		stmmac_config_cbs(priv, priv->hw,
2350 				priv->plat->tx_queues_cfg[queue].send_slope,
2351 				priv->plat->tx_queues_cfg[queue].idle_slope,
2352 				priv->plat->tx_queues_cfg[queue].high_credit,
2353 				priv->plat->tx_queues_cfg[queue].low_credit,
2354 				queue);
2355 	}
2356 }
2357 
2358 /**
2359  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2360  *  @priv: driver private structure
2361  *  Description: It is used for mapping RX queues to RX dma channels
2362  */
2363 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2364 {
2365 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2366 	u32 queue;
2367 	u32 chan;
2368 
2369 	for (queue = 0; queue < rx_queues_count; queue++) {
2370 		chan = priv->plat->rx_queues_cfg[queue].chan;
2371 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2372 	}
2373 }
2374 
2375 /**
2376  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2377  *  @priv: driver private structure
2378  *  Description: It is used for configuring the RX Queue Priority
2379  */
2380 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2381 {
2382 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2383 	u32 queue;
2384 	u32 prio;
2385 
2386 	for (queue = 0; queue < rx_queues_count; queue++) {
2387 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
2388 			continue;
2389 
2390 		prio = priv->plat->rx_queues_cfg[queue].prio;
2391 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2392 	}
2393 }
2394 
2395 /**
2396  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2397  *  @priv: driver private structure
2398  *  Description: It is used for configuring the TX Queue Priority
2399  */
2400 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2401 {
2402 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2403 	u32 queue;
2404 	u32 prio;
2405 
2406 	for (queue = 0; queue < tx_queues_count; queue++) {
2407 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
2408 			continue;
2409 
2410 		prio = priv->plat->tx_queues_cfg[queue].prio;
2411 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2412 	}
2413 }
2414 
2415 /**
2416  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2417  *  @priv: driver private structure
2418  *  Description: It is used for configuring the RX queue routing
2419  */
2420 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2421 {
2422 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2423 	u32 queue;
2424 	u8 packet;
2425 
2426 	for (queue = 0; queue < rx_queues_count; queue++) {
2427 		/* no specific packet type routing specified for the queue */
2428 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2429 			continue;
2430 
2431 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2432 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2433 	}
2434 }
2435 
2436 /**
2437  *  stmmac_mtl_configuration - Configure MTL
2438  *  @priv: driver private structure
2439  *  Description: It is used for configurring MTL
2440  */
2441 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2442 {
2443 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2444 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2445 
2446 	if (tx_queues_count > 1)
2447 		stmmac_set_tx_queue_weight(priv);
2448 
2449 	/* Configure MTL RX algorithms */
2450 	if (rx_queues_count > 1)
2451 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2452 				priv->plat->rx_sched_algorithm);
2453 
2454 	/* Configure MTL TX algorithms */
2455 	if (tx_queues_count > 1)
2456 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2457 				priv->plat->tx_sched_algorithm);
2458 
2459 	/* Configure CBS in AVB TX queues */
2460 	if (tx_queues_count > 1)
2461 		stmmac_configure_cbs(priv);
2462 
2463 	/* Map RX MTL to DMA channels */
2464 	stmmac_rx_queue_dma_chan_map(priv);
2465 
2466 	/* Enable MAC RX Queues */
2467 	stmmac_mac_enable_rx_queues(priv);
2468 
2469 	/* Set RX priorities */
2470 	if (rx_queues_count > 1)
2471 		stmmac_mac_config_rx_queues_prio(priv);
2472 
2473 	/* Set TX priorities */
2474 	if (tx_queues_count > 1)
2475 		stmmac_mac_config_tx_queues_prio(priv);
2476 
2477 	/* Set RX routing */
2478 	if (rx_queues_count > 1)
2479 		stmmac_mac_config_rx_queues_routing(priv);
2480 }
2481 
2482 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2483 {
2484 	if (priv->dma_cap.asp) {
2485 		netdev_info(priv->dev, "Enabling Safety Features\n");
2486 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2487 	} else {
2488 		netdev_info(priv->dev, "No Safety Features support found\n");
2489 	}
2490 }
2491 
2492 /**
2493  * stmmac_hw_setup - setup mac in a usable state.
2494  *  @dev : pointer to the device structure.
2495  *  Description:
2496  *  this is the main function to setup the HW in a usable state because the
2497  *  dma engine is reset, the core registers are configured (e.g. AXI,
2498  *  Checksum features, timers). The DMA is ready to start receiving and
2499  *  transmitting.
2500  *  Return value:
2501  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2502  *  file on failure.
2503  */
2504 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2505 {
2506 	struct stmmac_priv *priv = netdev_priv(dev);
2507 	u32 rx_cnt = priv->plat->rx_queues_to_use;
2508 	u32 tx_cnt = priv->plat->tx_queues_to_use;
2509 	u32 chan;
2510 	int ret;
2511 
2512 	/* DMA initialization and SW reset */
2513 	ret = stmmac_init_dma_engine(priv);
2514 	if (ret < 0) {
2515 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2516 			   __func__);
2517 		return ret;
2518 	}
2519 
2520 	/* Copy the MAC addr into the HW  */
2521 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2522 
2523 	/* PS and related bits will be programmed according to the speed */
2524 	if (priv->hw->pcs) {
2525 		int speed = priv->plat->mac_port_sel_speed;
2526 
2527 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
2528 		    (speed == SPEED_1000)) {
2529 			priv->hw->ps = speed;
2530 		} else {
2531 			dev_warn(priv->device, "invalid port speed\n");
2532 			priv->hw->ps = 0;
2533 		}
2534 	}
2535 
2536 	/* Initialize the MAC Core */
2537 	stmmac_core_init(priv, priv->hw, dev);
2538 
2539 	/* Initialize MTL*/
2540 	if (priv->synopsys_id >= DWMAC_CORE_4_00)
2541 		stmmac_mtl_configuration(priv);
2542 
2543 	/* Initialize Safety Features */
2544 	if (priv->synopsys_id >= DWMAC_CORE_5_10)
2545 		stmmac_safety_feat_configuration(priv);
2546 
2547 	ret = stmmac_rx_ipc(priv, priv->hw);
2548 	if (!ret) {
2549 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2550 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2551 		priv->hw->rx_csum = 0;
2552 	}
2553 
2554 	/* Enable the MAC Rx/Tx */
2555 	stmmac_mac_set(priv, priv->ioaddr, true);
2556 
2557 	/* Set the HW DMA mode and the COE */
2558 	stmmac_dma_operation_mode(priv);
2559 
2560 	stmmac_mmc_setup(priv);
2561 
2562 	if (init_ptp) {
2563 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2564 		if (ret < 0)
2565 			netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2566 
2567 		ret = stmmac_init_ptp(priv);
2568 		if (ret == -EOPNOTSUPP)
2569 			netdev_warn(priv->dev, "PTP not supported by HW\n");
2570 		else if (ret)
2571 			netdev_warn(priv->dev, "PTP init failed\n");
2572 	}
2573 
2574 #ifdef CONFIG_DEBUG_FS
2575 	ret = stmmac_init_fs(dev);
2576 	if (ret < 0)
2577 		netdev_warn(priv->dev, "%s: failed debugFS registration\n",
2578 			    __func__);
2579 #endif
2580 	/* Start the ball rolling... */
2581 	stmmac_start_all_dma(priv);
2582 
2583 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2584 
2585 	if (priv->use_riwt) {
2586 		ret = stmmac_rx_watchdog(priv, priv->ioaddr, MAX_DMA_RIWT, rx_cnt);
2587 		if (!ret)
2588 			priv->rx_riwt = MAX_DMA_RIWT;
2589 	}
2590 
2591 	if (priv->hw->pcs)
2592 		stmmac_pcs_ctrl_ane(priv, priv->hw, 1, priv->hw->ps, 0);
2593 
2594 	/* set TX and RX rings length */
2595 	stmmac_set_rings_length(priv);
2596 
2597 	/* Enable TSO */
2598 	if (priv->tso) {
2599 		for (chan = 0; chan < tx_cnt; chan++)
2600 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2601 	}
2602 
2603 	return 0;
2604 }
2605 
2606 static void stmmac_hw_teardown(struct net_device *dev)
2607 {
2608 	struct stmmac_priv *priv = netdev_priv(dev);
2609 
2610 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
2611 }
2612 
2613 /**
2614  *  stmmac_open - open entry point of the driver
2615  *  @dev : pointer to the device structure.
2616  *  Description:
2617  *  This function is the open entry point of the driver.
2618  *  Return value:
2619  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2620  *  file on failure.
