1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   The full GNU General Public License is included in this distribution in
17   the file called "COPYING".
18 
19   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
20 
21   Documentation available at:
22 	http://www.stlinux.com
23   Support available at:
24 	https://bugzilla.stlinux.com/
25 *******************************************************************************/
26 
27 #include <linux/clk.h>
28 #include <linux/kernel.h>
29 #include <linux/interrupt.h>
30 #include <linux/ip.h>
31 #include <linux/tcp.h>
32 #include <linux/skbuff.h>
33 #include <linux/ethtool.h>
34 #include <linux/if_ether.h>
35 #include <linux/crc32.h>
36 #include <linux/mii.h>
37 #include <linux/if.h>
38 #include <linux/if_vlan.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/slab.h>
41 #include <linux/prefetch.h>
42 #include <linux/pinctrl/consumer.h>
43 #ifdef CONFIG_DEBUG_FS
44 #include <linux/debugfs.h>
45 #include <linux/seq_file.h>
46 #endif /* CONFIG_DEBUG_FS */
47 #include <linux/net_tstamp.h>
48 #include <net/pkt_cls.h>
49 #include "stmmac_ptp.h"
50 #include "stmmac.h"
51 #include <linux/reset.h>
52 #include <linux/of_mdio.h>
53 #include "dwmac1000.h"
54 #include "dwxgmac2.h"
55 #include "hwif.h"
56 
57 #define	STMMAC_ALIGN(x)		__ALIGN_KERNEL(x, SMP_CACHE_BYTES)
58 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
59 
60 /* Module parameters */
61 #define TX_TIMEO	5000
62 static int watchdog = TX_TIMEO;
63 module_param(watchdog, int, 0644);
64 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
65 
66 static int debug = -1;
67 module_param(debug, int, 0644);
68 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
69 
70 static int phyaddr = -1;
71 module_param(phyaddr, int, 0444);
72 MODULE_PARM_DESC(phyaddr, "Physical device address");
73 
74 #define STMMAC_TX_THRESH	(DMA_TX_SIZE / 4)
75 #define STMMAC_RX_THRESH	(DMA_RX_SIZE / 4)
76 
77 static int flow_ctrl = FLOW_OFF;
78 module_param(flow_ctrl, int, 0644);
79 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
80 
81 static int pause = PAUSE_TIME;
82 module_param(pause, int, 0644);
83 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
84 
85 #define TC_DEFAULT 64
86 static int tc = TC_DEFAULT;
87 module_param(tc, int, 0644);
88 MODULE_PARM_DESC(tc, "DMA threshold control value");
89 
90 #define	DEFAULT_BUFSIZE	1536
91 static int buf_sz = DEFAULT_BUFSIZE;
92 module_param(buf_sz, int, 0644);
93 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
94 
95 #define	STMMAC_RX_COPYBREAK	256
96 
97 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
98 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
99 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
100 
101 #define STMMAC_DEFAULT_LPI_TIMER	1000
102 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
103 module_param(eee_timer, int, 0644);
104 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
105 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
106 
107 /* By default the driver will use the ring mode to manage tx and rx descriptors,
108  * but allow user to force to use the chain instead of the ring
109  */
110 static unsigned int chain_mode;
111 module_param(chain_mode, int, 0444);
112 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
113 
114 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
115 
116 #ifdef CONFIG_DEBUG_FS
117 static int stmmac_init_fs(struct net_device *dev);
118 static void stmmac_exit_fs(struct net_device *dev);
119 #endif
120 
121 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
122 
123 /**
124  * stmmac_verify_args - verify the driver parameters.
125  * Description: it checks the driver parameters and set a default in case of
126  * errors.
127  */
128 static void stmmac_verify_args(void)
129 {
130 	if (unlikely(watchdog < 0))
131 		watchdog = TX_TIMEO;
132 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
133 		buf_sz = DEFAULT_BUFSIZE;
134 	if (unlikely(flow_ctrl > 1))
135 		flow_ctrl = FLOW_AUTO;
136 	else if (likely(flow_ctrl < 0))
137 		flow_ctrl = FLOW_OFF;
138 	if (unlikely((pause < 0) || (pause > 0xffff)))
139 		pause = PAUSE_TIME;
140 	if (eee_timer < 0)
141 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
142 }
143 
144 /**
145  * stmmac_disable_all_queues - Disable all queues
146  * @priv: driver private structure
147  */
148 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
149 {
150 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
151 	u32 queue;
152 
153 	for (queue = 0; queue < rx_queues_cnt; queue++) {
154 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
155 
156 		napi_disable(&rx_q->napi);
157 	}
158 }
159 
160 /**
161  * stmmac_enable_all_queues - Enable all queues
162  * @priv: driver private structure
163  */
164 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
165 {
166 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
167 	u32 queue;
168 
169 	for (queue = 0; queue < rx_queues_cnt; queue++) {
170 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
171 
172 		napi_enable(&rx_q->napi);
173 	}
174 }
175 
176 /**
177  * stmmac_stop_all_queues - Stop all queues
178  * @priv: driver private structure
179  */
180 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
181 {
182 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
183 	u32 queue;
184 
185 	for (queue = 0; queue < tx_queues_cnt; queue++)
186 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
187 }
188 
189 /**
190  * stmmac_start_all_queues - Start all queues
191  * @priv: driver private structure
192  */
193 static void stmmac_start_all_queues(struct stmmac_priv *priv)
194 {
195 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
196 	u32 queue;
197 
198 	for (queue = 0; queue < tx_queues_cnt; queue++)
199 		netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
200 }
201 
202 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
203 {
204 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
205 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
206 		queue_work(priv->wq, &priv->service_task);
207 }
208 
209 static void stmmac_global_err(struct stmmac_priv *priv)
210 {
211 	netif_carrier_off(priv->dev);
212 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
213 	stmmac_service_event_schedule(priv);
214 }
215 
216 /**
217  * stmmac_clk_csr_set - dynamically set the MDC clock
218  * @priv: driver private structure
219  * Description: this is to dynamically set the MDC clock according to the csr
220  * clock input.
221  * Note:
222  *	If a specific clk_csr value is passed from the platform
223  *	this means that the CSR Clock Range selection cannot be
224  *	changed at run-time and it is fixed (as reported in the driver
225  *	documentation). Viceversa the driver will try to set the MDC
226  *	clock dynamically according to the actual clock input.
227  */
228 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
229 {
230 	u32 clk_rate;
231 
232 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
233 
234 	/* Platform provided default clk_csr would be assumed valid
235 	 * for all other cases except for the below mentioned ones.
236 	 * For values higher than the IEEE 802.3 specified frequency
237 	 * we can not estimate the proper divider as it is not known
238 	 * the frequency of clk_csr_i. So we do not change the default
239 	 * divider.
240 	 */
241 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
242 		if (clk_rate < CSR_F_35M)
243 			priv->clk_csr = STMMAC_CSR_20_35M;
244 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
245 			priv->clk_csr = STMMAC_CSR_35_60M;
246 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
247 			priv->clk_csr = STMMAC_CSR_60_100M;
248 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
249 			priv->clk_csr = STMMAC_CSR_100_150M;
250 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
251 			priv->clk_csr = STMMAC_CSR_150_250M;
252 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
253 			priv->clk_csr = STMMAC_CSR_250_300M;
254 	}
255 
256 	if (priv->plat->has_sun8i) {
257 		if (clk_rate > 160000000)
258 			priv->clk_csr = 0x03;
259 		else if (clk_rate > 80000000)
260 			priv->clk_csr = 0x02;
261 		else if (clk_rate > 40000000)
262 			priv->clk_csr = 0x01;
263 		else
264 			priv->clk_csr = 0;
265 	}
266 
267 	if (priv->plat->has_xgmac) {
268 		if (clk_rate > 400000000)
269 			priv->clk_csr = 0x5;
270 		else if (clk_rate > 350000000)
271 			priv->clk_csr = 0x4;
272 		else if (clk_rate > 300000000)
273 			priv->clk_csr = 0x3;
274 		else if (clk_rate > 250000000)
275 			priv->clk_csr = 0x2;
276 		else if (clk_rate > 150000000)
277 			priv->clk_csr = 0x1;
278 		else
279 			priv->clk_csr = 0x0;
280 	}
281 }
282 
283 static void print_pkt(unsigned char *buf, int len)
284 {
285 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
286 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
287 }
288 
289 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
290 {
291 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
292 	u32 avail;
293 
294 	if (tx_q->dirty_tx > tx_q->cur_tx)
295 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
296 	else
297 		avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
298 
299 	return avail;
300 }
301 
302 /**
303  * stmmac_rx_dirty - Get RX queue dirty
304  * @priv: driver private structure
305  * @queue: RX queue index
306  */
307 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
308 {
309 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
310 	u32 dirty;
311 
312 	if (rx_q->dirty_rx <= rx_q->cur_rx)
313 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
314 	else
315 		dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
316 
317 	return dirty;
318 }
319 
320 /**
321  * stmmac_hw_fix_mac_speed - callback for speed selection
322  * @priv: driver private structure
323  * Description: on some platforms (e.g. ST), some HW system configuration
324  * registers have to be set according to the link speed negotiated.
325  */
326 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
327 {
328 	struct net_device *ndev = priv->dev;
329 	struct phy_device *phydev = ndev->phydev;
330 
331 	if (likely(priv->plat->fix_mac_speed))
332 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
333 }
334 
335 /**
336  * stmmac_enable_eee_mode - check and enter in LPI mode
337  * @priv: driver private structure
338  * Description: this function is to verify and enter in LPI mode in case of
339  * EEE.
340  */
341 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
342 {
343 	u32 tx_cnt = priv->plat->tx_queues_to_use;
344 	u32 queue;
345 
346 	/* check if all TX queues have the work finished */
347 	for (queue = 0; queue < tx_cnt; queue++) {
348 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
349 
350 		if (tx_q->dirty_tx != tx_q->cur_tx)
351 			return; /* still unfinished work */
352 	}
353 
354 	/* Check and enter in LPI mode */
355 	if (!priv->tx_path_in_lpi_mode)
356 		stmmac_set_eee_mode(priv, priv->hw,
357 				priv->plat->en_tx_lpi_clockgating);
358 }
359 
360 /**
361  * stmmac_disable_eee_mode - disable and exit from LPI mode
362  * @priv: driver private structure
363  * Description: this function is to exit and disable EEE in case of
364  * LPI state is true. This is called by the xmit.
365  */
366 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
367 {
368 	stmmac_reset_eee_mode(priv, priv->hw);
369 	del_timer_sync(&priv->eee_ctrl_timer);
370 	priv->tx_path_in_lpi_mode = false;
371 }
372 
373 /**
374  * stmmac_eee_ctrl_timer - EEE TX SW timer.
375  * @arg : data hook
376  * Description:
377  *  if there is no data transfer and if we are not in LPI state,
378  *  then MAC Transmitter can be moved to LPI state.
379  */
380 static void stmmac_eee_ctrl_timer(struct timer_list *t)
381 {
382 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
383 
384 	stmmac_enable_eee_mode(priv);
385 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
386 }
387 
388 /**
389  * stmmac_eee_init - init EEE
390  * @priv: driver private structure
391  * Description:
392  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
393  *  can also manage EEE, this function enable the LPI state and start related
394  *  timer.
395  */
396 bool stmmac_eee_init(struct stmmac_priv *priv)
397 {
398 	struct net_device *ndev = priv->dev;
399 	int interface = priv->plat->interface;
400 	bool ret = false;
401 
402 	if ((interface != PHY_INTERFACE_MODE_MII) &&
403 	    (interface != PHY_INTERFACE_MODE_GMII) &&
404 	    !phy_interface_mode_is_rgmii(interface))
405 		goto out;
406 
407 	/* Using PCS we cannot dial with the phy registers at this stage
408 	 * so we do not support extra feature like EEE.
409 	 */
410 	if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
411 	    (priv->hw->pcs == STMMAC_PCS_TBI) ||
412 	    (priv->hw->pcs == STMMAC_PCS_RTBI))
413 		goto out;
414 
415 	/* MAC core supports the EEE feature. */
416 	if (priv->dma_cap.eee) {
417 		int tx_lpi_timer = priv->tx_lpi_timer;
418 
419 		/* Check if the PHY supports EEE */
420 		if (phy_init_eee(ndev->phydev, 1)) {
421 			/* To manage at run-time if the EEE cannot be supported
422 			 * anymore (for example because the lp caps have been
423 			 * changed).
424 			 * In that case the driver disable own timers.
425 			 */
426 			mutex_lock(&priv->lock);
427 			if (priv->eee_active) {
428 				netdev_dbg(priv->dev, "disable EEE\n");
429 				del_timer_sync(&priv->eee_ctrl_timer);
430 				stmmac_set_eee_timer(priv, priv->hw, 0,
431 						tx_lpi_timer);
432 			}
433 			priv->eee_active = 0;
434 			mutex_unlock(&priv->lock);
435 			goto out;
436 		}
437 		/* Activate the EEE and start timers */
438 		mutex_lock(&priv->lock);
439 		if (!priv->eee_active) {
440 			priv->eee_active = 1;
441 			timer_setup(&priv->eee_ctrl_timer,
442 				    stmmac_eee_ctrl_timer, 0);
443 			mod_timer(&priv->eee_ctrl_timer,
444 				  STMMAC_LPI_T(eee_timer));
445 
446 			stmmac_set_eee_timer(priv, priv->hw,
447 					STMMAC_DEFAULT_LIT_LS, tx_lpi_timer);
448 		}
449 		/* Set HW EEE according to the speed */
450 		stmmac_set_eee_pls(priv, priv->hw, ndev->phydev->link);
451 
452 		ret = true;
453 		mutex_unlock(&priv->lock);
454 
455 		netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
456 	}
457 out:
458 	return ret;
459 }
460 
461 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
462  * @priv: driver private structure
463  * @p : descriptor pointer
464  * @skb : the socket buffer
465  * Description :
466  * This function will read timestamp from the descriptor & pass it to stack.
467  * and also perform some sanity checks.
468  */
469 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
470 				   struct dma_desc *p, struct sk_buff *skb)
471 {
472 	struct skb_shared_hwtstamps shhwtstamp;
473 	u64 ns;
474 
475 	if (!priv->hwts_tx_en)
476 		return;
477 
478 	/* exit if skb doesn't support hw tstamp */
479 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
480 		return;
481 
482 	/* check tx tstamp status */
483 	if (stmmac_get_tx_timestamp_status(priv, p)) {
484 		/* get the valid tstamp */
485 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
486 
487 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
488 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
489 
490 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
491 		/* pass tstamp to stack */
492 		skb_tstamp_tx(skb, &shhwtstamp);
493 	}
494 
495 	return;
496 }
497 
498 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
499  * @priv: driver private structure
500  * @p : descriptor pointer
501  * @np : next descriptor pointer
502  * @skb : the socket buffer
503  * Description :
504  * This function will read received packet's timestamp from the descriptor
505  * and pass it to stack. It also perform some sanity checks.
506  */
507 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
508 				   struct dma_desc *np, struct sk_buff *skb)
509 {
510 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
511 	struct dma_desc *desc = p;
512 	u64 ns;
513 
514 	if (!priv->hwts_rx_en)
515 		return;
516 	/* For GMAC4, the valid timestamp is from CTX next desc. */
517 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
518 		desc = np;
519 
520 	/* Check if timestamp is available */
521 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
522 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
523 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
524 		shhwtstamp = skb_hwtstamps(skb);
525 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
526 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
527 	} else  {
528 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
529 	}
530 }
531 
532 /**
533  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
534  *  @dev: device pointer.
535  *  @ifr: An IOCTL specific structure, that can contain a pointer to
536  *  a proprietary structure used to pass information to the driver.
537  *  Description:
538  *  This function configures the MAC to enable/disable both outgoing(TX)
539  *  and incoming(RX) packets time stamping based on user input.
540  *  Return Value:
541  *  0 on success and an appropriate -ve integer on failure.
