1 // SPDX-License-Identifier: GPL-2.0-only 2 /******************************************************************************* 3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. 4 ST Ethernet IPs are built around a Synopsys IP Core. 5 6 Copyright(C) 2007-2011 STMicroelectronics Ltd 7 8 9 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> 10 11 Documentation available at: 12 http://www.stlinux.com 13 Support available at: 14 https://bugzilla.stlinux.com/ 15 *******************************************************************************/ 16 17 #include <linux/clk.h> 18 #include <linux/kernel.h> 19 #include <linux/interrupt.h> 20 #include <linux/ip.h> 21 #include <linux/tcp.h> 22 #include <linux/skbuff.h> 23 #include <linux/ethtool.h> 24 #include <linux/if_ether.h> 25 #include <linux/crc32.h> 26 #include <linux/mii.h> 27 #include <linux/if.h> 28 #include <linux/if_vlan.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/slab.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/prefetch.h> 33 #include <linux/pinctrl/consumer.h> 34 #ifdef CONFIG_DEBUG_FS 35 #include <linux/debugfs.h> 36 #include <linux/seq_file.h> 37 #endif /* CONFIG_DEBUG_FS */ 38 #include <linux/net_tstamp.h> 39 #include <linux/phylink.h> 40 #include <linux/udp.h> 41 #include <linux/bpf_trace.h> 42 #include <net/pkt_cls.h> 43 #include <net/xdp_sock_drv.h> 44 #include "stmmac_ptp.h" 45 #include "stmmac.h" 46 #include "stmmac_xdp.h" 47 #include <linux/reset.h> 48 #include <linux/of_mdio.h> 49 #include "dwmac1000.h" 50 #include "dwxgmac2.h" 51 #include "hwif.h" 52 53 /* As long as the interface is active, we keep the timestamping counter enabled 54 * with fine resolution and binary rollover. This avoid non-monotonic behavior 55 * (clock jumps) when changing timestamping settings at runtime. 56 */ 57 #define STMMAC_HWTS_ACTIVE (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \ 58 PTP_TCR_TSCTRLSSR) 59 60 #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16) 61 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1) 62 63 /* Module parameters */ 64 #define TX_TIMEO 5000 65 static int watchdog = TX_TIMEO; 66 module_param(watchdog, int, 0644); 67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); 68 69 static int debug = -1; 70 module_param(debug, int, 0644); 71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 72 73 static int phyaddr = -1; 74 module_param(phyaddr, int, 0444); 75 MODULE_PARM_DESC(phyaddr, "Physical device address"); 76 77 #define STMMAC_TX_THRESH(x) ((x)->dma_conf.dma_tx_size / 4) 78 #define STMMAC_RX_THRESH(x) ((x)->dma_conf.dma_rx_size / 4) 79 80 /* Limit to make sure XDP TX and slow path can coexist */ 81 #define STMMAC_XSK_TX_BUDGET_MAX 256 82 #define STMMAC_TX_XSK_AVAIL 16 83 #define STMMAC_RX_FILL_BATCH 16 84 85 #define STMMAC_XDP_PASS 0 86 #define STMMAC_XDP_CONSUMED BIT(0) 87 #define STMMAC_XDP_TX BIT(1) 88 #define STMMAC_XDP_REDIRECT BIT(2) 89 90 static int flow_ctrl = FLOW_AUTO; 91 module_param(flow_ctrl, int, 0644); 92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); 93 94 static int pause = PAUSE_TIME; 95 module_param(pause, int, 0644); 96 MODULE_PARM_DESC(pause, "Flow Control Pause Time"); 97 98 #define TC_DEFAULT 64 99 static int tc = TC_DEFAULT; 100 module_param(tc, int, 0644); 101 MODULE_PARM_DESC(tc, "DMA threshold control value"); 102 103 #define DEFAULT_BUFSIZE 1536 104 static int buf_sz = DEFAULT_BUFSIZE; 105 module_param(buf_sz, int, 0644); 106 MODULE_PARM_DESC(buf_sz, "DMA buffer size"); 107 108 #define STMMAC_RX_COPYBREAK 256 109 110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 111 NETIF_MSG_LINK | NETIF_MSG_IFUP | 112 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 113 114 #define STMMAC_DEFAULT_LPI_TIMER 1000 115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; 116 module_param(eee_timer, int, 0644); 117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); 118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x)) 119 120 /* By default the driver will use the ring mode to manage tx and rx descriptors, 121 * but allow user to force to use the chain instead of the ring 122 */ 123 static unsigned int chain_mode; 124 module_param(chain_mode, int, 0444); 125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); 126 127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id); 128 /* For MSI interrupts handling */ 129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id); 130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id); 131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data); 132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data); 133 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue); 134 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue); 135 static void stmmac_reset_queues_param(struct stmmac_priv *priv); 136 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue); 137 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue); 138 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 139 u32 rxmode, u32 chan); 140 141 #ifdef CONFIG_DEBUG_FS 142 static const struct net_device_ops stmmac_netdev_ops; 143 static void stmmac_init_fs(struct net_device *dev); 144 static void stmmac_exit_fs(struct net_device *dev); 145 #endif 146 147 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC)) 148 149 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled) 150 { 151 int ret = 0; 152 153 if (enabled) { 154 ret = clk_prepare_enable(priv->plat->stmmac_clk); 155 if (ret) 156 return ret; 157 ret = clk_prepare_enable(priv->plat->pclk); 158 if (ret) { 159 clk_disable_unprepare(priv->plat->stmmac_clk); 160 return ret; 161 } 162 if (priv->plat->clks_config) { 163 ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled); 164 if (ret) { 165 clk_disable_unprepare(priv->plat->stmmac_clk); 166 clk_disable_unprepare(priv->plat->pclk); 167 return ret; 168 } 169 } 170 } else { 171 clk_disable_unprepare(priv->plat->stmmac_clk); 172 clk_disable_unprepare(priv->plat->pclk); 173 if (priv->plat->clks_config) 174 priv->plat->clks_config(priv->plat->bsp_priv, enabled); 175 } 176 177 return ret; 178 } 179 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config); 180 181 /** 182 * stmmac_verify_args - verify the driver parameters. 183 * Description: it checks the driver parameters and set a default in case of 184 * errors. 185 */ 186 static void stmmac_verify_args(void) 187 { 188 if (unlikely(watchdog < 0)) 189 watchdog = TX_TIMEO; 190 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) 191 buf_sz = DEFAULT_BUFSIZE; 192 if (unlikely(flow_ctrl > 1)) 193 flow_ctrl = FLOW_AUTO; 194 else if (likely(flow_ctrl < 0)) 195 flow_ctrl = FLOW_OFF; 196 if (unlikely((pause < 0) || (pause > 0xffff))) 197 pause = PAUSE_TIME; 198 if (eee_timer < 0) 199 eee_timer = STMMAC_DEFAULT_LPI_TIMER; 200 } 201 202 static void __stmmac_disable_all_queues(struct stmmac_priv *priv) 203 { 204 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 205 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 206 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 207 u32 queue; 208 209 for (queue = 0; queue < maxq; queue++) { 210 struct stmmac_channel *ch = &priv->channel[queue]; 211 212 if (stmmac_xdp_is_enabled(priv) && 213 test_bit(queue, priv->af_xdp_zc_qps)) { 214 napi_disable(&ch->rxtx_napi); 215 continue; 216 } 217 218 if (queue < rx_queues_cnt) 219 napi_disable(&ch->rx_napi); 220 if (queue < tx_queues_cnt) 221 napi_disable(&ch->tx_napi); 222 } 223 } 224 225 /** 226 * stmmac_disable_all_queues - Disable all queues 227 * @priv: driver private structure 228 */ 229 static void stmmac_disable_all_queues(struct stmmac_priv *priv) 230 { 231 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 232 struct stmmac_rx_queue *rx_q; 233 u32 queue; 234 235 /* synchronize_rcu() needed for pending XDP buffers to drain */ 236 for (queue = 0; queue < rx_queues_cnt; queue++) { 237 rx_q = &priv->dma_conf.rx_queue[queue]; 238 if (rx_q->xsk_pool) { 239 synchronize_rcu(); 240 break; 241 } 242 } 243 244 __stmmac_disable_all_queues(priv); 245 } 246 247 /** 248 * stmmac_enable_all_queues - Enable all queues 249 * @priv: driver private structure 250 */ 251 static void stmmac_enable_all_queues(struct stmmac_priv *priv) 252 { 253 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 254 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 255 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 256 u32 queue; 257 258 for (queue = 0; queue < maxq; queue++) { 259 struct stmmac_channel *ch = &priv->channel[queue]; 260 261 if (stmmac_xdp_is_enabled(priv) && 262 test_bit(queue, priv->af_xdp_zc_qps)) { 263 napi_enable(&ch->rxtx_napi); 264 continue; 265 } 266 267 if (queue < rx_queues_cnt) 268 napi_enable(&ch->rx_napi); 269 if (queue < tx_queues_cnt) 270 napi_enable(&ch->tx_napi); 271 } 272 } 273 274 static void stmmac_service_event_schedule(struct stmmac_priv *priv) 275 { 276 if (!test_bit(STMMAC_DOWN, &priv->state) && 277 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state)) 278 queue_work(priv->wq, &priv->service_task); 279 } 280 281 static void stmmac_global_err(struct stmmac_priv *priv) 282 { 283 netif_carrier_off(priv->dev); 284 set_bit(STMMAC_RESET_REQUESTED, &priv->state); 285 stmmac_service_event_schedule(priv); 286 } 287 288 /** 289 * stmmac_clk_csr_set - dynamically set the MDC clock 290 * @priv: driver private structure 291 * Description: this is to dynamically set the MDC clock according to the csr 292 * clock input. 293 * Note: 294 * If a specific clk_csr value is passed from the platform 295 * this means that the CSR Clock Range selection cannot be 296 * changed at run-time and it is fixed (as reported in the driver 297 * documentation). Viceversa the driver will try to set the MDC 298 * clock dynamically according to the actual clock input. 299 */ 300 static void stmmac_clk_csr_set(struct stmmac_priv *priv) 301 { 302 u32 clk_rate; 303 304 clk_rate = clk_get_rate(priv->plat->stmmac_clk); 305 306 /* Platform provided default clk_csr would be assumed valid 307 * for all other cases except for the below mentioned ones. 308 * For values higher than the IEEE 802.3 specified frequency 309 * we can not estimate the proper divider as it is not known 310 * the frequency of clk_csr_i. So we do not change the default 311 * divider. 312 */ 313 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { 314 if (clk_rate < CSR_F_35M) 315 priv->clk_csr = STMMAC_CSR_20_35M; 316 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) 317 priv->clk_csr = STMMAC_CSR_35_60M; 318 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) 319 priv->clk_csr = STMMAC_CSR_60_100M; 320 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) 321 priv->clk_csr = STMMAC_CSR_100_150M; 322 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) 323 priv->clk_csr = STMMAC_CSR_150_250M; 324 else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M)) 325 priv->clk_csr = STMMAC_CSR_250_300M; 326 } 327 328 if (priv->plat->has_sun8i) { 329 if (clk_rate > 160000000) 330 priv->clk_csr = 0x03; 331 else if (clk_rate > 80000000) 332 priv->clk_csr = 0x02; 333 else if (clk_rate > 40000000) 334 priv->clk_csr = 0x01; 335 else 336 priv->clk_csr = 0; 337 } 338 339 if (priv->plat->has_xgmac) { 340 if (clk_rate > 400000000) 341 priv->clk_csr = 0x5; 342 else if (clk_rate > 350000000) 343 priv->clk_csr = 0x4; 344 else if (clk_rate > 300000000) 345 priv->clk_csr = 0x3; 346 else if (clk_rate > 250000000) 347 priv->clk_csr = 0x2; 348 else if (clk_rate > 150000000) 349 priv->clk_csr = 0x1; 350 else 351 priv->clk_csr = 0x0; 352 } 353 } 354 355 static void print_pkt(unsigned char *buf, int len) 356 { 357 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); 358 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); 359 } 360 361 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue) 362 { 363 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 364 u32 avail; 365 366 if (tx_q->dirty_tx > tx_q->cur_tx) 367 avail = tx_q->dirty_tx - tx_q->cur_tx - 1; 368 else 369 avail = priv->dma_conf.dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1; 370 371 return avail; 372 } 373 374 /** 375 * stmmac_rx_dirty - Get RX queue dirty 376 * @priv: driver private structure 377 * @queue: RX queue index 378 */ 379 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue) 380 { 381 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 382 u32 dirty; 383 384 if (rx_q->dirty_rx <= rx_q->cur_rx) 385 dirty = rx_q->cur_rx - rx_q->dirty_rx; 386 else 387 dirty = priv->dma_conf.dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx; 388 389 return dirty; 390 } 391 392 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en) 393 { 394 int tx_lpi_timer; 395 396 /* Clear/set the SW EEE timer flag based on LPI ET enablement */ 397 priv->eee_sw_timer_en = en ? 0 : 1; 398 tx_lpi_timer = en ? priv->tx_lpi_timer : 0; 399 stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer); 400 } 401 402 /** 403 * stmmac_enable_eee_mode - check and enter in LPI mode 404 * @priv: driver private structure 405 * Description: this function is to verify and enter in LPI mode in case of 406 * EEE. 407 */ 408 static int stmmac_enable_eee_mode(struct stmmac_priv *priv) 409 { 410 u32 tx_cnt = priv->plat->tx_queues_to_use; 411 u32 queue; 412 413 /* check if all TX queues have the work finished */ 414 for (queue = 0; queue < tx_cnt; queue++) { 415 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 416 417 if (tx_q->dirty_tx != tx_q->cur_tx) 418 return -EBUSY; /* still unfinished work */ 419 } 420 421 /* Check and enter in LPI mode */ 422 if (!priv->tx_path_in_lpi_mode) 423 stmmac_set_eee_mode(priv, priv->hw, 424 priv->plat->en_tx_lpi_clockgating); 425 return 0; 426 } 427 428 /** 429 * stmmac_disable_eee_mode - disable and exit from LPI mode 430 * @priv: driver private structure 431 * Description: this function is to exit and disable EEE in case of 432 * LPI state is true. This is called by the xmit. 433 */ 434 void stmmac_disable_eee_mode(struct stmmac_priv *priv) 435 { 436 if (!priv->eee_sw_timer_en) { 437 stmmac_lpi_entry_timer_config(priv, 0); 438 return; 439 } 440 441 stmmac_reset_eee_mode(priv, priv->hw); 442 del_timer_sync(&priv->eee_ctrl_timer); 443 priv->tx_path_in_lpi_mode = false; 444 } 445 446 /** 447 * stmmac_eee_ctrl_timer - EEE TX SW timer. 448 * @t: timer_list struct containing private info 449 * Description: 450 * if there is no data transfer and if we are not in LPI state, 451 * then MAC Transmitter can be moved to LPI state. 452 */ 453 static void stmmac_eee_ctrl_timer(struct timer_list *t) 454 { 455 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer); 456 457 if (stmmac_enable_eee_mode(priv)) 458 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); 459 } 460 461 /** 462 * stmmac_eee_init - init EEE 463 * @priv: driver private structure 464 * Description: 465 * if the GMAC supports the EEE (from the HW cap reg) and the phy device 466 * can also manage EEE, this function enable the LPI state and start related 467 * timer. 468 */ 469 bool stmmac_eee_init(struct stmmac_priv *priv) 470 { 471 int eee_tw_timer = priv->eee_tw_timer; 472 473 /* Using PCS we cannot dial with the phy registers at this stage 474 * so we do not support extra feature like EEE. 475 */ 476 if (priv->hw->pcs == STMMAC_PCS_TBI || 477 priv->hw->pcs == STMMAC_PCS_RTBI) 478 return false; 479 480 /* Check if MAC core supports the EEE feature. */ 481 if (!priv->dma_cap.eee) 482 return false; 483 484 mutex_lock(&priv->lock); 485 486 /* Check if it needs to be deactivated */ 487 if (!priv->eee_active) { 488 if (priv->eee_enabled) { 489 netdev_dbg(priv->dev, "disable EEE\n"); 490 stmmac_lpi_entry_timer_config(priv, 0); 491 del_timer_sync(&priv->eee_ctrl_timer); 492 stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer); 493 if (priv->hw->xpcs) 494 xpcs_config_eee(priv->hw->xpcs, 495 priv->plat->mult_fact_100ns, 496 false); 497 } 498 mutex_unlock(&priv->lock); 499 return false; 500 } 501 502 if (priv->eee_active && !priv->eee_enabled) { 503 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0); 504 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS, 505 eee_tw_timer); 506 if (priv->hw->xpcs) 507 xpcs_config_eee(priv->hw->xpcs, 508 priv->plat->mult_fact_100ns, 509 true); 510 } 511 512 if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) { 513 del_timer_sync(&priv->eee_ctrl_timer); 514 priv->tx_path_in_lpi_mode = false; 515 stmmac_lpi_entry_timer_config(priv, 1); 516 } else { 517 stmmac_lpi_entry_timer_config(priv, 0); 518 mod_timer(&priv->eee_ctrl_timer, 519 STMMAC_LPI_T(priv->tx_lpi_timer)); 520 } 521 522 mutex_unlock(&priv->lock); 523 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n"); 524 return true; 525 } 526 527 /* stmmac_get_tx_hwtstamp - get HW TX timestamps 528 * @priv: driver private structure 529 * @p : descriptor pointer 530 * @skb : the socket buffer 531 * Description : 532 * This function will read timestamp from the descriptor & pass it to stack. 