1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22 
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24 
25   Documentation available at:
26 	http://www.stlinux.com
27   Support available at:
28 	https://bugzilla.stlinux.com/
29 *******************************************************************************/
30 
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55 #include <linux/of_mdio.h>
56 #include "dwmac1000.h"
57 
58 #define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
59 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
60 
61 /* Module parameters */
62 #define TX_TIMEO	5000
63 static int watchdog = TX_TIMEO;
64 module_param(watchdog, int, S_IRUGO | S_IWUSR);
65 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
66 
67 static int debug = -1;
68 module_param(debug, int, S_IRUGO | S_IWUSR);
69 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
70 
71 static int phyaddr = -1;
72 module_param(phyaddr, int, S_IRUGO);
73 MODULE_PARM_DESC(phyaddr, "Physical device address");
74 
75 #define STMMAC_TX_THRESH	(DMA_TX_SIZE / 4)
76 #define STMMAC_RX_THRESH	(DMA_RX_SIZE / 4)
77 
78 static int flow_ctrl = FLOW_OFF;
79 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
80 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
81 
82 static int pause = PAUSE_TIME;
83 module_param(pause, int, S_IRUGO | S_IWUSR);
84 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
85 
86 #define TC_DEFAULT 64
87 static int tc = TC_DEFAULT;
88 module_param(tc, int, S_IRUGO | S_IWUSR);
89 MODULE_PARM_DESC(tc, "DMA threshold control value");
90 
91 #define	DEFAULT_BUFSIZE	1536
92 static int buf_sz = DEFAULT_BUFSIZE;
93 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
94 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
95 
96 #define	STMMAC_RX_COPYBREAK	256
97 
98 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
99 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
100 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
101 
102 #define STMMAC_DEFAULT_LPI_TIMER	1000
103 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
104 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
105 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
106 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
107 
108 /* By default the driver will use the ring mode to manage tx and rx descriptors
109  * but passing this value so user can force to use the chain instead of the ring
110  */
111 static unsigned int chain_mode;
112 module_param(chain_mode, int, S_IRUGO);
113 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
114 
115 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
116 
117 #ifdef CONFIG_DEBUG_FS
118 static int stmmac_init_fs(struct net_device *dev);
119 static void stmmac_exit_fs(struct net_device *dev);
120 #endif
121 
122 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
123 
124 /**
125  * stmmac_verify_args - verify the driver parameters.
126  * Description: it checks the driver parameters and set a default in case of
127  * errors.
128  */
129 static void stmmac_verify_args(void)
130 {
131 	if (unlikely(watchdog < 0))
132 		watchdog = TX_TIMEO;
133 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
134 		buf_sz = DEFAULT_BUFSIZE;
135 	if (unlikely(flow_ctrl > 1))
136 		flow_ctrl = FLOW_AUTO;
137 	else if (likely(flow_ctrl < 0))
138 		flow_ctrl = FLOW_OFF;
139 	if (unlikely((pause < 0) || (pause > 0xffff)))
140 		pause = PAUSE_TIME;
141 	if (eee_timer < 0)
142 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
143 }
144 
145 /**
146  * stmmac_clk_csr_set - dynamically set the MDC clock
147  * @priv: driver private structure
148  * Description: this is to dynamically set the MDC clock according to the csr
149  * clock input.
150  * Note:
151  *	If a specific clk_csr value is passed from the platform
152  *	this means that the CSR Clock Range selection cannot be
153  *	changed at run-time and it is fixed (as reported in the driver
154  *	documentation). Viceversa the driver will try to set the MDC
155  *	clock dynamically according to the actual clock input.
156  */
157 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
158 {
159 	u32 clk_rate;
160 
161 	clk_rate = clk_get_rate(priv->stmmac_clk);
162 
163 	/* Platform provided default clk_csr would be assumed valid
164 	 * for all other cases except for the below mentioned ones.
165 	 * For values higher than the IEEE 802.3 specified frequency
166 	 * we can not estimate the proper divider as it is not known
167 	 * the frequency of clk_csr_i. So we do not change the default
168 	 * divider.
169 	 */
170 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
171 		if (clk_rate < CSR_F_35M)
172 			priv->clk_csr = STMMAC_CSR_20_35M;
173 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
174 			priv->clk_csr = STMMAC_CSR_35_60M;
175 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
176 			priv->clk_csr = STMMAC_CSR_60_100M;
177 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
178 			priv->clk_csr = STMMAC_CSR_100_150M;
179 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
180 			priv->clk_csr = STMMAC_CSR_150_250M;
181 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
182 			priv->clk_csr = STMMAC_CSR_250_300M;
183 	}
184 }
185 
186 static void print_pkt(unsigned char *buf, int len)
187 {
188 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
189 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
190 }
191 
192 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
193 {
194 	unsigned avail;
195 
196 	if (priv->dirty_tx > priv->cur_tx)
197 		avail = priv->dirty_tx - priv->cur_tx - 1;
198 	else
199 		avail = DMA_TX_SIZE - priv->cur_tx + priv->dirty_tx - 1;
200 
201 	return avail;
202 }
203 
204 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv)
205 {
206 	unsigned dirty;
207 
208 	if (priv->dirty_rx <= priv->cur_rx)
209 		dirty = priv->cur_rx - priv->dirty_rx;
210 	else
211 		dirty = DMA_RX_SIZE - priv->dirty_rx + priv->cur_rx;
212 
213 	return dirty;
214 }
215 
216 /**
217  * stmmac_hw_fix_mac_speed - callback for speed selection
218  * @priv: driver private structure
219  * Description: on some platforms (e.g. ST), some HW system configuraton
220  * registers have to be set according to the link speed negotiated.
221  */
222 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
223 {
224 	struct phy_device *phydev = priv->phydev;
225 
226 	if (likely(priv->plat->fix_mac_speed))
227 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
228 }
229 
230 /**
231  * stmmac_enable_eee_mode - check and enter in LPI mode
232  * @priv: driver private structure
233  * Description: this function is to verify and enter in LPI mode in case of
234  * EEE.
235  */
236 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
237 {
238 	/* Check and enter in LPI mode */
239 	if ((priv->dirty_tx == priv->cur_tx) &&
240 	    (priv->tx_path_in_lpi_mode == false))
241 		priv->hw->mac->set_eee_mode(priv->hw);
242 }
243 
244 /**
245  * stmmac_disable_eee_mode - disable and exit from LPI mode
246  * @priv: driver private structure
247  * Description: this function is to exit and disable EEE in case of
248  * LPI state is true. This is called by the xmit.
249  */
250 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
251 {
252 	priv->hw->mac->reset_eee_mode(priv->hw);
253 	del_timer_sync(&priv->eee_ctrl_timer);
254 	priv->tx_path_in_lpi_mode = false;
255 }
256 
257 /**
258  * stmmac_eee_ctrl_timer - EEE TX SW timer.
259  * @arg : data hook
260  * Description:
261  *  if there is no data transfer and if we are not in LPI state,
262  *  then MAC Transmitter can be moved to LPI state.
263  */
264 static void stmmac_eee_ctrl_timer(unsigned long arg)
265 {
266 	struct stmmac_priv *priv = (struct stmmac_priv *)arg;
267 
268 	stmmac_enable_eee_mode(priv);
269 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
270 }
271 
272 /**
273  * stmmac_eee_init - init EEE
274  * @priv: driver private structure
275  * Description:
276  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
277  *  can also manage EEE, this function enable the LPI state and start related
278  *  timer.
279  */
280 bool stmmac_eee_init(struct stmmac_priv *priv)
281 {
282 	unsigned long flags;
283 	bool ret = false;
284 
285 	/* Using PCS we cannot dial with the phy registers at this stage
286 	 * so we do not support extra feature like EEE.
287 	 */
288 	if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
289 	    (priv->hw->pcs == STMMAC_PCS_TBI) ||
290 	    (priv->hw->pcs == STMMAC_PCS_RTBI))
291 		goto out;
292 
293 	/* MAC core supports the EEE feature. */
294 	if (priv->dma_cap.eee) {
295 		int tx_lpi_timer = priv->tx_lpi_timer;
296 
297 		/* Check if the PHY supports EEE */
298 		if (phy_init_eee(priv->phydev, 1)) {
299 			/* To manage at run-time if the EEE cannot be supported
300 			 * anymore (for example because the lp caps have been
301 			 * changed).
302 			 * In that case the driver disable own timers.
303 			 */
304 			spin_lock_irqsave(&priv->lock, flags);
305 			if (priv->eee_active) {
306 				pr_debug("stmmac: disable EEE\n");
307 				del_timer_sync(&priv->eee_ctrl_timer);
308 				priv->hw->mac->set_eee_timer(priv->hw, 0,
309 							     tx_lpi_timer);
310 			}
311 			priv->eee_active = 0;
312 			spin_unlock_irqrestore(&priv->lock, flags);
313 			goto out;
314 		}
315 		/* Activate the EEE and start timers */
316 		spin_lock_irqsave(&priv->lock, flags);
317 		if (!priv->eee_active) {
318 			priv->eee_active = 1;
319 			setup_timer(&priv->eee_ctrl_timer,
320 				    stmmac_eee_ctrl_timer,
321 				    (unsigned long)priv);
322 			mod_timer(&priv->eee_ctrl_timer,
323 				  STMMAC_LPI_T(eee_timer));
324 
325 			priv->hw->mac->set_eee_timer(priv->hw,
326 						     STMMAC_DEFAULT_LIT_LS,
327 						     tx_lpi_timer);
328 		}
329 		/* Set HW EEE according to the speed */
330 		priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
331 
332 		ret = true;
333 		spin_unlock_irqrestore(&priv->lock, flags);
334 
335 		pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
336 	}
337 out:
338 	return ret;
339 }
340 
341 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
342  * @priv: driver private structure
343  * @entry : descriptor index to be used.
344  * @skb : the socket buffer
345  * Description :
346  * This function will read timestamp from the descriptor & pass it to stack.
347  * and also perform some sanity checks.
348  */
349 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
350 				   unsigned int entry, struct sk_buff *skb)
351 {
352 	struct skb_shared_hwtstamps shhwtstamp;
353 	u64 ns;
354 	void *desc = NULL;
355 
356 	if (!priv->hwts_tx_en)
357 		return;
358 
359 	/* exit if skb doesn't support hw tstamp */
360 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
361 		return;
362 
363 	if (priv->adv_ts)
364 		desc = (priv->dma_etx + entry);
365 	else
366 		desc = (priv->dma_tx + entry);
367 
368 	/* check tx tstamp status */
369 	if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
370 		return;
371 
372 	/* get the valid tstamp */
373 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
374 
375 	memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
376 	shhwtstamp.hwtstamp = ns_to_ktime(ns);
377 	/* pass tstamp to stack */
378 	skb_tstamp_tx(skb, &shhwtstamp);
379 
380 	return;
381 }
382 
383 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
384  * @priv: driver private structure
385  * @entry : descriptor index to be used.
386  * @skb : the socket buffer
387  * Description :
388  * This function will read received packet's timestamp from the descriptor
389  * and pass it to stack. It also perform some sanity checks.
390  */
391 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
392 				   unsigned int entry, struct sk_buff *skb)
393 {
394 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
395 	u64 ns;
396 	void *desc = NULL;
397 
398 	if (!priv->hwts_rx_en)
399 		return;
400 
401 	if (priv->adv_ts)
402 		desc = (priv->dma_erx + entry);
403 	else
404 		desc = (priv->dma_rx + entry);
405 
406 	/* exit if rx tstamp is not valid */
407 	if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
408 		return;
409 
410 	/* get valid tstamp */
411 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
412 	shhwtstamp = skb_hwtstamps(skb);
413 	memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
414 	shhwtstamp->hwtstamp = ns_to_ktime(ns);
415 }
416 
417 /**
418  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
419  *  @dev: device pointer.
420  *  @ifr: An IOCTL specefic structure, that can contain a pointer to
421  *  a proprietary structure used to pass information to the driver.
422  *  Description:
423  *  This function configures the MAC to enable/disable both outgoing(TX)
424  *  and incoming(RX) packets time stamping based on user input.
425  *  Return Value:
426  *  0 on success and an appropriate -ve integer on failure.
427  */
428 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
429 {
430 	struct stmmac_priv *priv = netdev_priv(dev);
431 	struct hwtstamp_config config;
432 	struct timespec64 now;
433 	u64 temp = 0;
434 	u32 ptp_v2 = 0;
435 	u32 tstamp_all = 0;
436 	u32 ptp_over_ipv4_udp = 0;
437 	u32 ptp_over_ipv6_udp = 0;
438 	u32 ptp_over_ethernet = 0;
439 	u32 snap_type_sel = 0;
440 	u32 ts_master_en = 0;
441 	u32 ts_event_en = 0;
442 	u32 value = 0;
443 	u32 sec_inc;
444 
445 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
446 		netdev_alert(priv->dev, "No support for HW time stamping\n");
447 		priv->hwts_tx_en = 0;
448 		priv->hwts_rx_en = 0;
449 
450 		return -EOPNOTSUPP;
451 	}
452 
453 	if (copy_from_user(&config, ifr->ifr_data,
454 			   sizeof(struct hwtstamp_config)))
455 		return -EFAULT;
456 
457 	pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
458 		 __func__, config.flags, config.tx_type, config.rx_filter);
459 
460 	/* reserved for future extensions */
461 	if (config.flags)
462 		return -EINVAL;
463 
464 	if (config.tx_type != HWTSTAMP_TX_OFF &&
465 	    config.tx_type != HWTSTAMP_TX_ON)
466 		return -ERANGE;
467 
468 	if (priv->adv_ts) {
469 		switch (config.rx_filter) {
470 		case HWTSTAMP_FILTER_NONE:
471 			/* time stamp no incoming packet at all */
472 			config.rx_filter = HWTSTAMP_FILTER_NONE;
473 			break;
474 
475 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
476 			/* PTP v1, UDP, any kind of event packet */
477 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
478 			/* take time stamp for all event messages */
479 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
480 
481 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
482 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
483 			break;
484 
485 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
486 			/* PTP v1, UDP, Sync packet */
487 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
488 			/* take time stamp for SYNC messages only */
489 			ts_event_en = PTP_TCR_TSEVNTENA;
490 
491 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
492 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
493 			break;
494 
495 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
496 			/* PTP v1, UDP, Delay_req packet */
497 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
498 			/* take time stamp for Delay_Req messages only */
499 			ts_master_en = PTP_TCR_TSMSTRENA;
500 			ts_event_en = PTP_TCR_TSEVNTENA;
501 
502 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
503 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
504 			break;
505 
506 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
507 			/* PTP v2, UDP, any kind of event packet */
508 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
509 			ptp_v2 = PTP_TCR_TSVER2ENA;
510 			/* take time stamp for all event messages */
511 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
512 
513 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
514 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
515 			break;
516 
517 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
518 			/* PTP v2, UDP, Sync packet */
519 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
520 			ptp_v2 = PTP_TCR_TSVER2ENA;
521 			/* take time stamp for SYNC messages only */
522 			ts_event_en = PTP_TCR_TSEVNTENA;
523 
524 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
525 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
526 			break;
527 
528 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
529 			/* PTP v2, UDP, Delay_req packet */
530 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
531 			ptp_v2 = PTP_TCR_TSVER2ENA;
532 			/* take time stamp for Delay_Req messages only */
533 			ts_master_en = PTP_TCR_TSMSTRENA;
534 			ts_event_en = PTP_TCR_TSEVNTENA;
535 
536 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
537 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
538 			break;
539 
540 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
541 			/* PTP v2/802.AS1 any layer, any kind of event packet */
542 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
543 			ptp_v2 = PTP_TCR_TSVER2ENA;
544 			/* take time stamp for all event messages */
545 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
546 
547 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
548 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
549 			ptp_over_ethernet = PTP_TCR_TSIPENA;
550 			break;
551 
552 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
553 			/* PTP v2/802.AS1, any layer, Sync packet */
554 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
555 			ptp_v2 = PTP_TCR_TSVER2ENA;
556 			/* take time stamp for SYNC messages only */
557 			ts_event_en = PTP_TCR_TSEVNTENA;
558 
559 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
560 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
561 			ptp_over_ethernet = PTP_TCR_TSIPENA;
562 			break;
563 
564 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
565 			/* PTP v2/802.AS1, any layer, Delay_req packet */
566 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
567 			ptp_v2 = PTP_TCR_TSVER2ENA;
568 			/* take time stamp for Delay_Req messages only */
569 			ts_master_en = PTP_TCR_TSMSTRENA;
570 			ts_event_en = PTP_TCR_TSEVNTENA;
571 
572 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
573 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
574 			ptp_over_ethernet = PTP_TCR_TSIPENA;
575 			break;
576 
577 		case HWTSTAMP_FILTER_ALL:
578 			/* time stamp any incoming packet */
579 			config.rx_filter = HWTSTAMP_FILTER_ALL;
580 			tstamp_all = PTP_TCR_TSENALL;
581 			break;
582 
583 		default:
584 			return -ERANGE;
585 		}
586 	} else {
587 		switch (config.rx_filter) {
588 		case HWTSTAMP_FILTER_NONE:
589 			config.rx_filter = HWTSTAMP_FILTER_NONE;
590 			break;
591 		default:
592 			/* PTP v1, UDP, any kind of event packet */
593 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
594 			break;
595 		}
596 	}
597 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
598 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
599 
600 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
601 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
602 	else {
603 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
604 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
605 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
606 			 ts_master_en | snap_type_sel);
607 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
608 
609 		/* program Sub Second Increment reg */
610 		sec_inc = priv->hw->ptp->config_sub_second_increment(
611 			priv->ioaddr, priv->clk_ptp_rate);
612 		temp = div_u64(1000000000ULL, sec_inc);
613 
614 		/* calculate default added value:
615 		 * formula is :
616 		 * addend = (2^32)/freq_div_ratio;
617 		 * where, freq_div_ratio = 1e9ns/sec_inc
618 		 */
619 		temp = (u64)(temp << 32);
620 		priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
621 		priv->hw->ptp->config_addend(priv->ioaddr,
622 					     priv->default_addend);
623 
624 		/* initialize system time */
625 		ktime_get_real_ts64(&now);
626 
627 		/* lower 32 bits of tv_sec are safe until y2106 */
628 		priv->hw->ptp->init_systime(priv->ioaddr, (u32)now.tv_sec,
629 					    now.tv_nsec);
630 	}
631 
632 	return copy_to_user(ifr->ifr_data, &config,
633 			    sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
634 }
635 
636 /**
637  * stmmac_init_ptp - init PTP
638  * @priv: driver private structure
639  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
640  * This is done by looking at the HW cap. register.