542  */
543 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
544 {
545 	struct stmmac_priv *priv = netdev_priv(dev);
546 	struct hwtstamp_config config;
547 	struct timespec64 now;
548 	u64 temp = 0;
549 	u32 ptp_v2 = 0;
550 	u32 tstamp_all = 0;
551 	u32 ptp_over_ipv4_udp = 0;
552 	u32 ptp_over_ipv6_udp = 0;
553 	u32 ptp_over_ethernet = 0;
554 	u32 snap_type_sel = 0;
555 	u32 ts_master_en = 0;
556 	u32 ts_event_en = 0;
557 	u32 value = 0;
558 	u32 sec_inc;
559 	bool xmac;
560 
561 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
562 
563 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
564 		netdev_alert(priv->dev, "No support for HW time stamping\n");
565 		priv->hwts_tx_en = 0;
566 		priv->hwts_rx_en = 0;
567 
568 		return -EOPNOTSUPP;
569 	}
570 
571 	if (copy_from_user(&config, ifr->ifr_data,
572 			   sizeof(struct hwtstamp_config)))
573 		return -EFAULT;
574 
575 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
576 		   __func__, config.flags, config.tx_type, config.rx_filter);
577 
578 	/* reserved for future extensions */
579 	if (config.flags)
580 		return -EINVAL;
581 
582 	if (config.tx_type != HWTSTAMP_TX_OFF &&
583 	    config.tx_type != HWTSTAMP_TX_ON)
584 		return -ERANGE;
585 
586 	if (priv->adv_ts) {
587 		switch (config.rx_filter) {
588 		case HWTSTAMP_FILTER_NONE:
589 			/* time stamp no incoming packet at all */
590 			config.rx_filter = HWTSTAMP_FILTER_NONE;
591 			break;
592 
593 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
594 			/* PTP v1, UDP, any kind of event packet */
595 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
596 			/* take time stamp for all event messages */
597 			if (xmac)
598 				snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1;
599 			else
600 				snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
601 
602 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
603 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
604 			break;
605 
606 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
607 			/* PTP v1, UDP, Sync packet */
608 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
609 			/* take time stamp for SYNC messages only */
610 			ts_event_en = PTP_TCR_TSEVNTENA;
611 
612 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
613 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
614 			break;
615 
616 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
617 			/* PTP v1, UDP, Delay_req packet */
618 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
619 			/* take time stamp for Delay_Req messages only */
620 			ts_master_en = PTP_TCR_TSMSTRENA;
621 			ts_event_en = PTP_TCR_TSEVNTENA;
622 
623 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
624 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
625 			break;
626 
627 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
628 			/* PTP v2, UDP, any kind of event packet */
629 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
630 			ptp_v2 = PTP_TCR_TSVER2ENA;
631 			/* take time stamp for all event messages */
632 			if (xmac)
633 				snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1;
634 			else
635 				snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
636 
637 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
638 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
639 			break;
640 
641 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
642 			/* PTP v2, UDP, Sync packet */
643 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
644 			ptp_v2 = PTP_TCR_TSVER2ENA;
645 			/* take time stamp for SYNC messages only */
646 			ts_event_en = PTP_TCR_TSEVNTENA;
647 
648 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
649 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
650 			break;
651 
652 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
653 			/* PTP v2, UDP, Delay_req packet */
654 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
655 			ptp_v2 = PTP_TCR_TSVER2ENA;
656 			/* take time stamp for Delay_Req messages only */
657 			ts_master_en = PTP_TCR_TSMSTRENA;
658 			ts_event_en = PTP_TCR_TSEVNTENA;
659 
660 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
661 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
662 			break;
663 
664 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
665 			/* PTP v2/802.AS1 any layer, any kind of event packet */
666 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
667 			ptp_v2 = PTP_TCR_TSVER2ENA;
668 			/* take time stamp for all event messages */
669 			if (xmac)
670 				snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1;
671 			else
672 				snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
673 
674 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
675 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
676 			ptp_over_ethernet = PTP_TCR_TSIPENA;
677 			break;
678 
679 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
680 			/* PTP v2/802.AS1, any layer, Sync packet */
681 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
682 			ptp_v2 = PTP_TCR_TSVER2ENA;
683 			/* take time stamp for SYNC messages only */
684 			ts_event_en = PTP_TCR_TSEVNTENA;
685 
686 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
687 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
688 			ptp_over_ethernet = PTP_TCR_TSIPENA;
689 			break;
690 
691 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
692 			/* PTP v2/802.AS1, any layer, Delay_req packet */
693 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
694 			ptp_v2 = PTP_TCR_TSVER2ENA;
695 			/* take time stamp for Delay_Req messages only */
696 			ts_master_en = PTP_TCR_TSMSTRENA;
697 			ts_event_en = PTP_TCR_TSEVNTENA;
698 
699 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
700 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
701 			ptp_over_ethernet = PTP_TCR_TSIPENA;
702 			break;
703 
704 		case HWTSTAMP_FILTER_NTP_ALL:
705 		case HWTSTAMP_FILTER_ALL:
706 			/* time stamp any incoming packet */
707 			config.rx_filter = HWTSTAMP_FILTER_ALL;
708 			tstamp_all = PTP_TCR_TSENALL;
709 			break;
710 
711 		default:
712 			return -ERANGE;
713 		}
714 	} else {
715 		switch (config.rx_filter) {
716 		case HWTSTAMP_FILTER_NONE:
717 			config.rx_filter = HWTSTAMP_FILTER_NONE;
718 			break;
719 		default:
720 			/* PTP v1, UDP, any kind of event packet */
721 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
722 			break;
723 		}
724 	}
725 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
726 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
727 
728 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
729 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
730 	else {
731 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
732 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
733 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
734 			 ts_master_en | snap_type_sel);
735 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
736 
737 		/* program Sub Second Increment reg */
738 		stmmac_config_sub_second_increment(priv,
739 				priv->ptpaddr, priv->plat->clk_ptp_rate,
740 				xmac, &sec_inc);
741 		temp = div_u64(1000000000ULL, sec_inc);
742 
743 		/* Store sub second increment and flags for later use */
744 		priv->sub_second_inc = sec_inc;
745 		priv->systime_flags = value;
746 
747 		/* calculate default added value:
748 		 * formula is :
749 		 * addend = (2^32)/freq_div_ratio;
750 		 * where, freq_div_ratio = 1e9ns/sec_inc
751 		 */
752 		temp = (u64)(temp << 32);
753 		priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
754 		stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
755 
756 		/* initialize system time */
757 		ktime_get_real_ts64(&now);
758 
759 		/* lower 32 bits of tv_sec are safe until y2106 */
760 		stmmac_init_systime(priv, priv->ptpaddr,
761 				(u32)now.tv_sec, now.tv_nsec);
762 	}
763 
764 	return copy_to_user(ifr->ifr_data, &config,
765 			    sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
766 }
767 
768 /**
769  * stmmac_init_ptp - init PTP
770  * @priv: driver private structure
771  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
772  * This is done by looking at the HW cap. register.
773  * This function also registers the ptp driver.
774  */
775 static int stmmac_init_ptp(struct stmmac_priv *priv)
776 {
777 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
778 
779 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
780 		return -EOPNOTSUPP;
781 
782 	priv->adv_ts = 0;
783 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
784 	if (xmac && priv->dma_cap.atime_stamp)
785 		priv->adv_ts = 1;
786 	/* Dwmac 3.x core with extend_desc can support adv_ts */
787 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
788 		priv->adv_ts = 1;
789 
790 	if (priv->dma_cap.time_stamp)
791 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
792 
793 	if (priv->adv_ts)
794 		netdev_info(priv->dev,
795 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
796 
797 	priv->hwts_tx_en = 0;
798 	priv->hwts_rx_en = 0;
799 
800 	stmmac_ptp_register(priv);
801 
802 	return 0;
803 }
804 
805 static void stmmac_release_ptp(struct stmmac_priv *priv)
806 {
807 	if (priv->plat->clk_ptp_ref)
808 		clk_disable_unprepare(priv->plat->clk_ptp_ref);
809 	stmmac_ptp_unregister(priv);
810 }
811 
812 /**
813  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
814  *  @priv: driver private structure
815  *  Description: It is used for configuring the flow control in all queues
816  */
817 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
818 {
819 	u32 tx_cnt = priv->plat->tx_queues_to_use;
820 
821 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
822 			priv->pause, tx_cnt);
823 }
824 
825 /**
826  * stmmac_adjust_link - adjusts the link parameters
827  * @dev: net device structure
828  * Description: this is the helper called by the physical abstraction layer
829  * drivers to communicate the phy link status. According the speed and duplex
830  * this driver can invoke registered glue-logic as well.
831  * It also invoke the eee initialization because it could happen when switch
832  * on different networks (that are eee capable).
833  */
834 static void stmmac_adjust_link(struct net_device *dev)
835 {
836 	struct stmmac_priv *priv = netdev_priv(dev);
837 	struct phy_device *phydev = dev->phydev;
838 	bool new_state = false;
839 
840 	if (!phydev)
841 		return;
842 
843 	mutex_lock(&priv->lock);
844 
845 	if (phydev->link) {
846 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
847 
848 		/* Now we make sure that we can be in full duplex mode.
849 		 * If not, we operate in half-duplex mode. */
850 		if (phydev->duplex != priv->oldduplex) {
851 			new_state = true;
852 			if (!phydev->duplex)
853 				ctrl &= ~priv->hw->link.duplex;
854 			else
855 				ctrl |= priv->hw->link.duplex;
856 			priv->oldduplex = phydev->duplex;
857 		}
858 		/* Flow Control operation */
859 		if (phydev->pause)
860 			stmmac_mac_flow_ctrl(priv, phydev->duplex);
861 
862 		if (phydev->speed != priv->speed) {
863 			new_state = true;
864 			ctrl &= ~priv->hw->link.speed_mask;
865 			switch (phydev->speed) {
866 			case SPEED_1000:
867 				ctrl |= priv->hw->link.speed1000;
868 				break;
869 			case SPEED_100:
870 				ctrl |= priv->hw->link.speed100;
871 				break;
872 			case SPEED_10:
873 				ctrl |= priv->hw->link.speed10;
874 				break;
875 			default:
876 				netif_warn(priv, link, priv->dev,
877 					   "broken speed: %d\n", phydev->speed);
878 				phydev->speed = SPEED_UNKNOWN;
879 				break;
880 			}
881 			if (phydev->speed != SPEED_UNKNOWN)
882 				stmmac_hw_fix_mac_speed(priv);
883 			priv->speed = phydev->speed;
884 		}
885 
886 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
887 
888 		if (!priv->oldlink) {
889 			new_state = true;
890 			priv->oldlink = true;
891 		}
892 	} else if (priv->oldlink) {
893 		new_state = true;
894 		priv->oldlink = false;
895 		priv->speed = SPEED_UNKNOWN;
896 		priv->oldduplex = DUPLEX_UNKNOWN;
897 	}
898 
899 	if (new_state && netif_msg_link(priv))
900 		phy_print_status(phydev);
901 
902 	mutex_unlock(&priv->lock);
903 
904 	if (phydev->is_pseudo_fixed_link)
905 		/* Stop PHY layer to call the hook to adjust the link in case
906 		 * of a switch is attached to the stmmac driver.
907 		 */
908 		phydev->irq = PHY_IGNORE_INTERRUPT;
909 	else
910 		/* At this stage, init the EEE if supported.
911 		 * Never called in case of fixed_link.
912 		 */
913 		priv->eee_enabled = stmmac_eee_init(priv);
914 }
915 
916 /**
917  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
918  * @priv: driver private structure
919  * Description: this is to verify if the HW supports the PCS.
920  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
921  * configured for the TBI, RTBI, or SGMII PHY interface.
922  */
923 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
924 {
925 	int interface = priv->plat->interface;
926 
927 	if (priv->dma_cap.pcs) {
928 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
929 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
930 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
931 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
932 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
933 			priv->hw->pcs = STMMAC_PCS_RGMII;
934 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
935 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
936 			priv->hw->pcs = STMMAC_PCS_SGMII;
937 		}
938 	}
939 }
940 
941 /**
942  * stmmac_init_phy - PHY initialization
943  * @dev: net device structure
944  * Description: it initializes the driver's PHY state, and attaches the PHY
945  * to the mac driver.
946  *  Return value:
947  *  0 on success
948  */
949 static int stmmac_init_phy(struct net_device *dev)
950 {
951 	struct stmmac_priv *priv = netdev_priv(dev);
952 	u32 tx_cnt = priv->plat->tx_queues_to_use;
953 	struct phy_device *phydev;
954 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
955 	char bus_id[MII_BUS_ID_SIZE];
956 	int interface = priv->plat->interface;
957 	int max_speed = priv->plat->max_speed;
958 	priv->oldlink = false;
959 	priv->speed = SPEED_UNKNOWN;
960 	priv->oldduplex = DUPLEX_UNKNOWN;
961 
962 	if (priv->plat->phy_node) {
963 		phydev = of_phy_connect(dev, priv->plat->phy_node,
964 					&stmmac_adjust_link, 0, interface);
965 	} else {
966 		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
967 			 priv->plat->bus_id);
968 
969 		snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
970 			 priv->plat->phy_addr);
971 		netdev_dbg(priv->dev, "%s: trying to attach to %s\n", __func__,
972 			   phy_id_fmt);
973 
974 		phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
975 				     interface);
976 	}
977 
978 	if (IS_ERR_OR_NULL(phydev)) {
979 		netdev_err(priv->dev, "Could not attach to PHY\n");
980 		if (!phydev)
981 			return -ENODEV;
982 
983 		return PTR_ERR(phydev);
984 	}
985 
986 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
987 	if ((interface == PHY_INTERFACE_MODE_MII) ||
988 	    (interface == PHY_INTERFACE_MODE_RMII) ||
989 		(max_speed < 1000 && max_speed > 0))
990 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
991 					 SUPPORTED_1000baseT_Full);
992 
993 	/*
994 	 * Half-duplex mode not supported with multiqueue
995 	 * half-duplex can only works with single queue
996 	 */
997 	if (tx_cnt > 1)
998 		phydev->supported &= ~(SUPPORTED_1000baseT_Half |
999 				       SUPPORTED_100baseT_Half |
1000 				       SUPPORTED_10baseT_Half);
1001 
1002 	/*
1003 	 * Broken HW is sometimes missing the pull-up resistor on the
1004 	 * MDIO line, which results in reads to non-existent devices returning
1005 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
1006 	 * device as well.
1007 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
1008 	 */
1009 	if (!priv->plat->phy_node && phydev->phy_id == 0) {
1010 		phy_disconnect(phydev);
1011 		return -ENODEV;
1012 	}
1013 
1014 	/* stmmac_adjust_link will change this to PHY_IGNORE_INTERRUPT to avoid
1015 	 * subsequent PHY polling, make sure we force a link transition if
1016 	 * we have a UP/DOWN/UP transition
1017 	 */
1018 	if (phydev->is_pseudo_fixed_link)
1019 		phydev->irq = PHY_POLL;
1020 
1021 	phy_attached_info(phydev);
1022 	return 0;
1023 }
1024 
1025 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1026 {
1027 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1028 	void *head_rx;
1029 	u32 queue;
1030 
1031 	/* Display RX rings */
1032 	for (queue = 0; queue < rx_cnt; queue++) {
1033 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1034 
1035 		pr_info("\tRX Queue %u rings\n", queue);
1036 
1037 		if (priv->extend_desc)
1038 			head_rx = (void *)rx_q->dma_erx;
1039 		else
1040 			head_rx = (void *)rx_q->dma_rx;
1041 
1042 		/* Display RX ring */
1043 		stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1044 	}
1045 }
1046 
1047 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1048 {
1049 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1050 	void *head_tx;
1051 	u32 queue;
1052 
1053 	/* Display TX rings */
1054 	for (queue = 0; queue < tx_cnt; queue++) {
1055 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1056 
1057 		pr_info("\tTX Queue %d rings\n", queue);
1058 
1059 		if (priv->extend_desc)
1060 			head_tx = (void *)tx_q->dma_etx;
1061 		else
1062 			head_tx = (void *)tx_q->dma_tx;
1063 
1064 		stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1065 	}
1066 }
1067 
1068 static void stmmac_display_rings(struct stmmac_priv *priv)
1069 {
1070 	/* Display RX ring */
1071 	stmmac_display_rx_rings(priv);
1072 
1073 	/* Display TX ring */
1074 	stmmac_display_tx_rings(priv);
1075 }
1076 
1077 static int stmmac_set_bfsize(int mtu, int bufsize)
1078 {
1079 	int ret = bufsize;
1080 
1081 	if (mtu >= BUF_SIZE_4KiB)
1082 		ret = BUF_SIZE_8KiB;
1083 	else if (mtu >= BUF_SIZE_2KiB)
1084 		ret = BUF_SIZE_4KiB;
1085 	else if (mtu > DEFAULT_BUFSIZE)
1086 		ret = BUF_SIZE_2KiB;
1087 	else
1088 		ret = DEFAULT_BUFSIZE;
1089 
1090 	return ret;
1091 }
1092 
1093 /**
1094  * stmmac_clear_rx_descriptors - clear RX descriptors
1095  * @priv: driver private structure
1096  * @queue: RX queue index
1097  * Description: this function is called to clear the RX descriptors
1098  * in case of both basic and extended descriptors are used.
1099  */
1100 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1101 {
1102 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1103 	int i;
1104 
1105 	/* Clear the RX descriptors */
1106 	for (i = 0; i < DMA_RX_SIZE; i++)
1107 		if (priv->extend_desc)
1108 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1109 					priv->use_riwt, priv->mode,
1110 					(i == DMA_RX_SIZE - 1));
1111 		else
1112 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1113 					priv->use_riwt, priv->mode,
1114 					(i == DMA_RX_SIZE - 1));
1115 }
1116 
1117 /**
1118  * stmmac_clear_tx_descriptors - clear tx descriptors
1119  * @priv: driver private structure
1120  * @queue: TX queue index.
1121  * Description: this function is called to clear the TX descriptors
1122  * in case of both basic and extended descriptors are used.
1123  */
1124 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1125 {
1126 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1127 	int i;
1128 
1129 	/* Clear the TX descriptors */
1130 	for (i = 0; i < DMA_TX_SIZE; i++)
1131 		if (priv->extend_desc)
1132 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1133 					priv->mode, (i == DMA_TX_SIZE - 1));
1134 		else
1135 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1136 					priv->mode, (i == DMA_TX_SIZE - 1));
1137 }
1138 
1139 /**
1140  * stmmac_clear_descriptors - clear descriptors
1141  * @priv: driver private structure
1142  * Description: this function is called to clear the TX and RX descriptors
1143  * in case of both basic and extended descriptors are used.
1144  */
1145 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1146 {
1147 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1148 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1149 	u32 queue;
1150 
1151 	/* Clear the RX descriptors */
1152 	for (queue = 0; queue < rx_queue_cnt; queue++)
1153 		stmmac_clear_rx_descriptors(priv, queue);
1154 
1155 	/* Clear the TX descriptors */
1156 	for (queue = 0; queue < tx_queue_cnt; queue++)
1157 		stmmac_clear_tx_descriptors(priv, queue);
1158 }
1159 
1160 /**
1161  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1162  * @priv: driver private structure
1163  * @p: descriptor pointer
1164  * @i: descriptor index
1165  * @flags: gfp flag
1166  * @queue: RX queue index
1167  * Description: this function is called to allocate a receive buffer, perform
1168  * the DMA mapping and init the descriptor.
1169  */
1170 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1171 				  int i, gfp_t flags, u32 queue)
1172 {
1173 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1174 	struct sk_buff *skb;
1175 
1176 	skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
1177 	if (!skb) {
1178 		netdev_err(priv->dev,
1179 			   "%s: Rx init fails; skb is NULL\n", __func__);
1180 		return -ENOMEM;
1181 	}
1182 	rx_q->rx_skbuff[i] = skb;
1183 	rx_q->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
1184 						priv->dma_buf_sz,
1185 						DMA_FROM_DEVICE);
1186 	if (dma_mapping_error(priv->device, rx_q->rx_skbuff_dma[i])) {
1187 		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
1188 		dev_kfree_skb_any(skb);
1189 		return -EINVAL;
1190 	}
1191 
1192 	stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[i]);
1193 
1194 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1195 		stmmac_init_desc3(priv, p);
1196 
1197 	return 0;
1198 }
1199 
1200 /**
1201  * stmmac_free_rx_buffer - free RX dma buffers
1202  * @priv: private structure
1203  * @queue: RX queue index
1204  * @i: buffer index.
1205  */
1206 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1207 {
1208 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1209 
1210 	if (rx_q->rx_skbuff[i]) {
1211 		dma_unmap_single(priv->device, rx_q->rx_skbuff_dma[i],
1212 				 priv->dma_buf_sz, DMA_FROM_DEVICE);
1213 		dev_kfree_skb_any(rx_q->rx_skbuff[i]);
1214 	}
1215 	rx_q->rx_skbuff[i] = NULL;
1216 }
1217 
1218 /**
1219  * stmmac_free_tx_buffer - free RX dma buffers
1220  * @priv: private structure
1221  * @queue: RX queue index
1222  * @i: buffer index.
