1 // SPDX-License-Identifier: GPL-2.0-only 2 /******************************************************************************* 3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. 4 ST Ethernet IPs are built around a Synopsys IP Core. 5 6 Copyright(C) 2007-2011 STMicroelectronics Ltd 7 8 9 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> 10 11 Documentation available at: 12 http://www.stlinux.com 13 Support available at: 14 https://bugzilla.stlinux.com/ 15 *******************************************************************************/ 16 17 #include <linux/clk.h> 18 #include <linux/kernel.h> 19 #include <linux/interrupt.h> 20 #include <linux/ip.h> 21 #include <linux/tcp.h> 22 #include <linux/skbuff.h> 23 #include <linux/ethtool.h> 24 #include <linux/if_ether.h> 25 #include <linux/crc32.h> 26 #include <linux/mii.h> 27 #include <linux/if.h> 28 #include <linux/if_vlan.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/slab.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/prefetch.h> 33 #include <linux/pinctrl/consumer.h> 34 #ifdef CONFIG_DEBUG_FS 35 #include <linux/debugfs.h> 36 #include <linux/seq_file.h> 37 #endif /* CONFIG_DEBUG_FS */ 38 #include <linux/net_tstamp.h> 39 #include <linux/phylink.h> 40 #include <linux/udp.h> 41 #include <linux/bpf_trace.h> 42 #include <net/pkt_cls.h> 43 #include <net/xdp_sock_drv.h> 44 #include "stmmac_ptp.h" 45 #include "stmmac.h" 46 #include "stmmac_xdp.h" 47 #include <linux/reset.h> 48 #include <linux/of_mdio.h> 49 #include "dwmac1000.h" 50 #include "dwxgmac2.h" 51 #include "hwif.h" 52 53 /* As long as the interface is active, we keep the timestamping counter enabled 54 * with fine resolution and binary rollover. This avoid non-monotonic behavior 55 * (clock jumps) when changing timestamping settings at runtime. 56 */ 57 #define STMMAC_HWTS_ACTIVE (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \ 58 PTP_TCR_TSCTRLSSR) 59 60 #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16) 61 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1) 62 63 /* Module parameters */ 64 #define TX_TIMEO 5000 65 static int watchdog = TX_TIMEO; 66 module_param(watchdog, int, 0644); 67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); 68 69 static int debug = -1; 70 module_param(debug, int, 0644); 71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 72 73 static int phyaddr = -1; 74 module_param(phyaddr, int, 0444); 75 MODULE_PARM_DESC(phyaddr, "Physical device address"); 76 77 #define STMMAC_TX_THRESH(x) ((x)->dma_tx_size / 4) 78 #define STMMAC_RX_THRESH(x) ((x)->dma_rx_size / 4) 79 80 /* Limit to make sure XDP TX and slow path can coexist */ 81 #define STMMAC_XSK_TX_BUDGET_MAX 256 82 #define STMMAC_TX_XSK_AVAIL 16 83 #define STMMAC_RX_FILL_BATCH 16 84 85 #define STMMAC_XDP_PASS 0 86 #define STMMAC_XDP_CONSUMED BIT(0) 87 #define STMMAC_XDP_TX BIT(1) 88 #define STMMAC_XDP_REDIRECT BIT(2) 89 90 static int flow_ctrl = FLOW_AUTO; 91 module_param(flow_ctrl, int, 0644); 92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); 93 94 static int pause = PAUSE_TIME; 95 module_param(pause, int, 0644); 96 MODULE_PARM_DESC(pause, "Flow Control Pause Time"); 97 98 #define TC_DEFAULT 64 99 static int tc = TC_DEFAULT; 100 module_param(tc, int, 0644); 101 MODULE_PARM_DESC(tc, "DMA threshold control value"); 102 103 #define DEFAULT_BUFSIZE 1536 104 static int buf_sz = DEFAULT_BUFSIZE; 105 module_param(buf_sz, int, 0644); 106 MODULE_PARM_DESC(buf_sz, "DMA buffer size"); 107 108 #define STMMAC_RX_COPYBREAK 256 109 110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 111 NETIF_MSG_LINK | NETIF_MSG_IFUP | 112 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 113 114 #define STMMAC_DEFAULT_LPI_TIMER 1000 115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; 116 module_param(eee_timer, int, 0644); 117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); 118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x)) 119 120 /* By default the driver will use the ring mode to manage tx and rx descriptors, 121 * but allow user to force to use the chain instead of the ring 122 */ 123 static unsigned int chain_mode; 124 module_param(chain_mode, int, 0444); 125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); 126 127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id); 128 /* For MSI interrupts handling */ 129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id); 130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id); 131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data); 132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data); 133 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue); 134 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue); 135 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 136 u32 rxmode, u32 chan); 137 138 #ifdef CONFIG_DEBUG_FS 139 static const struct net_device_ops stmmac_netdev_ops; 140 static void stmmac_init_fs(struct net_device *dev); 141 static void stmmac_exit_fs(struct net_device *dev); 142 #endif 143 144 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC)) 145 146 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled) 147 { 148 int ret = 0; 149 150 if (enabled) { 151 ret = clk_prepare_enable(priv->plat->stmmac_clk); 152 if (ret) 153 return ret; 154 ret = clk_prepare_enable(priv->plat->pclk); 155 if (ret) { 156 clk_disable_unprepare(priv->plat->stmmac_clk); 157 return ret; 158 } 159 if (priv->plat->clks_config) { 160 ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled); 161 if (ret) { 162 clk_disable_unprepare(priv->plat->stmmac_clk); 163 clk_disable_unprepare(priv->plat->pclk); 164 return ret; 165 } 166 } 167 } else { 168 clk_disable_unprepare(priv->plat->stmmac_clk); 169 clk_disable_unprepare(priv->plat->pclk); 170 if (priv->plat->clks_config) 171 priv->plat->clks_config(priv->plat->bsp_priv, enabled); 172 } 173 174 return ret; 175 } 176 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config); 177 178 /** 179 * stmmac_verify_args - verify the driver parameters. 180 * Description: it checks the driver parameters and set a default in case of 181 * errors. 182 */ 183 static void stmmac_verify_args(void) 184 { 185 if (unlikely(watchdog < 0)) 186 watchdog = TX_TIMEO; 187 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) 188 buf_sz = DEFAULT_BUFSIZE; 189 if (unlikely(flow_ctrl > 1)) 190 flow_ctrl = FLOW_AUTO; 191 else if (likely(flow_ctrl < 0)) 192 flow_ctrl = FLOW_OFF; 193 if (unlikely((pause < 0) || (pause > 0xffff))) 194 pause = PAUSE_TIME; 195 if (eee_timer < 0) 196 eee_timer = STMMAC_DEFAULT_LPI_TIMER; 197 } 198 199 static void __stmmac_disable_all_queues(struct stmmac_priv *priv) 200 { 201 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 202 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 203 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 204 u32 queue; 205 206 for (queue = 0; queue < maxq; queue++) { 207 struct stmmac_channel *ch = &priv->channel[queue]; 208 209 if (stmmac_xdp_is_enabled(priv) && 210 test_bit(queue, priv->af_xdp_zc_qps)) { 211 napi_disable(&ch->rxtx_napi); 212 continue; 213 } 214 215 if (queue < rx_queues_cnt) 216 napi_disable(&ch->rx_napi); 217 if (queue < tx_queues_cnt) 218 napi_disable(&ch->tx_napi); 219 } 220 } 221 222 /** 223 * stmmac_disable_all_queues - Disable all queues 224 * @priv: driver private structure 225 */ 226 static void stmmac_disable_all_queues(struct stmmac_priv *priv) 227 { 228 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 229 struct stmmac_rx_queue *rx_q; 230 u32 queue; 231 232 /* synchronize_rcu() needed for pending XDP buffers to drain */ 233 for (queue = 0; queue < rx_queues_cnt; queue++) { 234 rx_q = &priv->rx_queue[queue]; 235 if (rx_q->xsk_pool) { 236 synchronize_rcu(); 237 break; 238 } 239 } 240 241 __stmmac_disable_all_queues(priv); 242 } 243 244 /** 245 * stmmac_enable_all_queues - Enable all queues 246 * @priv: driver private structure 247 */ 248 static void stmmac_enable_all_queues(struct stmmac_priv *priv) 249 { 250 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 251 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 252 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 253 u32 queue; 254 255 for (queue = 0; queue < maxq; queue++) { 256 struct stmmac_channel *ch = &priv->channel[queue]; 257 258 if (stmmac_xdp_is_enabled(priv) && 259 test_bit(queue, priv->af_xdp_zc_qps)) { 260 napi_enable(&ch->rxtx_napi); 261 continue; 262 } 263 264 if (queue < rx_queues_cnt) 265 napi_enable(&ch->rx_napi); 266 if (queue < tx_queues_cnt) 267 napi_enable(&ch->tx_napi); 268 } 269 } 270 271 static void stmmac_service_event_schedule(struct stmmac_priv *priv) 272 { 273 if (!test_bit(STMMAC_DOWN, &priv->state) && 274 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state)) 275 queue_work(priv->wq, &priv->service_task); 276 } 277 278 static void stmmac_global_err(struct stmmac_priv *priv) 279 { 280 netif_carrier_off(priv->dev); 281 set_bit(STMMAC_RESET_REQUESTED, &priv->state); 282 stmmac_service_event_schedule(priv); 283 } 284 285 /** 286 * stmmac_clk_csr_set - dynamically set the MDC clock 287 * @priv: driver private structure 288 * Description: this is to dynamically set the MDC clock according to the csr 289 * clock input. 290 * Note: 291 * If a specific clk_csr value is passed from the platform 292 * this means that the CSR Clock Range selection cannot be 293 * changed at run-time and it is fixed (as reported in the driver 294 * documentation). Viceversa the driver will try to set the MDC 295 * clock dynamically according to the actual clock input. 296 */ 297 static void stmmac_clk_csr_set(struct stmmac_priv *priv) 298 { 299 u32 clk_rate; 300 301 clk_rate = clk_get_rate(priv->plat->stmmac_clk); 302 303 /* Platform provided default clk_csr would be assumed valid 304 * for all other cases except for the below mentioned ones. 305 * For values higher than the IEEE 802.3 specified frequency 306 * we can not estimate the proper divider as it is not known 307 * the frequency of clk_csr_i. So we do not change the default 308 * divider. 309 */ 310 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { 311 if (clk_rate < CSR_F_35M) 312 priv->clk_csr = STMMAC_CSR_20_35M; 313 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) 314 priv->clk_csr = STMMAC_CSR_35_60M; 315 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) 316 priv->clk_csr = STMMAC_CSR_60_100M; 317 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) 318 priv->clk_csr = STMMAC_CSR_100_150M; 319 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) 320 priv->clk_csr = STMMAC_CSR_150_250M; 321 else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M)) 322 priv->clk_csr = STMMAC_CSR_250_300M; 323 } 324 325 if (priv->plat->has_sun8i) { 326 if (clk_rate > 160000000) 327 priv->clk_csr = 0x03; 328 else if (clk_rate > 80000000) 329 priv->clk_csr = 0x02; 330 else if (clk_rate > 40000000) 331 priv->clk_csr = 0x01; 332 else 333 priv->clk_csr = 0; 334 } 335 336 if (priv->plat->has_xgmac) { 337 if (clk_rate > 400000000) 338 priv->clk_csr = 0x5; 339 else if (clk_rate > 350000000) 340 priv->clk_csr = 0x4; 341 else if (clk_rate > 300000000) 342 priv->clk_csr = 0x3; 343 else if (clk_rate > 250000000) 344 priv->clk_csr = 0x2; 345 else if (clk_rate > 150000000) 346 priv->clk_csr = 0x1; 347 else 348 priv->clk_csr = 0x0; 349 } 350 } 351 352 static void print_pkt(unsigned char *buf, int len) 353 { 354 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); 355 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); 356 } 357 358 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue) 359 { 360 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 361 u32 avail; 362 363 if (tx_q->dirty_tx > tx_q->cur_tx) 364 avail = tx_q->dirty_tx - tx_q->cur_tx - 1; 365 else 366 avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1; 367 368 return avail; 369 } 370 371 /** 372 * stmmac_rx_dirty - Get RX queue dirty 373 * @priv: driver private structure 374 * @queue: RX queue index 375 */ 376 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue) 377 { 378 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 379 u32 dirty; 380 381 if (rx_q->dirty_rx <= rx_q->cur_rx) 382 dirty = rx_q->cur_rx - rx_q->dirty_rx; 383 else 384 dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx; 385 386 return dirty; 387 } 388 389 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en) 390 { 391 int tx_lpi_timer; 392 393 /* Clear/set the SW EEE timer flag based on LPI ET enablement */ 394 priv->eee_sw_timer_en = en ? 0 : 1; 395 tx_lpi_timer = en ? priv->tx_lpi_timer : 0; 396 stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer); 397 } 398 399 /** 400 * stmmac_enable_eee_mode - check and enter in LPI mode 401 * @priv: driver private structure 402 * Description: this function is to verify and enter in LPI mode in case of 403 * EEE. 404 */ 405 static void stmmac_enable_eee_mode(struct stmmac_priv *priv) 406 { 407 u32 tx_cnt = priv->plat->tx_queues_to_use; 408 u32 queue; 409 410 /* check if all TX queues have the work finished */ 411 for (queue = 0; queue < tx_cnt; queue++) { 412 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 413 414 if (tx_q->dirty_tx != tx_q->cur_tx) 415 return; /* still unfinished work */ 416 } 417 418 /* Check and enter in LPI mode */ 419 if (!priv->tx_path_in_lpi_mode) 420 stmmac_set_eee_mode(priv, priv->hw, 421 priv->plat->en_tx_lpi_clockgating); 422 } 423 424 /** 425 * stmmac_disable_eee_mode - disable and exit from LPI mode 426 * @priv: driver private structure 427 * Description: this function is to exit and disable EEE in case of 428 * LPI state is true. This is called by the xmit. 429 */ 430 void stmmac_disable_eee_mode(struct stmmac_priv *priv) 431 { 432 if (!priv->eee_sw_timer_en) { 433 stmmac_lpi_entry_timer_config(priv, 0); 434 return; 435 } 436 437 stmmac_reset_eee_mode(priv, priv->hw); 438 del_timer_sync(&priv->eee_ctrl_timer); 439 priv->tx_path_in_lpi_mode = false; 440 } 441 442 /** 443 * stmmac_eee_ctrl_timer - EEE TX SW timer. 444 * @t: timer_list struct containing private info 445 * Description: 446 * if there is no data transfer and if we are not in LPI state, 447 * then MAC Transmitter can be moved to LPI state. 448 */ 449 static void stmmac_eee_ctrl_timer(struct timer_list *t) 450 { 451 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer); 452 453 stmmac_enable_eee_mode(priv); 454 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); 455 } 456 457 /** 458 * stmmac_eee_init - init EEE 459 * @priv: driver private structure 460 * Description: 461 * if the GMAC supports the EEE (from the HW cap reg) and the phy device 462 * can also manage EEE, this function enable the LPI state and start related 463 * timer. 464 */ 465 bool stmmac_eee_init(struct stmmac_priv *priv) 466 { 467 int eee_tw_timer = priv->eee_tw_timer; 468 469 /* Using PCS we cannot dial with the phy registers at this stage 470 * so we do not support extra feature like EEE. 471 */ 472 if (priv->hw->pcs == STMMAC_PCS_TBI || 473 priv->hw->pcs == STMMAC_PCS_RTBI) 474 return false; 475 476 /* Check if MAC core supports the EEE feature. */ 477 if (!priv->dma_cap.eee) 478 return false; 479 480 mutex_lock(&priv->lock); 481 482 /* Check if it needs to be deactivated */ 483 if (!priv->eee_active) { 484 if (priv->eee_enabled) { 485 netdev_dbg(priv->dev, "disable EEE\n"); 486 stmmac_lpi_entry_timer_config(priv, 0); 487 del_timer_sync(&priv->eee_ctrl_timer); 488 stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer); 489 if (priv->hw->xpcs) 490 xpcs_config_eee(priv->hw->xpcs, 491 priv->plat->mult_fact_100ns, 492 false); 493 } 494 mutex_unlock(&priv->lock); 495 return false; 496 } 497 498 if (priv->eee_active && !priv->eee_enabled) { 499 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0); 500 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS, 501 eee_tw_timer); 502 if (priv->hw->xpcs) 503 xpcs_config_eee(priv->hw->xpcs, 504 priv->plat->mult_fact_100ns, 505 true); 506 } 507 508 if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) { 509 del_timer_sync(&priv->eee_ctrl_timer); 510 priv->tx_path_in_lpi_mode = false; 511 stmmac_lpi_entry_timer_config(priv, 1); 512 } else { 513 stmmac_lpi_entry_timer_config(priv, 0); 514 mod_timer(&priv->eee_ctrl_timer, 515 STMMAC_LPI_T(priv->tx_lpi_timer)); 516 } 517 518 mutex_unlock(&priv->lock); 519 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n"); 520 return true; 521 } 522 523 /* stmmac_get_tx_hwtstamp - get HW TX timestamps 524 * @priv: driver private structure 525 * @p : descriptor pointer 526 * @skb : the socket buffer 527 * Description : 528 * This function will read timestamp from the descriptor & pass it to stack. 529 * and also perform some sanity checks. 530 */ 531 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, 532 struct dma_desc *p, struct sk_buff *skb) 533 { 534 struct skb_shared_hwtstamps shhwtstamp; 535 bool found = false; 536 u64 ns = 0; 537 538 if (!priv->hwts_tx_en) 539 return; 540 541 /* exit if skb doesn't support hw tstamp */ 542 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) 543 return; 544 545 /* check tx tstamp status */ 546 if (stmmac_get_tx_timestamp_status(priv, p)) { 547 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns); 548 found = true; 549 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) { 550 found = true; 551 } 552 553 if (found) { 554 ns -= priv->plat->cdc_error_adj; 555 556 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 557 shhwtstamp.hwtstamp = ns_to_ktime(ns); 558 559 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns); 560 /* pass tstamp to stack */ 561 skb_tstamp_tx(skb, &shhwtstamp); 562 } 563 } 564 565 /* stmmac_get_rx_hwtstamp - get HW RX timestamps 566 * @priv: driver private structure 567 * @p : descriptor pointer 568 * @np : next descriptor pointer 569 * @skb : the socket buffer 570 * Description : 571 * This function will read received packet's timestamp from the descriptor 572 * and pass it to stack. It also perform some sanity checks. 573 */ 574 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p, 575 struct dma_desc *np, struct sk_buff *skb) 576 { 577 struct skb_shared_hwtstamps *shhwtstamp = NULL; 578 struct dma_desc *desc = p; 579 u64 ns = 0; 580 581 if (!priv->hwts_rx_en) 582 return; 583 /* For GMAC4, the valid timestamp is from CTX next desc. */ 584 if (priv->plat->has_gmac4 || priv->plat->has_xgmac) 585 desc = np; 586 587 /* Check if timestamp is available */ 588 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) { 589 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns); 590 591 ns -= priv->plat->cdc_error_adj; 592 593 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns); 594 shhwtstamp = skb_hwtstamps(skb); 595 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 596 shhwtstamp->hwtstamp = ns_to_ktime(ns); 597 } else { 598 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n"); 599 } 600 } 601 602 /** 603 * stmmac_hwtstamp_set - control hardware timestamping. 604 * @dev: device pointer. 605 * @ifr: An IOCTL specific structure, that can contain a pointer to 606 * a proprietary structure used to pass information to the driver. 607 * Description: 608 * This function configures the MAC to enable/disable both outgoing(TX) 609 * and incoming(RX) packets time stamping based on user input. 610 * Return Value: 611 * 0 on success and an appropriate -ve integer on failure. 612 */ 613 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 614 { 615 struct stmmac_priv *priv = netdev_priv(dev); 616 struct hwtstamp_config config; 617 u32 ptp_v2 = 0; 618 u32 tstamp_all = 0; 619 u32 ptp_over_ipv4_udp = 0; 620 u32 ptp_over_ipv6_udp = 0; 621 u32 ptp_over_ethernet = 0; 622 u32 snap_type_sel = 0; 623 u32 ts_master_en = 0; 624 u32 ts_event_en = 0; 625 626 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { 627 netdev_alert(priv->dev, "No support for HW time stamping\n"); 628 priv->hwts_tx_en = 0; 629 priv->hwts_rx_en = 0; 630 631 return -EOPNOTSUPP; 632 } 633 634 if (copy_from_user(&config, ifr->ifr_data, 635 sizeof(config))) 636 return -EFAULT; 637 638 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", 639 __func__, config.flags, config.tx_type, config.rx_filter); 640 641 if (config.tx_type != HWTSTAMP_TX_OFF && 642 config.tx_type != HWTSTAMP_TX_ON) 643 return -ERANGE; 644 645 if (priv->adv_ts) { 646 switch (config.rx_filter) { 647 case HWTSTAMP_FILTER_NONE: 648 /* time stamp no incoming packet at all */ 649 config.rx_filter = HWTSTAMP_FILTER_NONE; 650 break; 651 652 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 653 /* PTP v1, UDP, any kind of event packet */ 654 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 655 /* 'xmac' hardware can support Sync, Pdelay_Req and 656 * Pdelay_resp by setting bit14 and bits17/16 to 01 657 * This leaves Delay_Req timestamps out. 658 * Enable all events *and* general purpose message 659 * timestamping 660 */ 661 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 662 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 663 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 664 break; 665 666 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 667 /* PTP v1, UDP, Sync packet */ 668 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; 669 /* take time stamp for SYNC messages only */ 670 ts_event_en = PTP_TCR_TSEVNTENA; 671 672 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 673 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 674 break; 675 676 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 677 /* PTP v1, UDP, Delay_req packet */ 678 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; 679 /* take time stamp for Delay_Req messages only */ 680 ts_master_en = PTP_TCR_TSMSTRENA; 681 ts_event_en = PTP_TCR_TSEVNTENA; 682 683 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 684 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 685 break; 686 687 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 688 /* PTP v2, UDP, any kind of event packet */ 689 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 690 ptp_v2 = PTP_TCR_TSVER2ENA; 691 /* take time stamp for all event messages */ 692 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 693 694 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 695 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 696 break; 697 698 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 699 /* PTP v2, UDP, Sync packet */ 700 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; 701 ptp_v2 = PTP_TCR_TSVER2ENA; 702 /* take time stamp for SYNC messages only */ 703 ts_event_en = PTP_TCR_TSEVNTENA; 704 705 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 706 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 707 break; 708 709 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 710 /* PTP v2, UDP, Delay_req packet */ 711 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; 712 ptp_v2 = PTP_TCR_TSVER2ENA; 713 /* take time stamp for Delay_Req messages only */ 714 ts_master_en = PTP_TCR_TSMSTRENA; 715 ts_event_en = PTP_TCR_TSEVNTENA; 716 717 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 718 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 719 break; 720 721 case HWTSTAMP_FILTER_PTP_V2_EVENT: 722 /* PTP v2/802.AS1 any layer, any kind of event packet */ 723 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 724 ptp_v2 = PTP_TCR_TSVER2ENA; 725 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 726 if (priv->synopsys_id < DWMAC_CORE_4_10) 727 ts_event_en = PTP_TCR_TSEVNTENA; 728 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 729 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 730 ptp_over_ethernet = PTP_TCR_TSIPENA; 731 break; 732 733 case HWTSTAMP_FILTER_PTP_V2_SYNC: 734 /* PTP v2/802.AS1, any layer, Sync packet */ 735 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; 736 ptp_v2 = PTP_TCR_TSVER2ENA; 737 /* take time stamp for SYNC messages only */ 738 ts_event_en = PTP_TCR_TSEVNTENA; 739 740 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 741 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 742 ptp_over_ethernet = PTP_TCR_TSIPENA; 743 break; 744 745 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 746 /* PTP v2/802.AS1, any layer, Delay_req packet */ 747 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; 748 ptp_v2 = PTP_TCR_TSVER2ENA; 749 /* take time stamp for Delay_Req messages only */ 750 ts_master_en = PTP_TCR_TSMSTRENA; 751 ts_event_en = PTP_TCR_TSEVNTENA; 752 753 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 754 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 755 ptp_over_ethernet = PTP_TCR_TSIPENA; 756 break; 757 758 case HWTSTAMP_FILTER_NTP_ALL: 759 case HWTSTAMP_FILTER_ALL: 760 /* time stamp any incoming packet */ 761 config.rx_filter = HWTSTAMP_FILTER_ALL; 762 tstamp_all = PTP_TCR_TSENALL; 763 break; 764 765 default: 766 return -ERANGE; 767 } 768 } else { 769 switch (config.rx_filter) { 770 case HWTSTAMP_FILTER_NONE: 771 config.rx_filter = HWTSTAMP_FILTER_NONE; 772 break; 773 default: 774 /* PTP v1, UDP, any kind of event packet */ 775 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 776 break; 777 } 778 } 779 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); 780 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; 781 782 priv->systime_flags = STMMAC_HWTS_ACTIVE; 783 784 if (priv->hwts_tx_en || priv->hwts_rx_en) { 785 priv->systime_flags |= tstamp_all | ptp_v2 | 786 ptp_over_ethernet | ptp_over_ipv6_udp | 787 ptp_over_ipv4_udp | ts_event_en | 788 ts_master_en | snap_type_sel; 789 } 790 791 stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags); 792 793 memcpy(&priv->tstamp_config, &config, sizeof(config)); 794 795 return copy_to_user(ifr->ifr_data, &config, 796 sizeof(config)) ? -EFAULT : 0; 797 } 798 799 /** 800 * stmmac_hwtstamp_get - read hardware timestamping. 801 * @dev: device pointer. 802 * @ifr: An IOCTL specific structure, that can contain a pointer to 803 * a proprietary structure used to pass information to the driver. 804 * Description: 805 * This function obtain the current hardware timestamping settings 806 * as requested. 807 */ 808 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 809 { 810 struct stmmac_priv *priv = netdev_priv(dev); 811 struct hwtstamp_config *config = &priv->tstamp_config; 812 813 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 814 return -EOPNOTSUPP; 815 816 return copy_to_user(ifr->ifr_data, config, 817 sizeof(*config)) ? -EFAULT : 0; 818 } 819 820 /** 821 * stmmac_init_tstamp_counter - init hardware timestamping counter 822 * @priv: driver private structure 823 * @systime_flags: timestamping flags 824 * Description: 825 * Initialize hardware counter for packet timestamping. 826 * This is valid as long as the interface is open and not suspended. 827 * Will be rerun after resuming from suspend, case in which the timestamping 828 * flags updated by stmmac_hwtstamp_set() also need to be restored. 829 */ 830 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags) 831 { 832 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 833 struct timespec64 now; 834 u32 sec_inc = 0; 835 u64 temp = 0; 836 int ret; 837 838 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 839 return -EOPNOTSUPP; 840 841 ret = clk_prepare_enable(priv->plat->clk_ptp_ref); 842 if (ret < 0) { 843 netdev_warn(priv->dev, 844 "failed to enable PTP reference clock: %pe\n", 845 ERR_PTR(ret)); 846 return ret; 847 } 848 849 stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags); 850 priv->systime_flags = systime_flags; 851 852 /* program Sub Second Increment reg */ 853 stmmac_config_sub_second_increment(priv, priv->ptpaddr, 854 priv->plat->clk_ptp_rate, 855 xmac, &sec_inc); 856 temp = div_u64(1000000000ULL, sec_inc); 857 858 /* Store sub second increment for later use */ 859 priv->sub_second_inc = sec_inc; 860 861 /* calculate default added value: 862 * formula is : 863 * addend = (2^32)/freq_div_ratio; 864 * where, freq_div_ratio = 1e9ns/sec_inc 865 */ 866 temp = (u64)(temp << 32); 867 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate); 868 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend); 869 870 /* initialize system time */ 871 ktime_get_real_ts64(&now); 872 873 /* lower 32 bits of tv_sec are safe until y2106 */ 874 stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec); 875 876 return 0; 877 } 878 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter); 879 880 /** 881 * stmmac_init_ptp - init PTP 882 * @priv: driver private structure 883 * Description: this is to verify if the HW supports the PTPv1 or PTPv2. 