641  * This function also registers the ptp driver.
642  */
643 static int stmmac_init_ptp(struct stmmac_priv *priv)
644 {
645 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
646 		return -EOPNOTSUPP;
647 
648 	/* Fall-back to main clock in case of no PTP ref is passed */
649 	priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
650 	if (IS_ERR(priv->clk_ptp_ref)) {
651 		priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
652 		priv->clk_ptp_ref = NULL;
653 	} else {
654 		clk_prepare_enable(priv->clk_ptp_ref);
655 		priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
656 	}
657 
658 	priv->adv_ts = 0;
659 	if (priv->dma_cap.atime_stamp && priv->extend_desc)
660 		priv->adv_ts = 1;
661 
662 	if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
663 		pr_debug("IEEE 1588-2002 Time Stamp supported\n");
664 
665 	if (netif_msg_hw(priv) && priv->adv_ts)
666 		pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
667 
668 	priv->hw->ptp = &stmmac_ptp;
669 	priv->hwts_tx_en = 0;
670 	priv->hwts_rx_en = 0;
671 
672 	return stmmac_ptp_register(priv);
673 }
674 
675 static void stmmac_release_ptp(struct stmmac_priv *priv)
676 {
677 	if (priv->clk_ptp_ref)
678 		clk_disable_unprepare(priv->clk_ptp_ref);
679 	stmmac_ptp_unregister(priv);
680 }
681 
682 /**
683  * stmmac_adjust_link - adjusts the link parameters
684  * @dev: net device structure
685  * Description: this is the helper called by the physical abstraction layer
686  * drivers to communicate the phy link status. According the speed and duplex
687  * this driver can invoke registered glue-logic as well.
688  * It also invoke the eee initialization because it could happen when switch
689  * on different networks (that are eee capable).
690  */
691 static void stmmac_adjust_link(struct net_device *dev)
692 {
693 	struct stmmac_priv *priv = netdev_priv(dev);
694 	struct phy_device *phydev = priv->phydev;
695 	unsigned long flags;
696 	int new_state = 0;
697 	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
698 
699 	if (phydev == NULL)
700 		return;
701 
702 	spin_lock_irqsave(&priv->lock, flags);
703 
704 	if (phydev->link) {
705 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
706 
707 		/* Now we make sure that we can be in full duplex mode.
708 		 * If not, we operate in half-duplex mode. */
709 		if (phydev->duplex != priv->oldduplex) {
710 			new_state = 1;
711 			if (!(phydev->duplex))
712 				ctrl &= ~priv->hw->link.duplex;
713 			else
714 				ctrl |= priv->hw->link.duplex;
715 			priv->oldduplex = phydev->duplex;
716 		}
717 		/* Flow Control operation */
718 		if (phydev->pause)
719 			priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
720 						 fc, pause_time);
721 
722 		if (phydev->speed != priv->speed) {
723 			new_state = 1;
724 			switch (phydev->speed) {
725 			case 1000:
726 				if (likely((priv->plat->has_gmac) ||
727 					   (priv->plat->has_gmac4)))
728 					ctrl &= ~priv->hw->link.port;
729 				stmmac_hw_fix_mac_speed(priv);
730 				break;
731 			case 100:
732 			case 10:
733 				if (likely((priv->plat->has_gmac) ||
734 					   (priv->plat->has_gmac4))) {
735 					ctrl |= priv->hw->link.port;
736 					if (phydev->speed == SPEED_100) {
737 						ctrl |= priv->hw->link.speed;
738 					} else {
739 						ctrl &= ~(priv->hw->link.speed);
740 					}
741 				} else {
742 					ctrl &= ~priv->hw->link.port;
743 				}
744 				stmmac_hw_fix_mac_speed(priv);
745 				break;
746 			default:
747 				if (netif_msg_link(priv))
748 					pr_warn("%s: Speed (%d) not 10/100\n",
749 						dev->name, phydev->speed);
750 				break;
751 			}
752 
753 			priv->speed = phydev->speed;
754 		}
755 
756 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
757 
758 		if (!priv->oldlink) {
759 			new_state = 1;
760 			priv->oldlink = 1;
761 		}
762 	} else if (priv->oldlink) {
763 		new_state = 1;
764 		priv->oldlink = 0;
765 		priv->speed = 0;
766 		priv->oldduplex = -1;
767 	}
768 
769 	if (new_state && netif_msg_link(priv))
770 		phy_print_status(phydev);
771 
772 	spin_unlock_irqrestore(&priv->lock, flags);
773 
774 	if (phydev->is_pseudo_fixed_link)
775 		/* Stop PHY layer to call the hook to adjust the link in case
776 		 * of a switch is attached to the stmmac driver.
777 		 */
778 		phydev->irq = PHY_IGNORE_INTERRUPT;
779 	else
780 		/* At this stage, init the EEE if supported.
781 		 * Never called in case of fixed_link.
782 		 */
783 		priv->eee_enabled = stmmac_eee_init(priv);
784 }
785 
786 /**
787  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
788  * @priv: driver private structure
789  * Description: this is to verify if the HW supports the PCS.
790  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
791  * configured for the TBI, RTBI, or SGMII PHY interface.
792  */
793 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
794 {
795 	int interface = priv->plat->interface;
796 
797 	if (priv->dma_cap.pcs) {
798 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
799 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
800 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
801 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
802 			pr_debug("STMMAC: PCS RGMII support enable\n");
803 			priv->hw->pcs = STMMAC_PCS_RGMII;
804 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
805 			pr_debug("STMMAC: PCS SGMII support enable\n");
806 			priv->hw->pcs = STMMAC_PCS_SGMII;
807 		}
808 	}
809 }
810 
811 /**
812  * stmmac_init_phy - PHY initialization
813  * @dev: net device structure
814  * Description: it initializes the driver's PHY state, and attaches the PHY
815  * to the mac driver.
816  *  Return value:
817  *  0 on success
818  */
819 static int stmmac_init_phy(struct net_device *dev)
820 {
821 	struct stmmac_priv *priv = netdev_priv(dev);
822 	struct phy_device *phydev;
823 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
824 	char bus_id[MII_BUS_ID_SIZE];
825 	int interface = priv->plat->interface;
826 	int max_speed = priv->plat->max_speed;
827 	priv->oldlink = 0;
828 	priv->speed = 0;
829 	priv->oldduplex = -1;
830 
831 	if (priv->plat->phy_node) {
832 		phydev = of_phy_connect(dev, priv->plat->phy_node,
833 					&stmmac_adjust_link, 0, interface);
834 	} else {
835 		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
836 			 priv->plat->bus_id);
837 
838 		snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
839 			 priv->plat->phy_addr);
840 		pr_debug("stmmac_init_phy:  trying to attach to %s\n",
841 			 phy_id_fmt);
842 
843 		phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
844 				     interface);
845 	}
846 
847 	if (IS_ERR_OR_NULL(phydev)) {
848 		pr_err("%s: Could not attach to PHY\n", dev->name);
849 		if (!phydev)
850 			return -ENODEV;
851 
852 		return PTR_ERR(phydev);
853 	}
854 
855 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
856 	if ((interface == PHY_INTERFACE_MODE_MII) ||
857 	    (interface == PHY_INTERFACE_MODE_RMII) ||
858 		(max_speed < 1000 && max_speed > 0))
859 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
860 					 SUPPORTED_1000baseT_Full);
861 
862 	/*
863 	 * Broken HW is sometimes missing the pull-up resistor on the
864 	 * MDIO line, which results in reads to non-existent devices returning
865 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
866 	 * device as well.
867 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
868 	 */
869 	if (!priv->plat->phy_node && phydev->phy_id == 0) {
870 		phy_disconnect(phydev);
871 		return -ENODEV;
872 	}
873 
874 	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
875 		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
876 
877 	priv->phydev = phydev;
878 
879 	return 0;
880 }
881 
882 static void stmmac_display_rings(struct stmmac_priv *priv)
883 {
884 	void *head_rx, *head_tx;
885 
886 	if (priv->extend_desc) {
887 		head_rx = (void *)priv->dma_erx;
888 		head_tx = (void *)priv->dma_etx;
889 	} else {
890 		head_rx = (void *)priv->dma_rx;
891 		head_tx = (void *)priv->dma_tx;
892 	}
893 
894 	/* Display Rx ring */
895 	priv->hw->desc->display_ring(head_rx, DMA_RX_SIZE, true);
896 	/* Display Tx ring */
897 	priv->hw->desc->display_ring(head_tx, DMA_TX_SIZE, false);
898 }
899 
900 static int stmmac_set_bfsize(int mtu, int bufsize)
901 {
902 	int ret = bufsize;
903 
904 	if (mtu >= BUF_SIZE_4KiB)
905 		ret = BUF_SIZE_8KiB;
906 	else if (mtu >= BUF_SIZE_2KiB)
907 		ret = BUF_SIZE_4KiB;
908 	else if (mtu > DEFAULT_BUFSIZE)
909 		ret = BUF_SIZE_2KiB;
910 	else
911 		ret = DEFAULT_BUFSIZE;
912 
913 	return ret;
914 }
915 
916 /**
917  * stmmac_clear_descriptors - clear descriptors
918  * @priv: driver private structure
919  * Description: this function is called to clear the tx and rx descriptors
920  * in case of both basic and extended descriptors are used.
921  */
922 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
923 {
924 	int i;
925 
926 	/* Clear the Rx/Tx descriptors */
927 	for (i = 0; i < DMA_RX_SIZE; i++)
928 		if (priv->extend_desc)
929 			priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
930 						     priv->use_riwt, priv->mode,
931 						     (i == DMA_RX_SIZE - 1));
932 		else
933 			priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
934 						     priv->use_riwt, priv->mode,
935 						     (i == DMA_RX_SIZE - 1));
936 	for (i = 0; i < DMA_TX_SIZE; i++)
937 		if (priv->extend_desc)
938 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
939 						     priv->mode,
940 						     (i == DMA_TX_SIZE - 1));
941 		else
942 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
943 						     priv->mode,
944 						     (i == DMA_TX_SIZE - 1));
945 }
946 
947 /**
948  * stmmac_init_rx_buffers - init the RX descriptor buffer.
949  * @priv: driver private structure
950  * @p: descriptor pointer
951  * @i: descriptor index
952  * @flags: gfp flag.
953  * Description: this function is called to allocate a receive buffer, perform
954  * the DMA mapping and init the descriptor.
955  */
956 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
957 				  int i, gfp_t flags)
958 {
959 	struct sk_buff *skb;
960 
961 	skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
962 	if (!skb) {
963 		pr_err("%s: Rx init fails; skb is NULL\n", __func__);
964 		return -ENOMEM;
965 	}
966 	priv->rx_skbuff[i] = skb;
967 	priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
968 						priv->dma_buf_sz,
969 						DMA_FROM_DEVICE);
970 	if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
971 		pr_err("%s: DMA mapping error\n", __func__);
972 		dev_kfree_skb_any(skb);
973 		return -EINVAL;
974 	}
975 
976 	if (priv->synopsys_id >= DWMAC_CORE_4_00)
977 		p->des0 = priv->rx_skbuff_dma[i];
978 	else
979 		p->des2 = priv->rx_skbuff_dma[i];
980 
981 	if ((priv->hw->mode->init_desc3) &&
982 	    (priv->dma_buf_sz == BUF_SIZE_16KiB))
983 		priv->hw->mode->init_desc3(p);
984 
985 	return 0;
986 }
987 
988 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
989 {
990 	if (priv->rx_skbuff[i]) {
991 		dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
992 				 priv->dma_buf_sz, DMA_FROM_DEVICE);
993 		dev_kfree_skb_any(priv->rx_skbuff[i]);
994 	}
995 	priv->rx_skbuff[i] = NULL;
996 }
997 
998 /**
999  * init_dma_desc_rings - init the RX/TX descriptor rings
1000  * @dev: net device structure
1001  * @flags: gfp flag.
1002  * Description: this function initializes the DMA RX/TX descriptors
1003  * and allocates the socket buffers. It suppors the chained and ring
1004  * modes.