1223  */
1224 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1225 {
1226 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1227 
1228 	if (tx_q->tx_skbuff_dma[i].buf) {
1229 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1230 			dma_unmap_page(priv->device,
1231 				       tx_q->tx_skbuff_dma[i].buf,
1232 				       tx_q->tx_skbuff_dma[i].len,
1233 				       DMA_TO_DEVICE);
1234 		else
1235 			dma_unmap_single(priv->device,
1236 					 tx_q->tx_skbuff_dma[i].buf,
1237 					 tx_q->tx_skbuff_dma[i].len,
1238 					 DMA_TO_DEVICE);
1239 	}
1240 
1241 	if (tx_q->tx_skbuff[i]) {
1242 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1243 		tx_q->tx_skbuff[i] = NULL;
1244 		tx_q->tx_skbuff_dma[i].buf = 0;
1245 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1246 	}
1247 }
1248 
1249 /**
1250  * init_dma_rx_desc_rings - init the RX descriptor rings
1251  * @dev: net device structure
1252  * @flags: gfp flag.
1253  * Description: this function initializes the DMA RX descriptors
1254  * and allocates the socket buffers. It supports the chained and ring
1255  * modes.
1256  */
1257 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1258 {
1259 	struct stmmac_priv *priv = netdev_priv(dev);
1260 	u32 rx_count = priv->plat->rx_queues_to_use;
1261 	int ret = -ENOMEM;
1262 	int bfsize = 0;
1263 	int queue;
1264 	int i;
1265 
1266 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
1267 	if (bfsize < 0)
1268 		bfsize = 0;
1269 
1270 	if (bfsize < BUF_SIZE_16KiB)
1271 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1272 
1273 	priv->dma_buf_sz = bfsize;
1274 
1275 	/* RX INITIALIZATION */
1276 	netif_dbg(priv, probe, priv->dev,
1277 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1278 
1279 	for (queue = 0; queue < rx_count; queue++) {
1280 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1281 
1282 		netif_dbg(priv, probe, priv->dev,
1283 			  "(%s) dma_rx_phy=0x%08x\n", __func__,
1284 			  (u32)rx_q->dma_rx_phy);
1285 
1286 		for (i = 0; i < DMA_RX_SIZE; i++) {
1287 			struct dma_desc *p;
1288 
1289 			if (priv->extend_desc)
1290 				p = &((rx_q->dma_erx + i)->basic);
1291 			else
1292 				p = rx_q->dma_rx + i;
1293 
1294 			ret = stmmac_init_rx_buffers(priv, p, i, flags,
1295 						     queue);
1296 			if (ret)
1297 				goto err_init_rx_buffers;
1298 
1299 			netif_dbg(priv, probe, priv->dev, "[%p]\t[%p]\t[%x]\n",
1300 				  rx_q->rx_skbuff[i], rx_q->rx_skbuff[i]->data,
1301 				  (unsigned int)rx_q->rx_skbuff_dma[i]);
1302 		}
1303 
1304 		rx_q->cur_rx = 0;
1305 		rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1306 
1307 		stmmac_clear_rx_descriptors(priv, queue);
1308 
1309 		/* Setup the chained descriptor addresses */
1310 		if (priv->mode == STMMAC_CHAIN_MODE) {
1311 			if (priv->extend_desc)
1312 				stmmac_mode_init(priv, rx_q->dma_erx,
1313 						rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1314 			else
1315 				stmmac_mode_init(priv, rx_q->dma_rx,
1316 						rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1317 		}
1318 	}
1319 
1320 	buf_sz = bfsize;
1321 
1322 	return 0;
1323 
1324 err_init_rx_buffers:
1325 	while (queue >= 0) {
1326 		while (--i >= 0)
1327 			stmmac_free_rx_buffer(priv, queue, i);
1328 
1329 		if (queue == 0)
1330 			break;
1331 
1332 		i = DMA_RX_SIZE;
1333 		queue--;
1334 	}
1335 
1336 	return ret;
1337 }
1338 
1339 /**
1340  * init_dma_tx_desc_rings - init the TX descriptor rings
1341  * @dev: net device structure.
1342  * Description: this function initializes the DMA TX descriptors
1343  * and allocates the socket buffers. It supports the chained and ring
1344  * modes.
1345  */
1346 static int init_dma_tx_desc_rings(struct net_device *dev)
1347 {
1348 	struct stmmac_priv *priv = netdev_priv(dev);
1349 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1350 	u32 queue;
1351 	int i;
1352 
1353 	for (queue = 0; queue < tx_queue_cnt; queue++) {
1354 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1355 
1356 		netif_dbg(priv, probe, priv->dev,
1357 			  "(%s) dma_tx_phy=0x%08x\n", __func__,
1358 			 (u32)tx_q->dma_tx_phy);
1359 
1360 		/* Setup the chained descriptor addresses */
1361 		if (priv->mode == STMMAC_CHAIN_MODE) {
1362 			if (priv->extend_desc)
1363 				stmmac_mode_init(priv, tx_q->dma_etx,
1364 						tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1365 			else
1366 				stmmac_mode_init(priv, tx_q->dma_tx,
1367 						tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1368 		}
1369 
1370 		for (i = 0; i < DMA_TX_SIZE; i++) {
1371 			struct dma_desc *p;
1372 			if (priv->extend_desc)
1373 				p = &((tx_q->dma_etx + i)->basic);
1374 			else
1375 				p = tx_q->dma_tx + i;
1376 
1377 			stmmac_clear_desc(priv, p);
1378 
1379 			tx_q->tx_skbuff_dma[i].buf = 0;
1380 			tx_q->tx_skbuff_dma[i].map_as_page = false;
1381 			tx_q->tx_skbuff_dma[i].len = 0;
1382 			tx_q->tx_skbuff_dma[i].last_segment = false;
1383 			tx_q->tx_skbuff[i] = NULL;
1384 		}
1385 
1386 		tx_q->dirty_tx = 0;
1387 		tx_q->cur_tx = 0;
1388 		tx_q->mss = 0;
1389 
1390 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1391 	}
1392 
1393 	return 0;
1394 }
1395 
1396 /**
1397  * init_dma_desc_rings - init the RX/TX descriptor rings
1398  * @dev: net device structure
1399  * @flags: gfp flag.
1400  * Description: this function initializes the DMA RX/TX descriptors
1401  * and allocates the socket buffers. It supports the chained and ring
1402  * modes.
1403  */
1404 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1405 {
1406 	struct stmmac_priv *priv = netdev_priv(dev);
1407 	int ret;
1408 
1409 	ret = init_dma_rx_desc_rings(dev, flags);
1410 	if (ret)
1411 		return ret;
1412 
1413 	ret = init_dma_tx_desc_rings(dev);
1414 
1415 	stmmac_clear_descriptors(priv);
1416 
1417 	if (netif_msg_hw(priv))
1418 		stmmac_display_rings(priv);
1419 
1420 	return ret;
1421 }
1422 
1423 /**
1424  * dma_free_rx_skbufs - free RX dma buffers
1425  * @priv: private structure
1426  * @queue: RX queue index
1427  */
1428 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1429 {
1430 	int i;
1431 
1432 	for (i = 0; i < DMA_RX_SIZE; i++)
1433 		stmmac_free_rx_buffer(priv, queue, i);
1434 }
1435 
1436 /**
1437  * dma_free_tx_skbufs - free TX dma buffers
1438  * @priv: private structure
1439  * @queue: TX queue index
1440  */
1441 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1442 {
1443 	int i;
1444 
1445 	for (i = 0; i < DMA_TX_SIZE; i++)
1446 		stmmac_free_tx_buffer(priv, queue, i);
1447 }
1448 
1449 /**
1450  * free_dma_rx_desc_resources - free RX dma desc resources
1451  * @priv: private structure
1452  */
1453 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1454 {
1455 	u32 rx_count = priv->plat->rx_queues_to_use;
1456 	u32 queue;
1457 
1458 	/* Free RX queue resources */
1459 	for (queue = 0; queue < rx_count; queue++) {
1460 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1461 
1462 		/* Release the DMA RX socket buffers */
1463 		dma_free_rx_skbufs(priv, queue);
1464 
1465 		/* Free DMA regions of consistent memory previously allocated */
1466 		if (!priv->extend_desc)
1467 			dma_free_coherent(priv->device,
1468 					  DMA_RX_SIZE * sizeof(struct dma_desc),
1469 					  rx_q->dma_rx, rx_q->dma_rx_phy);
1470 		else
1471 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1472 					  sizeof(struct dma_extended_desc),
1473 					  rx_q->dma_erx, rx_q->dma_rx_phy);
1474 
1475 		kfree(rx_q->rx_skbuff_dma);
1476 		kfree(rx_q->rx_skbuff);
1477 	}
1478 }
1479 
1480 /**
1481  * free_dma_tx_desc_resources - free TX dma desc resources
1482  * @priv: private structure
1483  */
1484 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1485 {
1486 	u32 tx_count = priv->plat->tx_queues_to_use;
1487 	u32 queue;
1488 
1489 	/* Free TX queue resources */
1490 	for (queue = 0; queue < tx_count; queue++) {
1491 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1492 
1493 		/* Release the DMA TX socket buffers */
1494 		dma_free_tx_skbufs(priv, queue);
1495 
1496 		/* Free DMA regions of consistent memory previously allocated */
1497 		if (!priv->extend_desc)
1498 			dma_free_coherent(priv->device,
1499 					  DMA_TX_SIZE * sizeof(struct dma_desc),
1500 					  tx_q->dma_tx, tx_q->dma_tx_phy);
1501 		else
1502 			dma_free_coherent(priv->device, DMA_TX_SIZE *
1503 					  sizeof(struct dma_extended_desc),
1504 					  tx_q->dma_etx, tx_q->dma_tx_phy);
1505 
1506 		kfree(tx_q->tx_skbuff_dma);
1507 		kfree(tx_q->tx_skbuff);
1508 	}
1509 }
1510 
1511 /**
1512  * alloc_dma_rx_desc_resources - alloc RX resources.
1513  * @priv: private structure
1514  * Description: according to which descriptor can be used (extend or basic)
1515  * this function allocates the resources for TX and RX paths. In case of
1516  * reception, for example, it pre-allocated the RX socket buffer in order to
1517  * allow zero-copy mechanism.
1518  */
1519 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1520 {
1521 	u32 rx_count = priv->plat->rx_queues_to_use;
1522 	int ret = -ENOMEM;
1523 	u32 queue;
1524 
1525 	/* RX queues buffers and DMA */
1526 	for (queue = 0; queue < rx_count; queue++) {
1527 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1528 
1529 		rx_q->queue_index = queue;
1530 		rx_q->priv_data = priv;
1531 
1532 		rx_q->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE,
1533 						    sizeof(dma_addr_t),
1534 						    GFP_KERNEL);
1535 		if (!rx_q->rx_skbuff_dma)
1536 			goto err_dma;
1537 
1538 		rx_q->rx_skbuff = kmalloc_array(DMA_RX_SIZE,
1539 						sizeof(struct sk_buff *),
1540 						GFP_KERNEL);
1541 		if (!rx_q->rx_skbuff)
1542 			goto err_dma;
1543 
1544 		if (priv->extend_desc) {
1545 			rx_q->dma_erx = dma_zalloc_coherent(priv->device,
1546 							    DMA_RX_SIZE *
1547 							    sizeof(struct
1548 							    dma_extended_desc),
1549 							    &rx_q->dma_rx_phy,
1550 							    GFP_KERNEL);
1551 			if (!rx_q->dma_erx)
1552 				goto err_dma;
1553 
1554 		} else {
1555 			rx_q->dma_rx = dma_zalloc_coherent(priv->device,
1556 							   DMA_RX_SIZE *
1557 							   sizeof(struct
1558 							   dma_desc),
1559 							   &rx_q->dma_rx_phy,
1560 							   GFP_KERNEL);
1561 			if (!rx_q->dma_rx)
1562 				goto err_dma;
1563 		}
1564 	}
1565 
1566 	return 0;
1567 
1568 err_dma:
1569 	free_dma_rx_desc_resources(priv);
1570 
1571 	return ret;
1572 }
1573 
1574 /**
1575  * alloc_dma_tx_desc_resources - alloc TX resources.
1576  * @priv: private structure
1577  * Description: according to which descriptor can be used (extend or basic)
1578  * this function allocates the resources for TX and RX paths. In case of
1579  * reception, for example, it pre-allocated the RX socket buffer in order to
1580  * allow zero-copy mechanism.
1581  */
1582 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1583 {
1584 	u32 tx_count = priv->plat->tx_queues_to_use;
1585 	int ret = -ENOMEM;
1586 	u32 queue;
1587 
1588 	/* TX queues buffers and DMA */
1589 	for (queue = 0; queue < tx_count; queue++) {
1590 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1591 
1592 		tx_q->queue_index = queue;
1593 		tx_q->priv_data = priv;
1594 
1595 		tx_q->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1596 						    sizeof(*tx_q->tx_skbuff_dma),
1597 						    GFP_KERNEL);
1598 		if (!tx_q->tx_skbuff_dma)
1599 			goto err_dma;
1600 
1601 		tx_q->tx_skbuff = kmalloc_array(DMA_TX_SIZE,
1602 						sizeof(struct sk_buff *),
1603 						GFP_KERNEL);
1604 		if (!tx_q->tx_skbuff)
1605 			goto err_dma;
1606 
1607 		if (priv->extend_desc) {
1608 			tx_q->dma_etx = dma_zalloc_coherent(priv->device,
1609 							    DMA_TX_SIZE *
1610 							    sizeof(struct
1611 							    dma_extended_desc),
1612 							    &tx_q->dma_tx_phy,
1613 							    GFP_KERNEL);
1614 			if (!tx_q->dma_etx)
1615 				goto err_dma;
1616 		} else {
1617 			tx_q->dma_tx = dma_zalloc_coherent(priv->device,
1618 							   DMA_TX_SIZE *
1619 							   sizeof(struct
1620 								  dma_desc),
1621 							   &tx_q->dma_tx_phy,
1622 							   GFP_KERNEL);
1623 			if (!tx_q->dma_tx)
1624 				goto err_dma;
1625 		}
1626 	}
1627 
1628 	return 0;
1629 
1630 err_dma:
1631 	free_dma_tx_desc_resources(priv);
1632 
1633 	return ret;
1634 }
1635 
1636 /**
1637  * alloc_dma_desc_resources - alloc TX/RX resources.
1638  * @priv: private structure
1639  * Description: according to which descriptor can be used (extend or basic)
1640  * this function allocates the resources for TX and RX paths. In case of
1641  * reception, for example, it pre-allocated the RX socket buffer in order to
1642  * allow zero-copy mechanism.
1643  */
1644 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1645 {
1646 	/* RX Allocation */
1647 	int ret = alloc_dma_rx_desc_resources(priv);
1648 
1649 	if (ret)
1650 		return ret;
1651 
1652 	ret = alloc_dma_tx_desc_resources(priv);
1653 
1654 	return ret;
1655 }
1656 
1657 /**
1658  * free_dma_desc_resources - free dma desc resources
1659  * @priv: private structure
1660  */
1661 static void free_dma_desc_resources(struct stmmac_priv *priv)
1662 {
1663 	/* Release the DMA RX socket buffers */
1664 	free_dma_rx_desc_resources(priv);
1665 
1666 	/* Release the DMA TX socket buffers */
1667 	free_dma_tx_desc_resources(priv);
1668 }
1669 
1670 /**
1671  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1672  *  @priv: driver private structure
1673  *  Description: It is used for enabling the rx queues in the MAC
1674  */
1675 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1676 {
1677 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
1678 	int queue;
1679 	u8 mode;
1680 
1681 	for (queue = 0; queue < rx_queues_count; queue++) {
1682 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1683 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1684 	}
1685 }
1686 
1687 /**
1688  * stmmac_start_rx_dma - start RX DMA channel
1689  * @priv: driver private structure
1690  * @chan: RX channel index
1691  * Description:
1692  * This starts a RX DMA channel
1693  */
1694 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1695 {
1696 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1697 	stmmac_start_rx(priv, priv->ioaddr, chan);
1698 }
1699 
1700 /**
1701  * stmmac_start_tx_dma - start TX DMA channel
1702  * @priv: driver private structure
1703  * @chan: TX channel index
1704  * Description:
1705  * This starts a TX DMA channel
1706  */
1707 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1708 {
1709 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1710 	stmmac_start_tx(priv, priv->ioaddr, chan);
1711 }
1712 
1713 /**
1714  * stmmac_stop_rx_dma - stop RX DMA channel
1715  * @priv: driver private structure
1716  * @chan: RX channel index
1717  * Description:
1718  * This stops a RX DMA channel
1719  */
1720 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1721 {
1722 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1723 	stmmac_stop_rx(priv, priv->ioaddr, chan);
1724 }
1725 
1726 /**
1727  * stmmac_stop_tx_dma - stop TX DMA channel
1728  * @priv: driver private structure
1729  * @chan: TX channel index
1730  * Description:
1731  * This stops a TX DMA channel
1732  */
1733 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1734 {
1735 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1736 	stmmac_stop_tx(priv, priv->ioaddr, chan);
1737 }
1738 
1739 /**
1740  * stmmac_start_all_dma - start all RX and TX DMA channels
1741  * @priv: driver private structure
1742  * Description:
1743  * This starts all the RX and TX DMA channels
1744  */
1745 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1746 {
1747 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1748 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1749 	u32 chan = 0;
1750 
1751 	for (chan = 0; chan < rx_channels_count; chan++)
1752 		stmmac_start_rx_dma(priv, chan);
1753 
1754 	for (chan = 0; chan < tx_channels_count; chan++)
1755 		stmmac_start_tx_dma(priv, chan);
1756 }
1757 
1758 /**
1759  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1760  * @priv: driver private structure
1761  * Description:
1762  * This stops the RX and TX DMA channels
1763  */
1764 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1765 {
1766 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1767 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1768 	u32 chan = 0;
1769 
1770 	for (chan = 0; chan < rx_channels_count; chan++)
1771 		stmmac_stop_rx_dma(priv, chan);
1772 
1773 	for (chan = 0; chan < tx_channels_count; chan++)
1774 		stmmac_stop_tx_dma(priv, chan);
1775 }
1776 
1777 /**
1778  *  stmmac_dma_operation_mode - HW DMA operation mode
1779  *  @priv: driver private structure
1780  *  Description: it is used for configuring the DMA operation mode register in
1781  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1782  */
1783 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1784 {
1785 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1786 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1787 	int rxfifosz = priv->plat->rx_fifo_size;
1788 	int txfifosz = priv->plat->tx_fifo_size;
1789 	u32 txmode = 0;
1790 	u32 rxmode = 0;
1791 	u32 chan = 0;
1792 	u8 qmode = 0;
1793 
1794 	if (rxfifosz == 0)
1795 		rxfifosz = priv->dma_cap.rx_fifo_size;
1796 	if (txfifosz == 0)
1797 		txfifosz = priv->dma_cap.tx_fifo_size;
1798 
1799 	/* Adjust for real per queue fifo size */
1800 	rxfifosz /= rx_channels_count;
1801 	txfifosz /= tx_channels_count;
1802 
1803 	if (priv->plat->force_thresh_dma_mode) {
1804 		txmode = tc;
1805 		rxmode = tc;
1806 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1807 		/*
1808 		 * In case of GMAC, SF mode can be enabled
1809 		 * to perform the TX COE in HW. This depends on:
1810 		 * 1) TX COE if actually supported
1811 		 * 2) There is no bugged Jumbo frame support
1812 		 *    that needs to not insert csum in the TDES.