884 * This is done by looking at the HW cap. register. 885 * This function also registers the ptp driver. 886 */ 887 static int stmmac_init_ptp(struct stmmac_priv *priv) 888 { 889 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 890 int ret; 891 892 ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE); 893 if (ret) 894 return ret; 895 896 priv->adv_ts = 0; 897 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */ 898 if (xmac && priv->dma_cap.atime_stamp) 899 priv->adv_ts = 1; 900 /* Dwmac 3.x core with extend_desc can support adv_ts */ 901 else if (priv->extend_desc && priv->dma_cap.atime_stamp) 902 priv->adv_ts = 1; 903 904 if (priv->dma_cap.time_stamp) 905 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n"); 906 907 if (priv->adv_ts) 908 netdev_info(priv->dev, 909 "IEEE 1588-2008 Advanced Timestamp supported\n"); 910 911 priv->hwts_tx_en = 0; 912 priv->hwts_rx_en = 0; 913 914 stmmac_ptp_register(priv); 915 916 return 0; 917 } 918 919 static void stmmac_release_ptp(struct stmmac_priv *priv) 920 { 921 clk_disable_unprepare(priv->plat->clk_ptp_ref); 922 stmmac_ptp_unregister(priv); 923 } 924 925 /** 926 * stmmac_mac_flow_ctrl - Configure flow control in all queues 927 * @priv: driver private structure 928 * @duplex: duplex passed to the next function 929 * Description: It is used for configuring the flow control in all queues 930 */ 931 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex) 932 { 933 u32 tx_cnt = priv->plat->tx_queues_to_use; 934 935 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl, 936 priv->pause, tx_cnt); 937 } 938 939 static void stmmac_validate(struct phylink_config *config, 940 unsigned long *supported, 941 struct phylink_link_state *state) 942 { 943 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 944 __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, }; 945 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 946 int tx_cnt = priv->plat->tx_queues_to_use; 947 int max_speed = priv->plat->max_speed; 948 949 phylink_set(mac_supported, 10baseT_Half); 950 phylink_set(mac_supported, 10baseT_Full); 951 phylink_set(mac_supported, 100baseT_Half); 952 phylink_set(mac_supported, 100baseT_Full); 953 phylink_set(mac_supported, 1000baseT_Half); 954 phylink_set(mac_supported, 1000baseT_Full); 955 phylink_set(mac_supported, 1000baseKX_Full); 956 957 phylink_set(mac_supported, Autoneg); 958 phylink_set(mac_supported, Pause); 959 phylink_set(mac_supported, Asym_Pause); 960 phylink_set_port_modes(mac_supported); 961 962 /* Cut down 1G if asked to */ 963 if ((max_speed > 0) && (max_speed < 1000)) { 964 phylink_set(mask, 1000baseT_Full); 965 phylink_set(mask, 1000baseX_Full); 966 } else if (priv->plat->has_gmac4) { 967 if (!max_speed || max_speed >= 2500) { 968 phylink_set(mac_supported, 2500baseT_Full); 969 phylink_set(mac_supported, 2500baseX_Full); 970 } 971 } else if (priv->plat->has_xgmac) { 972 if (!max_speed || (max_speed >= 2500)) { 973 phylink_set(mac_supported, 2500baseT_Full); 974 phylink_set(mac_supported, 2500baseX_Full); 975 } 976 if (!max_speed || (max_speed >= 5000)) { 977 phylink_set(mac_supported, 5000baseT_Full); 978 } 979 if (!max_speed || (max_speed >= 10000)) { 980 phylink_set(mac_supported, 10000baseSR_Full); 981 phylink_set(mac_supported, 10000baseLR_Full); 982 phylink_set(mac_supported, 10000baseER_Full); 983 phylink_set(mac_supported, 10000baseLRM_Full); 984 phylink_set(mac_supported, 10000baseT_Full); 985 phylink_set(mac_supported, 10000baseKX4_Full); 986 phylink_set(mac_supported, 10000baseKR_Full); 987 } 988 if (!max_speed || (max_speed >= 25000)) { 989 phylink_set(mac_supported, 25000baseCR_Full); 990 phylink_set(mac_supported, 25000baseKR_Full); 991 phylink_set(mac_supported, 25000baseSR_Full); 992 } 993 if (!max_speed || (max_speed >= 40000)) { 994 phylink_set(mac_supported, 40000baseKR4_Full); 995 phylink_set(mac_supported, 40000baseCR4_Full); 996 phylink_set(mac_supported, 40000baseSR4_Full); 997 phylink_set(mac_supported, 40000baseLR4_Full); 998 } 999 if (!max_speed || (max_speed >= 50000)) { 1000 phylink_set(mac_supported, 50000baseCR2_Full); 1001 phylink_set(mac_supported, 50000baseKR2_Full); 1002 phylink_set(mac_supported, 50000baseSR2_Full); 1003 phylink_set(mac_supported, 50000baseKR_Full); 1004 phylink_set(mac_supported, 50000baseSR_Full); 1005 phylink_set(mac_supported, 50000baseCR_Full); 1006 phylink_set(mac_supported, 50000baseLR_ER_FR_Full); 1007 phylink_set(mac_supported, 50000baseDR_Full); 1008 } 1009 if (!max_speed || (max_speed >= 100000)) { 1010 phylink_set(mac_supported, 100000baseKR4_Full); 1011 phylink_set(mac_supported, 100000baseSR4_Full); 1012 phylink_set(mac_supported, 100000baseCR4_Full); 1013 phylink_set(mac_supported, 100000baseLR4_ER4_Full); 1014 phylink_set(mac_supported, 100000baseKR2_Full); 1015 phylink_set(mac_supported, 100000baseSR2_Full); 1016 phylink_set(mac_supported, 100000baseCR2_Full); 1017 phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full); 1018 phylink_set(mac_supported, 100000baseDR2_Full); 1019 } 1020 } 1021 1022 /* Half-Duplex can only work with single queue */ 1023 if (tx_cnt > 1) { 1024 phylink_set(mask, 10baseT_Half); 1025 phylink_set(mask, 100baseT_Half); 1026 phylink_set(mask, 1000baseT_Half); 1027 } 1028 1029 linkmode_and(supported, supported, mac_supported); 1030 linkmode_andnot(supported, supported, mask); 1031 1032 linkmode_and(state->advertising, state->advertising, mac_supported); 1033 linkmode_andnot(state->advertising, state->advertising, mask); 1034 1035 /* If PCS is supported, check which modes it supports. */ 1036 if (priv->hw->xpcs) 1037 xpcs_validate(priv->hw->xpcs, supported, state); 1038 } 1039 1040 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode, 1041 const struct phylink_link_state *state) 1042 { 1043 /* Nothing to do, xpcs_config() handles everything */ 1044 } 1045 1046 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up) 1047 { 1048 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 1049 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 1050 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 1051 bool *hs_enable = &fpe_cfg->hs_enable; 1052 1053 if (is_up && *hs_enable) { 1054 stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY); 1055 } else { 1056 *lo_state = FPE_STATE_OFF; 1057 *lp_state = FPE_STATE_OFF; 1058 } 1059 } 1060 1061 static void stmmac_mac_link_down(struct phylink_config *config, 1062 unsigned int mode, phy_interface_t interface) 1063 { 1064 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 1065 1066 stmmac_mac_set(priv, priv->ioaddr, false); 1067 priv->eee_active = false; 1068 priv->tx_lpi_enabled = false; 1069 priv->eee_enabled = stmmac_eee_init(priv); 1070 stmmac_set_eee_pls(priv, priv->hw, false); 1071 1072 if (priv->dma_cap.fpesel) 1073 stmmac_fpe_link_state_handle(priv, false); 1074 } 1075 1076 static void stmmac_mac_link_up(struct phylink_config *config, 1077 struct phy_device *phy, 1078 unsigned int mode, phy_interface_t interface, 1079 int speed, int duplex, 1080 bool tx_pause, bool rx_pause) 1081 { 1082 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 1083 u32 ctrl; 1084 1085 ctrl = readl(priv->ioaddr + MAC_CTRL_REG); 1086 ctrl &= ~priv->hw->link.speed_mask; 1087 1088 if (interface == PHY_INTERFACE_MODE_USXGMII) { 1089 switch (speed) { 1090 case SPEED_10000: 1091 ctrl |= priv->hw->link.xgmii.speed10000; 1092 break; 1093 case SPEED_5000: 1094 ctrl |= priv->hw->link.xgmii.speed5000; 1095 break; 1096 case SPEED_2500: 1097 ctrl |= priv->hw->link.xgmii.speed2500; 1098 break; 1099 default: 1100 return; 1101 } 1102 } else if (interface == PHY_INTERFACE_MODE_XLGMII) { 1103 switch (speed) { 1104 case SPEED_100000: 1105 ctrl |= priv->hw->link.xlgmii.speed100000; 1106 break; 1107 case SPEED_50000: 1108 ctrl |= priv->hw->link.xlgmii.speed50000; 1109 break; 1110 case SPEED_40000: 1111 ctrl |= priv->hw->link.xlgmii.speed40000; 1112 break; 1113 case SPEED_25000: 1114 ctrl |= priv->hw->link.xlgmii.speed25000; 1115 break; 1116 case SPEED_10000: 1117 ctrl |= priv->hw->link.xgmii.speed10000; 1118 break; 1119 case SPEED_2500: 1120 ctrl |= priv->hw->link.speed2500; 1121 break; 1122 case SPEED_1000: 1123 ctrl |= priv->hw->link.speed1000; 1124 break; 1125 default: 1126 return; 1127 } 1128 } else { 1129 switch (speed) { 1130 case SPEED_2500: 1131 ctrl |= priv->hw->link.speed2500; 1132 break; 1133 case SPEED_1000: 1134 ctrl |= priv->hw->link.speed1000; 1135 break; 1136 case SPEED_100: 1137 ctrl |= priv->hw->link.speed100; 1138 break; 1139 case SPEED_10: 1140 ctrl |= priv->hw->link.speed10; 1141 break; 1142 default: 1143 return; 1144 } 1145 } 1146 1147 priv->speed = speed; 1148 1149 if (priv->plat->fix_mac_speed) 1150 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed); 1151 1152 if (!duplex) 1153 ctrl &= ~priv->hw->link.duplex; 1154 else 1155 ctrl |= priv->hw->link.duplex; 1156 1157 /* Flow Control operation */ 1158 if (tx_pause && rx_pause) 1159 stmmac_mac_flow_ctrl(priv, duplex); 1160 1161 writel(ctrl, priv->ioaddr + MAC_CTRL_REG); 1162 1163 stmmac_mac_set(priv, priv->ioaddr, true); 1164 if (phy && priv->dma_cap.eee) { 1165 priv->eee_active = phy_init_eee(phy, 1) >= 0; 1166 priv->eee_enabled = stmmac_eee_init(priv); 1167 priv->tx_lpi_enabled = priv->eee_enabled; 1168 stmmac_set_eee_pls(priv, priv->hw, true); 1169 } 1170 1171 if (priv->dma_cap.fpesel) 1172 stmmac_fpe_link_state_handle(priv, true); 1173 } 1174 1175 static const struct phylink_mac_ops stmmac_phylink_mac_ops = { 1176 .validate = stmmac_validate, 1177 .mac_config = stmmac_mac_config, 1178 .mac_link_down = stmmac_mac_link_down, 1179 .mac_link_up = stmmac_mac_link_up, 1180 }; 1181 1182 /** 1183 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported 1184 * @priv: driver private structure 1185 * Description: this is to verify if the HW supports the PCS. 1186 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is 1187 * configured for the TBI, RTBI, or SGMII PHY interface. 1188 */ 1189 static void stmmac_check_pcs_mode(struct stmmac_priv *priv) 1190 { 1191 int interface = priv->plat->interface; 1192 1193 if (priv->dma_cap.pcs) { 1194 if ((interface == PHY_INTERFACE_MODE_RGMII) || 1195 (interface == PHY_INTERFACE_MODE_RGMII_ID) || 1196 (interface == PHY_INTERFACE_MODE_RGMII_RXID) || 1197 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) { 1198 netdev_dbg(priv->dev, "PCS RGMII support enabled\n"); 1199 priv->hw->pcs = STMMAC_PCS_RGMII; 1200 } else if (interface == PHY_INTERFACE_MODE_SGMII) { 1201 netdev_dbg(priv->dev, "PCS SGMII support enabled\n"); 1202 priv->hw->pcs = STMMAC_PCS_SGMII; 1203 } 1204 } 1205 } 1206 1207 /** 1208 * stmmac_init_phy - PHY initialization 1209 * @dev: net device structure 1210 * Description: it initializes the driver's PHY state, and attaches the PHY 1211 * to the mac driver. 1212 * Return value: 1213 * 0 on success 1214 */ 1215 static int stmmac_init_phy(struct net_device *dev) 1216 { 1217 struct stmmac_priv *priv = netdev_priv(dev); 1218 struct device_node *node; 1219 int ret; 1220 1221 node = priv->plat->phylink_node; 1222 1223 if (node) 1224 ret = phylink_of_phy_connect(priv->phylink, node, 0); 1225 1226 /* Some DT bindings do not set-up the PHY handle. Let's try to 1227 * manually parse it 1228 */ 1229 if (!node || ret) { 1230 int addr = priv->plat->phy_addr; 1231 struct phy_device *phydev; 1232 1233 phydev = mdiobus_get_phy(priv->mii, addr); 1234 if (!phydev) { 1235 netdev_err(priv->dev, "no phy at addr %d\n", addr); 1236 return -ENODEV; 1237 } 1238 1239 ret = phylink_connect_phy(priv->phylink, phydev); 1240 } 1241 1242 if (!priv->plat->pmt) { 1243 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1244 1245 phylink_ethtool_get_wol(priv->phylink, &wol); 1246 device_set_wakeup_capable(priv->device, !!wol.supported); 1247 } 1248 1249 return ret; 1250 } 1251 1252 static int stmmac_phy_setup(struct stmmac_priv *priv) 1253 { 1254 struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data; 1255 struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node); 1256 int mode = priv->plat->phy_interface; 1257 struct phylink *phylink; 1258 1259 priv->phylink_config.dev = &priv->dev->dev; 1260 priv->phylink_config.type = PHYLINK_NETDEV; 1261 priv->phylink_config.pcs_poll = true; 1262 if (priv->plat->mdio_bus_data) 1263 priv->phylink_config.ovr_an_inband = 1264 mdio_bus_data->xpcs_an_inband; 1265 1266 if (!fwnode) 1267 fwnode = dev_fwnode(priv->device); 1268 1269 phylink = phylink_create(&priv->phylink_config, fwnode, 1270 mode, &stmmac_phylink_mac_ops); 1271 if (IS_ERR(phylink)) 1272 return PTR_ERR(phylink); 1273 1274 if (priv->hw->xpcs) 1275 phylink_set_pcs(phylink, &priv->hw->xpcs->pcs); 1276 1277 priv->phylink = phylink; 1278 return 0; 1279 } 1280 1281 static void stmmac_display_rx_rings(struct stmmac_priv *priv) 1282 { 1283 u32 rx_cnt = priv->plat->rx_queues_to_use; 1284 unsigned int desc_size; 1285 void *head_rx; 1286 u32 queue; 1287 1288 /* Display RX rings */ 1289 for (queue = 0; queue < rx_cnt; queue++) { 1290 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1291 1292 pr_info("\tRX Queue %u rings\n", queue); 1293 1294 if (priv->extend_desc) { 1295 head_rx = (void *)rx_q->dma_erx; 1296 desc_size = sizeof(struct dma_extended_desc); 1297 } else { 1298 head_rx = (void *)rx_q->dma_rx; 1299 desc_size = sizeof(struct dma_desc); 1300 } 1301 1302 /* Display RX ring */ 1303 stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true, 1304 rx_q->dma_rx_phy, desc_size); 1305 } 1306 } 1307 1308 static void stmmac_display_tx_rings(struct stmmac_priv *priv) 1309 { 1310 u32 tx_cnt = priv->plat->tx_queues_to_use; 1311 unsigned int desc_size; 1312 void *head_tx; 1313 u32 queue; 1314 1315 /* Display TX rings */ 1316 for (queue = 0; queue < tx_cnt; queue++) { 1317 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1318 1319 pr_info("\tTX Queue %d rings\n", queue); 1320 1321 if (priv->extend_desc) { 1322 head_tx = (void *)tx_q->dma_etx; 1323 desc_size = sizeof(struct dma_extended_desc); 1324 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1325 head_tx = (void *)tx_q->dma_entx; 1326 desc_size = sizeof(struct dma_edesc); 1327 } else { 1328 head_tx = (void *)tx_q->dma_tx; 1329 desc_size = sizeof(struct dma_desc); 1330 } 1331 1332 stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false, 1333 tx_q->dma_tx_phy, desc_size); 1334 } 1335 } 1336 1337 static void stmmac_display_rings(struct stmmac_priv *priv) 1338 { 1339 /* Display RX ring */ 1340 stmmac_display_rx_rings(priv); 1341 1342 /* Display TX ring */ 1343 stmmac_display_tx_rings(priv); 1344 } 1345 1346 static int stmmac_set_bfsize(int mtu, int bufsize) 1347 { 1348 int ret = bufsize; 1349 1350 if (mtu >= BUF_SIZE_8KiB) 1351 ret = BUF_SIZE_16KiB; 1352 else if (mtu >= BUF_SIZE_4KiB) 1353 ret = BUF_SIZE_8KiB; 1354 else if (mtu >= BUF_SIZE_2KiB) 1355 ret = BUF_SIZE_4KiB; 1356 else if (mtu > DEFAULT_BUFSIZE) 1357 ret = BUF_SIZE_2KiB; 1358 else 1359 ret = DEFAULT_BUFSIZE; 1360 1361 return ret; 1362 } 1363 1364 /** 1365 * stmmac_clear_rx_descriptors - clear RX descriptors 1366 * @priv: driver private structure 1367 * @queue: RX queue index 1368 * Description: this function is called to clear the RX descriptors 1369 * in case of both basic and extended descriptors are used. 1370 */ 1371 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue) 1372 { 1373 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1374 int i; 1375 1376 /* Clear the RX descriptors */ 1377 for (i = 0; i < priv->dma_rx_size; i++) 1378 if (priv->extend_desc) 1379 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic, 1380 priv->use_riwt, priv->mode, 1381 (i == priv->dma_rx_size - 1), 1382 priv->dma_buf_sz); 1383 else 1384 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i], 1385 priv->use_riwt, priv->mode, 1386 (i == priv->dma_rx_size - 1), 1387 priv->dma_buf_sz); 1388 } 1389 1390 /** 1391 * stmmac_clear_tx_descriptors - clear tx descriptors 1392 * @priv: driver private structure 1393 * @queue: TX queue index. 1394 * Description: this function is called to clear the TX descriptors 1395 * in case of both basic and extended descriptors are used. 1396 */ 1397 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue) 1398 { 1399 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1400 int i; 1401 1402 /* Clear the TX descriptors */ 1403 for (i = 0; i < priv->dma_tx_size; i++) { 1404 int last = (i == (priv->dma_tx_size - 1)); 1405 struct dma_desc *p; 1406 1407 if (priv->extend_desc) 1408 p = &tx_q->dma_etx[i].basic; 1409 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1410 p = &tx_q->dma_entx[i].basic; 1411 else 1412 p = &tx_q->dma_tx[i]; 1413 1414 stmmac_init_tx_desc(priv, p, priv->mode, last); 1415 } 1416 } 1417 1418 /** 1419 * stmmac_clear_descriptors - clear descriptors 1420 * @priv: driver private structure 1421 * Description: this function is called to clear the TX and RX descriptors 1422 * in case of both basic and extended descriptors are used. 1423 */ 1424 static void stmmac_clear_descriptors(struct stmmac_priv *priv) 1425 { 1426 u32 rx_queue_cnt = priv->plat->rx_queues_to_use; 1427 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1428 u32 queue; 1429 1430 /* Clear the RX descriptors */ 1431 for (queue = 0; queue < rx_queue_cnt; queue++) 1432 stmmac_clear_rx_descriptors(priv, queue); 1433 1434 /* Clear the TX descriptors */ 1435 for (queue = 0; queue < tx_queue_cnt; queue++) 1436 stmmac_clear_tx_descriptors(priv, queue); 1437 } 1438 1439 /** 1440 * stmmac_init_rx_buffers - init the RX descriptor buffer. 1441 * @priv: driver private structure 1442 * @p: descriptor pointer 1443 * @i: descriptor index 1444 * @flags: gfp flag 1445 * @queue: RX queue index 1446 * Description: this function is called to allocate a receive buffer, perform 1447 * the DMA mapping and init the descriptor. 1448 */ 1449 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p, 1450 int i, gfp_t flags, u32 queue) 1451 { 1452 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1453 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1454 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 1455 1456 if (priv->dma_cap.addr64 <= 32) 1457 gfp |= GFP_DMA32; 1458 1459 if (!buf->page) { 1460 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp); 1461 if (!buf->page) 1462 return -ENOMEM; 1463 buf->page_offset = stmmac_rx_offset(priv); 1464 } 1465 1466 if (priv->sph && !buf->sec_page) { 1467 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp); 1468 if (!buf->sec_page) 1469 return -ENOMEM; 1470 1471 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 1472 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); 1473 } else { 1474 buf->sec_page = NULL; 1475 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); 1476 } 1477 1478 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; 1479 1480 stmmac_set_desc_addr(priv, p, buf->addr); 1481 if (priv->dma_buf_sz == BUF_SIZE_16KiB) 1482 stmmac_init_desc3(priv, p); 1483 1484 return 0; 1485 } 1486 1487 /** 1488 * stmmac_free_rx_buffer - free RX dma buffers 1489 * @priv: private structure 1490 * @queue: RX queue index 1491 * @i: buffer index. 1492 */ 1493 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1494 { 1495 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1496 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1497 1498 if (buf->page) 1499 page_pool_put_full_page(rx_q->page_pool, buf->page, false); 1500 buf->page = NULL; 1501 1502 if (buf->sec_page) 1503 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false); 1504 buf->sec_page = NULL; 1505 } 1506 1507 /** 1508 * stmmac_free_tx_buffer - free RX dma buffers 1509 * @priv: private structure 1510 * @queue: RX queue index 1511 * @i: buffer index. 1512 */ 1513 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1514 { 1515 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1516 1517 if (tx_q->tx_skbuff_dma[i].buf && 1518 tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) { 1519 if (tx_q->tx_skbuff_dma[i].map_as_page) 1520 dma_unmap_page(priv->device, 1521 tx_q->tx_skbuff_dma[i].buf, 1522 tx_q->tx_skbuff_dma[i].len, 1523 DMA_TO_DEVICE); 1524 else 1525 dma_unmap_single(priv->device, 1526 tx_q->tx_skbuff_dma[i].buf, 1527 tx_q->tx_skbuff_dma[i].len, 1528 DMA_TO_DEVICE); 1529 } 1530 1531 if (tx_q->xdpf[i] && 1532 (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX || 1533 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) { 1534 xdp_return_frame(tx_q->xdpf[i]); 1535 tx_q->xdpf[i] = NULL; 1536 } 1537 1538 if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX) 1539 tx_q->xsk_frames_done++; 1540 1541 if (tx_q->tx_skbuff[i] && 1542 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) { 1543 dev_kfree_skb_any(tx_q->tx_skbuff[i]); 1544 tx_q->tx_skbuff[i] = NULL; 1545 } 1546 1547 tx_q->tx_skbuff_dma[i].buf = 0; 1548 tx_q->tx_skbuff_dma[i].map_as_page = false; 1549 } 1550 1551 /** 1552 * dma_free_rx_skbufs - free RX dma buffers 1553 * @priv: private structure 1554 * @queue: RX queue index 1555 */ 1556 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue) 1557 { 1558 int i; 1559 1560 for (i = 0; i < priv->dma_rx_size; i++) 1561 stmmac_free_rx_buffer(priv, queue, i); 1562 } 1563 1564 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, u32 queue, 1565 gfp_t flags) 1566 { 1567 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1568 int i; 1569 1570 for (i = 0; i < priv->dma_rx_size; i++) { 1571 struct dma_desc *p; 1572 int ret; 1573 1574 if (priv->extend_desc) 1575 p = &((rx_q->dma_erx + i)->basic); 1576 else 1577 p = rx_q->dma_rx + i; 1578 1579 ret = stmmac_init_rx_buffers(priv, p, i, flags, 1580 queue); 1581 if (ret) 1582 return ret; 1583 1584 rx_q->buf_alloc_num++; 1585 } 1586 1587 return 0; 1588 } 1589 1590 /** 1591 * dma_free_rx_xskbufs - free RX dma buffers from XSK pool 1592 * @priv: private structure 1593 * @queue: RX queue index 1594 */ 1595 static void dma_free_rx_xskbufs(struct stmmac_priv *priv, u32 queue) 1596 { 1597 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1598 int i; 1599 1600 for (i = 0; i < priv->dma_rx_size; i++) { 1601 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1602 1603 if (!buf->xdp) 1604 continue; 1605 1606 xsk_buff_free(buf->xdp); 1607 buf->xdp = NULL; 1608 } 1609 } 1610 1611 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, u32 queue) 1612 { 1613 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1614 int i; 1615 1616 for (i = 0; i < priv->dma_rx_size; i++) { 1617 struct stmmac_rx_buffer *buf; 1618 dma_addr_t dma_addr; 1619 struct dma_desc *p; 1620 1621 if (priv->extend_desc) 1622 p = (struct dma_desc *)(rx_q->dma_erx + i); 1623 else 1624 p = rx_q->dma_rx + i; 1625 1626 buf = &rx_q->buf_pool[i]; 1627 1628 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); 1629 if (!buf->xdp) 1630 return -ENOMEM; 1631 1632 dma_addr = xsk_buff_xdp_get_dma(buf->xdp); 1633 stmmac_set_desc_addr(priv, p, dma_addr); 1634 rx_q->buf_alloc_num++; 1635 } 1636 1637 return 0; 1638 } 1639 1640 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue) 1641 { 1642 if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps)) 1643 return NULL; 1644 1645 return xsk_get_pool_from_qid(priv->dev, queue); 1646 } 1647 1648 /** 1649 * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue) 1650 * @priv: driver private structure 1651 * @queue: RX queue index 1652 * @flags: gfp flag. 1653 * Description: this function initializes the DMA RX descriptors 1654 * and allocates the socket buffers. It supports the chained and ring 1655 * modes. 1656 */ 1657 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, u32 queue, gfp_t flags) 1658 { 1659 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1660 int ret; 1661 1662 netif_dbg(priv, probe, priv->dev, 1663 "(%s) dma_rx_phy=0x%08x\n", __func__, 1664 (u32)rx_q->dma_rx_phy); 1665 1666 stmmac_clear_rx_descriptors(priv, queue); 1667 1668 xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq); 1669 1670 rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); 1671 1672 if (rx_q->xsk_pool) { 1673 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, 1674 MEM_TYPE_XSK_BUFF_POOL, 1675 NULL)); 1676 netdev_info(priv->dev, 1677 "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n", 1678 rx_q->queue_index); 1679 xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq); 1680 } else { 1681 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, 1682 MEM_TYPE_PAGE_POOL, 1683 rx_q->page_pool)); 1684 netdev_info(priv->dev, 1685 "Register MEM_TYPE_PAGE_POOL RxQ-%d\n", 1686 rx_q->queue_index); 1687 } 1688 1689 if (rx_q->xsk_pool) { 1690 /* RX XDP ZC buffer pool may not be populated, e.g. 1691 * xdpsock TX-only. 1692 */ 1693 stmmac_alloc_rx_buffers_zc(priv, queue); 1694 } else { 1695 ret = stmmac_alloc_rx_buffers(priv, queue, flags); 1696 if (ret < 0) 1697 return -ENOMEM; 1698 } 1699 1700 rx_q->cur_rx = 0; 1701 rx_q->dirty_rx = 0; 1702 1703 /* Setup the chained descriptor addresses */ 1704 if (priv->mode == STMMAC_CHAIN_MODE) { 1705 if (priv->extend_desc) 1706 stmmac_mode_init(priv, rx_q->dma_erx, 1707 rx_q->dma_rx_phy, 1708 priv->dma_rx_size, 1); 1709 else 1710 stmmac_mode_init(priv, rx_q->dma_rx, 1711 rx_q->dma_rx_phy, 1712 priv->dma_rx_size, 0); 1713 } 1714 1715 return 0; 1716 } 1717 1718 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags) 1719 { 1720 struct stmmac_priv *priv = netdev_priv(dev); 1721 u32 rx_count = priv->plat->rx_queues_to_use; 1722 u32 queue; 1723 int ret; 1724 1725 /* RX INITIALIZATION */ 1726 netif_dbg(priv, probe, priv->dev, 1727 "SKB addresses:\nskb\t\tskb data\tdma data\n"); 1728 1729 for (queue = 0; queue < rx_count; queue++) { 1730 ret = __init_dma_rx_desc_rings(priv, queue, flags); 1731 if (ret) 1732 goto err_init_rx_buffers; 1733 } 1734 1735 return 0; 1736 1737 err_init_rx_buffers: 1738 while (queue >= 0) { 1739 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1740 1741 if (rx_q->xsk_pool) 1742 dma_free_rx_xskbufs(priv, queue); 1743 else 1744 dma_free_rx_skbufs(priv, queue); 1745 1746 rx_q->buf_alloc_num = 0; 1747 rx_q->xsk_pool = NULL; 1748 1749 if (queue == 0) 1750 break; 1751 1752 queue--; 1753 } 1754 1755 return ret; 1756 } 1757 1758 /** 1759 * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue) 1760 * @priv: driver private structure 1761 * @queue : TX queue index 1762 * Description: this function initializes the DMA TX descriptors 1763 * and allocates the socket buffers. It supports the chained and ring 1764 * modes. 1765 */ 1766 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, u32 queue) 1767 { 1768 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1769 int i; 1770 1771 netif_dbg(priv, probe, priv->dev, 1772 "(%s) dma_tx_phy=0x%08x\n", __func__, 1773 (u32)tx_q->dma_tx_phy); 1774 1775 /* Setup the chained descriptor addresses */ 1776 if (priv->mode == STMMAC_CHAIN_MODE) { 1777 if (priv->extend_desc) 1778 stmmac_mode_init(priv, tx_q->dma_etx, 1779 tx_q->dma_tx_phy, 1780 priv->dma_tx_size, 1); 1781 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) 1782 stmmac_mode_init(priv, tx_q->dma_tx, 1783 tx_q->dma_tx_phy, 1784 priv->dma_tx_size, 0); 1785 } 1786 1787 tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); 1788 1789 for (i = 0; i < priv->dma_tx_size; i++) { 1790 struct dma_desc *p; 1791 1792 if (priv->extend_desc) 1793 p = &((tx_q->dma_etx + i)->basic); 1794 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1795 p = &((tx_q->dma_entx + i)->basic); 1796 else 1797 p = tx_q->dma_tx + i; 1798 1799 stmmac_clear_desc(priv, p); 1800 1801 tx_q->tx_skbuff_dma[i].buf = 0; 1802 tx_q->tx_skbuff_dma[i].map_as_page = false; 1803 tx_q->tx_skbuff_dma[i].len = 0; 1804 tx_q->tx_skbuff_dma[i].last_segment = false; 1805 tx_q->tx_skbuff[i] = NULL; 1806 } 1807 1808 tx_q->dirty_tx = 0; 1809 tx_q->cur_tx = 0; 1810 tx_q->mss = 0; 1811 1812 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 1813 1814 return 0; 1815 } 1816 1817 static int init_dma_tx_desc_rings(struct net_device *dev) 1818 { 1819 struct stmmac_priv *priv = netdev_priv(dev); 1820 u32 tx_queue_cnt; 1821 u32 queue; 1822 1823 tx_queue_cnt = priv->plat->tx_queues_to_use; 1824 1825 for (queue = 0; queue < tx_queue_cnt; queue++) 1826 __init_dma_tx_desc_rings(priv, queue); 1827 1828 return 0; 1829 } 1830 1831 /** 1832 * init_dma_desc_rings - init the RX/TX descriptor rings 1833 * @dev: net device structure 1834 * @flags: gfp flag. 1835 * Description: this function initializes the DMA RX/TX descriptors 1836 * and allocates the socket buffers. It supports the chained and ring 1837 * modes. 