1005  */
1006 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1007 {
1008 	int i;
1009 	struct stmmac_priv *priv = netdev_priv(dev);
1010 	unsigned int bfsize = 0;
1011 	int ret = -ENOMEM;
1012 
1013 	if (priv->hw->mode->set_16kib_bfsize)
1014 		bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1015 
1016 	if (bfsize < BUF_SIZE_16KiB)
1017 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1018 
1019 	priv->dma_buf_sz = bfsize;
1020 
1021 	if (netif_msg_probe(priv)) {
1022 		pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1023 			 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1024 
1025 		/* RX INITIALIZATION */
1026 		pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1027 	}
1028 	for (i = 0; i < DMA_RX_SIZE; i++) {
1029 		struct dma_desc *p;
1030 		if (priv->extend_desc)
1031 			p = &((priv->dma_erx + i)->basic);
1032 		else
1033 			p = priv->dma_rx + i;
1034 
1035 		ret = stmmac_init_rx_buffers(priv, p, i, flags);
1036 		if (ret)
1037 			goto err_init_rx_buffers;
1038 
1039 		if (netif_msg_probe(priv))
1040 			pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1041 				 priv->rx_skbuff[i]->data,
1042 				 (unsigned int)priv->rx_skbuff_dma[i]);
1043 	}
1044 	priv->cur_rx = 0;
1045 	priv->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1046 	buf_sz = bfsize;
1047 
1048 	/* Setup the chained descriptor addresses */
1049 	if (priv->mode == STMMAC_CHAIN_MODE) {
1050 		if (priv->extend_desc) {
1051 			priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1052 					     DMA_RX_SIZE, 1);
1053 			priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1054 					     DMA_TX_SIZE, 1);
1055 		} else {
1056 			priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1057 					     DMA_RX_SIZE, 0);
1058 			priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1059 					     DMA_TX_SIZE, 0);
1060 		}
1061 	}
1062 
1063 	/* TX INITIALIZATION */
1064 	for (i = 0; i < DMA_TX_SIZE; i++) {
1065 		struct dma_desc *p;
1066 		if (priv->extend_desc)
1067 			p = &((priv->dma_etx + i)->basic);
1068 		else
1069 			p = priv->dma_tx + i;
1070 
1071 		if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1072 			p->des0 = 0;
1073 			p->des1 = 0;
1074 			p->des2 = 0;
1075 			p->des3 = 0;
1076 		} else {
1077 			p->des2 = 0;
1078 		}
1079 
1080 		priv->tx_skbuff_dma[i].buf = 0;
1081 		priv->tx_skbuff_dma[i].map_as_page = false;
1082 		priv->tx_skbuff_dma[i].len = 0;
1083 		priv->tx_skbuff_dma[i].last_segment = false;
1084 		priv->tx_skbuff[i] = NULL;
1085 	}
1086 
1087 	priv->dirty_tx = 0;
1088 	priv->cur_tx = 0;
1089 	netdev_reset_queue(priv->dev);
1090 
1091 	stmmac_clear_descriptors(priv);
1092 
1093 	if (netif_msg_hw(priv))
1094 		stmmac_display_rings(priv);
1095 
1096 	return 0;
1097 err_init_rx_buffers:
1098 	while (--i >= 0)
1099 		stmmac_free_rx_buffers(priv, i);
1100 	return ret;
1101 }
1102 
1103 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1104 {
1105 	int i;
1106 
1107 	for (i = 0; i < DMA_RX_SIZE; i++)
1108 		stmmac_free_rx_buffers(priv, i);
1109 }
1110 
1111 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1112 {
1113 	int i;
1114 
1115 	for (i = 0; i < DMA_TX_SIZE; i++) {
1116 		struct dma_desc *p;
1117 
1118 		if (priv->extend_desc)
1119 			p = &((priv->dma_etx + i)->basic);
1120 		else
1121 			p = priv->dma_tx + i;
1122 
1123 		if (priv->tx_skbuff_dma[i].buf) {
1124 			if (priv->tx_skbuff_dma[i].map_as_page)
1125 				dma_unmap_page(priv->device,
1126 					       priv->tx_skbuff_dma[i].buf,
1127 					       priv->tx_skbuff_dma[i].len,
1128 					       DMA_TO_DEVICE);
1129 			else
1130 				dma_unmap_single(priv->device,
1131 						 priv->tx_skbuff_dma[i].buf,
1132 						 priv->tx_skbuff_dma[i].len,
1133 						 DMA_TO_DEVICE);
1134 		}
1135 
1136 		if (priv->tx_skbuff[i] != NULL) {
1137 			dev_kfree_skb_any(priv->tx_skbuff[i]);
1138 			priv->tx_skbuff[i] = NULL;
1139 			priv->tx_skbuff_dma[i].buf = 0;
1140 			priv->tx_skbuff_dma[i].map_as_page = false;
1141 		}
1142 	}
1143 }
1144 
1145 /**
1146  * alloc_dma_desc_resources - alloc TX/RX resources.
1147  * @priv: private structure
1148  * Description: according to which descriptor can be used (extend or basic)
1149  * this function allocates the resources for TX and RX paths. In case of
1150  * reception, for example, it pre-allocated the RX socket buffer in order to
1151  * allow zero-copy mechanism.
1152  */
1153 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1154 {
1155 	int ret = -ENOMEM;
1156 
1157 	priv->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE, sizeof(dma_addr_t),
1158 					    GFP_KERNEL);
1159 	if (!priv->rx_skbuff_dma)
1160 		return -ENOMEM;
1161 
1162 	priv->rx_skbuff = kmalloc_array(DMA_RX_SIZE, sizeof(struct sk_buff *),
1163 					GFP_KERNEL);
1164 	if (!priv->rx_skbuff)
1165 		goto err_rx_skbuff;
1166 
1167 	priv->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1168 					    sizeof(*priv->tx_skbuff_dma),
1169 					    GFP_KERNEL);
1170 	if (!priv->tx_skbuff_dma)
1171 		goto err_tx_skbuff_dma;
1172 
1173 	priv->tx_skbuff = kmalloc_array(DMA_TX_SIZE, sizeof(struct sk_buff *),
1174 					GFP_KERNEL);
1175 	if (!priv->tx_skbuff)
1176 		goto err_tx_skbuff;
1177 
1178 	if (priv->extend_desc) {
1179 		priv->dma_erx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1180 						    sizeof(struct
1181 							   dma_extended_desc),
1182 						    &priv->dma_rx_phy,
1183 						    GFP_KERNEL);
1184 		if (!priv->dma_erx)
1185 			goto err_dma;
1186 
1187 		priv->dma_etx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1188 						    sizeof(struct
1189 							   dma_extended_desc),
1190 						    &priv->dma_tx_phy,
1191 						    GFP_KERNEL);
1192 		if (!priv->dma_etx) {
1193 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1194 					  sizeof(struct dma_extended_desc),
1195 					  priv->dma_erx, priv->dma_rx_phy);
1196 			goto err_dma;
1197 		}
1198 	} else {
1199 		priv->dma_rx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1200 						   sizeof(struct dma_desc),
1201 						   &priv->dma_rx_phy,
1202 						   GFP_KERNEL);
1203 		if (!priv->dma_rx)
1204 			goto err_dma;
1205 
1206 		priv->dma_tx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1207 						   sizeof(struct dma_desc),
1208 						   &priv->dma_tx_phy,
1209 						   GFP_KERNEL);
1210 		if (!priv->dma_tx) {
1211 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1212 					  sizeof(struct dma_desc),
1213 					  priv->dma_rx, priv->dma_rx_phy);
1214 			goto err_dma;
1215 		}
1216 	}
1217 
1218 	return 0;
1219 
1220 err_dma:
1221 	kfree(priv->tx_skbuff);
1222 err_tx_skbuff:
1223 	kfree(priv->tx_skbuff_dma);
1224 err_tx_skbuff_dma:
1225 	kfree(priv->rx_skbuff);
1226 err_rx_skbuff:
1227 	kfree(priv->rx_skbuff_dma);
1228 	return ret;
1229 }
1230 
1231 static void free_dma_desc_resources(struct stmmac_priv *priv)
1232 {
1233 	/* Release the DMA TX/RX socket buffers */
1234 	dma_free_rx_skbufs(priv);
1235 	dma_free_tx_skbufs(priv);
1236 
1237 	/* Free DMA regions of consistent memory previously allocated */
1238 	if (!priv->extend_desc) {
1239 		dma_free_coherent(priv->device,
1240 				  DMA_TX_SIZE * sizeof(struct dma_desc),
1241 				  priv->dma_tx, priv->dma_tx_phy);
1242 		dma_free_coherent(priv->device,
1243 				  DMA_RX_SIZE * sizeof(struct dma_desc),
1244 				  priv->dma_rx, priv->dma_rx_phy);
1245 	} else {
1246 		dma_free_coherent(priv->device, DMA_TX_SIZE *
1247 				  sizeof(struct dma_extended_desc),
1248 				  priv->dma_etx, priv->dma_tx_phy);
1249 		dma_free_coherent(priv->device, DMA_RX_SIZE *
1250 				  sizeof(struct dma_extended_desc),
1251 				  priv->dma_erx, priv->dma_rx_phy);
1252 	}
1253 	kfree(priv->rx_skbuff_dma);
1254 	kfree(priv->rx_skbuff);
1255 	kfree(priv->tx_skbuff_dma);
1256 	kfree(priv->tx_skbuff);
1257 }
1258 
1259 /**
1260  *  stmmac_dma_operation_mode - HW DMA operation mode
1261  *  @priv: driver private structure
1262  *  Description: it is used for configuring the DMA operation mode register in
1263  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1264  */
1265 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1266 {
1267 	int rxfifosz = priv->plat->rx_fifo_size;
1268 
1269 	if (priv->plat->force_thresh_dma_mode)
1270 		priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz);
1271 	else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1272 		/*
1273 		 * In case of GMAC, SF mode can be enabled
1274 		 * to perform the TX COE in HW. This depends on:
1275 		 * 1) TX COE if actually supported
1276 		 * 2) There is no bugged Jumbo frame support
1277 		 *    that needs to not insert csum in the TDES.
1278 		 */
1279 		priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE,
1280 					rxfifosz);
1281 		priv->xstats.threshold = SF_DMA_MODE;
1282 	} else
1283 		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE,
1284 					rxfifosz);
1285 }
1286 
1287 /**
1288  * stmmac_tx_clean - to manage the transmission completion
1289  * @priv: driver private structure
1290  * Description: it reclaims the transmit resources after transmission completes.
1291  */
1292 static void stmmac_tx_clean(struct stmmac_priv *priv)
1293 {
1294 	unsigned int bytes_compl = 0, pkts_compl = 0;
1295 	unsigned int entry = priv->dirty_tx;
1296 
1297 	spin_lock(&priv->tx_lock);
1298 
1299 	priv->xstats.tx_clean++;
1300 
1301 	while (entry != priv->cur_tx) {
1302 		struct sk_buff *skb = priv->tx_skbuff[entry];
1303 		struct dma_desc *p;
1304 		int status;
1305 
1306 		if (priv->extend_desc)
1307 			p = (struct dma_desc *)(priv->dma_etx + entry);
1308 		else
1309 			p = priv->dma_tx + entry;
1310 
1311 		status = priv->hw->desc->tx_status(&priv->dev->stats,
1312 						      &priv->xstats, p,
1313 						      priv->ioaddr);
1314 		/* Check if the descriptor is owned by the DMA */
1315 		if (unlikely(status & tx_dma_own))
1316 			break;
1317 
1318 		/* Just consider the last segment and ...*/
1319 		if (likely(!(status & tx_not_ls))) {
1320 			/* ... verify the status error condition */
1321 			if (unlikely(status & tx_err)) {
1322 				priv->dev->stats.tx_errors++;
1323 			} else {
1324 				priv->dev->stats.tx_packets++;
1325 				priv->xstats.tx_pkt_n++;
1326 			}
1327 			stmmac_get_tx_hwtstamp(priv, entry, skb);
1328 		}
1329 
1330 		if (likely(priv->tx_skbuff_dma[entry].buf)) {
1331 			if (priv->tx_skbuff_dma[entry].map_as_page)
1332 				dma_unmap_page(priv->device,
1333 					       priv->tx_skbuff_dma[entry].buf,
1334 					       priv->tx_skbuff_dma[entry].len,
1335 					       DMA_TO_DEVICE);
1336 			else
1337 				dma_unmap_single(priv->device,
1338 						 priv->tx_skbuff_dma[entry].buf,
1339 						 priv->tx_skbuff_dma[entry].len,
1340 						 DMA_TO_DEVICE);
1341 			priv->tx_skbuff_dma[entry].buf = 0;
1342 			priv->tx_skbuff_dma[entry].len = 0;
1343 			priv->tx_skbuff_dma[entry].map_as_page = false;
1344 		}
1345 
1346 		if (priv->hw->mode->clean_desc3)
1347 			priv->hw->mode->clean_desc3(priv, p);
1348 
1349 		priv->tx_skbuff_dma[entry].last_segment = false;
1350 		priv->tx_skbuff_dma[entry].is_jumbo = false;
1351 
1352 		if (likely(skb != NULL)) {
1353 			pkts_compl++;
1354 			bytes_compl += skb->len;
1355 			dev_consume_skb_any(skb);
1356 			priv->tx_skbuff[entry] = NULL;
1357 		}
1358 
1359 		priv->hw->desc->release_tx_desc(p, priv->mode);
1360 
1361 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1362 	}
1363 	priv->dirty_tx = entry;
1364 
1365 	netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1366 
1367 	if (unlikely(netif_queue_stopped(priv->dev) &&
1368 		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH)) {
1369 		netif_tx_lock(priv->dev);
1370 		if (netif_queue_stopped(priv->dev) &&
1371 		    stmmac_tx_avail(priv) > STMMAC_TX_THRESH) {
1372 			if (netif_msg_tx_done(priv))
1373 				pr_debug("%s: restart transmit\n", __func__);
1374 			netif_wake_queue(priv->dev);
1375 		}
1376 		netif_tx_unlock(priv->dev);
1377 	}
1378 
1379 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1380 		stmmac_enable_eee_mode(priv);
1381 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1382 	}
1383 	spin_unlock(&priv->tx_lock);
1384 }
1385 
1386 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1387 {
1388 	priv->hw->dma->enable_dma_irq(priv->ioaddr);
1389 }
1390 
1391 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1392 {
1393 	priv->hw->dma->disable_dma_irq(priv->ioaddr);
1394 }
1395 
1396 /**
1397  * stmmac_tx_err - to manage the tx error
1398  * @priv: driver private structure
1399  * Description: it cleans the descriptors and restarts the transmission
1400  * in case of transmission errors.
1401  */
1402 static void stmmac_tx_err(struct stmmac_priv *priv)
1403 {
1404 	int i;
1405 	netif_stop_queue(priv->dev);
1406 
1407 	priv->hw->dma->stop_tx(priv->ioaddr);
1408 	dma_free_tx_skbufs(priv);
1409 	for (i = 0; i < DMA_TX_SIZE; i++)
1410 		if (priv->extend_desc)
1411 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1412 						     priv->mode,
1413 						     (i == DMA_TX_SIZE - 1));
1414 		else
1415 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1416 						     priv->mode,
1417 						     (i == DMA_TX_SIZE - 1));
1418 	priv->dirty_tx = 0;
1419 	priv->cur_tx = 0;
1420 	netdev_reset_queue(priv->dev);
1421 	priv->hw->dma->start_tx(priv->ioaddr);
1422 
1423 	priv->dev->stats.tx_errors++;
1424 	netif_wake_queue(priv->dev);
1425 }
1426 
1427 /**
1428  * stmmac_dma_interrupt - DMA ISR
1429  * @priv: driver private structure
1430  * Description: this is the DMA ISR. It is called by the main ISR.
1431  * It calls the dwmac dma routine and schedule poll method in case of some
1432  * work can be done.