1813 		 */
1814 		txmode = SF_DMA_MODE;
1815 		rxmode = SF_DMA_MODE;
1816 		priv->xstats.threshold = SF_DMA_MODE;
1817 	} else {
1818 		txmode = tc;
1819 		rxmode = SF_DMA_MODE;
1820 	}
1821 
1822 	/* configure all channels */
1823 	for (chan = 0; chan < rx_channels_count; chan++) {
1824 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1825 
1826 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1827 				rxfifosz, qmode);
1828 		stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1829 				chan);
1830 	}
1831 
1832 	for (chan = 0; chan < tx_channels_count; chan++) {
1833 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1834 
1835 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1836 				txfifosz, qmode);
1837 	}
1838 }
1839 
1840 /**
1841  * stmmac_tx_clean - to manage the transmission completion
1842  * @priv: driver private structure
1843  * @queue: TX queue index
1844  * Description: it reclaims the transmit resources after transmission completes.
1845  */
1846 static void stmmac_tx_clean(struct stmmac_priv *priv, u32 queue)
1847 {
1848 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1849 	unsigned int bytes_compl = 0, pkts_compl = 0;
1850 	unsigned int entry;
1851 
1852 	netif_tx_lock(priv->dev);
1853 
1854 	priv->xstats.tx_clean++;
1855 
1856 	entry = tx_q->dirty_tx;
1857 	while (entry != tx_q->cur_tx) {
1858 		struct sk_buff *skb = tx_q->tx_skbuff[entry];
1859 		struct dma_desc *p;
1860 		int status;
1861 
1862 		if (priv->extend_desc)
1863 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
1864 		else
1865 			p = tx_q->dma_tx + entry;
1866 
1867 		status = stmmac_tx_status(priv, &priv->dev->stats,
1868 				&priv->xstats, p, priv->ioaddr);
1869 		/* Check if the descriptor is owned by the DMA */
1870 		if (unlikely(status & tx_dma_own))
1871 			break;
1872 
1873 		/* Make sure descriptor fields are read after reading
1874 		 * the own bit.
1875 		 */
1876 		dma_rmb();
1877 
1878 		/* Just consider the last segment and ...*/
1879 		if (likely(!(status & tx_not_ls))) {
1880 			/* ... verify the status error condition */
1881 			if (unlikely(status & tx_err)) {
1882 				priv->dev->stats.tx_errors++;
1883 			} else {
1884 				priv->dev->stats.tx_packets++;
1885 				priv->xstats.tx_pkt_n++;
1886 			}
1887 			stmmac_get_tx_hwtstamp(priv, p, skb);
1888 		}
1889 
1890 		if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1891 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
1892 				dma_unmap_page(priv->device,
1893 					       tx_q->tx_skbuff_dma[entry].buf,
1894 					       tx_q->tx_skbuff_dma[entry].len,
1895 					       DMA_TO_DEVICE);
1896 			else
1897 				dma_unmap_single(priv->device,
1898 						 tx_q->tx_skbuff_dma[entry].buf,
1899 						 tx_q->tx_skbuff_dma[entry].len,
1900 						 DMA_TO_DEVICE);
1901 			tx_q->tx_skbuff_dma[entry].buf = 0;
1902 			tx_q->tx_skbuff_dma[entry].len = 0;
1903 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
1904 		}
1905 
1906 		stmmac_clean_desc3(priv, tx_q, p);
1907 
1908 		tx_q->tx_skbuff_dma[entry].last_segment = false;
1909 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1910 
1911 		if (likely(skb != NULL)) {
1912 			pkts_compl++;
1913 			bytes_compl += skb->len;
1914 			dev_consume_skb_any(skb);
1915 			tx_q->tx_skbuff[entry] = NULL;
1916 		}
1917 
1918 		stmmac_release_tx_desc(priv, p, priv->mode);
1919 
1920 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1921 	}
1922 	tx_q->dirty_tx = entry;
1923 
1924 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1925 				  pkts_compl, bytes_compl);
1926 
1927 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1928 								queue))) &&
1929 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1930 
1931 		netif_dbg(priv, tx_done, priv->dev,
1932 			  "%s: restart transmit\n", __func__);
1933 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1934 	}
1935 
1936 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1937 		stmmac_enable_eee_mode(priv);
1938 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1939 	}
1940 	netif_tx_unlock(priv->dev);
1941 }
1942 
1943 /**
1944  * stmmac_tx_err - to manage the tx error
1945  * @priv: driver private structure
1946  * @chan: channel index
1947  * Description: it cleans the descriptors and restarts the transmission
1948  * in case of transmission errors.
1949  */
1950 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1951 {
1952 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
1953 	int i;
1954 
1955 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
1956 
1957 	stmmac_stop_tx_dma(priv, chan);
1958 	dma_free_tx_skbufs(priv, chan);
1959 	for (i = 0; i < DMA_TX_SIZE; i++)
1960 		if (priv->extend_desc)
1961 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1962 					priv->mode, (i == DMA_TX_SIZE - 1));
1963 		else
1964 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1965 					priv->mode, (i == DMA_TX_SIZE - 1));
1966 	tx_q->dirty_tx = 0;
1967 	tx_q->cur_tx = 0;
1968 	tx_q->mss = 0;
1969 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
1970 	stmmac_start_tx_dma(priv, chan);
1971 
1972 	priv->dev->stats.tx_errors++;
1973 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
1974 }
1975 
1976 /**
1977  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
1978  *  @priv: driver private structure
1979  *  @txmode: TX operating mode
1980  *  @rxmode: RX operating mode
1981  *  @chan: channel index
1982  *  Description: it is used for configuring of the DMA operation mode in
1983  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
1984  *  mode.
1985  */
1986 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
1987 					  u32 rxmode, u32 chan)
1988 {
1989 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1990 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1991 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1992 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1993 	int rxfifosz = priv->plat->rx_fifo_size;
1994 	int txfifosz = priv->plat->tx_fifo_size;
1995 
1996 	if (rxfifosz == 0)
1997 		rxfifosz = priv->dma_cap.rx_fifo_size;
1998 	if (txfifosz == 0)
1999 		txfifosz = priv->dma_cap.tx_fifo_size;
2000 
2001 	/* Adjust for real per queue fifo size */
2002 	rxfifosz /= rx_channels_count;
2003 	txfifosz /= tx_channels_count;
2004 
2005 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2006 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2007 }
2008 
2009 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2010 {
2011 	int ret;
2012 
2013 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2014 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2015 	if (ret && (ret != -EINVAL)) {
2016 		stmmac_global_err(priv);
2017 		return true;
2018 	}
2019 
2020 	return false;
2021 }
2022 
2023 /**
2024  * stmmac_dma_interrupt - DMA ISR
2025  * @priv: driver private structure
2026  * Description: this is the DMA ISR. It is called by the main ISR.
2027  * It calls the dwmac dma routine and schedule poll method in case of some
2028  * work can be done.
2029  */
2030 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2031 {
2032 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2033 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2034 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2035 				tx_channel_count : rx_channel_count;
2036 	u32 chan;
2037 	bool poll_scheduled = false;
2038 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2039 
2040 	/* Make sure we never check beyond our status buffer. */
2041 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2042 		channels_to_check = ARRAY_SIZE(status);
2043 
2044 	/* Each DMA channel can be used for rx and tx simultaneously, yet
2045 	 * napi_struct is embedded in struct stmmac_rx_queue rather than in a
2046 	 * stmmac_channel struct.
2047 	 * Because of this, stmmac_poll currently checks (and possibly wakes)
2048 	 * all tx queues rather than just a single tx queue.
2049 	 */
2050 	for (chan = 0; chan < channels_to_check; chan++)
2051 		status[chan] = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2052 				&priv->xstats, chan);
2053 
2054 	for (chan = 0; chan < rx_channel_count; chan++) {
2055 		if (likely(status[chan] & handle_rx)) {
2056 			struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2057 
2058 			if (likely(napi_schedule_prep(&rx_q->napi))) {
2059 				stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2060 				__napi_schedule(&rx_q->napi);
2061 				poll_scheduled = true;
2062 			}
2063 		}
2064 	}
2065 
2066 	/* If we scheduled poll, we already know that tx queues will be checked.
2067 	 * If we didn't schedule poll, see if any DMA channel (used by tx) has a
2068 	 * completed transmission, if so, call stmmac_poll (once).
2069 	 */
2070 	if (!poll_scheduled) {
2071 		for (chan = 0; chan < tx_channel_count; chan++) {
2072 			if (status[chan] & handle_tx) {
2073 				/* It doesn't matter what rx queue we choose
2074 				 * here. We use 0 since it always exists.
2075 				 */
2076 				struct stmmac_rx_queue *rx_q =
2077 					&priv->rx_queue[0];
2078 
2079 				if (likely(napi_schedule_prep(&rx_q->napi))) {
2080 					stmmac_disable_dma_irq(priv,
2081 							priv->ioaddr, chan);
2082 					__napi_schedule(&rx_q->napi);
2083 				}
2084 				break;
2085 			}
2086 		}
2087 	}
2088 
2089 	for (chan = 0; chan < tx_channel_count; chan++) {
2090 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2091 			/* Try to bump up the dma threshold on this failure */
2092 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2093 			    (tc <= 256)) {
2094 				tc += 64;
2095 				if (priv->plat->force_thresh_dma_mode)
2096 					stmmac_set_dma_operation_mode(priv,
2097 								      tc,
2098 								      tc,
2099 								      chan);
2100 				else
2101 					stmmac_set_dma_operation_mode(priv,
2102 								    tc,
2103 								    SF_DMA_MODE,
2104 								    chan);
2105 				priv->xstats.threshold = tc;
2106 			}
2107 		} else if (unlikely(status[chan] == tx_hard_error)) {
2108 			stmmac_tx_err(priv, chan);
2109 		}
2110 	}
2111 }
2112 
2113 /**
2114  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2115  * @priv: driver private structure
2116  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2117  */
2118 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2119 {
2120 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2121 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2122 
2123 	dwmac_mmc_intr_all_mask(priv->mmcaddr);
2124 
2125 	if (priv->dma_cap.rmon) {
2126 		dwmac_mmc_ctrl(priv->mmcaddr, mode);
2127 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2128 	} else
2129 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2130 }
2131 
2132 /**
2133  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2134  * @priv: driver private structure
2135  * Description:
2136  *  new GMAC chip generations have a new register to indicate the
2137  *  presence of the optional feature/functions.
2138  *  This can be also used to override the value passed through the
2139  *  platform and necessary for old MAC10/100 and GMAC chips.
2140  */
2141 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2142 {
2143 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2144 }
2145 
2146 /**
2147  * stmmac_check_ether_addr - check if the MAC addr is valid
2148  * @priv: driver private structure
2149  * Description:
2150  * it is to verify if the MAC address is valid, in case of failures it
2151  * generates a random MAC address
2152  */
2153 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2154 {
2155 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2156 		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2157 		if (!is_valid_ether_addr(priv->dev->dev_addr))
2158 			eth_hw_addr_random(priv->dev);
2159 		netdev_info(priv->dev, "device MAC address %pM\n",
2160 			    priv->dev->dev_addr);
2161 	}
2162 }
2163 
2164 /**
2165  * stmmac_init_dma_engine - DMA init.
2166  * @priv: driver private structure
2167  * Description:
2168  * It inits the DMA invoking the specific MAC/GMAC callback.
2169  * Some DMA parameters can be passed from the platform;
2170  * in case of these are not passed a default is kept for the MAC or GMAC.
2171  */
2172 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2173 {
2174 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2175 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2176 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2177 	struct stmmac_rx_queue *rx_q;
2178 	struct stmmac_tx_queue *tx_q;
2179 	u32 chan = 0;
2180 	int atds = 0;
2181 	int ret = 0;
2182 
2183 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2184 		dev_err(priv->device, "Invalid DMA configuration\n");
2185 		return -EINVAL;
2186 	}
2187 
2188 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2189 		atds = 1;
2190 
2191 	ret = stmmac_reset(priv, priv->ioaddr);
2192 	if (ret) {
2193 		dev_err(priv->device, "Failed to reset the dma\n");
2194 		return ret;
2195 	}
2196 
2197 	/* DMA Configuration */
2198 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2199 
2200 	if (priv->plat->axi)
2201 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2202 
2203 	/* DMA RX Channel Configuration */
2204 	for (chan = 0; chan < rx_channels_count; chan++) {
2205 		rx_q = &priv->rx_queue[chan];
2206 
2207 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2208 				    rx_q->dma_rx_phy, chan);
2209 
2210 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2211 			    (DMA_RX_SIZE * sizeof(struct dma_desc));
2212 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2213 				       rx_q->rx_tail_addr, chan);
2214 	}
2215 
2216 	/* DMA TX Channel Configuration */
2217 	for (chan = 0; chan < tx_channels_count; chan++) {
2218 		tx_q = &priv->tx_queue[chan];
2219 
2220 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2221 				    tx_q->dma_tx_phy, chan);
2222 
2223 		tx_q->tx_tail_addr = tx_q->dma_tx_phy +
2224 			    (DMA_TX_SIZE * sizeof(struct dma_desc));
2225 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2226 				       tx_q->tx_tail_addr, chan);
2227 	}
2228 
2229 	/* DMA CSR Channel configuration */
2230 	for (chan = 0; chan < dma_csr_ch; chan++)
2231 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2232 
2233 	return ret;
2234 }
2235 
2236 /**
2237  * stmmac_tx_timer - mitigation sw timer for tx.
2238  * @data: data pointer
2239  * Description:
2240  * This is the timer handler to directly invoke the stmmac_tx_clean.
2241  */
2242 static void stmmac_tx_timer(struct timer_list *t)
2243 {
2244 	struct stmmac_priv *priv = from_timer(priv, t, txtimer);
2245 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2246 	u32 queue;
2247 
2248 	/* let's scan all the tx queues */
2249 	for (queue = 0; queue < tx_queues_count; queue++)
2250 		stmmac_tx_clean(priv, queue);
2251 }
2252 
2253 /**
2254  * stmmac_init_tx_coalesce - init tx mitigation options.
2255  * @priv: driver private structure
2256  * Description:
2257  * This inits the transmit coalesce parameters: i.e. timer rate,
2258  * timer handler and default threshold used for enabling the
2259  * interrupt on completion bit.
2260  */
2261 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
2262 {
2263 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
2264 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2265 	timer_setup(&priv->txtimer, stmmac_tx_timer, 0);
2266 	priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
2267 	add_timer(&priv->txtimer);
2268 }
2269 
2270 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2271 {
2272 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2273 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2274 	u32 chan;
2275 
2276 	/* set TX ring length */
2277 	for (chan = 0; chan < tx_channels_count; chan++)
2278 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2279 				(DMA_TX_SIZE - 1), chan);
2280 
2281 	/* set RX ring length */
2282 	for (chan = 0; chan < rx_channels_count; chan++)
2283 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2284 				(DMA_RX_SIZE - 1), chan);
2285 }
2286 
2287 /**
2288  *  stmmac_set_tx_queue_weight - Set TX queue weight
2289  *  @priv: driver private structure
2290  *  Description: It is used for setting TX queues weight
2291  */
2292 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2293 {
2294 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2295 	u32 weight;
2296 	u32 queue;
2297 
2298 	for (queue = 0; queue < tx_queues_count; queue++) {
2299 		weight = priv->plat->tx_queues_cfg[queue].weight;
2300 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2301 	}
2302 }
2303 
2304 /**
2305  *  stmmac_configure_cbs - Configure CBS in TX queue
2306  *  @priv: driver private structure
2307  *  Description: It is used for configuring CBS in AVB TX queues
2308  */
2309 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2310 {
2311 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2312 	u32 mode_to_use;
2313 	u32 queue;
2314 
2315 	/* queue 0 is reserved for legacy traffic */
2316 	for (queue = 1; queue < tx_queues_count; queue++) {
2317 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2318 		if (mode_to_use == MTL_QUEUE_DCB)
2319 			continue;
2320 
2321 		stmmac_config_cbs(priv, priv->hw,
2322 				priv->plat->tx_queues_cfg[queue].send_slope,
2323 				priv->plat->tx_queues_cfg[queue].idle_slope,
2324 				priv->plat->tx_queues_cfg[queue].high_credit,
2325 				priv->plat->tx_queues_cfg[queue].low_credit,
2326 				queue);
2327 	}
2328 }
2329 
2330 /**
2331  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2332  *  @priv: driver private structure
2333  *  Description: It is used for mapping RX queues to RX dma channels
2334  */
2335 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2336 {
2337 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2338 	u32 queue;
2339 	u32 chan;
2340 
2341 	for (queue = 0; queue < rx_queues_count; queue++) {
2342 		chan = priv->plat->rx_queues_cfg[queue].chan;
2343 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2344 	}
2345 }
2346 
2347 /**
2348  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2349  *  @priv: driver private structure
2350  *  Description: It is used for configuring the RX Queue Priority
2351  */
2352 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2353 {
2354 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2355 	u32 queue;
2356 	u32 prio;
2357 
2358 	for (queue = 0; queue < rx_queues_count; queue++) {
2359 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
2360 			continue;
2361 
2362 		prio = priv->plat->rx_queues_cfg[queue].prio;
2363 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2364 	}
2365 }
2366 
2367 /**
2368  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2369  *  @priv: driver private structure
2370  *  Description: It is used for configuring the TX Queue Priority
2371  */
2372 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2373 {
2374 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2375 	u32 queue;
2376 	u32 prio;
2377 
2378 	for (queue = 0; queue < tx_queues_count; queue++) {
2379 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
2380 			continue;
2381 
2382 		prio = priv->plat->tx_queues_cfg[queue].prio;
2383 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2384 	}
2385 }
2386 
2387 /**
2388  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2389  *  @priv: driver private structure
2390  *  Description: It is used for configuring the RX queue routing
2391  */
2392 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2393 {
2394 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2395 	u32 queue;
2396 	u8 packet;
2397 
2398 	for (queue = 0; queue < rx_queues_count; queue++) {
2399 		/* no specific packet type routing specified for the queue */
2400 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2401 			continue;
2402 
2403 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2404 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2405 	}
2406 }
2407 
2408 /**
2409  *  stmmac_mtl_configuration - Configure MTL
2410  *  @priv: driver private structure
2411  *  Description: It is used for configurring MTL
2412  */
2413 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2414 {
2415 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2416 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2417 
2418 	if (tx_queues_count > 1)
2419 		stmmac_set_tx_queue_weight(priv);
2420 
2421 	/* Configure MTL RX algorithms */
2422 	if (rx_queues_count > 1)
2423 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2424 				priv->plat->rx_sched_algorithm);
2425 
2426 	/* Configure MTL TX algorithms */
2427 	if (tx_queues_count > 1)
2428 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2429 				priv->plat->tx_sched_algorithm);
2430 
2431 	/* Configure CBS in AVB TX queues */
2432 	if (tx_queues_count > 1)
2433 		stmmac_configure_cbs(priv);
2434 
2435 	/* Map RX MTL to DMA channels */
2436 	stmmac_rx_queue_dma_chan_map(priv);
2437 
2438 	/* Enable MAC RX Queues */
2439 	stmmac_mac_enable_rx_queues(priv);
2440 
2441 	/* Set RX priorities */
2442 	if (rx_queues_count > 1)
2443 		stmmac_mac_config_rx_queues_prio(priv);
2444 
2445 	/* Set TX priorities */
2446 	if (tx_queues_count > 1)
2447 		stmmac_mac_config_tx_queues_prio(priv);
2448 
2449 	/* Set RX routing */
2450 	if (rx_queues_count > 1)
2451 		stmmac_mac_config_rx_queues_routing(priv);
2452 }
2453 
2454 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2455 {
2456 	if (priv->dma_cap.asp) {
2457 		netdev_info(priv->dev, "Enabling Safety Features\n");
2458 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2459 	} else {
2460 		netdev_info(priv->dev, "No Safety Features support found\n");
2461 	}
2462 }
2463 
2464 /**
2465  * stmmac_hw_setup - setup mac in a usable state.