533 * and also perform some sanity checks. 534 */ 535 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, 536 struct dma_desc *p, struct sk_buff *skb) 537 { 538 struct skb_shared_hwtstamps shhwtstamp; 539 bool found = false; 540 u64 ns = 0; 541 542 if (!priv->hwts_tx_en) 543 return; 544 545 /* exit if skb doesn't support hw tstamp */ 546 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) 547 return; 548 549 /* check tx tstamp status */ 550 if (stmmac_get_tx_timestamp_status(priv, p)) { 551 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns); 552 found = true; 553 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) { 554 found = true; 555 } 556 557 if (found) { 558 ns -= priv->plat->cdc_error_adj; 559 560 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 561 shhwtstamp.hwtstamp = ns_to_ktime(ns); 562 563 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns); 564 /* pass tstamp to stack */ 565 skb_tstamp_tx(skb, &shhwtstamp); 566 } 567 } 568 569 /* stmmac_get_rx_hwtstamp - get HW RX timestamps 570 * @priv: driver private structure 571 * @p : descriptor pointer 572 * @np : next descriptor pointer 573 * @skb : the socket buffer 574 * Description : 575 * This function will read received packet's timestamp from the descriptor 576 * and pass it to stack. It also perform some sanity checks. 577 */ 578 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p, 579 struct dma_desc *np, struct sk_buff *skb) 580 { 581 struct skb_shared_hwtstamps *shhwtstamp = NULL; 582 struct dma_desc *desc = p; 583 u64 ns = 0; 584 585 if (!priv->hwts_rx_en) 586 return; 587 /* For GMAC4, the valid timestamp is from CTX next desc. */ 588 if (priv->plat->has_gmac4 || priv->plat->has_xgmac) 589 desc = np; 590 591 /* Check if timestamp is available */ 592 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) { 593 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns); 594 595 ns -= priv->plat->cdc_error_adj; 596 597 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns); 598 shhwtstamp = skb_hwtstamps(skb); 599 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 600 shhwtstamp->hwtstamp = ns_to_ktime(ns); 601 } else { 602 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n"); 603 } 604 } 605 606 /** 607 * stmmac_hwtstamp_set - control hardware timestamping. 608 * @dev: device pointer. 609 * @ifr: An IOCTL specific structure, that can contain a pointer to 610 * a proprietary structure used to pass information to the driver. 611 * Description: 612 * This function configures the MAC to enable/disable both outgoing(TX) 613 * and incoming(RX) packets time stamping based on user input. 614 * Return Value: 615 * 0 on success and an appropriate -ve integer on failure. 616 */ 617 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 618 { 619 struct stmmac_priv *priv = netdev_priv(dev); 620 struct hwtstamp_config config; 621 u32 ptp_v2 = 0; 622 u32 tstamp_all = 0; 623 u32 ptp_over_ipv4_udp = 0; 624 u32 ptp_over_ipv6_udp = 0; 625 u32 ptp_over_ethernet = 0; 626 u32 snap_type_sel = 0; 627 u32 ts_master_en = 0; 628 u32 ts_event_en = 0; 629 630 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { 631 netdev_alert(priv->dev, "No support for HW time stamping\n"); 632 priv->hwts_tx_en = 0; 633 priv->hwts_rx_en = 0; 634 635 return -EOPNOTSUPP; 636 } 637 638 if (copy_from_user(&config, ifr->ifr_data, 639 sizeof(config))) 640 return -EFAULT; 641 642 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", 643 __func__, config.flags, config.tx_type, config.rx_filter); 644 645 if (config.tx_type != HWTSTAMP_TX_OFF && 646 config.tx_type != HWTSTAMP_TX_ON) 647 return -ERANGE; 648 649 if (priv->adv_ts) { 650 switch (config.rx_filter) { 651 case HWTSTAMP_FILTER_NONE: 652 /* time stamp no incoming packet at all */ 653 config.rx_filter = HWTSTAMP_FILTER_NONE; 654 break; 655 656 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 657 /* PTP v1, UDP, any kind of event packet */ 658 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 659 /* 'xmac' hardware can support Sync, Pdelay_Req and 660 * Pdelay_resp by setting bit14 and bits17/16 to 01 661 * This leaves Delay_Req timestamps out. 662 * Enable all events *and* general purpose message 663 * timestamping 664 */ 665 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 666 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 667 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 668 break; 669 670 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 671 /* PTP v1, UDP, Sync packet */ 672 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; 673 /* take time stamp for SYNC messages only */ 674 ts_event_en = PTP_TCR_TSEVNTENA; 675 676 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 677 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 678 break; 679 680 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 681 /* PTP v1, UDP, Delay_req packet */ 682 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; 683 /* take time stamp for Delay_Req messages only */ 684 ts_master_en = PTP_TCR_TSMSTRENA; 685 ts_event_en = PTP_TCR_TSEVNTENA; 686 687 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 688 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 689 break; 690 691 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 692 /* PTP v2, UDP, any kind of event packet */ 693 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 694 ptp_v2 = PTP_TCR_TSVER2ENA; 695 /* take time stamp for all event messages */ 696 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 697 698 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 699 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 700 break; 701 702 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 703 /* PTP v2, UDP, Sync packet */ 704 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; 705 ptp_v2 = PTP_TCR_TSVER2ENA; 706 /* take time stamp for SYNC messages only */ 707 ts_event_en = PTP_TCR_TSEVNTENA; 708 709 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 710 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 711 break; 712 713 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 714 /* PTP v2, UDP, Delay_req packet */ 715 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; 716 ptp_v2 = PTP_TCR_TSVER2ENA; 717 /* take time stamp for Delay_Req messages only */ 718 ts_master_en = PTP_TCR_TSMSTRENA; 719 ts_event_en = PTP_TCR_TSEVNTENA; 720 721 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 722 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 723 break; 724 725 case HWTSTAMP_FILTER_PTP_V2_EVENT: 726 /* PTP v2/802.AS1 any layer, any kind of event packet */ 727 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 728 ptp_v2 = PTP_TCR_TSVER2ENA; 729 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 730 if (priv->synopsys_id < DWMAC_CORE_4_10) 731 ts_event_en = PTP_TCR_TSEVNTENA; 732 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 733 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 734 ptp_over_ethernet = PTP_TCR_TSIPENA; 735 break; 736 737 case HWTSTAMP_FILTER_PTP_V2_SYNC: 738 /* PTP v2/802.AS1, any layer, Sync packet */ 739 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; 740 ptp_v2 = PTP_TCR_TSVER2ENA; 741 /* take time stamp for SYNC messages only */ 742 ts_event_en = PTP_TCR_TSEVNTENA; 743 744 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 745 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 746 ptp_over_ethernet = PTP_TCR_TSIPENA; 747 break; 748 749 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 750 /* PTP v2/802.AS1, any layer, Delay_req packet */ 751 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; 752 ptp_v2 = PTP_TCR_TSVER2ENA; 753 /* take time stamp for Delay_Req messages only */ 754 ts_master_en = PTP_TCR_TSMSTRENA; 755 ts_event_en = PTP_TCR_TSEVNTENA; 756 757 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 758 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 759 ptp_over_ethernet = PTP_TCR_TSIPENA; 760 break; 761 762 case HWTSTAMP_FILTER_NTP_ALL: 763 case HWTSTAMP_FILTER_ALL: 764 /* time stamp any incoming packet */ 765 config.rx_filter = HWTSTAMP_FILTER_ALL; 766 tstamp_all = PTP_TCR_TSENALL; 767 break; 768 769 default: 770 return -ERANGE; 771 } 772 } else { 773 switch (config.rx_filter) { 774 case HWTSTAMP_FILTER_NONE: 775 config.rx_filter = HWTSTAMP_FILTER_NONE; 776 break; 777 default: 778 /* PTP v1, UDP, any kind of event packet */ 779 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 780 break; 781 } 782 } 783 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); 784 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; 785 786 priv->systime_flags = STMMAC_HWTS_ACTIVE; 787 788 if (priv->hwts_tx_en || priv->hwts_rx_en) { 789 priv->systime_flags |= tstamp_all | ptp_v2 | 790 ptp_over_ethernet | ptp_over_ipv6_udp | 791 ptp_over_ipv4_udp | ts_event_en | 792 ts_master_en | snap_type_sel; 793 } 794 795 stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags); 796 797 memcpy(&priv->tstamp_config, &config, sizeof(config)); 798 799 return copy_to_user(ifr->ifr_data, &config, 800 sizeof(config)) ? -EFAULT : 0; 801 } 802 803 /** 804 * stmmac_hwtstamp_get - read hardware timestamping. 805 * @dev: device pointer. 806 * @ifr: An IOCTL specific structure, that can contain a pointer to 807 * a proprietary structure used to pass information to the driver. 808 * Description: 809 * This function obtain the current hardware timestamping settings 810 * as requested. 811 */ 812 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 813 { 814 struct stmmac_priv *priv = netdev_priv(dev); 815 struct hwtstamp_config *config = &priv->tstamp_config; 816 817 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 818 return -EOPNOTSUPP; 819 820 return copy_to_user(ifr->ifr_data, config, 821 sizeof(*config)) ? -EFAULT : 0; 822 } 823 824 /** 825 * stmmac_init_tstamp_counter - init hardware timestamping counter 826 * @priv: driver private structure 827 * @systime_flags: timestamping flags 828 * Description: 829 * Initialize hardware counter for packet timestamping. 830 * This is valid as long as the interface is open and not suspended. 831 * Will be rerun after resuming from suspend, case in which the timestamping 832 * flags updated by stmmac_hwtstamp_set() also need to be restored. 833 */ 834 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags) 835 { 836 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 837 struct timespec64 now; 838 u32 sec_inc = 0; 839 u64 temp = 0; 840 841 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 842 return -EOPNOTSUPP; 843 844 stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags); 845 priv->systime_flags = systime_flags; 846 847 /* program Sub Second Increment reg */ 848 stmmac_config_sub_second_increment(priv, priv->ptpaddr, 849 priv->plat->clk_ptp_rate, 850 xmac, &sec_inc); 851 temp = div_u64(1000000000ULL, sec_inc); 852 853 /* Store sub second increment for later use */ 854 priv->sub_second_inc = sec_inc; 855 856 /* calculate default added value: 857 * formula is : 858 * addend = (2^32)/freq_div_ratio; 859 * where, freq_div_ratio = 1e9ns/sec_inc 860 */ 861 temp = (u64)(temp << 32); 862 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate); 863 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend); 864 865 /* initialize system time */ 866 ktime_get_real_ts64(&now); 867 868 /* lower 32 bits of tv_sec are safe until y2106 */ 869 stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec); 870 871 return 0; 872 } 873 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter); 874 875 /** 876 * stmmac_init_ptp - init PTP 877 * @priv: driver private structure 878 * Description: this is to verify if the HW supports the PTPv1 or PTPv2. 879 * This is done by looking at the HW cap. register. 880 * This function also registers the ptp driver. 881 */ 882 static int stmmac_init_ptp(struct stmmac_priv *priv) 883 { 884 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 885 int ret; 886 887 if (priv->plat->ptp_clk_freq_config) 888 priv->plat->ptp_clk_freq_config(priv); 889 890 ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE); 891 if (ret) 892 return ret; 893 894 priv->adv_ts = 0; 895 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */ 896 if (xmac && priv->dma_cap.atime_stamp) 897 priv->adv_ts = 1; 898 /* Dwmac 3.x core with extend_desc can support adv_ts */ 899 else if (priv->extend_desc && priv->dma_cap.atime_stamp) 900 priv->adv_ts = 1; 901 902 if (priv->dma_cap.time_stamp) 903 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n"); 904 905 if (priv->adv_ts) 906 netdev_info(priv->dev, 907 "IEEE 1588-2008 Advanced Timestamp supported\n"); 908 909 priv->hwts_tx_en = 0; 910 priv->hwts_rx_en = 0; 911 912 return 0; 913 } 914 915 static void stmmac_release_ptp(struct stmmac_priv *priv) 916 { 917 clk_disable_unprepare(priv->plat->clk_ptp_ref); 918 stmmac_ptp_unregister(priv); 919 } 920 921 /** 922 * stmmac_mac_flow_ctrl - Configure flow control in all queues 923 * @priv: driver private structure 924 * @duplex: duplex passed to the next function 925 * Description: It is used for configuring the flow control in all queues 926 */ 927 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex) 928 { 929 u32 tx_cnt = priv->plat->tx_queues_to_use; 930 931 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl, 932 priv->pause, tx_cnt); 933 } 934 935 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config, 936 phy_interface_t interface) 937 { 938 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 939 940 if (!priv->hw->xpcs) 941 return NULL; 942 943 return &priv->hw->xpcs->pcs; 944 } 945 946 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode, 947 const struct phylink_link_state *state) 948 { 949 /* Nothing to do, xpcs_config() handles everything */ 950 } 951 952 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up) 953 { 954 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 955 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 956 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 957 bool *hs_enable = &fpe_cfg->hs_enable; 958 959 if (is_up && *hs_enable) { 960 stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY); 961 } else { 962 *lo_state = FPE_STATE_OFF; 963 *lp_state = FPE_STATE_OFF; 964 } 965 } 966 967 static void stmmac_mac_link_down(struct phylink_config *config, 968 unsigned int mode, phy_interface_t interface) 969 { 970 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 971 972 stmmac_mac_set(priv, priv->ioaddr, false); 973 priv->eee_active = false; 974 priv->tx_lpi_enabled = false; 975 priv->eee_enabled = stmmac_eee_init(priv); 976 stmmac_set_eee_pls(priv, priv->hw, false); 977 978 if (priv->dma_cap.fpesel) 979 stmmac_fpe_link_state_handle(priv, false); 980 } 981 982 static void stmmac_mac_link_up(struct phylink_config *config, 983 struct phy_device *phy, 984 unsigned int mode, phy_interface_t interface, 985 int speed, int duplex, 986 bool tx_pause, bool rx_pause) 987 { 988 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 989 u32 old_ctrl, ctrl; 990 