1433  */
1434 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1435 {
1436 	int status;
1437 	int rxfifosz = priv->plat->rx_fifo_size;
1438 
1439 	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1440 	if (likely((status & handle_rx)) || (status & handle_tx)) {
1441 		if (likely(napi_schedule_prep(&priv->napi))) {
1442 			stmmac_disable_dma_irq(priv);
1443 			__napi_schedule(&priv->napi);
1444 		}
1445 	}
1446 	if (unlikely(status & tx_hard_error_bump_tc)) {
1447 		/* Try to bump up the dma threshold on this failure */
1448 		if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1449 		    (tc <= 256)) {
1450 			tc += 64;
1451 			if (priv->plat->force_thresh_dma_mode)
1452 				priv->hw->dma->dma_mode(priv->ioaddr, tc, tc,
1453 							rxfifosz);
1454 			else
1455 				priv->hw->dma->dma_mode(priv->ioaddr, tc,
1456 							SF_DMA_MODE, rxfifosz);
1457 			priv->xstats.threshold = tc;
1458 		}
1459 	} else if (unlikely(status == tx_hard_error))
1460 		stmmac_tx_err(priv);
1461 }
1462 
1463 /**
1464  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1465  * @priv: driver private structure
1466  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1467  */
1468 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1469 {
1470 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1471 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1472 
1473 	if (priv->synopsys_id >= DWMAC_CORE_4_00)
1474 		priv->mmcaddr = priv->ioaddr + MMC_GMAC4_OFFSET;
1475 	else
1476 		priv->mmcaddr = priv->ioaddr + MMC_GMAC3_X_OFFSET;
1477 
1478 	dwmac_mmc_intr_all_mask(priv->mmcaddr);
1479 
1480 	if (priv->dma_cap.rmon) {
1481 		dwmac_mmc_ctrl(priv->mmcaddr, mode);
1482 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1483 	} else
1484 		pr_info(" No MAC Management Counters available\n");
1485 }
1486 
1487 /**
1488  * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1489  * @priv: driver private structure
1490  * Description: select the Enhanced/Alternate or Normal descriptors.
1491  * In case of Enhanced/Alternate, it checks if the extended descriptors are
1492  * supported by the HW capability register.
1493  */
1494 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1495 {
1496 	if (priv->plat->enh_desc) {
1497 		pr_info(" Enhanced/Alternate descriptors\n");
1498 
1499 		/* GMAC older than 3.50 has no extended descriptors */
1500 		if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1501 			pr_info("\tEnabled extended descriptors\n");
1502 			priv->extend_desc = 1;
1503 		} else
1504 			pr_warn("Extended descriptors not supported\n");
1505 
1506 		priv->hw->desc = &enh_desc_ops;
1507 	} else {
1508 		pr_info(" Normal descriptors\n");
1509 		priv->hw->desc = &ndesc_ops;
1510 	}
1511 }
1512 
1513 /**
1514  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1515  * @priv: driver private structure
1516  * Description:
1517  *  new GMAC chip generations have a new register to indicate the
1518  *  presence of the optional feature/functions.
1519  *  This can be also used to override the value passed through the
1520  *  platform and necessary for old MAC10/100 and GMAC chips.
1521  */
1522 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1523 {
1524 	u32 ret = 0;
1525 
1526 	if (priv->hw->dma->get_hw_feature) {
1527 		priv->hw->dma->get_hw_feature(priv->ioaddr,
1528 					      &priv->dma_cap);
1529 		ret = 1;
1530 	}
1531 
1532 	return ret;
1533 }
1534 
1535 /**
1536  * stmmac_check_ether_addr - check if the MAC addr is valid
1537  * @priv: driver private structure
1538  * Description:
1539  * it is to verify if the MAC address is valid, in case of failures it
1540  * generates a random MAC address
1541  */
1542 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1543 {
1544 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1545 		priv->hw->mac->get_umac_addr(priv->hw,
1546 					     priv->dev->dev_addr, 0);
1547 		if (!is_valid_ether_addr(priv->dev->dev_addr))
1548 			eth_hw_addr_random(priv->dev);
1549 		pr_info("%s: device MAC address %pM\n", priv->dev->name,
1550 			priv->dev->dev_addr);
1551 	}
1552 }
1553 
1554 /**
1555  * stmmac_init_dma_engine - DMA init.
1556  * @priv: driver private structure
1557  * Description:
1558  * It inits the DMA invoking the specific MAC/GMAC callback.
1559  * Some DMA parameters can be passed from the platform;
1560  * in case of these are not passed a default is kept for the MAC or GMAC.
1561  */
1562 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1563 {
1564 	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, aal = 0;
1565 	int mixed_burst = 0;
1566 	int atds = 0;
1567 	int ret = 0;
1568 
1569 	if (priv->plat->dma_cfg) {
1570 		pbl = priv->plat->dma_cfg->pbl;
1571 		fixed_burst = priv->plat->dma_cfg->fixed_burst;
1572 		mixed_burst = priv->plat->dma_cfg->mixed_burst;
1573 		aal = priv->plat->dma_cfg->aal;
1574 	}
1575 
1576 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1577 		atds = 1;
1578 
1579 	ret = priv->hw->dma->reset(priv->ioaddr);
1580 	if (ret) {
1581 		dev_err(priv->device, "Failed to reset the dma\n");
1582 		return ret;
1583 	}
1584 
1585 	priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1586 			    aal, priv->dma_tx_phy, priv->dma_rx_phy, atds);
1587 
1588 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1589 		priv->rx_tail_addr = priv->dma_rx_phy +
1590 			    (DMA_RX_SIZE * sizeof(struct dma_desc));
1591 		priv->hw->dma->set_rx_tail_ptr(priv->ioaddr, priv->rx_tail_addr,
1592 					       STMMAC_CHAN0);
1593 
1594 		priv->tx_tail_addr = priv->dma_tx_phy +
1595 			    (DMA_TX_SIZE * sizeof(struct dma_desc));
1596 		priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
1597 					       STMMAC_CHAN0);
1598 	}
1599 
1600 	if (priv->plat->axi && priv->hw->dma->axi)
1601 		priv->hw->dma->axi(priv->ioaddr, priv->plat->axi);
1602 
1603 	return ret;
1604 }
1605 
1606 /**
1607  * stmmac_tx_timer - mitigation sw timer for tx.
1608  * @data: data pointer
1609  * Description:
1610  * This is the timer handler to directly invoke the stmmac_tx_clean.
1611  */
1612 static void stmmac_tx_timer(unsigned long data)
1613 {
1614 	struct stmmac_priv *priv = (struct stmmac_priv *)data;
1615 
1616 	stmmac_tx_clean(priv);
1617 }
1618 
1619 /**
1620  * stmmac_init_tx_coalesce - init tx mitigation options.
1621  * @priv: driver private structure
1622  * Description:
1623  * This inits the transmit coalesce parameters: i.e. timer rate,
1624  * timer handler and default threshold used for enabling the
1625  * interrupt on completion bit.
1626  */
1627 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1628 {
1629 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
1630 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1631 	init_timer(&priv->txtimer);
1632 	priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1633 	priv->txtimer.data = (unsigned long)priv;
1634 	priv->txtimer.function = stmmac_tx_timer;
1635 	add_timer(&priv->txtimer);
1636 }
1637 
1638 /**
1639  * stmmac_hw_setup - setup mac in a usable state.
1640  *  @dev : pointer to the device structure.
1641  *  Description:
1642  *  this is the main function to setup the HW in a usable state because the
1643  *  dma engine is reset, the core registers are configured (e.g. AXI,
1644  *  Checksum features, timers). The DMA is ready to start receiving and
1645  *  transmitting.
1646  *  Return value:
1647  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1648  *  file on failure.
1649  */
1650 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1651 {
1652 	struct stmmac_priv *priv = netdev_priv(dev);
1653 	int ret;
1654 
1655 	/* DMA initialization and SW reset */
1656 	ret = stmmac_init_dma_engine(priv);
1657 	if (ret < 0) {
1658 		pr_err("%s: DMA engine initialization failed\n", __func__);
1659 		return ret;
1660 	}
1661 
1662 	/* Copy the MAC addr into the HW  */
1663 	priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1664 
1665 	/* If required, perform hw setup of the bus. */
1666 	if (priv->plat->bus_setup)
1667 		priv->plat->bus_setup(priv->ioaddr);
1668 
1669 	/* PS and related bits will be programmed according to the speed */
1670 	if (priv->hw->pcs) {
1671 		int speed = priv->plat->mac_port_sel_speed;
1672 
1673 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
1674 		    (speed == SPEED_1000)) {
1675 			priv->hw->ps = speed;
1676 		} else {
1677 			dev_warn(priv->device, "invalid port speed\n");
1678 			priv->hw->ps = 0;
1679 		}
1680 	}
1681 
1682 	/* Initialize the MAC Core */
1683 	priv->hw->mac->core_init(priv->hw, dev->mtu);
1684 
1685 	ret = priv->hw->mac->rx_ipc(priv->hw);
1686 	if (!ret) {
1687 		pr_warn(" RX IPC Checksum Offload disabled\n");
1688 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1689 		priv->hw->rx_csum = 0;
1690 	}
1691 
1692 	/* Enable the MAC Rx/Tx */
1693 	if (priv->synopsys_id >= DWMAC_CORE_4_00)
1694 		stmmac_dwmac4_set_mac(priv->ioaddr, true);
1695 	else
1696 		stmmac_set_mac(priv->ioaddr, true);
1697 
1698 	/* Set the HW DMA mode and the COE */
1699 	stmmac_dma_operation_mode(priv);
1700 
1701 	stmmac_mmc_setup(priv);
1702 
1703 	if (init_ptp) {
1704 		ret = stmmac_init_ptp(priv);
1705 		if (ret && ret != -EOPNOTSUPP)
1706 			pr_warn("%s: failed PTP initialisation\n", __func__);
1707 	}
1708 
1709 #ifdef CONFIG_DEBUG_FS
1710 	ret = stmmac_init_fs(dev);
1711 	if (ret < 0)
1712 		pr_warn("%s: failed debugFS registration\n", __func__);
1713 #endif
1714 	/* Start the ball rolling... */
1715 	pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1716 	priv->hw->dma->start_tx(priv->ioaddr);
1717 	priv->hw->dma->start_rx(priv->ioaddr);
1718 
1719 	/* Dump DMA/MAC registers */
1720 	if (netif_msg_hw(priv)) {
1721 		priv->hw->mac->dump_regs(priv->hw);
1722 		priv->hw->dma->dump_regs(priv->ioaddr);
1723 	}
1724 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1725 
1726 	if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1727 		priv->rx_riwt = MAX_DMA_RIWT;
1728 		priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1729 	}
1730 
1731 	if (priv->hw->pcs && priv->hw->mac->pcs_ctrl_ane)
1732 		priv->hw->mac->pcs_ctrl_ane(priv->hw, 1, priv->hw->ps, 0);
1733 
1734 	/*  set TX ring length */
1735 	if (priv->hw->dma->set_tx_ring_len)
1736 		priv->hw->dma->set_tx_ring_len(priv->ioaddr,
1737 					       (DMA_TX_SIZE - 1));
1738 	/*  set RX ring length */
1739 	if (priv->hw->dma->set_rx_ring_len)
1740 		priv->hw->dma->set_rx_ring_len(priv->ioaddr,
1741 					       (DMA_RX_SIZE - 1));
1742 	/* Enable TSO */
1743 	if (priv->tso)
1744 		priv->hw->dma->enable_tso(priv->ioaddr, 1, STMMAC_CHAN0);
1745 
1746 	return 0;
1747 }
1748 
1749 /**
1750  *  stmmac_open - open entry point of the driver
1751  *  @dev : pointer to the device structure.
1752  *  Description:
1753  *  This function is the open entry point of the driver.
1754  *  Return value:
1755  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1756  *  file on failure.
1757  */
1758 static int stmmac_open(struct net_device *dev)
1759 {
1760 	struct stmmac_priv *priv = netdev_priv(dev);
1761 	int ret;
1762 
1763 	stmmac_check_ether_addr(priv);
1764 
1765 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
1766 	    priv->hw->pcs != STMMAC_PCS_TBI &&
1767 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
1768 		ret = stmmac_init_phy(dev);
1769 		if (ret) {
1770 			pr_err("%s: Cannot attach to PHY (error: %d)\n",
1771 			       __func__, ret);
1772 			return ret;
1773 		}
1774 	}
1775 
1776 	/* Extra statistics */
1777 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1778 	priv->xstats.threshold = tc;
1779 
1780 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1781 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
1782 
1783 	ret = alloc_dma_desc_resources(priv);
1784 	if (ret < 0) {
1785 		pr_err("%s: DMA descriptors allocation failed\n", __func__);
1786 		goto dma_desc_error;
1787 	}
1788 
1789 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
1790 	if (ret < 0) {
1791 		pr_err("%s: DMA descriptors initialization failed\n", __func__);
1792 		goto init_error;
1793 	}
1794 
1795 	ret = stmmac_hw_setup(dev, true);
1796 	if (ret < 0) {
1797 		pr_err("%s: Hw setup failed\n", __func__);
1798 		goto init_error;
1799 	}
1800 
1801 	stmmac_init_tx_coalesce(priv);
1802 
1803 	if (priv->phydev)
1804 		phy_start(priv->phydev);
1805 
1806 	/* Request the IRQ lines */
1807 	ret = request_irq(dev->irq, stmmac_interrupt,
1808 			  IRQF_SHARED, dev->name, dev);
1809 	if (unlikely(ret < 0)) {
1810 		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1811 		       __func__, dev->irq, ret);
1812 		goto init_error;
1813 	}
1814 
1815 	/* Request the Wake IRQ in case of another line is used for WoL */
1816 	if (priv->wol_irq != dev->irq) {
1817 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
1818 				  IRQF_SHARED, dev->name, dev);
1819 		if (unlikely(ret < 0)) {
1820 			pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1821 			       __func__, priv->wol_irq, ret);
1822 			goto wolirq_error;
1823 		}
1824 	}
1825 
1826 	/* Request the IRQ lines */
1827 	if (priv->lpi_irq > 0) {
1828 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1829 				  dev->name, dev);
1830 		if (unlikely(ret < 0)) {
1831 			pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1832 			       __func__, priv->lpi_irq, ret);
1833 			goto lpiirq_error;
1834 		}
1835 	}
1836 
1837 	napi_enable(&priv->napi);
1838 	netif_start_queue(dev);
1839 
1840 	return 0;
1841 
1842 lpiirq_error:
1843 	if (priv->wol_irq != dev->irq)
1844 		free_irq(priv->wol_irq, dev);
1845 wolirq_error:
1846 	free_irq(dev->irq, dev);
1847 
1848 init_error:
1849 	free_dma_desc_resources(priv);
1850 dma_desc_error:
1851 	if (priv->phydev)
1852 		phy_disconnect(priv->phydev);
1853 
1854 	return ret;
1855 }
1856 
1857 /**
1858  *  stmmac_release - close entry point of the driver
1859  *  @dev : device pointer.
1860  *  Description:
1861  *  This is the stop entry point of the driver.