2466  *  @dev : pointer to the device structure.
2467  *  Description:
2468  *  this is the main function to setup the HW in a usable state because the
2469  *  dma engine is reset, the core registers are configured (e.g. AXI,
2470  *  Checksum features, timers). The DMA is ready to start receiving and
2471  *  transmitting.
2472  *  Return value:
2473  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2474  *  file on failure.
2475  */
2476 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2477 {
2478 	struct stmmac_priv *priv = netdev_priv(dev);
2479 	u32 rx_cnt = priv->plat->rx_queues_to_use;
2480 	u32 tx_cnt = priv->plat->tx_queues_to_use;
2481 	u32 chan;
2482 	int ret;
2483 
2484 	/* DMA initialization and SW reset */
2485 	ret = stmmac_init_dma_engine(priv);
2486 	if (ret < 0) {
2487 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2488 			   __func__);
2489 		return ret;
2490 	}
2491 
2492 	/* Copy the MAC addr into the HW  */
2493 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2494 
2495 	/* PS and related bits will be programmed according to the speed */
2496 	if (priv->hw->pcs) {
2497 		int speed = priv->plat->mac_port_sel_speed;
2498 
2499 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
2500 		    (speed == SPEED_1000)) {
2501 			priv->hw->ps = speed;
2502 		} else {
2503 			dev_warn(priv->device, "invalid port speed\n");
2504 			priv->hw->ps = 0;
2505 		}
2506 	}
2507 
2508 	/* Initialize the MAC Core */
2509 	stmmac_core_init(priv, priv->hw, dev);
2510 
2511 	/* Initialize MTL*/
2512 	stmmac_mtl_configuration(priv);
2513 
2514 	/* Initialize Safety Features */
2515 	stmmac_safety_feat_configuration(priv);
2516 
2517 	ret = stmmac_rx_ipc(priv, priv->hw);
2518 	if (!ret) {
2519 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2520 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2521 		priv->hw->rx_csum = 0;
2522 	}
2523 
2524 	/* Enable the MAC Rx/Tx */
2525 	stmmac_mac_set(priv, priv->ioaddr, true);
2526 
2527 	/* Set the HW DMA mode and the COE */
2528 	stmmac_dma_operation_mode(priv);
2529 
2530 	stmmac_mmc_setup(priv);
2531 
2532 	if (init_ptp) {
2533 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2534 		if (ret < 0)
2535 			netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2536 
2537 		ret = stmmac_init_ptp(priv);
2538 		if (ret == -EOPNOTSUPP)
2539 			netdev_warn(priv->dev, "PTP not supported by HW\n");
2540 		else if (ret)
2541 			netdev_warn(priv->dev, "PTP init failed\n");
2542 	}
2543 
2544 #ifdef CONFIG_DEBUG_FS
2545 	ret = stmmac_init_fs(dev);
2546 	if (ret < 0)
2547 		netdev_warn(priv->dev, "%s: failed debugFS registration\n",
2548 			    __func__);
2549 #endif
2550 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2551 
2552 	if (priv->use_riwt) {
2553 		ret = stmmac_rx_watchdog(priv, priv->ioaddr, MAX_DMA_RIWT, rx_cnt);
2554 		if (!ret)
2555 			priv->rx_riwt = MAX_DMA_RIWT;
2556 	}
2557 
2558 	if (priv->hw->pcs)
2559 		stmmac_pcs_ctrl_ane(priv, priv->hw, 1, priv->hw->ps, 0);
2560 
2561 	/* set TX and RX rings length */
2562 	stmmac_set_rings_length(priv);
2563 
2564 	/* Enable TSO */
2565 	if (priv->tso) {
2566 		for (chan = 0; chan < tx_cnt; chan++)
2567 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2568 	}
2569 
2570 	/* Start the ball rolling... */
2571 	stmmac_start_all_dma(priv);
2572 
2573 	return 0;
2574 }
2575 
2576 static void stmmac_hw_teardown(struct net_device *dev)
2577 {
2578 	struct stmmac_priv *priv = netdev_priv(dev);
2579 
2580 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
2581 }
2582 
2583 /**
2584  *  stmmac_open - open entry point of the driver
2585  *  @dev : pointer to the device structure.
2586  *  Description:
2587  *  This function is the open entry point of the driver.
2588  *  Return value:
2589  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2590  *  file on failure.
2591  */
2592 static int stmmac_open(struct net_device *dev)
2593 {
2594 	struct stmmac_priv *priv = netdev_priv(dev);
2595 	int ret;
2596 
2597 	stmmac_check_ether_addr(priv);
2598 
2599 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2600 	    priv->hw->pcs != STMMAC_PCS_TBI &&
2601 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
2602 		ret = stmmac_init_phy(dev);
2603 		if (ret) {
2604 			netdev_err(priv->dev,
2605 				   "%s: Cannot attach to PHY (error: %d)\n",
2606 				   __func__, ret);
2607 			return ret;
2608 		}
2609 	}
2610 
2611 	/* Extra statistics */
2612 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2613 	priv->xstats.threshold = tc;
2614 
2615 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
2616 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2617 
2618 	ret = alloc_dma_desc_resources(priv);
2619 	if (ret < 0) {
2620 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2621 			   __func__);
2622 		goto dma_desc_error;
2623 	}
2624 
2625 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
2626 	if (ret < 0) {
2627 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2628 			   __func__);
2629 		goto init_error;
2630 	}
2631 
2632 	ret = stmmac_hw_setup(dev, true);
2633 	if (ret < 0) {
2634 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2635 		goto init_error;
2636 	}
2637 
2638 	stmmac_init_tx_coalesce(priv);
2639 
2640 	if (dev->phydev)
2641 		phy_start(dev->phydev);
2642 
2643 	/* Request the IRQ lines */
2644 	ret = request_irq(dev->irq, stmmac_interrupt,
2645 			  IRQF_SHARED, dev->name, dev);
2646 	if (unlikely(ret < 0)) {
2647 		netdev_err(priv->dev,
2648 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2649 			   __func__, dev->irq, ret);
2650 		goto irq_error;
2651 	}
2652 
2653 	/* Request the Wake IRQ in case of another line is used for WoL */
2654 	if (priv->wol_irq != dev->irq) {
2655 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
2656 				  IRQF_SHARED, dev->name, dev);
2657 		if (unlikely(ret < 0)) {
2658 			netdev_err(priv->dev,
2659 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2660 				   __func__, priv->wol_irq, ret);
2661 			goto wolirq_error;
2662 		}
2663 	}
2664 
2665 	/* Request the IRQ lines */
2666 	if (priv->lpi_irq > 0) {
2667 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2668 				  dev->name, dev);
2669 		if (unlikely(ret < 0)) {
2670 			netdev_err(priv->dev,
2671 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2672 				   __func__, priv->lpi_irq, ret);
2673 			goto lpiirq_error;
2674 		}
2675 	}
2676 
2677 	stmmac_enable_all_queues(priv);
2678 	stmmac_start_all_queues(priv);
2679 
2680 	return 0;
2681 
2682 lpiirq_error:
2683 	if (priv->wol_irq != dev->irq)
2684 		free_irq(priv->wol_irq, dev);
2685 wolirq_error:
2686 	free_irq(dev->irq, dev);
2687 irq_error:
2688 	if (dev->phydev)
2689 		phy_stop(dev->phydev);
2690 
2691 	del_timer_sync(&priv->txtimer);
2692 	stmmac_hw_teardown(dev);
2693 init_error:
2694 	free_dma_desc_resources(priv);
2695 dma_desc_error:
2696 	if (dev->phydev)
2697 		phy_disconnect(dev->phydev);
2698 
2699 	return ret;
2700 }
2701 
2702 /**
2703  *  stmmac_release - close entry point of the driver
2704  *  @dev : device pointer.
2705  *  Description:
2706  *  This is the stop entry point of the driver.
2707  */
2708 static int stmmac_release(struct net_device *dev)
2709 {
2710 	struct stmmac_priv *priv = netdev_priv(dev);
2711 
2712 	if (priv->eee_enabled)
2713 		del_timer_sync(&priv->eee_ctrl_timer);
2714 
2715 	/* Stop and disconnect the PHY */
2716 	if (dev->phydev) {
2717 		phy_stop(dev->phydev);
2718 		phy_disconnect(dev->phydev);
2719 	}
2720 
2721 	stmmac_stop_all_queues(priv);
2722 
2723 	stmmac_disable_all_queues(priv);
2724 
2725 	del_timer_sync(&priv->txtimer);
2726 
2727 	/* Free the IRQ lines */
2728 	free_irq(dev->irq, dev);
2729 	if (priv->wol_irq != dev->irq)
2730 		free_irq(priv->wol_irq, dev);
2731 	if (priv->lpi_irq > 0)
2732 		free_irq(priv->lpi_irq, dev);
2733 
2734 	/* Stop TX/RX DMA and clear the descriptors */
2735 	stmmac_stop_all_dma(priv);
2736 
2737 	/* Release and free the Rx/Tx resources */
2738 	free_dma_desc_resources(priv);
2739 
2740 	/* Disable the MAC Rx/Tx */
2741 	stmmac_mac_set(priv, priv->ioaddr, false);
2742 
2743 	netif_carrier_off(dev);
2744 
2745 #ifdef CONFIG_DEBUG_FS
2746 	stmmac_exit_fs(dev);
2747 #endif
2748 
2749 	stmmac_release_ptp(priv);
2750 
2751 	return 0;
2752 }
2753 
2754 /**
2755  *  stmmac_tso_allocator - close entry point of the driver
2756  *  @priv: driver private structure
2757  *  @des: buffer start address
2758  *  @total_len: total length to fill in descriptors
2759  *  @last_segmant: condition for the last descriptor
2760  *  @queue: TX queue index
2761  *  Description:
2762  *  This function fills descriptor and request new descriptors according to
2763  *  buffer length to fill
2764  */
2765 static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des,
2766 				 int total_len, bool last_segment, u32 queue)
2767 {
2768 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2769 	struct dma_desc *desc;
2770 	u32 buff_size;
2771 	int tmp_len;
2772 
2773 	tmp_len = total_len;
2774 
2775 	while (tmp_len > 0) {
2776 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2777 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2778 		desc = tx_q->dma_tx + tx_q->cur_tx;
2779 
2780 		desc->des0 = cpu_to_le32(des + (total_len - tmp_len));
2781 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2782 			    TSO_MAX_BUFF_SIZE : tmp_len;
2783 
2784 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2785 				0, 1,
2786 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2787 				0, 0);
2788 
2789 		tmp_len -= TSO_MAX_BUFF_SIZE;
2790 	}
2791 }
2792 
2793 /**
2794  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2795  *  @skb : the socket buffer
2796  *  @dev : device pointer
2797  *  Description: this is the transmit function that is called on TSO frames
2798  *  (support available on GMAC4 and newer chips).
2799  *  Diagram below show the ring programming in case of TSO frames:
2800  *
2801  *  First Descriptor
2802  *   --------
2803  *   | DES0 |---> buffer1 = L2/L3/L4 header
2804  *   | DES1 |---> TCP Payload (can continue on next descr...)
2805  *   | DES2 |---> buffer 1 and 2 len
2806  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2807  *   --------
2808  *	|
2809  *     ...
2810  *	|
2811  *   --------
2812  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2813  *   | DES1 | --|
2814  *   | DES2 | --> buffer 1 and 2 len
2815  *   | DES3 |
2816  *   --------
2817  *
2818  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2819  */
2820 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2821 {
2822 	struct dma_desc *desc, *first, *mss_desc = NULL;
2823 	struct stmmac_priv *priv = netdev_priv(dev);
2824 	int nfrags = skb_shinfo(skb)->nr_frags;
2825 	u32 queue = skb_get_queue_mapping(skb);
2826 	unsigned int first_entry, des;
2827 	struct stmmac_tx_queue *tx_q;
2828 	int tmp_pay_len = 0;
2829 	u32 pay_len, mss;
2830 	u8 proto_hdr_len;
2831 	int i;
2832 
2833 	tx_q = &priv->tx_queue[queue];
2834 
2835 	/* Compute header lengths */
2836 	proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2837 
2838 	/* Desc availability based on threshold should be enough safe */
2839 	if (unlikely(stmmac_tx_avail(priv, queue) <
2840 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2841 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2842 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2843 								queue));
2844 			/* This is a hard error, log it. */
2845 			netdev_err(priv->dev,
2846 				   "%s: Tx Ring full when queue awake\n",
2847 				   __func__);
2848 		}
2849 		return NETDEV_TX_BUSY;
2850 	}
2851 
2852 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2853 
2854 	mss = skb_shinfo(skb)->gso_size;
2855 
2856 	/* set new MSS value if needed */
2857 	if (mss != tx_q->mss) {
2858 		mss_desc = tx_q->dma_tx + tx_q->cur_tx;
2859 		stmmac_set_mss(priv, mss_desc, mss);
2860 		tx_q->mss = mss;
2861 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2862 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2863 	}
2864 
2865 	if (netif_msg_tx_queued(priv)) {
2866 		pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2867 			__func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2868 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2869 			skb->data_len);
2870 	}
2871 
2872 	first_entry = tx_q->cur_tx;
2873 	WARN_ON(tx_q->tx_skbuff[first_entry]);
2874 
2875 	desc = tx_q->dma_tx + first_entry;
2876 	first = desc;
2877 
2878 	/* first descriptor: fill Headers on Buf1 */
2879 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2880 			     DMA_TO_DEVICE);
2881 	if (dma_mapping_error(priv->device, des))
2882 		goto dma_map_err;
2883 
2884 	tx_q->tx_skbuff_dma[first_entry].buf = des;
2885 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2886 
2887 	first->des0 = cpu_to_le32(des);
2888 
2889 	/* Fill start of payload in buff2 of first descriptor */
2890 	if (pay_len)
2891 		first->des1 = cpu_to_le32(des + proto_hdr_len);
2892 
2893 	/* If needed take extra descriptors to fill the remaining payload */
2894 	tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2895 
2896 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
2897 
2898 	/* Prepare fragments */
2899 	for (i = 0; i < nfrags; i++) {
2900 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2901 
2902 		des = skb_frag_dma_map(priv->device, frag, 0,
2903 				       skb_frag_size(frag),
2904 				       DMA_TO_DEVICE);
2905 		if (dma_mapping_error(priv->device, des))
2906 			goto dma_map_err;
2907 
2908 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
2909 				     (i == nfrags - 1), queue);
2910 
2911 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
2912 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
2913 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
2914 	}
2915 
2916 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
2917 
2918 	/* Only the last descriptor gets to point to the skb. */
2919 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
2920 
2921 	/* We've used all descriptors we need for this skb, however,
2922 	 * advance cur_tx so that it references a fresh descriptor.
2923 	 * ndo_start_xmit will fill this descriptor the next time it's
2924 	 * called and stmmac_tx_clean may clean up to this descriptor.
2925 	 */
2926 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2927 
2928 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
2929 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
2930 			  __func__);
2931 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
2932 	}
2933 
2934 	dev->stats.tx_bytes += skb->len;
2935 	priv->xstats.tx_tso_frames++;
2936 	priv->xstats.tx_tso_nfrags += nfrags;
2937 
2938 	/* Manage tx mitigation */
2939 	priv->tx_count_frames += nfrags + 1;
2940 	if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
2941 		mod_timer(&priv->txtimer,
2942 			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
2943 	} else {
2944 		priv->tx_count_frames = 0;
2945 		stmmac_set_tx_ic(priv, desc);
2946 		priv->xstats.tx_set_ic_bit++;
2947 	}
2948 
2949 	skb_tx_timestamp(skb);
2950 
2951 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2952 		     priv->hwts_tx_en)) {
2953 		/* declare that device is doing timestamping */
2954 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2955 		stmmac_enable_tx_timestamp(priv, first);
2956 	}
2957 
2958 	/* Complete the first descriptor before granting the DMA */
2959 	stmmac_prepare_tso_tx_desc(priv, first, 1,
2960 			proto_hdr_len,
2961 			pay_len,
2962 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
2963 			tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
2964 
2965 	/* If context desc is used to change MSS */
2966 	if (mss_desc) {
2967 		/* Make sure that first descriptor has been completely
2968 		 * written, including its own bit. This is because MSS is
2969 		 * actually before first descriptor, so we need to make
2970 		 * sure that MSS's own bit is the last thing written.
2971 		 */
2972 		dma_wmb();
2973 		stmmac_set_tx_owner(priv, mss_desc);
2974 	}
2975 
2976 	/* The own bit must be the latest setting done when prepare the
2977 	 * descriptor and then barrier is needed to make sure that
2978 	 * all is coherent before granting the DMA engine.