991 if (priv->plat->serdes_up_after_phy_linkup && priv->plat->serdes_powerup) 992 priv->plat->serdes_powerup(priv->dev, priv->plat->bsp_priv); 993 994 old_ctrl = readl(priv->ioaddr + MAC_CTRL_REG); 995 ctrl = old_ctrl & ~priv->hw->link.speed_mask; 996 997 if (interface == PHY_INTERFACE_MODE_USXGMII) { 998 switch (speed) { 999 case SPEED_10000: 1000 ctrl |= priv->hw->link.xgmii.speed10000; 1001 break; 1002 case SPEED_5000: 1003 ctrl |= priv->hw->link.xgmii.speed5000; 1004 break; 1005 case SPEED_2500: 1006 ctrl |= priv->hw->link.xgmii.speed2500; 1007 break; 1008 default: 1009 return; 1010 } 1011 } else if (interface == PHY_INTERFACE_MODE_XLGMII) { 1012 switch (speed) { 1013 case SPEED_100000: 1014 ctrl |= priv->hw->link.xlgmii.speed100000; 1015 break; 1016 case SPEED_50000: 1017 ctrl |= priv->hw->link.xlgmii.speed50000; 1018 break; 1019 case SPEED_40000: 1020 ctrl |= priv->hw->link.xlgmii.speed40000; 1021 break; 1022 case SPEED_25000: 1023 ctrl |= priv->hw->link.xlgmii.speed25000; 1024 break; 1025 case SPEED_10000: 1026 ctrl |= priv->hw->link.xgmii.speed10000; 1027 break; 1028 case SPEED_2500: 1029 ctrl |= priv->hw->link.speed2500; 1030 break; 1031 case SPEED_1000: 1032 ctrl |= priv->hw->link.speed1000; 1033 break; 1034 default: 1035 return; 1036 } 1037 } else { 1038 switch (speed) { 1039 case SPEED_2500: 1040 ctrl |= priv->hw->link.speed2500; 1041 break; 1042 case SPEED_1000: 1043 ctrl |= priv->hw->link.speed1000; 1044 break; 1045 case SPEED_100: 1046 ctrl |= priv->hw->link.speed100; 1047 break; 1048 case SPEED_10: 1049 ctrl |= priv->hw->link.speed10; 1050 break; 1051 default: 1052 return; 1053 } 1054 } 1055 1056 priv->speed = speed; 1057 1058 if (priv->plat->fix_mac_speed) 1059 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed); 1060 1061 if (!duplex) 1062 ctrl &= ~priv->hw->link.duplex; 1063 else 1064 ctrl |= priv->hw->link.duplex; 1065 1066 /* Flow Control operation */ 1067 if (rx_pause && tx_pause) 1068 priv->flow_ctrl = FLOW_AUTO; 1069 else if (rx_pause && !tx_pause) 1070 priv->flow_ctrl = FLOW_RX; 1071 else if (!rx_pause && tx_pause) 1072 priv->flow_ctrl = FLOW_TX; 1073 else 1074 priv->flow_ctrl = FLOW_OFF; 1075 1076 stmmac_mac_flow_ctrl(priv, duplex); 1077 1078 if (ctrl != old_ctrl) 1079 writel(ctrl, priv->ioaddr + MAC_CTRL_REG); 1080 1081 stmmac_mac_set(priv, priv->ioaddr, true); 1082 if (phy && priv->dma_cap.eee) { 1083 priv->eee_active = 1084 phy_init_eee(phy, !priv->plat->rx_clk_runs_in_lpi) >= 0; 1085 priv->eee_enabled = stmmac_eee_init(priv); 1086 priv->tx_lpi_enabled = priv->eee_enabled; 1087 stmmac_set_eee_pls(priv, priv->hw, true); 1088 } 1089 1090 if (priv->dma_cap.fpesel) 1091 stmmac_fpe_link_state_handle(priv, true); 1092 } 1093 1094 static const struct phylink_mac_ops stmmac_phylink_mac_ops = { 1095 .mac_select_pcs = stmmac_mac_select_pcs, 1096 .mac_config = stmmac_mac_config, 1097 .mac_link_down = stmmac_mac_link_down, 1098 .mac_link_up = stmmac_mac_link_up, 1099 }; 1100 1101 /** 1102 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported 1103 * @priv: driver private structure 1104 * Description: this is to verify if the HW supports the PCS. 1105 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is 1106 * configured for the TBI, RTBI, or SGMII PHY interface. 1107 */ 1108 static void stmmac_check_pcs_mode(struct stmmac_priv *priv) 1109 { 1110 int interface = priv->plat->interface; 1111 1112 if (priv->dma_cap.pcs) { 1113 if ((interface == PHY_INTERFACE_MODE_RGMII) || 1114 (interface == PHY_INTERFACE_MODE_RGMII_ID) || 1115 (interface == PHY_INTERFACE_MODE_RGMII_RXID) || 1116 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) { 1117 netdev_dbg(priv->dev, "PCS RGMII support enabled\n"); 1118 priv->hw->pcs = STMMAC_PCS_RGMII; 1119 } else if (interface == PHY_INTERFACE_MODE_SGMII) { 1120 netdev_dbg(priv->dev, "PCS SGMII support enabled\n"); 1121 priv->hw->pcs = STMMAC_PCS_SGMII; 1122 } 1123 } 1124 } 1125 1126 /** 1127 * stmmac_init_phy - PHY initialization 1128 * @dev: net device structure 1129 * Description: it initializes the driver's PHY state, and attaches the PHY 1130 * to the mac driver. 1131 * Return value: 1132 * 0 on success 1133 */ 1134 static int stmmac_init_phy(struct net_device *dev) 1135 { 1136 struct stmmac_priv *priv = netdev_priv(dev); 1137 struct fwnode_handle *phy_fwnode; 1138 struct fwnode_handle *fwnode; 1139 int ret; 1140 1141 if (!phylink_expects_phy(priv->phylink)) 1142 return 0; 1143 1144 fwnode = of_fwnode_handle(priv->plat->phylink_node); 1145 if (!fwnode) 1146 fwnode = dev_fwnode(priv->device); 1147 1148 if (fwnode) 1149 phy_fwnode = fwnode_get_phy_node(fwnode); 1150 else 1151 phy_fwnode = NULL; 1152 1153 /* Some DT bindings do not set-up the PHY handle. Let's try to 1154 * manually parse it 1155 */ 1156 if (!phy_fwnode || IS_ERR(phy_fwnode)) { 1157 int addr = priv->plat->phy_addr; 1158 struct phy_device *phydev; 1159 1160 if (addr < 0) { 1161 netdev_err(priv->dev, "no phy found\n"); 1162 return -ENODEV; 1163 } 1164 1165 phydev = mdiobus_get_phy(priv->mii, addr); 1166 if (!phydev) { 1167 netdev_err(priv->dev, "no phy at addr %d\n", addr); 1168 return -ENODEV; 1169 } 1170 1171 ret = phylink_connect_phy(priv->phylink, phydev); 1172 } else { 1173 fwnode_handle_put(phy_fwnode); 1174 ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0); 1175 } 1176 1177 if (!priv->plat->pmt) { 1178 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1179 1180 phylink_ethtool_get_wol(priv->phylink, &wol); 1181 device_set_wakeup_capable(priv->device, !!wol.supported); 1182 device_set_wakeup_enable(priv->device, !!wol.wolopts); 1183 } 1184 1185 return ret; 1186 } 1187 1188 static int stmmac_phy_setup(struct stmmac_priv *priv) 1189 { 1190 struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data; 1191 struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node); 1192 int max_speed = priv->plat->max_speed; 1193 int mode = priv->plat->phy_interface; 1194 struct phylink *phylink; 1195 1196 priv->phylink_config.dev = &priv->dev->dev; 1197 priv->phylink_config.type = PHYLINK_NETDEV; 1198 if (priv->plat->mdio_bus_data) 1199 priv->phylink_config.ovr_an_inband = 1200 mdio_bus_data->xpcs_an_inband; 1201 1202 if (!fwnode) 1203 fwnode = dev_fwnode(priv->device); 1204 1205 /* Set the platform/firmware specified interface mode */ 1206 __set_bit(mode, priv->phylink_config.supported_interfaces); 1207 1208 /* If we have an xpcs, it defines which PHY interfaces are supported. */ 1209 if (priv->hw->xpcs) 1210 xpcs_get_interfaces(priv->hw->xpcs, 1211 priv->phylink_config.supported_interfaces); 1212 1213 priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE | 1214 MAC_10 | MAC_100; 1215 1216 if (!max_speed || max_speed >= 1000) 1217 priv->phylink_config.mac_capabilities |= MAC_1000; 1218 1219 if (priv->plat->has_gmac4) { 1220 if (!max_speed || max_speed >= 2500) 1221 priv->phylink_config.mac_capabilities |= MAC_2500FD; 1222 } else if (priv->plat->has_xgmac) { 1223 if (!max_speed || max_speed >= 2500) 1224 priv->phylink_config.mac_capabilities |= MAC_2500FD; 1225 if (!max_speed || max_speed >= 5000) 1226 priv->phylink_config.mac_capabilities |= MAC_5000FD; 1227 if (!max_speed || max_speed >= 10000) 1228 priv->phylink_config.mac_capabilities |= MAC_10000FD; 1229 if (!max_speed || max_speed >= 25000) 1230 priv->phylink_config.mac_capabilities |= MAC_25000FD; 1231 if (!max_speed || max_speed >= 40000) 1232 priv->phylink_config.mac_capabilities |= MAC_40000FD; 1233 if (!max_speed || max_speed >= 50000) 1234 priv->phylink_config.mac_capabilities |= MAC_50000FD; 1235 if (!max_speed || max_speed >= 100000) 1236 priv->phylink_config.mac_capabilities |= MAC_100000FD; 1237 } 1238 1239 /* Half-Duplex can only work with single queue */ 1240 if (priv->plat->tx_queues_to_use > 1) 1241 priv->phylink_config.mac_capabilities &= 1242 ~(MAC_10HD | MAC_100HD | MAC_1000HD); 1243 priv->phylink_config.mac_managed_pm = true; 1244 1245 phylink = phylink_create(&priv->phylink_config, fwnode, 1246 mode, &stmmac_phylink_mac_ops); 1247 if (IS_ERR(phylink)) 1248 return PTR_ERR(phylink); 1249 1250 priv->phylink = phylink; 1251 return 0; 1252 } 1253 1254 static void stmmac_display_rx_rings(struct stmmac_priv *priv, 1255 struct stmmac_dma_conf *dma_conf) 1256 { 1257 u32 rx_cnt = priv->plat->rx_queues_to_use; 1258 unsigned int desc_size; 1259 void *head_rx; 1260 u32 queue; 1261 1262 /* Display RX rings */ 1263 for (queue = 0; queue < rx_cnt; queue++) { 1264 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1265 1266 pr_info("\tRX Queue %u rings\n", queue); 1267 1268 if (priv->extend_desc) { 1269 head_rx = (void *)rx_q->dma_erx; 1270 desc_size = sizeof(struct dma_extended_desc); 1271 } else { 1272 head_rx = (void *)rx_q->dma_rx; 1273 desc_size = sizeof(struct dma_desc); 1274 } 1275 1276 /* Display RX ring */ 1277 stmmac_display_ring(priv, head_rx, dma_conf->dma_rx_size, true, 1278 rx_q->dma_rx_phy, desc_size); 1279 } 1280 } 1281 1282 static void stmmac_display_tx_rings(struct stmmac_priv *priv, 1283 struct stmmac_dma_conf *dma_conf) 1284 { 1285 u32 tx_cnt = priv->plat->tx_queues_to_use; 1286 unsigned int desc_size; 1287 void *head_tx; 1288 u32 queue; 1289 1290 /* Display TX rings */ 1291 for (queue = 0; queue < tx_cnt; queue++) { 1292 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 1293 1294 pr_info("\tTX Queue %d rings\n", queue); 1295 1296 if (priv->extend_desc) { 1297 head_tx = (void *)tx_q->dma_etx; 1298 desc_size = sizeof(struct dma_extended_desc); 1299 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1300 head_tx = (void *)tx_q->dma_entx; 1301 desc_size = sizeof(struct dma_edesc); 1302 } else { 1303 head_tx = (void *)tx_q->dma_tx; 1304 desc_size = sizeof(struct dma_desc); 1305 } 1306 1307 stmmac_display_ring(priv, head_tx, dma_conf->dma_tx_size, false, 1308 tx_q->dma_tx_phy, desc_size); 1309 } 1310 } 1311 1312 static void stmmac_display_rings(struct stmmac_priv *priv, 1313 struct stmmac_dma_conf *dma_conf) 1314 { 1315 /* Display RX ring */ 1316 stmmac_display_rx_rings(priv, dma_conf); 1317 1318 /* Display TX ring */ 1319 stmmac_display_tx_rings(priv, dma_conf); 1320 } 1321 1322 static int stmmac_set_bfsize(int mtu, int bufsize) 1323 { 1324 int ret = bufsize; 1325 1326 if (mtu >= BUF_SIZE_8KiB) 1327 ret = BUF_SIZE_16KiB; 1328 else if (mtu >= BUF_SIZE_4KiB) 1329 ret = BUF_SIZE_8KiB; 1330 else if (mtu >= BUF_SIZE_2KiB) 1331 ret = BUF_SIZE_4KiB; 1332 else if (mtu > DEFAULT_BUFSIZE) 1333 ret = BUF_SIZE_2KiB; 1334 else 1335 ret = DEFAULT_BUFSIZE; 1336 1337 return ret; 1338 } 1339 1340 /** 1341 * stmmac_clear_rx_descriptors - clear RX descriptors 1342 * @priv: driver private structure 1343 * @dma_conf: structure to take the dma data 1344 * @queue: RX queue index 1345 * Description: this function is called to clear the RX descriptors 1346 * in case of both basic and extended descriptors are used. 1347 */ 1348 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, 1349 struct stmmac_dma_conf *dma_conf, 1350 u32 queue) 1351 { 1352 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1353 int i; 1354 1355 /* Clear the RX descriptors */ 1356 for (i = 0; i < dma_conf->dma_rx_size; i++) 1357 if (priv->extend_desc) 1358 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic, 1359 priv->use_riwt, priv->mode, 1360 (i == dma_conf->dma_rx_size - 1), 1361 dma_conf->dma_buf_sz); 1362 else 1363 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i], 1364 priv->use_riwt, priv->mode, 1365 (i == dma_conf->dma_rx_size - 1), 1366 dma_conf->dma_buf_sz); 1367 } 1368 1369 /** 1370 * stmmac_clear_tx_descriptors - clear tx descriptors 1371 * @priv: driver private structure 1372 * @dma_conf: structure to take the dma data 1373 * @queue: TX queue index. 1374 * Description: this function is called to clear the TX descriptors 1375 * in case of both basic and extended descriptors are used. 1376 */ 1377 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, 1378 struct stmmac_dma_conf *dma_conf, 1379 u32 queue) 1380 { 1381 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 1382 int i; 1383 1384 /* Clear the TX descriptors */ 1385 for (i = 0; i < dma_conf->dma_tx_size; i++) { 1386 int last = (i == (dma_conf->dma_tx_size - 1)); 1387 struct dma_desc *p; 1388 1389 if (priv->extend_desc) 1390 p = &tx_q->dma_etx[i].basic; 1391 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1392 p = &tx_q->dma_entx[i].basic; 1393 else 1394 p = &tx_q->dma_tx[i]; 1395 1396 stmmac_init_tx_desc(priv, p, priv->mode, last); 1397 } 1398 } 1399 1400 /** 1401 * stmmac_clear_descriptors - clear descriptors 1402 * @priv: driver private structure 1403 * @dma_conf: structure to take the dma data 1404 * Description: this function is called to clear the TX and RX descriptors 1405 * in case of both basic and extended descriptors are used. 1406 */ 1407 static void stmmac_clear_descriptors(struct stmmac_priv *priv, 1408 struct stmmac_dma_conf *dma_conf) 1409 { 1410 u32 rx_queue_cnt = priv->plat->rx_queues_to_use; 1411 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1412 u32 queue; 1413 1414 /* Clear the RX descriptors */ 1415 for (queue = 0; queue < rx_queue_cnt; queue++) 1416 stmmac_clear_rx_descriptors(priv, dma_conf, queue); 1417 1418 /* Clear the TX descriptors */ 1419 for (queue = 0; queue < tx_queue_cnt; queue++) 1420 stmmac_clear_tx_descriptors(priv, dma_conf, queue); 1421 } 1422 1423 /** 1424 * stmmac_init_rx_buffers - init the RX descriptor buffer. 1425 * @priv: driver private structure 1426 * @dma_conf: structure to take the dma data 1427 * @p: descriptor pointer 1428 * @i: descriptor index 1429 * @flags: gfp flag 1430 * @queue: RX queue index 1431 * Description: this function is called to allocate a receive buffer, perform 1432 * the DMA mapping and init the descriptor. 1433 */ 1434 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, 1435 struct stmmac_dma_conf *dma_conf, 1436 struct dma_desc *p, 1437 int i, gfp_t flags, u32 queue) 1438 { 1439 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1440 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1441 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 1442 1443 if (priv->dma_cap.host_dma_width <= 32) 1444 gfp |= GFP_DMA32; 1445 1446 if (!buf->page) { 1447 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp); 1448 if (!buf->page) 1449 return -ENOMEM; 1450 buf->page_offset = stmmac_rx_offset(priv); 1451 } 1452 1453 if (priv->sph && !buf->sec_page) { 1454 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp); 1455 if (!buf->sec_page) 1456 return -ENOMEM; 1457 1458 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 1459 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); 1460 } else { 1461 buf->sec_page = NULL; 1462 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); 1463 } 1464 1465 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; 1466 1467 stmmac_set_desc_addr(priv, p, buf->addr); 1468 if (dma_conf->dma_buf_sz == BUF_SIZE_16KiB) 1469 stmmac_init_desc3(priv, p); 1470 1471 return 0; 1472 } 1473 1474 /** 1475 * stmmac_free_rx_buffer - free RX dma buffers 1476 * @priv: private structure 1477 * @rx_q: RX queue 1478 * @i: buffer index. 1479 */ 1480 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, 1481 struct stmmac_rx_queue *rx_q, 1482 int i) 1483 { 1484 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1485 1486 if (buf->page) 1487 page_pool_put_full_page(rx_q->page_pool, buf->page, false); 1488 buf->page = NULL; 1489 1490 if (buf->sec_page) 1491 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false); 1492 buf->sec_page = NULL; 1493 } 1494 1495 /** 1496 * stmmac_free_tx_buffer - free RX dma buffers 1497 * @priv: private structure 1498 * @dma_conf: structure to take the dma data 1499 * @queue: RX queue index 1500 * @i: buffer index. 