1838 */ 1839 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags) 1840 { 1841 struct stmmac_priv *priv = netdev_priv(dev); 1842 int ret; 1843 1844 ret = init_dma_rx_desc_rings(dev, flags); 1845 if (ret) 1846 return ret; 1847 1848 ret = init_dma_tx_desc_rings(dev); 1849 1850 stmmac_clear_descriptors(priv); 1851 1852 if (netif_msg_hw(priv)) 1853 stmmac_display_rings(priv); 1854 1855 return ret; 1856 } 1857 1858 /** 1859 * dma_free_tx_skbufs - free TX dma buffers 1860 * @priv: private structure 1861 * @queue: TX queue index 1862 */ 1863 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue) 1864 { 1865 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1866 int i; 1867 1868 tx_q->xsk_frames_done = 0; 1869 1870 for (i = 0; i < priv->dma_tx_size; i++) 1871 stmmac_free_tx_buffer(priv, queue, i); 1872 1873 if (tx_q->xsk_pool && tx_q->xsk_frames_done) { 1874 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); 1875 tx_q->xsk_frames_done = 0; 1876 tx_q->xsk_pool = NULL; 1877 } 1878 } 1879 1880 /** 1881 * stmmac_free_tx_skbufs - free TX skb buffers 1882 * @priv: private structure 1883 */ 1884 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv) 1885 { 1886 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1887 u32 queue; 1888 1889 for (queue = 0; queue < tx_queue_cnt; queue++) 1890 dma_free_tx_skbufs(priv, queue); 1891 } 1892 1893 /** 1894 * __free_dma_rx_desc_resources - free RX dma desc resources (per queue) 1895 * @priv: private structure 1896 * @queue: RX queue index 1897 */ 1898 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue) 1899 { 1900 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1901 1902 /* Release the DMA RX socket buffers */ 1903 if (rx_q->xsk_pool) 1904 dma_free_rx_xskbufs(priv, queue); 1905 else 1906 dma_free_rx_skbufs(priv, queue); 1907 1908 rx_q->buf_alloc_num = 0; 1909 rx_q->xsk_pool = NULL; 1910 1911 /* Free DMA regions of consistent memory previously allocated */ 1912 if (!priv->extend_desc) 1913 dma_free_coherent(priv->device, priv->dma_rx_size * 1914 sizeof(struct dma_desc), 1915 rx_q->dma_rx, rx_q->dma_rx_phy); 1916 else 1917 dma_free_coherent(priv->device, priv->dma_rx_size * 1918 sizeof(struct dma_extended_desc), 1919 rx_q->dma_erx, rx_q->dma_rx_phy); 1920 1921 if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq)) 1922 xdp_rxq_info_unreg(&rx_q->xdp_rxq); 1923 1924 kfree(rx_q->buf_pool); 1925 if (rx_q->page_pool) 1926 page_pool_destroy(rx_q->page_pool); 1927 } 1928 1929 static void free_dma_rx_desc_resources(struct stmmac_priv *priv) 1930 { 1931 u32 rx_count = priv->plat->rx_queues_to_use; 1932 u32 queue; 1933 1934 /* Free RX queue resources */ 1935 for (queue = 0; queue < rx_count; queue++) 1936 __free_dma_rx_desc_resources(priv, queue); 1937 } 1938 1939 /** 1940 * __free_dma_tx_desc_resources - free TX dma desc resources (per queue) 1941 * @priv: private structure 1942 * @queue: TX queue index 1943 */ 1944 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue) 1945 { 1946 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1947 size_t size; 1948 void *addr; 1949 1950 /* Release the DMA TX socket buffers */ 1951 dma_free_tx_skbufs(priv, queue); 1952 1953 if (priv->extend_desc) { 1954 size = sizeof(struct dma_extended_desc); 1955 addr = tx_q->dma_etx; 1956 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1957 size = sizeof(struct dma_edesc); 1958 addr = tx_q->dma_entx; 1959 } else { 1960 size = sizeof(struct dma_desc); 1961 addr = tx_q->dma_tx; 1962 } 1963 1964 size *= priv->dma_tx_size; 1965 1966 dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy); 1967 1968 kfree(tx_q->tx_skbuff_dma); 1969 kfree(tx_q->tx_skbuff); 1970 } 1971 1972 static void free_dma_tx_desc_resources(struct stmmac_priv *priv) 1973 { 1974 u32 tx_count = priv->plat->tx_queues_to_use; 1975 u32 queue; 1976 1977 /* Free TX queue resources */ 1978 for (queue = 0; queue < tx_count; queue++) 1979 __free_dma_tx_desc_resources(priv, queue); 1980 } 1981 1982 /** 1983 * __alloc_dma_rx_desc_resources - alloc RX resources (per queue). 1984 * @priv: private structure 1985 * @queue: RX queue index 1986 * Description: according to which descriptor can be used (extend or basic) 1987 * this function allocates the resources for TX and RX paths. In case of 1988 * reception, for example, it pre-allocated the RX socket buffer in order to 1989 * allow zero-copy mechanism. 1990 */ 1991 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue) 1992 { 1993 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1994 struct stmmac_channel *ch = &priv->channel[queue]; 1995 bool xdp_prog = stmmac_xdp_is_enabled(priv); 1996 struct page_pool_params pp_params = { 0 }; 1997 unsigned int num_pages; 1998 unsigned int napi_id; 1999 int ret; 2000 2001 rx_q->queue_index = queue; 2002 rx_q->priv_data = priv; 2003 2004 pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 2005 pp_params.pool_size = priv->dma_rx_size; 2006 num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE); 2007 pp_params.order = ilog2(num_pages); 2008 pp_params.nid = dev_to_node(priv->device); 2009 pp_params.dev = priv->device; 2010 pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 2011 pp_params.offset = stmmac_rx_offset(priv); 2012 pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages); 2013 2014 rx_q->page_pool = page_pool_create(&pp_params); 2015 if (IS_ERR(rx_q->page_pool)) { 2016 ret = PTR_ERR(rx_q->page_pool); 2017 rx_q->page_pool = NULL; 2018 return ret; 2019 } 2020 2021 rx_q->buf_pool = kcalloc(priv->dma_rx_size, 2022 sizeof(*rx_q->buf_pool), 2023 GFP_KERNEL); 2024 if (!rx_q->buf_pool) 2025 return -ENOMEM; 2026 2027 if (priv->extend_desc) { 2028 rx_q->dma_erx = dma_alloc_coherent(priv->device, 2029 priv->dma_rx_size * 2030 sizeof(struct dma_extended_desc), 2031 &rx_q->dma_rx_phy, 2032 GFP_KERNEL); 2033 if (!rx_q->dma_erx) 2034 return -ENOMEM; 2035 2036 } else { 2037 rx_q->dma_rx = dma_alloc_coherent(priv->device, 2038 priv->dma_rx_size * 2039 sizeof(struct dma_desc), 2040 &rx_q->dma_rx_phy, 2041 GFP_KERNEL); 2042 if (!rx_q->dma_rx) 2043 return -ENOMEM; 2044 } 2045 2046 if (stmmac_xdp_is_enabled(priv) && 2047 test_bit(queue, priv->af_xdp_zc_qps)) 2048 napi_id = ch->rxtx_napi.napi_id; 2049 else 2050 napi_id = ch->rx_napi.napi_id; 2051 2052 ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev, 2053 rx_q->queue_index, 2054 napi_id); 2055 if (ret) { 2056 netdev_err(priv->dev, "Failed to register xdp rxq info\n"); 2057 return -EINVAL; 2058 } 2059 2060 return 0; 2061 } 2062 2063 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv) 2064 { 2065 u32 rx_count = priv->plat->rx_queues_to_use; 2066 u32 queue; 2067 int ret; 2068 2069 /* RX queues buffers and DMA */ 2070 for (queue = 0; queue < rx_count; queue++) { 2071 ret = __alloc_dma_rx_desc_resources(priv, queue); 2072 if (ret) 2073 goto err_dma; 2074 } 2075 2076 return 0; 2077 2078 err_dma: 2079 free_dma_rx_desc_resources(priv); 2080 2081 return ret; 2082 } 2083 2084 /** 2085 * __alloc_dma_tx_desc_resources - alloc TX resources (per queue). 2086 * @priv: private structure 2087 * @queue: TX queue index 2088 * Description: according to which descriptor can be used (extend or basic) 2089 * this function allocates the resources for TX and RX paths. In case of 2090 * reception, for example, it pre-allocated the RX socket buffer in order to 2091 * allow zero-copy mechanism. 2092 */ 2093 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue) 2094 { 2095 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2096 size_t size; 2097 void *addr; 2098 2099 tx_q->queue_index = queue; 2100 tx_q->priv_data = priv; 2101 2102 tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size, 2103 sizeof(*tx_q->tx_skbuff_dma), 2104 GFP_KERNEL); 2105 if (!tx_q->tx_skbuff_dma) 2106 return -ENOMEM; 2107 2108 tx_q->tx_skbuff = kcalloc(priv->dma_tx_size, 2109 sizeof(struct sk_buff *), 2110 GFP_KERNEL); 2111 if (!tx_q->tx_skbuff) 2112 return -ENOMEM; 2113 2114 if (priv->extend_desc) 2115 size = sizeof(struct dma_extended_desc); 2116 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2117 size = sizeof(struct dma_edesc); 2118 else 2119 size = sizeof(struct dma_desc); 2120 2121 size *= priv->dma_tx_size; 2122 2123 addr = dma_alloc_coherent(priv->device, size, 2124 &tx_q->dma_tx_phy, GFP_KERNEL); 2125 if (!addr) 2126 return -ENOMEM; 2127 2128 if (priv->extend_desc) 2129 tx_q->dma_etx = addr; 2130 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2131 tx_q->dma_entx = addr; 2132 else 2133 tx_q->dma_tx = addr; 2134 2135 return 0; 2136 } 2137 2138 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv) 2139 { 2140 u32 tx_count = priv->plat->tx_queues_to_use; 2141 u32 queue; 2142 int ret; 2143 2144 /* TX queues buffers and DMA */ 2145 for (queue = 0; queue < tx_count; queue++) { 2146 ret = __alloc_dma_tx_desc_resources(priv, queue); 2147 if (ret) 2148 goto err_dma; 2149 } 2150 2151 return 0; 2152 2153 err_dma: 2154 free_dma_tx_desc_resources(priv); 2155 return ret; 2156 } 2157 2158 /** 2159 * alloc_dma_desc_resources - alloc TX/RX resources. 2160 * @priv: private structure 2161 * Description: according to which descriptor can be used (extend or basic) 2162 * this function allocates the resources for TX and RX paths. In case of 2163 * reception, for example, it pre-allocated the RX socket buffer in order to 2164 * allow zero-copy mechanism. 2165 */ 2166 static int alloc_dma_desc_resources(struct stmmac_priv *priv) 2167 { 2168 /* RX Allocation */ 2169 int ret = alloc_dma_rx_desc_resources(priv); 2170 2171 if (ret) 2172 return ret; 2173 2174 ret = alloc_dma_tx_desc_resources(priv); 2175 2176 return ret; 2177 } 2178 2179 /** 2180 * free_dma_desc_resources - free dma desc resources 2181 * @priv: private structure 2182 */ 2183 static void free_dma_desc_resources(struct stmmac_priv *priv) 2184 { 2185 /* Release the DMA TX socket buffers */ 2186 free_dma_tx_desc_resources(priv); 2187 2188 /* Release the DMA RX socket buffers later 2189 * to ensure all pending XDP_TX buffers are returned. 2190 */ 2191 free_dma_rx_desc_resources(priv); 2192 } 2193 2194 /** 2195 * stmmac_mac_enable_rx_queues - Enable MAC rx queues 2196 * @priv: driver private structure 2197 * Description: It is used for enabling the rx queues in the MAC 2198 */ 2199 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv) 2200 { 2201 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2202 int queue; 2203 u8 mode; 2204 2205 for (queue = 0; queue < rx_queues_count; queue++) { 2206 mode = priv->plat->rx_queues_cfg[queue].mode_to_use; 2207 stmmac_rx_queue_enable(priv, priv->hw, mode, queue); 2208 } 2209 } 2210 2211 /** 2212 * stmmac_start_rx_dma - start RX DMA channel 2213 * @priv: driver private structure 2214 * @chan: RX channel index 2215 * Description: 2216 * This starts a RX DMA channel 2217 */ 2218 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan) 2219 { 2220 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan); 2221 stmmac_start_rx(priv, priv->ioaddr, chan); 2222 } 2223 2224 /** 2225 * stmmac_start_tx_dma - start TX DMA channel 2226 * @priv: driver private structure 2227 * @chan: TX channel index 2228 * Description: 2229 * This starts a TX DMA channel 2230 */ 2231 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan) 2232 { 2233 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan); 2234 stmmac_start_tx(priv, priv->ioaddr, chan); 2235 } 2236 2237 /** 2238 * stmmac_stop_rx_dma - stop RX DMA channel 2239 * @priv: driver private structure 2240 * @chan: RX channel index 2241 * Description: 2242 * This stops a RX DMA channel 2243 */ 2244 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan) 2245 { 2246 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan); 2247 stmmac_stop_rx(priv, priv->ioaddr, chan); 2248 } 2249 2250 /** 2251 * stmmac_stop_tx_dma - stop TX DMA channel 2252 * @priv: driver private structure 2253 * @chan: TX channel index 2254 * Description: 2255 * This stops a TX DMA channel 2256 */ 2257 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan) 2258 { 2259 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan); 2260 stmmac_stop_tx(priv, priv->ioaddr, chan); 2261 } 2262 2263 /** 2264 * stmmac_start_all_dma - start all RX and TX DMA channels 2265 * @priv: driver private structure 2266 * Description: 2267 * This starts all the RX and TX DMA channels 2268 */ 2269 static void stmmac_start_all_dma(struct stmmac_priv *priv) 2270 { 2271 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2272 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2273 u32 chan = 0; 2274 2275 for (chan = 0; chan < rx_channels_count; chan++) 2276 stmmac_start_rx_dma(priv, chan); 2277 2278 for (chan = 0; chan < tx_channels_count; chan++) 2279 stmmac_start_tx_dma(priv, chan); 2280 } 2281 2282 /** 2283 * stmmac_stop_all_dma - stop all RX and TX DMA channels 2284 * @priv: driver private structure 2285 * Description: 2286 * This stops the RX and TX DMA channels 2287 */ 2288 static void stmmac_stop_all_dma(struct stmmac_priv *priv) 2289 { 2290 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2291 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2292 u32 chan = 0; 2293 2294 for (chan = 0; chan < rx_channels_count; chan++) 2295 stmmac_stop_rx_dma(priv, chan); 2296 2297 for (chan = 0; chan < tx_channels_count; chan++) 2298 stmmac_stop_tx_dma(priv, chan); 2299 } 2300 2301 /** 2302 * stmmac_dma_operation_mode - HW DMA operation mode 2303 * @priv: driver private structure 2304 * Description: it is used for configuring the DMA operation mode register in 2305 * order to program the tx/rx DMA thresholds or Store-And-Forward mode. 2306 */ 2307 static void stmmac_dma_operation_mode(struct stmmac_priv *priv) 2308 { 2309 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2310 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2311 int rxfifosz = priv->plat->rx_fifo_size; 2312 int txfifosz = priv->plat->tx_fifo_size; 2313 u32 txmode = 0; 2314 u32 rxmode = 0; 2315 u32 chan = 0; 2316 u8 qmode = 0; 2317 2318 if (rxfifosz == 0) 2319 rxfifosz = priv->dma_cap.rx_fifo_size; 2320 if (txfifosz == 0) 2321 txfifosz = priv->dma_cap.tx_fifo_size; 2322 2323 /* Adjust for real per queue fifo size */ 2324 rxfifosz /= rx_channels_count; 2325 txfifosz /= tx_channels_count; 2326 2327 if (priv->plat->force_thresh_dma_mode) { 2328 txmode = tc; 2329 rxmode = tc; 2330 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { 2331 /* 2332 * In case of GMAC, SF mode can be enabled 2333 * to perform the TX COE in HW. This depends on: 2334 * 1) TX COE if actually supported 2335 * 2) There is no bugged Jumbo frame support 2336 * that needs to not insert csum in the TDES. 2337 */ 2338 txmode = SF_DMA_MODE; 2339 rxmode = SF_DMA_MODE; 2340 priv->xstats.threshold = SF_DMA_MODE; 2341 } else { 2342 txmode = tc; 2343 rxmode = SF_DMA_MODE; 2344 } 2345 2346 /* configure all channels */ 2347 for (chan = 0; chan < rx_channels_count; chan++) { 2348 struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan]; 2349 u32 buf_size; 2350 2351 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2352 2353 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, 2354 rxfifosz, qmode); 2355 2356 if (rx_q->xsk_pool) { 2357 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 2358 stmmac_set_dma_bfsize(priv, priv->ioaddr, 2359 buf_size, 2360 chan); 2361 } else { 2362 stmmac_set_dma_bfsize(priv, priv->ioaddr, 2363 priv->dma_buf_sz, 2364 chan); 2365 } 2366 } 2367 2368 for (chan = 0; chan < tx_channels_count; chan++) { 2369 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2370 2371 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, 2372 txfifosz, qmode); 2373 } 2374 } 2375 2376 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget) 2377 { 2378 struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue); 2379 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2380 struct xsk_buff_pool *pool = tx_q->xsk_pool; 2381 unsigned int entry = tx_q->cur_tx; 2382 struct dma_desc *tx_desc = NULL; 2383 struct xdp_desc xdp_desc; 2384 bool work_done = true; 2385 2386 /* Avoids TX time-out as we are sharing with slow path */ 2387 txq_trans_cond_update(nq); 2388 2389 budget = min(budget, stmmac_tx_avail(priv, queue)); 2390 2391 while (budget-- > 0) { 2392 dma_addr_t dma_addr; 2393 bool set_ic; 2394 2395 /* We are sharing with slow path and stop XSK TX desc submission when 2396 * available TX ring is less than threshold. 2397 */ 2398 if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) || 2399 !netif_carrier_ok(priv->dev)) { 2400 work_done = false; 2401 break; 2402 } 2403 2404 if (!xsk_tx_peek_desc(pool, &xdp_desc)) 2405 break; 2406 2407 if (likely(priv->extend_desc)) 2408 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); 2409 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2410 tx_desc = &tx_q->dma_entx[entry].basic; 2411 else 2412 tx_desc = tx_q->dma_tx + entry; 2413 2414 dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr); 2415 xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len); 2416 2417 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX; 2418 2419 /* To return XDP buffer to XSK pool, we simple call 2420 * xsk_tx_completed(), so we don't need to fill up 2421 * 'buf' and 'xdpf'. 2422 */ 2423 tx_q->tx_skbuff_dma[entry].buf = 0; 2424 tx_q->xdpf[entry] = NULL; 2425 2426 tx_q->tx_skbuff_dma[entry].map_as_page = false; 2427 tx_q->tx_skbuff_dma[entry].len = xdp_desc.len; 2428 tx_q->tx_skbuff_dma[entry].last_segment = true; 2429 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 2430 2431 stmmac_set_desc_addr(priv, tx_desc, dma_addr); 2432 2433 tx_q->tx_count_frames++; 2434 2435 if (!priv->tx_coal_frames[queue]) 2436 set_ic = false; 2437 else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) 2438 set_ic = true; 2439 else 2440 set_ic = false; 2441 2442 if (set_ic) { 2443 tx_q->tx_count_frames = 0; 2444 stmmac_set_tx_ic(priv, tx_desc); 2445 priv->xstats.tx_set_ic_bit++; 2446 } 2447 2448 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len, 2449 true, priv->mode, true, true, 2450 xdp_desc.len); 2451 2452 stmmac_enable_dma_transmission(priv, priv->ioaddr); 2453 2454 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 2455 entry = tx_q->cur_tx; 2456 } 2457 2458 if (tx_desc) { 2459 stmmac_flush_tx_descriptors(priv, queue); 2460 xsk_tx_release(pool); 2461 } 2462 2463 /* Return true if all of the 3 conditions are met 2464 * a) TX Budget is still available 2465 * b) work_done = true when XSK TX desc peek is empty (no more 2466 * pending XSK TX for transmission) 2467 */ 2468 return !!budget && work_done; 2469 } 2470 2471 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan) 2472 { 2473 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) { 2474 tc += 64; 2475 2476 if (priv->plat->force_thresh_dma_mode) 2477 stmmac_set_dma_operation_mode(priv, tc, tc, chan); 2478 else 2479 stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE, 2480 chan); 2481 2482 priv->xstats.threshold = tc; 2483 } 2484 } 2485 2486 /** 2487 * stmmac_tx_clean - to manage the transmission completion 2488 * @priv: driver private structure 2489 * @budget: napi budget limiting this functions packet handling 2490 * @queue: TX queue index 2491 * Description: it reclaims the transmit resources after transmission completes. 2492 */ 2493 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue) 2494 { 2495 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2496 unsigned int bytes_compl = 0, pkts_compl = 0; 2497 unsigned int entry, xmits = 0, count = 0; 2498 2499 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue)); 2500 2501 priv->xstats.tx_clean++; 2502 2503 tx_q->xsk_frames_done = 0; 2504 2505 entry = tx_q->dirty_tx; 2506 2507 /* Try to clean all TX complete frame in 1 shot */ 2508 while ((entry != tx_q->cur_tx) && count < priv->dma_tx_size) { 2509 struct xdp_frame *xdpf; 2510 struct sk_buff *skb; 2511 struct dma_desc *p; 2512 int status; 2513 2514 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX || 2515 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { 2516 xdpf = tx_q->xdpf[entry]; 2517 skb = NULL; 2518 } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { 2519 xdpf = NULL; 2520 skb = tx_q->tx_skbuff[entry]; 2521 } else { 2522 xdpf = NULL; 2523 skb = NULL; 2524 } 2525 2526 if (priv->extend_desc) 2527 p = (struct dma_desc *)(tx_q->dma_etx + entry); 2528 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2529 p = &tx_q->dma_entx[entry].basic; 2530 else 2531 p = tx_q->dma_tx + entry; 2532 2533 status = stmmac_tx_status(priv, &priv->dev->stats, 2534 &priv->xstats, p, priv->ioaddr); 2535 /* Check if the descriptor is owned by the DMA */ 2536 if (unlikely(status & tx_dma_own)) 2537 break; 2538 2539 count++; 2540 2541 /* Make sure descriptor fields are read after reading 2542 * the own bit. 2543 */ 2544 dma_rmb(); 2545 2546 /* Just consider the last segment and ...*/ 2547 if (likely(!(status & tx_not_ls))) { 2548 /* ... verify the status error condition */ 2549 if (unlikely(status & tx_err)) { 2550 priv->dev->stats.tx_errors++; 2551 if (unlikely(status & tx_err_bump_tc)) 2552 stmmac_bump_dma_threshold(priv, queue); 2553 } else { 2554 priv->dev->stats.tx_packets++; 2555 priv->xstats.tx_pkt_n++; 2556 priv->xstats.txq_stats[queue].tx_pkt_n++; 2557 } 2558 if (skb) 2559 stmmac_get_tx_hwtstamp(priv, p, skb); 2560 } 2561 2562 if (likely(tx_q->tx_skbuff_dma[entry].buf && 2563 tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) { 2564 if (tx_q->tx_skbuff_dma[entry].map_as_page) 2565 dma_unmap_page(priv->device, 2566 tx_q->tx_skbuff_dma[entry].buf, 2567 tx_q->tx_skbuff_dma[entry].len, 2568 DMA_TO_DEVICE); 2569 else 2570 dma_unmap_single(priv->device, 2571 tx_q->tx_skbuff_dma[entry].buf, 2572 tx_q->tx_skbuff_dma[entry].len, 2573 DMA_TO_DEVICE); 2574 tx_q->tx_skbuff_dma[entry].buf = 0; 2575 tx_q->tx_skbuff_dma[entry].len = 0; 2576 tx_q->tx_skbuff_dma[entry].map_as_page = false; 2577 } 2578 2579 stmmac_clean_desc3(priv, tx_q, p); 2580 2581 tx_q->tx_skbuff_dma[entry].last_segment = false; 2582 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 2583 2584 if (xdpf && 2585 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) { 2586 xdp_return_frame_rx_napi(xdpf); 2587 tx_q->xdpf[entry] = NULL; 2588 } 2589 2590 if (xdpf && 2591 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { 2592 xdp_return_frame(xdpf); 2593 tx_q->xdpf[entry] = NULL; 2594 } 2595 2596 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX) 2597 tx_q->xsk_frames_done++; 2598 2599 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { 2600 if (likely(skb)) { 2601 pkts_compl++; 2602 bytes_compl += skb->len; 2603 dev_consume_skb_any(skb); 2604 tx_q->tx_skbuff[entry] = NULL; 2605 } 2606 } 2607 2608 stmmac_release_tx_desc(priv, p, priv->mode); 2609 2610 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 2611 } 2612 tx_q->dirty_tx = entry; 2613 2614 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue), 2615 pkts_compl, bytes_compl); 2616 2617 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev, 2618 queue))) && 2619 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) { 2620 2621 netif_dbg(priv, tx_done, priv->dev, 2622 "%s: restart transmit\n", __func__); 2623 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue)); 2624 } 2625 2626 if (tx_q->xsk_pool) { 2627 bool work_done; 2628 2629 if (tx_q->xsk_frames_done) 2630 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); 2631 2632 if (xsk_uses_need_wakeup(tx_q->xsk_pool)) 2633 xsk_set_tx_need_wakeup(tx_q->xsk_pool); 2634 2635 /* For XSK TX, we try to send as many as possible. 2636 * If XSK work done (XSK TX desc empty and budget still 2637 * available), return "budget - 1" to reenable TX IRQ. 2638 * Else, return "budget" to make NAPI continue polling. 2639 */ 2640 work_done = stmmac_xdp_xmit_zc(priv, queue, 2641 STMMAC_XSK_TX_BUDGET_MAX); 2642 if (work_done) 2643 xmits = budget - 1; 2644 else 2645 xmits = budget; 2646 } 2647 2648 if (priv->eee_enabled && !priv->tx_path_in_lpi_mode && 2649 priv->eee_sw_timer_en) { 2650 stmmac_enable_eee_mode(priv); 2651 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); 2652 } 2653 2654 /* We still have pending packets, let's call for a new scheduling */ 2655 if (tx_q->dirty_tx != tx_q->cur_tx) 2656 hrtimer_start(&tx_q->txtimer, 2657 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]), 2658 HRTIMER_MODE_REL); 2659 2660 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue)); 2661 2662 /* Combine decisions from TX clean and XSK TX */ 2663 return max(count, xmits); 2664 } 2665 2666 /** 2667 * stmmac_tx_err - to manage the tx error 2668 * @priv: driver private structure 2669 * @chan: channel index 2670 * Description: it cleans the descriptors and restarts the transmission 2671 * in case of transmission errors. 2672 */ 2673 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan) 2674 { 2675 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2676 2677 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan)); 2678 2679 stmmac_stop_tx_dma(priv, chan); 2680 dma_free_tx_skbufs(priv, chan); 2681 stmmac_clear_tx_descriptors(priv, chan); 2682 tx_q->dirty_tx = 0; 2683 tx_q->cur_tx = 0; 2684 tx_q->mss = 0; 2685 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan)); 2686 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2687 tx_q->dma_tx_phy, chan); 2688 stmmac_start_tx_dma(priv, chan); 2689 2690 priv->dev->stats.tx_errors++; 2691 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan)); 2692 } 2693 2694 /** 2695 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel 2696 * @priv: driver private structure 2697 * @txmode: TX operating mode 2698 * @rxmode: RX operating mode 2699 * @chan: channel index 2700 * Description: it is used for configuring of the DMA operation mode in 2701 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward 2702 * mode. 2703 */ 2704 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 2705 u32 rxmode, u32 chan) 2706 { 2707 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2708 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2709 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2710 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2711 int rxfifosz = priv->plat->rx_fifo_size; 2712 int txfifosz = priv->plat->tx_fifo_size; 2713 2714 if (rxfifosz == 0) 2715 rxfifosz = priv->dma_cap.rx_fifo_size; 2716 if (txfifosz == 0) 2717 txfifosz = priv->dma_cap.tx_fifo_size; 2718 2719 /* Adjust for real per queue fifo size */ 2720 rxfifosz /= rx_channels_count; 2721 txfifosz /= tx_channels_count; 2722 2723 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode); 2724 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode); 2725 } 2726 2727 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv) 2728 { 2729 int ret; 2730 2731 ret = stmmac_safety_feat_irq_status(priv, priv->dev, 2732 priv->ioaddr, priv->dma_cap.asp, &priv->sstats); 2733 if (ret && (ret != -EINVAL)) { 2734 stmmac_global_err(priv); 2735 return true; 2736 } 2737 2738 return false; 2739 } 2740 2741 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir) 2742 { 2743 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr, 2744 &priv->xstats, chan, dir); 2745 struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan]; 2746 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2747 struct stmmac_channel *ch = &priv->channel[chan]; 2748 struct napi_struct *rx_napi; 2749 struct napi_struct *tx_napi; 2750 unsigned long flags; 2751 2752 rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi; 2753 tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; 2754 2755 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) { 2756 if (napi_schedule_prep(rx_napi)) { 2757 spin_lock_irqsave(&ch->lock, flags); 2758 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 2759 spin_unlock_irqrestore(&ch->lock, flags); 2760 __napi_schedule(rx_napi); 2761 } 2762 } 2763 2764 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) { 2765 if (napi_schedule_prep(tx_napi)) { 2766 spin_lock_irqsave(&ch->lock, flags); 2767 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 2768 spin_unlock_irqrestore(&ch->lock, flags); 2769 __napi_schedule(tx_napi); 2770 } 2771 } 2772 2773 return status; 2774 } 2775 2776 /** 2777 * stmmac_dma_interrupt - DMA ISR 2778 * @priv: driver private structure 2779 * Description: this is the DMA ISR. It is called by the main ISR. 2780 * It calls the dwmac dma routine and schedule poll method in case of some 2781 * work can be done. 2782 */ 2783 static void stmmac_dma_interrupt(struct stmmac_priv *priv) 2784 { 2785 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2786 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2787 u32 channels_to_check = tx_channel_count > rx_channel_count ? 