1862  */
1863 static int stmmac_release(struct net_device *dev)
1864 {
1865 	struct stmmac_priv *priv = netdev_priv(dev);
1866 
1867 	if (priv->eee_enabled)
1868 		del_timer_sync(&priv->eee_ctrl_timer);
1869 
1870 	/* Stop and disconnect the PHY */
1871 	if (priv->phydev) {
1872 		phy_stop(priv->phydev);
1873 		phy_disconnect(priv->phydev);
1874 		priv->phydev = NULL;
1875 	}
1876 
1877 	netif_stop_queue(dev);
1878 
1879 	napi_disable(&priv->napi);
1880 
1881 	del_timer_sync(&priv->txtimer);
1882 
1883 	/* Free the IRQ lines */
1884 	free_irq(dev->irq, dev);
1885 	if (priv->wol_irq != dev->irq)
1886 		free_irq(priv->wol_irq, dev);
1887 	if (priv->lpi_irq > 0)
1888 		free_irq(priv->lpi_irq, dev);
1889 
1890 	/* Stop TX/RX DMA and clear the descriptors */
1891 	priv->hw->dma->stop_tx(priv->ioaddr);
1892 	priv->hw->dma->stop_rx(priv->ioaddr);
1893 
1894 	/* Release and free the Rx/Tx resources */
1895 	free_dma_desc_resources(priv);
1896 
1897 	/* Disable the MAC Rx/Tx */
1898 	stmmac_set_mac(priv->ioaddr, false);
1899 
1900 	netif_carrier_off(dev);
1901 
1902 #ifdef CONFIG_DEBUG_FS
1903 	stmmac_exit_fs(dev);
1904 #endif
1905 
1906 	stmmac_release_ptp(priv);
1907 
1908 	return 0;
1909 }
1910 
1911 /**
1912  *  stmmac_tso_allocator - close entry point of the driver
1913  *  @priv: driver private structure
1914  *  @des: buffer start address
1915  *  @total_len: total length to fill in descriptors
1916  *  @last_segmant: condition for the last descriptor
1917  *  Description:
1918  *  This function fills descriptor and request new descriptors according to
1919  *  buffer length to fill
1920  */
1921 static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des,
1922 				 int total_len, bool last_segment)
1923 {
1924 	struct dma_desc *desc;
1925 	int tmp_len;
1926 	u32 buff_size;
1927 
1928 	tmp_len = total_len;
1929 
1930 	while (tmp_len > 0) {
1931 		priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
1932 		desc = priv->dma_tx + priv->cur_tx;
1933 
1934 		desc->des0 = des + (total_len - tmp_len);
1935 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
1936 			    TSO_MAX_BUFF_SIZE : tmp_len;
1937 
1938 		priv->hw->desc->prepare_tso_tx_desc(desc, 0, buff_size,
1939 			0, 1,
1940 			(last_segment) && (buff_size < TSO_MAX_BUFF_SIZE),
1941 			0, 0);
1942 
1943 		tmp_len -= TSO_MAX_BUFF_SIZE;
1944 	}
1945 }
1946 
1947 /**
1948  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
1949  *  @skb : the socket buffer
1950  *  @dev : device pointer
1951  *  Description: this is the transmit function that is called on TSO frames
1952  *  (support available on GMAC4 and newer chips).
1953  *  Diagram below show the ring programming in case of TSO frames:
1954  *
1955  *  First Descriptor
1956  *   --------
1957  *   | DES0 |---> buffer1 = L2/L3/L4 header
1958  *   | DES1 |---> TCP Payload (can continue on next descr...)
1959  *   | DES2 |---> buffer 1 and 2 len
1960  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
1961  *   --------
1962  *	|
1963  *     ...
1964  *	|
1965  *   --------
1966  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
1967  *   | DES1 | --|
1968  *   | DES2 | --> buffer 1 and 2 len
1969  *   | DES3 |
1970  *   --------
1971  *
1972  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
1973  */
1974 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
1975 {
1976 	u32 pay_len, mss;
1977 	int tmp_pay_len = 0;
1978 	struct stmmac_priv *priv = netdev_priv(dev);
1979 	int nfrags = skb_shinfo(skb)->nr_frags;
1980 	unsigned int first_entry, des;
1981 	struct dma_desc *desc, *first, *mss_desc = NULL;
1982 	u8 proto_hdr_len;
1983 	int i;
1984 
1985 	spin_lock(&priv->tx_lock);
1986 
1987 	/* Compute header lengths */
1988 	proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1989 
1990 	/* Desc availability based on threshold should be enough safe */
1991 	if (unlikely(stmmac_tx_avail(priv) <
1992 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
1993 		if (!netif_queue_stopped(dev)) {
1994 			netif_stop_queue(dev);
1995 			/* This is a hard error, log it. */
1996 			pr_err("%s: Tx Ring full when queue awake\n", __func__);
1997 		}
1998 		spin_unlock(&priv->tx_lock);
1999 		return NETDEV_TX_BUSY;
2000 	}
2001 
2002 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2003 
2004 	mss = skb_shinfo(skb)->gso_size;
2005 
2006 	/* set new MSS value if needed */
2007 	if (mss != priv->mss) {
2008 		mss_desc = priv->dma_tx + priv->cur_tx;
2009 		priv->hw->desc->set_mss(mss_desc, mss);
2010 		priv->mss = mss;
2011 		priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
2012 	}
2013 
2014 	if (netif_msg_tx_queued(priv)) {
2015 		pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2016 			__func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2017 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2018 			skb->data_len);
2019 	}
2020 
2021 	first_entry = priv->cur_tx;
2022 
2023 	desc = priv->dma_tx + first_entry;
2024 	first = desc;
2025 
2026 	/* first descriptor: fill Headers on Buf1 */
2027 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2028 			     DMA_TO_DEVICE);
2029 	if (dma_mapping_error(priv->device, des))
2030 		goto dma_map_err;
2031 
2032 	priv->tx_skbuff_dma[first_entry].buf = des;
2033 	priv->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2034 	priv->tx_skbuff[first_entry] = skb;
2035 
2036 	first->des0 = des;
2037 
2038 	/* Fill start of payload in buff2 of first descriptor */
2039 	if (pay_len)
2040 		first->des1 =  des + proto_hdr_len;
2041 
2042 	/* If needed take extra descriptors to fill the remaining payload */
2043 	tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2044 
2045 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0));
2046 
2047 	/* Prepare fragments */
2048 	for (i = 0; i < nfrags; i++) {
2049 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2050 
2051 		des = skb_frag_dma_map(priv->device, frag, 0,
2052 				       skb_frag_size(frag),
2053 				       DMA_TO_DEVICE);
2054 
2055 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
2056 				     (i == nfrags - 1));
2057 
2058 		priv->tx_skbuff_dma[priv->cur_tx].buf = des;
2059 		priv->tx_skbuff_dma[priv->cur_tx].len = skb_frag_size(frag);
2060 		priv->tx_skbuff[priv->cur_tx] = NULL;
2061 		priv->tx_skbuff_dma[priv->cur_tx].map_as_page = true;
2062 	}
2063 
2064 	priv->tx_skbuff_dma[priv->cur_tx].last_segment = true;
2065 
2066 	priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
2067 
2068 	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2069 		if (netif_msg_hw(priv))
2070 			pr_debug("%s: stop transmitted packets\n", __func__);
2071 		netif_stop_queue(dev);
2072 	}
2073 
2074 	dev->stats.tx_bytes += skb->len;
2075 	priv->xstats.tx_tso_frames++;
2076 	priv->xstats.tx_tso_nfrags += nfrags;
2077 
2078 	/* Manage tx mitigation */
2079 	priv->tx_count_frames += nfrags + 1;
2080 	if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
2081 		mod_timer(&priv->txtimer,
2082 			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
2083 	} else {
2084 		priv->tx_count_frames = 0;
2085 		priv->hw->desc->set_tx_ic(desc);
2086 		priv->xstats.tx_set_ic_bit++;
2087 	}
2088 
2089 	if (!priv->hwts_tx_en)
2090 		skb_tx_timestamp(skb);
2091 
2092 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2093 		     priv->hwts_tx_en)) {
2094 		/* declare that device is doing timestamping */
2095 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2096 		priv->hw->desc->enable_tx_timestamp(first);
2097 	}
2098 
2099 	/* Complete the first descriptor before granting the DMA */
2100 	priv->hw->desc->prepare_tso_tx_desc(first, 1,
2101 			proto_hdr_len,
2102 			pay_len,
2103 			1, priv->tx_skbuff_dma[first_entry].last_segment,
2104 			tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
2105 
2106 	/* If context desc is used to change MSS */
2107 	if (mss_desc)
2108 		priv->hw->desc->set_tx_owner(mss_desc);
2109 
2110 	/* The own bit must be the latest setting done when prepare the
2111 	 * descriptor and then barrier is needed to make sure that
2112 	 * all is coherent before granting the DMA engine.
2113 	 */
2114 	smp_wmb();
2115 
2116 	if (netif_msg_pktdata(priv)) {
2117 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
2118 			__func__, priv->cur_tx, priv->dirty_tx, first_entry,
2119 			priv->cur_tx, first, nfrags);
2120 
2121 		priv->hw->desc->display_ring((void *)priv->dma_tx, DMA_TX_SIZE,
2122 					     0);
2123 
2124 		pr_info(">>> frame to be transmitted: ");
2125 		print_pkt(skb->data, skb_headlen(skb));
2126 	}
2127 
2128 	netdev_sent_queue(dev, skb->len);
2129 
2130 	priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
2131 				       STMMAC_CHAN0);
2132 
2133 	spin_unlock(&priv->tx_lock);
2134 	return NETDEV_TX_OK;
2135 
2136 dma_map_err:
2137 	spin_unlock(&priv->tx_lock);
2138 	dev_err(priv->device, "Tx dma map failed\n");
2139 	dev_kfree_skb(skb);
2140 	priv->dev->stats.tx_dropped++;
2141 	return NETDEV_TX_OK;
2142 }
2143 
2144 /**
2145  *  stmmac_xmit - Tx entry point of the driver
2146  *  @skb : the socket buffer
2147  *  @dev : device pointer
2148  *  Description : this is the tx entry point of the driver.
2149  *  It programs the chain or the ring and supports oversized frames
2150  *  and SG feature.
2151  */
2152 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
2153 {
2154 	struct stmmac_priv *priv = netdev_priv(dev);
2155 	unsigned int nopaged_len = skb_headlen(skb);
2156 	int i, csum_insertion = 0, is_jumbo = 0;
2157 	int nfrags = skb_shinfo(skb)->nr_frags;
2158 	unsigned int entry, first_entry;
2159 	struct dma_desc *desc, *first;
2160 	unsigned int enh_desc;
2161 	unsigned int des;
2162 
2163 	/* Manage oversized TCP frames for GMAC4 device */
2164 	if (skb_is_gso(skb) && priv->tso) {
2165 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2166 			return stmmac_tso_xmit(skb, dev);
2167 	}
2168 
2169 	spin_lock(&priv->tx_lock);
2170 
2171 	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
2172 		spin_unlock(&priv->tx_lock);
2173 		if (!netif_queue_stopped(dev)) {
2174 			netif_stop_queue(dev);
2175 			/* This is a hard error, log it. */
2176 			pr_err("%s: Tx Ring full when queue awake\n", __func__);
2177 		}
2178 		return NETDEV_TX_BUSY;
2179 	}
2180 
2181 	if (priv->tx_path_in_lpi_mode)
2182 		stmmac_disable_eee_mode(priv);
2183 
2184 	entry = priv->cur_tx;
2185 	first_entry = entry;
2186 
2187 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
2188 
2189 	if (likely(priv->extend_desc))
2190 		desc = (struct dma_desc *)(priv->dma_etx + entry);
2191 	else
2192 		desc = priv->dma_tx + entry;
2193 
2194 	first = desc;
2195 
2196 	priv->tx_skbuff[first_entry] = skb;
2197 
2198 	enh_desc = priv->plat->enh_desc;
2199 	/* To program the descriptors according to the size of the frame */
2200 	if (enh_desc)
2201 		is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
2202 
2203 	if (unlikely(is_jumbo) && likely(priv->synopsys_id <
2204 					 DWMAC_CORE_4_00)) {
2205 		entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
2206 		if (unlikely(entry < 0))
2207 			goto dma_map_err;
2208 	}
2209 
2210 	for (i = 0; i < nfrags; i++) {
2211 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2212 		int len = skb_frag_size(frag);
2213 		bool last_segment = (i == (nfrags - 1));
2214 
2215 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2216 
2217 		if (likely(priv->extend_desc))
2218 			desc = (struct dma_desc *)(priv->dma_etx + entry);
2219 		else
2220 			desc = priv->dma_tx + entry;
2221 
2222 		des = skb_frag_dma_map(priv->device, frag, 0, len,
2223 				       DMA_TO_DEVICE);
2224 		if (dma_mapping_error(priv->device, des))
2225 			goto dma_map_err; /* should reuse desc w/o issues */
2226 
2227 		priv->tx_skbuff[entry] = NULL;
2228 
2229 		if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
2230 			desc->des0 = des;
2231 			priv->tx_skbuff_dma[entry].buf = desc->des0;
2232 		} else {
2233 			desc->des2 = des;
2234 			priv->tx_skbuff_dma[entry].buf = desc->des2;
2235 		}
2236 
2237 		priv->tx_skbuff_dma[entry].map_as_page = true;
2238 		priv->tx_skbuff_dma[entry].len = len;
2239 		priv->tx_skbuff_dma[entry].last_segment = last_segment;
2240 
2241 		/* Prepare the descriptor and set the own bit too */
2242 		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
2243 						priv->mode, 1, last_segment);
2244 	}
2245 
2246 	entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2247 
2248 	priv->cur_tx = entry;
2249 
2250 	if (netif_msg_pktdata(priv)) {
2251 		void *tx_head;
2252 
2253 		pr_debug("%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
2254 			 __func__, priv->cur_tx, priv->dirty_tx, first_entry,
2255 			 entry, first, nfrags);
2256 
2257 		if (priv->extend_desc)
2258 			tx_head = (void *)priv->dma_etx;
2259 		else
2260 			tx_head = (void *)priv->dma_tx;
2261 
2262 		priv->hw->desc->display_ring(tx_head, DMA_TX_SIZE, false);
2263 
2264 		pr_debug(">>> frame to be transmitted: ");
2265 		print_pkt(skb->data, skb->len);
2266 	}
2267 
2268 	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2269 		if (netif_msg_hw(priv))
2270 			pr_debug("%s: stop transmitted packets\n", __func__);
2271 		netif_stop_queue(dev);
2272 	}
2273 
2274 	dev->stats.tx_bytes += skb->len;
2275 
2276 	/* According to the coalesce parameter the IC bit for the latest
2277 	 * segment is reset and the timer re-started to clean the tx status.
2278 	 * This approach takes care about the fragments: desc is the first
2279 	 * element in case of no SG.
2280 	 */
2281 	priv->tx_count_frames += nfrags + 1;
2282 	if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
2283 		mod_timer(&priv->txtimer,
2284 			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
2285 	} else {
2286 		priv->tx_count_frames = 0;
2287 		priv->hw->desc->set_tx_ic(desc);
2288 		priv->xstats.tx_set_ic_bit++;
2289 	}
2290 
2291 	if (!priv->hwts_tx_en)
2292 		skb_tx_timestamp(skb);
2293 
2294 	/* Ready to fill the first descriptor and set the OWN bit w/o any
2295 	 * problems because all the descriptors are actually ready to be
2296 	 * passed to the DMA engine.