1501 */ 1502 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, 1503 struct stmmac_dma_conf *dma_conf, 1504 u32 queue, int i) 1505 { 1506 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 1507 1508 if (tx_q->tx_skbuff_dma[i].buf && 1509 tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) { 1510 if (tx_q->tx_skbuff_dma[i].map_as_page) 1511 dma_unmap_page(priv->device, 1512 tx_q->tx_skbuff_dma[i].buf, 1513 tx_q->tx_skbuff_dma[i].len, 1514 DMA_TO_DEVICE); 1515 else 1516 dma_unmap_single(priv->device, 1517 tx_q->tx_skbuff_dma[i].buf, 1518 tx_q->tx_skbuff_dma[i].len, 1519 DMA_TO_DEVICE); 1520 } 1521 1522 if (tx_q->xdpf[i] && 1523 (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX || 1524 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) { 1525 xdp_return_frame(tx_q->xdpf[i]); 1526 tx_q->xdpf[i] = NULL; 1527 } 1528 1529 if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX) 1530 tx_q->xsk_frames_done++; 1531 1532 if (tx_q->tx_skbuff[i] && 1533 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) { 1534 dev_kfree_skb_any(tx_q->tx_skbuff[i]); 1535 tx_q->tx_skbuff[i] = NULL; 1536 } 1537 1538 tx_q->tx_skbuff_dma[i].buf = 0; 1539 tx_q->tx_skbuff_dma[i].map_as_page = false; 1540 } 1541 1542 /** 1543 * dma_free_rx_skbufs - free RX dma buffers 1544 * @priv: private structure 1545 * @dma_conf: structure to take the dma data 1546 * @queue: RX queue index 1547 */ 1548 static void dma_free_rx_skbufs(struct stmmac_priv *priv, 1549 struct stmmac_dma_conf *dma_conf, 1550 u32 queue) 1551 { 1552 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1553 int i; 1554 1555 for (i = 0; i < dma_conf->dma_rx_size; i++) 1556 stmmac_free_rx_buffer(priv, rx_q, i); 1557 } 1558 1559 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, 1560 struct stmmac_dma_conf *dma_conf, 1561 u32 queue, gfp_t flags) 1562 { 1563 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1564 int i; 1565 1566 for (i = 0; i < dma_conf->dma_rx_size; i++) { 1567 struct dma_desc *p; 1568 int ret; 1569 1570 if (priv->extend_desc) 1571 p = &((rx_q->dma_erx + i)->basic); 1572 else 1573 p = rx_q->dma_rx + i; 1574 1575 ret = stmmac_init_rx_buffers(priv, dma_conf, p, i, flags, 1576 queue); 1577 if (ret) 1578 return ret; 1579 1580 rx_q->buf_alloc_num++; 1581 } 1582 1583 return 0; 1584 } 1585 1586 /** 1587 * dma_free_rx_xskbufs - free RX dma buffers from XSK pool 1588 * @priv: private structure 1589 * @dma_conf: structure to take the dma data 1590 * @queue: RX queue index 1591 */ 1592 static void dma_free_rx_xskbufs(struct stmmac_priv *priv, 1593 struct stmmac_dma_conf *dma_conf, 1594 u32 queue) 1595 { 1596 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1597 int i; 1598 1599 for (i = 0; i < dma_conf->dma_rx_size; i++) { 1600 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1601 1602 if (!buf->xdp) 1603 continue; 1604 1605 xsk_buff_free(buf->xdp); 1606 buf->xdp = NULL; 1607 } 1608 } 1609 1610 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, 1611 struct stmmac_dma_conf *dma_conf, 1612 u32 queue) 1613 { 1614 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1615 int i; 1616 1617 /* struct stmmac_xdp_buff is using cb field (maximum size of 24 bytes) 1618 * in struct xdp_buff_xsk to stash driver specific information. Thus, 1619 * use this macro to make sure no size violations. 1620 */ 1621 XSK_CHECK_PRIV_TYPE(struct stmmac_xdp_buff); 1622 1623 for (i = 0; i < dma_conf->dma_rx_size; i++) { 1624 struct stmmac_rx_buffer *buf; 1625 dma_addr_t dma_addr; 1626 struct dma_desc *p; 1627 1628 if (priv->extend_desc) 1629 p = (struct dma_desc *)(rx_q->dma_erx + i); 1630 else 1631 p = rx_q->dma_rx + i; 1632 1633 buf = &rx_q->buf_pool[i]; 1634 1635 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); 1636 if (!buf->xdp) 1637 return -ENOMEM; 1638 1639 dma_addr = xsk_buff_xdp_get_dma(buf->xdp); 1640 stmmac_set_desc_addr(priv, p, dma_addr); 1641 rx_q->buf_alloc_num++; 1642 } 1643 1644 return 0; 1645 } 1646 1647 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue) 1648 { 1649 if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps)) 1650 return NULL; 1651 1652 return xsk_get_pool_from_qid(priv->dev, queue); 1653 } 1654 1655 /** 1656 * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue) 1657 * @priv: driver private structure 1658 * @dma_conf: structure to take the dma data 1659 * @queue: RX queue index 1660 * @flags: gfp flag. 1661 * Description: this function initializes the DMA RX descriptors 1662 * and allocates the socket buffers. It supports the chained and ring 1663 * modes. 1664 */ 1665 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, 1666 struct stmmac_dma_conf *dma_conf, 1667 u32 queue, gfp_t flags) 1668 { 1669 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1670 int ret; 1671 1672 netif_dbg(priv, probe, priv->dev, 1673 "(%s) dma_rx_phy=0x%08x\n", __func__, 1674 (u32)rx_q->dma_rx_phy); 1675 1676 stmmac_clear_rx_descriptors(priv, dma_conf, queue); 1677 1678 xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq); 1679 1680 rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); 1681 1682 if (rx_q->xsk_pool) { 1683 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, 1684 MEM_TYPE_XSK_BUFF_POOL, 1685 NULL)); 1686 netdev_info(priv->dev, 1687 "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n", 1688 rx_q->queue_index); 1689 xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq); 1690 } else { 1691 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, 1692 MEM_TYPE_PAGE_POOL, 1693 rx_q->page_pool)); 1694 netdev_info(priv->dev, 1695 "Register MEM_TYPE_PAGE_POOL RxQ-%d\n", 1696 rx_q->queue_index); 1697 } 1698 1699 if (rx_q->xsk_pool) { 1700 /* RX XDP ZC buffer pool may not be populated, e.g. 1701 * xdpsock TX-only. 1702 */ 1703 stmmac_alloc_rx_buffers_zc(priv, dma_conf, queue); 1704 } else { 1705 ret = stmmac_alloc_rx_buffers(priv, dma_conf, queue, flags); 1706 if (ret < 0) 1707 return -ENOMEM; 1708 } 1709 1710 /* Setup the chained descriptor addresses */ 1711 if (priv->mode == STMMAC_CHAIN_MODE) { 1712 if (priv->extend_desc) 1713 stmmac_mode_init(priv, rx_q->dma_erx, 1714 rx_q->dma_rx_phy, 1715 dma_conf->dma_rx_size, 1); 1716 else 1717 stmmac_mode_init(priv, rx_q->dma_rx, 1718 rx_q->dma_rx_phy, 1719 dma_conf->dma_rx_size, 0); 1720 } 1721 1722 return 0; 1723 } 1724 1725 static int init_dma_rx_desc_rings(struct net_device *dev, 1726 struct stmmac_dma_conf *dma_conf, 1727 gfp_t flags) 1728 { 1729 struct stmmac_priv *priv = netdev_priv(dev); 1730 u32 rx_count = priv->plat->rx_queues_to_use; 1731 int queue; 1732 int ret; 1733 1734 /* RX INITIALIZATION */ 1735 netif_dbg(priv, probe, priv->dev, 1736 "SKB addresses:\nskb\t\tskb data\tdma data\n"); 1737 1738 for (queue = 0; queue < rx_count; queue++) { 1739 ret = __init_dma_rx_desc_rings(priv, dma_conf, queue, flags); 1740 if (ret) 1741 goto err_init_rx_buffers; 1742 } 1743 1744 return 0; 1745 1746 err_init_rx_buffers: 1747 while (queue >= 0) { 1748 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1749 1750 if (rx_q->xsk_pool) 1751 dma_free_rx_xskbufs(priv, dma_conf, queue); 1752 else 1753 dma_free_rx_skbufs(priv, dma_conf, queue); 1754 1755 rx_q->buf_alloc_num = 0; 1756 rx_q->xsk_pool = NULL; 1757 1758 queue--; 1759 } 1760 1761 return ret; 1762 } 1763 1764 /** 1765 * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue) 1766 * @priv: driver private structure 1767 * @dma_conf: structure to take the dma data 1768 * @queue: TX queue index 1769 * Description: this function initializes the DMA TX descriptors 1770 * and allocates the socket buffers. It supports the chained and ring 1771 * modes. 1772 */ 1773 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, 1774 struct stmmac_dma_conf *dma_conf, 1775 u32 queue) 1776 { 1777 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 1778 int i; 1779 1780 netif_dbg(priv, probe, priv->dev, 1781 "(%s) dma_tx_phy=0x%08x\n", __func__, 1782 (u32)tx_q->dma_tx_phy); 1783 1784 /* Setup the chained descriptor addresses */ 1785 if (priv->mode == STMMAC_CHAIN_MODE) { 1786 if (priv->extend_desc) 1787 stmmac_mode_init(priv, tx_q->dma_etx, 1788 tx_q->dma_tx_phy, 1789 dma_conf->dma_tx_size, 1); 1790 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) 1791 stmmac_mode_init(priv, tx_q->dma_tx, 1792 tx_q->dma_tx_phy, 1793 dma_conf->dma_tx_size, 0); 1794 } 1795 1796 tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); 1797 1798 for (i = 0; i < dma_conf->dma_tx_size; i++) { 1799 struct dma_desc *p; 1800 1801 if (priv->extend_desc) 1802 p = &((tx_q->dma_etx + i)->basic); 1803 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1804 p = &((tx_q->dma_entx + i)->basic); 1805 else 1806 p = tx_q->dma_tx + i; 1807 1808 stmmac_clear_desc(priv, p); 1809 1810 tx_q->tx_skbuff_dma[i].buf = 0; 1811 tx_q->tx_skbuff_dma[i].map_as_page = false; 1812 tx_q->tx_skbuff_dma[i].len = 0; 1813 tx_q->tx_skbuff_dma[i].last_segment = false; 1814 tx_q->tx_skbuff[i] = NULL; 1815 } 1816 1817 return 0; 1818 } 1819 1820 static int init_dma_tx_desc_rings(struct net_device *dev, 1821 struct stmmac_dma_conf *dma_conf) 1822 { 1823 struct stmmac_priv *priv = netdev_priv(dev); 1824 u32 tx_queue_cnt; 1825 u32 queue; 1826 1827 tx_queue_cnt = priv->plat->tx_queues_to_use; 1828 1829 for (queue = 0; queue < tx_queue_cnt; queue++) 1830 __init_dma_tx_desc_rings(priv, dma_conf, queue); 1831 1832 return 0; 1833 } 1834 1835 /** 1836 * init_dma_desc_rings - init the RX/TX descriptor rings 1837 * @dev: net device structure 1838 * @dma_conf: structure to take the dma data 1839 * @flags: gfp flag. 1840 * Description: this function initializes the DMA RX/TX descriptors 1841 * and allocates the socket buffers. It supports the chained and ring 1842 * modes. 1843 */ 1844 static int init_dma_desc_rings(struct net_device *dev, 1845 struct stmmac_dma_conf *dma_conf, 1846 gfp_t flags) 1847 { 1848 struct stmmac_priv *priv = netdev_priv(dev); 1849 int ret; 1850 1851 ret = init_dma_rx_desc_rings(dev, dma_conf, flags); 1852 if (ret) 1853 return ret; 1854 1855 ret = init_dma_tx_desc_rings(dev, dma_conf); 1856 1857 stmmac_clear_descriptors(priv, dma_conf); 1858 1859 if (netif_msg_hw(priv)) 1860 stmmac_display_rings(priv, dma_conf); 1861 1862 return ret; 1863 } 1864 1865 /** 1866 * dma_free_tx_skbufs - free TX dma buffers 1867 * @priv: private structure 1868 * @dma_conf: structure to take the dma data 1869 * @queue: TX queue index 1870 */ 1871 static void dma_free_tx_skbufs(struct stmmac_priv *priv, 1872 struct stmmac_dma_conf *dma_conf, 1873 u32 queue) 1874 { 1875 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 1876 int i; 1877 1878 tx_q->xsk_frames_done = 0; 1879 1880 for (i = 0; i < dma_conf->dma_tx_size; i++) 1881 stmmac_free_tx_buffer(priv, dma_conf, queue, i); 1882 1883 if (tx_q->xsk_pool && tx_q->xsk_frames_done) { 1884 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); 1885 tx_q->xsk_frames_done = 0; 1886 tx_q->xsk_pool = NULL; 1887 } 1888 } 1889 1890 /** 1891 * stmmac_free_tx_skbufs - free TX skb buffers 1892 * @priv: private structure 1893 */ 1894 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv) 1895 { 1896 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1897 u32 queue; 1898 1899 for (queue = 0; queue < tx_queue_cnt; queue++) 1900 dma_free_tx_skbufs(priv, &priv->dma_conf, queue); 1901 } 1902 1903 /** 1904 * __free_dma_rx_desc_resources - free RX dma desc resources (per queue) 1905 * @priv: private structure 1906 * @dma_conf: structure to take the dma data 1907 * @queue: RX queue index 1908 */ 1909 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, 1910 struct stmmac_dma_conf *dma_conf, 1911 u32 queue) 1912 { 1913 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1914 1915 /* Release the DMA RX socket buffers */ 1916 if (rx_q->xsk_pool) 1917 dma_free_rx_xskbufs(priv, dma_conf, queue); 1918 else 1919 dma_free_rx_skbufs(priv, dma_conf, queue); 1920 1921 rx_q->buf_alloc_num = 0; 1922 rx_q->xsk_pool = NULL; 1923 1924 /* Free DMA regions of consistent memory previously allocated */ 1925 if (!priv->extend_desc) 1926 dma_free_coherent(priv->device, dma_conf->dma_rx_size * 1927 sizeof(struct dma_desc), 1928 rx_q->dma_rx, rx_q->dma_rx_phy); 1929 else 1930 dma_free_coherent(priv->device, dma_conf->dma_rx_size * 1931 sizeof(struct dma_extended_desc), 1932 rx_q->dma_erx, rx_q->dma_rx_phy); 1933 1934 if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq)) 1935 xdp_rxq_info_unreg(&rx_q->xdp_rxq); 1936 1937 kfree(rx_q->buf_pool); 1938 if (rx_q->page_pool) 1939 page_pool_destroy(rx_q->page_pool); 1940 } 1941 1942 static void free_dma_rx_desc_resources(struct stmmac_priv *priv, 1943 struct stmmac_dma_conf *dma_conf) 1944 { 1945 u32 rx_count = priv->plat->rx_queues_to_use; 1946 u32 queue; 1947 1948 /* Free RX queue resources */ 1949 for (queue = 0; queue < rx_count; queue++) 1950 __free_dma_rx_desc_resources(priv, dma_conf, queue); 1951 } 1952 1953 /** 1954 * __free_dma_tx_desc_resources - free TX dma desc resources (per queue) 1955 * @priv: private structure 1956 * @dma_conf: structure to take the dma data 1957 * @queue: TX queue index 1958 */ 1959 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, 1960 struct stmmac_dma_conf *dma_conf, 1961 u32 queue) 1962 { 1963 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 1964 size_t size; 1965 void *addr; 1966 1967 /* Release the DMA TX socket buffers */ 1968 dma_free_tx_skbufs(priv, dma_conf, queue); 1969 1970 if (priv->extend_desc) { 1971 size = sizeof(struct dma_extended_desc); 1972 addr = tx_q->dma_etx; 1973 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1974 size = sizeof(struct dma_edesc); 1975 addr = tx_q->dma_entx; 1976 } else { 1977 size = sizeof(struct dma_desc); 1978 addr = tx_q->dma_tx; 1979 } 1980 1981 size *= dma_conf->dma_tx_size; 1982 1983 dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy); 1984 1985 kfree(tx_q->tx_skbuff_dma); 1986 kfree(tx_q->tx_skbuff); 1987 } 1988 1989 static void free_dma_tx_desc_resources(struct stmmac_priv *priv, 1990 struct stmmac_dma_conf *dma_conf) 1991 { 1992 u32 tx_count = priv->plat->tx_queues_to_use; 1993 u32 queue; 1994 1995 /* Free TX queue resources */ 1996 for (queue = 0; queue < tx_count; queue++) 1997 __free_dma_tx_desc_resources(priv, dma_conf, queue); 1998 } 1999 2000 /** 2001 * __alloc_dma_rx_desc_resources - alloc RX resources (per queue). 2002 * @priv: private structure 2003 * @dma_conf: structure to take the dma data 2004 * @queue: RX queue index 2005 * Description: according to which descriptor can be used (extend or basic) 2006 * this function allocates the resources for TX and RX paths. In case of 2007 * reception, for example, it pre-allocated the RX socket buffer in order to 2008 * allow zero-copy mechanism. 2009 */ 2010 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, 2011 struct stmmac_dma_conf *dma_conf, 2012 u32 queue) 2013 { 2014 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 2015 struct stmmac_channel *ch = &priv->channel[queue]; 2016 bool xdp_prog = stmmac_xdp_is_enabled(priv); 2017 struct page_pool_params pp_params = { 0 }; 2018 unsigned int num_pages; 2019 unsigned int napi_id; 2020 int ret; 2021 2022 rx_q->queue_index = queue; 2023 rx_q->priv_data = priv; 2024 2025 pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 2026 pp_params.pool_size = dma_conf->dma_rx_size; 2027 num_pages = DIV_ROUND_UP(dma_conf->dma_buf_sz, PAGE_SIZE); 2028 pp_params.order = ilog2(num_pages); 2029 pp_params.nid = dev_to_node(priv->device); 2030 pp_params.dev = priv->device; 2031 pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 2032 pp_params.offset = stmmac_rx_offset(priv); 2033 pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages); 2034 2035 rx_q->page_pool = page_pool_create(&pp_params); 2036 if (IS_ERR(rx_q->page_pool)) { 2037 ret = PTR_ERR(rx_q->page_pool); 2038 rx_q->page_pool = NULL; 2039 return ret; 2040 } 2041 2042 rx_q->buf_pool = kcalloc(dma_conf->dma_rx_size, 2043 sizeof(*rx_q->buf_pool), 2044 GFP_KERNEL); 2045 if (!rx_q->buf_pool) 2046 return -ENOMEM; 2047 2048 if (priv->extend_desc) { 2049 rx_q->dma_erx = dma_alloc_coherent(priv->device, 2050 dma_conf->dma_rx_size * 2051 sizeof(struct dma_extended_desc), 2052 &rx_q->dma_rx_phy, 2053 GFP_KERNEL); 2054 if (!rx_q->dma_erx) 2055 return -ENOMEM; 2056 2057 } else { 2058 rx_q->dma_rx = dma_alloc_coherent(priv->device, 2059 dma_conf->dma_rx_size * 2060 sizeof(struct dma_desc), 2061 &rx_q->dma_rx_phy, 2062 GFP_KERNEL); 2063 if (!rx_q->dma_rx) 2064 return -ENOMEM; 2065 } 2066 2067 if (stmmac_xdp_is_enabled(priv) && 2068 test_bit(queue, priv->af_xdp_zc_qps)) 2069 napi_id = ch->rxtx_napi.napi_id; 2070 else 2071 napi_id = ch->rx_napi.napi_id; 2072 2073 ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev, 2074 rx_q->queue_index, 2075 napi_id); 2076 if (ret) { 2077 netdev_err(priv->dev, "Failed to register xdp rxq info\n"); 2078 return -EINVAL; 2079 } 2080 2081 return 0; 2082 } 2083 2084 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv, 2085 struct stmmac_dma_conf *dma_conf) 2086 { 2087 u32 rx_count = priv->plat->rx_queues_to_use; 2088 u32 queue; 2089 int ret; 2090 2091 /* RX queues buffers and DMA */ 2092 for (queue = 0; queue < rx_count; queue++) { 2093 ret = __alloc_dma_rx_desc_resources(priv, dma_conf, queue); 2094 if (ret) 2095 goto err_dma; 2096 } 2097 2098 return 0; 2099 2100 err_dma: 2101 free_dma_rx_desc_resources(priv, dma_conf); 2102 2103 return ret; 2104 } 2105 2106 /** 2107 * __alloc_dma_tx_desc_resources - alloc TX resources (per queue). 