2788 tx_channel_count : rx_channel_count; 2789 u32 chan; 2790 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)]; 2791 2792 /* Make sure we never check beyond our status buffer. */ 2793 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status))) 2794 channels_to_check = ARRAY_SIZE(status); 2795 2796 for (chan = 0; chan < channels_to_check; chan++) 2797 status[chan] = stmmac_napi_check(priv, chan, 2798 DMA_DIR_RXTX); 2799 2800 for (chan = 0; chan < tx_channel_count; chan++) { 2801 if (unlikely(status[chan] & tx_hard_error_bump_tc)) { 2802 /* Try to bump up the dma threshold on this failure */ 2803 stmmac_bump_dma_threshold(priv, chan); 2804 } else if (unlikely(status[chan] == tx_hard_error)) { 2805 stmmac_tx_err(priv, chan); 2806 } 2807 } 2808 } 2809 2810 /** 2811 * stmmac_mmc_setup: setup the Mac Management Counters (MMC) 2812 * @priv: driver private structure 2813 * Description: this masks the MMC irq, in fact, the counters are managed in SW. 2814 */ 2815 static void stmmac_mmc_setup(struct stmmac_priv *priv) 2816 { 2817 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | 2818 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; 2819 2820 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr); 2821 2822 if (priv->dma_cap.rmon) { 2823 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode); 2824 memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); 2825 } else 2826 netdev_info(priv->dev, "No MAC Management Counters available\n"); 2827 } 2828 2829 /** 2830 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register. 2831 * @priv: driver private structure 2832 * Description: 2833 * new GMAC chip generations have a new register to indicate the 2834 * presence of the optional feature/functions. 2835 * This can be also used to override the value passed through the 2836 * platform and necessary for old MAC10/100 and GMAC chips. 2837 */ 2838 static int stmmac_get_hw_features(struct stmmac_priv *priv) 2839 { 2840 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0; 2841 } 2842 2843 /** 2844 * stmmac_check_ether_addr - check if the MAC addr is valid 2845 * @priv: driver private structure 2846 * Description: 2847 * it is to verify if the MAC address is valid, in case of failures it 2848 * generates a random MAC address 2849 */ 2850 static void stmmac_check_ether_addr(struct stmmac_priv *priv) 2851 { 2852 u8 addr[ETH_ALEN]; 2853 2854 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 2855 stmmac_get_umac_addr(priv, priv->hw, addr, 0); 2856 if (is_valid_ether_addr(addr)) 2857 eth_hw_addr_set(priv->dev, addr); 2858 else 2859 eth_hw_addr_random(priv->dev); 2860 dev_info(priv->device, "device MAC address %pM\n", 2861 priv->dev->dev_addr); 2862 } 2863 } 2864 2865 /** 2866 * stmmac_init_dma_engine - DMA init. 2867 * @priv: driver private structure 2868 * Description: 2869 * It inits the DMA invoking the specific MAC/GMAC callback. 2870 * Some DMA parameters can be passed from the platform; 2871 * in case of these are not passed a default is kept for the MAC or GMAC. 2872 */ 2873 static int stmmac_init_dma_engine(struct stmmac_priv *priv) 2874 { 2875 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2876 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2877 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); 2878 struct stmmac_rx_queue *rx_q; 2879 struct stmmac_tx_queue *tx_q; 2880 u32 chan = 0; 2881 int atds = 0; 2882 int ret = 0; 2883 2884 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) { 2885 dev_err(priv->device, "Invalid DMA configuration\n"); 2886 return -EINVAL; 2887 } 2888 2889 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) 2890 atds = 1; 2891 2892 ret = stmmac_reset(priv, priv->ioaddr); 2893 if (ret) { 2894 dev_err(priv->device, "Failed to reset the dma\n"); 2895 return ret; 2896 } 2897 2898 /* DMA Configuration */ 2899 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds); 2900 2901 if (priv->plat->axi) 2902 stmmac_axi(priv, priv->ioaddr, priv->plat->axi); 2903 2904 /* DMA CSR Channel configuration */ 2905 for (chan = 0; chan < dma_csr_ch; chan++) 2906 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 2907 2908 /* DMA RX Channel Configuration */ 2909 for (chan = 0; chan < rx_channels_count; chan++) { 2910 rx_q = &priv->rx_queue[chan]; 2911 2912 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2913 rx_q->dma_rx_phy, chan); 2914 2915 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 2916 (rx_q->buf_alloc_num * 2917 sizeof(struct dma_desc)); 2918 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 2919 rx_q->rx_tail_addr, chan); 2920 } 2921 2922 /* DMA TX Channel Configuration */ 2923 for (chan = 0; chan < tx_channels_count; chan++) { 2924 tx_q = &priv->tx_queue[chan]; 2925 2926 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2927 tx_q->dma_tx_phy, chan); 2928 2929 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 2930 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 2931 tx_q->tx_tail_addr, chan); 2932 } 2933 2934 return ret; 2935 } 2936 2937 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue) 2938 { 2939 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2940 2941 hrtimer_start(&tx_q->txtimer, 2942 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]), 2943 HRTIMER_MODE_REL); 2944 } 2945 2946 /** 2947 * stmmac_tx_timer - mitigation sw timer for tx. 2948 * @t: data pointer 2949 * Description: 2950 * This is the timer handler to directly invoke the stmmac_tx_clean. 2951 */ 2952 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t) 2953 { 2954 struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer); 2955 struct stmmac_priv *priv = tx_q->priv_data; 2956 struct stmmac_channel *ch; 2957 struct napi_struct *napi; 2958 2959 ch = &priv->channel[tx_q->queue_index]; 2960 napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; 2961 2962 if (likely(napi_schedule_prep(napi))) { 2963 unsigned long flags; 2964 2965 spin_lock_irqsave(&ch->lock, flags); 2966 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1); 2967 spin_unlock_irqrestore(&ch->lock, flags); 2968 __napi_schedule(napi); 2969 } 2970 2971 return HRTIMER_NORESTART; 2972 } 2973 2974 /** 2975 * stmmac_init_coalesce - init mitigation options. 2976 * @priv: driver private structure 2977 * Description: 2978 * This inits the coalesce parameters: i.e. timer rate, 2979 * timer handler and default threshold used for enabling the 2980 * interrupt on completion bit. 2981 */ 2982 static void stmmac_init_coalesce(struct stmmac_priv *priv) 2983 { 2984 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2985 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2986 u32 chan; 2987 2988 for (chan = 0; chan < tx_channel_count; chan++) { 2989 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2990 2991 priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES; 2992 priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER; 2993 2994 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2995 tx_q->txtimer.function = stmmac_tx_timer; 2996 } 2997 2998 for (chan = 0; chan < rx_channel_count; chan++) 2999 priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES; 3000 } 3001 3002 static void stmmac_set_rings_length(struct stmmac_priv *priv) 3003 { 3004 u32 rx_channels_count = priv->plat->rx_queues_to_use; 3005 u32 tx_channels_count = priv->plat->tx_queues_to_use; 3006 u32 chan; 3007 3008 /* set TX ring length */ 3009 for (chan = 0; chan < tx_channels_count; chan++) 3010 stmmac_set_tx_ring_len(priv, priv->ioaddr, 3011 (priv->dma_tx_size - 1), chan); 3012 3013 /* set RX ring length */ 3014 for (chan = 0; chan < rx_channels_count; chan++) 3015 stmmac_set_rx_ring_len(priv, priv->ioaddr, 3016 (priv->dma_rx_size - 1), chan); 3017 } 3018 3019 /** 3020 * stmmac_set_tx_queue_weight - Set TX queue weight 3021 * @priv: driver private structure 3022 * Description: It is used for setting TX queues weight 3023 */ 3024 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv) 3025 { 3026 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3027 u32 weight; 3028 u32 queue; 3029 3030 for (queue = 0; queue < tx_queues_count; queue++) { 3031 weight = priv->plat->tx_queues_cfg[queue].weight; 3032 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue); 3033 } 3034 } 3035 3036 /** 3037 * stmmac_configure_cbs - Configure CBS in TX queue 3038 * @priv: driver private structure 3039 * Description: It is used for configuring CBS in AVB TX queues 3040 */ 3041 static void stmmac_configure_cbs(struct stmmac_priv *priv) 3042 { 3043 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3044 u32 mode_to_use; 3045 u32 queue; 3046 3047 /* queue 0 is reserved for legacy traffic */ 3048 for (queue = 1; queue < tx_queues_count; queue++) { 3049 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use; 3050 if (mode_to_use == MTL_QUEUE_DCB) 3051 continue; 3052 3053 stmmac_config_cbs(priv, priv->hw, 3054 priv->plat->tx_queues_cfg[queue].send_slope, 3055 priv->plat->tx_queues_cfg[queue].idle_slope, 3056 priv->plat->tx_queues_cfg[queue].high_credit, 3057 priv->plat->tx_queues_cfg[queue].low_credit, 3058 queue); 3059 } 3060 } 3061 3062 /** 3063 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel 3064 * @priv: driver private structure 3065 * Description: It is used for mapping RX queues to RX dma channels 3066 */ 3067 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv) 3068 { 3069 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3070 u32 queue; 3071 u32 chan; 3072 3073 for (queue = 0; queue < rx_queues_count; queue++) { 3074 chan = priv->plat->rx_queues_cfg[queue].chan; 3075 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan); 3076 } 3077 } 3078 3079 /** 3080 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority 3081 * @priv: driver private structure 3082 * Description: It is used for configuring the RX Queue Priority 3083 */ 3084 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv) 3085 { 3086 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3087 u32 queue; 3088 u32 prio; 3089 3090 for (queue = 0; queue < rx_queues_count; queue++) { 3091 if (!priv->plat->rx_queues_cfg[queue].use_prio) 3092 continue; 3093 3094 prio = priv->plat->rx_queues_cfg[queue].prio; 3095 stmmac_rx_queue_prio(priv, priv->hw, prio, queue); 3096 } 3097 } 3098 3099 /** 3100 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority 3101 * @priv: driver private structure 3102 * Description: It is used for configuring the TX Queue Priority 3103 */ 3104 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv) 3105 { 3106 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3107 u32 queue; 3108 u32 prio; 3109 3110 for (queue = 0; queue < tx_queues_count; queue++) { 3111 if (!priv->plat->tx_queues_cfg[queue].use_prio) 3112 continue; 3113 3114 prio = priv->plat->tx_queues_cfg[queue].prio; 3115 stmmac_tx_queue_prio(priv, priv->hw, prio, queue); 3116 } 3117 } 3118 3119 /** 3120 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing 3121 * @priv: driver private structure 3122 * Description: It is used for configuring the RX queue routing 3123 */ 3124 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv) 3125 { 3126 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3127 u32 queue; 3128 u8 packet; 3129 3130 for (queue = 0; queue < rx_queues_count; queue++) { 3131 /* no specific packet type routing specified for the queue */ 3132 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0) 3133 continue; 3134 3135 packet = priv->plat->rx_queues_cfg[queue].pkt_route; 3136 stmmac_rx_queue_routing(priv, priv->hw, packet, queue); 3137 } 3138 } 3139 3140 static void stmmac_mac_config_rss(struct stmmac_priv *priv) 3141 { 3142 if (!priv->dma_cap.rssen || !priv->plat->rss_en) { 3143 priv->rss.enable = false; 3144 return; 3145 } 3146 3147 if (priv->dev->features & NETIF_F_RXHASH) 3148 priv->rss.enable = true; 3149 else 3150 priv->rss.enable = false; 3151 3152 stmmac_rss_configure(priv, priv->hw, &priv->rss, 3153 priv->plat->rx_queues_to_use); 3154 } 3155 3156 /** 3157 * stmmac_mtl_configuration - Configure MTL 3158 * @priv: driver private structure 3159 * Description: It is used for configurring MTL 3160 */ 3161 static void stmmac_mtl_configuration(struct stmmac_priv *priv) 3162 { 3163 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3164 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3165 3166 if (tx_queues_count > 1) 3167 stmmac_set_tx_queue_weight(priv); 3168 3169 /* Configure MTL RX algorithms */ 3170 if (rx_queues_count > 1) 3171 stmmac_prog_mtl_rx_algorithms(priv, priv->hw, 3172 priv->plat->rx_sched_algorithm); 3173 3174 /* Configure MTL TX algorithms */ 3175 if (tx_queues_count > 1) 3176 stmmac_prog_mtl_tx_algorithms(priv, priv->hw, 3177 priv->plat->tx_sched_algorithm); 3178 3179 /* Configure CBS in AVB TX queues */ 3180 if (tx_queues_count > 1) 3181 stmmac_configure_cbs(priv); 3182 3183 /* Map RX MTL to DMA channels */ 3184 stmmac_rx_queue_dma_chan_map(priv); 3185 3186 /* Enable MAC RX Queues */ 3187 stmmac_mac_enable_rx_queues(priv); 3188 3189 /* Set RX priorities */ 3190 if (rx_queues_count > 1) 3191 stmmac_mac_config_rx_queues_prio(priv); 3192 3193 /* Set TX priorities */ 3194 if (tx_queues_count > 1) 3195 stmmac_mac_config_tx_queues_prio(priv); 3196 3197 /* Set RX routing */ 3198 if (rx_queues_count > 1) 3199 stmmac_mac_config_rx_queues_routing(priv); 3200 3201 /* Receive Side Scaling */ 3202 if (rx_queues_count > 1) 3203 stmmac_mac_config_rss(priv); 3204 } 3205 3206 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv) 3207 { 3208 if (priv->dma_cap.asp) { 3209 netdev_info(priv->dev, "Enabling Safety Features\n"); 3210 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp, 3211 priv->plat->safety_feat_cfg); 3212 } else { 3213 netdev_info(priv->dev, "No Safety Features support found\n"); 3214 } 3215 } 3216 3217 static int stmmac_fpe_start_wq(struct stmmac_priv *priv) 3218 { 3219 char *name; 3220 3221 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); 3222 clear_bit(__FPE_REMOVING, &priv->fpe_task_state); 3223 3224 name = priv->wq_name; 3225 sprintf(name, "%s-fpe", priv->dev->name); 3226 3227 priv->fpe_wq = create_singlethread_workqueue(name); 3228 if (!priv->fpe_wq) { 3229 netdev_err(priv->dev, "%s: Failed to create workqueue\n", name); 3230 3231 return -ENOMEM; 3232 } 3233 netdev_info(priv->dev, "FPE workqueue start"); 3234 3235 return 0; 3236 } 3237 3238 /** 3239 * stmmac_hw_setup - setup mac in a usable state. 3240 * @dev : pointer to the device structure. 3241 * @init_ptp: initialize PTP if set 3242 * Description: 3243 * this is the main function to setup the HW in a usable state because the 3244 * dma engine is reset, the core registers are configured (e.g. AXI, 3245 * Checksum features, timers). The DMA is ready to start receiving and 3246 * transmitting. 3247 * Return value: 3248 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3249 * file on failure. 3250 */ 3251 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp) 3252 { 3253 struct stmmac_priv *priv = netdev_priv(dev); 3254 u32 rx_cnt = priv->plat->rx_queues_to_use; 3255 u32 tx_cnt = priv->plat->tx_queues_to_use; 3256 bool sph_en; 3257 u32 chan; 3258 int ret; 3259 3260 /* DMA initialization and SW reset */ 3261 ret = stmmac_init_dma_engine(priv); 3262 if (ret < 0) { 3263 netdev_err(priv->dev, "%s: DMA engine initialization failed\n", 3264 __func__); 3265 return ret; 3266 } 3267 3268 /* Copy the MAC addr into the HW */ 3269 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0); 3270 3271 /* PS and related bits will be programmed according to the speed */ 3272 if (priv->hw->pcs) { 3273 int speed = priv->plat->mac_port_sel_speed; 3274 3275 if ((speed == SPEED_10) || (speed == SPEED_100) || 3276 (speed == SPEED_1000)) { 3277 priv->hw->ps = speed; 3278 } else { 3279 dev_warn(priv->device, "invalid port speed\n"); 3280 priv->hw->ps = 0; 3281 } 3282 } 3283 3284 /* Initialize the MAC Core */ 3285 stmmac_core_init(priv, priv->hw, dev); 3286 3287 /* Initialize MTL*/ 3288 stmmac_mtl_configuration(priv); 3289 3290 /* Initialize Safety Features */ 3291 stmmac_safety_feat_configuration(priv); 3292 3293 ret = stmmac_rx_ipc(priv, priv->hw); 3294 if (!ret) { 3295 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n"); 3296 priv->plat->rx_coe = STMMAC_RX_COE_NONE; 3297 priv->hw->rx_csum = 0; 3298 } 3299 3300 /* Enable the MAC Rx/Tx */ 3301 stmmac_mac_set(priv, priv->ioaddr, true); 3302 3303 /* Set the HW DMA mode and the COE */ 3304 stmmac_dma_operation_mode(priv); 3305 3306 stmmac_mmc_setup(priv); 3307 3308 if (init_ptp) { 3309 ret = stmmac_init_ptp(priv); 3310 if (ret == -EOPNOTSUPP) 3311 netdev_warn(priv->dev, "PTP not supported by HW\n"); 3312 else if (ret) 3313 netdev_warn(priv->dev, "PTP init failed\n"); 3314 } 3315 3316 priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS; 3317 3318 /* Convert the timer from msec to usec */ 3319 if (!priv->tx_lpi_timer) 3320 priv->tx_lpi_timer = eee_timer * 1000; 3321 3322 if (priv->use_riwt) { 3323 u32 queue; 3324 3325 for (queue = 0; queue < rx_cnt; queue++) { 3326 if (!priv->rx_riwt[queue]) 3327 priv->rx_riwt[queue] = DEF_DMA_RIWT; 3328 3329 stmmac_rx_watchdog(priv, priv->ioaddr, 3330 priv->rx_riwt[queue], queue); 3331 } 3332 } 3333 3334 if (priv->hw->pcs) 3335 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0); 3336 3337 /* set TX and RX rings length */ 3338 stmmac_set_rings_length(priv); 3339 3340 /* Enable TSO */ 3341 if (priv->tso) { 3342 for (chan = 0; chan < tx_cnt; chan++) { 3343 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 3344 3345 /* TSO and TBS cannot co-exist */ 3346 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3347 continue; 3348 3349 stmmac_enable_tso(priv, priv->ioaddr, 1, chan); 3350 } 3351 } 3352 3353 /* Enable Split Header */ 3354 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 3355 for (chan = 0; chan < rx_cnt; chan++) 3356 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 3357 3358 3359 /* VLAN Tag Insertion */ 3360 if (priv->dma_cap.vlins) 3361 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT); 3362 3363 /* TBS */ 3364 for (chan = 0; chan < tx_cnt; chan++) { 3365 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 3366 int enable = tx_q->tbs & STMMAC_TBS_AVAIL; 3367 3368 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan); 3369 } 3370 3371 /* Configure real RX and TX queues */ 3372 netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use); 3373 netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use); 3374 3375 /* Start the ball rolling... */ 3376 stmmac_start_all_dma(priv); 3377 3378 if (priv->dma_cap.fpesel) { 3379 stmmac_fpe_start_wq(priv); 3380 3381 if (priv->plat->fpe_cfg->enable) 3382 stmmac_fpe_handshake(priv, true); 3383 } 3384 3385 return 0; 3386 } 3387 3388 static void stmmac_hw_teardown(struct net_device *dev) 3389 { 3390 struct stmmac_priv *priv = netdev_priv(dev); 3391 3392 clk_disable_unprepare(priv->plat->clk_ptp_ref); 3393 } 3394 3395 static void stmmac_free_irq(struct net_device *dev, 3396 enum request_irq_err irq_err, int irq_idx) 3397 { 3398 struct stmmac_priv *priv = netdev_priv(dev); 3399 int j; 3400 3401 switch (irq_err) { 3402 case REQ_IRQ_ERR_ALL: 3403 irq_idx = priv->plat->tx_queues_to_use; 3404 fallthrough; 3405 case REQ_IRQ_ERR_TX: 3406 for (j = irq_idx - 1; j >= 0; j--) { 3407 if (priv->tx_irq[j] > 0) { 3408 irq_set_affinity_hint(priv->tx_irq[j], NULL); 3409 free_irq(priv->tx_irq[j], &priv->tx_queue[j]); 3410 } 3411 } 3412 irq_idx = priv->plat->rx_queues_to_use; 3413 fallthrough; 3414 case REQ_IRQ_ERR_RX: 3415 for (j = irq_idx - 1; j >= 0; j--) { 3416 if (priv->rx_irq[j] > 0) { 3417 irq_set_affinity_hint(priv->rx_irq[j], NULL); 3418 free_irq(priv->rx_irq[j], &priv->rx_queue[j]); 3419 } 3420 } 3421 3422 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) 3423 free_irq(priv->sfty_ue_irq, dev); 3424 fallthrough; 3425 case REQ_IRQ_ERR_SFTY_UE: 3426 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) 3427 free_irq(priv->sfty_ce_irq, dev); 3428 fallthrough; 3429 case REQ_IRQ_ERR_SFTY_CE: 3430 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) 3431 free_irq(priv->lpi_irq, dev); 3432 fallthrough; 3433 case REQ_IRQ_ERR_LPI: 3434 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) 3435 free_irq(priv->wol_irq, dev); 3436 fallthrough; 3437 case REQ_IRQ_ERR_WOL: 3438 free_irq(dev->irq, dev); 3439 fallthrough; 3440 case REQ_IRQ_ERR_MAC: 3441 case REQ_IRQ_ERR_NO: 3442 /* If MAC IRQ request error, no more IRQ to free */ 3443 break; 3444 } 3445 } 3446 3447 static int stmmac_request_irq_multi_msi(struct net_device *dev) 3448 { 3449 struct stmmac_priv *priv = netdev_priv(dev); 3450 enum request_irq_err irq_err; 3451 cpumask_t cpu_mask; 3452 int irq_idx = 0; 3453 char *int_name; 3454 int ret; 3455 int i; 3456 3457 /* For common interrupt */ 3458 int_name = priv->int_name_mac; 3459 sprintf(int_name, "%s:%s", dev->name, "mac"); 3460 ret = request_irq(dev->irq, stmmac_mac_interrupt, 3461 0, int_name, dev); 3462 if (unlikely(ret < 0)) { 3463 netdev_err(priv->dev, 3464 "%s: alloc mac MSI %d (error: %d)\n", 3465 __func__, dev->irq, ret); 3466 irq_err = REQ_IRQ_ERR_MAC; 3467 goto irq_error; 3468 } 3469 3470 /* Request the Wake IRQ in case of another line 3471 * is used for WoL 3472 */ 3473 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { 3474 int_name = priv->int_name_wol; 3475 sprintf(int_name, "%s:%s", dev->name, "wol"); 3476 ret = request_irq(priv->wol_irq, 3477 stmmac_mac_interrupt, 3478 0, int_name, dev); 3479 if (unlikely(ret < 0)) { 3480 netdev_err(priv->dev, 3481 "%s: alloc wol MSI %d (error: %d)\n", 3482 __func__, priv->wol_irq, ret); 3483 irq_err = REQ_IRQ_ERR_WOL; 3484 goto irq_error; 3485 } 3486 } 3487 3488 /* Request the LPI IRQ in case of another line 3489 * is used for LPI 3490 */ 3491 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { 3492 int_name = priv->int_name_lpi; 3493 sprintf(int_name, "%s:%s", dev->name, "lpi"); 3494 ret = request_irq(priv->lpi_irq, 3495 stmmac_mac_interrupt, 3496 0, int_name, dev); 3497 if (unlikely(ret < 0)) { 3498 netdev_err(priv->dev, 3499 "%s: alloc lpi MSI %d (error: %d)\n", 3500 __func__, priv->lpi_irq, ret); 3501 irq_err = REQ_IRQ_ERR_LPI; 3502 goto irq_error; 3503 } 3504 } 3505 3506 /* Request the Safety Feature Correctible Error line in 3507 * case of another line is used 3508 */ 3509 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) { 3510 int_name = priv->int_name_sfty_ce; 3511 sprintf(int_name, "%s:%s", dev->name, "safety-ce"); 3512 ret = request_irq(priv->sfty_ce_irq, 3513 stmmac_safety_interrupt, 3514 0, int_name, dev); 3515 if (unlikely(ret < 0)) { 3516 netdev_err(priv->dev, 3517 "%s: alloc sfty ce MSI %d (error: %d)\n", 3518 __func__, priv->sfty_ce_irq, ret); 3519 irq_err = REQ_IRQ_ERR_SFTY_CE; 3520 goto irq_error; 3521 } 3522 } 3523 3524 /* Request the Safety Feature Uncorrectible Error line in 3525 * case of another line is used 3526 */ 3527 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) { 3528 int_name = priv->int_name_sfty_ue; 3529 sprintf(int_name, "%s:%s", dev->name, "safety-ue"); 3530 ret = request_irq(priv->sfty_ue_irq, 3531 stmmac_safety_interrupt, 3532 0, int_name, dev); 3533 if (unlikely(ret < 0)) { 3534 netdev_err(priv->dev, 3535 "%s: alloc sfty ue MSI %d (error: %d)\n", 3536 __func__, priv->sfty_ue_irq, ret); 3537 irq_err = REQ_IRQ_ERR_SFTY_UE; 3538 goto irq_error; 3539 } 3540 } 3541 3542 /* Request Rx MSI irq */ 3543 for (i = 0; i < priv->plat->rx_queues_to_use; i++) { 3544 if (i >= MTL_MAX_RX_QUEUES) 3545 break; 3546 if (priv->rx_irq[i] == 0) 3547 continue; 3548 3549 int_name = priv->int_name_rx_irq[i]; 3550 sprintf(int_name, "%s:%s-%d", dev->name, "rx", i); 3551 ret = request_irq(priv->rx_irq[i], 3552 stmmac_msi_intr_rx, 3553 0, int_name, &priv->rx_queue[i]); 3554 if (unlikely(ret < 0)) { 3555 netdev_err(priv->dev, 3556 "%s: alloc rx-%d MSI %d (error: %d)\n", 3557 __func__, i, priv->rx_irq[i], ret); 3558 irq_err = REQ_IRQ_ERR_RX; 3559 irq_idx = i; 3560 goto irq_error; 3561 } 3562 cpumask_clear(&cpu_mask); 3563 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); 3564 irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask); 3565 } 3566 3567 /* Request Tx MSI irq */ 3568 for (i = 0; i < priv->plat->tx_queues_to_use; i++) { 3569 if (i >= MTL_MAX_TX_QUEUES) 3570 break; 3571 if (priv->tx_irq[i] == 0) 3572 continue; 3573 3574 int_name = priv->int_name_tx_irq[i]; 3575 sprintf(int_name, "%s:%s-%d", dev->name, "tx", i); 3576 ret = request_irq(priv->tx_irq[i], 3577 stmmac_msi_intr_tx, 3578 0, int_name, &priv->tx_queue[i]); 3579 if (unlikely(ret < 0)) { 3580 netdev_err(priv->dev, 3581 "%s: alloc tx-%d MSI %d (error: %d)\n", 3582 __func__, i, priv->tx_irq[i], ret); 3583 irq_err = REQ_IRQ_ERR_TX; 3584 irq_idx = i; 3585 goto irq_error; 3586 } 3587 cpumask_clear(&cpu_mask); 3588 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); 3589 irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask); 3590 } 3591 3592 return 0; 3593 3594 irq_error: 3595 stmmac_free_irq(dev, irq_err, irq_idx); 3596 return ret; 3597 } 3598 3599 static int stmmac_request_irq_single(struct net_device *dev) 3600 { 3601 struct stmmac_priv *priv = netdev_priv(dev); 3602 enum request_irq_err irq_err; 3603 int ret; 3604 3605 ret = request_irq(dev->irq, stmmac_interrupt, 3606 IRQF_SHARED, dev->name, dev); 3607 if (unlikely(ret < 0)) { 3608 netdev_err(priv->dev, 3609 "%s: ERROR: allocating the IRQ %d (error: %d)\n", 3610 __func__, dev->irq, ret); 3611 irq_err = REQ_IRQ_ERR_MAC; 3612 goto irq_error; 3613 } 3614 3615 /* Request the Wake IRQ in case of another line 3616 * is used for WoL 3617 */ 3618 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { 3619 ret = request_irq(priv->wol_irq, stmmac_interrupt, 3620 IRQF_SHARED, dev->name, dev); 3621 if (unlikely(ret < 0)) { 3622 netdev_err(priv->dev, 3623 "%s: ERROR: allocating the WoL IRQ %d (%d)\n", 3624 __func__, priv->wol_irq, ret); 3625 irq_err = REQ_IRQ_ERR_WOL; 3626 goto irq_error; 3627 } 3628 } 3629 3630 /* Request the IRQ lines */ 3631 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { 3632 ret = request_irq(priv->lpi_irq, stmmac_interrupt, 3633 IRQF_SHARED, dev->name, dev); 3634 if (unlikely(ret < 0)) { 3635 netdev_err(priv->dev, 3636 "%s: ERROR: allocating the LPI IRQ %d (%d)\n", 3637 __func__, priv->lpi_irq, ret); 3638 irq_err = REQ_IRQ_ERR_LPI; 3639 goto irq_error; 3640 } 3641 } 3642 3643 return 0; 3644 3645 irq_error: 3646 stmmac_free_irq(dev, irq_err, 0); 3647 return ret; 3648 } 3649 3650 static int stmmac_request_irq(struct net_device *dev) 3651 { 3652 struct stmmac_priv *priv = netdev_priv(dev); 3653 int ret; 3654 3655 /* Request the IRQ lines */ 3656 if (priv->plat->multi_msi_en) 3657 ret = stmmac_request_irq_multi_msi(dev); 3658 else 3659 ret = stmmac_request_irq_single(dev); 3660 3661 return ret; 3662 } 3663 3664 /** 3665 * stmmac_open - open entry point of the driver 3666 * @dev : pointer to the device structure. 3667 * Description: 3668 * This function is the open entry point of the driver. 3669 * Return value: 3670 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3671 * file on failure. 