2297 	 */
2298 	if (likely(!is_jumbo)) {
2299 		bool last_segment = (nfrags == 0);
2300 
2301 		des = dma_map_single(priv->device, skb->data,
2302 				     nopaged_len, DMA_TO_DEVICE);
2303 		if (dma_mapping_error(priv->device, des))
2304 			goto dma_map_err;
2305 
2306 		if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
2307 			first->des0 = des;
2308 			priv->tx_skbuff_dma[first_entry].buf = first->des0;
2309 		} else {
2310 			first->des2 = des;
2311 			priv->tx_skbuff_dma[first_entry].buf = first->des2;
2312 		}
2313 
2314 		priv->tx_skbuff_dma[first_entry].len = nopaged_len;
2315 		priv->tx_skbuff_dma[first_entry].last_segment = last_segment;
2316 
2317 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2318 			     priv->hwts_tx_en)) {
2319 			/* declare that device is doing timestamping */
2320 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2321 			priv->hw->desc->enable_tx_timestamp(first);
2322 		}
2323 
2324 		/* Prepare the first descriptor setting the OWN bit too */
2325 		priv->hw->desc->prepare_tx_desc(first, 1, nopaged_len,
2326 						csum_insertion, priv->mode, 1,
2327 						last_segment);
2328 
2329 		/* The own bit must be the latest setting done when prepare the
2330 		 * descriptor and then barrier is needed to make sure that
2331 		 * all is coherent before granting the DMA engine.
2332 		 */
2333 		smp_wmb();
2334 	}
2335 
2336 	netdev_sent_queue(dev, skb->len);
2337 
2338 	if (priv->synopsys_id < DWMAC_CORE_4_00)
2339 		priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2340 	else
2341 		priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
2342 					       STMMAC_CHAN0);
2343 
2344 	spin_unlock(&priv->tx_lock);
2345 	return NETDEV_TX_OK;
2346 
2347 dma_map_err:
2348 	spin_unlock(&priv->tx_lock);
2349 	dev_err(priv->device, "Tx dma map failed\n");
2350 	dev_kfree_skb(skb);
2351 	priv->dev->stats.tx_dropped++;
2352 	return NETDEV_TX_OK;
2353 }
2354 
2355 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2356 {
2357 	struct ethhdr *ehdr;
2358 	u16 vlanid;
2359 
2360 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2361 	    NETIF_F_HW_VLAN_CTAG_RX &&
2362 	    !__vlan_get_tag(skb, &vlanid)) {
2363 		/* pop the vlan tag */
2364 		ehdr = (struct ethhdr *)skb->data;
2365 		memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2366 		skb_pull(skb, VLAN_HLEN);
2367 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2368 	}
2369 }
2370 
2371 
2372 static inline int stmmac_rx_threshold_count(struct stmmac_priv *priv)
2373 {
2374 	if (priv->rx_zeroc_thresh < STMMAC_RX_THRESH)
2375 		return 0;
2376 
2377 	return 1;
2378 }
2379 
2380 /**
2381  * stmmac_rx_refill - refill used skb preallocated buffers
2382  * @priv: driver private structure
2383  * Description : this is to reallocate the skb for the reception process
2384  * that is based on zero-copy.
2385  */
2386 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2387 {
2388 	int bfsize = priv->dma_buf_sz;
2389 	unsigned int entry = priv->dirty_rx;
2390 	int dirty = stmmac_rx_dirty(priv);
2391 
2392 	while (dirty-- > 0) {
2393 		struct dma_desc *p;
2394 
2395 		if (priv->extend_desc)
2396 			p = (struct dma_desc *)(priv->dma_erx + entry);
2397 		else
2398 			p = priv->dma_rx + entry;
2399 
2400 		if (likely(priv->rx_skbuff[entry] == NULL)) {
2401 			struct sk_buff *skb;
2402 
2403 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2404 			if (unlikely(!skb)) {
2405 				/* so for a while no zero-copy! */
2406 				priv->rx_zeroc_thresh = STMMAC_RX_THRESH;
2407 				if (unlikely(net_ratelimit()))
2408 					dev_err(priv->device,
2409 						"fail to alloc skb entry %d\n",
2410 						entry);
2411 				break;
2412 			}
2413 
2414 			priv->rx_skbuff[entry] = skb;
2415 			priv->rx_skbuff_dma[entry] =
2416 			    dma_map_single(priv->device, skb->data, bfsize,
2417 					   DMA_FROM_DEVICE);
2418 			if (dma_mapping_error(priv->device,
2419 					      priv->rx_skbuff_dma[entry])) {
2420 				dev_err(priv->device, "Rx dma map failed\n");
2421 				dev_kfree_skb(skb);
2422 				break;
2423 			}
2424 
2425 			if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
2426 				p->des0 = priv->rx_skbuff_dma[entry];
2427 				p->des1 = 0;
2428 			} else {
2429 				p->des2 = priv->rx_skbuff_dma[entry];
2430 			}
2431 			if (priv->hw->mode->refill_desc3)
2432 				priv->hw->mode->refill_desc3(priv, p);
2433 
2434 			if (priv->rx_zeroc_thresh > 0)
2435 				priv->rx_zeroc_thresh--;
2436 
2437 			if (netif_msg_rx_status(priv))
2438 				pr_debug("\trefill entry #%d\n", entry);
2439 		}
2440 		wmb();
2441 
2442 		if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
2443 			priv->hw->desc->init_rx_desc(p, priv->use_riwt, 0, 0);
2444 		else
2445 			priv->hw->desc->set_rx_owner(p);
2446 
2447 		wmb();
2448 
2449 		entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
2450 	}
2451 	priv->dirty_rx = entry;
2452 }
2453 
2454 /**
2455  * stmmac_rx - manage the receive process
2456  * @priv: driver private structure
2457  * @limit: napi bugget.
2458  * Description :  this the function called by the napi poll method.
2459  * It gets all the frames inside the ring.
2460  */
2461 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2462 {
2463 	unsigned int entry = priv->cur_rx;
2464 	unsigned int next_entry;
2465 	unsigned int count = 0;
2466 	int coe = priv->hw->rx_csum;
2467 
2468 	if (netif_msg_rx_status(priv)) {
2469 		void *rx_head;
2470 
2471 		pr_debug("%s: descriptor ring:\n", __func__);
2472 		if (priv->extend_desc)
2473 			rx_head = (void *)priv->dma_erx;
2474 		else
2475 			rx_head = (void *)priv->dma_rx;
2476 
2477 		priv->hw->desc->display_ring(rx_head, DMA_RX_SIZE, true);
2478 	}
2479 	while (count < limit) {
2480 		int status;
2481 		struct dma_desc *p;
2482 
2483 		if (priv->extend_desc)
2484 			p = (struct dma_desc *)(priv->dma_erx + entry);
2485 		else
2486 			p = priv->dma_rx + entry;
2487 
2488 		/* read the status of the incoming frame */
2489 		status = priv->hw->desc->rx_status(&priv->dev->stats,
2490 						   &priv->xstats, p);
2491 		/* check if managed by the DMA otherwise go ahead */
2492 		if (unlikely(status & dma_own))
2493 			break;
2494 
2495 		count++;
2496 
2497 		priv->cur_rx = STMMAC_GET_ENTRY(priv->cur_rx, DMA_RX_SIZE);
2498 		next_entry = priv->cur_rx;
2499 
2500 		if (priv->extend_desc)
2501 			prefetch(priv->dma_erx + next_entry);
2502 		else
2503 			prefetch(priv->dma_rx + next_entry);
2504 
2505 		if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2506 			priv->hw->desc->rx_extended_status(&priv->dev->stats,
2507 							   &priv->xstats,
2508 							   priv->dma_erx +
2509 							   entry);
2510 		if (unlikely(status == discard_frame)) {
2511 			priv->dev->stats.rx_errors++;
2512 			if (priv->hwts_rx_en && !priv->extend_desc) {
2513 				/* DESC2 & DESC3 will be overwitten by device
2514 				 * with timestamp value, hence reinitialize
2515 				 * them in stmmac_rx_refill() function so that
2516 				 * device can reuse it.
2517 				 */
2518 				priv->rx_skbuff[entry] = NULL;
2519 				dma_unmap_single(priv->device,
2520 						 priv->rx_skbuff_dma[entry],
2521 						 priv->dma_buf_sz,
2522 						 DMA_FROM_DEVICE);
2523 			}
2524 		} else {
2525 			struct sk_buff *skb;
2526 			int frame_len;
2527 			unsigned int des;
2528 
2529 			if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
2530 				des = p->des0;
2531 			else
2532 				des = p->des2;
2533 
2534 			frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2535 
2536 			/*  If frame length is greather than skb buffer size
2537 			 *  (preallocated during init) then the packet is
2538 			 *  ignored
2539 			 */
2540 			if (frame_len > priv->dma_buf_sz) {
2541 				pr_err("%s: len %d larger than size (%d)\n",
2542 				       priv->dev->name, frame_len,
2543 				       priv->dma_buf_sz);
2544 				priv->dev->stats.rx_length_errors++;
2545 				break;
2546 			}
2547 
2548 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2549 			 * Type frames (LLC/LLC-SNAP)
2550 			 */
2551 			if (unlikely(status != llc_snap))
2552 				frame_len -= ETH_FCS_LEN;
2553 
2554 			if (netif_msg_rx_status(priv)) {
2555 				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2556 					p, entry, des);
2557 				if (frame_len > ETH_FRAME_LEN)
2558 					pr_debug("\tframe size %d, COE: %d\n",
2559 						 frame_len, status);
2560 			}
2561 
2562 			/* The zero-copy is always used for all the sizes
2563 			 * in case of GMAC4 because it needs
2564 			 * to refill the used descriptors, always.
2565 			 */
2566 			if (unlikely(!priv->plat->has_gmac4 &&
2567 				     ((frame_len < priv->rx_copybreak) ||
2568 				     stmmac_rx_threshold_count(priv)))) {
2569 				skb = netdev_alloc_skb_ip_align(priv->dev,
2570 								frame_len);
2571 				if (unlikely(!skb)) {
2572 					if (net_ratelimit())
2573 						dev_warn(priv->device,
2574 							 "packet dropped\n");
2575 					priv->dev->stats.rx_dropped++;
2576 					break;
2577 				}
2578 
2579 				dma_sync_single_for_cpu(priv->device,
2580 							priv->rx_skbuff_dma
2581 							[entry], frame_len,
2582 							DMA_FROM_DEVICE);
2583 				skb_copy_to_linear_data(skb,
2584 							priv->
2585 							rx_skbuff[entry]->data,
2586 							frame_len);
2587 
2588 				skb_put(skb, frame_len);
2589 				dma_sync_single_for_device(priv->device,
2590 							   priv->rx_skbuff_dma
2591 							   [entry], frame_len,
2592 							   DMA_FROM_DEVICE);
2593 			} else {
2594 				skb = priv->rx_skbuff[entry];
2595 				if (unlikely(!skb)) {
2596 					pr_err("%s: Inconsistent Rx chain\n",
2597 					       priv->dev->name);
2598 					priv->dev->stats.rx_dropped++;
2599 					break;
2600 				}
2601 				prefetch(skb->data - NET_IP_ALIGN);
2602 				priv->rx_skbuff[entry] = NULL;
2603 				priv->rx_zeroc_thresh++;
2604 
2605 				skb_put(skb, frame_len);
2606 				dma_unmap_single(priv->device,
2607 						 priv->rx_skbuff_dma[entry],
2608 						 priv->dma_buf_sz,
2609 						 DMA_FROM_DEVICE);
2610 			}
2611 
2612 			stmmac_get_rx_hwtstamp(priv, entry, skb);
2613 
2614 			if (netif_msg_pktdata(priv)) {
2615 				pr_debug("frame received (%dbytes)", frame_len);
2616 				print_pkt(skb->data, frame_len);
2617 			}
2618 
2619 			stmmac_rx_vlan(priv->dev, skb);
2620 
2621 			skb->protocol = eth_type_trans(skb, priv->dev);
2622 
2623 			if (unlikely(!coe))
2624 				skb_checksum_none_assert(skb);
2625 			else
2626 				skb->ip_summed = CHECKSUM_UNNECESSARY;
2627 
2628 			napi_gro_receive(&priv->napi, skb);
2629 
2630 			priv->dev->stats.rx_packets++;
2631 			priv->dev->stats.rx_bytes += frame_len;
2632 		}
2633 		entry = next_entry;
2634 	}
2635 
2636 	stmmac_rx_refill(priv);
2637 
2638 	priv->xstats.rx_pkt_n += count;
2639 
2640 	return count;
2641 }
2642 
2643 /**
2644  *  stmmac_poll - stmmac poll method (NAPI)
2645  *  @napi : pointer to the napi structure.
2646  *  @budget : maximum number of packets that the current CPU can receive from
2647  *	      all interfaces.
2648  *  Description :
2649  *  To look at the incoming frames and clear the tx resources.
2650  */
2651 static int stmmac_poll(struct napi_struct *napi, int budget)
2652 {
2653 	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2654 	int work_done = 0;
2655 
2656 	priv->xstats.napi_poll++;
2657 	stmmac_tx_clean(priv);
2658 
2659 	work_done = stmmac_rx(priv, budget);
2660 	if (work_done < budget) {
2661 		napi_complete(napi);
2662 		stmmac_enable_dma_irq(priv);
2663 	}
2664 	return work_done;
2665 }
2666 
2667 /**
2668  *  stmmac_tx_timeout
2669  *  @dev : Pointer to net device structure
2670  *  Description: this function is called when a packet transmission fails to
2671  *   complete within a reasonable time. The driver will mark the error in the
2672  *   netdev structure and arrange for the device to be reset to a sane state
2673  *   in order to transmit a new packet.
2674  */
2675 static void stmmac_tx_timeout(struct net_device *dev)
2676 {
2677 	struct stmmac_priv *priv = netdev_priv(dev);
2678 
2679 	/* Clear Tx resources and restart transmitting again */
2680 	stmmac_tx_err(priv);
2681 }
2682 
2683 /**
2684  *  stmmac_set_rx_mode - entry point for multicast addressing
2685  *  @dev : pointer to the device structure
2686  *  Description:
2687  *  This function is a driver entry point which gets called by the kernel
2688  *  whenever multicast addresses must be enabled/disabled.
2689  *  Return value:
2690  *  void.
2691  */
2692 static void stmmac_set_rx_mode(struct net_device *dev)
2693 {
2694 	struct stmmac_priv *priv = netdev_priv(dev);
2695 
2696 	priv->hw->mac->set_filter(priv->hw, dev);
2697 }
2698 
2699 /**
2700  *  stmmac_change_mtu - entry point to change MTU size for the device.
2701  *  @dev : device pointer.
2702  *  @new_mtu : the new MTU size for the device.
2703  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
2704  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
2705  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
2706  *  Return value:
2707  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2708  *  file on failure.
2709  */
2710 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2711 {
2712 	struct stmmac_priv *priv = netdev_priv(dev);
2713 	int max_mtu;
2714 
2715 	if (netif_running(dev)) {
2716 		pr_err("%s: must be stopped to change its MTU\n", dev->name);
2717 		return -EBUSY;
2718 	}
2719 
2720 	if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
2721 		max_mtu = JUMBO_LEN;
2722 	else
2723 		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2724 
2725 	if (priv->plat->maxmtu < max_mtu)
2726 		max_mtu = priv->plat->maxmtu;
2727 
2728 	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2729 		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2730 		return -EINVAL;
2731 	}
2732 
2733 	dev->mtu = new_mtu;
2734 
2735 	netdev_update_features(dev);
2736 
2737 	return 0;
2738 }
2739 
2740 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2741 					     netdev_features_t features)
2742 {
2743 	struct stmmac_priv *priv = netdev_priv(dev);
2744 
2745 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2746 		features &= ~NETIF_F_RXCSUM;
2747 
2748 	if (!priv->plat->tx_coe)
2749 		features &= ~NETIF_F_CSUM_MASK;
2750 
2751 	/* Some GMAC devices have a bugged Jumbo frame support that
2752 	 * needs to have the Tx COE disabled for oversized frames
2753 	 * (due to limited buffer sizes). In this case we disable
2754 	 * the TX csum insertionin the TDES and not use SF.