2621  */
2622 static int stmmac_open(struct net_device *dev)
2623 {
2624 	struct stmmac_priv *priv = netdev_priv(dev);
2625 	int ret;
2626 
2627 	stmmac_check_ether_addr(priv);
2628 
2629 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2630 	    priv->hw->pcs != STMMAC_PCS_TBI &&
2631 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
2632 		ret = stmmac_init_phy(dev);
2633 		if (ret) {
2634 			netdev_err(priv->dev,
2635 				   "%s: Cannot attach to PHY (error: %d)\n",
2636 				   __func__, ret);
2637 			return ret;
2638 		}
2639 	}
2640 
2641 	/* Extra statistics */
2642 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2643 	priv->xstats.threshold = tc;
2644 
2645 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
2646 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2647 
2648 	ret = alloc_dma_desc_resources(priv);
2649 	if (ret < 0) {
2650 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2651 			   __func__);
2652 		goto dma_desc_error;
2653 	}
2654 
2655 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
2656 	if (ret < 0) {
2657 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2658 			   __func__);
2659 		goto init_error;
2660 	}
2661 
2662 	ret = stmmac_hw_setup(dev, true);
2663 	if (ret < 0) {
2664 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2665 		goto init_error;
2666 	}
2667 
2668 	stmmac_init_tx_coalesce(priv);
2669 
2670 	if (dev->phydev)
2671 		phy_start(dev->phydev);
2672 
2673 	/* Request the IRQ lines */
2674 	ret = request_irq(dev->irq, stmmac_interrupt,
2675 			  IRQF_SHARED, dev->name, dev);
2676 	if (unlikely(ret < 0)) {
2677 		netdev_err(priv->dev,
2678 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2679 			   __func__, dev->irq, ret);
2680 		goto irq_error;
2681 	}
2682 
2683 	/* Request the Wake IRQ in case of another line is used for WoL */
2684 	if (priv->wol_irq != dev->irq) {
2685 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
2686 				  IRQF_SHARED, dev->name, dev);
2687 		if (unlikely(ret < 0)) {
2688 			netdev_err(priv->dev,
2689 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2690 				   __func__, priv->wol_irq, ret);
2691 			goto wolirq_error;
2692 		}
2693 	}
2694 
2695 	/* Request the IRQ lines */
2696 	if (priv->lpi_irq > 0) {
2697 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2698 				  dev->name, dev);
2699 		if (unlikely(ret < 0)) {
2700 			netdev_err(priv->dev,
2701 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2702 				   __func__, priv->lpi_irq, ret);
2703 			goto lpiirq_error;
2704 		}
2705 	}
2706 
2707 	stmmac_enable_all_queues(priv);
2708 	stmmac_start_all_queues(priv);
2709 
2710 	return 0;
2711 
2712 lpiirq_error:
2713 	if (priv->wol_irq != dev->irq)
2714 		free_irq(priv->wol_irq, dev);
2715 wolirq_error:
2716 	free_irq(dev->irq, dev);
2717 irq_error:
2718 	if (dev->phydev)
2719 		phy_stop(dev->phydev);
2720 
2721 	del_timer_sync(&priv->txtimer);
2722 	stmmac_hw_teardown(dev);
2723 init_error:
2724 	free_dma_desc_resources(priv);
2725 dma_desc_error:
2726 	if (dev->phydev)
2727 		phy_disconnect(dev->phydev);
2728 
2729 	return ret;
2730 }
2731 
2732 /**
2733  *  stmmac_release - close entry point of the driver
2734  *  @dev : device pointer.
2735  *  Description:
2736  *  This is the stop entry point of the driver.
2737  */
2738 static int stmmac_release(struct net_device *dev)
2739 {
2740 	struct stmmac_priv *priv = netdev_priv(dev);
2741 
2742 	if (priv->eee_enabled)
2743 		del_timer_sync(&priv->eee_ctrl_timer);
2744 
2745 	/* Stop and disconnect the PHY */
2746 	if (dev->phydev) {
2747 		phy_stop(dev->phydev);
2748 		phy_disconnect(dev->phydev);
2749 	}
2750 
2751 	stmmac_stop_all_queues(priv);
2752 
2753 	stmmac_disable_all_queues(priv);
2754 
2755 	del_timer_sync(&priv->txtimer);
2756 
2757 	/* Free the IRQ lines */
2758 	free_irq(dev->irq, dev);
2759 	if (priv->wol_irq != dev->irq)
2760 		free_irq(priv->wol_irq, dev);
2761 	if (priv->lpi_irq > 0)
2762 		free_irq(priv->lpi_irq, dev);
2763 
2764 	/* Stop TX/RX DMA and clear the descriptors */
2765 	stmmac_stop_all_dma(priv);
2766 
2767 	/* Release and free the Rx/Tx resources */
2768 	free_dma_desc_resources(priv);
2769 
2770 	/* Disable the MAC Rx/Tx */
2771 	stmmac_mac_set(priv, priv->ioaddr, false);
2772 
2773 	netif_carrier_off(dev);
2774 
2775 #ifdef CONFIG_DEBUG_FS
2776 	stmmac_exit_fs(dev);
2777 #endif
2778 
2779 	stmmac_release_ptp(priv);
2780 
2781 	return 0;
2782 }
2783 
2784 /**
2785  *  stmmac_tso_allocator - close entry point of the driver
2786  *  @priv: driver private structure
2787  *  @des: buffer start address
2788  *  @total_len: total length to fill in descriptors
2789  *  @last_segmant: condition for the last descriptor
2790  *  @queue: TX queue index
2791  *  Description:
2792  *  This function fills descriptor and request new descriptors according to
2793  *  buffer length to fill
2794  */
2795 static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des,
2796 				 int total_len, bool last_segment, u32 queue)
2797 {
2798 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2799 	struct dma_desc *desc;
2800 	u32 buff_size;
2801 	int tmp_len;
2802 
2803 	tmp_len = total_len;
2804 
2805 	while (tmp_len > 0) {
2806 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2807 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2808 		desc = tx_q->dma_tx + tx_q->cur_tx;
2809 
2810 		desc->des0 = cpu_to_le32(des + (total_len - tmp_len));
2811 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2812 			    TSO_MAX_BUFF_SIZE : tmp_len;
2813 
2814 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2815 				0, 1,
2816 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2817 				0, 0);
2818 
2819 		tmp_len -= TSO_MAX_BUFF_SIZE;
2820 	}
2821 }
2822 
2823 /**
2824  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2825  *  @skb : the socket buffer
2826  *  @dev : device pointer
2827  *  Description: this is the transmit function that is called on TSO frames
2828  *  (support available on GMAC4 and newer chips).
2829  *  Diagram below show the ring programming in case of TSO frames:
2830  *
2831  *  First Descriptor
2832  *   --------
2833  *   | DES0 |---> buffer1 = L2/L3/L4 header
2834  *   | DES1 |---> TCP Payload (can continue on next descr...)
2835  *   | DES2 |---> buffer 1 and 2 len
2836  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2837  *   --------
2838  *	|
2839  *     ...
2840  *	|
2841  *   --------
2842  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2843  *   | DES1 | --|
2844  *   | DES2 | --> buffer 1 and 2 len
2845  *   | DES3 |
2846  *   --------
2847  *
2848  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2849  */
2850 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2851 {
2852 	struct dma_desc *desc, *first, *mss_desc = NULL;
2853 	struct stmmac_priv *priv = netdev_priv(dev);
2854 	int nfrags = skb_shinfo(skb)->nr_frags;
2855 	u32 queue = skb_get_queue_mapping(skb);
2856 	unsigned int first_entry, des;
2857 	struct stmmac_tx_queue *tx_q;
2858 	int tmp_pay_len = 0;
2859 	u32 pay_len, mss;
2860 	u8 proto_hdr_len;
2861 	int i;
2862 
2863 	tx_q = &priv->tx_queue[queue];
2864 
2865 	/* Compute header lengths */
2866 	proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2867 
2868 	/* Desc availability based on threshold should be enough safe */
2869 	if (unlikely(stmmac_tx_avail(priv, queue) <
2870 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2871 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2872 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2873 								queue));
2874 			/* This is a hard error, log it. */
2875 			netdev_err(priv->dev,
2876 				   "%s: Tx Ring full when queue awake\n",
2877 				   __func__);
2878 		}
2879 		return NETDEV_TX_BUSY;
2880 	}
2881 
2882 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2883 
2884 	mss = skb_shinfo(skb)->gso_size;
2885 
2886 	/* set new MSS value if needed */
2887 	if (mss != tx_q->mss) {
2888 		mss_desc = tx_q->dma_tx + tx_q->cur_tx;
2889 		stmmac_set_mss(priv, mss_desc, mss);
2890 		tx_q->mss = mss;
2891 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2892 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2893 	}
2894 
2895 	if (netif_msg_tx_queued(priv)) {
2896 		pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2897 			__func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2898 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2899 			skb->data_len);
2900 	}
2901 
2902 	first_entry = tx_q->cur_tx;
2903 	WARN_ON(tx_q->tx_skbuff[first_entry]);
2904 
2905 	desc = tx_q->dma_tx + first_entry;
2906 	first = desc;
2907 
2908 	/* first descriptor: fill Headers on Buf1 */
2909 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2910 			     DMA_TO_DEVICE);
2911 	if (dma_mapping_error(priv->device, des))
2912 		goto dma_map_err;
2913 
2914 	tx_q->tx_skbuff_dma[first_entry].buf = des;
2915 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2916 
2917 	first->des0 = cpu_to_le32(des);
2918 
2919 	/* Fill start of payload in buff2 of first descriptor */
2920 	if (pay_len)
2921 		first->des1 = cpu_to_le32(des + proto_hdr_len);
2922 
2923 	/* If needed take extra descriptors to fill the remaining payload */
2924 	tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2925 
2926 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
2927 
2928 	/* Prepare fragments */
2929 	for (i = 0; i < nfrags; i++) {
2930 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2931 
2932 		des = skb_frag_dma_map(priv->device, frag, 0,
2933 				       skb_frag_size(frag),
2934 				       DMA_TO_DEVICE);
2935 		if (dma_mapping_error(priv->device, des))
2936 			goto dma_map_err;
2937 
2938 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
2939 				     (i == nfrags - 1), queue);
2940 
2941 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
2942 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
2943 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
2944 	}
2945 
2946 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
2947 
2948 	/* Only the last descriptor gets to point to the skb. */
2949 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
2950 
2951 	/* We've used all descriptors we need for this skb, however,
2952 	 * advance cur_tx so that it references a fresh descriptor.
2953 	 * ndo_start_xmit will fill this descriptor the next time it's
2954 	 * called and stmmac_tx_clean may clean up to this descriptor.