2108 * @priv: private structure 2109 * @dma_conf: structure to take the dma data 2110 * @queue: TX queue index 2111 * Description: according to which descriptor can be used (extend or basic) 2112 * this function allocates the resources for TX and RX paths. In case of 2113 * reception, for example, it pre-allocated the RX socket buffer in order to 2114 * allow zero-copy mechanism. 2115 */ 2116 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, 2117 struct stmmac_dma_conf *dma_conf, 2118 u32 queue) 2119 { 2120 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 2121 size_t size; 2122 void *addr; 2123 2124 tx_q->queue_index = queue; 2125 tx_q->priv_data = priv; 2126 2127 tx_q->tx_skbuff_dma = kcalloc(dma_conf->dma_tx_size, 2128 sizeof(*tx_q->tx_skbuff_dma), 2129 GFP_KERNEL); 2130 if (!tx_q->tx_skbuff_dma) 2131 return -ENOMEM; 2132 2133 tx_q->tx_skbuff = kcalloc(dma_conf->dma_tx_size, 2134 sizeof(struct sk_buff *), 2135 GFP_KERNEL); 2136 if (!tx_q->tx_skbuff) 2137 return -ENOMEM; 2138 2139 if (priv->extend_desc) 2140 size = sizeof(struct dma_extended_desc); 2141 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2142 size = sizeof(struct dma_edesc); 2143 else 2144 size = sizeof(struct dma_desc); 2145 2146 size *= dma_conf->dma_tx_size; 2147 2148 addr = dma_alloc_coherent(priv->device, size, 2149 &tx_q->dma_tx_phy, GFP_KERNEL); 2150 if (!addr) 2151 return -ENOMEM; 2152 2153 if (priv->extend_desc) 2154 tx_q->dma_etx = addr; 2155 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2156 tx_q->dma_entx = addr; 2157 else 2158 tx_q->dma_tx = addr; 2159 2160 return 0; 2161 } 2162 2163 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv, 2164 struct stmmac_dma_conf *dma_conf) 2165 { 2166 u32 tx_count = priv->plat->tx_queues_to_use; 2167 u32 queue; 2168 int ret; 2169 2170 /* TX queues buffers and DMA */ 2171 for (queue = 0; queue < tx_count; queue++) { 2172 ret = __alloc_dma_tx_desc_resources(priv, dma_conf, queue); 2173 if (ret) 2174 goto err_dma; 2175 } 2176 2177 return 0; 2178 2179 err_dma: 2180 free_dma_tx_desc_resources(priv, dma_conf); 2181 return ret; 2182 } 2183 2184 /** 2185 * alloc_dma_desc_resources - alloc TX/RX resources. 2186 * @priv: private structure 2187 * @dma_conf: structure to take the dma data 2188 * Description: according to which descriptor can be used (extend or basic) 2189 * this function allocates the resources for TX and RX paths. In case of 2190 * reception, for example, it pre-allocated the RX socket buffer in order to 2191 * allow zero-copy mechanism. 2192 */ 2193 static int alloc_dma_desc_resources(struct stmmac_priv *priv, 2194 struct stmmac_dma_conf *dma_conf) 2195 { 2196 /* RX Allocation */ 2197 int ret = alloc_dma_rx_desc_resources(priv, dma_conf); 2198 2199 if (ret) 2200 return ret; 2201 2202 ret = alloc_dma_tx_desc_resources(priv, dma_conf); 2203 2204 return ret; 2205 } 2206 2207 /** 2208 * free_dma_desc_resources - free dma desc resources 2209 * @priv: private structure 2210 * @dma_conf: structure to take the dma data 2211 */ 2212 static void free_dma_desc_resources(struct stmmac_priv *priv, 2213 struct stmmac_dma_conf *dma_conf) 2214 { 2215 /* Release the DMA TX socket buffers */ 2216 free_dma_tx_desc_resources(priv, dma_conf); 2217 2218 /* Release the DMA RX socket buffers later 2219 * to ensure all pending XDP_TX buffers are returned. 2220 */ 2221 free_dma_rx_desc_resources(priv, dma_conf); 2222 } 2223 2224 /** 2225 * stmmac_mac_enable_rx_queues - Enable MAC rx queues 2226 * @priv: driver private structure 2227 * Description: It is used for enabling the rx queues in the MAC 2228 */ 2229 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv) 2230 { 2231 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2232 int queue; 2233 u8 mode; 2234 2235 for (queue = 0; queue < rx_queues_count; queue++) { 2236 mode = priv->plat->rx_queues_cfg[queue].mode_to_use; 2237 stmmac_rx_queue_enable(priv, priv->hw, mode, queue); 2238 } 2239 } 2240 2241 /** 2242 * stmmac_start_rx_dma - start RX DMA channel 2243 * @priv: driver private structure 2244 * @chan: RX channel index 2245 * Description: 2246 * This starts a RX DMA channel 2247 */ 2248 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan) 2249 { 2250 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan); 2251 stmmac_start_rx(priv, priv->ioaddr, chan); 2252 } 2253 2254 /** 2255 * stmmac_start_tx_dma - start TX DMA channel 2256 * @priv: driver private structure 2257 * @chan: TX channel index 2258 * Description: 2259 * This starts a TX DMA channel 2260 */ 2261 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan) 2262 { 2263 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan); 2264 stmmac_start_tx(priv, priv->ioaddr, chan); 2265 } 2266 2267 /** 2268 * stmmac_stop_rx_dma - stop RX DMA channel 2269 * @priv: driver private structure 2270 * @chan: RX channel index 2271 * Description: 2272 * This stops a RX DMA channel 2273 */ 2274 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan) 2275 { 2276 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan); 2277 stmmac_stop_rx(priv, priv->ioaddr, chan); 2278 } 2279 2280 /** 2281 * stmmac_stop_tx_dma - stop TX DMA channel 2282 * @priv: driver private structure 2283 * @chan: TX channel index 2284 * Description: 2285 * This stops a TX DMA channel 2286 */ 2287 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan) 2288 { 2289 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan); 2290 stmmac_stop_tx(priv, priv->ioaddr, chan); 2291 } 2292 2293 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv) 2294 { 2295 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2296 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2297 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); 2298 u32 chan; 2299 2300 for (chan = 0; chan < dma_csr_ch; chan++) { 2301 struct stmmac_channel *ch = &priv->channel[chan]; 2302 unsigned long flags; 2303 2304 spin_lock_irqsave(&ch->lock, flags); 2305 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 2306 spin_unlock_irqrestore(&ch->lock, flags); 2307 } 2308 } 2309 2310 /** 2311 * stmmac_start_all_dma - start all RX and TX DMA channels 2312 * @priv: driver private structure 2313 * Description: 2314 * This starts all the RX and TX DMA channels 2315 */ 2316 static void stmmac_start_all_dma(struct stmmac_priv *priv) 2317 { 2318 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2319 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2320 u32 chan = 0; 2321 2322 for (chan = 0; chan < rx_channels_count; chan++) 2323 stmmac_start_rx_dma(priv, chan); 2324 2325 for (chan = 0; chan < tx_channels_count; chan++) 2326 stmmac_start_tx_dma(priv, chan); 2327 } 2328 2329 /** 2330 * stmmac_stop_all_dma - stop all RX and TX DMA channels 2331 * @priv: driver private structure 2332 * Description: 2333 * This stops the RX and TX DMA channels 2334 */ 2335 static void stmmac_stop_all_dma(struct stmmac_priv *priv) 2336 { 2337 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2338 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2339 u32 chan = 0; 2340 2341 for (chan = 0; chan < rx_channels_count; chan++) 2342 stmmac_stop_rx_dma(priv, chan); 2343 2344 for (chan = 0; chan < tx_channels_count; chan++) 2345 stmmac_stop_tx_dma(priv, chan); 2346 } 2347 2348 /** 2349 * stmmac_dma_operation_mode - HW DMA operation mode 2350 * @priv: driver private structure 2351 * Description: it is used for configuring the DMA operation mode register in 2352 * order to program the tx/rx DMA thresholds or Store-And-Forward mode. 2353 */ 2354 static void stmmac_dma_operation_mode(struct stmmac_priv *priv) 2355 { 2356 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2357 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2358 int rxfifosz = priv->plat->rx_fifo_size; 2359 int txfifosz = priv->plat->tx_fifo_size; 2360 u32 txmode = 0; 2361 u32 rxmode = 0; 2362 u32 chan = 0; 2363 u8 qmode = 0; 2364 2365 if (rxfifosz == 0) 2366 rxfifosz = priv->dma_cap.rx_fifo_size; 2367 if (txfifosz == 0) 2368 txfifosz = priv->dma_cap.tx_fifo_size; 2369 2370 /* Adjust for real per queue fifo size */ 2371 rxfifosz /= rx_channels_count; 2372 txfifosz /= tx_channels_count; 2373 2374 if (priv->plat->force_thresh_dma_mode) { 2375 txmode = tc; 2376 rxmode = tc; 2377 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { 2378 /* 2379 * In case of GMAC, SF mode can be enabled 2380 * to perform the TX COE in HW. This depends on: 2381 * 1) TX COE if actually supported 2382 * 2) There is no bugged Jumbo frame support 2383 * that needs to not insert csum in the TDES. 2384 */ 2385 txmode = SF_DMA_MODE; 2386 rxmode = SF_DMA_MODE; 2387 priv->xstats.threshold = SF_DMA_MODE; 2388 } else { 2389 txmode = tc; 2390 rxmode = SF_DMA_MODE; 2391 } 2392 2393 /* configure all channels */ 2394 for (chan = 0; chan < rx_channels_count; chan++) { 2395 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan]; 2396 u32 buf_size; 2397 2398 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2399 2400 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, 2401 rxfifosz, qmode); 2402 2403 if (rx_q->xsk_pool) { 2404 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 2405 stmmac_set_dma_bfsize(priv, priv->ioaddr, 2406 buf_size, 2407 chan); 2408 } else { 2409 stmmac_set_dma_bfsize(priv, priv->ioaddr, 2410 priv->dma_conf.dma_buf_sz, 2411 chan); 2412 } 2413 } 2414 2415 for (chan = 0; chan < tx_channels_count; chan++) { 2416 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2417 2418 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, 2419 txfifosz, qmode); 2420 } 2421 } 2422 2423 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget) 2424 { 2425 struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue); 2426 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 2427 struct xsk_buff_pool *pool = tx_q->xsk_pool; 2428 unsigned int entry = tx_q->cur_tx; 2429 struct dma_desc *tx_desc = NULL; 2430 struct xdp_desc xdp_desc; 2431 bool work_done = true; 2432 2433 /* Avoids TX time-out as we are sharing with slow path */ 2434 txq_trans_cond_update(nq); 2435 2436 budget = min(budget, stmmac_tx_avail(priv, queue)); 2437 2438 while (budget-- > 0) { 2439 dma_addr_t dma_addr; 2440 bool set_ic; 2441 2442 /* We are sharing with slow path and stop XSK TX desc submission when 2443 * available TX ring is less than threshold. 2444 */ 2445 if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) || 2446 !netif_carrier_ok(priv->dev)) { 2447 work_done = false; 2448 break; 2449 } 2450 2451 if (!xsk_tx_peek_desc(pool, &xdp_desc)) 2452 break; 2453 2454 if (likely(priv->extend_desc)) 2455 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); 2456 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2457 tx_desc = &tx_q->dma_entx[entry].basic; 2458 else 2459 tx_desc = tx_q->dma_tx + entry; 2460 2461 dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr); 2462 xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len); 2463 2464 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX; 2465 2466 /* To return XDP buffer to XSK pool, we simple call 2467 * xsk_tx_completed(), so we don't need to fill up 2468 * 'buf' and 'xdpf'. 2469 */ 2470 tx_q->tx_skbuff_dma[entry].buf = 0; 2471 tx_q->xdpf[entry] = NULL; 2472 2473 tx_q->tx_skbuff_dma[entry].map_as_page = false; 2474 tx_q->tx_skbuff_dma[entry].len = xdp_desc.len; 2475 tx_q->tx_skbuff_dma[entry].last_segment = true; 2476 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 2477 2478 stmmac_set_desc_addr(priv, tx_desc, dma_addr); 2479 2480 tx_q->tx_count_frames++; 2481 2482 if (!priv->tx_coal_frames[queue]) 2483 set_ic = false; 2484 else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) 2485 set_ic = true; 2486 else 2487 set_ic = false; 2488 2489 if (set_ic) { 2490 tx_q->tx_count_frames = 0; 2491 stmmac_set_tx_ic(priv, tx_desc); 2492 priv->xstats.tx_set_ic_bit++; 2493 } 2494 2495 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len, 2496 true, priv->mode, true, true, 2497 xdp_desc.len); 2498 2499 stmmac_enable_dma_transmission(priv, priv->ioaddr); 2500 2501 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size); 2502 entry = tx_q->cur_tx; 2503 } 2504 2505 if (tx_desc) { 2506 stmmac_flush_tx_descriptors(priv, queue); 2507 xsk_tx_release(pool); 2508 } 2509 2510 /* Return true if all of the 3 conditions are met 2511 * a) TX Budget is still available 2512 * b) work_done = true when XSK TX desc peek is empty (no more 2513 * pending XSK TX for transmission) 2514 */ 2515 return !!budget && work_done; 2516 } 2517 2518 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan) 2519 { 2520 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) { 2521 tc += 64; 2522 2523 if (priv->plat->force_thresh_dma_mode) 2524 stmmac_set_dma_operation_mode(priv, tc, tc, chan); 2525 else 2526 stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE, 2527 chan); 2528 2529 priv->xstats.threshold = tc; 2530 } 2531 } 2532 2533 /** 2534 * stmmac_tx_clean - to manage the transmission completion 2535 * @priv: driver private structure 2536 * @budget: napi budget limiting this functions packet handling 2537 * @queue: TX queue index 2538 * Description: it reclaims the transmit resources after transmission completes. 2539 */ 2540 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue) 2541 { 2542 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 2543 unsigned int bytes_compl = 0, pkts_compl = 0; 2544 unsigned int entry, xmits = 0, count = 0; 2545 2546 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue)); 2547 2548 priv->xstats.tx_clean++; 2549 2550 tx_q->xsk_frames_done = 0; 2551 2552 entry = tx_q->dirty_tx; 2553 2554 /* Try to clean all TX complete frame in 1 shot */ 2555 while ((entry != tx_q->cur_tx) && count < priv->dma_conf.dma_tx_size) { 2556 struct xdp_frame *xdpf; 2557 struct sk_buff *skb; 2558 struct dma_desc *p; 2559 int status; 2560 2561 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX || 2562 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { 2563 xdpf = tx_q->xdpf[entry]; 2564 skb = NULL; 2565 } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { 2566 xdpf = NULL; 2567 skb = tx_q->tx_skbuff[entry]; 2568 } else { 2569 xdpf = NULL; 2570 skb = NULL; 2571 } 2572 2573 if (priv->extend_desc) 2574 p = (struct dma_desc *)(tx_q->dma_etx + entry); 2575 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2576 p = &tx_q->dma_entx[entry].basic; 2577 else 2578 p = tx_q->dma_tx + entry; 2579 2580 status = stmmac_tx_status(priv, &priv->dev->stats, 2581 &priv->xstats, p, priv->ioaddr); 2582 /* Check if the descriptor is owned by the DMA */ 2583 if (unlikely(status & tx_dma_own)) 2584 break; 2585 2586 count++; 2587 2588 /* Make sure descriptor fields are read after reading 2589 * the own bit. 2590 */ 2591 dma_rmb(); 2592 2593 /* Just consider the last segment and ...