2979 	 */
2980 	wmb();
2981 
2982 	if (netif_msg_pktdata(priv)) {
2983 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
2984 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
2985 			tx_q->cur_tx, first, nfrags);
2986 
2987 		stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0);
2988 
2989 		pr_info(">>> frame to be transmitted: ");
2990 		print_pkt(skb->data, skb_headlen(skb));
2991 	}
2992 
2993 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
2994 
2995 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
2996 
2997 	return NETDEV_TX_OK;
2998 
2999 dma_map_err:
3000 	dev_err(priv->device, "Tx dma map failed\n");
3001 	dev_kfree_skb(skb);
3002 	priv->dev->stats.tx_dropped++;
3003 	return NETDEV_TX_OK;
3004 }
3005 
3006 /**
3007  *  stmmac_xmit - Tx entry point of the driver
3008  *  @skb : the socket buffer
3009  *  @dev : device pointer
3010  *  Description : this is the tx entry point of the driver.
3011  *  It programs the chain or the ring and supports oversized frames
3012  *  and SG feature.
3013  */
3014 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3015 {
3016 	struct stmmac_priv *priv = netdev_priv(dev);
3017 	unsigned int nopaged_len = skb_headlen(skb);
3018 	int i, csum_insertion = 0, is_jumbo = 0;
3019 	u32 queue = skb_get_queue_mapping(skb);
3020 	int nfrags = skb_shinfo(skb)->nr_frags;
3021 	int entry;
3022 	unsigned int first_entry;
3023 	struct dma_desc *desc, *first;
3024 	struct stmmac_tx_queue *tx_q;
3025 	unsigned int enh_desc;
3026 	unsigned int des;
3027 
3028 	tx_q = &priv->tx_queue[queue];
3029 
3030 	/* Manage oversized TCP frames for GMAC4 device */
3031 	if (skb_is_gso(skb) && priv->tso) {
3032 		if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3033 			return stmmac_tso_xmit(skb, dev);
3034 	}
3035 
3036 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3037 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3038 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3039 								queue));
3040 			/* This is a hard error, log it. */
3041 			netdev_err(priv->dev,
3042 				   "%s: Tx Ring full when queue awake\n",
3043 				   __func__);
3044 		}
3045 		return NETDEV_TX_BUSY;
3046 	}
3047 
3048 	if (priv->tx_path_in_lpi_mode)
3049 		stmmac_disable_eee_mode(priv);
3050 
3051 	entry = tx_q->cur_tx;
3052 	first_entry = entry;
3053 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3054 
3055 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3056 
3057 	if (likely(priv->extend_desc))
3058 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3059 	else
3060 		desc = tx_q->dma_tx + entry;
3061 
3062 	first = desc;
3063 
3064 	enh_desc = priv->plat->enh_desc;
3065 	/* To program the descriptors according to the size of the frame */
3066 	if (enh_desc)
3067 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3068 
3069 	if (unlikely(is_jumbo)) {
3070 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3071 		if (unlikely(entry < 0) && (entry != -EINVAL))
3072 			goto dma_map_err;
3073 	}
3074 
3075 	for (i = 0; i < nfrags; i++) {
3076 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3077 		int len = skb_frag_size(frag);
3078 		bool last_segment = (i == (nfrags - 1));
3079 
3080 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3081 		WARN_ON(tx_q->tx_skbuff[entry]);
3082 
3083 		if (likely(priv->extend_desc))
3084 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3085 		else
3086 			desc = tx_q->dma_tx + entry;
3087 
3088 		des = skb_frag_dma_map(priv->device, frag, 0, len,
3089 				       DMA_TO_DEVICE);
3090 		if (dma_mapping_error(priv->device, des))
3091 			goto dma_map_err; /* should reuse desc w/o issues */
3092 
3093 		tx_q->tx_skbuff_dma[entry].buf = des;
3094 
3095 		stmmac_set_desc_addr(priv, desc, des);
3096 
3097 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
3098 		tx_q->tx_skbuff_dma[entry].len = len;
3099 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3100 
3101 		/* Prepare the descriptor and set the own bit too */
3102 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3103 				priv->mode, 1, last_segment, skb->len);
3104 	}
3105 
3106 	/* Only the last descriptor gets to point to the skb. */
3107 	tx_q->tx_skbuff[entry] = skb;
3108 
3109 	/* We've used all descriptors we need for this skb, however,
3110 	 * advance cur_tx so that it references a fresh descriptor.
3111 	 * ndo_start_xmit will fill this descriptor the next time it's
3112 	 * called and stmmac_tx_clean may clean up to this descriptor.
3113 	 */
3114 	entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3115 	tx_q->cur_tx = entry;
3116 
3117 	if (netif_msg_pktdata(priv)) {
3118 		void *tx_head;
3119 
3120 		netdev_dbg(priv->dev,
3121 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3122 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3123 			   entry, first, nfrags);
3124 
3125 		if (priv->extend_desc)
3126 			tx_head = (void *)tx_q->dma_etx;
3127 		else
3128 			tx_head = (void *)tx_q->dma_tx;
3129 
3130 		stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false);
3131 
3132 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3133 		print_pkt(skb->data, skb->len);
3134 	}
3135 
3136 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3137 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3138 			  __func__);
3139 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3140 	}
3141 
3142 	dev->stats.tx_bytes += skb->len;
3143 
3144 	/* According to the coalesce parameter the IC bit for the latest
3145 	 * segment is reset and the timer re-started to clean the tx status.
3146 	 * This approach takes care about the fragments: desc is the first
3147 	 * element in case of no SG.
3148 	 */
3149 	priv->tx_count_frames += nfrags + 1;
3150 	if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
3151 		mod_timer(&priv->txtimer,
3152 			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
3153 	} else {
3154 		priv->tx_count_frames = 0;
3155 		stmmac_set_tx_ic(priv, desc);
3156 		priv->xstats.tx_set_ic_bit++;
3157 	}
3158 
3159 	skb_tx_timestamp(skb);
3160 
3161 	/* Ready to fill the first descriptor and set the OWN bit w/o any
3162 	 * problems because all the descriptors are actually ready to be
3163 	 * passed to the DMA engine.
3164 	 */
3165 	if (likely(!is_jumbo)) {
3166 		bool last_segment = (nfrags == 0);
3167 
3168 		des = dma_map_single(priv->device, skb->data,
3169 				     nopaged_len, DMA_TO_DEVICE);
3170 		if (dma_mapping_error(priv->device, des))
3171 			goto dma_map_err;
3172 
3173 		tx_q->tx_skbuff_dma[first_entry].buf = des;
3174 
3175 		stmmac_set_desc_addr(priv, first, des);
3176 
3177 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3178 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3179 
3180 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3181 			     priv->hwts_tx_en)) {
3182 			/* declare that device is doing timestamping */
3183 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3184 			stmmac_enable_tx_timestamp(priv, first);
3185 		}
3186 
3187 		/* Prepare the first descriptor setting the OWN bit too */
3188 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3189 				csum_insertion, priv->mode, 1, last_segment,
3190 				skb->len);
3191 
3192 		/* The own bit must be the latest setting done when prepare the
3193 		 * descriptor and then barrier is needed to make sure that
3194 		 * all is coherent before granting the DMA engine.
3195 		 */
3196 		wmb();
3197 	}
3198 
3199 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3200 
3201 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
3202 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3203 
3204 	return NETDEV_TX_OK;
3205 
3206 dma_map_err:
3207 	netdev_err(priv->dev, "Tx DMA map failed\n");
3208 	dev_kfree_skb(skb);
3209 	priv->dev->stats.tx_dropped++;
3210 	return NETDEV_TX_OK;
3211 }
3212 
3213 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3214 {
3215 	struct vlan_ethhdr *veth;
3216 	__be16 vlan_proto;
3217 	u16 vlanid;
3218 
3219 	veth = (struct vlan_ethhdr *)skb->data;
3220 	vlan_proto = veth->h_vlan_proto;
3221 
3222 	if ((vlan_proto == htons(ETH_P_8021Q) &&
3223 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3224 	    (vlan_proto == htons(ETH_P_8021AD) &&
3225 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3226 		/* pop the vlan tag */
3227 		vlanid = ntohs(veth->h_vlan_TCI);
3228 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3229 		skb_pull(skb, VLAN_HLEN);
3230 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3231 	}
3232 }
3233 
3234 
3235 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3236 {
3237 	if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3238 		return 0;
3239 
3240 	return 1;
3241 }
3242 
3243 /**
3244  * stmmac_rx_refill - refill used skb preallocated buffers
3245  * @priv: driver private structure
3246  * @queue: RX queue index
3247  * Description : this is to reallocate the skb for the reception process
3248  * that is based on zero-copy.
3249  */
3250 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3251 {
3252 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3253 	int dirty = stmmac_rx_dirty(priv, queue);
3254 	unsigned int entry = rx_q->dirty_rx;
3255 
3256 	int bfsize = priv->dma_buf_sz;
3257 
3258 	while (dirty-- > 0) {
3259 		struct dma_desc *p;
3260 
3261 		if (priv->extend_desc)
3262 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3263 		else
3264 			p = rx_q->dma_rx + entry;
3265 
3266 		if (likely(!rx_q->rx_skbuff[entry])) {
3267 			struct sk_buff *skb;
3268 
3269 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
3270 			if (unlikely(!skb)) {
3271 				/* so for a while no zero-copy! */
3272 				rx_q->rx_zeroc_thresh = STMMAC_RX_THRESH;
3273 				if (unlikely(net_ratelimit()))
3274 					dev_err(priv->device,
3275 						"fail to alloc skb entry %d\n",
3276 						entry);
3277 				break;
3278 			}
3279 
3280 			rx_q->rx_skbuff[entry] = skb;
3281 			rx_q->rx_skbuff_dma[entry] =
3282 			    dma_map_single(priv->device, skb->data, bfsize,
3283 					   DMA_FROM_DEVICE);
3284 			if (dma_mapping_error(priv->device,
3285 					      rx_q->rx_skbuff_dma[entry])) {
3286 				netdev_err(priv->dev, "Rx DMA map failed\n");
3287 				dev_kfree_skb(skb);
3288 				break;
3289 			}
3290 
3291 			stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[entry]);
3292 			stmmac_refill_desc3(priv, rx_q, p);
3293 
3294 			if (rx_q->rx_zeroc_thresh > 0)
3295 				rx_q->rx_zeroc_thresh--;
3296 
3297 			netif_dbg(priv, rx_status, priv->dev,
3298 				  "refill entry #%d\n", entry);
3299 		}
3300 		dma_wmb();
3301 
3302 		stmmac_set_rx_owner(priv, p, priv->use_riwt);
3303 
3304 		dma_wmb();
3305 
3306 		entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3307 	}
3308 	rx_q->dirty_rx = entry;
3309 }
3310 
3311 /**
3312  * stmmac_rx - manage the receive process
3313  * @priv: driver private structure
3314  * @limit: napi bugget
3315  * @queue: RX queue index.
3316  * Description :  this the function called by the napi poll method.
3317  * It gets all the frames inside the ring.
3318  */
3319 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3320 {
3321 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3322 	unsigned int entry = rx_q->cur_rx;
3323 	int coe = priv->hw->rx_csum;
3324 	unsigned int next_entry;
3325 	unsigned int count = 0;
3326 	bool xmac;
3327 
3328 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3329 
3330 	if (netif_msg_rx_status(priv)) {
3331 		void *rx_head;
3332 
3333 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3334 		if (priv->extend_desc)
3335 			rx_head = (void *)rx_q->dma_erx;
3336 		else
3337 			rx_head = (void *)rx_q->dma_rx;
3338 
3339 		stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3340 	}
3341 	while (count < limit) {
3342 		int status;
3343 		struct dma_desc *p;
3344 		struct dma_desc *np;
3345 
3346 		if (priv->extend_desc)
3347 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3348 		else
3349 			p = rx_q->dma_rx + entry;
3350 
3351 		/* read the status of the incoming frame */
3352 		status = stmmac_rx_status(priv, &priv->dev->stats,
3353 				&priv->xstats, p);
3354 		/* check if managed by the DMA otherwise go ahead */
3355 		if (unlikely(status & dma_own))
3356 			break;
3357 
3358 		count++;
3359 
3360 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3361 		next_entry = rx_q->cur_rx;
3362 
3363 		if (priv->extend_desc)
3364 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3365 		else
3366 			np = rx_q->dma_rx + next_entry;
3367 
3368 		prefetch(np);
3369 
3370 		if (priv->extend_desc)
3371 			stmmac_rx_extended_status(priv, &priv->dev->stats,
3372 					&priv->xstats, rx_q->dma_erx + entry);
3373 		if (unlikely(status == discard_frame)) {
3374 			priv->dev->stats.rx_errors++;
3375 			if (priv->hwts_rx_en && !priv->extend_desc) {
3376 				/* DESC2 & DESC3 will be overwritten by device
3377 				 * with timestamp value, hence reinitialize
3378 				 * them in stmmac_rx_refill() function so that
3379 				 * device can reuse it.
3380 				 */
3381 				dev_kfree_skb_any(rx_q->rx_skbuff[entry]);
3382 				rx_q->rx_skbuff[entry] = NULL;
3383 				dma_unmap_single(priv->device,
3384 						 rx_q->rx_skbuff_dma[entry],
3385 						 priv->dma_buf_sz,
3386 						 DMA_FROM_DEVICE);
3387 			}
3388 		} else {
3389 			struct sk_buff *skb;
3390 			int frame_len;
3391 			unsigned int des;
3392 
3393 			stmmac_get_desc_addr(priv, p, &des);
3394 			frame_len = stmmac_get_rx_frame_len(priv, p, coe);
3395 
3396 			/*  If frame length is greater than skb buffer size
3397 			 *  (preallocated during init) then the packet is
3398 			 *  ignored
3399 			 */
3400 			if (frame_len > priv->dma_buf_sz) {
3401 				netdev_err(priv->dev,
3402 					   "len %d larger than size (%d)\n",
3403 					   frame_len, priv->dma_buf_sz);
3404 				priv->dev->stats.rx_length_errors++;
3405 				break;
3406 			}
3407 
3408 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3409 			 * Type frames (LLC/LLC-SNAP)
3410 			 *
3411 			 * llc_snap is never checked in GMAC >= 4, so this ACS
3412 			 * feature is always disabled and packets need to be
3413 			 * stripped manually.
3414 			 */
3415 			if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3416 			    unlikely(status != llc_snap))
3417 				frame_len -= ETH_FCS_LEN;
3418 
3419 			if (netif_msg_rx_status(priv)) {
3420 				netdev_dbg(priv->dev, "\tdesc: %p [entry %d] buff=0x%x\n",
3421 					   p, entry, des);
3422 				netdev_dbg(priv->dev, "frame size %d, COE: %d\n",
3423 					   frame_len, status);
3424 			}
3425 
3426 			/* The zero-copy is always used for all the sizes
3427 			 * in case of GMAC4 because it needs
3428 			 * to refill the used descriptors, always.
3429 			 */
3430 			if (unlikely(!xmac &&
3431 				     ((frame_len < priv->rx_copybreak) ||
3432 				     stmmac_rx_threshold_count(rx_q)))) {
3433 				skb = netdev_alloc_skb_ip_align(priv->dev,
3434 								frame_len);
3435 				if (unlikely(!skb)) {
3436 					if (net_ratelimit())
3437 						dev_warn(priv->device,
3438 							 "packet dropped\n");
3439 					priv->dev->stats.rx_dropped++;
3440 					break;
3441 				}
3442 
3443 				dma_sync_single_for_cpu(priv->device,
3444 							rx_q->rx_skbuff_dma
3445 							[entry], frame_len,
3446 							DMA_FROM_DEVICE);
3447 				skb_copy_to_linear_data(skb,
3448 							rx_q->
3449 							rx_skbuff[entry]->data,
3450 							frame_len);
3451 
3452 				skb_put(skb, frame_len);
3453 				dma_sync_single_for_device(priv->device,
3454 							   rx_q->rx_skbuff_dma
3455 							   [entry], frame_len,
3456 							   DMA_FROM_DEVICE);
3457 			} else {
3458 				skb = rx_q->rx_skbuff[entry];
3459 				if (unlikely(!skb)) {
3460 					netdev_err(priv->dev,
3461 						   "%s: Inconsistent Rx chain\n",
3462 						   priv->dev->name);
3463 					priv->dev->stats.rx_dropped++;
3464 					break;
3465 				}
3466 				prefetch(skb->data - NET_IP_ALIGN);
3467 				rx_q->rx_skbuff[entry] = NULL;
3468 				rx_q->rx_zeroc_thresh++;
3469 
3470 				skb_put(skb, frame_len);
3471 				dma_unmap_single(priv->device,
3472 						 rx_q->rx_skbuff_dma[entry],
3473 						 priv->dma_buf_sz,
3474 						 DMA_FROM_DEVICE);
3475 			}
3476 
3477 			if (netif_msg_pktdata(priv)) {
3478 				netdev_dbg(priv->dev, "frame received (%dbytes)",
3479 					   frame_len);
3480 				print_pkt(skb->data, frame_len);
3481 			}
3482 
3483 			stmmac_get_rx_hwtstamp(priv, p, np, skb);
3484 
3485 			stmmac_rx_vlan(priv->dev, skb);
3486 
3487 			skb->protocol = eth_type_trans(skb, priv->dev);
3488 
3489 			if (unlikely(!coe))
3490 				skb_checksum_none_assert(skb);
3491 			else
3492 				skb->ip_summed = CHECKSUM_UNNECESSARY;
3493 
3494 			napi_gro_receive(&rx_q->napi, skb);
3495 
3496 			priv->dev->stats.rx_packets++;
3497 			priv->dev->stats.rx_bytes += frame_len;
3498 		}
3499 		entry = next_entry;
3500 	}
3501 
3502 	stmmac_rx_refill(priv, queue);
3503 
3504 	priv->xstats.rx_pkt_n += count;
3505 
3506 	return count;
3507 }
3508 
3509 /**
3510  *  stmmac_poll - stmmac poll method (NAPI)
3511  *  @napi : pointer to the napi structure.
3512  *  @budget : maximum number of packets that the current CPU can receive from
3513  *	      all interfaces.
3514  *  Description :
3515  *  To look at the incoming frames and clear the tx resources.