3672 */ 3673 static int stmmac_open(struct net_device *dev) 3674 { 3675 struct stmmac_priv *priv = netdev_priv(dev); 3676 int mode = priv->plat->phy_interface; 3677 int bfsize = 0; 3678 u32 chan; 3679 int ret; 3680 3681 ret = pm_runtime_get_sync(priv->device); 3682 if (ret < 0) { 3683 pm_runtime_put_noidle(priv->device); 3684 return ret; 3685 } 3686 3687 if (priv->hw->pcs != STMMAC_PCS_TBI && 3688 priv->hw->pcs != STMMAC_PCS_RTBI && 3689 (!priv->hw->xpcs || 3690 xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) { 3691 ret = stmmac_init_phy(dev); 3692 if (ret) { 3693 netdev_err(priv->dev, 3694 "%s: Cannot attach to PHY (error: %d)\n", 3695 __func__, ret); 3696 goto init_phy_error; 3697 } 3698 } 3699 3700 /* Extra statistics */ 3701 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats)); 3702 priv->xstats.threshold = tc; 3703 3704 bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu); 3705 if (bfsize < 0) 3706 bfsize = 0; 3707 3708 if (bfsize < BUF_SIZE_16KiB) 3709 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz); 3710 3711 priv->dma_buf_sz = bfsize; 3712 buf_sz = bfsize; 3713 3714 priv->rx_copybreak = STMMAC_RX_COPYBREAK; 3715 3716 if (!priv->dma_tx_size) 3717 priv->dma_tx_size = DMA_DEFAULT_TX_SIZE; 3718 if (!priv->dma_rx_size) 3719 priv->dma_rx_size = DMA_DEFAULT_RX_SIZE; 3720 3721 /* Earlier check for TBS */ 3722 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) { 3723 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 3724 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en; 3725 3726 /* Setup per-TXQ tbs flag before TX descriptor alloc */ 3727 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0; 3728 } 3729 3730 ret = alloc_dma_desc_resources(priv); 3731 if (ret < 0) { 3732 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n", 3733 __func__); 3734 goto dma_desc_error; 3735 } 3736 3737 ret = init_dma_desc_rings(dev, GFP_KERNEL); 3738 if (ret < 0) { 3739 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n", 3740 __func__); 3741 goto init_error; 3742 } 3743 3744 ret = stmmac_hw_setup(dev, true); 3745 if (ret < 0) { 3746 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__); 3747 goto init_error; 3748 } 3749 3750 stmmac_init_coalesce(priv); 3751 3752 phylink_start(priv->phylink); 3753 /* We may have called phylink_speed_down before */ 3754 phylink_speed_up(priv->phylink); 3755 3756 ret = stmmac_request_irq(dev); 3757 if (ret) 3758 goto irq_error; 3759 3760 stmmac_enable_all_queues(priv); 3761 netif_tx_start_all_queues(priv->dev); 3762 3763 return 0; 3764 3765 irq_error: 3766 phylink_stop(priv->phylink); 3767 3768 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 3769 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 3770 3771 stmmac_hw_teardown(dev); 3772 init_error: 3773 free_dma_desc_resources(priv); 3774 dma_desc_error: 3775 phylink_disconnect_phy(priv->phylink); 3776 init_phy_error: 3777 pm_runtime_put(priv->device); 3778 return ret; 3779 } 3780 3781 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv) 3782 { 3783 set_bit(__FPE_REMOVING, &priv->fpe_task_state); 3784 3785 if (priv->fpe_wq) 3786 destroy_workqueue(priv->fpe_wq); 3787 3788 netdev_info(priv->dev, "FPE workqueue stop"); 3789 } 3790 3791 /** 3792 * stmmac_release - close entry point of the driver 3793 * @dev : device pointer. 3794 * Description: 3795 * This is the stop entry point of the driver. 3796 */ 3797 static int stmmac_release(struct net_device *dev) 3798 { 3799 struct stmmac_priv *priv = netdev_priv(dev); 3800 u32 chan; 3801 3802 netif_tx_disable(dev); 3803 3804 if (device_may_wakeup(priv->device)) 3805 phylink_speed_down(priv->phylink, false); 3806 /* Stop and disconnect the PHY */ 3807 phylink_stop(priv->phylink); 3808 phylink_disconnect_phy(priv->phylink); 3809 3810 stmmac_disable_all_queues(priv); 3811 3812 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 3813 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 3814 3815 /* Free the IRQ lines */ 3816 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0); 3817 3818 if (priv->eee_enabled) { 3819 priv->tx_path_in_lpi_mode = false; 3820 del_timer_sync(&priv->eee_ctrl_timer); 3821 } 3822 3823 /* Stop TX/RX DMA and clear the descriptors */ 3824 stmmac_stop_all_dma(priv); 3825 3826 /* Release and free the Rx/Tx resources */ 3827 free_dma_desc_resources(priv); 3828 3829 /* Disable the MAC Rx/Tx */ 3830 stmmac_mac_set(priv, priv->ioaddr, false); 3831 3832 netif_carrier_off(dev); 3833 3834 stmmac_release_ptp(priv); 3835 3836 pm_runtime_put(priv->device); 3837 3838 if (priv->dma_cap.fpesel) 3839 stmmac_fpe_stop_wq(priv); 3840 3841 return 0; 3842 } 3843 3844 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb, 3845 struct stmmac_tx_queue *tx_q) 3846 { 3847 u16 tag = 0x0, inner_tag = 0x0; 3848 u32 inner_type = 0x0; 3849 struct dma_desc *p; 3850 3851 if (!priv->dma_cap.vlins) 3852 return false; 3853 if (!skb_vlan_tag_present(skb)) 3854 return false; 3855 if (skb->vlan_proto == htons(ETH_P_8021AD)) { 3856 inner_tag = skb_vlan_tag_get(skb); 3857 inner_type = STMMAC_VLAN_INSERT; 3858 } 3859 3860 tag = skb_vlan_tag_get(skb); 3861 3862 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3863 p = &tx_q->dma_entx[tx_q->cur_tx].basic; 3864 else 3865 p = &tx_q->dma_tx[tx_q->cur_tx]; 3866 3867 if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type)) 3868 return false; 3869 3870 stmmac_set_tx_owner(priv, p); 3871 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 3872 return true; 3873 } 3874 3875 /** 3876 * stmmac_tso_allocator - close entry point of the driver 3877 * @priv: driver private structure 3878 * @des: buffer start address 3879 * @total_len: total length to fill in descriptors 3880 * @last_segment: condition for the last descriptor 3881 * @queue: TX queue index 3882 * Description: 3883 * This function fills descriptor and request new descriptors according to 3884 * buffer length to fill 3885 */ 3886 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des, 3887 int total_len, bool last_segment, u32 queue) 3888 { 3889 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 3890 struct dma_desc *desc; 3891 u32 buff_size; 3892 int tmp_len; 3893 3894 tmp_len = total_len; 3895 3896 while (tmp_len > 0) { 3897 dma_addr_t curr_addr; 3898 3899 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 3900 priv->dma_tx_size); 3901 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 3902 3903 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3904 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 3905 else 3906 desc = &tx_q->dma_tx[tx_q->cur_tx]; 3907 3908 curr_addr = des + (total_len - tmp_len); 3909 if (priv->dma_cap.addr64 <= 32) 3910 desc->des0 = cpu_to_le32(curr_addr); 3911 else 3912 stmmac_set_desc_addr(priv, desc, curr_addr); 3913 3914 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ? 3915 TSO_MAX_BUFF_SIZE : tmp_len; 3916 3917 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size, 3918 0, 1, 3919 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE), 3920 0, 0); 3921 3922 tmp_len -= TSO_MAX_BUFF_SIZE; 3923 } 3924 } 3925 3926 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue) 3927 { 3928 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 3929 int desc_size; 3930 3931 if (likely(priv->extend_desc)) 3932 desc_size = sizeof(struct dma_extended_desc); 3933 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 3934 desc_size = sizeof(struct dma_edesc); 3935 else 3936 desc_size = sizeof(struct dma_desc); 3937 3938 /* The own bit must be the latest setting done when prepare the 3939 * descriptor and then barrier is needed to make sure that 3940 * all is coherent before granting the DMA engine. 3941 */ 3942 wmb(); 3943 3944 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size); 3945 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); 3946 } 3947 3948 /** 3949 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO) 3950 * @skb : the socket buffer 3951 * @dev : device pointer 3952 * Description: this is the transmit function that is called on TSO frames 3953 * (support available on GMAC4 and newer chips). 3954 * Diagram below show the ring programming in case of TSO frames: 3955 * 3956 * First Descriptor 3957 * -------- 3958 * | DES0 |---> buffer1 = L2/L3/L4 header 3959 * | DES1 |---> TCP Payload (can continue on next descr...) 3960 * | DES2 |---> buffer 1 and 2 len 3961 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0] 3962 * -------- 3963 * | 3964 * ... 3965 * | 3966 * -------- 3967 * | DES0 | --| Split TCP Payload on Buffers 1 and 2 3968 * | DES1 | --| 3969 * | DES2 | --> buffer 1 and 2 len 3970 * | DES3 | 3971 * -------- 3972 * 3973 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field. 3974 */ 3975 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) 3976 { 3977 struct dma_desc *desc, *first, *mss_desc = NULL; 3978 struct stmmac_priv *priv = netdev_priv(dev); 3979 int nfrags = skb_shinfo(skb)->nr_frags; 3980 u32 queue = skb_get_queue_mapping(skb); 3981 unsigned int first_entry, tx_packets; 3982 int tmp_pay_len = 0, first_tx; 3983 struct stmmac_tx_queue *tx_q; 3984 bool has_vlan, set_ic; 3985 u8 proto_hdr_len, hdr; 3986 u32 pay_len, mss; 3987 dma_addr_t des; 3988 int i; 3989 3990 tx_q = &priv->tx_queue[queue]; 3991 first_tx = tx_q->cur_tx; 3992 3993 /* Compute header lengths */ 3994 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 3995 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr); 3996 hdr = sizeof(struct udphdr); 3997 } else { 3998 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 3999 hdr = tcp_hdrlen(skb); 4000 } 4001 4002 /* Desc availability based on threshold should be enough safe */ 4003 if (unlikely(stmmac_tx_avail(priv, queue) < 4004 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) { 4005 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 4006 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 4007 queue)); 4008 /* This is a hard error, log it. */ 4009 netdev_err(priv->dev, 4010 "%s: Tx Ring full when queue awake\n", 4011 __func__); 4012 } 4013 return NETDEV_TX_BUSY; 4014 } 4015 4016 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */ 4017 4018 mss = skb_shinfo(skb)->gso_size; 4019 4020 /* set new MSS value if needed */ 4021 if (mss != tx_q->mss) { 4022 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4023 mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 4024 else 4025 mss_desc = &tx_q->dma_tx[tx_q->cur_tx]; 4026 4027 stmmac_set_mss(priv, mss_desc, mss); 4028 tx_q->mss = mss; 4029 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 4030 priv->dma_tx_size); 4031 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 4032 } 4033 4034 if (netif_msg_tx_queued(priv)) { 4035 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n", 4036 __func__, hdr, proto_hdr_len, pay_len, mss); 4037 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len, 4038 skb->data_len); 4039 } 4040 4041 /* Check if VLAN can be inserted by HW */ 4042 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 4043 4044 first_entry = tx_q->cur_tx; 4045 WARN_ON(tx_q->tx_skbuff[first_entry]); 4046 4047 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4048 desc = &tx_q->dma_entx[first_entry].basic; 4049 else 4050 desc = &tx_q->dma_tx[first_entry]; 4051 first = desc; 4052 4053 if (has_vlan) 4054 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 4055 4056 /* first descriptor: fill Headers on Buf1 */ 4057 des = dma_map_single(priv->device, skb->data, skb_headlen(skb), 4058 DMA_TO_DEVICE); 4059 if (dma_mapping_error(priv->device, des)) 4060 goto dma_map_err; 4061 4062 tx_q->tx_skbuff_dma[first_entry].buf = des; 4063 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb); 4064 tx_q->tx_skbuff_dma[first_entry].map_as_page = false; 4065 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; 4066 4067 if (priv->dma_cap.addr64 <= 32) { 4068 first->des0 = cpu_to_le32(des); 4069 4070 /* Fill start of payload in buff2 of first descriptor */ 4071 if (pay_len) 4072 first->des1 = cpu_to_le32(des + proto_hdr_len); 4073 4074 /* If needed take extra descriptors to fill the remaining payload */ 4075 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE; 4076 } else { 4077 stmmac_set_desc_addr(priv, first, des); 4078 tmp_pay_len = pay_len; 4079 des += proto_hdr_len; 4080 pay_len = 0; 4081 } 4082 4083 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue); 4084 4085 /* Prepare fragments */ 4086 for (i = 0; i < nfrags; i++) { 4087 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4088 4089 des = skb_frag_dma_map(priv->device, frag, 0, 4090 skb_frag_size(frag), 4091 DMA_TO_DEVICE); 4092 if (dma_mapping_error(priv->device, des)) 4093 goto dma_map_err; 4094 4095 stmmac_tso_allocator(priv, des, skb_frag_size(frag), 4096 (i == nfrags - 1), queue); 4097 4098 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des; 4099 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag); 4100 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true; 4101 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; 4102 } 4103 4104 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true; 4105 4106 /* Only the last descriptor gets to point to the skb. */ 4107 tx_q->tx_skbuff[tx_q->cur_tx] = skb; 4108 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; 4109 4110 /* Manage tx mitigation */ 4111 tx_packets = (tx_q->cur_tx + 1) - first_tx; 4112 tx_q->tx_count_frames += tx_packets; 4113 4114 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 4115 set_ic = true; 4116 else if (!priv->tx_coal_frames[queue]) 4117 set_ic = false; 4118 else if (tx_packets > priv->tx_coal_frames[queue]) 4119 set_ic = true; 4120 else if ((tx_q->tx_count_frames % 4121 priv->tx_coal_frames[queue]) < tx_packets) 4122 set_ic = true; 4123 else 4124 set_ic = false; 4125 4126 if (set_ic) { 4127 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4128 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 4129 else 4130 desc = &tx_q->dma_tx[tx_q->cur_tx]; 4131 4132 tx_q->tx_count_frames = 0; 4133 stmmac_set_tx_ic(priv, desc); 4134 priv->xstats.tx_set_ic_bit++; 4135 } 4136 4137 /* We've used all descriptors we need for this skb, however, 4138 * advance cur_tx so that it references a fresh descriptor. 4139 * ndo_start_xmit will fill this descriptor the next time it's 4140 * called and stmmac_tx_clean may clean up to this descriptor. 4141 */ 4142 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 4143 4144 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 4145 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 4146 __func__); 4147 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 4148 } 4149 4150 dev->stats.tx_bytes += skb->len; 4151 priv->xstats.tx_tso_frames++; 4152 priv->xstats.tx_tso_nfrags += nfrags; 4153 4154 if (priv->sarc_type) 4155 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 4156 4157 skb_tx_timestamp(skb); 4158 4159 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 4160 priv->hwts_tx_en)) { 4161 /* declare that device is doing timestamping */ 4162 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4163 stmmac_enable_tx_timestamp(priv, first); 4164 } 4165 4166 /* Complete the first descriptor before granting the DMA */ 4167 stmmac_prepare_tso_tx_desc(priv, first, 1, 4168 proto_hdr_len, 4169 pay_len, 4170 1, tx_q->tx_skbuff_dma[first_entry].last_segment, 4171 hdr / 4, (skb->len - proto_hdr_len)); 4172 4173 /* If context desc is used to change MSS */ 4174 if (mss_desc) { 4175 /* Make sure that first descriptor has been completely 4176 * written, including its own bit. This is because MSS is 4177 * actually before first descriptor, so we need to make 4178 * sure that MSS's own bit is the last thing written. 4179 */ 4180 dma_wmb(); 4181 stmmac_set_tx_owner(priv, mss_desc); 4182 } 4183 4184 if (netif_msg_pktdata(priv)) { 4185 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n", 4186 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 4187 tx_q->cur_tx, first, nfrags); 4188 pr_info(">>> frame to be transmitted: "); 4189 print_pkt(skb->data, skb_headlen(skb)); 4190 } 4191 4192 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 4193 4194 stmmac_flush_tx_descriptors(priv, queue); 4195 stmmac_tx_timer_arm(priv, queue); 4196 4197 return NETDEV_TX_OK; 4198 4199 dma_map_err: 4200 dev_err(priv->device, "Tx dma map failed\n"); 4201 dev_kfree_skb(skb); 4202 priv->dev->stats.tx_dropped++; 4203 return NETDEV_TX_OK; 4204 } 4205 4206 /** 4207 * stmmac_xmit - Tx entry point of the driver 4208 * @skb : the socket buffer 4209 * @dev : device pointer 4210 * Description : this is the tx entry point of the driver. 4211 * It programs the chain or the ring and supports oversized frames 4212 * and SG feature. 4213 */ 4214 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) 4215 { 4216 unsigned int first_entry, tx_packets, enh_desc; 4217 struct stmmac_priv *priv = netdev_priv(dev); 4218 unsigned int nopaged_len = skb_headlen(skb); 4219 int i, csum_insertion = 0, is_jumbo = 0; 4220 u32 queue = skb_get_queue_mapping(skb); 4221 int nfrags = skb_shinfo(skb)->nr_frags; 4222 int gso = skb_shinfo(skb)->gso_type; 4223 struct dma_edesc *tbs_desc = NULL; 4224 struct dma_desc *desc, *first; 4225 struct stmmac_tx_queue *tx_q; 4226 bool has_vlan, set_ic; 4227 int entry, first_tx; 4228 dma_addr_t des; 4229 4230 tx_q = &priv->tx_queue[queue]; 4231 first_tx = tx_q->cur_tx; 4232 4233 if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en) 4234 stmmac_disable_eee_mode(priv); 4235 4236 /* Manage oversized TCP frames for GMAC4 device */ 4237 if (skb_is_gso(skb) && priv->tso) { 4238 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) 4239 return stmmac_tso_xmit(skb, dev); 4240 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4)) 4241 return stmmac_tso_xmit(skb, dev); 4242 } 4243 4244 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) { 4245 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 4246 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 4247 queue)); 4248 /* This is a hard error, log it. */ 4249 netdev_err(priv->dev, 4250 "%s: Tx Ring full when queue awake\n", 4251 __func__); 4252 } 4253 return NETDEV_TX_BUSY; 4254 } 4255 4256 /* Check if VLAN can be inserted by HW */ 4257 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 4258 4259 entry = tx_q->cur_tx; 4260 first_entry = entry; 4261 WARN_ON(tx_q->tx_skbuff[first_entry]); 4262 4263 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); 4264 4265 if (likely(priv->extend_desc)) 4266 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4267 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4268 desc = &tx_q->dma_entx[entry].basic; 4269 else 4270 desc = tx_q->dma_tx + entry; 4271 4272 first = desc; 4273 4274 if (has_vlan) 4275 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 4276 4277 enh_desc = priv->plat->enh_desc; 4278 /* To program the descriptors according to the size of the frame */ 4279 if (enh_desc) 4280 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc); 4281 4282 if (unlikely(is_jumbo)) { 4283 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion); 4284 if (unlikely(entry < 0) && (entry != -EINVAL)) 4285 goto dma_map_err; 4286 } 4287 4288 for (i = 0; i < nfrags; i++) { 4289 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4290 int len = skb_frag_size(frag); 4291 bool last_segment = (i == (nfrags - 1)); 4292 4293 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 4294 WARN_ON(tx_q->tx_skbuff[entry]); 4295 4296 if (likely(priv->extend_desc)) 4297 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4298 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4299 desc = &tx_q->dma_entx[entry].basic; 4300 else 4301 desc = tx_q->dma_tx + entry; 4302 4303 des = skb_frag_dma_map(priv->device, frag, 0, len, 4304 DMA_TO_DEVICE); 4305 if (dma_mapping_error(priv->device, des)) 4306 goto dma_map_err; /* should reuse desc w/o issues */ 4307 4308 tx_q->tx_skbuff_dma[entry].buf = des; 4309 4310 stmmac_set_desc_addr(priv, desc, des); 4311 4312 tx_q->tx_skbuff_dma[entry].map_as_page = true; 4313 tx_q->tx_skbuff_dma[entry].len = len; 4314 tx_q->tx_skbuff_dma[entry].last_segment = last_segment; 4315 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; 4316 4317 /* Prepare the descriptor and set the own bit too */ 4318 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion, 4319 priv->mode, 1, last_segment, skb->len); 4320 } 4321 4322 /* Only the last descriptor gets to point to the skb. */ 4323 tx_q->tx_skbuff[entry] = skb; 4324 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; 4325 4326 /* According to the coalesce parameter the IC bit for the latest 4327 * segment is reset and the timer re-started to clean the tx status. 4328 * This approach takes care about the fragments: desc is the first 4329 * element in case of no SG. 4330 */ 4331 tx_packets = (entry + 1) - first_tx; 4332 tx_q->tx_count_frames += tx_packets; 4333 4334 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 4335 set_ic = true; 4336 else if (!priv->tx_coal_frames[queue]) 4337 set_ic = false; 4338 else if (tx_packets > priv->tx_coal_frames[queue]) 4339 set_ic = true; 4340 else if ((tx_q->tx_count_frames % 4341 priv->tx_coal_frames[queue]) < tx_packets) 4342 set_ic = true; 4343 else 4344 set_ic = false; 4345 4346 if (set_ic) { 4347 if (likely(priv->extend_desc)) 4348 desc = &tx_q->dma_etx[entry].basic; 4349 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4350 desc = &tx_q->dma_entx[entry].basic; 4351 else 4352 desc = &tx_q->dma_tx[entry]; 4353 4354 tx_q->tx_count_frames = 0; 4355 stmmac_set_tx_ic(priv, desc); 4356 priv->xstats.tx_set_ic_bit++; 4357 } 4358 4359 /* We've used all descriptors we need for this skb, however, 4360 * advance cur_tx so that it references a fresh descriptor. 4361 * ndo_start_xmit will fill this descriptor the next time it's 4362 * called and stmmac_tx_clean may clean up to this descriptor. 4363 */ 4364 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 4365 tx_q->cur_tx = entry; 4366 4367 if (netif_msg_pktdata(priv)) { 4368 netdev_dbg(priv->dev, 4369 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d", 4370 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 4371 entry, first, nfrags); 4372 4373 netdev_dbg(priv->dev, ">>> frame to be transmitted: "); 4374 print_pkt(skb->data, skb->len); 4375 } 4376 4377 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 4378 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 4379 __func__); 4380 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 4381 } 4382 4383 dev->stats.tx_bytes += skb->len; 4384 4385 if (priv->sarc_type) 4386 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 4387 4388 skb_tx_timestamp(skb); 4389 4390 /* Ready to fill the first descriptor and set the OWN bit w/o any 4391 * problems because all the descriptors are actually ready to be 4392 * passed to the DMA engine. 4393 */ 4394 if (likely(!is_jumbo)) { 4395 bool last_segment = (nfrags == 0); 4396 4397 des = dma_map_single(priv->device, skb->data, 4398 nopaged_len, DMA_TO_DEVICE); 4399 if (dma_mapping_error(priv->device, des)) 4400 goto dma_map_err; 4401 4402 tx_q->tx_skbuff_dma[first_entry].buf = des; 4403 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; 4404 tx_q->tx_skbuff_dma[first_entry].map_as_page = false; 4405 4406 stmmac_set_desc_addr(priv, first, des); 4407 4408 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len; 4409 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment; 4410 4411 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 4412 priv->hwts_tx_en)) { 4413 /* declare that device is doing timestamping */ 4414 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4415 stmmac_enable_tx_timestamp(priv, first); 4416 } 4417 4418 /* Prepare the first descriptor setting the OWN bit too */ 4419 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len, 4420 csum_insertion, priv->mode, 0, last_segment, 4421 skb->len); 4422 } 4423 4424 if (tx_q->tbs & STMMAC_TBS_EN) { 4425 struct timespec64 ts = ns_to_timespec64(skb->tstamp); 4426 4427 tbs_desc = &tx_q->dma_entx[first_entry]; 4428 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec); 4429 } 4430 4431 stmmac_set_tx_owner(priv, first); 4432 4433 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 4434 4435 stmmac_enable_dma_transmission(priv, priv->ioaddr); 4436 4437 stmmac_flush_tx_descriptors(priv, queue); 4438 stmmac_tx_timer_arm(priv, queue); 4439 4440 return NETDEV_TX_OK; 4441 4442 dma_map_err: 4443 netdev_err(priv->dev, "Tx DMA map failed\n"); 4444 dev_kfree_skb(skb); 4445 priv->dev->stats.tx_dropped++; 4446 return NETDEV_TX_OK; 4447 } 4448 4449 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) 4450 { 4451 struct vlan_ethhdr *veth; 4452 __be16 vlan_proto; 4453 u16 vlanid; 4454 4455 veth = (struct vlan_ethhdr *)skb->data; 4456 vlan_proto = veth->h_vlan_proto; 4457 4458 if ((vlan_proto == htons(ETH_P_8021Q) && 4459 dev->features & NETIF_F_HW_VLAN_CTAG_RX) || 4460 (vlan_proto == htons(ETH_P_8021AD) && 4461 dev->features & NETIF_F_HW_VLAN_STAG_RX)) { 4462 /* pop the vlan tag */ 4463 vlanid = ntohs(veth->h_vlan_TCI); 4464 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2); 4465 skb_pull(skb, VLAN_HLEN); 4466 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid); 4467 } 4468 } 4469 4470 /** 4471 * stmmac_rx_refill - refill used skb preallocated buffers 4472 * @priv: driver private structure 4473 * @queue: RX queue index 4474 * Description : this is to reallocate the skb for the reception process 4475 * that is based on zero-copy. 4476 */ 4477 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue) 4478 { 4479 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4480 int dirty = stmmac_rx_dirty(priv, queue); 4481 unsigned int entry = rx_q->dirty_rx; 4482 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 4483 4484 if (priv->dma_cap.addr64 <= 32) 4485 gfp |= GFP_DMA32; 4486 4487 while (dirty-- > 0) { 4488 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 4489 struct dma_desc *p; 4490 bool use_rx_wd; 4491 4492 if (priv->extend_desc) 4493 p = (struct dma_desc *)(rx_q->dma_erx + entry); 4494 else 4495 p = rx_q->dma_rx + entry; 4496 4497 if (!buf->page) { 4498 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp); 4499 if (!buf->page) 4500 break; 4501 } 4502 4503 if (priv->sph && !buf->sec_page) { 4504 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp); 4505 if (!buf->sec_page) 4506 break; 4507 4508 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 4509 } 4510 4511 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; 4512 4513 stmmac_set_desc_addr(priv, p, buf->addr); 4514 if (priv->sph) 4515 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); 4516 else 4517 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); 4518 stmmac_refill_desc3(priv, rx_q, p); 4519 4520 rx_q->rx_count_frames++; 4521 rx_q->rx_count_frames += priv->rx_coal_frames[queue]; 4522 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) 4523 rx_q->rx_count_frames = 0; 4524 4525 use_rx_wd = !priv->rx_coal_frames[queue]; 4526 use_rx_wd |= rx_q->rx_count_frames > 0; 4527 if (!priv->use_riwt) 4528 use_rx_wd = false; 4529 4530 dma_wmb(); 4531 stmmac_set_rx_owner(priv, p, use_rx_wd); 4532 4533 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size); 4534 } 4535 rx_q->dirty_rx = entry; 4536 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 4537 (rx_q->dirty_rx * sizeof(struct dma_desc)); 4538 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 4539 } 4540 4541 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv, 4542 struct dma_desc *p, 4543 int status, unsigned int len) 4544 { 4545 unsigned int plen = 0, hlen = 0; 4546 int coe = priv->hw->rx_csum; 4547 4548 /* Not first descriptor, buffer is always zero */ 4549 if (priv->sph && len) 4550 return 0; 4551 4552 /* First descriptor, get split header length */ 4553 stmmac_get_rx_header_len(priv, p, &hlen); 4554 if (priv->sph && hlen) { 4555 priv->xstats.rx_split_hdr_pkt_n++; 4556 return hlen; 4557 } 4558 4559 /* First descriptor, not last descriptor and not split header */ 4560 if (status & rx_not_ls) 4561 return priv->dma_buf_sz; 4562 4563 plen = stmmac_get_rx_frame_len(priv, p, coe); 4564 4565 /* First descriptor and last descriptor and not split header */ 4566 return min_t(unsigned int, priv->dma_buf_sz, plen); 4567 } 4568 4569 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv, 4570 struct dma_desc *p, 4571 int status, unsigned int len) 4572 { 4573 int coe = priv->hw->rx_csum; 4574 unsigned int plen = 0; 4575 4576 /* Not split header, buffer is not available */ 4577 if (!priv->sph) 4578 return 0; 4579 4580 /* Not last descriptor */ 4581 if (status & rx_not_ls) 4582 return priv->dma_buf_sz; 4583 4584 plen = stmmac_get_rx_frame_len(priv, p, coe); 4585 4586 /* Last descriptor */ 4587 return plen - len; 4588 } 4589 4590 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue, 4591 struct xdp_frame *xdpf, bool dma_map) 4592 { 4593 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 4594 unsigned int entry = tx_q->cur_tx; 4595 struct dma_desc *tx_desc; 4596 dma_addr_t dma_addr; 4597 bool set_ic; 4598 4599 if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv)) 4600 return STMMAC_XDP_CONSUMED; 4601 4602 if (likely(priv->extend_desc)) 4603 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4604 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4605 tx_desc = &tx_q->dma_entx[entry].basic; 4606 else 4607 tx_desc = tx_q->dma_tx + entry; 4608 4609 if (dma_map) { 4610 dma_addr = dma_map_single(priv->device, xdpf->data, 4611 xdpf->len, DMA_TO_DEVICE); 4612 if (dma_mapping_error(priv->device, dma_addr)) 4613 return STMMAC_XDP_CONSUMED; 4614 4615 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO; 4616 } else { 4617 struct page *page = virt_to_page(xdpf->data); 4618 4619 dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) + 4620 xdpf->headroom; 4621 dma_sync_single_for_device(priv->device, dma_addr, 4622 xdpf->len, DMA_BIDIRECTIONAL); 4623 4624 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX; 4625 } 4626 4627 tx_q->tx_skbuff_dma[entry].buf = dma_addr; 4628 tx_q->tx_skbuff_dma[entry].map_as_page = false; 4629 tx_q->tx_skbuff_dma[entry].len = xdpf->len; 4630 tx_q->tx_skbuff_dma[entry].last_segment = true; 4631 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 4632 4633 tx_q->xdpf[entry] = xdpf; 4634 4635 stmmac_set_desc_addr(priv, tx_desc, dma_addr); 4636 4637 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len, 4638 true, priv->mode, true, true, 4639 xdpf->len); 4640 4641 tx_q->tx_count_frames++; 4642 4643 if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) 4644 set_ic = true; 4645 else 4646 set_ic = false; 4647 4648 if (set_ic) { 4649 tx_q->tx_count_frames = 0; 4650 stmmac_set_tx_ic(priv, tx_desc); 4651 priv->xstats.tx_set_ic_bit++; 4652 } 4653 4654 stmmac_enable_dma_transmission(priv, priv->ioaddr); 4655 4656 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 4657 tx_q->cur_tx = entry; 4658 4659 return STMMAC_XDP_TX; 4660 } 4661 4662 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv, 4663 int cpu) 4664 { 4665 int index = cpu; 4666 4667 if (unlikely(index < 0)) 4668 index = 0; 4669 4670 while (index >= priv->plat->tx_queues_to_use) 4671 index -= priv->plat->tx_queues_to_use; 4672 4673 return index; 4674 } 4675 4676 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv, 4677 struct xdp_buff *xdp) 4678 { 4679 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 4680 int cpu = smp_processor_id(); 4681 struct netdev_queue *nq; 4682 int queue; 4683 int res; 4684 4685 if (unlikely(!xdpf)) 4686 return STMMAC_XDP_CONSUMED; 4687 4688 queue = stmmac_xdp_get_tx_queue(priv, cpu); 4689 nq = netdev_get_tx_queue(priv->dev, queue); 4690 4691 __netif_tx_lock(nq, cpu); 4692 /* Avoids TX time-out as we are sharing with slow path */ 4693 txq_trans_cond_update(nq); 4694 4695 res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false); 4696 if (res == STMMAC_XDP_TX) 4697 stmmac_flush_tx_descriptors(priv, queue); 4698 4699 __netif_tx_unlock(nq); 4700 4701 return res; 4702 } 4703 4704 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv, 4705 struct bpf_prog *prog, 4706 struct xdp_buff *xdp) 4707 { 4708 u32 act; 4709 int res; 4710 4711 act = bpf_prog_run_xdp(prog, xdp); 4712 switch (act) { 4713 case XDP_PASS: 4714 res = STMMAC_XDP_PASS; 4715 break; 4716 case XDP_TX: 4717 res = stmmac_xdp_xmit_back(priv, xdp); 4718 break; 4719 case XDP_REDIRECT: 4720 if (xdp_do_redirect(priv->dev, xdp, prog) < 0) 4721 res = STMMAC_XDP_CONSUMED; 4722 else 4723 res = STMMAC_XDP_REDIRECT; 4724 break; 4725 default: 4726 bpf_warn_invalid_xdp_action(priv->dev, prog, act); 4727 fallthrough; 4728 case XDP_ABORTED: 4729 trace_xdp_exception(priv->dev, prog, act); 4730 fallthrough; 4731 case XDP_DROP: 4732 res = STMMAC_XDP_CONSUMED; 4733 break; 4734 } 4735 4736 return res; 4737 } 4738 4739 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv, 4740 struct xdp_buff *xdp) 4741 { 4742 struct bpf_prog *prog; 4743 int res; 4744 4745 prog = READ_ONCE(priv->xdp_prog); 4746 if (!prog) { 4747 res = STMMAC_XDP_PASS; 4748 goto out; 4749 } 4750 4751 res = __stmmac_xdp_run_prog(priv, prog, xdp); 4752 out: 4753 return ERR_PTR(-res); 4754 } 4755 4756 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv, 4757 int xdp_status) 4758 { 4759 int cpu = smp_processor_id(); 4760 int queue; 4761 4762 queue = stmmac_xdp_get_tx_queue(priv, cpu); 4763 4764 if (xdp_status & STMMAC_XDP_TX) 4765 stmmac_tx_timer_arm(priv, queue); 4766 4767 if (xdp_status & STMMAC_XDP_REDIRECT) 4768 xdp_do_flush(); 4769 } 4770 4771 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch, 4772 struct xdp_buff *xdp) 4773 { 4774 unsigned int metasize = xdp->data - xdp->data_meta; 4775 unsigned int datasize = xdp->data_end - xdp->data; 4776 struct sk_buff *skb; 4777 4778 skb = __napi_alloc_skb(&ch->rxtx_napi, 4779 xdp->data_end - xdp->data_hard_start, 4780 GFP_ATOMIC | __GFP_NOWARN); 4781 if (unlikely(!skb)) 4782 return NULL; 4783 4784 skb_reserve(skb, xdp->data - xdp->data_hard_start); 4785 memcpy(__skb_put(skb, datasize), xdp->data, datasize); 4786 if (metasize) 4787 skb_metadata_set(skb, metasize); 4788 4789 return skb; 4790 } 4791 4792 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue, 4793 struct dma_desc *p, struct dma_desc *np, 4794 struct xdp_buff *xdp) 4795 { 4796 struct stmmac_channel *ch = &priv->channel[queue]; 4797 unsigned int len = xdp->data_end - xdp->data; 4798 enum pkt_hash_types hash_type; 4799 int coe = priv->hw->rx_csum; 4800 struct sk_buff *skb; 4801 u32 hash; 4802 4803 skb = stmmac_construct_skb_zc(ch, xdp); 4804 if (!skb) { 4805 priv->dev->stats.rx_dropped++; 4806 return; 4807 } 4808 4809 stmmac_get_rx_hwtstamp(priv, p, np, skb); 4810 stmmac_rx_vlan(priv->dev, skb); 4811 skb->protocol = eth_type_trans(skb, priv->dev); 4812 4813 if (unlikely(!coe)) 4814 skb_checksum_none_assert(skb); 4815 else 4816 skb->ip_summed = CHECKSUM_UNNECESSARY; 4817 4818 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 4819 skb_set_hash(skb, hash, hash_type); 4820 4821 skb_record_rx_queue(skb, queue); 4822 napi_gro_receive(&ch->rxtx_napi, skb); 4823 4824 priv->dev->stats.rx_packets++; 4825 priv->dev->stats.rx_bytes += len; 4826 } 4827 4828 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget) 4829 { 4830 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4831 unsigned int entry = rx_q->dirty_rx; 4832 struct dma_desc *rx_desc = NULL; 4833 bool ret = true; 4834 4835 budget = min(budget, stmmac_rx_dirty(priv, queue)); 4836 4837 while (budget-- > 0 && entry != rx_q->cur_rx) { 4838 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 4839 dma_addr_t dma_addr; 4840 bool use_rx_wd; 4841 4842 if (!buf->xdp) { 4843 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); 4844 if (!buf->xdp) { 4845 ret = false; 4846 break; 4847 } 4848 } 4849 4850 if (priv->extend_desc) 4851 rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry); 4852 else 4853 rx_desc = rx_q->dma_rx + entry; 4854 4855 dma_addr = xsk_buff_xdp_get_dma(buf->xdp); 4856 stmmac_set_desc_addr(priv, rx_desc, dma_addr); 4857 stmmac_set_desc_sec_addr(priv, rx_desc, 0, false); 4858 stmmac_refill_desc3(priv, rx_q, rx_desc); 4859 4860 rx_q->rx_count_frames++; 4861 rx_q->rx_count_frames += priv->rx_coal_frames[queue]; 4862 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) 4863 rx_q->rx_count_frames = 0; 4864 4865 use_rx_wd = !priv->rx_coal_frames[queue]; 4866 use_rx_wd |= rx_q->rx_count_frames > 0; 4867 if (!priv->use_riwt) 4868 use_rx_wd = false; 4869 4870 dma_wmb(); 4871 stmmac_set_rx_owner(priv, rx_desc, use_rx_wd); 4872 4873 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size); 4874 } 4875 4876 if (rx_desc) { 4877 rx_q->dirty_rx = entry; 4878 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 4879 (rx_q->dirty_rx * sizeof(struct dma_desc)); 4880 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 4881 } 4882 4883 return ret; 4884 } 4885 4886 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue) 4887 { 4888 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4889 unsigned int count = 0, error = 0, len = 0; 4890 int dirty = stmmac_rx_dirty(priv, queue); 4891 unsigned int next_entry = rx_q->cur_rx; 4892 unsigned int desc_size; 4893 struct bpf_prog *prog; 4894 bool failure = false; 4895 int xdp_status = 0; 4896 int status = 0; 4897 4898 if (netif_msg_rx_status(priv)) { 4899 void *rx_head; 4900 4901 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 4902 if (priv->extend_desc) { 4903 rx_head = (void *)rx_q->dma_erx; 4904 desc_size = sizeof(struct dma_extended_desc); 4905 } else { 4906 rx_head = (void *)rx_q->dma_rx; 4907 desc_size = sizeof(struct dma_desc); 4908 } 4909 4910 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true, 4911 rx_q->dma_rx_phy, desc_size); 4912 } 4913 while (count < limit) { 4914 struct stmmac_rx_buffer *buf; 4915 unsigned int buf1_len = 0; 4916 struct dma_desc *np, *p; 4917 int entry; 4918 int res; 4919 4920 if (!count && rx_q->state_saved) { 4921 error = rx_q->state.error; 4922 len = rx_q->state.len; 4923 } else { 4924 rx_q->state_saved = false; 4925 error = 0; 4926 len = 0; 4927 } 4928 4929 if (count >= limit) 4930 break; 4931 4932 read_again: 4933 buf1_len = 0; 4934 entry = next_entry; 4935 buf = &rx_q->buf_pool[entry]; 4936 4937 if (dirty >= STMMAC_RX_FILL_BATCH) { 4938 failure = failure || 4939 !stmmac_rx_refill_zc(priv, queue, dirty); 4940 dirty = 0; 4941 } 4942 4943 if (priv->extend_desc) 4944 p = (struct dma_desc *)(rx_q->dma_erx + entry); 4945 else 4946 p = rx_q->dma_rx + entry; 4947 4948 /* read the status of the incoming frame */ 4949 status = stmmac_rx_status(priv, &priv->dev->stats, 4950 &priv->xstats, p); 4951 /* check if managed by the DMA otherwise go ahead */ 4952 if (unlikely(status & dma_own)) 4953 break; 4954 4955 /* Prefetch the next RX descriptor */ 4956 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, 4957 priv->dma_rx_size); 4958 next_entry = rx_q->cur_rx; 4959 4960 if (priv->extend_desc) 4961 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 4962 else 4963 np = rx_q->dma_rx + next_entry; 4964 4965 prefetch(np); 4966 4967 /* Ensure a valid XSK buffer before proceed */ 4968 if (!buf->xdp) 4969 break; 4970 4971 if (priv->extend_desc) 4972 stmmac_rx_extended_status(priv, &priv->dev->stats, 4973 &priv->xstats, 4974 rx_q->dma_erx + entry); 4975 if (unlikely(status == discard_frame)) { 4976 xsk_buff_free(buf->xdp); 4977 buf->xdp = NULL; 4978 dirty++; 4979 error = 1; 4980 if (!priv->hwts_rx_en) 4981 priv->dev->stats.rx_errors++; 4982 } 4983 4984 if (unlikely(error && (status & rx_not_ls))) 4985 goto read_again; 4986 if (unlikely(error)) { 4987 count++; 4988 continue; 4989 } 4990 4991 /* XSK pool expects RX frame 1:1 mapped to XSK buffer */ 4992 if (likely(status & rx_not_ls)) { 4993 xsk_buff_free(buf->xdp); 4994 buf->xdp = NULL; 4995 dirty++; 4996 count++; 4997 goto read_again; 4998 } 4999 5000 /* XDP ZC Frame only support primary buffers for now */ 5001 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 5002 len += buf1_len; 5003 5004 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 5005 * Type frames (LLC/LLC-SNAP) 5006 * 5007 * llc_snap is never checked in GMAC >= 4, so this ACS 5008 * feature is always disabled and packets need to be 5009 * stripped manually. 5010 */ 5011 if (likely(!(status & rx_not_ls)) && 5012 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) || 5013 unlikely(status != llc_snap))) { 5014 buf1_len -= ETH_FCS_LEN; 5015 len -= ETH_FCS_LEN; 5016 } 5017 5018 /* RX buffer is good and fit into a XSK pool buffer */ 5019 buf->xdp->data_end = buf->xdp->data + buf1_len; 5020 xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool); 5021 5022 prog = READ_ONCE(priv->xdp_prog); 5023 res = __stmmac_xdp_run_prog(priv, prog, buf->xdp); 5024 5025 switch (res) { 5026 case STMMAC_XDP_PASS: 5027 stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp); 5028 xsk_buff_free(buf->xdp); 5029 break; 5030 case STMMAC_XDP_CONSUMED: 5031 xsk_buff_free(buf->xdp); 5032 priv->dev->stats.rx_dropped++; 5033 break; 5034 case STMMAC_XDP_TX: 5035 case STMMAC_XDP_REDIRECT: 5036 xdp_status |= res; 5037 break; 5038 } 5039 5040 buf->xdp = NULL; 5041 dirty++; 5042 count++; 5043 } 5044 5045 if (status & rx_not_ls) { 5046 rx_q->state_saved = true; 5047 rx_q->state.error = error; 5048 rx_q->state.len = len; 5049 } 5050 5051 stmmac_finalize_xdp_rx(priv, xdp_status); 5052 5053 priv->xstats.rx_pkt_n += count; 5054 priv->xstats.rxq_stats[queue].rx_pkt_n += count; 5055 5056 if (xsk_uses_need_wakeup(rx_q->xsk_pool)) { 5057 if (failure || stmmac_rx_dirty(priv, queue) > 0) 5058 xsk_set_rx_need_wakeup(rx_q->xsk_pool); 5059 else 5060 xsk_clear_rx_need_wakeup(rx_q->xsk_pool); 5061 5062 return (int)count; 5063 } 5064 5065 return failure ? limit : (int)count; 5066 } 5067 5068 /** 5069 * stmmac_rx - manage the receive process 5070 * @priv: driver private structure 5071 * @limit: napi bugget 5072 * @queue: RX queue index. 5073 * Description : this the function called by the napi poll method. 5074 * It gets all the frames inside the ring. 5075 */ 5076 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue) 5077 { 5078 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 5079 struct stmmac_channel *ch = &priv->channel[queue]; 5080 unsigned int count = 0, error = 0, len = 0; 5081 int status = 0, coe = priv->hw->rx_csum; 5082 unsigned int next_entry = rx_q->cur_rx; 5083 enum dma_data_direction dma_dir; 5084 unsigned int desc_size; 5085 struct sk_buff *skb = NULL; 5086 struct xdp_buff xdp; 5087 int xdp_status = 0; 5088 int buf_sz; 5089 5090 dma_dir = page_pool_get_dma_dir(rx_q->page_pool); 5091 buf_sz = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE; 5092 5093 if (netif_msg_rx_status(priv)) { 5094 void *rx_head; 5095 5096 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 5097 if (priv->extend_desc) { 5098 rx_head = (void *)rx_q->dma_erx; 5099 desc_size = sizeof(struct dma_extended_desc); 5100 } else { 5101 rx_head = (void *)rx_q->dma_rx; 5102 desc_size = sizeof(struct dma_desc); 5103 } 5104 5105 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true, 5106 rx_q->dma_rx_phy, desc_size); 5107 } 5108 while (count < limit) { 5109 unsigned int buf1_len = 0, buf2_len = 0; 5110 enum pkt_hash_types hash_type; 5111 struct stmmac_rx_buffer *buf; 5112 struct dma_desc *np, *p; 5113 int entry; 5114 u32 hash; 5115 5116 if (!count && rx_q->state_saved) { 5117 skb = rx_q->state.skb; 5118 error = rx_q->state.error; 5119 len = rx_q->state.len; 5120 } else { 5121 rx_q->state_saved = false; 5122 skb = NULL; 5123 error = 0; 5124 len = 0; 5125 } 5126 5127 if (count >= limit) 5128 break; 5129 5130 read_again: 5131 buf1_len = 0; 5132 buf2_len = 0; 5133 entry = next_entry; 5134 buf = &rx_q->buf_pool[entry]; 5135 5136 if (priv->extend_desc) 5137 p = (struct dma_desc *)(rx_q->dma_erx + entry); 5138 else 5139 p = rx_q->dma_rx + entry; 5140 5141 /* read the status of the incoming frame */ 5142 status = stmmac_rx_status(priv, &priv->dev->stats, 5143 &priv->xstats, p); 5144 /* check if managed by the DMA otherwise go ahead */ 5145 if (unlikely(status & dma_own)) 5146 break; 5147 5148 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, 5149 priv->dma_rx_size); 5150 next_entry = rx_q->cur_rx; 5151 5152 if (priv->extend_desc) 5153 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 5154 else 5155 np = rx_q->dma_rx + next_entry; 5156 5157 prefetch(np); 5158 5159 if (priv->extend_desc) 5160 stmmac_rx_extended_status(priv, &priv->dev->stats, 5161 &priv->xstats, rx_q->dma_erx + entry); 5162 if (unlikely(status == discard_frame)) { 5163 page_pool_recycle_direct(rx_q->page_pool, buf->page); 5164 buf->page = NULL; 5165 error = 1; 5166 if (!priv->hwts_rx_en) 5167 priv->dev->stats.rx_errors++; 5168 } 5169 5170 if (unlikely(error && (status & rx_not_ls))) 5171 goto read_again; 5172 if (unlikely(error)) { 5173 dev_kfree_skb(skb); 5174 skb = NULL; 5175 count++; 5176 continue; 5177 } 5178 5179 /* Buffer is good. Go on. */ 5180 5181 prefetch(page_address(buf->page) + buf->page_offset); 5182 if (buf->sec_page) 5183 prefetch(page_address(buf->sec_page)); 5184 5185 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 5186 len += buf1_len; 5187 buf2_len = stmmac_rx_buf2_len(priv, p, status, len); 5188 len += buf2_len; 5189 5190 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 5191 * Type frames (LLC/LLC-SNAP) 5192 * 5193 * llc_snap is never checked in GMAC >= 4, so this ACS 5194 * feature is always disabled and packets need to be 5195 * stripped manually. 5196 */ 5197 if (likely(!(status & rx_not_ls)) && 5198 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) || 5199 unlikely(status != llc_snap))) { 5200 if (buf2_len) { 5201 buf2_len -= ETH_FCS_LEN; 5202 len -= ETH_FCS_LEN; 5203 } else if (buf1_len) { 5204 buf1_len -= ETH_FCS_LEN; 5205 len -= ETH_FCS_LEN; 5206 } 5207 } 5208 5209 if (!skb) { 5210 unsigned int pre_len, sync_len; 5211 5212 dma_sync_single_for_cpu(priv->device, buf->addr, 5213 buf1_len, dma_dir); 5214 5215 xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq); 5216 xdp_prepare_buff(&xdp, page_address(buf->page), 5217 buf->page_offset, buf1_len, false); 5218 5219 pre_len = xdp.data_end - xdp.data_hard_start - 5220 buf->page_offset; 5221 skb = stmmac_xdp_run_prog(priv, &xdp); 5222 /* Due xdp_adjust_tail: DMA sync for_device 5223 * cover max len CPU touch 5224 */ 5225 sync_len = xdp.data_end - xdp.data_hard_start - 5226 buf->page_offset; 5227 sync_len = max(sync_len, pre_len); 5228 5229 /* For Not XDP_PASS verdict */ 5230 if (IS_ERR(skb)) { 5231 unsigned int xdp_res = -PTR_ERR(skb); 5232 5233 if (xdp_res & STMMAC_XDP_CONSUMED) { 5234 page_pool_put_page(rx_q->page_pool, 5235 virt_to_head_page(xdp.data), 5236 sync_len, true); 5237 buf->page = NULL; 5238 priv->dev->stats.rx_dropped++; 5239 5240 /* Clear skb as it was set as 5241 * status by XDP program. 5242 */ 5243 skb = NULL; 5244 5245 if (unlikely((status & rx_not_ls))) 5246 goto read_again; 5247 5248 count++; 5249 continue; 5250 } else if (xdp_res & (STMMAC_XDP_TX | 5251 STMMAC_XDP_REDIRECT)) { 5252 xdp_status |= xdp_res; 5253 buf->page = NULL; 5254 skb = NULL; 5255 count++; 5256 continue; 5257 } 5258 } 5259 } 5260 5261 if (!skb) { 5262 /* XDP program may expand or reduce tail */ 5263 buf1_len = xdp.data_end - xdp.data; 5264 5265 skb = napi_alloc_skb(&ch->rx_napi, buf1_len); 5266 if (!skb) { 5267 priv->dev->stats.rx_dropped++; 5268 count++; 5269 goto drain_data; 5270 } 5271 5272 /* XDP program may adjust header */ 5273 skb_copy_to_linear_data(skb, xdp.data, buf1_len); 5274 skb_put(skb, buf1_len); 5275 5276 /* Data payload copied into SKB, page ready for recycle */ 5277 page_pool_recycle_direct(rx_q->page_pool, buf->page); 5278 buf->page = NULL; 5279 } else if (buf1_len) { 5280 dma_sync_single_for_cpu(priv->device, buf->addr, 5281 buf1_len, dma_dir); 5282 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 5283 buf->page, buf->page_offset, buf1_len, 5284 priv->dma_buf_sz); 5285 5286 /* Data payload appended into SKB */ 5287 page_pool_release_page(rx_q->page_pool, buf->page); 5288 buf->page = NULL; 5289 } 5290 5291 if (buf2_len) { 5292 dma_sync_single_for_cpu(priv->device, buf->sec_addr, 5293 buf2_len, dma_dir); 5294 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 5295 buf->sec_page, 0, buf2_len, 5296 priv->dma_buf_sz); 5297 5298 /* Data payload appended into SKB */ 5299 page_pool_release_page(rx_q->page_pool, buf->sec_page); 5300 buf->sec_page = NULL; 5301 } 5302 5303 drain_data: 5304 if (likely(status & rx_not_ls)) 5305 goto read_again; 5306 if (!skb) 5307 continue; 5308 5309 /* Got entire packet into SKB. Finish it. */ 5310 5311 stmmac_get_rx_hwtstamp(priv, p, np, skb); 5312 stmmac_rx_vlan(priv->dev, skb); 5313 skb->protocol = eth_type_trans(skb, priv->dev); 5314 5315 if (unlikely(!coe)) 5316 skb_checksum_none_assert(skb); 5317 else 5318 skb->ip_summed = CHECKSUM_UNNECESSARY; 5319 5320 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 5321 skb_set_hash(skb, hash, hash_type); 5322 5323 skb_record_rx_queue(skb, queue); 5324 napi_gro_receive(&ch->rx_napi, skb); 5325 skb = NULL; 5326 5327 priv->dev->stats.rx_packets++; 5328 priv->dev->stats.rx_bytes += len; 5329 count++; 5330 } 5331 5332 if (status & rx_not_ls || skb) { 5333 rx_q->state_saved = true; 5334 rx_q->state.skb = skb; 5335 rx_q->state.error = error; 5336 rx_q->state.len = len; 5337 } 5338 5339 stmmac_finalize_xdp_rx(priv, xdp_status); 5340 5341 stmmac_rx_refill(priv, queue); 5342 5343 priv->xstats.rx_pkt_n += count; 5344 priv->xstats.rxq_stats[queue].rx_pkt_n += count; 5345 5346 return count; 5347 } 5348 5349 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget) 5350 { 5351 struct stmmac_channel *ch = 5352 container_of(napi, struct stmmac_channel, rx_napi); 5353 struct stmmac_priv *priv = ch->priv_data; 5354 u32 chan = ch->index; 5355 int work_done; 5356 5357 priv->xstats.napi_poll++; 5358 5359 work_done = stmmac_rx(priv, budget, chan); 5360 if (work_done < budget && napi_complete_done(napi, work_done)) { 5361 unsigned long flags; 5362 5363 spin_lock_irqsave(&ch->lock, flags); 5364 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 5365 spin_unlock_irqrestore(&ch->lock, flags); 5366 } 5367 5368 return work_done; 5369 } 5370 5371 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget) 5372 { 5373 struct stmmac_channel *ch = 5374 container_of(napi, struct stmmac_channel, tx_napi); 5375 struct stmmac_priv *priv = ch->priv_data; 5376 u32 chan = ch->index; 5377 int work_done; 5378 5379 priv->xstats.napi_poll++; 5380 5381 work_done = stmmac_tx_clean(priv, budget, chan); 5382 work_done = min(work_done, budget); 5383 5384 if (work_done < budget && napi_complete_done(napi, work_done)) { 5385 unsigned long flags; 5386 5387 spin_lock_irqsave(&ch->lock, flags); 5388 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 5389 spin_unlock_irqrestore(&ch->lock, flags); 5390 } 5391 5392 return work_done; 5393 } 5394 5395 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget) 5396 { 5397 struct stmmac_channel *ch = 5398 container_of(napi, struct stmmac_channel, rxtx_napi); 5399 struct stmmac_priv *priv = ch->priv_data; 5400 int rx_done, tx_done, rxtx_done; 5401 u32 chan = ch->index; 5402 5403 priv->xstats.napi_poll++; 5404 5405 tx_done = stmmac_tx_clean(priv, budget, chan); 5406 tx_done = min(tx_done, budget); 5407 5408 rx_done = stmmac_rx_zc(priv, budget, chan); 5409 5410 rxtx_done = max(tx_done, rx_done); 5411 5412 /* If either TX or RX work is not complete, return budget 5413 * and keep pooling 5414 */ 5415 if (rxtx_done >= budget) 5416 return budget; 5417 5418 /* all work done, exit the polling mode */ 5419 if (napi_complete_done(napi, rxtx_done)) { 5420 unsigned long flags; 5421 5422 spin_lock_irqsave(&ch->lock, flags); 5423 /* Both RX and TX work done are compelte, 5424 * so enable both RX & TX IRQs. 5425 */ 5426 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 5427 spin_unlock_irqrestore(&ch->lock, flags); 5428 } 5429 5430 return min(rxtx_done, budget - 1); 5431 } 5432 5433 /** 5434 * stmmac_tx_timeout 5435 * @dev : Pointer to net device structure 5436 * @txqueue: the index of the hanging transmit queue 5437 * Description: this function is called when a packet transmission fails to 5438 * complete within a reasonable time. The driver will mark the error in the 5439 * netdev structure and arrange for the device to be reset to a sane state 5440 * in order to transmit a new packet. 5441 */ 5442 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue) 5443 { 5444 struct stmmac_priv *priv = netdev_priv(dev); 5445 5446 stmmac_global_err(priv); 5447 } 5448 5449 /** 5450 * stmmac_set_rx_mode - entry point for multicast addressing 5451 * @dev : pointer to the device structure 5452 * Description: 5453 * This function is a driver entry point which gets called by the kernel 5454 * whenever multicast addresses must be enabled/disabled. 5455 * Return value: 5456 * void. 5457 */ 5458 static void stmmac_set_rx_mode(struct net_device *dev) 5459 { 5460 struct stmmac_priv *priv = netdev_priv(dev); 5461 5462 stmmac_set_filter(priv, priv->hw, dev); 5463 } 5464 5465 /** 5466 * stmmac_change_mtu - entry point to change MTU size for the device. 5467 * @dev : device pointer. 5468 * @new_mtu : the new MTU size for the device. 5469 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 5470 * to drive packet transmission. Ethernet has an MTU of 1500 octets 5471 * (ETH_DATA_LEN). This value can be changed with ifconfig. 5472 * Return value: 5473 * 0 on success and an appropriate (-)ve integer as defined in errno.h 5474 * file on failure. 5475 */ 5476 static int stmmac_change_mtu(struct net_device *dev, int new_mtu) 5477 { 5478 struct stmmac_priv *priv = netdev_priv(dev); 5479 int txfifosz = priv->plat->tx_fifo_size; 5480 const int mtu = new_mtu; 5481 5482 if (txfifosz == 0) 5483 txfifosz = priv->dma_cap.tx_fifo_size; 5484 5485 txfifosz /= priv->plat->tx_queues_to_use; 5486 5487 if (netif_running(dev)) { 5488 netdev_err(priv->dev, "must be stopped to change its MTU\n"); 5489 return -EBUSY; 5490 } 5491 5492 if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) { 5493 netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n"); 5494 return -EINVAL; 5495 } 5496 5497 new_mtu = STMMAC_ALIGN(new_mtu); 5498 5499 /* If condition true, FIFO is too small or MTU too large */ 5500 if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB)) 5501 return -EINVAL; 5502 5503 dev->mtu = mtu; 5504 5505 netdev_update_features(dev); 5506 5507 return 0; 5508 } 5509 5510 static netdev_features_t stmmac_fix_features(struct net_device *dev, 5511 netdev_features_t features) 5512 { 5513 struct stmmac_priv *priv = netdev_priv(dev); 5514 5515 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) 5516 features &= ~NETIF_F_RXCSUM; 5517 5518 if (!priv->plat->tx_coe) 5519 features &= ~NETIF_F_CSUM_MASK; 5520 5521 /* Some GMAC devices have a bugged Jumbo frame support that 5522 * needs to have the Tx COE disabled for oversized frames 5523 * (due to limited buffer sizes). In this case we disable 5524 * the TX csum insertion in the TDES and not use SF. 5525 */ 5526 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) 5527 features &= ~NETIF_F_CSUM_MASK; 5528 5529 /* Disable tso if asked by ethtool */ 5530 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 5531 if (features & NETIF_F_TSO) 5532 priv->tso = true; 5533 else 5534 priv->tso = false; 5535 } 5536 5537 return features; 5538 } 5539 5540 static int stmmac_set_features(struct net_device *netdev, 5541 netdev_features_t features) 5542 { 5543 struct stmmac_priv *priv = netdev_priv(netdev); 5544 5545 /* Keep the COE Type in case of csum is supporting */ 5546 if (features & NETIF_F_RXCSUM) 5547 priv->hw->rx_csum = priv->plat->rx_coe; 5548 else 5549 priv->hw->rx_csum = 0; 5550 /* No check needed because rx_coe has been set before and it will be 5551 * fixed in case of issue. 5552 */ 5553 stmmac_rx_ipc(priv, priv->hw); 5554 5555 if (priv->sph_cap) { 5556 bool sph_en = (priv->hw->rx_csum > 0) && priv->sph; 5557 u32 chan; 5558 5559 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++) 5560 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 5561 } 5562 5563 return 0; 5564 } 5565 5566 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status) 5567 { 5568 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 5569 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 5570 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 5571 bool *hs_enable = &fpe_cfg->hs_enable; 5572 5573 if (status == FPE_EVENT_UNKNOWN || !*hs_enable) 5574 return; 5575 5576 /* If LP has sent verify mPacket, LP is FPE capable */ 5577 if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) { 5578 if (*lp_state < FPE_STATE_CAPABLE) 5579 *lp_state = FPE_STATE_CAPABLE; 5580 5581 /* If user has requested FPE enable, quickly response */ 5582 if (*hs_enable) 5583 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 5584 MPACKET_RESPONSE); 5585 } 5586 5587 /* If Local has sent verify mPacket, Local is FPE capable */ 5588 if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) { 5589 if (*lo_state < FPE_STATE_CAPABLE) 5590 *lo_state = FPE_STATE_CAPABLE; 5591 } 5592 5593 /* If LP has sent response mPacket, LP is entering FPE ON */ 5594 if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP) 5595 *lp_state = FPE_STATE_ENTERING_ON; 5596 5597 /* If Local has sent response mPacket, Local is entering FPE ON */ 5598 if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP) 5599 *lo_state = FPE_STATE_ENTERING_ON; 5600 5601 if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) && 5602 !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) && 5603 priv->fpe_wq) { 5604 queue_work(priv->fpe_wq, &priv->fpe_task); 5605 } 5606 } 5607 5608 static void stmmac_common_interrupt(struct stmmac_priv *priv) 5609 { 5610 u32 rx_cnt = priv->plat->rx_queues_to_use; 5611 u32 tx_cnt = priv->plat->tx_queues_to_use; 5612 u32 queues_count; 5613 u32 queue; 5614 bool xmac; 5615 5616 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 5617 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt; 5618 5619 if (priv->irq_wake) 5620 pm_wakeup_event(priv->device, 0); 5621 5622 if (priv->dma_cap.estsel) 5623 stmmac_est_irq_status(priv, priv->ioaddr, priv->dev, 5624 &priv->xstats, tx_cnt); 5625 5626 if (priv->dma_cap.fpesel) { 5627 int status = stmmac_fpe_irq_status(priv, priv->ioaddr, 5628 priv->dev); 5629 5630 stmmac_fpe_event_status(priv, status); 5631 } 5632 5633 /* To handle GMAC own interrupts */ 5634 if ((priv->plat->has_gmac) || xmac) { 5635 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats); 5636 5637 if (unlikely(status)) { 5638 /* For LPI we need to save the tx status */ 5639 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) 5640 priv->tx_path_in_lpi_mode = true; 5641 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) 5642 priv->tx_path_in_lpi_mode = false; 5643 } 5644 5645 for (queue = 0; queue < queues_count; queue++) { 5646 status = stmmac_host_mtl_irq_status(priv, priv->hw, 5647 queue); 5648 } 5649 5650 /* PCS link status */ 5651 if (priv->hw->pcs) { 5652 if (priv->xstats.pcs_link) 5653 netif_carrier_on(priv->dev); 5654 else 5655 netif_carrier_off(priv->dev); 5656 } 5657 5658 stmmac_timestamp_interrupt(priv, priv); 5659 } 5660 } 5661 5662 /** 5663 * stmmac_interrupt - main ISR 5664 * @irq: interrupt number. 