2955 	 */
2956 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2957 
2958 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
2959 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
2960 			  __func__);
2961 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
2962 	}
2963 
2964 	dev->stats.tx_bytes += skb->len;
2965 	priv->xstats.tx_tso_frames++;
2966 	priv->xstats.tx_tso_nfrags += nfrags;
2967 
2968 	/* Manage tx mitigation */
2969 	priv->tx_count_frames += nfrags + 1;
2970 	if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
2971 		mod_timer(&priv->txtimer,
2972 			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
2973 	} else {
2974 		priv->tx_count_frames = 0;
2975 		stmmac_set_tx_ic(priv, desc);
2976 		priv->xstats.tx_set_ic_bit++;
2977 	}
2978 
2979 	skb_tx_timestamp(skb);
2980 
2981 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2982 		     priv->hwts_tx_en)) {
2983 		/* declare that device is doing timestamping */
2984 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2985 		stmmac_enable_tx_timestamp(priv, first);
2986 	}
2987 
2988 	/* Complete the first descriptor before granting the DMA */
2989 	stmmac_prepare_tso_tx_desc(priv, first, 1,
2990 			proto_hdr_len,
2991 			pay_len,
2992 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
2993 			tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
2994 
2995 	/* If context desc is used to change MSS */
2996 	if (mss_desc) {
2997 		/* Make sure that first descriptor has been completely
2998 		 * written, including its own bit. This is because MSS is
2999 		 * actually before first descriptor, so we need to make
3000 		 * sure that MSS's own bit is the last thing written.
3001 		 */
3002 		dma_wmb();
3003 		stmmac_set_tx_owner(priv, mss_desc);
3004 	}
3005 
3006 	/* The own bit must be the latest setting done when prepare the
3007 	 * descriptor and then barrier is needed to make sure that
3008 	 * all is coherent before granting the DMA engine.
3009 	 */
3010 	wmb();
3011 
3012 	if (netif_msg_pktdata(priv)) {
3013 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3014 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3015 			tx_q->cur_tx, first, nfrags);
3016 
3017 		stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0);
3018 
3019 		pr_info(">>> frame to be transmitted: ");
3020 		print_pkt(skb->data, skb_headlen(skb));
3021 	}
3022 
3023 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3024 
3025 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3026 
3027 	return NETDEV_TX_OK;
3028 
3029 dma_map_err:
3030 	dev_err(priv->device, "Tx dma map failed\n");
3031 	dev_kfree_skb(skb);
3032 	priv->dev->stats.tx_dropped++;
3033 	return NETDEV_TX_OK;
3034 }
3035 
3036 /**
3037  *  stmmac_xmit - Tx entry point of the driver
3038  *  @skb : the socket buffer
3039  *  @dev : device pointer
3040  *  Description : this is the tx entry point of the driver.
3041  *  It programs the chain or the ring and supports oversized frames
3042  *  and SG feature.
3043  */
3044 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3045 {
3046 	struct stmmac_priv *priv = netdev_priv(dev);
3047 	unsigned int nopaged_len = skb_headlen(skb);
3048 	int i, csum_insertion = 0, is_jumbo = 0;
3049 	u32 queue = skb_get_queue_mapping(skb);
3050 	int nfrags = skb_shinfo(skb)->nr_frags;
3051 	int entry;
3052 	unsigned int first_entry;
3053 	struct dma_desc *desc, *first;
3054 	struct stmmac_tx_queue *tx_q;
3055 	unsigned int enh_desc;
3056 	unsigned int des;
3057 
3058 	tx_q = &priv->tx_queue[queue];
3059 
3060 	/* Manage oversized TCP frames for GMAC4 device */
3061 	if (skb_is_gso(skb) && priv->tso) {
3062 		if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3063 			return stmmac_tso_xmit(skb, dev);
3064 	}
3065 
3066 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3067 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3068 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3069 								queue));
3070 			/* This is a hard error, log it. */
3071 			netdev_err(priv->dev,
3072 				   "%s: Tx Ring full when queue awake\n",
3073 				   __func__);
3074 		}
3075 		return NETDEV_TX_BUSY;
3076 	}
3077 
3078 	if (priv->tx_path_in_lpi_mode)
3079 		stmmac_disable_eee_mode(priv);
3080 
3081 	entry = tx_q->cur_tx;
3082 	first_entry = entry;
3083 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3084 
3085 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3086 
3087 	if (likely(priv->extend_desc))
3088 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3089 	else
3090 		desc = tx_q->dma_tx + entry;
3091 
3092 	first = desc;
3093 
3094 	enh_desc = priv->plat->enh_desc;
3095 	/* To program the descriptors according to the size of the frame */
3096 	if (enh_desc)
3097 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3098 
3099 	if (unlikely(is_jumbo) && likely(priv->synopsys_id <
3100 					 DWMAC_CORE_4_00)) {
3101 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3102 		if (unlikely(entry < 0))
3103 			goto dma_map_err;
3104 	}
3105 
3106 	for (i = 0; i < nfrags; i++) {
3107 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3108 		int len = skb_frag_size(frag);
3109 		bool last_segment = (i == (nfrags - 1));
3110 
3111 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3112 		WARN_ON(tx_q->tx_skbuff[entry]);
3113 
3114 		if (likely(priv->extend_desc))
3115 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3116 		else
3117 			desc = tx_q->dma_tx + entry;
3118 
3119 		des = skb_frag_dma_map(priv->device, frag, 0, len,
3120 				       DMA_TO_DEVICE);
3121 		if (dma_mapping_error(priv->device, des))
3122 			goto dma_map_err; /* should reuse desc w/o issues */
3123 
3124 		tx_q->tx_skbuff_dma[entry].buf = des;
3125 		if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
3126 			desc->des0 = cpu_to_le32(des);
3127 		else
3128 			desc->des2 = cpu_to_le32(des);
3129 
3130 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
3131 		tx_q->tx_skbuff_dma[entry].len = len;
3132 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3133 
3134 		/* Prepare the descriptor and set the own bit too */
3135 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3136 				priv->mode, 1, last_segment, skb->len);
3137 	}
3138 
3139 	/* Only the last descriptor gets to point to the skb. */
3140 	tx_q->tx_skbuff[entry] = skb;
3141 
3142 	/* We've used all descriptors we need for this skb, however,
3143 	 * advance cur_tx so that it references a fresh descriptor.
3144 	 * ndo_start_xmit will fill this descriptor the next time it's
3145 	 * called and stmmac_tx_clean may clean up to this descriptor.
3146 	 */
3147 	entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3148 	tx_q->cur_tx = entry;
3149 
3150 	if (netif_msg_pktdata(priv)) {
3151 		void *tx_head;
3152 
3153 		netdev_dbg(priv->dev,
3154 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3155 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3156 			   entry, first, nfrags);
3157 
3158 		if (priv->extend_desc)
3159 			tx_head = (void *)tx_q->dma_etx;
3160 		else
3161 			tx_head = (void *)tx_q->dma_tx;
3162 
3163 		stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false);
3164 
3165 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3166 		print_pkt(skb->data, skb->len);
3167 	}
3168 
3169 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3170 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3171 			  __func__);
3172 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3173 	}
3174 
3175 	dev->stats.tx_bytes += skb->len;
3176 
3177 	/* According to the coalesce parameter the IC bit for the latest
3178 	 * segment is reset and the timer re-started to clean the tx status.
3179 	 * This approach takes care about the fragments: desc is the first
3180 	 * element in case of no SG.
3181 	 */
3182 	priv->tx_count_frames += nfrags + 1;
3183 	if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
3184 		mod_timer(&priv->txtimer,
3185 			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
3186 	} else {
3187 		priv->tx_count_frames = 0;
3188 		stmmac_set_tx_ic(priv, desc);
3189 		priv->xstats.tx_set_ic_bit++;
3190 	}
3191 
3192 	skb_tx_timestamp(skb);
3193 
3194 	/* Ready to fill the first descriptor and set the OWN bit w/o any
3195 	 * problems because all the descriptors are actually ready to be
3196 	 * passed to the DMA engine.
3197 	 */
3198 	if (likely(!is_jumbo)) {
3199 		bool last_segment = (nfrags == 0);
3200 
3201 		des = dma_map_single(priv->device, skb->data,
3202 				     nopaged_len, DMA_TO_DEVICE);
3203 		if (dma_mapping_error(priv->device, des))
3204 			goto dma_map_err;
3205 
3206 		tx_q->tx_skbuff_dma[first_entry].buf = des;
3207 		if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
3208 			first->des0 = cpu_to_le32(des);
3209 		else
3210 			first->des2 = cpu_to_le32(des);
3211 
3212 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3213 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3214 
3215 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3216 			     priv->hwts_tx_en)) {
3217 			/* declare that device is doing timestamping */
3218 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3219 			stmmac_enable_tx_timestamp(priv, first);
3220 		}
3221 
3222 		/* Prepare the first descriptor setting the OWN bit too */
3223 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3224 				csum_insertion, priv->mode, 1, last_segment,
3225 				skb->len);
3226 
3227 		/* The own bit must be the latest setting done when prepare the
3228 		 * descriptor and then barrier is needed to make sure that
3229 		 * all is coherent before granting the DMA engine.
3230 		 */
3231 		wmb();
3232 	}
3233 
3234 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3235 
3236 	if (priv->synopsys_id < DWMAC_CORE_4_00)
3237 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
3238 	else
3239 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr,
3240 				queue);
3241 
3242 	return NETDEV_TX_OK;
3243 
3244 dma_map_err:
3245 	netdev_err(priv->dev, "Tx DMA map failed\n");
3246 	dev_kfree_skb(skb);
3247 	priv->dev->stats.tx_dropped++;
3248 	return NETDEV_TX_OK;
3249 }
3250 
3251 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3252 {
3253 	struct ethhdr *ehdr;
3254 	u16 vlanid;
3255 
3256 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
3257 	    NETIF_F_HW_VLAN_CTAG_RX &&
3258 	    !__vlan_get_tag(skb, &vlanid)) {
3259 		/* pop the vlan tag */
3260 		ehdr = (struct ethhdr *)skb->data;
3261 		memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
3262 		skb_pull(skb, VLAN_HLEN);
3263 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
3264 	}
3265 }
3266 
3267 
3268 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3269 {
3270 	if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3271 		return 0;
3272 
3273 	return 1;
3274 }
3275 
3276 /**
3277  * stmmac_rx_refill - refill used skb preallocated buffers
3278  * @priv: driver private structure
3279  * @queue: RX queue index
3280  * Description : this is to reallocate the skb for the reception process
3281  * that is based on zero-copy.