*/ 2594 if (likely(!(status & tx_not_ls))) { 2595 /* ... verify the status error condition */ 2596 if (unlikely(status & tx_err)) { 2597 priv->dev->stats.tx_errors++; 2598 if (unlikely(status & tx_err_bump_tc)) 2599 stmmac_bump_dma_threshold(priv, queue); 2600 } else { 2601 priv->dev->stats.tx_packets++; 2602 priv->xstats.tx_pkt_n++; 2603 priv->xstats.txq_stats[queue].tx_pkt_n++; 2604 } 2605 if (skb) 2606 stmmac_get_tx_hwtstamp(priv, p, skb); 2607 } 2608 2609 if (likely(tx_q->tx_skbuff_dma[entry].buf && 2610 tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) { 2611 if (tx_q->tx_skbuff_dma[entry].map_as_page) 2612 dma_unmap_page(priv->device, 2613 tx_q->tx_skbuff_dma[entry].buf, 2614 tx_q->tx_skbuff_dma[entry].len, 2615 DMA_TO_DEVICE); 2616 else 2617 dma_unmap_single(priv->device, 2618 tx_q->tx_skbuff_dma[entry].buf, 2619 tx_q->tx_skbuff_dma[entry].len, 2620 DMA_TO_DEVICE); 2621 tx_q->tx_skbuff_dma[entry].buf = 0; 2622 tx_q->tx_skbuff_dma[entry].len = 0; 2623 tx_q->tx_skbuff_dma[entry].map_as_page = false; 2624 } 2625 2626 stmmac_clean_desc3(priv, tx_q, p); 2627 2628 tx_q->tx_skbuff_dma[entry].last_segment = false; 2629 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 2630 2631 if (xdpf && 2632 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) { 2633 xdp_return_frame_rx_napi(xdpf); 2634 tx_q->xdpf[entry] = NULL; 2635 } 2636 2637 if (xdpf && 2638 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { 2639 xdp_return_frame(xdpf); 2640 tx_q->xdpf[entry] = NULL; 2641 } 2642 2643 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX) 2644 tx_q->xsk_frames_done++; 2645 2646 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { 2647 if (likely(skb)) { 2648 pkts_compl++; 2649 bytes_compl += skb->len; 2650 dev_consume_skb_any(skb); 2651 tx_q->tx_skbuff[entry] = NULL; 2652 } 2653 } 2654 2655 stmmac_release_tx_desc(priv, p, priv->mode); 2656 2657 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size); 2658 } 2659 tx_q->dirty_tx = entry; 2660 2661 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue), 2662 pkts_compl, bytes_compl); 2663 2664 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev, 2665 queue))) && 2666 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) { 2667 2668 netif_dbg(priv, tx_done, priv->dev, 2669 "%s: restart transmit\n", __func__); 2670 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue)); 2671 } 2672 2673 if (tx_q->xsk_pool) { 2674 bool work_done; 2675 2676 if (tx_q->xsk_frames_done) 2677 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); 2678 2679 if (xsk_uses_need_wakeup(tx_q->xsk_pool)) 2680 xsk_set_tx_need_wakeup(tx_q->xsk_pool); 2681 2682 /* For XSK TX, we try to send as many as possible. 2683 * If XSK work done (XSK TX desc empty and budget still 2684 * available), return "budget - 1" to reenable TX IRQ. 2685 * Else, return "budget" to make NAPI continue polling. 2686 */ 2687 work_done = stmmac_xdp_xmit_zc(priv, queue, 2688 STMMAC_XSK_TX_BUDGET_MAX); 2689 if (work_done) 2690 xmits = budget - 1; 2691 else 2692 xmits = budget; 2693 } 2694 2695 if (priv->eee_enabled && !priv->tx_path_in_lpi_mode && 2696 priv->eee_sw_timer_en) { 2697 if (stmmac_enable_eee_mode(priv)) 2698 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); 2699 } 2700 2701 /* We still have pending packets, let's call for a new scheduling */ 2702 if (tx_q->dirty_tx != tx_q->cur_tx) 2703 hrtimer_start(&tx_q->txtimer, 2704 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]), 2705 HRTIMER_MODE_REL); 2706 2707 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue)); 2708 2709 /* Combine decisions from TX clean and XSK TX */ 2710 return max(count, xmits); 2711 } 2712 2713 /** 2714 * stmmac_tx_err - to manage the tx error 2715 * @priv: driver private structure 2716 * @chan: channel index 2717 * Description: it cleans the descriptors and restarts the transmission 2718 * in case of transmission errors. 2719 */ 2720 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan) 2721 { 2722 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; 2723 2724 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan)); 2725 2726 stmmac_stop_tx_dma(priv, chan); 2727 dma_free_tx_skbufs(priv, &priv->dma_conf, chan); 2728 stmmac_clear_tx_descriptors(priv, &priv->dma_conf, chan); 2729 stmmac_reset_tx_queue(priv, chan); 2730 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2731 tx_q->dma_tx_phy, chan); 2732 stmmac_start_tx_dma(priv, chan); 2733 2734 priv->dev->stats.tx_errors++; 2735 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan)); 2736 } 2737 2738 /** 2739 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel 2740 * @priv: driver private structure 2741 * @txmode: TX operating mode 2742 * @rxmode: RX operating mode 2743 * @chan: channel index 2744 * Description: it is used for configuring of the DMA operation mode in 2745 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward 2746 * mode. 2747 */ 2748 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 2749 u32 rxmode, u32 chan) 2750 { 2751 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2752 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2753 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2754 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2755 int rxfifosz = priv->plat->rx_fifo_size; 2756 int txfifosz = priv->plat->tx_fifo_size; 2757 2758 if (rxfifosz == 0) 2759 rxfifosz = priv->dma_cap.rx_fifo_size; 2760 if (txfifosz == 0) 2761 txfifosz = priv->dma_cap.tx_fifo_size; 2762 2763 /* Adjust for real per queue fifo size */ 2764 rxfifosz /= rx_channels_count; 2765 txfifosz /= tx_channels_count; 2766 2767 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode); 2768 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode); 2769 } 2770 2771 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv) 2772 { 2773 int ret; 2774 2775 ret = stmmac_safety_feat_irq_status(priv, priv->dev, 2776 priv->ioaddr, priv->dma_cap.asp, &priv->sstats); 2777 if (ret && (ret != -EINVAL)) { 2778 stmmac_global_err(priv); 2779 return true; 2780 } 2781 2782 return false; 2783 } 2784 2785 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir) 2786 { 2787 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr, 2788 &priv->xstats, chan, dir); 2789 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan]; 2790 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; 2791 struct stmmac_channel *ch = &priv->channel[chan]; 2792 struct napi_struct *rx_napi; 2793 struct napi_struct *tx_napi; 2794 unsigned long flags; 2795 2796 rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi; 2797 tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; 2798 2799 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) { 2800 if (napi_schedule_prep(rx_napi)) { 2801 spin_lock_irqsave(&ch->lock, flags); 2802 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 2803 spin_unlock_irqrestore(&ch->lock, flags); 2804 __napi_schedule(rx_napi); 2805 } 2806 } 2807 2808 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) { 2809 if (napi_schedule_prep(tx_napi)) { 2810 spin_lock_irqsave(&ch->lock, flags); 2811 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 2812 spin_unlock_irqrestore(&ch->lock, flags); 2813 __napi_schedule(tx_napi); 2814 } 2815 } 2816 2817 return status; 2818 } 2819 2820 /** 2821 * stmmac_dma_interrupt - DMA ISR 2822 * @priv: driver private structure 2823 * Description: this is the DMA ISR. It is called by the main ISR. 2824 * It calls the dwmac dma routine and schedule poll method in case of some 2825 * work can be done. 2826 */ 2827 static void stmmac_dma_interrupt(struct stmmac_priv *priv) 2828 { 2829 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2830 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2831 u32 channels_to_check = tx_channel_count > rx_channel_count ? 2832 tx_channel_count : rx_channel_count; 2833 u32 chan; 2834 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)]; 2835 2836 /* Make sure we never check beyond our status buffer. */ 2837 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status))) 2838 channels_to_check = ARRAY_SIZE(status); 2839 2840 for (chan = 0; chan < channels_to_check; chan++) 2841 status[chan] = stmmac_napi_check(priv, chan, 2842 DMA_DIR_RXTX); 2843 2844 for (chan = 0; chan < tx_channel_count; chan++) { 2845 if (unlikely(status[chan] & tx_hard_error_bump_tc)) { 2846 /* Try to bump up the dma threshold on this failure */ 2847 stmmac_bump_dma_threshold(priv, chan); 2848 } else if (unlikely(status[chan] == tx_hard_error)) { 2849 stmmac_tx_err(priv, chan); 2850 } 2851 } 2852 } 2853 2854 /** 2855 * stmmac_mmc_setup: setup the Mac Management Counters (MMC) 2856 * @priv: driver private structure 2857 * Description: this masks the MMC irq, in fact, the counters are managed in SW. 2858 */ 2859 static void stmmac_mmc_setup(struct stmmac_priv *priv) 2860 { 2861 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | 2862 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; 2863 2864 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr); 2865 2866 if (priv->dma_cap.rmon) { 2867 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode); 2868 memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); 2869 } else 2870 netdev_info(priv->dev, "No MAC Management Counters available\n"); 2871 } 2872 2873 /** 2874 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register. 2875 * @priv: driver private structure 2876 * Description: 2877 * new GMAC chip generations have a new register to indicate the 2878 * presence of the optional feature/functions. 2879 * This can be also used to override the value passed through the 2880 * platform and necessary for old MAC10/100 and GMAC chips. 2881 */ 2882 static int stmmac_get_hw_features(struct stmmac_priv *priv) 2883 { 2884 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0; 2885 } 2886 2887 /** 2888 * stmmac_check_ether_addr - check if the MAC addr is valid 2889 * @priv: driver private structure 2890 * Description: 2891 * it is to verify if the MAC address is valid, in case of failures it 2892 * generates a random MAC address 2893 */ 2894 static void stmmac_check_ether_addr(struct stmmac_priv *priv) 2895 { 2896 u8 addr[ETH_ALEN]; 2897 2898 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 2899 stmmac_get_umac_addr(priv, priv->hw, addr, 0); 2900 if (is_valid_ether_addr(addr)) 2901 eth_hw_addr_set(priv->dev, addr); 2902 else 2903 eth_hw_addr_random(priv->dev); 2904 dev_info(priv->device, "device MAC address %pM\n", 2905 priv->dev->dev_addr); 2906 } 2907 } 2908 2909 /** 2910 * stmmac_init_dma_engine - DMA init. 2911 * @priv: driver private structure 2912 * Description: 2913 * It inits the DMA invoking the specific MAC/GMAC callback. 2914 * Some DMA parameters can be passed from the platform; 2915 * in case of these are not passed a default is kept for the MAC or GMAC. 2916 */ 2917 static int stmmac_init_dma_engine(struct stmmac_priv *priv) 2918 { 2919 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2920 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2921 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); 2922 struct stmmac_rx_queue *rx_q; 2923 struct stmmac_tx_queue *tx_q; 2924 u32 chan = 0; 2925 int atds = 0; 2926 int ret = 0; 2927 2928 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) { 2929 dev_err(priv->device, "Invalid DMA configuration\n"); 2930 return -EINVAL; 2931 } 2932 2933 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) 2934 atds = 1; 2935 2936 ret = stmmac_reset(priv, priv->ioaddr); 2937 if (ret) { 2938 dev_err(priv->device, "Failed to reset the dma\n"); 2939 return ret; 2940 } 2941 2942 /* DMA Configuration */ 2943 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds); 2944 2945 if (priv->plat->axi) 2946 stmmac_axi(priv, priv->ioaddr, priv->plat->axi); 2947 2948 /* DMA CSR Channel configuration */ 2949 for (chan = 0; chan < dma_csr_ch; chan++) { 2950 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 2951 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 2952 } 2953 2954 /* DMA RX Channel Configuration */ 2955 for (chan = 0; chan < rx_channels_count; chan++) { 2956 rx_q = &priv->dma_conf.rx_queue[chan]; 2957 2958 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2959 rx_q->dma_rx_phy, chan); 2960 2961 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 2962 (rx_q->buf_alloc_num * 2963 sizeof(struct dma_desc)); 2964 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 2965 rx_q->rx_tail_addr, chan); 2966 } 2967 2968 /* DMA TX Channel Configuration */ 2969 for (chan = 0; chan < tx_channels_count; chan++) { 2970 tx_q = &priv->dma_conf.tx_queue[chan]; 2971 2972 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2973 tx_q->dma_tx_phy, chan); 2974 2975 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 2976 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 2977 tx_q->tx_tail_addr, chan); 2978 } 2979 2980 return ret; 2981 } 2982 2983 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue) 2984 { 2985 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 2986 2987 hrtimer_start(&tx_q->txtimer, 2988 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]), 2989 HRTIMER_MODE_REL); 2990 } 2991 2992 /** 2993 * stmmac_tx_timer - mitigation sw timer for tx. 2994 * @t: data pointer 2995 * Description: 2996 * This is the timer handler to directly invoke the stmmac_tx_clean. 2997 */ 2998 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t) 2999 { 3000 struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer); 3001 struct stmmac_priv *priv = tx_q->priv_data; 3002 struct stmmac_channel *ch; 3003 struct napi_struct *napi; 3004 3005 ch = &priv->channel[tx_q->queue_index]; 3006 napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; 3007 3008 if (likely(napi_schedule_prep(napi))) { 3009 unsigned long flags; 3010 3011 spin_lock_irqsave(&ch->lock, flags); 3012 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1); 3013 spin_unlock_irqrestore(&ch->lock, flags); 3014 __napi_schedule(napi); 3015 } 3016 3017 return HRTIMER_NORESTART; 3018 } 3019 3020 /** 3021 * stmmac_init_coalesce - init mitigation options. 