5665 * @dev_id: to pass the net device pointer. 5666 * Description: this is the main driver interrupt service routine. 5667 * It can call: 5668 * o DMA service routine (to manage incoming frame reception and transmission 5669 * status) 5670 * o Core interrupts to manage: remote wake-up, management counter, LPI 5671 * interrupts. 5672 */ 5673 static irqreturn_t stmmac_interrupt(int irq, void *dev_id) 5674 { 5675 struct net_device *dev = (struct net_device *)dev_id; 5676 struct stmmac_priv *priv = netdev_priv(dev); 5677 5678 /* Check if adapter is up */ 5679 if (test_bit(STMMAC_DOWN, &priv->state)) 5680 return IRQ_HANDLED; 5681 5682 /* Check if a fatal error happened */ 5683 if (stmmac_safety_feat_interrupt(priv)) 5684 return IRQ_HANDLED; 5685 5686 /* To handle Common interrupts */ 5687 stmmac_common_interrupt(priv); 5688 5689 /* To handle DMA interrupts */ 5690 stmmac_dma_interrupt(priv); 5691 5692 return IRQ_HANDLED; 5693 } 5694 5695 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id) 5696 { 5697 struct net_device *dev = (struct net_device *)dev_id; 5698 struct stmmac_priv *priv = netdev_priv(dev); 5699 5700 if (unlikely(!dev)) { 5701 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5702 return IRQ_NONE; 5703 } 5704 5705 /* Check if adapter is up */ 5706 if (test_bit(STMMAC_DOWN, &priv->state)) 5707 return IRQ_HANDLED; 5708 5709 /* To handle Common interrupts */ 5710 stmmac_common_interrupt(priv); 5711 5712 return IRQ_HANDLED; 5713 } 5714 5715 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id) 5716 { 5717 struct net_device *dev = (struct net_device *)dev_id; 5718 struct stmmac_priv *priv = netdev_priv(dev); 5719 5720 if (unlikely(!dev)) { 5721 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5722 return IRQ_NONE; 5723 } 5724 5725 /* Check if adapter is up */ 5726 if (test_bit(STMMAC_DOWN, &priv->state)) 5727 return IRQ_HANDLED; 5728 5729 /* Check if a fatal error happened */ 5730 stmmac_safety_feat_interrupt(priv); 5731 5732 return IRQ_HANDLED; 5733 } 5734 5735 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data) 5736 { 5737 struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data; 5738 int chan = tx_q->queue_index; 5739 struct stmmac_priv *priv; 5740 int status; 5741 5742 priv = container_of(tx_q, struct stmmac_priv, tx_queue[chan]); 5743 5744 if (unlikely(!data)) { 5745 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5746 return IRQ_NONE; 5747 } 5748 5749 /* Check if adapter is up */ 5750 if (test_bit(STMMAC_DOWN, &priv->state)) 5751 return IRQ_HANDLED; 5752 5753 status = stmmac_napi_check(priv, chan, DMA_DIR_TX); 5754 5755 if (unlikely(status & tx_hard_error_bump_tc)) { 5756 /* Try to bump up the dma threshold on this failure */ 5757 stmmac_bump_dma_threshold(priv, chan); 5758 } else if (unlikely(status == tx_hard_error)) { 5759 stmmac_tx_err(priv, chan); 5760 } 5761 5762 return IRQ_HANDLED; 5763 } 5764 5765 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data) 5766 { 5767 struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data; 5768 int chan = rx_q->queue_index; 5769 struct stmmac_priv *priv; 5770 5771 priv = container_of(rx_q, struct stmmac_priv, rx_queue[chan]); 5772 5773 if (unlikely(!data)) { 5774 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5775 return IRQ_NONE; 5776 } 5777 5778 /* Check if adapter is up */ 5779 if (test_bit(STMMAC_DOWN, &priv->state)) 5780 return IRQ_HANDLED; 5781 5782 stmmac_napi_check(priv, chan, DMA_DIR_RX); 5783 5784 return IRQ_HANDLED; 5785 } 5786 5787 #ifdef CONFIG_NET_POLL_CONTROLLER 5788 /* Polling receive - used by NETCONSOLE and other diagnostic tools 5789 * to allow network I/O with interrupts disabled. 5790 */ 5791 static void stmmac_poll_controller(struct net_device *dev) 5792 { 5793 struct stmmac_priv *priv = netdev_priv(dev); 5794 int i; 5795 5796 /* If adapter is down, do nothing */ 5797 if (test_bit(STMMAC_DOWN, &priv->state)) 5798 return; 5799 5800 if (priv->plat->multi_msi_en) { 5801 for (i = 0; i < priv->plat->rx_queues_to_use; i++) 5802 stmmac_msi_intr_rx(0, &priv->rx_queue[i]); 5803 5804 for (i = 0; i < priv->plat->tx_queues_to_use; i++) 5805 stmmac_msi_intr_tx(0, &priv->tx_queue[i]); 5806 } else { 5807 disable_irq(dev->irq); 5808 stmmac_interrupt(dev->irq, dev); 5809 enable_irq(dev->irq); 5810 } 5811 } 5812 #endif 5813 5814 /** 5815 * stmmac_ioctl - Entry point for the Ioctl 5816 * @dev: Device pointer. 5817 * @rq: An IOCTL specefic structure, that can contain a pointer to 5818 * a proprietary structure used to pass information to the driver. 5819 * @cmd: IOCTL command 5820 * Description: 5821 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 5822 */ 5823 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 5824 { 5825 struct stmmac_priv *priv = netdev_priv (dev); 5826 int ret = -EOPNOTSUPP; 5827 5828 if (!netif_running(dev)) 5829 return -EINVAL; 5830 5831 switch (cmd) { 5832 case SIOCGMIIPHY: 5833 case SIOCGMIIREG: 5834 case SIOCSMIIREG: 5835 ret = phylink_mii_ioctl(priv->phylink, rq, cmd); 5836 break; 5837 case SIOCSHWTSTAMP: 5838 ret = stmmac_hwtstamp_set(dev, rq); 5839 break; 5840 case SIOCGHWTSTAMP: 5841 ret = stmmac_hwtstamp_get(dev, rq); 5842 break; 5843 default: 5844 break; 5845 } 5846 5847 return ret; 5848 } 5849 5850 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 5851 void *cb_priv) 5852 { 5853 struct stmmac_priv *priv = cb_priv; 5854 int ret = -EOPNOTSUPP; 5855 5856 if (!tc_cls_can_offload_and_chain0(priv->dev, type_data)) 5857 return ret; 5858 5859 __stmmac_disable_all_queues(priv); 5860 5861 switch (type) { 5862 case TC_SETUP_CLSU32: 5863 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data); 5864 break; 5865 case TC_SETUP_CLSFLOWER: 5866 ret = stmmac_tc_setup_cls(priv, priv, type_data); 5867 break; 5868 default: 5869 break; 5870 } 5871 5872 stmmac_enable_all_queues(priv); 5873 return ret; 5874 } 5875 5876 static LIST_HEAD(stmmac_block_cb_list); 5877 5878 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type, 5879 void *type_data) 5880 { 5881 struct stmmac_priv *priv = netdev_priv(ndev); 5882 5883 switch (type) { 5884 case TC_SETUP_BLOCK: 5885 return flow_block_cb_setup_simple(type_data, 5886 &stmmac_block_cb_list, 5887 stmmac_setup_tc_block_cb, 5888 priv, priv, true); 5889 case TC_SETUP_QDISC_CBS: 5890 return stmmac_tc_setup_cbs(priv, priv, type_data); 5891 case TC_SETUP_QDISC_TAPRIO: 5892 return stmmac_tc_setup_taprio(priv, priv, type_data); 5893 case TC_SETUP_QDISC_ETF: 5894 return stmmac_tc_setup_etf(priv, priv, type_data); 5895 default: 5896 return -EOPNOTSUPP; 5897 } 5898 } 5899 5900 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb, 5901 struct net_device *sb_dev) 5902 { 5903 int gso = skb_shinfo(skb)->gso_type; 5904 5905 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) { 5906 /* 5907 * There is no way to determine the number of TSO/USO 5908 * capable Queues. Let's use always the Queue 0 5909 * because if TSO/USO is supported then at least this 5910 * one will be capable. 5911 */ 5912 return 0; 5913 } 5914 5915 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; 5916 } 5917 5918 static int stmmac_set_mac_address(struct net_device *ndev, void *addr) 5919 { 5920 struct stmmac_priv *priv = netdev_priv(ndev); 5921 int ret = 0; 5922 5923 ret = pm_runtime_get_sync(priv->device); 5924 if (ret < 0) { 5925 pm_runtime_put_noidle(priv->device); 5926 return ret; 5927 } 5928 5929 ret = eth_mac_addr(ndev, addr); 5930 if (ret) 5931 goto set_mac_error; 5932 5933 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0); 5934 5935 set_mac_error: 5936 pm_runtime_put(priv->device); 5937 5938 return ret; 5939 } 5940 5941 #ifdef CONFIG_DEBUG_FS 5942 static struct dentry *stmmac_fs_dir; 5943 5944 static void sysfs_display_ring(void *head, int size, int extend_desc, 5945 struct seq_file *seq, dma_addr_t dma_phy_addr) 5946 { 5947 int i; 5948 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 5949 struct dma_desc *p = (struct dma_desc *)head; 5950 dma_addr_t dma_addr; 5951 5952 for (i = 0; i < size; i++) { 5953 if (extend_desc) { 5954 dma_addr = dma_phy_addr + i * sizeof(*ep); 5955 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", 5956 i, &dma_addr, 5957 le32_to_cpu(ep->basic.des0), 5958 le32_to_cpu(ep->basic.des1), 5959 le32_to_cpu(ep->basic.des2), 5960 le32_to_cpu(ep->basic.des3)); 5961 ep++; 5962 } else { 5963 dma_addr = dma_phy_addr + i * sizeof(*p); 5964 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", 5965 i, &dma_addr, 5966 le32_to_cpu(p->des0), le32_to_cpu(p->des1), 5967 le32_to_cpu(p->des2), le32_to_cpu(p->des3)); 5968 p++; 5969 } 5970 seq_printf(seq, "\n"); 5971 } 5972 } 5973 5974 static int stmmac_rings_status_show(struct seq_file *seq, void *v) 5975 { 5976 struct net_device *dev = seq->private; 5977 struct stmmac_priv *priv = netdev_priv(dev); 5978 u32 rx_count = priv->plat->rx_queues_to_use; 5979 u32 tx_count = priv->plat->tx_queues_to_use; 5980 u32 queue; 5981 5982 if ((dev->flags & IFF_UP) == 0) 5983 return 0; 5984 5985 for (queue = 0; queue < rx_count; queue++) { 5986 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 5987 5988 seq_printf(seq, "RX Queue %d:\n", queue); 5989 5990 if (priv->extend_desc) { 5991 seq_printf(seq, "Extended descriptor ring:\n"); 5992 sysfs_display_ring((void *)rx_q->dma_erx, 5993 priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy); 5994 } else { 5995 seq_printf(seq, "Descriptor ring:\n"); 5996 sysfs_display_ring((void *)rx_q->dma_rx, 5997 priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy); 5998 } 5999 } 6000 6001 for (queue = 0; queue < tx_count; queue++) { 6002 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 6003 6004 seq_printf(seq, "TX Queue %d:\n", queue); 6005 6006 if (priv->extend_desc) { 6007 seq_printf(seq, "Extended descriptor ring:\n"); 6008 sysfs_display_ring((void *)tx_q->dma_etx, 6009 priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy); 6010 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) { 6011 seq_printf(seq, "Descriptor ring:\n"); 6012 sysfs_display_ring((void *)tx_q->dma_tx, 6013 priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy); 6014 } 6015 } 6016 6017 return 0; 6018 } 6019 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status); 6020 6021 static int stmmac_dma_cap_show(struct seq_file *seq, void *v) 6022 { 6023 struct net_device *dev = seq->private; 6024 struct stmmac_priv *priv = netdev_priv(dev); 6025 6026 if (!priv->hw_cap_support) { 6027 seq_printf(seq, "DMA HW features not supported\n"); 6028 return 0; 6029 } 6030 6031 seq_printf(seq, "==============================\n"); 6032 seq_printf(seq, "\tDMA HW features\n"); 6033 seq_printf(seq, "==============================\n"); 6034 6035 seq_printf(seq, "\t10/100 Mbps: %s\n", 6036 (priv->dma_cap.mbps_10_100) ? "Y" : "N"); 6037 seq_printf(seq, "\t1000 Mbps: %s\n", 6038 (priv->dma_cap.mbps_1000) ? "Y" : "N"); 6039 seq_printf(seq, "\tHalf duplex: %s\n", 6040 (priv->dma_cap.half_duplex) ? "Y" : "N"); 6041 seq_printf(seq, "\tHash Filter: %s\n", 6042 (priv->dma_cap.hash_filter) ? "Y" : "N"); 6043 seq_printf(seq, "\tMultiple MAC address registers: %s\n", 6044 (priv->dma_cap.multi_addr) ? "Y" : "N"); 6045 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n", 6046 (priv->dma_cap.pcs) ? "Y" : "N"); 6047 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", 6048 (priv->dma_cap.sma_mdio) ? "Y" : "N"); 6049 seq_printf(seq, "\tPMT Remote wake up: %s\n", 6050 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); 6051 seq_printf(seq, "\tPMT Magic Frame: %s\n", 6052 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); 6053 seq_printf(seq, "\tRMON module: %s\n", 6054 (priv->dma_cap.rmon) ? "Y" : "N"); 6055 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", 6056 (priv->dma_cap.time_stamp) ? "Y" : "N"); 6057 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n", 6058 (priv->dma_cap.atime_stamp) ? "Y" : "N"); 6059 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n", 6060 (priv->dma_cap.eee) ? "Y" : "N"); 6061 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); 6062 seq_printf(seq, "\tChecksum Offload in TX: %s\n", 6063 (priv->dma_cap.tx_coe) ? "Y" : "N"); 6064 if (priv->synopsys_id >= DWMAC_CORE_4_00) { 6065 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n", 6066 (priv->dma_cap.rx_coe) ? "Y" : "N"); 6067 } else { 6068 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", 6069 (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); 6070 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", 6071 (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); 6072 } 6073 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", 6074 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); 6075 seq_printf(seq, "\tNumber of Additional RX channel: %d\n", 6076 priv->dma_cap.number_rx_channel); 6077 seq_printf(seq, "\tNumber of Additional TX channel: %d\n", 6078 priv->dma_cap.number_tx_channel); 6079 seq_printf(seq, "\tNumber of Additional RX queues: %d\n", 6080 priv->dma_cap.number_rx_queues); 6081 seq_printf(seq, "\tNumber of Additional TX queues: %d\n", 6082 priv->dma_cap.number_tx_queues); 6083 seq_printf(seq, "\tEnhanced descriptors: %s\n", 6084 (priv->dma_cap.enh_desc) ? "Y" : "N"); 6085 seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size); 6086 seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size); 6087 seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz); 6088 seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N"); 6089 seq_printf(seq, "\tNumber of PPS Outputs: %d\n", 6090 priv->dma_cap.pps_out_num); 6091 seq_printf(seq, "\tSafety Features: %s\n", 6092 priv->dma_cap.asp ? "Y" : "N"); 6093 seq_printf(seq, "\tFlexible RX Parser: %s\n", 6094 priv->dma_cap.frpsel ? "Y" : "N"); 6095 seq_printf(seq, "\tEnhanced Addressing: %d\n", 6096 priv->dma_cap.addr64); 6097 seq_printf(seq, "\tReceive Side Scaling: %s\n", 6098 priv->dma_cap.rssen ? "Y" : "N"); 6099 seq_printf(seq, "\tVLAN Hash Filtering: %s\n", 6100 priv->dma_cap.vlhash ? "Y" : "N"); 6101 seq_printf(seq, "\tSplit Header: %s\n", 6102 priv->dma_cap.sphen ? "Y" : "N"); 6103 seq_printf(seq, "\tVLAN TX Insertion: %s\n", 6104 priv->dma_cap.vlins ? "Y" : "N"); 6105 seq_printf(seq, "\tDouble VLAN: %s\n", 6106 priv->dma_cap.dvlan ? "Y" : "N"); 6107 seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n", 6108 priv->dma_cap.l3l4fnum); 6109 seq_printf(seq, "\tARP Offloading: %s\n", 6110 priv->dma_cap.arpoffsel ? "Y" : "N"); 6111 seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n", 6112 priv->dma_cap.estsel ? "Y" : "N"); 6113 seq_printf(seq, "\tFrame Preemption (FPE): %s\n", 6114 priv->dma_cap.fpesel ? "Y" : "N"); 6115 seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n", 6116 priv->dma_cap.tbssel ? "Y" : "N"); 6117 return 0; 6118 } 6119 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap); 6120 6121 /* Use network device events to rename debugfs file entries. 6122 */ 6123 static int stmmac_device_event(struct notifier_block *unused, 6124 unsigned long event, void *ptr) 6125 { 6126 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 6127 struct stmmac_priv *priv = netdev_priv(dev); 6128 6129 if (dev->netdev_ops != &stmmac_netdev_ops) 6130 goto done; 6131 6132 switch (event) { 6133 case NETDEV_CHANGENAME: 6134 if (priv->dbgfs_dir) 6135 priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir, 6136 priv->dbgfs_dir, 6137 stmmac_fs_dir, 6138 dev->name); 6139 break; 6140 } 6141 done: 6142 return NOTIFY_DONE; 6143 } 6144 6145 static struct notifier_block stmmac_notifier = { 6146 .notifier_call = stmmac_device_event, 6147 }; 6148 6149 static void stmmac_init_fs(struct net_device *dev) 6150 { 6151 struct stmmac_priv *priv = netdev_priv(dev); 6152 6153 rtnl_lock(); 6154 6155 /* Create per netdev entries */ 6156 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir); 6157 6158 /* Entry to report DMA RX/TX rings */ 6159 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev, 6160 &stmmac_rings_status_fops); 6161 6162 /* Entry to report the DMA HW features */ 6163 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev, 6164 &stmmac_dma_cap_fops); 6165 6166 rtnl_unlock(); 6167 } 6168 6169 static void stmmac_exit_fs(struct net_device *dev) 6170 { 6171 struct stmmac_priv *priv = netdev_priv(dev); 6172 6173 debugfs_remove_recursive(priv->dbgfs_dir); 6174 } 6175 #endif /* CONFIG_DEBUG_FS */ 6176 6177 static u32 stmmac_vid_crc32_le(__le16 vid_le) 6178 { 6179 unsigned char *data = (unsigned char *)&vid_le; 6180 unsigned char data_byte = 0; 6181 u32 crc = ~0x0; 6182 u32 temp = 0; 6183 int i, bits; 6184 6185 bits = get_bitmask_order(VLAN_VID_MASK); 6186 for (i = 0; i < bits; i++) { 6187 if ((i % 8) == 0) 6188 data_byte = data[i / 8]; 6189 6190 temp = ((crc & 1) ^ data_byte) & 1; 6191 crc >>= 1; 6192 data_byte >>= 1; 6193 6194 if (temp) 6195 crc ^= 0xedb88320; 6196 } 6197 6198 return crc; 6199 } 6200 6201 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double) 6202 { 6203 u32 crc, hash = 0; 6204 __le16 pmatch = 0; 6205 int count = 0; 6206 u16 vid = 0; 6207 6208 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) { 6209 __le16 vid_le = cpu_to_le16(vid); 6210 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28; 6211 hash |= (1 << crc); 6212 count++; 6213 } 6214 6215 if (!priv->dma_cap.vlhash) { 6216 if (count > 2) /* VID = 0 always passes filter */ 6217 return -EOPNOTSUPP; 6218 6219 pmatch = cpu_to_le16(vid); 6220 hash = 0; 6221 } 6222 6223 return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double); 6224 } 6225 6226 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) 6227 { 6228 struct stmmac_priv *priv = netdev_priv(ndev); 6229 bool is_double = false; 6230 int ret; 6231 6232 if (be16_to_cpu(proto) == ETH_P_8021AD) 6233 is_double = true; 6234 6235 set_bit(vid, priv->active_vlans); 6236 ret = stmmac_vlan_update(priv, is_double); 6237 if (ret) { 6238 clear_bit(vid, priv->active_vlans); 6239 return ret; 6240 } 6241 6242 if (priv->hw->num_vlan) { 6243 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 6244 if (ret) 6245 return ret; 6246 } 6247 6248 return 0; 6249 } 6250 6251 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) 6252 { 6253 struct stmmac_priv *priv = netdev_priv(ndev); 6254 bool is_double = false; 6255 int ret; 6256 6257 ret = pm_runtime_get_sync(priv->device); 6258 if (ret < 0) { 6259 pm_runtime_put_noidle(priv->device); 6260 return ret; 6261 } 6262 6263 if (be16_to_cpu(proto) == ETH_P_8021AD) 6264 is_double = true; 6265 6266 clear_bit(vid, priv->active_vlans); 6267 6268 if (priv->hw->num_vlan) { 6269 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 6270 if (ret) 6271 goto del_vlan_error; 6272 } 6273 6274 ret = stmmac_vlan_update(priv, is_double); 6275 6276 del_vlan_error: 6277 pm_runtime_put(priv->device); 6278 6279 return ret; 6280 } 6281 6282 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf) 6283 { 6284 struct stmmac_priv *priv = netdev_priv(dev); 6285 6286 switch (bpf->command) { 6287 case XDP_SETUP_PROG: 6288 return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack); 6289 case XDP_SETUP_XSK_POOL: 6290 return stmmac_xdp_setup_pool(priv, bpf->xsk.pool, 6291 bpf->xsk.queue_id); 6292 default: 6293 return -EOPNOTSUPP; 6294 } 6295 } 6296 6297 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames, 6298 struct xdp_frame **frames, u32 flags) 6299 { 6300 struct stmmac_priv *priv = netdev_priv(dev); 6301 int cpu = smp_processor_id(); 6302 struct netdev_queue *nq; 6303 int i, nxmit = 0; 6304 int queue; 6305 6306 if (unlikely(test_bit(STMMAC_DOWN, &priv->state))) 6307 return -ENETDOWN; 6308 6309 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 6310 return -EINVAL; 6311 6312 queue = stmmac_xdp_get_tx_queue(priv, cpu); 6313 nq = netdev_get_tx_queue(priv->dev, queue); 6314 6315 __netif_tx_lock(nq, cpu); 6316 /* Avoids TX time-out as we are sharing with slow path */ 6317 txq_trans_cond_update(nq); 6318 6319 for (i = 0; i < num_frames; i++) { 6320 int res; 6321 6322 res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true); 6323 if (res == STMMAC_XDP_CONSUMED) 6324 break; 6325 6326 nxmit++; 6327 } 6328 6329 if (flags & XDP_XMIT_FLUSH) { 6330 stmmac_flush_tx_descriptors(priv, queue); 6331 stmmac_tx_timer_arm(priv, queue); 6332 } 6333 6334 __netif_tx_unlock(nq); 6335 6336 return nxmit; 6337 } 6338 6339 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue) 6340 { 6341 struct stmmac_channel *ch = &priv->channel[queue]; 6342 unsigned long flags; 6343 6344 spin_lock_irqsave(&ch->lock, flags); 6345 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0); 6346 spin_unlock_irqrestore(&ch->lock, flags); 6347 6348 stmmac_stop_rx_dma(priv, queue); 6349 __free_dma_rx_desc_resources(priv, queue); 6350 } 6351 6352 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue) 6353 { 6354 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 6355 struct stmmac_channel *ch = &priv->channel[queue]; 6356 unsigned long flags; 6357 u32 buf_size; 6358 int ret; 6359 6360 ret = __alloc_dma_rx_desc_resources(priv, queue); 6361 if (ret) { 6362 netdev_err(priv->dev, "Failed to alloc RX desc.\n"); 6363 return; 6364 } 6365 6366 ret = __init_dma_rx_desc_rings(priv, queue, GFP_KERNEL); 6367 if (ret) { 6368 __free_dma_rx_desc_resources(priv, queue); 6369 netdev_err(priv->dev, "Failed to init RX desc.\n"); 6370 return; 6371 } 6372 6373 stmmac_clear_rx_descriptors(priv, queue); 6374 6375 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6376 rx_q->dma_rx_phy, rx_q->queue_index); 6377 6378 rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num * 6379 sizeof(struct dma_desc)); 6380 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 6381 rx_q->rx_tail_addr, rx_q->queue_index); 6382 6383 if (rx_q->xsk_pool && rx_q->buf_alloc_num) { 6384 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 6385 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6386 buf_size, 6387 rx_q->queue_index); 6388 } else { 6389 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6390 priv->dma_buf_sz, 6391 rx_q->queue_index); 6392 } 6393 6394 stmmac_start_rx_dma(priv, queue); 6395 6396 spin_lock_irqsave(&ch->lock, flags); 6397 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0); 6398 spin_unlock_irqrestore(&ch->lock, flags); 6399 } 6400 6401 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue) 6402 { 6403 struct stmmac_channel *ch = &priv->channel[queue]; 6404 unsigned long flags; 6405 6406 spin_lock_irqsave(&ch->lock, flags); 6407 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1); 6408 spin_unlock_irqrestore(&ch->lock, flags); 6409 6410 stmmac_stop_tx_dma(priv, queue); 6411 __free_dma_tx_desc_resources(priv, queue); 6412 } 6413 6414 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue) 6415 { 6416 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 6417 struct stmmac_channel *ch = &priv->channel[queue]; 6418 unsigned long flags; 6419 int ret; 6420 6421 ret = __alloc_dma_tx_desc_resources(priv, queue); 6422 if (ret) { 6423 netdev_err(priv->dev, "Failed to alloc TX desc.\n"); 6424 return; 6425 } 6426 6427 ret = __init_dma_tx_desc_rings(priv, queue); 6428 if (ret) { 6429 __free_dma_tx_desc_resources(priv, queue); 6430 netdev_err(priv->dev, "Failed to init TX desc.\n"); 6431 return; 6432 } 6433 6434 stmmac_clear_tx_descriptors(priv, queue); 6435 6436 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6437 tx_q->dma_tx_phy, tx_q->queue_index); 6438 6439 if (tx_q->tbs & STMMAC_TBS_AVAIL) 6440 stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index); 6441 6442 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 6443 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 6444 tx_q->tx_tail_addr, tx_q->queue_index); 6445 6446 stmmac_start_tx_dma(priv, queue); 6447 6448 spin_lock_irqsave(&ch->lock, flags); 6449 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1); 6450 spin_unlock_irqrestore(&ch->lock, flags); 6451 } 6452 6453 void stmmac_xdp_release(struct net_device *dev) 6454 { 6455 struct stmmac_priv *priv = netdev_priv(dev); 6456 u32 chan; 6457 6458 /* Disable NAPI process */ 6459 stmmac_disable_all_queues(priv); 6460 6461 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 6462 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 6463 6464 /* Free the IRQ lines */ 6465 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0); 6466 6467 /* Stop TX/RX DMA channels */ 6468 stmmac_stop_all_dma(priv); 6469 6470 /* Release and free the Rx/Tx resources */ 6471 free_dma_desc_resources(priv); 6472 6473 /* Disable the MAC Rx/Tx */ 6474 stmmac_mac_set(priv, priv->ioaddr, false); 6475 6476 /* set trans_start so we don't get spurious 6477 * watchdogs during reset 6478 */ 6479 netif_trans_update(dev); 6480 netif_carrier_off(dev); 6481 } 6482 6483 int stmmac_xdp_open(struct net_device *dev) 6484 { 6485 struct stmmac_priv *priv = netdev_priv(dev); 6486 u32 rx_cnt = priv->plat->rx_queues_to_use; 6487 u32 tx_cnt = priv->plat->tx_queues_to_use; 6488 u32 dma_csr_ch = max(rx_cnt, tx_cnt); 6489 struct stmmac_rx_queue *rx_q; 6490 struct stmmac_tx_queue *tx_q; 6491 u32 buf_size; 6492 bool sph_en; 6493 u32 chan; 6494 int ret; 6495 6496 ret = alloc_dma_desc_resources(priv); 6497 if (ret < 0) { 6498 netdev_err(dev, "%s: DMA descriptors allocation failed\n", 6499 __func__); 6500 goto dma_desc_error; 6501 } 6502 6503 ret = init_dma_desc_rings(dev, GFP_KERNEL); 6504 if (ret < 0) { 6505 netdev_err(dev, "%s: DMA descriptors initialization failed\n", 6506 __func__); 6507 goto init_error; 6508 } 6509 6510 /* DMA CSR Channel configuration */ 6511 for (chan = 0; chan < dma_csr_ch; chan++) 6512 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 6513 6514 /* Adjust Split header */ 6515 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 6516 6517 /* DMA RX Channel Configuration */ 6518 for (chan = 0; chan < rx_cnt; chan++) { 6519 rx_q = &priv->rx_queue[chan]; 6520 6521 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6522 rx_q->dma_rx_phy, chan); 6523 6524 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 6525 (rx_q->buf_alloc_num * 6526 sizeof(struct dma_desc)); 6527 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 6528 rx_q->rx_tail_addr, chan); 6529 6530 if (rx_q->xsk_pool && rx_q->buf_alloc_num) { 6531 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 6532 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6533 buf_size, 6534 rx_q->queue_index); 6535 } else { 6536 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6537 priv->dma_buf_sz, 6538 rx_q->queue_index); 6539 } 6540 6541 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 6542 } 6543 6544 /* DMA TX Channel Configuration */ 6545 for (chan = 0; chan < tx_cnt; chan++) { 6546 tx_q = &priv->tx_queue[chan]; 6547 6548 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6549 tx_q->dma_tx_phy, chan); 6550 6551 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 6552 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 6553 tx_q->tx_tail_addr, chan); 6554 6555 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6556 tx_q->txtimer.function = stmmac_tx_timer; 6557 } 6558 6559 /* Enable the MAC Rx/Tx */ 6560 stmmac_mac_set(priv, priv->ioaddr, true); 6561 6562 /* Start Rx & Tx DMA Channels */ 6563 stmmac_start_all_dma(priv); 6564 6565 ret = stmmac_request_irq(dev); 6566 if (ret) 6567 goto irq_error; 6568 6569 /* Enable NAPI process*/ 6570 stmmac_enable_all_queues(priv); 6571 netif_carrier_on(dev); 6572 netif_tx_start_all_queues(dev); 6573 6574 return 0; 6575 6576 irq_error: 6577 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 6578 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 6579 6580 stmmac_hw_teardown(dev); 6581 init_error: 6582 free_dma_desc_resources(priv); 6583 dma_desc_error: 6584 return ret; 6585 } 6586 6587 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags) 6588 { 6589 struct stmmac_priv *priv = netdev_priv(dev); 6590 struct stmmac_rx_queue *rx_q; 6591 struct stmmac_tx_queue *tx_q; 6592 struct stmmac_channel *ch; 6593 6594 if (test_bit(STMMAC_DOWN, &priv->state) || 6595 !netif_carrier_ok(priv->dev)) 6596 return -ENETDOWN; 6597 6598 if (!stmmac_xdp_is_enabled(priv)) 6599 return -ENXIO; 6600 6601 if (queue >= priv->plat->rx_queues_to_use || 6602 queue >= priv->plat->tx_queues_to_use) 6603 return -EINVAL; 6604 6605 rx_q = &priv->rx_queue[queue]; 6606 tx_q = &priv->tx_queue[queue]; 6607 ch = &priv->channel[queue]; 6608 6609 if (!rx_q->xsk_pool && !tx_q->xsk_pool) 6610 return -ENXIO; 6611 6612 if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) { 6613 /* EQoS does not have per-DMA channel SW interrupt, 6614 * so we schedule RX Napi straight-away. 6615 */ 6616 if (likely(napi_schedule_prep(&ch->rxtx_napi))) 6617 __napi_schedule(&ch->rxtx_napi); 6618 } 6619 6620 return 0; 6621 } 6622 6623 static const struct net_device_ops stmmac_netdev_ops = { 6624 .ndo_open = stmmac_open, 6625 .ndo_start_xmit = stmmac_xmit, 6626 .ndo_stop = stmmac_release, 6627 .ndo_change_mtu = stmmac_change_mtu, 6628 .ndo_fix_features = stmmac_fix_features, 6629 .ndo_set_features = stmmac_set_features, 6630 .ndo_set_rx_mode = stmmac_set_rx_mode, 6631 .ndo_tx_timeout = stmmac_tx_timeout, 6632 .ndo_eth_ioctl = stmmac_ioctl, 6633 .ndo_setup_tc = stmmac_setup_tc, 6634 .ndo_select_queue = stmmac_select_queue, 6635 #ifdef CONFIG_NET_POLL_CONTROLLER 6636 .ndo_poll_controller = stmmac_poll_controller, 6637 #endif 6638 .ndo_set_mac_address = stmmac_set_mac_address, 6639 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid, 6640 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid, 6641 .ndo_bpf = stmmac_bpf, 6642 .ndo_xdp_xmit = stmmac_xdp_xmit, 6643 .ndo_xsk_wakeup = stmmac_xsk_wakeup, 6644 }; 6645 6646 static void stmmac_reset_subtask(struct stmmac_priv *priv) 6647 { 6648 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state)) 6649 return; 6650 if (test_bit(STMMAC_DOWN, &priv->state)) 6651 return; 6652 6653 netdev_err(priv->dev, "Reset adapter.