3282  */
3283 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3284 {
3285 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3286 	int dirty = stmmac_rx_dirty(priv, queue);
3287 	unsigned int entry = rx_q->dirty_rx;
3288 
3289 	int bfsize = priv->dma_buf_sz;
3290 
3291 	while (dirty-- > 0) {
3292 		struct dma_desc *p;
3293 
3294 		if (priv->extend_desc)
3295 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3296 		else
3297 			p = rx_q->dma_rx + entry;
3298 
3299 		if (likely(!rx_q->rx_skbuff[entry])) {
3300 			struct sk_buff *skb;
3301 
3302 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
3303 			if (unlikely(!skb)) {
3304 				/* so for a while no zero-copy! */
3305 				rx_q->rx_zeroc_thresh = STMMAC_RX_THRESH;
3306 				if (unlikely(net_ratelimit()))
3307 					dev_err(priv->device,
3308 						"fail to alloc skb entry %d\n",
3309 						entry);
3310 				break;
3311 			}
3312 
3313 			rx_q->rx_skbuff[entry] = skb;
3314 			rx_q->rx_skbuff_dma[entry] =
3315 			    dma_map_single(priv->device, skb->data, bfsize,
3316 					   DMA_FROM_DEVICE);
3317 			if (dma_mapping_error(priv->device,
3318 					      rx_q->rx_skbuff_dma[entry])) {
3319 				netdev_err(priv->dev, "Rx DMA map failed\n");
3320 				dev_kfree_skb(skb);
3321 				break;
3322 			}
3323 
3324 			if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
3325 				p->des0 = cpu_to_le32(rx_q->rx_skbuff_dma[entry]);
3326 				p->des1 = 0;
3327 			} else {
3328 				p->des2 = cpu_to_le32(rx_q->rx_skbuff_dma[entry]);
3329 			}
3330 
3331 			stmmac_refill_desc3(priv, rx_q, p);
3332 
3333 			if (rx_q->rx_zeroc_thresh > 0)
3334 				rx_q->rx_zeroc_thresh--;
3335 
3336 			netif_dbg(priv, rx_status, priv->dev,
3337 				  "refill entry #%d\n", entry);
3338 		}
3339 		dma_wmb();
3340 
3341 		if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
3342 			stmmac_init_rx_desc(priv, p, priv->use_riwt, 0, 0);
3343 		else
3344 			stmmac_set_rx_owner(priv, p);
3345 
3346 		dma_wmb();
3347 
3348 		entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3349 	}
3350 	rx_q->dirty_rx = entry;
3351 }
3352 
3353 /**
3354  * stmmac_rx - manage the receive process
3355  * @priv: driver private structure
3356  * @limit: napi bugget
3357  * @queue: RX queue index.
3358  * Description :  this the function called by the napi poll method.
3359  * It gets all the frames inside the ring.
3360  */
3361 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3362 {
3363 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3364 	unsigned int entry = rx_q->cur_rx;
3365 	int coe = priv->hw->rx_csum;
3366 	unsigned int next_entry;
3367 	unsigned int count = 0;
3368 
3369 	if (netif_msg_rx_status(priv)) {
3370 		void *rx_head;
3371 
3372 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3373 		if (priv->extend_desc)
3374 			rx_head = (void *)rx_q->dma_erx;
3375 		else
3376 			rx_head = (void *)rx_q->dma_rx;
3377 
3378 		stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3379 	}
3380 	while (count < limit) {
3381 		int status;
3382 		struct dma_desc *p;
3383 		struct dma_desc *np;
3384 
3385 		if (priv->extend_desc)
3386 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3387 		else
3388 			p = rx_q->dma_rx + entry;
3389 
3390 		/* read the status of the incoming frame */
3391 		status = stmmac_rx_status(priv, &priv->dev->stats,
3392 				&priv->xstats, p);
3393 		/* check if managed by the DMA otherwise go ahead */
3394 		if (unlikely(status & dma_own))
3395 			break;
3396 
3397 		count++;
3398 
3399 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3400 		next_entry = rx_q->cur_rx;
3401 
3402 		if (priv->extend_desc)
3403 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3404 		else
3405 			np = rx_q->dma_rx + next_entry;
3406 
3407 		prefetch(np);
3408 
3409 		if (priv->extend_desc)
3410 			stmmac_rx_extended_status(priv, &priv->dev->stats,
3411 					&priv->xstats, rx_q->dma_erx + entry);
3412 		if (unlikely(status == discard_frame)) {
3413 			priv->dev->stats.rx_errors++;
3414 			if (priv->hwts_rx_en && !priv->extend_desc) {
3415 				/* DESC2 & DESC3 will be overwritten by device
3416 				 * with timestamp value, hence reinitialize
3417 				 * them in stmmac_rx_refill() function so that
3418 				 * device can reuse it.
3419 				 */
3420 				dev_kfree_skb_any(rx_q->rx_skbuff[entry]);
3421 				rx_q->rx_skbuff[entry] = NULL;
3422 				dma_unmap_single(priv->device,
3423 						 rx_q->rx_skbuff_dma[entry],
3424 						 priv->dma_buf_sz,
3425 						 DMA_FROM_DEVICE);
3426 			}
3427 		} else {
3428 			struct sk_buff *skb;
3429 			int frame_len;
3430 			unsigned int des;
3431 
3432 			if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
3433 				des = le32_to_cpu(p->des0);
3434 			else
3435 				des = le32_to_cpu(p->des2);
3436 
3437 			frame_len = stmmac_get_rx_frame_len(priv, p, coe);
3438 
3439 			/*  If frame length is greater than skb buffer size
3440 			 *  (preallocated during init) then the packet is
3441 			 *  ignored
3442 			 */
3443 			if (frame_len > priv->dma_buf_sz) {
3444 				netdev_err(priv->dev,
3445 					   "len %d larger than size (%d)\n",
3446 					   frame_len, priv->dma_buf_sz);
3447 				priv->dev->stats.rx_length_errors++;
3448 				break;
3449 			}
3450 
3451 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3452 			 * Type frames (LLC/LLC-SNAP)
3453 			 */
3454 			if (unlikely(status != llc_snap))
3455 				frame_len -= ETH_FCS_LEN;
3456 
3457 			if (netif_msg_rx_status(priv)) {
3458 				netdev_dbg(priv->dev, "\tdesc: %p [entry %d] buff=0x%x\n",
3459 					   p, entry, des);
3460 				netdev_dbg(priv->dev, "frame size %d, COE: %d\n",
3461 					   frame_len, status);
3462 			}
3463 
3464 			/* The zero-copy is always used for all the sizes
3465 			 * in case of GMAC4 because it needs
3466 			 * to refill the used descriptors, always.
3467 			 */
3468 			if (unlikely(!priv->plat->has_gmac4 &&
3469 				     ((frame_len < priv->rx_copybreak) ||
3470 				     stmmac_rx_threshold_count(rx_q)))) {
3471 				skb = netdev_alloc_skb_ip_align(priv->dev,
3472 								frame_len);
3473 				if (unlikely(!skb)) {
3474 					if (net_ratelimit())
3475 						dev_warn(priv->device,
3476 							 "packet dropped\n");
3477 					priv->dev->stats.rx_dropped++;
3478 					break;
3479 				}
3480 
3481 				dma_sync_single_for_cpu(priv->device,
3482 							rx_q->rx_skbuff_dma
3483 							[entry], frame_len,
3484 							DMA_FROM_DEVICE);
3485 				skb_copy_to_linear_data(skb,
3486 							rx_q->
3487 							rx_skbuff[entry]->data,
3488 							frame_len);
3489 
3490 				skb_put(skb, frame_len);
3491 				dma_sync_single_for_device(priv->device,
3492 							   rx_q->rx_skbuff_dma
3493 							   [entry], frame_len,
3494 							   DMA_FROM_DEVICE);
3495 			} else {
3496 				skb = rx_q->rx_skbuff[entry];
3497 				if (unlikely(!skb)) {
3498 					netdev_err(priv->dev,
3499 						   "%s: Inconsistent Rx chain\n",
3500 						   priv->dev->name);
3501 					priv->dev->stats.rx_dropped++;
3502 					break;
3503 				}
3504 				prefetch(skb->data - NET_IP_ALIGN);
3505 				rx_q->rx_skbuff[entry] = NULL;
3506 				rx_q->rx_zeroc_thresh++;
3507 
3508 				skb_put(skb, frame_len);
3509 				dma_unmap_single(priv->device,
3510 						 rx_q->rx_skbuff_dma[entry],
3511 						 priv->dma_buf_sz,
3512 						 DMA_FROM_DEVICE);
3513 			}
3514 
3515 			if (netif_msg_pktdata(priv)) {
3516 				netdev_dbg(priv->dev, "frame received (%dbytes)",
3517 					   frame_len);
3518 				print_pkt(skb->data, frame_len);
3519 			}
3520 
3521 			stmmac_get_rx_hwtstamp(priv, p, np, skb);
3522 
3523 			stmmac_rx_vlan(priv->dev, skb);
3524 
3525 			skb->protocol = eth_type_trans(skb, priv->dev);
3526 
3527 			if (unlikely(!coe))
3528 				skb_checksum_none_assert(skb);
3529 			else
3530 				skb->ip_summed = CHECKSUM_UNNECESSARY;
3531 
3532 			napi_gro_receive(&rx_q->napi, skb);
3533 
3534 			priv->dev->stats.rx_packets++;
3535 			priv->dev->stats.rx_bytes += frame_len;
3536 		}
3537 		entry = next_entry;
3538 	}
3539 
3540 	stmmac_rx_refill(priv, queue);
3541 
3542 	priv->xstats.rx_pkt_n += count;
3543 
3544 	return count;
3545 }
3546 
3547 /**
3548  *  stmmac_poll - stmmac poll method (NAPI)
3549  *  @napi : pointer to the napi structure.