3022 * @priv: driver private structure 3023 * Description: 3024 * This inits the coalesce parameters: i.e. timer rate, 3025 * timer handler and default threshold used for enabling the 3026 * interrupt on completion bit. 3027 */ 3028 static void stmmac_init_coalesce(struct stmmac_priv *priv) 3029 { 3030 u32 tx_channel_count = priv->plat->tx_queues_to_use; 3031 u32 rx_channel_count = priv->plat->rx_queues_to_use; 3032 u32 chan; 3033 3034 for (chan = 0; chan < tx_channel_count; chan++) { 3035 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; 3036 3037 priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES; 3038 priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER; 3039 3040 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3041 tx_q->txtimer.function = stmmac_tx_timer; 3042 } 3043 3044 for (chan = 0; chan < rx_channel_count; chan++) 3045 priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES; 3046 } 3047 3048 static void stmmac_set_rings_length(struct stmmac_priv *priv) 3049 { 3050 u32 rx_channels_count = priv->plat->rx_queues_to_use; 3051 u32 tx_channels_count = priv->plat->tx_queues_to_use; 3052 u32 chan; 3053 3054 /* set TX ring length */ 3055 for (chan = 0; chan < tx_channels_count; chan++) 3056 stmmac_set_tx_ring_len(priv, priv->ioaddr, 3057 (priv->dma_conf.dma_tx_size - 1), chan); 3058 3059 /* set RX ring length */ 3060 for (chan = 0; chan < rx_channels_count; chan++) 3061 stmmac_set_rx_ring_len(priv, priv->ioaddr, 3062 (priv->dma_conf.dma_rx_size - 1), chan); 3063 } 3064 3065 /** 3066 * stmmac_set_tx_queue_weight - Set TX queue weight 3067 * @priv: driver private structure 3068 * Description: It is used for setting TX queues weight 3069 */ 3070 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv) 3071 { 3072 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3073 u32 weight; 3074 u32 queue; 3075 3076 for (queue = 0; queue < tx_queues_count; queue++) { 3077 weight = priv->plat->tx_queues_cfg[queue].weight; 3078 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue); 3079 } 3080 } 3081 3082 /** 3083 * stmmac_configure_cbs - Configure CBS in TX queue 3084 * @priv: driver private structure 3085 * Description: It is used for configuring CBS in AVB TX queues 3086 */ 3087 static void stmmac_configure_cbs(struct stmmac_priv *priv) 3088 { 3089 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3090 u32 mode_to_use; 3091 u32 queue; 3092 3093 /* queue 0 is reserved for legacy traffic */ 3094 for (queue = 1; queue < tx_queues_count; queue++) { 3095 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use; 3096 if (mode_to_use == MTL_QUEUE_DCB) 3097 continue; 3098 3099 stmmac_config_cbs(priv, priv->hw, 3100 priv->plat->tx_queues_cfg[queue].send_slope, 3101 priv->plat->tx_queues_cfg[queue].idle_slope, 3102 priv->plat->tx_queues_cfg[queue].high_credit, 3103 priv->plat->tx_queues_cfg[queue].low_credit, 3104 queue); 3105 } 3106 } 3107 3108 /** 3109 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel 3110 * @priv: driver private structure 3111 * Description: It is used for mapping RX queues to RX dma channels 3112 */ 3113 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv) 3114 { 3115 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3116 u32 queue; 3117 u32 chan; 3118 3119 for (queue = 0; queue < rx_queues_count; queue++) { 3120 chan = priv->plat->rx_queues_cfg[queue].chan; 3121 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan); 3122 } 3123 } 3124 3125 /** 3126 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority 3127 * @priv: driver private structure 3128 * Description: It is used for configuring the RX Queue Priority 3129 */ 3130 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv) 3131 { 3132 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3133 u32 queue; 3134 u32 prio; 3135 3136 for (queue = 0; queue < rx_queues_count; queue++) { 3137 if (!priv->plat->rx_queues_cfg[queue].use_prio) 3138 continue; 3139 3140 prio = priv->plat->rx_queues_cfg[queue].prio; 3141 stmmac_rx_queue_prio(priv, priv->hw, prio, queue); 3142 } 3143 } 3144 3145 /** 3146 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority 3147 * @priv: driver private structure 3148 * Description: It is used for configuring the TX Queue Priority 3149 */ 3150 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv) 3151 { 3152 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3153 u32 queue; 3154 u32 prio; 3155 3156 for (queue = 0; queue < tx_queues_count; queue++) { 3157 if (!priv->plat->tx_queues_cfg[queue].use_prio) 3158 continue; 3159 3160 prio = priv->plat->tx_queues_cfg[queue].prio; 3161 stmmac_tx_queue_prio(priv, priv->hw, prio, queue); 3162 } 3163 } 3164 3165 /** 3166 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing 3167 * @priv: driver private structure 3168 * Description: It is used for configuring the RX queue routing 3169 */ 3170 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv) 3171 { 3172 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3173 u32 queue; 3174 u8 packet; 3175 3176 for (queue = 0; queue < rx_queues_count; queue++) { 3177 /* no specific packet type routing specified for the queue */ 3178 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0) 3179 continue; 3180 3181 packet = priv->plat->rx_queues_cfg[queue].pkt_route; 3182 stmmac_rx_queue_routing(priv, priv->hw, packet, queue); 3183 } 3184 } 3185 3186 static void stmmac_mac_config_rss(struct stmmac_priv *priv) 3187 { 3188 if (!priv->dma_cap.rssen || !priv->plat->rss_en) { 3189 priv->rss.enable = false; 3190 return; 3191 } 3192 3193 if (priv->dev->features & NETIF_F_RXHASH) 3194 priv->rss.enable = true; 3195 else 3196 priv->rss.enable = false; 3197 3198 stmmac_rss_configure(priv, priv->hw, &priv->rss, 3199 priv->plat->rx_queues_to_use); 3200 } 3201 3202 /** 3203 * stmmac_mtl_configuration - Configure MTL 3204 * @priv: driver private structure 3205 * Description: It is used for configurring MTL 3206 */ 3207 static void stmmac_mtl_configuration(struct stmmac_priv *priv) 3208 { 3209 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3210 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3211 3212 if (tx_queues_count > 1) 3213 stmmac_set_tx_queue_weight(priv); 3214 3215 /* Configure MTL RX algorithms */ 3216 if (rx_queues_count > 1) 3217 stmmac_prog_mtl_rx_algorithms(priv, priv->hw, 3218 priv->plat->rx_sched_algorithm); 3219 3220 /* Configure MTL TX algorithms */ 3221 if (tx_queues_count > 1) 3222 stmmac_prog_mtl_tx_algorithms(priv, priv->hw, 3223 priv->plat->tx_sched_algorithm); 3224 3225 /* Configure CBS in AVB TX queues */ 3226 if (tx_queues_count > 1) 3227 stmmac_configure_cbs(priv); 3228 3229 /* Map RX MTL to DMA channels */ 3230 stmmac_rx_queue_dma_chan_map(priv); 3231 3232 /* Enable MAC RX Queues */ 3233 stmmac_mac_enable_rx_queues(priv); 3234 3235 /* Set RX priorities */ 3236 if (rx_queues_count > 1) 3237 stmmac_mac_config_rx_queues_prio(priv); 3238 3239 /* Set TX priorities */ 3240 if (tx_queues_count > 1) 3241 stmmac_mac_config_tx_queues_prio(priv); 3242 3243 /* Set RX routing */ 3244 if (rx_queues_count > 1) 3245 stmmac_mac_config_rx_queues_routing(priv); 3246 3247 /* Receive Side Scaling */ 3248 if (rx_queues_count > 1) 3249 stmmac_mac_config_rss(priv); 3250 } 3251 3252 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv) 3253 { 3254 if (priv->dma_cap.asp) { 3255 netdev_info(priv->dev, "Enabling Safety Features\n"); 3256 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp, 3257 priv->plat->safety_feat_cfg); 3258 } else { 3259 netdev_info(priv->dev, "No Safety Features support found\n"); 3260 } 3261 } 3262 3263 static int stmmac_fpe_start_wq(struct stmmac_priv *priv) 3264 { 3265 char *name; 3266 3267 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); 3268 clear_bit(__FPE_REMOVING, &priv->fpe_task_state); 3269 3270 name = priv->wq_name; 3271 sprintf(name, "%s-fpe", priv->dev->name); 3272 3273 priv->fpe_wq = create_singlethread_workqueue(name); 3274 if (!priv->fpe_wq) { 3275 netdev_err(priv->dev, "%s: Failed to create workqueue\n", name); 3276 3277 return -ENOMEM; 3278 } 3279 netdev_info(priv->dev, "FPE workqueue start"); 3280 3281 return 0; 3282 } 3283 3284 /** 3285 * stmmac_hw_setup - setup mac in a usable state. 3286 * @dev : pointer to the device structure. 3287 * @ptp_register: register PTP if set 3288 * Description: 3289 * this is the main function to setup the HW in a usable state because the 3290 * dma engine is reset, the core registers are configured (e.g. AXI, 3291 * Checksum features, timers). The DMA is ready to start receiving and 3292 * transmitting. 3293 * Return value: 3294 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3295 * file on failure. 3296 */ 3297 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register) 3298 { 3299 struct stmmac_priv *priv = netdev_priv(dev); 3300 u32 rx_cnt = priv->plat->rx_queues_to_use; 3301 u32 tx_cnt = priv->plat->tx_queues_to_use; 3302 bool sph_en; 3303 u32 chan; 3304 int ret; 3305 3306 /* DMA initialization and SW reset */ 3307 ret = stmmac_init_dma_engine(priv); 3308 if (ret < 0) { 3309 netdev_err(priv->dev, "%s: DMA engine initialization failed\n", 3310 __func__); 3311 return ret; 3312 } 3313 3314 /* Copy the MAC addr into the HW */ 3315 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0); 3316 3317 /* PS and related bits will be programmed according to the speed */ 3318 if (priv->hw->pcs) { 3319 int speed = priv->plat->mac_port_sel_speed; 3320 3321 if ((speed == SPEED_10) || (speed == SPEED_100) || 3322 (speed == SPEED_1000)) { 3323 priv->hw->ps = speed; 3324 } else { 3325 dev_warn(priv->device, "invalid port speed\n"); 3326 priv->hw->ps = 0; 3327 } 3328 } 3329 3330 /* Initialize the MAC Core */ 3331 stmmac_core_init(priv, priv->hw, dev); 3332 3333 /* Initialize MTL*/ 3334 stmmac_mtl_configuration(priv); 3335 3336 /* Initialize Safety Features */ 3337 stmmac_safety_feat_configuration(priv); 3338 3339 ret = stmmac_rx_ipc(priv, priv->hw); 3340 if (!ret) { 3341 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n"); 3342 priv->plat->rx_coe = STMMAC_RX_COE_NONE; 3343 priv->hw->rx_csum = 0; 3344 } 3345 3346 /* Enable the MAC Rx/Tx */ 3347 stmmac_mac_set(priv, priv->ioaddr, true); 3348 3349 /* Set the HW DMA mode and the COE */ 3350 stmmac_dma_operation_mode(priv); 3351 3352 stmmac_mmc_setup(priv); 3353 3354 if (ptp_register) { 3355 ret = clk_prepare_enable(priv->plat->clk_ptp_ref); 3356 if (ret < 0) 3357 netdev_warn(priv->dev, 3358 "failed to enable PTP reference clock: %pe\n", 3359 ERR_PTR(ret)); 3360 } 3361 3362 ret = stmmac_init_ptp(priv); 3363 if (ret == -EOPNOTSUPP) 3364 netdev_info(priv->dev, "PTP not supported by HW\n"); 3365 else if (ret) 3366 netdev_warn(priv->dev, "PTP init failed\n"); 3367 else if (ptp_register) 3368 stmmac_ptp_register(priv); 3369 3370 priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS; 3371 3372 /* Convert the timer from msec to usec */ 3373 if (!priv->tx_lpi_timer) 3374 priv->tx_lpi_timer = eee_timer * 1000; 3375 3376 if (priv->use_riwt) { 3377 u32 queue; 3378 3379 for (queue = 0; queue < rx_cnt; queue++) { 3380 if (!priv->rx_riwt[queue]) 3381 priv->rx_riwt[queue] = DEF_DMA_RIWT; 3382 3383 stmmac_rx_watchdog(priv, priv->ioaddr, 3384 priv->rx_riwt[queue], queue); 3385 } 3386 } 3387 3388 if (priv->hw->pcs) 3389 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0); 3390 3391 /* set TX and RX rings length */ 3392 stmmac_set_rings_length(priv); 3393 3394 /* Enable TSO */ 3395 if (priv->tso) { 3396 for (chan = 0; chan < tx_cnt; chan++) { 3397 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; 3398 3399 /* TSO and TBS cannot co-exist */ 3400 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3401 continue; 3402 3403 stmmac_enable_tso(priv, priv->ioaddr, 1, chan); 3404 } 3405 } 3406 3407 /* Enable Split Header */ 3408 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 3409 for (chan = 0; chan < rx_cnt; chan++) 3410 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 3411 3412 3413 /* VLAN Tag Insertion */ 3414 if (priv->dma_cap.vlins) 3415 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT); 3416 3417 /* TBS */ 3418 for (chan = 0; chan < tx_cnt; chan++) { 3419 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; 3420 int enable = tx_q->tbs & STMMAC_TBS_AVAIL; 3421 3422 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan); 3423 } 3424 3425 /* Configure real RX and TX queues */ 3426 netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use); 3427 netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use); 3428 3429 /* Start the ball rolling... */ 3430 stmmac_start_all_dma(priv); 3431 3432 if (priv->dma_cap.fpesel) { 3433 stmmac_fpe_start_wq(priv); 3434 3435 if (priv->plat->fpe_cfg->enable) 3436 stmmac_fpe_handshake(priv, true); 3437 } 3438 3439 return 0; 3440 } 3441 3442 static void stmmac_hw_teardown(struct net_device *dev) 3443 { 3444 struct stmmac_priv *priv = netdev_priv(dev); 3445 3446 clk_disable_unprepare(priv->plat->clk_ptp_ref); 3447 } 3448 3449 static void stmmac_free_irq(struct net_device *dev, 3450 enum request_irq_err irq_err, int irq_idx) 3451 { 3452 struct stmmac_priv *priv = netdev_priv(dev); 3453 int j; 3454 3455 switch (irq_err) { 3456 case REQ_IRQ_ERR_ALL: 3457 irq_idx = priv->plat->tx_queues_to_use; 3458 fallthrough; 3459 case REQ_IRQ_ERR_TX: 3460 for (j = irq_idx - 1; j >= 0; j--) { 3461 if (priv->tx_irq[j] > 0) { 3462 irq_set_affinity_hint(priv->tx_irq[j], NULL); 3463 free_irq(priv->tx_irq[j], &priv->dma_conf.tx_queue[j]); 3464 } 3465 } 3466 irq_idx = priv->plat->rx_queues_to_use; 3467 fallthrough; 3468 case REQ_IRQ_ERR_RX: 3469 for (j = irq_idx - 1; j >= 0; j--) { 3470 if (priv->rx_irq[j] > 0) { 3471 irq_set_affinity_hint(priv->rx_irq[j], NULL); 3472 free_irq(priv->rx_irq[j], &priv->dma_conf.rx_queue[j]); 3473 } 3474 } 3475 3476 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) 3477 free_irq(priv->sfty_ue_irq, dev); 3478 fallthrough; 3479 case REQ_IRQ_ERR_SFTY_UE: 3480 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) 3481 free_irq(priv->sfty_ce_irq, dev); 3482 fallthrough; 3483 case REQ_IRQ_ERR_SFTY_CE: 3484 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) 3485 free_irq(priv->lpi_irq, dev); 3486 fallthrough; 3487 case REQ_IRQ_ERR_LPI: 3488 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) 3489 free_irq(priv->wol_irq, dev); 3490 fallthrough; 3491 case REQ_IRQ_ERR_WOL: 3492 free_irq(dev->irq, dev); 3493 fallthrough; 3494 case REQ_IRQ_ERR_MAC: 3495 case REQ_IRQ_ERR_NO: 3496 /* If MAC IRQ request error, no more IRQ to free */ 3497 break; 3498 } 3499 } 3500 3501 static int stmmac_request_irq_multi_msi(struct net_device *dev) 3502 { 3503 struct stmmac_priv *priv = netdev_priv(dev); 3504 enum request_irq_err irq_err; 3505 cpumask_t cpu_mask; 3506 int irq_idx = 0; 3507 char *int_name; 3508 int ret; 3509 int i; 3510 3511 /* For common interrupt */ 3512 int_name = priv->int_name_mac; 3513 sprintf(int_name, "%s:%s", dev->name, "mac"); 3514 ret = request_irq(dev->irq, stmmac_mac_interrupt, 3515 0, int_name, dev); 3516 if (unlikely(ret < 0)) { 3517 netdev_err(priv->dev, 3518 "%s: alloc mac MSI %d (error: %d)\n", 3519 __func__, dev->irq, ret); 3520 irq_err = REQ_IRQ_ERR_MAC; 3521 goto irq_error; 3522 } 3523 3524 /* Request the Wake IRQ in case of another line 3525 * is used for WoL 3526 */ 3527 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { 3528 int_name = priv->int_name_wol; 3529 sprintf(int_name, "%s:%s", dev->name, "wol"); 3530 ret = request_irq(priv->wol_irq, 3531 stmmac_mac_interrupt, 3532 0, int_name, dev); 3533 if (unlikely(ret < 0)) { 3534 netdev_err(priv->dev, 3535 "%s: alloc wol MSI %d (error: %d)\n", 3536 __func__, priv->wol_irq, ret); 3537 irq_err = REQ_IRQ_ERR_WOL; 3538 goto irq_error; 3539 } 3540 } 3541 3542 /* Request the LPI IRQ in case of another line 3543 * is used for LPI 3544 */ 3545 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { 3546 int_name = priv->int_name_lpi; 3547 sprintf(int_name, "%s:%s", dev->name, "lpi"); 3548 ret = request_irq(priv->lpi_irq, 3549 stmmac_mac_interrupt, 3550 0, int_name, dev); 3551 if (unlikely(ret < 0)) { 3552 netdev_err(priv->dev, 3553 "%s: alloc lpi MSI %d (error: %d)\n", 3554 __func__, priv->lpi_irq, ret); 3555 irq_err = REQ_IRQ_ERR_LPI; 3556 goto irq_error; 3557 } 3558 } 3559 3560 /* Request the Safety Feature Correctible Error line in 3561 * case of another line is used 3562 */ 3563 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) { 3564 int_name = priv->int_name_sfty_ce; 3565 sprintf(int_name, "%s:%s", dev->name, "safety-ce"); 3566 ret = request_irq(priv->sfty_ce_irq, 3567 stmmac_safety_interrupt, 3568 0, int_name, dev); 3569 if (unlikely(ret < 0)) { 3570 netdev_err(priv->dev, 3571 "%s: alloc sfty ce MSI %d (error: %d)\n", 3572 __func__, priv->sfty_ce_irq, ret); 3573 irq_err = REQ_IRQ_ERR_SFTY_CE; 3574 goto irq_error; 3575 } 3576 } 3577 3578 /* Request the Safety Feature Uncorrectible Error line in 3579 * case of another line is used 3580 */ 3581 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) { 3582 int_name = priv->int_name_sfty_ue; 3583 sprintf(int_name, "%s:%s", dev->name, "safety-ue"); 3584 ret = request_irq(priv->sfty_ue_irq, 3585 stmmac_safety_interrupt, 3586 0, int_name, dev); 3587 if (unlikely(ret < 0)) { 3588 netdev_err(priv->dev, 3589 "%s: alloc sfty ue MSI %d (error: %d)\n", 3590 __func__, priv->sfty_ue_irq, ret); 3591 irq_err = REQ_IRQ_ERR_SFTY_UE; 3592 goto irq_error; 3593 } 3594 } 3595 3596 /* Request Rx MSI irq */ 3597 for (i = 0; i < priv->plat->rx_queues_to_use; i++) { 3598 if (i >= MTL_MAX_RX_QUEUES) 3599 break; 3600 if (priv->rx_irq[i] == 0) 3601 continue; 3602 3603 int_name = priv->int_name_rx_irq[i]; 3604 sprintf(int_name, "%s:%s-%d", dev->name, "rx", i); 3605 ret = request_irq(priv->rx_irq[i], 3606 stmmac_msi_intr_rx, 3607 0, int_name, &priv->dma_conf.rx_queue[i]); 3608 if (unlikely(ret < 0)) { 