3516  */
3517 static int stmmac_poll(struct napi_struct *napi, int budget)
3518 {
3519 	struct stmmac_rx_queue *rx_q =
3520 		container_of(napi, struct stmmac_rx_queue, napi);
3521 	struct stmmac_priv *priv = rx_q->priv_data;
3522 	u32 tx_count = priv->plat->tx_queues_to_use;
3523 	u32 chan = rx_q->queue_index;
3524 	int work_done = 0;
3525 	u32 queue;
3526 
3527 	priv->xstats.napi_poll++;
3528 
3529 	/* check all the queues */
3530 	for (queue = 0; queue < tx_count; queue++)
3531 		stmmac_tx_clean(priv, queue);
3532 
3533 	work_done = stmmac_rx(priv, budget, rx_q->queue_index);
3534 	if (work_done < budget) {
3535 		napi_complete_done(napi, work_done);
3536 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3537 	}
3538 	return work_done;
3539 }
3540 
3541 /**
3542  *  stmmac_tx_timeout
3543  *  @dev : Pointer to net device structure
3544  *  Description: this function is called when a packet transmission fails to
3545  *   complete within a reasonable time. The driver will mark the error in the
3546  *   netdev structure and arrange for the device to be reset to a sane state
3547  *   in order to transmit a new packet.
3548  */
3549 static void stmmac_tx_timeout(struct net_device *dev)
3550 {
3551 	struct stmmac_priv *priv = netdev_priv(dev);
3552 
3553 	stmmac_global_err(priv);
3554 }
3555 
3556 /**
3557  *  stmmac_set_rx_mode - entry point for multicast addressing
3558  *  @dev : pointer to the device structure
3559  *  Description:
3560  *  This function is a driver entry point which gets called by the kernel
3561  *  whenever multicast addresses must be enabled/disabled.
3562  *  Return value:
3563  *  void.
3564  */
3565 static void stmmac_set_rx_mode(struct net_device *dev)
3566 {
3567 	struct stmmac_priv *priv = netdev_priv(dev);
3568 
3569 	stmmac_set_filter(priv, priv->hw, dev);
3570 }
3571 
3572 /**
3573  *  stmmac_change_mtu - entry point to change MTU size for the device.
3574  *  @dev : device pointer.
3575  *  @new_mtu : the new MTU size for the device.
3576  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3577  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3578  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3579  *  Return value:
3580  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3581  *  file on failure.
3582  */
3583 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3584 {
3585 	struct stmmac_priv *priv = netdev_priv(dev);
3586 
3587 	if (netif_running(dev)) {
3588 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
3589 		return -EBUSY;
3590 	}
3591 
3592 	dev->mtu = new_mtu;
3593 
3594 	netdev_update_features(dev);
3595 
3596 	return 0;
3597 }
3598 
3599 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3600 					     netdev_features_t features)
3601 {
3602 	struct stmmac_priv *priv = netdev_priv(dev);
3603 
3604 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3605 		features &= ~NETIF_F_RXCSUM;
3606 
3607 	if (!priv->plat->tx_coe)
3608 		features &= ~NETIF_F_CSUM_MASK;
3609 
3610 	/* Some GMAC devices have a bugged Jumbo frame support that
3611 	 * needs to have the Tx COE disabled for oversized frames
3612 	 * (due to limited buffer sizes). In this case we disable
3613 	 * the TX csum insertion in the TDES and not use SF.
3614 	 */
3615 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3616 		features &= ~NETIF_F_CSUM_MASK;
3617 
3618 	/* Disable tso if asked by ethtool */
3619 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3620 		if (features & NETIF_F_TSO)
3621 			priv->tso = true;
3622 		else
3623 			priv->tso = false;
3624 	}
3625 
3626 	return features;
3627 }
3628 
3629 static int stmmac_set_features(struct net_device *netdev,
3630 			       netdev_features_t features)
3631 {
3632 	struct stmmac_priv *priv = netdev_priv(netdev);
3633 
3634 	/* Keep the COE Type in case of csum is supporting */
3635 	if (features & NETIF_F_RXCSUM)
3636 		priv->hw->rx_csum = priv->plat->rx_coe;
3637 	else
3638 		priv->hw->rx_csum = 0;
3639 	/* No check needed because rx_coe has been set before and it will be
3640 	 * fixed in case of issue.
3641 	 */
3642 	stmmac_rx_ipc(priv, priv->hw);
3643 
3644 	return 0;
3645 }
3646 
3647 /**
3648  *  stmmac_interrupt - main ISR
3649  *  @irq: interrupt number.
3650  *  @dev_id: to pass the net device pointer.
3651  *  Description: this is the main driver interrupt service routine.
3652  *  It can call:
3653  *  o DMA service routine (to manage incoming frame reception and transmission
3654  *    status)
3655  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3656  *    interrupts.
3657  */
3658 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3659 {
3660 	struct net_device *dev = (struct net_device *)dev_id;
3661 	struct stmmac_priv *priv = netdev_priv(dev);
3662 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3663 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3664 	u32 queues_count;
3665 	u32 queue;
3666 	bool xmac;
3667 
3668 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3669 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3670 
3671 	if (priv->irq_wake)
3672 		pm_wakeup_event(priv->device, 0);
3673 
3674 	if (unlikely(!dev)) {
3675 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3676 		return IRQ_NONE;
3677 	}
3678 
3679 	/* Check if adapter is up */
3680 	if (test_bit(STMMAC_DOWN, &priv->state))
3681 		return IRQ_HANDLED;
3682 	/* Check if a fatal error happened */
3683 	if (stmmac_safety_feat_interrupt(priv))
3684 		return IRQ_HANDLED;
3685 
3686 	/* To handle GMAC own interrupts */
3687 	if ((priv->plat->has_gmac) || xmac) {
3688 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
3689 		int mtl_status;
3690 
3691 		if (unlikely(status)) {
3692 			/* For LPI we need to save the tx status */
3693 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3694 				priv->tx_path_in_lpi_mode = true;
3695 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3696 				priv->tx_path_in_lpi_mode = false;
3697 		}
3698 
3699 		for (queue = 0; queue < queues_count; queue++) {
3700 			struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3701 
3702 			mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
3703 								queue);
3704 			if (mtl_status != -EINVAL)
3705 				status |= mtl_status;
3706 
3707 			if (status & CORE_IRQ_MTL_RX_OVERFLOW)
3708 				stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
3709 						       rx_q->rx_tail_addr,
3710 						       queue);
3711 		}
3712 
3713 		/* PCS link status */
3714 		if (priv->hw->pcs) {
3715 			if (priv->xstats.pcs_link)
3716 				netif_carrier_on(dev);
3717 			else
3718 				netif_carrier_off(dev);
3719 		}
3720 	}
3721 
3722 	/* To handle DMA interrupts */
3723 	stmmac_dma_interrupt(priv);
3724 
3725 	return IRQ_HANDLED;
3726 }
3727 
3728 #ifdef CONFIG_NET_POLL_CONTROLLER
3729 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3730  * to allow network I/O with interrupts disabled.
3731  */
3732 static void stmmac_poll_controller(struct net_device *dev)
3733 {
3734 	disable_irq(dev->irq);
3735 	stmmac_interrupt(dev->irq, dev);
3736 	enable_irq(dev->irq);
3737 }
3738 #endif
3739 
3740 /**
3741  *  stmmac_ioctl - Entry point for the Ioctl
3742  *  @dev: Device pointer.
3743  *  @rq: An IOCTL specefic structure, that can contain a pointer to
3744  *  a proprietary structure used to pass information to the driver.
3745  *  @cmd: IOCTL command
3746  *  Description:
3747  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3748  */
3749 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3750 {
3751 	int ret = -EOPNOTSUPP;
3752 
3753 	if (!netif_running(dev))
3754 		return -EINVAL;
3755 
3756 	switch (cmd) {
3757 	case SIOCGMIIPHY:
3758 	case SIOCGMIIREG:
3759 	case SIOCSMIIREG:
3760 		if (!dev->phydev)
3761 			return -EINVAL;
3762 		ret = phy_mii_ioctl(dev->phydev, rq, cmd);
3763 		break;
3764 	case SIOCSHWTSTAMP:
3765 		ret = stmmac_hwtstamp_ioctl(dev, rq);
3766 		break;
3767 	default:
3768 		break;
3769 	}
3770 
3771 	return ret;
3772 }
3773 
3774 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3775 				    void *cb_priv)
3776 {
3777 	struct stmmac_priv *priv = cb_priv;
3778 	int ret = -EOPNOTSUPP;
3779 
3780 	stmmac_disable_all_queues(priv);
3781 
3782 	switch (type) {
3783 	case TC_SETUP_CLSU32:
3784 		if (tc_cls_can_offload_and_chain0(priv->dev, type_data))
3785 			ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
3786 		break;
3787 	default:
3788 		break;
3789 	}
3790 
3791 	stmmac_enable_all_queues(priv);
3792 	return ret;
3793 }
3794 
3795 static int stmmac_setup_tc_block(struct stmmac_priv *priv,
3796 				 struct tc_block_offload *f)
3797 {
3798 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
3799 		return -EOPNOTSUPP;
3800 
3801 	switch (f->command) {
3802 	case TC_BLOCK_BIND:
3803 		return tcf_block_cb_register(f->block, stmmac_setup_tc_block_cb,
3804 				priv, priv, f->extack);
3805 	case TC_BLOCK_UNBIND:
3806 		tcf_block_cb_unregister(f->block, stmmac_setup_tc_block_cb, priv);
3807 		return 0;
3808 	default:
3809 		return -EOPNOTSUPP;
3810 	}
3811 }
3812 
3813 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
3814 			   void *type_data)
3815 {
3816 	struct stmmac_priv *priv = netdev_priv(ndev);
3817 
3818 	switch (type) {
3819 	case TC_SETUP_BLOCK:
3820 		return stmmac_setup_tc_block(priv, type_data);
3821 	case TC_SETUP_QDISC_CBS:
3822 		return stmmac_tc_setup_cbs(priv, priv, type_data);
3823 	default:
3824 		return -EOPNOTSUPP;
3825 	}
3826 }
3827 
3828 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
3829 {
3830 	struct stmmac_priv *priv = netdev_priv(ndev);
3831 	int ret = 0;
3832 
3833 	ret = eth_mac_addr(ndev, addr);
3834 	if (ret)
3835 		return ret;
3836 
3837 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
3838 
3839 	return ret;
3840 }
3841 
3842 #ifdef CONFIG_DEBUG_FS
3843 static struct dentry *stmmac_fs_dir;
3844 
3845 static void sysfs_display_ring(void *head, int size, int extend_desc,
3846 			       struct seq_file *seq)
3847 {
3848 	int i;
3849 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
3850 	struct dma_desc *p = (struct dma_desc *)head;
3851 
3852 	for (i = 0; i < size; i++) {
3853 		if (extend_desc) {
3854 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3855 				   i, (unsigned int)virt_to_phys(ep),
3856 				   le32_to_cpu(ep->basic.des0),
3857 				   le32_to_cpu(ep->basic.des1),
3858 				   le32_to_cpu(ep->basic.des2),
3859 				   le32_to_cpu(ep->basic.des3));
3860 			ep++;
3861 		} else {
3862 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3863 				   i, (unsigned int)virt_to_phys(p),
3864 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
3865 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
3866 			p++;
3867 		}
3868 		seq_printf(seq, "\n");
3869 	}
3870 }
3871 
3872 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
3873 {
3874 	struct net_device *dev = seq->private;
3875 	struct stmmac_priv *priv = netdev_priv(dev);
3876 	u32 rx_count = priv->plat->rx_queues_to_use;
3877 	u32 tx_count = priv->plat->tx_queues_to_use;
3878 	u32 queue;
3879 
3880 	for (queue = 0; queue < rx_count; queue++) {
3881 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3882 
3883 		seq_printf(seq, "RX Queue %d:\n", queue);
3884 
3885 		if (priv->extend_desc) {
3886 			seq_printf(seq, "Extended descriptor ring:\n");
3887 			sysfs_display_ring((void *)rx_q->dma_erx,
3888 					   DMA_RX_SIZE, 1, seq);
3889 		} else {
3890 			seq_printf(seq, "Descriptor ring:\n");
3891 			sysfs_display_ring((void *)rx_q->dma_rx,
3892 					   DMA_RX_SIZE, 0, seq);
3893 		}
3894 	}
3895 
3896 	for (queue = 0; queue < tx_count; queue++) {
3897 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3898 
3899 		seq_printf(seq, "TX Queue %d:\n", queue);
3900 
3901 		if (priv->extend_desc) {
3902 			seq_printf(seq, "Extended descriptor ring:\n");
3903 			sysfs_display_ring((void *)tx_q->dma_etx,
3904 					   DMA_TX_SIZE, 1, seq);
3905 		} else {
3906 			seq_printf(seq, "Descriptor ring:\n");
3907 			sysfs_display_ring((void *)tx_q->dma_tx,
3908 					   DMA_TX_SIZE, 0, seq);
3909 		}
3910 	}
3911 
3912 	return 0;
3913 }
3914 
3915 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
3916 {
3917 	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
3918 }
3919 
3920 /* Debugfs files, should appear in /sys/kernel/debug/stmmaceth/eth0 */
3921 
3922 static const struct file_operations stmmac_rings_status_fops = {
3923 	.owner = THIS_MODULE,
3924 	.open = stmmac_sysfs_ring_open,
3925 	.read = seq_read,
3926 	.llseek = seq_lseek,
3927 	.release = single_release,
3928 };
3929 
3930 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
3931 {
3932 	struct net_device *dev = seq->private;
3933 	struct stmmac_priv *priv = netdev_priv(dev);
3934 
3935 	if (!priv->hw_cap_support) {
3936 		seq_printf(seq, "DMA HW features not supported\n");
3937 		return 0;
3938 	}
3939 
3940 	seq_printf(seq, "==============================\n");
3941 	seq_printf(seq, "\tDMA HW features\n");
3942 	seq_printf(seq, "==============================\n");
3943 
3944 	seq_printf(seq, "\t10/100 Mbps: %s\n",
3945 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
3946 	seq_printf(seq, "\t1000 Mbps: %s\n",
3947 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
3948 	seq_printf(seq, "\tHalf duplex: %s\n",
3949 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
3950 	seq_printf(seq, "\tHash Filter: %s\n",
3951 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
3952 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
3953 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
3954 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
3955 		   (priv->dma_cap.pcs) ? "Y" : "N");
3956 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
3957 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
3958 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
3959 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
3960 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
3961 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
3962 	seq_printf(seq, "\tRMON module: %s\n",
3963 		   (priv->dma_cap.rmon) ? "Y" : "N");
3964 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
3965 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
3966 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
3967 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
3968 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
3969 		   (priv->dma_cap.eee) ? "Y" : "N");
3970 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
3971 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
3972 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
3973 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3974 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
3975 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
3976 	} else {
3977 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
3978 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
3979 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
3980 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
3981 	}
3982 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
3983 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
3984 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
3985 		   priv->dma_cap.number_rx_channel);
3986 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
3987 		   priv->dma_cap.number_tx_channel);
3988 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
3989 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
3990 
3991 	return 0;
3992 }
3993 
3994 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
3995 {
3996 	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
3997 }
3998 
3999 static const struct file_operations stmmac_dma_cap_fops = {
4000 	.owner = THIS_MODULE,
4001 	.open = stmmac_sysfs_dma_cap_open,
4002 	.read = seq_read,
4003 	.llseek = seq_lseek,
4004 	.release = single_release,
4005 };
4006 
4007 static int stmmac_init_fs(struct net_device *dev)
4008 {
4009 	struct stmmac_priv *priv = netdev_priv(dev);
4010 
4011 	/* Create per netdev entries */
4012 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4013 
4014 	if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
4015 		netdev_err(priv->dev, "ERROR failed to create debugfs directory\n");
4016 
4017 		return -ENOMEM;
4018 	}
4019 
4020 	/* Entry to report DMA RX/TX rings */
4021 	priv->dbgfs_rings_status =
4022 		debugfs_create_file("descriptors_status", 0444,
4023 				    priv->dbgfs_dir, dev,
4024 				    &stmmac_rings_status_fops);
4025 
4026 	if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
4027 		netdev_err(priv->dev, "ERROR creating stmmac ring debugfs file\n");
4028 		debugfs_remove_recursive(priv->dbgfs_dir);
4029 
4030 		return -ENOMEM;
4031 	}
4032 
4033 	/* Entry to report the DMA HW features */
4034 	priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", 0444,
4035 						  priv->dbgfs_dir,
4036 						  dev, &stmmac_dma_cap_fops);
4037 
4038 	if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
4039 		netdev_err(priv->dev, "ERROR creating stmmac MMC debugfs file\n");
4040 		debugfs_remove_recursive(priv->dbgfs_dir);
4041 
4042 		return -ENOMEM;
4043 	}
4044 
4045 	return 0;
4046 }
4047 
4048 static void stmmac_exit_fs(struct net_device *dev)
4049 {
4050 	struct stmmac_priv *priv = netdev_priv(dev);
4051 
4052 	debugfs_remove_recursive(priv->dbgfs_dir);
4053 }
4054 #endif /* CONFIG_DEBUG_FS */
4055 
4056 static const struct net_device_ops stmmac_netdev_ops = {
4057 	.ndo_open = stmmac_open,
4058 	.ndo_start_xmit = stmmac_xmit,
4059 	.ndo_stop = stmmac_release,
4060 	.ndo_change_mtu = stmmac_change_mtu,
4061 	.ndo_fix_features = stmmac_fix_features,
4062 	.ndo_set_features = stmmac_set_features,
4063 	.ndo_set_rx_mode = stmmac_set_rx_mode,
4064 	.ndo_tx_timeout = stmmac_tx_timeout,
4065 	.ndo_do_ioctl = stmmac_ioctl,
4066 	.ndo_setup_tc = stmmac_setup_tc,
4067 #ifdef CONFIG_NET_POLL_CONTROLLER
4068 	.ndo_poll_controller = stmmac_poll_controller,
4069 #endif
4070 	.ndo_set_mac_address = stmmac_set_mac_address,
4071 };
4072 
4073 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4074 {
4075 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4076 		return;
4077 	if (test_bit(STMMAC_DOWN, &priv->state))
4078 		return;
4079 
4080 	netdev_err(priv->dev, "Reset adapter.\n");
4081 
4082 	rtnl_lock();
4083 	netif_trans_update(priv->dev);
4084 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4085 		usleep_range(1000, 2000);
4086 
4087 	set_bit(STMMAC_DOWN, &priv->state);
4088 	dev_close(priv->dev);
4089 	dev_open(priv->dev);
4090 	clear_bit(STMMAC_DOWN, &priv->state);
4091 	clear_bit(STMMAC_RESETING, &priv->state);
4092 	rtnl_unlock();
4093 }
4094 
4095 static void stmmac_service_task(struct work_struct *work)
4096 {
4097 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4098 			service_task);
4099 
4100 	stmmac_reset_subtask(priv);
4101 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4102 }
4103 
4104 /**
4105  *  stmmac_hw_init - Init the MAC device
4106  *  @priv: driver private structure
4107  *  Description: this function is to configure the MAC device according to
4108  *  some platform parameters or the HW capability register. It prepares the
4109  *  driver to use either ring or chain modes and to setup either enhanced or
4110  *  normal descriptors.