3550  *  @budget : maximum number of packets that the current CPU can receive from
3551  *	      all interfaces.
3552  *  Description :
3553  *  To look at the incoming frames and clear the tx resources.
3554  */
3555 static int stmmac_poll(struct napi_struct *napi, int budget)
3556 {
3557 	struct stmmac_rx_queue *rx_q =
3558 		container_of(napi, struct stmmac_rx_queue, napi);
3559 	struct stmmac_priv *priv = rx_q->priv_data;
3560 	u32 tx_count = priv->plat->tx_queues_to_use;
3561 	u32 chan = rx_q->queue_index;
3562 	int work_done = 0;
3563 	u32 queue;
3564 
3565 	priv->xstats.napi_poll++;
3566 
3567 	/* check all the queues */
3568 	for (queue = 0; queue < tx_count; queue++)
3569 		stmmac_tx_clean(priv, queue);
3570 
3571 	work_done = stmmac_rx(priv, budget, rx_q->queue_index);
3572 	if (work_done < budget) {
3573 		napi_complete_done(napi, work_done);
3574 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3575 	}
3576 	return work_done;
3577 }
3578 
3579 /**
3580  *  stmmac_tx_timeout
3581  *  @dev : Pointer to net device structure
3582  *  Description: this function is called when a packet transmission fails to
3583  *   complete within a reasonable time. The driver will mark the error in the
3584  *   netdev structure and arrange for the device to be reset to a sane state
3585  *   in order to transmit a new packet.
3586  */
3587 static void stmmac_tx_timeout(struct net_device *dev)
3588 {
3589 	struct stmmac_priv *priv = netdev_priv(dev);
3590 
3591 	stmmac_global_err(priv);
3592 }
3593 
3594 /**
3595  *  stmmac_set_rx_mode - entry point for multicast addressing
3596  *  @dev : pointer to the device structure
3597  *  Description:
3598  *  This function is a driver entry point which gets called by the kernel
3599  *  whenever multicast addresses must be enabled/disabled.
3600  *  Return value:
3601  *  void.
3602  */
3603 static void stmmac_set_rx_mode(struct net_device *dev)
3604 {
3605 	struct stmmac_priv *priv = netdev_priv(dev);
3606 
3607 	stmmac_set_filter(priv, priv->hw, dev);
3608 }
3609 
3610 /**
3611  *  stmmac_change_mtu - entry point to change MTU size for the device.
3612  *  @dev : device pointer.
3613  *  @new_mtu : the new MTU size for the device.
3614  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3615  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3616  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3617  *  Return value:
3618  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3619  *  file on failure.
3620  */
3621 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3622 {
3623 	struct stmmac_priv *priv = netdev_priv(dev);
3624 
3625 	if (netif_running(dev)) {
3626 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
3627 		return -EBUSY;
3628 	}
3629 
3630 	dev->mtu = new_mtu;
3631 
3632 	netdev_update_features(dev);
3633 
3634 	return 0;
3635 }
3636 
3637 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3638 					     netdev_features_t features)
3639 {
3640 	struct stmmac_priv *priv = netdev_priv(dev);
3641 
3642 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3643 		features &= ~NETIF_F_RXCSUM;
3644 
3645 	if (!priv->plat->tx_coe)
3646 		features &= ~NETIF_F_CSUM_MASK;
3647 
3648 	/* Some GMAC devices have a bugged Jumbo frame support that
3649 	 * needs to have the Tx COE disabled for oversized frames
3650 	 * (due to limited buffer sizes). In this case we disable
3651 	 * the TX csum insertion in the TDES and not use SF.
3652 	 */
3653 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3654 		features &= ~NETIF_F_CSUM_MASK;
3655 
3656 	/* Disable tso if asked by ethtool */
3657 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3658 		if (features & NETIF_F_TSO)
3659 			priv->tso = true;
3660 		else
3661 			priv->tso = false;
3662 	}
3663 
3664 	return features;
3665 }
3666 
3667 static int stmmac_set_features(struct net_device *netdev,
3668 			       netdev_features_t features)
3669 {
3670 	struct stmmac_priv *priv = netdev_priv(netdev);
3671 
3672 	/* Keep the COE Type in case of csum is supporting */
3673 	if (features & NETIF_F_RXCSUM)
3674 		priv->hw->rx_csum = priv->plat->rx_coe;
3675 	else
3676 		priv->hw->rx_csum = 0;
3677 	/* No check needed because rx_coe has been set before and it will be
3678 	 * fixed in case of issue.
3679 	 */
3680 	stmmac_rx_ipc(priv, priv->hw);
3681 
3682 	return 0;
3683 }
3684 
3685 /**
3686  *  stmmac_interrupt - main ISR
3687  *  @irq: interrupt number.
3688  *  @dev_id: to pass the net device pointer.
3689  *  Description: this is the main driver interrupt service routine.
3690  *  It can call:
3691  *  o DMA service routine (to manage incoming frame reception and transmission
3692  *    status)
3693  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3694  *    interrupts.
3695  */
3696 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3697 {
3698 	struct net_device *dev = (struct net_device *)dev_id;
3699 	struct stmmac_priv *priv = netdev_priv(dev);
3700 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3701 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3702 	u32 queues_count;
3703 	u32 queue;
3704 
3705 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3706 
3707 	if (priv->irq_wake)
3708 		pm_wakeup_event(priv->device, 0);
3709 
3710 	if (unlikely(!dev)) {
3711 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3712 		return IRQ_NONE;
3713 	}
3714 
3715 	/* Check if adapter is up */
3716 	if (test_bit(STMMAC_DOWN, &priv->state))
3717 		return IRQ_HANDLED;
3718 	/* Check if a fatal error happened */
3719 	if (stmmac_safety_feat_interrupt(priv))
3720 		return IRQ_HANDLED;
3721 
3722 	/* To handle GMAC own interrupts */
3723 	if ((priv->plat->has_gmac) || (priv->plat->has_gmac4)) {
3724 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
3725 
3726 		if (unlikely(status)) {
3727 			/* For LPI we need to save the tx status */
3728 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3729 				priv->tx_path_in_lpi_mode = true;
3730 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3731 				priv->tx_path_in_lpi_mode = false;
3732 		}
3733 
3734 		if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3735 			for (queue = 0; queue < queues_count; queue++) {
3736 				struct stmmac_rx_queue *rx_q =
3737 				&priv->rx_queue[queue];
3738 
3739 				status |= stmmac_host_mtl_irq_status(priv,
3740 						priv->hw, queue);
3741 
3742 				if (status & CORE_IRQ_MTL_RX_OVERFLOW)
3743 					stmmac_set_rx_tail_ptr(priv,
3744 							priv->ioaddr,
3745 							rx_q->rx_tail_addr,
3746 							queue);
3747 			}
3748 		}
3749 
3750 		/* PCS link status */
3751 		if (priv->hw->pcs) {
3752 			if (priv->xstats.pcs_link)
3753 				netif_carrier_on(dev);
3754 			else
3755 				netif_carrier_off(dev);
3756 		}
3757 	}
3758 
3759 	/* To handle DMA interrupts */
3760 	stmmac_dma_interrupt(priv);
3761 
3762 	return IRQ_HANDLED;
3763 }
3764 
3765 #ifdef CONFIG_NET_POLL_CONTROLLER
3766 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3767  * to allow network I/O with interrupts disabled.
3768  */
3769 static void stmmac_poll_controller(struct net_device *dev)
3770 {
3771 	disable_irq(dev->irq);
3772 	stmmac_interrupt(dev->irq, dev);
3773 	enable_irq(dev->irq);
3774 }
3775 #endif
3776 
3777 /**
3778  *  stmmac_ioctl - Entry point for the Ioctl
3779  *  @dev: Device pointer.
3780  *  @rq: An IOCTL specefic structure, that can contain a pointer to
3781  *  a proprietary structure used to pass information to the driver.