2755 	 */
2756 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2757 		features &= ~NETIF_F_CSUM_MASK;
2758 
2759 	/* Disable tso if asked by ethtool */
2760 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
2761 		if (features & NETIF_F_TSO)
2762 			priv->tso = true;
2763 		else
2764 			priv->tso = false;
2765 	}
2766 
2767 	return features;
2768 }
2769 
2770 static int stmmac_set_features(struct net_device *netdev,
2771 			       netdev_features_t features)
2772 {
2773 	struct stmmac_priv *priv = netdev_priv(netdev);
2774 
2775 	/* Keep the COE Type in case of csum is supporting */
2776 	if (features & NETIF_F_RXCSUM)
2777 		priv->hw->rx_csum = priv->plat->rx_coe;
2778 	else
2779 		priv->hw->rx_csum = 0;
2780 	/* No check needed because rx_coe has been set before and it will be
2781 	 * fixed in case of issue.
2782 	 */
2783 	priv->hw->mac->rx_ipc(priv->hw);
2784 
2785 	return 0;
2786 }
2787 
2788 /**
2789  *  stmmac_interrupt - main ISR
2790  *  @irq: interrupt number.
2791  *  @dev_id: to pass the net device pointer.
2792  *  Description: this is the main driver interrupt service routine.
2793  *  It can call:
2794  *  o DMA service routine (to manage incoming frame reception and transmission
2795  *    status)
2796  *  o Core interrupts to manage: remote wake-up, management counter, LPI
2797  *    interrupts.
2798  */
2799 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2800 {
2801 	struct net_device *dev = (struct net_device *)dev_id;
2802 	struct stmmac_priv *priv = netdev_priv(dev);
2803 
2804 	if (priv->irq_wake)
2805 		pm_wakeup_event(priv->device, 0);
2806 
2807 	if (unlikely(!dev)) {
2808 		pr_err("%s: invalid dev pointer\n", __func__);
2809 		return IRQ_NONE;
2810 	}
2811 
2812 	/* To handle GMAC own interrupts */
2813 	if ((priv->plat->has_gmac) || (priv->plat->has_gmac4)) {
2814 		int status = priv->hw->mac->host_irq_status(priv->hw,
2815 							    &priv->xstats);
2816 		if (unlikely(status)) {
2817 			/* For LPI we need to save the tx status */
2818 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2819 				priv->tx_path_in_lpi_mode = true;
2820 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2821 				priv->tx_path_in_lpi_mode = false;
2822 			if (status & CORE_IRQ_MTL_RX_OVERFLOW && priv->hw->dma->set_rx_tail_ptr)
2823 				priv->hw->dma->set_rx_tail_ptr(priv->ioaddr,
2824 							priv->rx_tail_addr,
2825 							STMMAC_CHAN0);
2826 		}
2827 
2828 		/* PCS link status */
2829 		if (priv->hw->pcs) {
2830 			if (priv->xstats.pcs_link)
2831 				netif_carrier_on(dev);
2832 			else
2833 				netif_carrier_off(dev);
2834 		}
2835 	}
2836 
2837 	/* To handle DMA interrupts */
2838 	stmmac_dma_interrupt(priv);
2839 
2840 	return IRQ_HANDLED;
2841 }
2842 
2843 #ifdef CONFIG_NET_POLL_CONTROLLER
2844 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2845  * to allow network I/O with interrupts disabled.
2846  */
2847 static void stmmac_poll_controller(struct net_device *dev)
2848 {
2849 	disable_irq(dev->irq);
2850 	stmmac_interrupt(dev->irq, dev);
2851 	enable_irq(dev->irq);
2852 }
2853 #endif
2854 
2855 /**
2856  *  stmmac_ioctl - Entry point for the Ioctl
2857  *  @dev: Device pointer.
2858  *  @rq: An IOCTL specefic structure, that can contain a pointer to
2859  *  a proprietary structure used to pass information to the driver.
2860  *  @cmd: IOCTL command
2861  *  Description:
2862  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2863  */
2864 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2865 {
2866 	struct stmmac_priv *priv = netdev_priv(dev);
2867 	int ret = -EOPNOTSUPP;
2868 
2869 	if (!netif_running(dev))
2870 		return -EINVAL;
2871 
2872 	switch (cmd) {
2873 	case SIOCGMIIPHY:
2874 	case SIOCGMIIREG:
2875 	case SIOCSMIIREG:
2876 		if (!priv->phydev)
2877 			return -EINVAL;
2878 		ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2879 		break;
2880 	case SIOCSHWTSTAMP:
2881 		ret = stmmac_hwtstamp_ioctl(dev, rq);
2882 		break;
2883 	default:
2884 		break;
2885 	}
2886 
2887 	return ret;
2888 }
2889 
2890 #ifdef CONFIG_DEBUG_FS
2891 static struct dentry *stmmac_fs_dir;
2892 
2893 static void sysfs_display_ring(void *head, int size, int extend_desc,
2894 			       struct seq_file *seq)
2895 {
2896 	int i;
2897 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2898 	struct dma_desc *p = (struct dma_desc *)head;
2899 
2900 	for (i = 0; i < size; i++) {
2901 		u64 x;
2902 		if (extend_desc) {
2903 			x = *(u64 *) ep;
2904 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2905 				   i, (unsigned int)virt_to_phys(ep),
2906 				   ep->basic.des0, ep->basic.des1,
2907 				   ep->basic.des2, ep->basic.des3);
2908 			ep++;
2909 		} else {
2910 			x = *(u64 *) p;
2911 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2912 				   i, (unsigned int)virt_to_phys(ep),
2913 				   p->des0, p->des1, p->des2, p->des3);
2914 			p++;
2915 		}
2916 		seq_printf(seq, "\n");
2917 	}
2918 }
2919 
2920 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2921 {
2922 	struct net_device *dev = seq->private;
2923 	struct stmmac_priv *priv = netdev_priv(dev);
2924 
2925 	if (priv->extend_desc) {
2926 		seq_printf(seq, "Extended RX descriptor ring:\n");
2927 		sysfs_display_ring((void *)priv->dma_erx, DMA_RX_SIZE, 1, seq);
2928 		seq_printf(seq, "Extended TX descriptor ring:\n");
2929 		sysfs_display_ring((void *)priv->dma_etx, DMA_TX_SIZE, 1, seq);
2930 	} else {
2931 		seq_printf(seq, "RX descriptor ring:\n");
2932 		sysfs_display_ring((void *)priv->dma_rx, DMA_RX_SIZE, 0, seq);
2933 		seq_printf(seq, "TX descriptor ring:\n");
2934 		sysfs_display_ring((void *)priv->dma_tx, DMA_TX_SIZE, 0, seq);
2935 	}
2936 
2937 	return 0;
2938 }
2939 
2940 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2941 {
2942 	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2943 }
2944 
2945 static const struct file_operations stmmac_rings_status_fops = {
2946 	.owner = THIS_MODULE,
2947 	.open = stmmac_sysfs_ring_open,
2948 	.read = seq_read,
2949 	.llseek = seq_lseek,
2950 	.release = single_release,
2951 };
2952 
2953 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2954 {
2955 	struct net_device *dev = seq->private;
2956 	struct stmmac_priv *priv = netdev_priv(dev);
2957 
2958 	if (!priv->hw_cap_support) {
2959 		seq_printf(seq, "DMA HW features not supported\n");
2960 		return 0;
2961 	}
2962 
2963 	seq_printf(seq, "==============================\n");
2964 	seq_printf(seq, "\tDMA HW features\n");
2965 	seq_printf(seq, "==============================\n");
2966 
2967 	seq_printf(seq, "\t10/100 Mbps %s\n",
2968 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2969 	seq_printf(seq, "\t1000 Mbps %s\n",
2970 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
2971 	seq_printf(seq, "\tHalf duple %s\n",
2972 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
2973 	seq_printf(seq, "\tHash Filter: %s\n",
2974 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
2975 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2976 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
2977 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2978 		   (priv->dma_cap.pcs) ? "Y" : "N");
2979 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2980 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
2981 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
2982 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2983 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
2984 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2985 	seq_printf(seq, "\tRMON module: %s\n",
2986 		   (priv->dma_cap.rmon) ? "Y" : "N");
2987 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2988 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
2989 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2990 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
2991 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2992 		   (priv->dma_cap.eee) ? "Y" : "N");
2993 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2994 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2995 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
2996 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
2997 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
2998 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
2999 	} else {
3000 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
3001 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
3002 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
3003 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
3004 	}
3005 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
3006 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
3007 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
3008 		   priv->dma_cap.number_rx_channel);
3009 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
3010 		   priv->dma_cap.number_tx_channel);
3011 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
3012 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
3013 
3014 	return 0;
3015 }
3016 
3017 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
3018 {
3019 	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
3020 }
3021 
3022 static const struct file_operations stmmac_dma_cap_fops = {
3023 	.owner = THIS_MODULE,
3024 	.open = stmmac_sysfs_dma_cap_open,
3025 	.read = seq_read,
3026 	.llseek = seq_lseek,
3027 	.release = single_release,
3028 };
3029 
3030 static int stmmac_init_fs(struct net_device *dev)
3031 {
3032 	struct stmmac_priv *priv = netdev_priv(dev);
3033 
3034 	/* Create per netdev entries */
3035 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
3036 
3037 	if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
3038 		pr_err("ERROR %s/%s, debugfs create directory failed\n",
3039 		       STMMAC_RESOURCE_NAME, dev->name);
3040 
3041 		return -ENOMEM;
3042 	}
3043 
3044 	/* Entry to report DMA RX/TX rings */
3045 	priv->dbgfs_rings_status =
3046 		debugfs_create_file("descriptors_status", S_IRUGO,
3047 				    priv->dbgfs_dir, dev,
3048 				    &stmmac_rings_status_fops);
3049 
3050 	if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
3051 		pr_info("ERROR creating stmmac ring debugfs file\n");
3052 		debugfs_remove_recursive(priv->dbgfs_dir);
3053 
3054 		return -ENOMEM;
3055 	}
3056 
3057 	/* Entry to report the DMA HW features */
3058 	priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
3059 					    priv->dbgfs_dir,
3060 					    dev, &stmmac_dma_cap_fops);
3061 
3062 	if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
3063 		pr_info("ERROR creating stmmac MMC debugfs file\n");
3064 		debugfs_remove_recursive(priv->dbgfs_dir);
3065 
3066 		return -ENOMEM;
3067 	}
3068 
3069 	return 0;
3070 }
3071 
3072 static void stmmac_exit_fs(struct net_device *dev)
3073 {
3074 	struct stmmac_priv *priv = netdev_priv(dev);
3075 
3076 	debugfs_remove_recursive(priv->dbgfs_dir);
3077 }
3078 #endif /* CONFIG_DEBUG_FS */
3079 
3080 static const struct net_device_ops stmmac_netdev_ops = {
3081 	.ndo_open = stmmac_open,
3082 	.ndo_start_xmit = stmmac_xmit,
3083 	.ndo_stop = stmmac_release,
3084 	.ndo_change_mtu = stmmac_change_mtu,
3085 	.ndo_fix_features = stmmac_fix_features,
3086 	.ndo_set_features = stmmac_set_features,
3087 	.ndo_set_rx_mode = stmmac_set_rx_mode,
3088 	.ndo_tx_timeout = stmmac_tx_timeout,
3089 	.ndo_do_ioctl = stmmac_ioctl,
3090 #ifdef CONFIG_NET_POLL_CONTROLLER
3091 	.ndo_poll_controller = stmmac_poll_controller,
3092 #endif
3093 	.ndo_set_mac_address = eth_mac_addr,
3094 };
3095 
3096 /**
3097  *  stmmac_hw_init - Init the MAC device
3098  *  @priv: driver private structure
3099  *  Description: this function is to configure the MAC device according to
3100  *  some platform parameters or the HW capability register. It prepares the
3101  *  driver to use either ring or chain modes and to setup either enhanced or
3102  *  normal descriptors.
3103  */
3104 static int stmmac_hw_init(struct stmmac_priv *priv)
3105 {
3106 	struct mac_device_info *mac;
3107 
3108 	/* Identify the MAC HW device */
3109 	if (priv->plat->has_gmac) {
3110 		priv->dev->priv_flags |= IFF_UNICAST_FLT;
3111 		mac = dwmac1000_setup(priv->ioaddr,
3112 				      priv->plat->multicast_filter_bins,
3113 				      priv->plat->unicast_filter_entries,
3114 				      &priv->synopsys_id);
3115 	} else if (priv->plat->has_gmac4) {
3116 		priv->dev->priv_flags |= IFF_UNICAST_FLT;
3117 		mac = dwmac4_setup(priv->ioaddr,
3118 				   priv->plat->multicast_filter_bins,
3119 				   priv->plat->unicast_filter_entries,
3120 				   &priv->synopsys_id);
3121 	} else {
3122 		mac = dwmac100_setup(priv->ioaddr, &priv->synopsys_id);
3123 	}
3124 	if (!mac)
3125 		return -ENOMEM;
3126 
3127 	priv->hw = mac;
3128 
3129 	/* To use the chained or ring mode */
3130 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3131 		priv->hw->mode = &dwmac4_ring_mode_ops;
3132 	} else {
3133 		if (chain_mode) {
3134 			priv->hw->mode = &chain_mode_ops;
3135 			pr_info(" Chain mode enabled\n");
3136 			priv->mode = STMMAC_CHAIN_MODE;
3137 		} else {
3138 			priv->hw->mode = &ring_mode_ops;
3139 			pr_info(" Ring mode enabled\n");
3140 			priv->mode = STMMAC_RING_MODE;
3141 		}
3142 	}
3143 
3144 	/* Get the HW capability (new GMAC newer than 3.50a) */
3145 	priv->hw_cap_support = stmmac_get_hw_features(priv);
3146 	if (priv->hw_cap_support) {
3147 		pr_info(" DMA HW capability register supported");
3148 
3149 		/* We can override some gmac/dma configuration fields: e.g.
3150 		 * enh_desc, tx_coe (e.g. that are passed through the
3151 		 * platform) with the values from the HW capability
3152 		 * register (if supported).
3153 		 */
3154 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
3155 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
3156 		priv->hw->pmt = priv->plat->pmt;
3157 
3158 		/* TXCOE doesn't work in thresh DMA mode */
3159 		if (priv->plat->force_thresh_dma_mode)
3160 			priv->plat->tx_coe = 0;
3161 		else
3162 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
3163 
3164 		/* In case of GMAC4 rx_coe is from HW cap register. */
3165 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
3166 
3167 		if (priv->dma_cap.rx_coe_type2)
3168 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
3169 		else if (priv->dma_cap.rx_coe_type1)
3170 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
3171 
3172 	} else
3173 		pr_info(" No HW DMA feature register supported");
3174 
3175 	/* To use alternate (extended), normal or GMAC4 descriptor structures */
3176 	if (priv->synopsys_id >= DWMAC_CORE_4_00)
3177 		priv->hw->desc = &dwmac4_desc_ops;
3178 	else
3179 		stmmac_selec_desc_mode(priv);
3180 
3181 	if (priv->plat->rx_coe) {
3182 		priv->hw->rx_csum = priv->plat->rx_coe;
3183 		pr_info(" RX Checksum Offload Engine supported\n");
3184 		if (priv->synopsys_id < DWMAC_CORE_4_00)
3185 			pr_info("\tCOE Type %d\n", priv->hw->rx_csum);
3186 	}
3187 	if (priv->plat->tx_coe)
3188 		pr_info(" TX Checksum insertion supported\n");
3189 
3190 	if (priv->plat->pmt) {
3191 		pr_info(" Wake-Up On Lan supported\n");
3192 		device_set_wakeup_capable(priv->device, 1);
3193 	}
3194 
3195 	if (priv->dma_cap.tsoen)
3196 		pr_info(" TSO supported\n");
3197 
3198 	return 0;
3199 }
3200 
3201 /**
3202  * stmmac_dvr_probe
3203  * @device: device pointer
3204  * @plat_dat: platform data pointer
3205  * @res: stmmac resource pointer
3206  * Description: this is the main probe function used to
3207  * call the alloc_etherdev, allocate the priv structure.