4111  */
4112 static int stmmac_hw_init(struct stmmac_priv *priv)
4113 {
4114 	int ret;
4115 
4116 	/* dwmac-sun8i only work in chain mode */
4117 	if (priv->plat->has_sun8i)
4118 		chain_mode = 1;
4119 	priv->chain_mode = chain_mode;
4120 
4121 	/* Initialize HW Interface */
4122 	ret = stmmac_hwif_init(priv);
4123 	if (ret)
4124 		return ret;
4125 
4126 	/* Get the HW capability (new GMAC newer than 3.50a) */
4127 	priv->hw_cap_support = stmmac_get_hw_features(priv);
4128 	if (priv->hw_cap_support) {
4129 		dev_info(priv->device, "DMA HW capability register supported\n");
4130 
4131 		/* We can override some gmac/dma configuration fields: e.g.
4132 		 * enh_desc, tx_coe (e.g. that are passed through the
4133 		 * platform) with the values from the HW capability
4134 		 * register (if supported).
4135 		 */
4136 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
4137 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4138 		priv->hw->pmt = priv->plat->pmt;
4139 
4140 		/* TXCOE doesn't work in thresh DMA mode */
4141 		if (priv->plat->force_thresh_dma_mode)
4142 			priv->plat->tx_coe = 0;
4143 		else
4144 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
4145 
4146 		/* In case of GMAC4 rx_coe is from HW cap register. */
4147 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
4148 
4149 		if (priv->dma_cap.rx_coe_type2)
4150 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4151 		else if (priv->dma_cap.rx_coe_type1)
4152 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4153 
4154 	} else {
4155 		dev_info(priv->device, "No HW DMA feature register supported\n");
4156 	}
4157 
4158 	if (priv->plat->rx_coe) {
4159 		priv->hw->rx_csum = priv->plat->rx_coe;
4160 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4161 		if (priv->synopsys_id < DWMAC_CORE_4_00)
4162 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4163 	}
4164 	if (priv->plat->tx_coe)
4165 		dev_info(priv->device, "TX Checksum insertion supported\n");
4166 
4167 	if (priv->plat->pmt) {
4168 		dev_info(priv->device, "Wake-Up On Lan supported\n");
4169 		device_set_wakeup_capable(priv->device, 1);
4170 	}
4171 
4172 	if (priv->dma_cap.tsoen)
4173 		dev_info(priv->device, "TSO supported\n");
4174 
4175 	/* Run HW quirks, if any */
4176 	if (priv->hwif_quirks) {
4177 		ret = priv->hwif_quirks(priv);
4178 		if (ret)
4179 			return ret;
4180 	}
4181 
4182 	return 0;
4183 }
4184 
4185 /**
4186  * stmmac_dvr_probe
4187  * @device: device pointer
4188  * @plat_dat: platform data pointer
4189  * @res: stmmac resource pointer
4190  * Description: this is the main probe function used to
4191  * call the alloc_etherdev, allocate the priv structure.
4192  * Return:
4193  * returns 0 on success, otherwise errno.
4194  */
4195 int stmmac_dvr_probe(struct device *device,
4196 		     struct plat_stmmacenet_data *plat_dat,
4197 		     struct stmmac_resources *res)
4198 {
4199 	struct net_device *ndev = NULL;
4200 	struct stmmac_priv *priv;
4201 	int ret = 0;
4202 	u32 queue;
4203 
4204 	ndev = alloc_etherdev_mqs(sizeof(struct stmmac_priv),
4205 				  MTL_MAX_TX_QUEUES,
4206 				  MTL_MAX_RX_QUEUES);
4207 	if (!ndev)
4208 		return -ENOMEM;
4209 
4210 	SET_NETDEV_DEV(ndev, device);
4211 
4212 	priv = netdev_priv(ndev);
4213 	priv->device = device;
4214 	priv->dev = ndev;
4215 
4216 	stmmac_set_ethtool_ops(ndev);
4217 	priv->pause = pause;
4218 	priv->plat = plat_dat;
4219 	priv->ioaddr = res->addr;
4220 	priv->dev->base_addr = (unsigned long)res->addr;
4221 
4222 	priv->dev->irq = res->irq;
4223 	priv->wol_irq = res->wol_irq;
4224 	priv->lpi_irq = res->lpi_irq;
4225 
4226 	if (res->mac)
4227 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4228 
4229 	dev_set_drvdata(device, priv->dev);
4230 
4231 	/* Verify driver arguments */
4232 	stmmac_verify_args();
4233 
4234 	/* Allocate workqueue */
4235 	priv->wq = create_singlethread_workqueue("stmmac_wq");
4236 	if (!priv->wq) {
4237 		dev_err(priv->device, "failed to create workqueue\n");
4238 		goto error_wq;
4239 	}
4240 
4241 	INIT_WORK(&priv->service_task, stmmac_service_task);
4242 
4243 	/* Override with kernel parameters if supplied XXX CRS XXX
4244 	 * this needs to have multiple instances
4245 	 */
4246 	if ((phyaddr >= 0) && (phyaddr <= 31))
4247 		priv->plat->phy_addr = phyaddr;
4248 
4249 	if (priv->plat->stmmac_rst) {
4250 		ret = reset_control_assert(priv->plat->stmmac_rst);
4251 		reset_control_deassert(priv->plat->stmmac_rst);
4252 		/* Some reset controllers have only reset callback instead of
4253 		 * assert + deassert callbacks pair.
4254 		 */
4255 		if (ret == -ENOTSUPP)
4256 			reset_control_reset(priv->plat->stmmac_rst);
4257 	}
4258 
4259 	/* Init MAC and get the capabilities */
4260 	ret = stmmac_hw_init(priv);
4261 	if (ret)
4262 		goto error_hw_init;
4263 
4264 	/* Configure real RX and TX queues */
4265 	netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4266 	netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4267 
4268 	ndev->netdev_ops = &stmmac_netdev_ops;
4269 
4270 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4271 			    NETIF_F_RXCSUM;
4272 
4273 	ret = stmmac_tc_init(priv, priv);
4274 	if (!ret) {
4275 		ndev->hw_features |= NETIF_F_HW_TC;
4276 	}
4277 
4278 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4279 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4280 		priv->tso = true;
4281 		dev_info(priv->device, "TSO feature enabled\n");
4282 	}
4283 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4284 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4285 #ifdef STMMAC_VLAN_TAG_USED
4286 	/* Both mac100 and gmac support receive VLAN tag detection */
4287 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4288 #endif
4289 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
4290 
4291 	/* MTU range: 46 - hw-specific max */
4292 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4293 	if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4294 		ndev->max_mtu = JUMBO_LEN;
4295 	else if (priv->plat->has_xgmac)
4296 		ndev->max_mtu = XGMAC_JUMBO_LEN;
4297 	else
4298 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4299 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4300 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4301 	 */
4302 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
4303 	    (priv->plat->maxmtu >= ndev->min_mtu))
4304 		ndev->max_mtu = priv->plat->maxmtu;
4305 	else if (priv->plat->maxmtu < ndev->min_mtu)
4306 		dev_warn(priv->device,
4307 			 "%s: warning: maxmtu having invalid value (%d)\n",
4308 			 __func__, priv->plat->maxmtu);
4309 
4310 	if (flow_ctrl)
4311 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
4312 
4313 	/* Rx Watchdog is available in the COREs newer than the 3.40.
4314 	 * In some case, for example on bugged HW this feature
4315 	 * has to be disable and this can be done by passing the
4316 	 * riwt_off field from the platform.
4317 	 */
4318 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4319 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4320 		priv->use_riwt = 1;
4321 		dev_info(priv->device,
4322 			 "Enable RX Mitigation via HW Watchdog Timer\n");
4323 	}
4324 
4325 	for (queue = 0; queue < priv->plat->rx_queues_to_use; queue++) {
4326 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4327 
4328 		netif_napi_add(ndev, &rx_q->napi, stmmac_poll,
4329 			       (8 * priv->plat->rx_queues_to_use));
4330 	}
4331 
4332 	mutex_init(&priv->lock);
4333 
4334 	/* If a specific clk_csr value is passed from the platform
4335 	 * this means that the CSR Clock Range selection cannot be
4336 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
4337 	 * set the MDC clock dynamically according to the csr actual
4338 	 * clock input.
4339 	 */
4340 	if (!priv->plat->clk_csr)
4341 		stmmac_clk_csr_set(priv);
4342 	else
4343 		priv->clk_csr = priv->plat->clk_csr;
4344 
4345 	stmmac_check_pcs_mode(priv);
4346 
4347 	if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
4348 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4349 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
4350 		/* MDIO bus Registration */
4351 		ret = stmmac_mdio_register(ndev);
4352 		if (ret < 0) {
4353 			dev_err(priv->device,
4354 				"%s: MDIO bus (id: %d) registration failed",
4355 				__func__, priv->plat->bus_id);
4356 			goto error_mdio_register;
4357 		}
4358 	}
4359 
4360 	ret = register_netdev(ndev);
4361 	if (ret) {
4362 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
4363 			__func__, ret);
4364 		goto error_netdev_register;
4365 	}
4366 
4367 	return ret;
4368 
4369 error_netdev_register:
4370 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4371 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4372 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4373 		stmmac_mdio_unregister(ndev);
4374 error_mdio_register:
4375 	for (queue = 0; queue < priv->plat->rx_queues_to_use; queue++) {
4376 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4377 
4378 		netif_napi_del(&rx_q->napi);
4379 	}
4380 error_hw_init:
4381 	destroy_workqueue(priv->wq);
4382 error_wq:
4383 	free_netdev(ndev);
4384 
4385 	return ret;
4386 }
4387 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4388 
4389 /**
4390  * stmmac_dvr_remove
4391  * @dev: device pointer
4392  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4393  * changes the link status, releases the DMA descriptor rings.
4394  */
4395 int stmmac_dvr_remove(struct device *dev)
4396 {
4397 	struct net_device *ndev = dev_get_drvdata(dev);
4398 	struct stmmac_priv *priv = netdev_priv(ndev);
4399 
4400 	netdev_info(priv->dev, "%s: removing driver", __func__);
4401 
4402 	stmmac_stop_all_dma(priv);
4403 
4404 	stmmac_mac_set(priv, priv->ioaddr, false);
4405 	netif_carrier_off(ndev);
4406 	unregister_netdev(ndev);
4407 	if (priv->plat->stmmac_rst)
4408 		reset_control_assert(priv->plat->stmmac_rst);
4409 	clk_disable_unprepare(priv->plat->pclk);
4410 	clk_disable_unprepare(priv->plat->stmmac_clk);
4411 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4412 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4413 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4414 		stmmac_mdio_unregister(ndev);
4415 	destroy_workqueue(priv->wq);
4416 	mutex_destroy(&priv->lock);
4417 	free_netdev(ndev);
4418 
4419 	return 0;
4420 }
4421 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4422 
4423 /**
4424  * stmmac_suspend - suspend callback
4425  * @dev: device pointer
4426  * Description: this is the function to suspend the device and it is called
4427  * by the platform driver to stop the network queue, release the resources,
4428  * program the PMT register (for WoL), clean and release driver resources.
4429  */
4430 int stmmac_suspend(struct device *dev)
4431 {
4432 	struct net_device *ndev = dev_get_drvdata(dev);
4433 	struct stmmac_priv *priv = netdev_priv(ndev);
4434 
4435 	if (!ndev || !netif_running(ndev))
4436 		return 0;
4437 
4438 	if (ndev->phydev)
4439 		phy_stop(ndev->phydev);
4440 
4441 	mutex_lock(&priv->lock);
4442 
4443 	netif_device_detach(ndev);
4444 	stmmac_stop_all_queues(priv);
4445 
4446 	stmmac_disable_all_queues(priv);
4447 
4448 	/* Stop TX/RX DMA */
4449 	stmmac_stop_all_dma(priv);
4450 
4451 	/* Enable Power down mode by programming the PMT regs */
4452 	if (device_may_wakeup(priv->device)) {
4453 		stmmac_pmt(priv, priv->hw, priv->wolopts);
4454 		priv->irq_wake = 1;
4455 	} else {
4456 		stmmac_mac_set(priv, priv->ioaddr, false);
4457 		pinctrl_pm_select_sleep_state(priv->device);
4458 		/* Disable clock in case of PWM is off */
4459 		clk_disable(priv->plat->pclk);
4460 		clk_disable(priv->plat->stmmac_clk);
4461 	}
4462 	mutex_unlock(&priv->lock);
4463 
4464 	priv->oldlink = false;
4465 	priv->speed = SPEED_UNKNOWN;
4466 	priv->oldduplex = DUPLEX_UNKNOWN;
4467 	return 0;
4468 }
4469 EXPORT_SYMBOL_GPL(stmmac_suspend);
4470 
4471 /**
4472  * stmmac_reset_queues_param - reset queue parameters
4473  * @dev: device pointer
4474  */
4475 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
4476 {
4477 	u32 rx_cnt = priv->plat->rx_queues_to_use;
4478 	u32 tx_cnt = priv->plat->tx_queues_to_use;
4479 	u32 queue;
4480 
4481 	for (queue = 0; queue < rx_cnt; queue++) {
4482 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4483 
4484 		rx_q->cur_rx = 0;
4485 		rx_q->dirty_rx = 0;
4486 	}
4487 
4488 	for (queue = 0; queue < tx_cnt; queue++) {
4489 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4490 
4491 		tx_q->cur_tx = 0;
4492 		tx_q->dirty_tx = 0;
4493 		tx_q->mss = 0;
4494 	}
4495 }
4496 
4497 /**
4498  * stmmac_resume - resume callback
4499  * @dev: device pointer
4500  * Description: when resume this function is invoked to setup the DMA and CORE
4501  * in a usable state.
4502  */
4503 int stmmac_resume(struct device *dev)
4504 {
4505 	struct net_device *ndev = dev_get_drvdata(dev);
4506 	struct stmmac_priv *priv = netdev_priv(ndev);
4507 
4508 	if (!netif_running(ndev))
4509 		return 0;
4510 
4511 	/* Power Down bit, into the PM register, is cleared
4512 	 * automatically as soon as a magic packet or a Wake-up frame
4513 	 * is received. Anyway, it's better to manually clear
4514 	 * this bit because it can generate problems while resuming
4515 	 * from another devices (e.g. serial console).
4516 	 */
4517 	if (device_may_wakeup(priv->device)) {
4518 		mutex_lock(&priv->lock);
4519 		stmmac_pmt(priv, priv->hw, 0);
4520 		mutex_unlock(&priv->lock);
4521 		priv->irq_wake = 0;
4522 	} else {
4523 		pinctrl_pm_select_default_state(priv->device);
4524 		/* enable the clk previously disabled */
4525 		clk_enable(priv->plat->stmmac_clk);
4526 		clk_enable(priv->plat->pclk);
4527 		/* reset the phy so that it's ready */
4528 		if (priv->mii)
4529 			stmmac_mdio_reset(priv->mii);
4530 	}
4531 
4532 	netif_device_attach(ndev);
4533 
4534 	mutex_lock(&priv->lock);
4535 
4536 	stmmac_reset_queues_param(priv);
4537 
4538 	stmmac_clear_descriptors(priv);
4539 
4540 	stmmac_hw_setup(ndev, false);
4541 	stmmac_init_tx_coalesce(priv);
4542 	stmmac_set_rx_mode(ndev);
4543 
4544 	stmmac_enable_all_queues(priv);
4545 
4546 	stmmac_start_all_queues(priv);
4547 
4548 	mutex_unlock(&priv->lock);
4549 
4550 	if (ndev->phydev)
4551 		phy_start(ndev->phydev);
4552 
4553 	return 0;
4554 }
4555 EXPORT_SYMBOL_GPL(stmmac_resume);
4556 
4557 #ifndef MODULE
4558 static int __init stmmac_cmdline_opt(char *str)
4559 {
4560 	char *opt;
4561 
4562 	if (!str || !*str)
4563 		return -EINVAL;
4564 	while ((opt = strsep(&str, ",")) != NULL) {
4565 		if (!strncmp(opt, "debug:", 6)) {
4566 			if (kstrtoint(opt + 6, 0, &debug))
4567 				goto err;
4568 		} else if (!strncmp(opt, "phyaddr:", 8)) {
4569 			if (kstrtoint(opt + 8, 0, &phyaddr))
4570 				goto err;
4571 		} else if (!strncmp(opt, "buf_sz:", 7)) {
4572 			if (kstrtoint(opt + 7, 0, &buf_sz))
4573 				goto err;
4574 		} else if (!strncmp(opt, "tc:", 3)) {
4575 			if (kstrtoint(opt + 3, 0, &tc))
4576 				goto err;
4577 		} else if (!strncmp(opt, "watchdog:", 9)) {
4578 			if (kstrtoint(opt + 9, 0, &watchdog))
4579 				goto err;
4580 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
4581 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
4582 				goto err;
4583 		} else if (!strncmp(opt, "pause:", 6)) {
4584 			if (kstrtoint(opt + 6, 0, &pause))
4585 				goto err;
4586 		} else if (!strncmp(opt, "eee_timer:", 10)) {
4587 			if (kstrtoint(opt + 10, 0, &eee_timer))
4588 				goto err;
4589 		} else if (!strncmp(opt, "chain_mode:", 11)) {
4590 			if (kstrtoint(opt + 11, 0, &chain_mode))
4591 				goto err;
4592 		}
4593 	}
4594 	return 0;
4595 
4596 err:
4597 	pr_err("%s: ERROR broken module parameter conversion", __func__);
4598 	return -EINVAL;
4599 }
4600 
4601 __setup("stmmaceth=", stmmac_cmdline_opt);
4602 #endif /* MODULE */
4603 
4604 static int __init stmmac_init(void)
4605 {
4606 #ifdef CONFIG_DEBUG_FS
4607 	/* Create debugfs main directory if it doesn't exist yet */
4608 	if (!stmmac_fs_dir) {
4609 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
4610 
4611 		if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
4612 			pr_err("ERROR %s, debugfs create directory failed\n",
4613 			       STMMAC_RESOURCE_NAME);
4614 
4615 			return -ENOMEM;
4616 		}
4617 	}
4618 #endif
4619 
4620 	return 0;
4621 }
4622 
4623 static void __exit stmmac_exit(void)
4624 {
4625 #ifdef CONFIG_DEBUG_FS
4626 	debugfs_remove_recursive(stmmac_fs_dir);
4627 #endif
4628 }
4629 
4630 module_init(stmmac_init)
4631 module_exit(stmmac_exit)
4632 
4633 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
4634 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
4635 MODULE_LICENSE("GPL");
4636