3782  *  @cmd: IOCTL command
3783  *  Description:
3784  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3785  */
3786 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3787 {
3788 	int ret = -EOPNOTSUPP;
3789 
3790 	if (!netif_running(dev))
3791 		return -EINVAL;
3792 
3793 	switch (cmd) {
3794 	case SIOCGMIIPHY:
3795 	case SIOCGMIIREG:
3796 	case SIOCSMIIREG:
3797 		if (!dev->phydev)
3798 			return -EINVAL;
3799 		ret = phy_mii_ioctl(dev->phydev, rq, cmd);
3800 		break;
3801 	case SIOCSHWTSTAMP:
3802 		ret = stmmac_hwtstamp_ioctl(dev, rq);
3803 		break;
3804 	default:
3805 		break;
3806 	}
3807 
3808 	return ret;
3809 }
3810 
3811 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
3812 {
3813 	struct stmmac_priv *priv = netdev_priv(ndev);
3814 	int ret = 0;
3815 
3816 	ret = eth_mac_addr(ndev, addr);
3817 	if (ret)
3818 		return ret;
3819 
3820 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
3821 
3822 	return ret;
3823 }
3824 
3825 #ifdef CONFIG_DEBUG_FS
3826 static struct dentry *stmmac_fs_dir;
3827 
3828 static void sysfs_display_ring(void *head, int size, int extend_desc,
3829 			       struct seq_file *seq)
3830 {
3831 	int i;
3832 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
3833 	struct dma_desc *p = (struct dma_desc *)head;
3834 
3835 	for (i = 0; i < size; i++) {
3836 		if (extend_desc) {
3837 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3838 				   i, (unsigned int)virt_to_phys(ep),
3839 				   le32_to_cpu(ep->basic.des0),
3840 				   le32_to_cpu(ep->basic.des1),
3841 				   le32_to_cpu(ep->basic.des2),
3842 				   le32_to_cpu(ep->basic.des3));
3843 			ep++;
3844 		} else {
3845 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3846 				   i, (unsigned int)virt_to_phys(p),
3847 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
3848 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
3849 			p++;
3850 		}
3851 		seq_printf(seq, "\n");
3852 	}
3853 }
3854 
3855 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
3856 {
3857 	struct net_device *dev = seq->private;
3858 	struct stmmac_priv *priv = netdev_priv(dev);
3859 	u32 rx_count = priv->plat->rx_queues_to_use;
3860 	u32 tx_count = priv->plat->tx_queues_to_use;
3861 	u32 queue;
3862 
3863 	for (queue = 0; queue < rx_count; queue++) {
3864 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3865 
3866 		seq_printf(seq, "RX Queue %d:\n", queue);
3867 
3868 		if (priv->extend_desc) {
3869 			seq_printf(seq, "Extended descriptor ring:\n");
3870 			sysfs_display_ring((void *)rx_q->dma_erx,
3871 					   DMA_RX_SIZE, 1, seq);
3872 		} else {
3873 			seq_printf(seq, "Descriptor ring:\n");
3874 			sysfs_display_ring((void *)rx_q->dma_rx,
3875 					   DMA_RX_SIZE, 0, seq);
3876 		}
3877 	}
3878 
3879 	for (queue = 0; queue < tx_count; queue++) {
3880 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3881 
3882 		seq_printf(seq, "TX Queue %d:\n", queue);
3883 
3884 		if (priv->extend_desc) {
3885 			seq_printf(seq, "Extended descriptor ring:\n");
3886 			sysfs_display_ring((void *)tx_q->dma_etx,
3887 					   DMA_TX_SIZE, 1, seq);
3888 		} else {
3889 			seq_printf(seq, "Descriptor ring:\n");
3890 			sysfs_display_ring((void *)tx_q->dma_tx,
3891 					   DMA_TX_SIZE, 0, seq);
3892 		}
3893 	}
3894 
3895 	return 0;
3896 }
3897 
3898 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
3899 {
3900 	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
3901 }
3902 
3903 /* Debugfs files, should appear in /sys/kernel/debug/stmmaceth/eth0 */
3904 
3905 static const struct file_operations stmmac_rings_status_fops = {
3906 	.owner = THIS_MODULE,
3907 	.open = stmmac_sysfs_ring_open,
3908 	.read = seq_read,
3909 	.llseek = seq_lseek,
3910 	.release = single_release,
3911 };
3912 
3913 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
3914 {
3915 	struct net_device *dev = seq->private;
3916 	struct stmmac_priv *priv = netdev_priv(dev);
3917 
3918 	if (!priv->hw_cap_support) {
3919 		seq_printf(seq, "DMA HW features not supported\n");
3920 		return 0;
3921 	}
3922 
3923 	seq_printf(seq, "==============================\n");
3924 	seq_printf(seq, "\tDMA HW features\n");
3925 	seq_printf(seq, "==============================\n");
3926 
3927 	seq_printf(seq, "\t10/100 Mbps: %s\n",
3928 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
3929 	seq_printf(seq, "\t1000 Mbps: %s\n",
3930 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
3931 	seq_printf(seq, "\tHalf duplex: %s\n",
3932 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
3933 	seq_printf(seq, "\tHash Filter: %s\n",
3934 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
3935 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
3936 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
3937 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
3938 		   (priv->dma_cap.pcs) ? "Y" : "N");
3939 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
3940 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
3941 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
3942 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
3943 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
3944 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
3945 	seq_printf(seq, "\tRMON module: %s\n",
3946 		   (priv->dma_cap.rmon) ? "Y" : "N");
3947 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
3948 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
3949 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
3950 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
3951 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
3952 		   (priv->dma_cap.eee) ? "Y" : "N");
3953 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
3954 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
3955 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
3956 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3957 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
3958 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
3959 	} else {
3960 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
3961 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
3962 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
3963 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
3964 	}
3965 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
3966 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
3967 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
3968 		   priv->dma_cap.number_rx_channel);
3969 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
3970 		   priv->dma_cap.number_tx_channel);
3971 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
3972 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
3973 
3974 	return 0;
3975 }
3976 
3977 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
3978 {
3979 	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
3980 }
3981 
3982 static const struct file_operations stmmac_dma_cap_fops = {
3983 	.owner = THIS_MODULE,
3984 	.open = stmmac_sysfs_dma_cap_open,
3985 	.read = seq_read,
3986 	.llseek = seq_lseek,
3987 	.release = single_release,
3988 };
3989 
3990 static int stmmac_init_fs(struct net_device *dev)
3991 {
3992 	struct stmmac_priv *priv = netdev_priv(dev);
3993 
3994 	/* Create per netdev entries */
3995 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
3996 
3997 	if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
3998 		netdev_err(priv->dev, "ERROR failed to create debugfs directory\n");
3999 
4000 		return -ENOMEM;
4001 	}
4002 
4003 	/* Entry to report DMA RX/TX rings */
4004 	priv->dbgfs_rings_status =
4005 		debugfs_create_file("descriptors_status", 0444,
4006 				    priv->dbgfs_dir, dev,
4007 				    &stmmac_rings_status_fops);
4008 
4009 	if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
4010 		netdev_err(priv->dev, "ERROR creating stmmac ring debugfs file\n");
4011 		debugfs_remove_recursive(priv->dbgfs_dir);
4012 
4013 		return -ENOMEM;
4014 	}
4015 
4016 	/* Entry to report the DMA HW features */
4017 	priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", 0444,
4018 						  priv->dbgfs_dir,
4019 						  dev, &stmmac_dma_cap_fops);
4020 
4021 	if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
4022 		netdev_err(priv->dev, "ERROR creating stmmac MMC debugfs file\n");
4023 		debugfs_remove_recursive(priv->dbgfs_dir);
4024 
4025 		return -ENOMEM;
4026 	}
4027 
4028 	return 0;
4029 }
4030 
4031 static void stmmac_exit_fs(struct net_device *dev)
4032 {
4033 	struct stmmac_priv *priv = netdev_priv(dev);
4034 
4035 	debugfs_remove_recursive(priv->dbgfs_dir);
4036 }
4037 #endif /* CONFIG_DEBUG_FS */
4038 
4039 static const struct net_device_ops stmmac_netdev_ops = {
4040 	.ndo_open = stmmac_open,
4041 	.ndo_start_xmit = stmmac_xmit,
4042 	.ndo_stop = stmmac_release,
4043 	.ndo_change_mtu = stmmac_change_mtu,
4044 	.ndo_fix_features = stmmac_fix_features,
4045 	.ndo_set_features = stmmac_set_features,
4046 	.ndo_set_rx_mode = stmmac_set_rx_mode,
4047 	.ndo_tx_timeout = stmmac_tx_timeout,
4048 	.ndo_do_ioctl = stmmac_ioctl,
4049 #ifdef CONFIG_NET_POLL_CONTROLLER
4050 	.ndo_poll_controller = stmmac_poll_controller,
4051 #endif
4052 	.ndo_set_mac_address = stmmac_set_mac_address,
4053 };
4054 
4055 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4056 {
4057 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4058 		return;
4059 	if (test_bit(STMMAC_DOWN, &priv->state))
4060 		return;
4061 
4062 	netdev_err(priv->dev, "Reset adapter.\n");
4063 
4064 	rtnl_lock();
4065 	netif_trans_update(priv->dev);
4066 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4067 		usleep_range(1000, 2000);
4068 
4069 	set_bit(STMMAC_DOWN, &priv->state);
4070 	dev_close(priv->dev);
4071 	dev_open(priv->dev);
4072 	clear_bit(STMMAC_DOWN, &priv->state);
4073 	clear_bit(STMMAC_RESETING, &priv->state);
4074 	rtnl_unlock();
4075 }
4076 
4077 static void stmmac_service_task(struct work_struct *work)
4078 {
4079 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4080 			service_task);
4081 
4082 	stmmac_reset_subtask(priv);
4083 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4084 }
4085 
4086 /**
4087  *  stmmac_hw_init - Init the MAC device
4088  *  @priv: driver private structure
4089  *  Description: this function is to configure the MAC device according to
4090  *  some platform parameters or the HW capability register. It prepares the
4091  *  driver to use either ring or chain modes and to setup either enhanced or
4092  *  normal descriptors.