\n"); 6654 6655 rtnl_lock(); 6656 netif_trans_update(priv->dev); 6657 while (test_and_set_bit(STMMAC_RESETING, &priv->state)) 6658 usleep_range(1000, 2000); 6659 6660 set_bit(STMMAC_DOWN, &priv->state); 6661 dev_close(priv->dev); 6662 dev_open(priv->dev, NULL); 6663 clear_bit(STMMAC_DOWN, &priv->state); 6664 clear_bit(STMMAC_RESETING, &priv->state); 6665 rtnl_unlock(); 6666 } 6667 6668 static void stmmac_service_task(struct work_struct *work) 6669 { 6670 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 6671 service_task); 6672 6673 stmmac_reset_subtask(priv); 6674 clear_bit(STMMAC_SERVICE_SCHED, &priv->state); 6675 } 6676 6677 /** 6678 * stmmac_hw_init - Init the MAC device 6679 * @priv: driver private structure 6680 * Description: this function is to configure the MAC device according to 6681 * some platform parameters or the HW capability register. It prepares the 6682 * driver to use either ring or chain modes and to setup either enhanced or 6683 * normal descriptors. 6684 */ 6685 static int stmmac_hw_init(struct stmmac_priv *priv) 6686 { 6687 int ret; 6688 6689 /* dwmac-sun8i only work in chain mode */ 6690 if (priv->plat->has_sun8i) 6691 chain_mode = 1; 6692 priv->chain_mode = chain_mode; 6693 6694 /* Initialize HW Interface */ 6695 ret = stmmac_hwif_init(priv); 6696 if (ret) 6697 return ret; 6698 6699 /* Get the HW capability (new GMAC newer than 3.50a) */ 6700 priv->hw_cap_support = stmmac_get_hw_features(priv); 6701 if (priv->hw_cap_support) { 6702 dev_info(priv->device, "DMA HW capability register supported\n"); 6703 6704 /* We can override some gmac/dma configuration fields: e.g. 6705 * enh_desc, tx_coe (e.g. that are passed through the 6706 * platform) with the values from the HW capability 6707 * register (if supported). 6708 */ 6709 priv->plat->enh_desc = priv->dma_cap.enh_desc; 6710 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up && 6711 !priv->plat->use_phy_wol; 6712 priv->hw->pmt = priv->plat->pmt; 6713 if (priv->dma_cap.hash_tb_sz) { 6714 priv->hw->multicast_filter_bins = 6715 (BIT(priv->dma_cap.hash_tb_sz) << 5); 6716 priv->hw->mcast_bits_log2 = 6717 ilog2(priv->hw->multicast_filter_bins); 6718 } 6719 6720 /* TXCOE doesn't work in thresh DMA mode */ 6721 if (priv->plat->force_thresh_dma_mode) 6722 priv->plat->tx_coe = 0; 6723 else 6724 priv->plat->tx_coe = priv->dma_cap.tx_coe; 6725 6726 /* In case of GMAC4 rx_coe is from HW cap register. */ 6727 priv->plat->rx_coe = priv->dma_cap.rx_coe; 6728 6729 if (priv->dma_cap.rx_coe_type2) 6730 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; 6731 else if (priv->dma_cap.rx_coe_type1) 6732 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; 6733 6734 } else { 6735 dev_info(priv->device, "No HW DMA feature register supported\n"); 6736 } 6737 6738 if (priv->plat->rx_coe) { 6739 priv->hw->rx_csum = priv->plat->rx_coe; 6740 dev_info(priv->device, "RX Checksum Offload Engine supported\n"); 6741 if (priv->synopsys_id < DWMAC_CORE_4_00) 6742 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum); 6743 } 6744 if (priv->plat->tx_coe) 6745 dev_info(priv->device, "TX Checksum insertion supported\n"); 6746 6747 if (priv->plat->pmt) { 6748 dev_info(priv->device, "Wake-Up On Lan supported\n"); 6749 device_set_wakeup_capable(priv->device, 1); 6750 } 6751 6752 if (priv->dma_cap.tsoen) 6753 dev_info(priv->device, "TSO supported\n"); 6754 6755 priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en; 6756 priv->hw->vlan_fail_q = priv->plat->vlan_fail_q; 6757 6758 /* Run HW quirks, if any */ 6759 if (priv->hwif_quirks) { 6760 ret = priv->hwif_quirks(priv); 6761 if (ret) 6762 return ret; 6763 } 6764 6765 /* Rx Watchdog is available in the COREs newer than the 3.40. 6766 * In some case, for example on bugged HW this feature 6767 * has to be disable and this can be done by passing the 6768 * riwt_off field from the platform. 6769 */ 6770 if (((priv->synopsys_id >= DWMAC_CORE_3_50) || 6771 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) { 6772 priv->use_riwt = 1; 6773 dev_info(priv->device, 6774 "Enable RX Mitigation via HW Watchdog Timer\n"); 6775 } 6776 6777 return 0; 6778 } 6779 6780 static void stmmac_napi_add(struct net_device *dev) 6781 { 6782 struct stmmac_priv *priv = netdev_priv(dev); 6783 u32 queue, maxq; 6784 6785 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 6786 6787 for (queue = 0; queue < maxq; queue++) { 6788 struct stmmac_channel *ch = &priv->channel[queue]; 6789 6790 ch->priv_data = priv; 6791 ch->index = queue; 6792 spin_lock_init(&ch->lock); 6793 6794 if (queue < priv->plat->rx_queues_to_use) { 6795 netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx, 6796 NAPI_POLL_WEIGHT); 6797 } 6798 if (queue < priv->plat->tx_queues_to_use) { 6799 netif_tx_napi_add(dev, &ch->tx_napi, 6800 stmmac_napi_poll_tx, 6801 NAPI_POLL_WEIGHT); 6802 } 6803 if (queue < priv->plat->rx_queues_to_use && 6804 queue < priv->plat->tx_queues_to_use) { 6805 netif_napi_add(dev, &ch->rxtx_napi, 6806 stmmac_napi_poll_rxtx, 6807 NAPI_POLL_WEIGHT); 6808 } 6809 } 6810 } 6811 6812 static void stmmac_napi_del(struct net_device *dev) 6813 { 6814 struct stmmac_priv *priv = netdev_priv(dev); 6815 u32 queue, maxq; 6816 6817 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 6818 6819 for (queue = 0; queue < maxq; queue++) { 6820 struct stmmac_channel *ch = &priv->channel[queue]; 6821 6822 if (queue < priv->plat->rx_queues_to_use) 6823 netif_napi_del(&ch->rx_napi); 6824 if (queue < priv->plat->tx_queues_to_use) 6825 netif_napi_del(&ch->tx_napi); 6826 if (queue < priv->plat->rx_queues_to_use && 6827 queue < priv->plat->tx_queues_to_use) { 6828 netif_napi_del(&ch->rxtx_napi); 6829 } 6830 } 6831 } 6832 6833 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt) 6834 { 6835 struct stmmac_priv *priv = netdev_priv(dev); 6836 int ret = 0; 6837 6838 if (netif_running(dev)) 6839 stmmac_release(dev); 6840 6841 stmmac_napi_del(dev); 6842 6843 priv->plat->rx_queues_to_use = rx_cnt; 6844 priv->plat->tx_queues_to_use = tx_cnt; 6845 6846 stmmac_napi_add(dev); 6847 6848 if (netif_running(dev)) 6849 ret = stmmac_open(dev); 6850 6851 return ret; 6852 } 6853 6854 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size) 6855 { 6856 struct stmmac_priv *priv = netdev_priv(dev); 6857 int ret = 0; 6858 6859 if (netif_running(dev)) 6860 stmmac_release(dev); 6861 6862 priv->dma_rx_size = rx_size; 6863 priv->dma_tx_size = tx_size; 6864 6865 if (netif_running(dev)) 6866 ret = stmmac_open(dev); 6867 6868 return ret; 6869 } 6870 6871 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n" 6872 static void stmmac_fpe_lp_task(struct work_struct *work) 6873 { 6874 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 6875 fpe_task); 6876 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 6877 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 6878 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 6879 bool *hs_enable = &fpe_cfg->hs_enable; 6880 bool *enable = &fpe_cfg->enable; 6881 int retries = 20; 6882 6883 while (retries-- > 0) { 6884 /* Bail out immediately if FPE handshake is OFF */ 6885 if (*lo_state == FPE_STATE_OFF || !*hs_enable) 6886 break; 6887 6888 if (*lo_state == FPE_STATE_ENTERING_ON && 6889 *lp_state == FPE_STATE_ENTERING_ON) { 6890 stmmac_fpe_configure(priv, priv->ioaddr, 6891 priv->plat->tx_queues_to_use, 6892 priv->plat->rx_queues_to_use, 6893 *enable); 6894 6895 netdev_info(priv->dev, "configured FPE\n"); 6896 6897 *lo_state = FPE_STATE_ON; 6898 *lp_state = FPE_STATE_ON; 6899 netdev_info(priv->dev, "!!! BOTH FPE stations ON\n"); 6900 break; 6901 } 6902 6903 if ((*lo_state == FPE_STATE_CAPABLE || 6904 *lo_state == FPE_STATE_ENTERING_ON) && 6905 *lp_state != FPE_STATE_ON) { 6906 netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT, 6907 *lo_state, *lp_state); 6908 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 6909 MPACKET_VERIFY); 6910 } 6911 /* Sleep then retry */ 6912 msleep(500); 6913 } 6914 6915 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); 6916 } 6917 6918 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable) 6919 { 6920 if (priv->plat->fpe_cfg->hs_enable != enable) { 6921 if (enable) { 6922 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 6923 MPACKET_VERIFY); 6924 } else { 6925 priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF; 6926 priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF; 6927 } 6928 6929 priv->plat->fpe_cfg->hs_enable = enable; 6930 } 6931 } 6932 6933 /** 6934 * stmmac_dvr_probe 6935 * @device: device pointer 6936 * @plat_dat: platform data pointer 6937 * @res: stmmac resource pointer 6938 * Description: this is the main probe function used to 6939 * call the alloc_etherdev, allocate the priv structure. 6940 * Return: 6941 * returns 0 on success, otherwise errno. 6942 */ 6943 int stmmac_dvr_probe(struct device *device, 6944 struct plat_stmmacenet_data *plat_dat, 6945 struct stmmac_resources *res) 6946 { 6947 struct net_device *ndev = NULL; 6948 struct stmmac_priv *priv; 6949 u32 rxq; 6950 int i, ret = 0; 6951 6952 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv), 6953 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES); 6954 if (!ndev) 6955 return -ENOMEM; 6956 6957 SET_NETDEV_DEV(ndev, device); 6958 6959 priv = netdev_priv(ndev); 6960 priv->device = device; 6961 priv->dev = ndev; 6962 6963 stmmac_set_ethtool_ops(ndev); 6964 priv->pause = pause; 6965 priv->plat = plat_dat; 6966 priv->ioaddr = res->addr; 6967 priv->dev->base_addr = (unsigned long)res->addr; 6968 priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en; 6969 6970 priv->dev->irq = res->irq; 6971 priv->wol_irq = res->wol_irq; 6972 priv->lpi_irq = res->lpi_irq; 6973 priv->sfty_ce_irq = res->sfty_ce_irq; 6974 priv->sfty_ue_irq = res->sfty_ue_irq; 6975 for (i = 0; i < MTL_MAX_RX_QUEUES; i++) 6976 priv->rx_irq[i] = res->rx_irq[i]; 6977 for (i = 0; i < MTL_MAX_TX_QUEUES; i++) 6978 priv->tx_irq[i] = res->tx_irq[i]; 6979 6980 if (!is_zero_ether_addr(res->mac)) 6981 eth_hw_addr_set(priv->dev, res->mac); 6982 6983 dev_set_drvdata(device, priv->dev); 6984 6985 /* Verify driver arguments */ 6986 stmmac_verify_args(); 6987 6988 priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL); 6989 if (!priv->af_xdp_zc_qps) 6990 return -ENOMEM; 6991 6992 /* Allocate workqueue */ 6993 priv->wq = create_singlethread_workqueue("stmmac_wq"); 6994 if (!priv->wq) { 6995 dev_err(priv->device, "failed to create workqueue\n"); 6996 return -ENOMEM; 6997 } 6998 6999 INIT_WORK(&priv->service_task, stmmac_service_task); 7000 7001 /* Initialize Link Partner FPE workqueue */ 7002 INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task); 7003 7004 /* Override with kernel parameters if supplied XXX CRS XXX 7005 * this needs to have multiple instances 7006 */ 7007 if ((phyaddr >= 0) && (phyaddr <= 31)) 7008 priv->plat->phy_addr = phyaddr; 7009 7010 if (priv->plat->stmmac_rst) { 7011 ret = reset_control_assert(priv->plat->stmmac_rst); 7012 reset_control_deassert(priv->plat->stmmac_rst); 7013 /* Some reset controllers have only reset callback instead of 7014 * assert + deassert callbacks pair. 7015 */ 7016 if (ret == -ENOTSUPP) 7017 reset_control_reset(priv->plat->stmmac_rst); 7018 } 7019 7020 ret = reset_control_deassert(priv->plat->stmmac_ahb_rst); 7021 if (ret == -ENOTSUPP) 7022 dev_err(priv->device, "unable to bring out of ahb reset: %pe\n", 7023 ERR_PTR(ret)); 7024 7025 /* Init MAC and get the capabilities */ 7026 ret = stmmac_hw_init(priv); 7027 if (ret) 7028 goto error_hw_init; 7029 7030 /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch. 7031 */ 7032 if (priv->synopsys_id < DWMAC_CORE_5_20) 7033 priv->plat->dma_cfg->dche = false; 7034 7035 stmmac_check_ether_addr(priv); 7036 7037 ndev->netdev_ops = &stmmac_netdev_ops; 7038 7039 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 7040 NETIF_F_RXCSUM; 7041 7042 ret = stmmac_tc_init(priv, priv); 7043 if (!ret) { 7044 ndev->hw_features |= NETIF_F_HW_TC; 7045 } 7046 7047 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 7048 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 7049 if (priv->plat->has_gmac4) 7050 ndev->hw_features |= NETIF_F_GSO_UDP_L4; 7051 priv->tso = true; 7052 dev_info(priv->device, "TSO feature enabled\n"); 7053 } 7054 7055 if (priv->dma_cap.sphen) { 7056 ndev->hw_features |= NETIF_F_GRO; 7057 priv->sph_cap = true; 7058 priv->sph = priv->sph_cap; 7059 dev_info(priv->device, "SPH feature enabled\n"); 7060 } 7061 7062 /* The current IP register MAC_HW_Feature1[ADDR64] only define 7063 * 32/40/64 bit width, but some SOC support others like i.MX8MP 7064 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64]. 7065 * So overwrite dma_cap.addr64 according to HW real design. 7066 */ 7067 if (priv->plat->addr64) 7068 priv->dma_cap.addr64 = priv->plat->addr64; 7069 7070 if (priv->dma_cap.addr64) { 7071 ret = dma_set_mask_and_coherent(device, 7072 DMA_BIT_MASK(priv->dma_cap.addr64)); 7073 if (!ret) { 7074 dev_info(priv->device, "Using %d bits DMA width\n", 7075 priv->dma_cap.addr64); 7076 7077 /* 7078 * If more than 32 bits can be addressed, make sure to 7079 * enable enhanced addressing mode. 7080 */ 7081 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT)) 7082 priv->plat->dma_cfg->eame = true; 7083 } else { 7084 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32)); 7085 if (ret) { 7086 dev_err(priv->device, "Failed to set DMA Mask\n"); 7087 goto error_hw_init; 7088 } 7089 7090 priv->dma_cap.addr64 = 32; 7091 } 7092 } 7093 7094 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 7095 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 7096 #ifdef STMMAC_VLAN_TAG_USED 7097 /* Both mac100 and gmac support receive VLAN tag detection */ 7098 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX; 7099 if (priv->dma_cap.vlhash) { 7100 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 7101 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER; 7102 } 7103 if (priv->dma_cap.vlins) { 7104 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX; 7105 if (priv->dma_cap.dvlan) 7106 ndev->features |= NETIF_F_HW_VLAN_STAG_TX; 7107 } 7108 #endif 7109 priv->msg_enable = netif_msg_init(debug, default_msg_level); 7110 7111 /* Initialize RSS */ 7112 rxq = priv->plat->rx_queues_to_use; 7113 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key)); 7114 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++) 7115 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq); 7116 7117 if (priv->dma_cap.rssen && priv->plat->rss_en) 7118 ndev->features |= NETIF_F_RXHASH; 7119 7120 /* MTU range: 46 - hw-specific max */ 7121 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 7122 if (priv->plat->has_xgmac) 7123 ndev->max_mtu = XGMAC_JUMBO_LEN; 7124 else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00)) 7125 ndev->max_mtu = JUMBO_LEN; 7126 else 7127 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); 7128 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu 7129 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range. 7130 */ 7131 if ((priv->plat->maxmtu < ndev->max_mtu) && 7132 (priv->plat->maxmtu >= ndev->min_mtu)) 7133 ndev->max_mtu = priv->plat->maxmtu; 7134 else if (priv->plat->maxmtu < ndev->min_mtu) 7135 dev_warn(priv->device, 7136 "%s: warning: maxmtu having invalid value (%d)\n", 7137 __func__, priv->plat->maxmtu); 7138 7139 if (flow_ctrl) 7140 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ 7141 7142 /* Setup channels NAPI */ 7143 stmmac_napi_add(ndev); 7144 7145 mutex_init(&priv->lock); 7146 7147 /* If a specific clk_csr value is passed from the platform 7148 * this means that the CSR Clock Range selection cannot be 7149 * changed at run-time and it is fixed. Viceversa the driver'll try to 7150 * set the MDC clock dynamically according to the csr actual 7151 * clock input. 7152 */ 7153 if (priv->plat->clk_csr >= 0) 7154 priv->clk_csr = priv->plat->clk_csr; 7155 else 7156 stmmac_clk_csr_set(priv); 7157 7158 stmmac_check_pcs_mode(priv); 7159 7160 pm_runtime_get_noresume(device); 7161 pm_runtime_set_active(device); 7162 if (!pm_runtime_enabled(device)) 7163 pm_runtime_enable(device); 7164 7165 if (priv->hw->pcs != STMMAC_PCS_TBI && 7166 priv->hw->pcs != STMMAC_PCS_RTBI) { 7167 /* MDIO bus Registration */ 7168 ret = stmmac_mdio_register(ndev); 7169 if (ret < 0) { 7170 dev_err(priv->device, 7171 "%s: MDIO bus (id: %d) registration failed", 7172 __func__, priv->plat->bus_id); 7173 goto error_mdio_register; 7174 } 7175 } 7176 7177 if (priv->plat->speed_mode_2500) 7178 priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv); 7179 7180 if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) { 7181 ret = stmmac_xpcs_setup(priv->mii); 7182 if (ret) 7183 goto error_xpcs_setup; 7184 } 7185 7186 ret = stmmac_phy_setup(priv); 7187 if (ret) { 7188 netdev_err(ndev, "failed to setup phy (%d)\n", ret); 7189 goto error_phy_setup; 7190 } 7191 7192 ret = register_netdev(ndev); 7193 if (ret) { 7194 dev_err(priv->device, "%s: ERROR %i registering the device\n", 7195 __func__, ret); 7196 goto error_netdev_register; 7197 } 7198 7199 if (priv->plat->serdes_powerup) { 7200 ret = priv->plat->serdes_powerup(ndev, 7201 priv->plat->bsp_priv); 7202 7203 if (ret < 0) 7204 goto error_serdes_powerup; 7205 } 7206 7207 #ifdef CONFIG_DEBUG_FS 7208 stmmac_init_fs(ndev); 7209 #endif 7210 7211 if (priv->plat->dump_debug_regs) 7212 priv->plat->dump_debug_regs(priv->plat->bsp_priv); 7213 7214 /* Let pm_runtime_put() disable the clocks. 7215 * If CONFIG_PM is not enabled, the clocks will stay powered. 7216 */ 7217 pm_runtime_put(device); 7218 7219 return ret; 7220 7221 error_serdes_powerup: 7222 unregister_netdev(ndev); 7223 error_netdev_register: 7224 phylink_destroy(priv->phylink); 7225 error_xpcs_setup: 7226 error_phy_setup: 7227 if (priv->hw->pcs != STMMAC_PCS_TBI && 7228 priv->hw->pcs != STMMAC_PCS_RTBI) 7229 stmmac_mdio_unregister(ndev); 7230 error_mdio_register: 7231 stmmac_napi_del(ndev); 7232 error_hw_init: 7233 destroy_workqueue(priv->wq); 7234 bitmap_free(priv->af_xdp_zc_qps); 7235 7236 return ret; 7237 } 7238 EXPORT_SYMBOL_GPL(stmmac_dvr_probe); 7239 7240 /** 7241 * stmmac_dvr_remove 7242 * @dev: device pointer 7243 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 7244 * changes the link status, releases the DMA descriptor rings. 7245 */ 7246 int stmmac_dvr_remove(struct device *dev) 7247 { 7248 struct net_device *ndev = dev_get_drvdata(dev); 7249 struct stmmac_priv *priv = netdev_priv(ndev); 7250 7251 netdev_info(priv->dev, "%s: removing driver", __func__); 7252 7253 stmmac_stop_all_dma(priv); 7254 stmmac_mac_set(priv, priv->ioaddr, false); 7255 netif_carrier_off(ndev); 7256 unregister_netdev(ndev); 7257 7258 /* Serdes power down needs to happen after VLAN filter 7259 * is deleted that is triggered by unregister_netdev(). 7260 */ 7261 if (priv->plat->serdes_powerdown) 7262 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); 7263 7264 #ifdef CONFIG_DEBUG_FS 7265 stmmac_exit_fs(ndev); 7266 #endif 7267 phylink_destroy(priv->phylink); 7268 if (priv->plat->stmmac_rst) 7269 reset_control_assert(priv->plat->stmmac_rst); 7270 reset_control_assert(priv->plat->stmmac_ahb_rst); 7271 pm_runtime_put(dev); 7272 pm_runtime_disable(dev); 7273 if (priv->hw->pcs != STMMAC_PCS_TBI && 7274 priv->hw->pcs != STMMAC_PCS_RTBI) 7275 stmmac_mdio_unregister(ndev); 7276 destroy_workqueue(priv->wq); 7277 mutex_destroy(&priv->lock); 7278 bitmap_free(priv->af_xdp_zc_qps); 7279 7280 return 0; 7281 } 7282 EXPORT_SYMBOL_GPL(stmmac_dvr_remove); 7283 7284 /** 7285 * stmmac_suspend - suspend callback 7286 * @dev: device pointer 7287 * Description: this is the function to suspend the device and it is called 7288 * by the platform driver to stop the network queue, release the resources, 7289 * program the PMT register (for WoL), clean and release driver resources. 7290 */ 7291 int stmmac_suspend(struct device *dev) 7292 { 7293 struct net_device *ndev = dev_get_drvdata(dev); 7294 struct stmmac_priv *priv = netdev_priv(ndev); 7295 u32 chan; 7296 7297 if (!ndev || !netif_running(ndev)) 7298 return 0; 7299 7300 mutex_lock(&priv->lock); 7301 7302 netif_device_detach(ndev); 7303 7304 stmmac_disable_all_queues(priv); 7305 7306 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 7307 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 7308 7309 if (priv->eee_enabled) { 7310 priv->tx_path_in_lpi_mode = false; 7311 del_timer_sync(&priv->eee_ctrl_timer); 7312 } 7313 7314 /* Stop TX/RX DMA */ 7315 stmmac_stop_all_dma(priv); 7316 7317 if (priv->plat->serdes_powerdown) 7318 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); 7319 7320 /* Enable Power down mode by programming the PMT regs */ 7321 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7322 stmmac_pmt(priv, priv->hw, priv->wolopts); 7323 priv->irq_wake = 1; 7324 } else { 7325 stmmac_mac_set(priv, priv->ioaddr, false); 7326 pinctrl_pm_select_sleep_state(priv->device); 7327 } 7328 7329 mutex_unlock(&priv->lock); 7330 7331 rtnl_lock(); 7332 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7333 phylink_suspend(priv->phylink, true); 7334 } else { 7335 if (device_may_wakeup(priv->device)) 7336 phylink_speed_down(priv->phylink, false); 7337 phylink_suspend(priv->phylink, false); 7338 } 7339 rtnl_unlock(); 7340 7341 if (priv->dma_cap.fpesel) { 7342 /* Disable FPE */ 7343 stmmac_fpe_configure(priv, priv->ioaddr, 7344 priv->plat->tx_queues_to_use, 7345 priv->plat->rx_queues_to_use, false); 7346 7347 stmmac_fpe_handshake(priv, false); 7348 stmmac_fpe_stop_wq(priv); 7349 } 7350 7351 priv->speed = SPEED_UNKNOWN; 7352 return 0; 7353 } 7354 EXPORT_SYMBOL_GPL(stmmac_suspend); 7355 7356 /** 7357 * stmmac_reset_queues_param - reset queue parameters 7358 * @priv: device pointer 7359 */ 7360 static void stmmac_reset_queues_param(struct stmmac_priv *priv) 7361 { 7362 u32 rx_cnt = priv->plat->rx_queues_to_use; 7363 u32 tx_cnt = priv->plat->tx_queues_to_use; 7364 u32 queue; 7365 7366 for (queue = 0; queue < rx_cnt; queue++) { 7367 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 7368 7369 rx_q->cur_rx = 0; 7370 rx_q->dirty_rx = 0; 7371 } 7372 7373 for (queue = 0; queue < tx_cnt; queue++) { 7374 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 7375 7376 tx_q->cur_tx = 0; 7377 tx_q->dirty_tx = 0; 7378 tx_q->mss = 0; 7379 7380 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 7381 } 7382 } 7383 7384 /** 7385 * stmmac_resume - resume callback 7386 * @dev: device pointer 7387 * Description: when resume this function is invoked to setup the DMA and CORE 7388 * in a usable state. 7389 */ 7390 int stmmac_resume(struct device *dev) 7391 { 7392 struct net_device *ndev = dev_get_drvdata(dev); 7393 struct stmmac_priv *priv = netdev_priv(ndev); 7394 int ret; 7395 7396 if (!netif_running(ndev)) 7397 return 0; 7398 7399 /* Power Down bit, into the PM register, is cleared 7400 * automatically as soon as a magic packet or a Wake-up frame 7401 * is received. Anyway, it's better to manually clear 7402 * this bit because it can generate problems while resuming 7403 * from another devices (e.g. serial console). 7404 */ 7405 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7406 mutex_lock(&priv->lock); 7407 stmmac_pmt(priv, priv->hw, 0); 7408 mutex_unlock(&priv->lock); 7409 priv->irq_wake = 0; 7410 } else { 7411 pinctrl_pm_select_default_state(priv->device); 7412 /* reset the phy so that it's ready */ 7413 if (priv->mii) 7414 stmmac_mdio_reset(priv->mii); 7415 } 7416 7417 if (priv->plat->serdes_powerup) { 7418 ret = priv->plat->serdes_powerup(ndev, 7419 priv->plat->bsp_priv); 7420 7421 if (ret < 0) 7422 return ret; 7423 } 7424 7425 rtnl_lock(); 7426 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7427 phylink_resume(priv->phylink); 7428 } else { 7429 phylink_resume(priv->phylink); 7430 if (device_may_wakeup(priv->device)) 7431 phylink_speed_up(priv->phylink); 7432 } 7433 rtnl_unlock(); 7434 7435 rtnl_lock(); 7436 mutex_lock(&priv->lock); 7437 7438 stmmac_reset_queues_param(priv); 7439 7440 stmmac_free_tx_skbufs(priv); 7441 stmmac_clear_descriptors(priv); 7442 7443 stmmac_hw_setup(ndev, false); 7444 stmmac_init_coalesce(priv); 7445 stmmac_set_rx_mode(ndev); 7446 7447 stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw); 7448 7449 stmmac_enable_all_queues(priv); 7450 7451 mutex_unlock(&priv->lock); 7452 rtnl_unlock(); 7453 7454 netif_device_attach(ndev); 7455 7456 return 0; 7457 } 7458 EXPORT_SYMBOL_GPL(stmmac_resume); 7459 7460 #ifndef MODULE 7461 static int __init stmmac_cmdline_opt(char *str) 7462 { 7463 char *opt; 7464 7465 if (!str || !*str) 7466 return -EINVAL; 7467 while ((opt = strsep(&str, ",")) != NULL) { 7468 if (!strncmp(opt, "debug:", 6)) { 7469 if (kstrtoint(opt + 6, 0, &debug)) 7470 goto err; 7471 } else if (!strncmp(opt, "phyaddr:", 8)) { 7472 if (kstrtoint(opt + 8, 0, &phyaddr)) 7473 goto err; 7474 } else if (!strncmp(opt, "buf_sz:", 7)) { 7475 if (kstrtoint(opt + 7, 0, &buf_sz)) 7476 goto err; 7477 } else if (!strncmp(opt, "tc:", 3)) { 7478 if (kstrtoint(opt + 3, 0, &tc)) 7479 goto err; 7480 } else if (!strncmp(opt, "watchdog:", 9)) { 7481 if (kstrtoint(opt + 9, 0, &watchdog)) 7482 goto err; 7483 } else if (!strncmp(opt, "flow_ctrl:", 10)) { 7484 if (kstrtoint(opt + 10, 0, &flow_ctrl)) 7485 goto err; 7486 } else if (!strncmp(opt, "pause:", 6)) { 7487 if (kstrtoint(opt + 6, 0, &pause)) 7488 goto err; 7489 } else if (!strncmp(opt, "eee_timer:", 10)) { 7490 if (kstrtoint(opt + 10, 0, &eee_timer)) 7491 goto err; 7492 } else if (!strncmp(opt, "chain_mode:", 11)) { 7493 if (kstrtoint(opt + 11, 0, &chain_mode)) 7494 goto err; 7495 } 7496 } 7497 return 0; 7498 7499 err: 7500 pr_err("%s: ERROR broken module parameter conversion", __func__); 7501 return -EINVAL; 7502 } 7503 7504 __setup("stmmaceth=", stmmac_cmdline_opt); 7505 #endif /* MODULE */ 7506 7507 static int __init stmmac_init(void) 7508 { 7509 #ifdef CONFIG_DEBUG_FS 7510 /* Create debugfs main directory if it doesn't exist yet */ 7511 if (!stmmac_fs_dir) 7512 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); 7513 register_netdevice_notifier(&stmmac_notifier); 7514 #endif 7515 7516 return 0; 7517 } 7518 7519 static void __exit stmmac_exit(void) 7520 { 7521 #ifdef CONFIG_DEBUG_FS 7522 unregister_netdevice_notifier(&stmmac_notifier); 7523 debugfs_remove_recursive(stmmac_fs_dir); 7524 #endif 7525 } 7526 7527 module_init(stmmac_init) 7528 module_exit(stmmac_exit) 7529 7530 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); 7531 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); 7532 MODULE_LICENSE("GPL"); 7533