3208  * Return:
3209  * returns 0 on success, otherwise errno.
3210  */
3211 int stmmac_dvr_probe(struct device *device,
3212 		     struct plat_stmmacenet_data *plat_dat,
3213 		     struct stmmac_resources *res)
3214 {
3215 	int ret = 0;
3216 	struct net_device *ndev = NULL;
3217 	struct stmmac_priv *priv;
3218 
3219 	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
3220 	if (!ndev)
3221 		return -ENOMEM;
3222 
3223 	SET_NETDEV_DEV(ndev, device);
3224 
3225 	priv = netdev_priv(ndev);
3226 	priv->device = device;
3227 	priv->dev = ndev;
3228 
3229 	stmmac_set_ethtool_ops(ndev);
3230 	priv->pause = pause;
3231 	priv->plat = plat_dat;
3232 	priv->ioaddr = res->addr;
3233 	priv->dev->base_addr = (unsigned long)res->addr;
3234 
3235 	priv->dev->irq = res->irq;
3236 	priv->wol_irq = res->wol_irq;
3237 	priv->lpi_irq = res->lpi_irq;
3238 
3239 	if (res->mac)
3240 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
3241 
3242 	dev_set_drvdata(device, priv->dev);
3243 
3244 	/* Verify driver arguments */
3245 	stmmac_verify_args();
3246 
3247 	/* Override with kernel parameters if supplied XXX CRS XXX
3248 	 * this needs to have multiple instances
3249 	 */
3250 	if ((phyaddr >= 0) && (phyaddr <= 31))
3251 		priv->plat->phy_addr = phyaddr;
3252 
3253 	priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
3254 	if (IS_ERR(priv->stmmac_clk)) {
3255 		dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
3256 			 __func__);
3257 		/* If failed to obtain stmmac_clk and specific clk_csr value
3258 		 * is NOT passed from the platform, probe fail.
3259 		 */
3260 		if (!priv->plat->clk_csr) {
3261 			ret = PTR_ERR(priv->stmmac_clk);
3262 			goto error_clk_get;
3263 		} else {
3264 			priv->stmmac_clk = NULL;
3265 		}
3266 	}
3267 	clk_prepare_enable(priv->stmmac_clk);
3268 
3269 	priv->pclk = devm_clk_get(priv->device, "pclk");
3270 	if (IS_ERR(priv->pclk)) {
3271 		if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) {
3272 			ret = -EPROBE_DEFER;
3273 			goto error_pclk_get;
3274 		}
3275 		priv->pclk = NULL;
3276 	}
3277 	clk_prepare_enable(priv->pclk);
3278 
3279 	priv->stmmac_rst = devm_reset_control_get(priv->device,
3280 						  STMMAC_RESOURCE_NAME);
3281 	if (IS_ERR(priv->stmmac_rst)) {
3282 		if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
3283 			ret = -EPROBE_DEFER;
3284 			goto error_hw_init;
3285 		}
3286 		dev_info(priv->device, "no reset control found\n");
3287 		priv->stmmac_rst = NULL;
3288 	}
3289 	if (priv->stmmac_rst)
3290 		reset_control_deassert(priv->stmmac_rst);
3291 
3292 	/* Init MAC and get the capabilities */
3293 	ret = stmmac_hw_init(priv);
3294 	if (ret)
3295 		goto error_hw_init;
3296 
3297 	ndev->netdev_ops = &stmmac_netdev_ops;
3298 
3299 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3300 			    NETIF_F_RXCSUM;
3301 
3302 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3303 		ndev->hw_features |= NETIF_F_TSO;
3304 		priv->tso = true;
3305 		pr_info(" TSO feature enabled\n");
3306 	}
3307 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
3308 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
3309 #ifdef STMMAC_VLAN_TAG_USED
3310 	/* Both mac100 and gmac support receive VLAN tag detection */
3311 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3312 #endif
3313 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
3314 
3315 	if (flow_ctrl)
3316 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
3317 
3318 	/* Rx Watchdog is available in the COREs newer than the 3.40.
3319 	 * In some case, for example on bugged HW this feature
3320 	 * has to be disable and this can be done by passing the
3321 	 * riwt_off field from the platform.
3322 	 */
3323 	if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
3324 		priv->use_riwt = 1;
3325 		pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
3326 	}
3327 
3328 	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
3329 
3330 	spin_lock_init(&priv->lock);
3331 	spin_lock_init(&priv->tx_lock);
3332 
3333 	ret = register_netdev(ndev);
3334 	if (ret) {
3335 		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
3336 		goto error_netdev_register;
3337 	}
3338 
3339 	/* If a specific clk_csr value is passed from the platform
3340 	 * this means that the CSR Clock Range selection cannot be
3341 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
3342 	 * set the MDC clock dynamically according to the csr actual
3343 	 * clock input.
3344 	 */
3345 	if (!priv->plat->clk_csr)
3346 		stmmac_clk_csr_set(priv);
3347 	else
3348 		priv->clk_csr = priv->plat->clk_csr;
3349 
3350 	stmmac_check_pcs_mode(priv);
3351 
3352 	if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
3353 	    priv->hw->pcs != STMMAC_PCS_TBI &&
3354 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
3355 		/* MDIO bus Registration */
3356 		ret = stmmac_mdio_register(ndev);
3357 		if (ret < 0) {
3358 			pr_debug("%s: MDIO bus (id: %d) registration failed",
3359 				 __func__, priv->plat->bus_id);
3360 			goto error_mdio_register;
3361 		}
3362 	}
3363 
3364 	return 0;
3365 
3366 error_mdio_register:
3367 	unregister_netdev(ndev);
3368 error_netdev_register:
3369 	netif_napi_del(&priv->napi);
3370 error_hw_init:
3371 	clk_disable_unprepare(priv->pclk);
3372 error_pclk_get:
3373 	clk_disable_unprepare(priv->stmmac_clk);
3374 error_clk_get:
3375 	free_netdev(ndev);
3376 
3377 	return ret;
3378 }
3379 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
3380 
3381 /**
3382  * stmmac_dvr_remove
3383  * @dev: device pointer
3384  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
3385  * changes the link status, releases the DMA descriptor rings.
3386  */
3387 int stmmac_dvr_remove(struct device *dev)
3388 {
3389 	struct net_device *ndev = dev_get_drvdata(dev);
3390 	struct stmmac_priv *priv = netdev_priv(ndev);
3391 
3392 	pr_info("%s:\n\tremoving driver", __func__);
3393 
3394 	priv->hw->dma->stop_rx(priv->ioaddr);
3395 	priv->hw->dma->stop_tx(priv->ioaddr);
3396 
3397 	stmmac_set_mac(priv->ioaddr, false);
3398 	netif_carrier_off(ndev);
3399 	unregister_netdev(ndev);
3400 	of_node_put(priv->plat->phy_node);
3401 	if (priv->stmmac_rst)
3402 		reset_control_assert(priv->stmmac_rst);
3403 	clk_disable_unprepare(priv->pclk);
3404 	clk_disable_unprepare(priv->stmmac_clk);
3405 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
3406 	    priv->hw->pcs != STMMAC_PCS_TBI &&
3407 	    priv->hw->pcs != STMMAC_PCS_RTBI)
3408 		stmmac_mdio_unregister(ndev);
3409 	free_netdev(ndev);
3410 
3411 	return 0;
3412 }
3413 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
3414 
3415 /**
3416  * stmmac_suspend - suspend callback
3417  * @dev: device pointer
3418  * Description: this is the function to suspend the device and it is called
3419  * by the platform driver to stop the network queue, release the resources,
3420  * program the PMT register (for WoL), clean and release driver resources.
3421  */
3422 int stmmac_suspend(struct device *dev)
3423 {
3424 	struct net_device *ndev = dev_get_drvdata(dev);
3425 	struct stmmac_priv *priv = netdev_priv(ndev);
3426 	unsigned long flags;
3427 
3428 	if (!ndev || !netif_running(ndev))
3429 		return 0;
3430 
3431 	if (priv->phydev)
3432 		phy_stop(priv->phydev);
3433 
3434 	spin_lock_irqsave(&priv->lock, flags);
3435 
3436 	netif_device_detach(ndev);
3437 	netif_stop_queue(ndev);
3438 
3439 	napi_disable(&priv->napi);
3440 
3441 	/* Stop TX/RX DMA */
3442 	priv->hw->dma->stop_tx(priv->ioaddr);
3443 	priv->hw->dma->stop_rx(priv->ioaddr);
3444 
3445 	/* Enable Power down mode by programming the PMT regs */
3446 	if (device_may_wakeup(priv->device)) {
3447 		priv->hw->mac->pmt(priv->hw, priv->wolopts);
3448 		priv->irq_wake = 1;
3449 	} else {
3450 		stmmac_set_mac(priv->ioaddr, false);
3451 		pinctrl_pm_select_sleep_state(priv->device);
3452 		/* Disable clock in case of PWM is off */
3453 		clk_disable(priv->pclk);
3454 		clk_disable(priv->stmmac_clk);
3455 	}
3456 	spin_unlock_irqrestore(&priv->lock, flags);
3457 
3458 	priv->oldlink = 0;
3459 	priv->speed = 0;
3460 	priv->oldduplex = -1;
3461 	return 0;
3462 }
3463 EXPORT_SYMBOL_GPL(stmmac_suspend);
3464 
3465 /**
3466  * stmmac_resume - resume callback
3467  * @dev: device pointer
3468  * Description: when resume this function is invoked to setup the DMA and CORE
3469  * in a usable state.
3470  */
3471 int stmmac_resume(struct device *dev)
3472 {
3473 	struct net_device *ndev = dev_get_drvdata(dev);
3474 	struct stmmac_priv *priv = netdev_priv(ndev);
3475 	unsigned long flags;
3476 
3477 	if (!netif_running(ndev))
3478 		return 0;
3479 
3480 	/* Power Down bit, into the PM register, is cleared
3481 	 * automatically as soon as a magic packet or a Wake-up frame
3482 	 * is received. Anyway, it's better to manually clear
3483 	 * this bit because it can generate problems while resuming
3484 	 * from another devices (e.g. serial console).
3485 	 */
3486 	if (device_may_wakeup(priv->device)) {
3487 		spin_lock_irqsave(&priv->lock, flags);
3488 		priv->hw->mac->pmt(priv->hw, 0);
3489 		spin_unlock_irqrestore(&priv->lock, flags);
3490 		priv->irq_wake = 0;
3491 	} else {
3492 		pinctrl_pm_select_default_state(priv->device);
3493 		/* enable the clk prevously disabled */
3494 		clk_enable(priv->stmmac_clk);
3495 		clk_enable(priv->pclk);
3496 		/* reset the phy so that it's ready */
3497 		if (priv->mii)
3498 			stmmac_mdio_reset(priv->mii);
3499 	}
3500 
3501 	netif_device_attach(ndev);
3502 
3503 	spin_lock_irqsave(&priv->lock, flags);
3504 
3505 	priv->cur_rx = 0;
3506 	priv->dirty_rx = 0;
3507 	priv->dirty_tx = 0;
3508 	priv->cur_tx = 0;
3509 	/* reset private mss value to force mss context settings at
3510 	 * next tso xmit (only used for gmac4).
3511 	 */
3512 	priv->mss = 0;
3513 
3514 	stmmac_clear_descriptors(priv);
3515 
3516 	stmmac_hw_setup(ndev, false);
3517 	stmmac_init_tx_coalesce(priv);
3518 	stmmac_set_rx_mode(ndev);
3519 
3520 	napi_enable(&priv->napi);
3521 
3522 	netif_start_queue(ndev);
3523 
3524 	spin_unlock_irqrestore(&priv->lock, flags);
3525 
3526 	if (priv->phydev)
3527 		phy_start(priv->phydev);
3528 
3529 	return 0;
3530 }
3531 EXPORT_SYMBOL_GPL(stmmac_resume);
3532 
3533 #ifndef MODULE
3534 static int __init stmmac_cmdline_opt(char *str)
3535 {
3536 	char *opt;
3537 
3538 	if (!str || !*str)
3539 		return -EINVAL;
3540 	while ((opt = strsep(&str, ",")) != NULL) {
3541 		if (!strncmp(opt, "debug:", 6)) {
3542 			if (kstrtoint(opt + 6, 0, &debug))
3543 				goto err;
3544 		} else if (!strncmp(opt, "phyaddr:", 8)) {
3545 			if (kstrtoint(opt + 8, 0, &phyaddr))
3546 				goto err;
3547 		} else if (!strncmp(opt, "buf_sz:", 7)) {
3548 			if (kstrtoint(opt + 7, 0, &buf_sz))
3549 				goto err;
3550 		} else if (!strncmp(opt, "tc:", 3)) {
3551 			if (kstrtoint(opt + 3, 0, &tc))
3552 				goto err;
3553 		} else if (!strncmp(opt, "watchdog:", 9)) {
3554 			if (kstrtoint(opt + 9, 0, &watchdog))
3555 				goto err;
3556 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
3557 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
3558 				goto err;
3559 		} else if (!strncmp(opt, "pause:", 6)) {
3560 			if (kstrtoint(opt + 6, 0, &pause))
3561 				goto err;
3562 		} else if (!strncmp(opt, "eee_timer:", 10)) {
3563 			if (kstrtoint(opt + 10, 0, &eee_timer))
3564 				goto err;
3565 		} else if (!strncmp(opt, "chain_mode:", 11)) {
3566 			if (kstrtoint(opt + 11, 0, &chain_mode))
3567 				goto err;
3568 		}
3569 	}
3570 	return 0;
3571 
3572 err:
3573 	pr_err("%s: ERROR broken module parameter conversion", __func__);
3574 	return -EINVAL;
3575 }
3576 
3577 __setup("stmmaceth=", stmmac_cmdline_opt);
3578 #endif /* MODULE */
3579 
3580 static int __init stmmac_init(void)
3581 {
3582 #ifdef CONFIG_DEBUG_FS
3583 	/* Create debugfs main directory if it doesn't exist yet */
3584 	if (!stmmac_fs_dir) {
3585 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
3586 
3587 		if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
3588 			pr_err("ERROR %s, debugfs create directory failed\n",
3589 			       STMMAC_RESOURCE_NAME);
3590 
3591 			return -ENOMEM;
3592 		}
3593 	}
3594 #endif
3595 
3596 	return 0;
3597 }
3598 
3599 static void __exit stmmac_exit(void)
3600 {
3601 #ifdef CONFIG_DEBUG_FS
3602 	debugfs_remove_recursive(stmmac_fs_dir);
3603 #endif
3604 }
3605 
3606 module_init(stmmac_init)
3607 module_exit(stmmac_exit)
3608 
3609 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3610 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3611 MODULE_LICENSE("GPL");
3612