4093  */
4094 static int stmmac_hw_init(struct stmmac_priv *priv)
4095 {
4096 	struct mac_device_info *mac;
4097 
4098 	/* Identify the MAC HW device */
4099 	if (priv->plat->setup) {
4100 		mac = priv->plat->setup(priv);
4101 	} else if (priv->plat->has_gmac) {
4102 		priv->dev->priv_flags |= IFF_UNICAST_FLT;
4103 		mac = dwmac1000_setup(priv->ioaddr,
4104 				      priv->plat->multicast_filter_bins,
4105 				      priv->plat->unicast_filter_entries,
4106 				      &priv->synopsys_id);
4107 	} else if (priv->plat->has_gmac4) {
4108 		priv->dev->priv_flags |= IFF_UNICAST_FLT;
4109 		mac = dwmac4_setup(priv->ioaddr,
4110 				   priv->plat->multicast_filter_bins,
4111 				   priv->plat->unicast_filter_entries,
4112 				   &priv->synopsys_id);
4113 	} else {
4114 		mac = dwmac100_setup(priv->ioaddr, &priv->synopsys_id);
4115 	}
4116 	if (!mac)
4117 		return -ENOMEM;
4118 
4119 	priv->hw = mac;
4120 
4121 	/* dwmac-sun8i only work in chain mode */
4122 	if (priv->plat->has_sun8i)
4123 		chain_mode = 1;
4124 
4125 	/* To use the chained or ring mode */
4126 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4127 		priv->hw->mode = &dwmac4_ring_mode_ops;
4128 	} else {
4129 		if (chain_mode) {
4130 			priv->hw->mode = &chain_mode_ops;
4131 			dev_info(priv->device, "Chain mode enabled\n");
4132 			priv->mode = STMMAC_CHAIN_MODE;
4133 		} else {
4134 			priv->hw->mode = &ring_mode_ops;
4135 			dev_info(priv->device, "Ring mode enabled\n");
4136 			priv->mode = STMMAC_RING_MODE;
4137 		}
4138 	}
4139 
4140 	/* Get the HW capability (new GMAC newer than 3.50a) */
4141 	priv->hw_cap_support = stmmac_get_hw_features(priv);
4142 	if (priv->hw_cap_support) {
4143 		dev_info(priv->device, "DMA HW capability register supported\n");
4144 
4145 		/* We can override some gmac/dma configuration fields: e.g.
4146 		 * enh_desc, tx_coe (e.g. that are passed through the
4147 		 * platform) with the values from the HW capability
4148 		 * register (if supported).
4149 		 */
4150 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
4151 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4152 		priv->hw->pmt = priv->plat->pmt;
4153 
4154 		/* TXCOE doesn't work in thresh DMA mode */
4155 		if (priv->plat->force_thresh_dma_mode)
4156 			priv->plat->tx_coe = 0;
4157 		else
4158 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
4159 
4160 		/* In case of GMAC4 rx_coe is from HW cap register. */
4161 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
4162 
4163 		if (priv->dma_cap.rx_coe_type2)
4164 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4165 		else if (priv->dma_cap.rx_coe_type1)
4166 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4167 
4168 	} else {
4169 		dev_info(priv->device, "No HW DMA feature register supported\n");
4170 	}
4171 
4172 	/* To use alternate (extended), normal or GMAC4 descriptor structures */
4173 	if (priv->synopsys_id >= DWMAC_CORE_4_00)
4174 		priv->hw->desc = &dwmac4_desc_ops;
4175 	else
4176 		stmmac_selec_desc_mode(priv);
4177 
4178 	if (priv->plat->rx_coe) {
4179 		priv->hw->rx_csum = priv->plat->rx_coe;
4180 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4181 		if (priv->synopsys_id < DWMAC_CORE_4_00)
4182 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4183 	}
4184 	if (priv->plat->tx_coe)
4185 		dev_info(priv->device, "TX Checksum insertion supported\n");
4186 
4187 	if (priv->plat->pmt) {
4188 		dev_info(priv->device, "Wake-Up On Lan supported\n");
4189 		device_set_wakeup_capable(priv->device, 1);
4190 	}
4191 
4192 	if (priv->dma_cap.tsoen)
4193 		dev_info(priv->device, "TSO supported\n");
4194 
4195 	return 0;
4196 }
4197 
4198 /**
4199  * stmmac_dvr_probe
4200  * @device: device pointer
4201  * @plat_dat: platform data pointer
4202  * @res: stmmac resource pointer
4203  * Description: this is the main probe function used to
4204  * call the alloc_etherdev, allocate the priv structure.
4205  * Return:
4206  * returns 0 on success, otherwise errno.
4207  */
4208 int stmmac_dvr_probe(struct device *device,
4209 		     struct plat_stmmacenet_data *plat_dat,
4210 		     struct stmmac_resources *res)
4211 {
4212 	struct net_device *ndev = NULL;
4213 	struct stmmac_priv *priv;
4214 	int ret = 0;
4215 	u32 queue;
4216 
4217 	ndev = alloc_etherdev_mqs(sizeof(struct stmmac_priv),
4218 				  MTL_MAX_TX_QUEUES,
4219 				  MTL_MAX_RX_QUEUES);
4220 	if (!ndev)
4221 		return -ENOMEM;
4222 
4223 	SET_NETDEV_DEV(ndev, device);
4224 
4225 	priv = netdev_priv(ndev);
4226 	priv->device = device;
4227 	priv->dev = ndev;
4228 
4229 	stmmac_set_ethtool_ops(ndev);
4230 	priv->pause = pause;
4231 	priv->plat = plat_dat;
4232 	priv->ioaddr = res->addr;
4233 	priv->dev->base_addr = (unsigned long)res->addr;
4234 
4235 	priv->dev->irq = res->irq;
4236 	priv->wol_irq = res->wol_irq;
4237 	priv->lpi_irq = res->lpi_irq;
4238 
4239 	if (res->mac)
4240 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4241 
4242 	dev_set_drvdata(device, priv->dev);
4243 
4244 	/* Verify driver arguments */
4245 	stmmac_verify_args();
4246 
4247 	/* Allocate workqueue */
4248 	priv->wq = create_singlethread_workqueue("stmmac_wq");
4249 	if (!priv->wq) {
4250 		dev_err(priv->device, "failed to create workqueue\n");
4251 		goto error_wq;
4252 	}
4253 
4254 	INIT_WORK(&priv->service_task, stmmac_service_task);
4255 
4256 	/* Override with kernel parameters if supplied XXX CRS XXX
4257 	 * this needs to have multiple instances
4258 	 */
4259 	if ((phyaddr >= 0) && (phyaddr <= 31))
4260 		priv->plat->phy_addr = phyaddr;
4261 
4262 	if (priv->plat->stmmac_rst) {
4263 		ret = reset_control_assert(priv->plat->stmmac_rst);
4264 		reset_control_deassert(priv->plat->stmmac_rst);
4265 		/* Some reset controllers have only reset callback instead of
4266 		 * assert + deassert callbacks pair.
4267 		 */
4268 		if (ret == -ENOTSUPP)
4269 			reset_control_reset(priv->plat->stmmac_rst);
4270 	}
4271 
4272 	/* Init MAC and get the capabilities */
4273 	ret = stmmac_hw_init(priv);
4274 	if (ret)
4275 		goto error_hw_init;
4276 
4277 	/* Configure real RX and TX queues */
4278 	netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4279 	netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4280 
4281 	ndev->netdev_ops = &stmmac_netdev_ops;
4282 
4283 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4284 			    NETIF_F_RXCSUM;
4285 
4286 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4287 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4288 		priv->tso = true;
4289 		dev_info(priv->device, "TSO feature enabled\n");
4290 	}
4291 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4292 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4293 #ifdef STMMAC_VLAN_TAG_USED
4294 	/* Both mac100 and gmac support receive VLAN tag detection */
4295 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4296 #endif
4297 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
4298 
4299 	/* MTU range: 46 - hw-specific max */
4300 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4301 	if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4302 		ndev->max_mtu = JUMBO_LEN;
4303 	else
4304 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4305 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4306 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4307 	 */
4308 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
4309 	    (priv->plat->maxmtu >= ndev->min_mtu))
4310 		ndev->max_mtu = priv->plat->maxmtu;
4311 	else if (priv->plat->maxmtu < ndev->min_mtu)
4312 		dev_warn(priv->device,
4313 			 "%s: warning: maxmtu having invalid value (%d)\n",
4314 			 __func__, priv->plat->maxmtu);
4315 
4316 	if (flow_ctrl)
4317 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
4318 
4319 	/* Rx Watchdog is available in the COREs newer than the 3.40.
4320 	 * In some case, for example on bugged HW this feature
4321 	 * has to be disable and this can be done by passing the
4322 	 * riwt_off field from the platform.
4323 	 */
4324 	if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
4325 		priv->use_riwt = 1;
4326 		dev_info(priv->device,
4327 			 "Enable RX Mitigation via HW Watchdog Timer\n");
4328 	}
4329 
4330 	for (queue = 0; queue < priv->plat->rx_queues_to_use; queue++) {
4331 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4332 
4333 		netif_napi_add(ndev, &rx_q->napi, stmmac_poll,
4334 			       (8 * priv->plat->rx_queues_to_use));
4335 	}
4336 
4337 	spin_lock_init(&priv->lock);
4338 
4339 	/* If a specific clk_csr value is passed from the platform
4340 	 * this means that the CSR Clock Range selection cannot be
4341 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
4342 	 * set the MDC clock dynamically according to the csr actual
4343 	 * clock input.
4344 	 */
4345 	if (!priv->plat->clk_csr)
4346 		stmmac_clk_csr_set(priv);
4347 	else
4348 		priv->clk_csr = priv->plat->clk_csr;
4349 
4350 	stmmac_check_pcs_mode(priv);
4351 
4352 	if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
4353 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4354 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
4355 		/* MDIO bus Registration */
4356 		ret = stmmac_mdio_register(ndev);
4357 		if (ret < 0) {
4358 			dev_err(priv->device,
4359 				"%s: MDIO bus (id: %d) registration failed",
4360 				__func__, priv->plat->bus_id);
4361 			goto error_mdio_register;
4362 		}
4363 	}
4364 
4365 	ret = register_netdev(ndev);
4366 	if (ret) {
4367 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
4368 			__func__, ret);
4369 		goto error_netdev_register;
4370 	}
4371 
4372 	return ret;
4373 
4374 error_netdev_register:
4375 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4376 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4377 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4378 		stmmac_mdio_unregister(ndev);
4379 error_mdio_register:
4380 	for (queue = 0; queue < priv->plat->rx_queues_to_use; queue++) {
4381 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4382 
4383 		netif_napi_del(&rx_q->napi);
4384 	}
4385 error_hw_init:
4386 	destroy_workqueue(priv->wq);
4387 error_wq:
4388 	free_netdev(ndev);
4389 
4390 	return ret;
4391 }
4392 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4393 
4394 /**
4395  * stmmac_dvr_remove
4396  * @dev: device pointer
4397  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4398  * changes the link status, releases the DMA descriptor rings.
4399  */
4400 int stmmac_dvr_remove(struct device *dev)
4401 {
4402 	struct net_device *ndev = dev_get_drvdata(dev);
4403 	struct stmmac_priv *priv = netdev_priv(ndev);
4404 
4405 	netdev_info(priv->dev, "%s: removing driver", __func__);
4406 
4407 	stmmac_stop_all_dma(priv);
4408 
4409 	stmmac_mac_set(priv, priv->ioaddr, false);
4410 	netif_carrier_off(ndev);
4411 	unregister_netdev(ndev);
4412 	if (priv->plat->stmmac_rst)
4413 		reset_control_assert(priv->plat->stmmac_rst);
4414 	clk_disable_unprepare(priv->plat->pclk);
4415 	clk_disable_unprepare(priv->plat->stmmac_clk);
4416 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4417 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4418 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4419 		stmmac_mdio_unregister(ndev);
4420 	destroy_workqueue(priv->wq);
4421 	free_netdev(ndev);
4422 
4423 	return 0;
4424 }
4425 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4426 
4427 /**
4428  * stmmac_suspend - suspend callback
4429  * @dev: device pointer
4430  * Description: this is the function to suspend the device and it is called
4431  * by the platform driver to stop the network queue, release the resources,
4432  * program the PMT register (for WoL), clean and release driver resources.
4433  */
4434 int stmmac_suspend(struct device *dev)
4435 {
4436 	struct net_device *ndev = dev_get_drvdata(dev);
4437 	struct stmmac_priv *priv = netdev_priv(ndev);
4438 	unsigned long flags;
4439 
4440 	if (!ndev || !netif_running(ndev))
4441 		return 0;
4442 
4443 	if (ndev->phydev)
4444 		phy_stop(ndev->phydev);
4445 
4446 	spin_lock_irqsave(&priv->lock, flags);
4447 
4448 	netif_device_detach(ndev);
4449 	stmmac_stop_all_queues(priv);
4450 
4451 	stmmac_disable_all_queues(priv);
4452 
4453 	/* Stop TX/RX DMA */
4454 	stmmac_stop_all_dma(priv);
4455 
4456 	/* Enable Power down mode by programming the PMT regs */
4457 	if (device_may_wakeup(priv->device)) {
4458 		stmmac_pmt(priv, priv->hw, priv->wolopts);
4459 		priv->irq_wake = 1;
4460 	} else {
4461 		stmmac_mac_set(priv, priv->ioaddr, false);
4462 		pinctrl_pm_select_sleep_state(priv->device);
4463 		/* Disable clock in case of PWM is off */
4464 		clk_disable(priv->plat->pclk);
4465 		clk_disable(priv->plat->stmmac_clk);
4466 	}
4467 	spin_unlock_irqrestore(&priv->lock, flags);
4468 
4469 	priv->oldlink = false;
4470 	priv->speed = SPEED_UNKNOWN;
4471 	priv->oldduplex = DUPLEX_UNKNOWN;
4472 	return 0;
4473 }
4474 EXPORT_SYMBOL_GPL(stmmac_suspend);
4475 
4476 /**
4477  * stmmac_reset_queues_param - reset queue parameters
4478  * @dev: device pointer
4479  */
4480 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
4481 {
4482 	u32 rx_cnt = priv->plat->rx_queues_to_use;
4483 	u32 tx_cnt = priv->plat->tx_queues_to_use;
4484 	u32 queue;
4485 
4486 	for (queue = 0; queue < rx_cnt; queue++) {
4487 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4488 
4489 		rx_q->cur_rx = 0;
4490 		rx_q->dirty_rx = 0;
4491 	}
4492 
4493 	for (queue = 0; queue < tx_cnt; queue++) {
4494 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4495 
4496 		tx_q->cur_tx = 0;
4497 		tx_q->dirty_tx = 0;
4498 		tx_q->mss = 0;
4499 	}
4500 }
4501 
4502 /**
4503  * stmmac_resume - resume callback
4504  * @dev: device pointer
4505  * Description: when resume this function is invoked to setup the DMA and CORE
4506  * in a usable state.
4507  */
4508 int stmmac_resume(struct device *dev)
4509 {
4510 	struct net_device *ndev = dev_get_drvdata(dev);
4511 	struct stmmac_priv *priv = netdev_priv(ndev);
4512 	unsigned long flags;
4513 
4514 	if (!netif_running(ndev))
4515 		return 0;
4516 
4517 	/* Power Down bit, into the PM register, is cleared
4518 	 * automatically as soon as a magic packet or a Wake-up frame
4519 	 * is received. Anyway, it's better to manually clear
4520 	 * this bit because it can generate problems while resuming
4521 	 * from another devices (e.g. serial console).
4522 	 */
4523 	if (device_may_wakeup(priv->device)) {
4524 		spin_lock_irqsave(&priv->lock, flags);
4525 		stmmac_pmt(priv, priv->hw, 0);
4526 		spin_unlock_irqrestore(&priv->lock, flags);
4527 		priv->irq_wake = 0;
4528 	} else {
4529 		pinctrl_pm_select_default_state(priv->device);
4530 		/* enable the clk previously disabled */
4531 		clk_enable(priv->plat->stmmac_clk);
4532 		clk_enable(priv->plat->pclk);
4533 		/* reset the phy so that it's ready */
4534 		if (priv->mii)
4535 			stmmac_mdio_reset(priv->mii);
4536 	}
4537 
4538 	netif_device_attach(ndev);
4539 
4540 	spin_lock_irqsave(&priv->lock, flags);
4541 
4542 	stmmac_reset_queues_param(priv);
4543 
4544 	stmmac_clear_descriptors(priv);
4545 
4546 	stmmac_hw_setup(ndev, false);
4547 	stmmac_init_tx_coalesce(priv);
4548 	stmmac_set_rx_mode(ndev);
4549 
4550 	stmmac_enable_all_queues(priv);
4551 
4552 	stmmac_start_all_queues(priv);
4553 
4554 	spin_unlock_irqrestore(&priv->lock, flags);
4555 
4556 	if (ndev->phydev)
4557 		phy_start(ndev->phydev);
4558 
4559 	return 0;
4560 }
4561 EXPORT_SYMBOL_GPL(stmmac_resume);
4562 
4563 #ifndef MODULE
4564 static int __init stmmac_cmdline_opt(char *str)
4565 {
4566 	char *opt;
4567 
4568 	if (!str || !*str)
4569 		return -EINVAL;
4570 	while ((opt = strsep(&str, ",")) != NULL) {
4571 		if (!strncmp(opt, "debug:", 6)) {
4572 			if (kstrtoint(opt + 6, 0, &debug))
4573 				goto err;
4574 		} else if (!strncmp(opt, "phyaddr:", 8)) {
4575 			if (kstrtoint(opt + 8, 0, &phyaddr))
4576 				goto err;
4577 		} else if (!strncmp(opt, "buf_sz:", 7)) {
4578 			if (kstrtoint(opt + 7, 0, &buf_sz))
4579 				goto err;
4580 		} else if (!strncmp(opt, "tc:", 3)) {
4581 			if (kstrtoint(opt + 3, 0, &tc))
4582 				goto err;
4583 		} else if (!strncmp(opt, "watchdog:", 9)) {
4584 			if (kstrtoint(opt + 9, 0, &watchdog))
4585 				goto err;
4586 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
4587 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
4588 				goto err;
4589 		} else if (!strncmp(opt, "pause:", 6)) {
4590 			if (kstrtoint(opt + 6, 0, &pause))
4591 				goto err;
4592 		} else if (!strncmp(opt, "eee_timer:", 10)) {
4593 			if (kstrtoint(opt + 10, 0, &eee_timer))
4594 				goto err;
4595 		} else if (!strncmp(opt, "chain_mode:", 11)) {
4596 			if (kstrtoint(opt + 11, 0, &chain_mode))
4597 				goto err;
4598 		}
4599 	}
4600 	return 0;
4601 
4602 err:
4603 	pr_err("%s: ERROR broken module parameter conversion", __func__);
4604 	return -EINVAL;
4605 }
4606 
4607 __setup("stmmaceth=", stmmac_cmdline_opt);
4608 #endif /* MODULE */
4609 
4610 static int __init stmmac_init(void)
4611 {
4612 #ifdef CONFIG_DEBUG_FS
4613 	/* Create debugfs main directory if it doesn't exist yet */
4614 	if (!stmmac_fs_dir) {
4615 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
4616 
4617 		if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
4618 			pr_err("ERROR %s, debugfs create directory failed\n",
4619 			       STMMAC_RESOURCE_NAME);
4620 
4621 			return -ENOMEM;
4622 		}
4623 	}
4624 #endif
4625 
4626 	return 0;
4627 }
4628 
4629 static void __exit stmmac_exit(void)
4630 {
4631 #ifdef CONFIG_DEBUG_FS
4632 	debugfs_remove_recursive(stmmac_fs_dir);
4633 #endif
4634 }
4635 
4636 module_init(stmmac_init)
4637 module_exit(stmmac_exit)
4638 
4639 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
4640 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
4641 MODULE_LICENSE("GPL");
4642