3609 netdev_err(priv->dev, 3610 "%s: alloc rx-%d MSI %d (error: %d)\n", 3611 __func__, i, priv->rx_irq[i], ret); 3612 irq_err = REQ_IRQ_ERR_RX; 3613 irq_idx = i; 3614 goto irq_error; 3615 } 3616 cpumask_clear(&cpu_mask); 3617 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); 3618 irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask); 3619 } 3620 3621 /* Request Tx MSI irq */ 3622 for (i = 0; i < priv->plat->tx_queues_to_use; i++) { 3623 if (i >= MTL_MAX_TX_QUEUES) 3624 break; 3625 if (priv->tx_irq[i] == 0) 3626 continue; 3627 3628 int_name = priv->int_name_tx_irq[i]; 3629 sprintf(int_name, "%s:%s-%d", dev->name, "tx", i); 3630 ret = request_irq(priv->tx_irq[i], 3631 stmmac_msi_intr_tx, 3632 0, int_name, &priv->dma_conf.tx_queue[i]); 3633 if (unlikely(ret < 0)) { 3634 netdev_err(priv->dev, 3635 "%s: alloc tx-%d MSI %d (error: %d)\n", 3636 __func__, i, priv->tx_irq[i], ret); 3637 irq_err = REQ_IRQ_ERR_TX; 3638 irq_idx = i; 3639 goto irq_error; 3640 } 3641 cpumask_clear(&cpu_mask); 3642 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); 3643 irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask); 3644 } 3645 3646 return 0; 3647 3648 irq_error: 3649 stmmac_free_irq(dev, irq_err, irq_idx); 3650 return ret; 3651 } 3652 3653 static int stmmac_request_irq_single(struct net_device *dev) 3654 { 3655 struct stmmac_priv *priv = netdev_priv(dev); 3656 enum request_irq_err irq_err; 3657 int ret; 3658 3659 ret = request_irq(dev->irq, stmmac_interrupt, 3660 IRQF_SHARED, dev->name, dev); 3661 if (unlikely(ret < 0)) { 3662 netdev_err(priv->dev, 3663 "%s: ERROR: allocating the IRQ %d (error: %d)\n", 3664 __func__, dev->irq, ret); 3665 irq_err = REQ_IRQ_ERR_MAC; 3666 goto irq_error; 3667 } 3668 3669 /* Request the Wake IRQ in case of another line 3670 * is used for WoL 3671 */ 3672 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { 3673 ret = request_irq(priv->wol_irq, stmmac_interrupt, 3674 IRQF_SHARED, dev->name, dev); 3675 if (unlikely(ret < 0)) { 3676 netdev_err(priv->dev, 3677 "%s: ERROR: allocating the WoL IRQ %d (%d)\n", 3678 __func__, priv->wol_irq, ret); 3679 irq_err = REQ_IRQ_ERR_WOL; 3680 goto irq_error; 3681 } 3682 } 3683 3684 /* Request the IRQ lines */ 3685 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { 3686 ret = request_irq(priv->lpi_irq, stmmac_interrupt, 3687 IRQF_SHARED, dev->name, dev); 3688 if (unlikely(ret < 0)) { 3689 netdev_err(priv->dev, 3690 "%s: ERROR: allocating the LPI IRQ %d (%d)\n", 3691 __func__, priv->lpi_irq, ret); 3692 irq_err = REQ_IRQ_ERR_LPI; 3693 goto irq_error; 3694 } 3695 } 3696 3697 return 0; 3698 3699 irq_error: 3700 stmmac_free_irq(dev, irq_err, 0); 3701 return ret; 3702 } 3703 3704 static int stmmac_request_irq(struct net_device *dev) 3705 { 3706 struct stmmac_priv *priv = netdev_priv(dev); 3707 int ret; 3708 3709 /* Request the IRQ lines */ 3710 if (priv->plat->multi_msi_en) 3711 ret = stmmac_request_irq_multi_msi(dev); 3712 else 3713 ret = stmmac_request_irq_single(dev); 3714 3715 return ret; 3716 } 3717 3718 /** 3719 * stmmac_setup_dma_desc - Generate a dma_conf and allocate DMA queue 3720 * @priv: driver private structure 3721 * @mtu: MTU to setup the dma queue and buf with 3722 * Description: Allocate and generate a dma_conf based on the provided MTU. 3723 * Allocate the Tx/Rx DMA queue and init them. 3724 * Return value: 3725 * the dma_conf allocated struct on success and an appropriate ERR_PTR on failure. 3726 */ 3727 static struct stmmac_dma_conf * 3728 stmmac_setup_dma_desc(struct stmmac_priv *priv, unsigned int mtu) 3729 { 3730 struct stmmac_dma_conf *dma_conf; 3731 int chan, bfsize, ret; 3732 3733 dma_conf = kzalloc(sizeof(*dma_conf), GFP_KERNEL); 3734 if (!dma_conf) { 3735 netdev_err(priv->dev, "%s: DMA conf allocation failed\n", 3736 __func__); 3737 return ERR_PTR(-ENOMEM); 3738 } 3739 3740 bfsize = stmmac_set_16kib_bfsize(priv, mtu); 3741 if (bfsize < 0) 3742 bfsize = 0; 3743 3744 if (bfsize < BUF_SIZE_16KiB) 3745 bfsize = stmmac_set_bfsize(mtu, 0); 3746 3747 dma_conf->dma_buf_sz = bfsize; 3748 /* Chose the tx/rx size from the already defined one in the 3749 * priv struct. (if defined) 3750 */ 3751 dma_conf->dma_tx_size = priv->dma_conf.dma_tx_size; 3752 dma_conf->dma_rx_size = priv->dma_conf.dma_rx_size; 3753 3754 if (!dma_conf->dma_tx_size) 3755 dma_conf->dma_tx_size = DMA_DEFAULT_TX_SIZE; 3756 if (!dma_conf->dma_rx_size) 3757 dma_conf->dma_rx_size = DMA_DEFAULT_RX_SIZE; 3758 3759 /* Earlier check for TBS */ 3760 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) { 3761 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[chan]; 3762 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en; 3763 3764 /* Setup per-TXQ tbs flag before TX descriptor alloc */ 3765 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0; 3766 } 3767 3768 ret = alloc_dma_desc_resources(priv, dma_conf); 3769 if (ret < 0) { 3770 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n", 3771 __func__); 3772 goto alloc_error; 3773 } 3774 3775 ret = init_dma_desc_rings(priv->dev, dma_conf, GFP_KERNEL); 3776 if (ret < 0) { 3777 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n", 3778 __func__); 3779 goto init_error; 3780 } 3781 3782 return dma_conf; 3783 3784 init_error: 3785 free_dma_desc_resources(priv, dma_conf); 3786 alloc_error: 3787 kfree(dma_conf); 3788 return ERR_PTR(ret); 3789 } 3790 3791 /** 3792 * __stmmac_open - open entry point of the driver 3793 * @dev : pointer to the device structure. 3794 * @dma_conf : structure to take the dma data 3795 * Description: 3796 * This function is the open entry point of the driver. 3797 * Return value: 3798 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3799 * file on failure. 3800 */ 3801 static int __stmmac_open(struct net_device *dev, 3802 struct stmmac_dma_conf *dma_conf) 3803 { 3804 struct stmmac_priv *priv = netdev_priv(dev); 3805 int mode = priv->plat->phy_interface; 3806 u32 chan; 3807 int ret; 3808 3809 ret = pm_runtime_resume_and_get(priv->device); 3810 if (ret < 0) 3811 return ret; 3812 3813 if (priv->hw->pcs != STMMAC_PCS_TBI && 3814 priv->hw->pcs != STMMAC_PCS_RTBI && 3815 (!priv->hw->xpcs || 3816 xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) { 3817 ret = stmmac_init_phy(dev); 3818 if (ret) { 3819 netdev_err(priv->dev, 3820 "%s: Cannot attach to PHY (error: %d)\n", 3821 __func__, ret); 3822 goto init_phy_error; 3823 } 3824 } 3825 3826 /* Extra statistics */ 3827 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats)); 3828 priv->xstats.threshold = tc; 3829 3830 priv->rx_copybreak = STMMAC_RX_COPYBREAK; 3831 3832 buf_sz = dma_conf->dma_buf_sz; 3833 memcpy(&priv->dma_conf, dma_conf, sizeof(*dma_conf)); 3834 3835 stmmac_reset_queues_param(priv); 3836 3837 if (!priv->plat->serdes_up_after_phy_linkup && priv->plat->serdes_powerup) { 3838 ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv); 3839 if (ret < 0) { 3840 netdev_err(priv->dev, "%s: Serdes powerup failed\n", 3841 __func__); 3842 goto init_error; 3843 } 3844 } 3845 3846 ret = stmmac_hw_setup(dev, true); 3847 if (ret < 0) { 3848 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__); 3849 goto init_error; 3850 } 3851 3852 stmmac_init_coalesce(priv); 3853 3854 phylink_start(priv->phylink); 3855 /* We may have called phylink_speed_down before */ 3856 phylink_speed_up(priv->phylink); 3857 3858 ret = stmmac_request_irq(dev); 3859 if (ret) 3860 goto irq_error; 3861 3862 stmmac_enable_all_queues(priv); 3863 netif_tx_start_all_queues(priv->dev); 3864 stmmac_enable_all_dma_irq(priv); 3865 3866 return 0; 3867 3868 irq_error: 3869 phylink_stop(priv->phylink); 3870 3871 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 3872 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); 3873 3874 stmmac_hw_teardown(dev); 3875 init_error: 3876 free_dma_desc_resources(priv, &priv->dma_conf); 3877 phylink_disconnect_phy(priv->phylink); 3878 init_phy_error: 3879 pm_runtime_put(priv->device); 3880 return ret; 3881 } 3882 3883 static int stmmac_open(struct net_device *dev) 3884 { 3885 struct stmmac_priv *priv = netdev_priv(dev); 3886 struct stmmac_dma_conf *dma_conf; 3887 int ret; 3888 3889 dma_conf = stmmac_setup_dma_desc(priv, dev->mtu); 3890 if (IS_ERR(dma_conf)) 3891 return PTR_ERR(dma_conf); 3892 3893 ret = __stmmac_open(dev, dma_conf); 3894 kfree(dma_conf); 3895 return ret; 3896 } 3897 3898 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv) 3899 { 3900 set_bit(__FPE_REMOVING, &priv->fpe_task_state); 3901 3902 if (priv->fpe_wq) 3903 destroy_workqueue(priv->fpe_wq); 3904 3905 netdev_info(priv->dev, "FPE workqueue stop"); 3906 } 3907 3908 /** 3909 * stmmac_release - close entry point of the driver 3910 * @dev : device pointer. 3911 * Description: 3912 * This is the stop entry point of the driver. 3913 */ 3914 static int stmmac_release(struct net_device *dev) 3915 { 3916 struct stmmac_priv *priv = netdev_priv(dev); 3917 u32 chan; 3918 3919 if (device_may_wakeup(priv->device)) 3920 phylink_speed_down(priv->phylink, false); 3921 /* Stop and disconnect the PHY */ 3922 phylink_stop(priv->phylink); 3923 phylink_disconnect_phy(priv->phylink); 3924 3925 stmmac_disable_all_queues(priv); 3926 3927 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 3928 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); 3929 3930 netif_tx_disable(dev); 3931 3932 /* Free the IRQ lines */ 3933 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0); 3934 3935 if (priv->eee_enabled) { 3936 priv->tx_path_in_lpi_mode = false; 3937 del_timer_sync(&priv->eee_ctrl_timer); 3938 } 3939 3940 /* Stop TX/RX DMA and clear the descriptors */ 3941 stmmac_stop_all_dma(priv); 3942 3943 /* Release and free the Rx/Tx resources */ 3944 free_dma_desc_resources(priv, &priv->dma_conf); 3945 3946 /* Disable the MAC Rx/Tx */ 3947 stmmac_mac_set(priv, priv->ioaddr, false); 3948 3949 /* Powerdown Serdes if there is */ 3950 if (priv->plat->serdes_powerdown) 3951 priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv); 3952 3953 netif_carrier_off(dev); 3954 3955 stmmac_release_ptp(priv); 3956 3957 pm_runtime_put(priv->device); 3958 3959 if (priv->dma_cap.fpesel) 3960 stmmac_fpe_stop_wq(priv); 3961 3962 return 0; 3963 } 3964 3965 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb, 3966 struct stmmac_tx_queue *tx_q) 3967 { 3968 u16 tag = 0x0, inner_tag = 0x0; 3969 u32 inner_type = 0x0; 3970 struct dma_desc *p; 3971 3972 if (!priv->dma_cap.vlins) 3973 return false; 3974 if (!skb_vlan_tag_present(skb)) 3975 return false; 3976 if (skb->vlan_proto == htons(ETH_P_8021AD)) { 3977 inner_tag = skb_vlan_tag_get(skb); 3978 inner_type = STMMAC_VLAN_INSERT; 3979 } 3980 3981 tag = skb_vlan_tag_get(skb); 3982 3983 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3984 p = &tx_q->dma_entx[tx_q->cur_tx].basic; 3985 else 3986 p = &tx_q->dma_tx[tx_q->cur_tx]; 3987 3988 if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type)) 3989 return false; 3990 3991 stmmac_set_tx_owner(priv, p); 3992 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size); 3993 return true; 3994 } 3995 3996 /** 3997 * stmmac_tso_allocator - close entry point of the driver 3998 * @priv: driver private structure 3999 * @des: buffer start address 4000 * @total_len: total length to fill in descriptors 4001 * @last_segment: condition for the last descriptor 4002 * @queue: TX queue index 4003 * Description: 4004 * This function fills descriptor and request new descriptors according to 4005 * buffer length to fill 4006 */ 4007 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des, 4008 int total_len, bool last_segment, u32 queue) 4009 { 4010 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 4011 struct dma_desc *desc; 4012 u32 buff_size; 4013 int tmp_len; 4014 4015 tmp_len = total_len; 4016 4017 while (tmp_len > 0) { 4018 dma_addr_t curr_addr; 4019 4020 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 4021 priv->dma_conf.dma_tx_size); 4022 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 4023 4024 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4025 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 4026 else 4027 desc = &tx_q->dma_tx[tx_q->cur_tx]; 4028 4029 curr_addr = des + (total_len - tmp_len); 4030 if (priv->dma_cap.addr64 <= 32) 4031 desc->des0 = cpu_to_le32(curr_addr); 4032 else 4033 stmmac_set_desc_addr(priv, desc, curr_addr); 4034 4035 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ? 4036 TSO_MAX_BUFF_SIZE : tmp_len; 4037 4038 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size, 4039 0, 1, 4040 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE), 4041 0, 0); 4042 4043 tmp_len -= TSO_MAX_BUFF_SIZE; 4044 } 4045 } 4046 4047 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue) 4048 { 4049 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 4050 int desc_size; 4051 4052 if (likely(priv->extend_desc)) 4053 desc_size = sizeof(struct dma_extended_desc); 4054 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4055 desc_size = sizeof(struct dma_edesc); 4056 else 4057 desc_size = sizeof(struct dma_desc); 4058 4059 /* The own bit must be the latest setting done when prepare the 4060 * descriptor and then barrier is needed to make sure that 4061 * all is coherent before granting the DMA engine. 4062 */ 4063 wmb(); 4064 4065 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size); 4066 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); 4067 } 4068 4069 /** 4070 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO) 4071 * @skb : the socket buffer 4072 * @dev : device pointer 4073 * Description: this is the transmit function that is called on TSO frames 4074 * (support available on GMAC4 and newer chips). 4075 * Diagram below show the ring programming in case of TSO frames: 4076 * 4077 * First Descriptor 4078 * -------- 4079 * | DES0 |---> buffer1 = L2/L3/L4 header 4080 * | DES1 |---> TCP Payload (can continue on next descr...) 4081 * | DES2 |---> buffer 1 and 2 len 4082 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0] 4083 * -------- 4084 * | 4085 * ... 4086 * | 4087 * -------- 4088 * | DES0 | --| Split TCP Payload on Buffers 1 and 2 4089 * | DES1 | --| 4090 * | DES2 | --> buffer 1 and 2 len 4091 * | DES3 | 4092 * -------- 4093 * 4094 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field. 4095 */ 4096 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) 4097 { 4098 struct dma_desc *desc, *first, *mss_desc = NULL; 4099 struct stmmac_priv *priv = netdev_priv(dev); 4100 int nfrags = skb_shinfo(skb)->nr_frags; 4101 u32 queue = skb_get_queue_mapping(skb); 4102 unsigned int first_entry, tx_packets; 4103 int tmp_pay_len = 0, first_tx; 4104 struct stmmac_tx_queue *tx_q; 4105 bool has_vlan, set_ic; 4106 u8 proto_hdr_len, hdr; 4107 u32 pay_len, mss; 4108 dma_addr_t des; 4109 int i; 4110 4111 tx_q = &priv->dma_conf.tx_queue[queue]; 4112 first_tx = tx_q->cur_tx; 4113 4114 /* Compute header lengths */ 4115 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 4116 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr); 4117 hdr = sizeof(struct udphdr); 4118 } else { 4119 proto_hdr_len = skb_tcp_all_headers(skb); 4120 hdr = tcp_hdrlen(skb); 4121 } 4122 4123 /* Desc availability based on threshold should be enough safe */ 4124 if (unlikely(stmmac_tx_avail(priv, queue) < 4125 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) { 4126 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 4127 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 4128 queue)); 4129 /* This is a hard error, log it. */ 4130 netdev_err(priv->dev, 4131 "%s: Tx Ring full when queue awake\n", 4132 __func__); 4133 } 4134 return NETDEV_TX_BUSY; 4135 } 4136 4137 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */ 4138 4139 mss = skb_shinfo(skb)->gso_size; 4140 4141 /* set new MSS value if needed */ 4142 if (mss != tx_q->mss) { 4143 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4144 mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 4145 else 4146 mss_desc = &tx_q->dma_tx[tx_q->cur_tx]; 4147 4148 stmmac_set_mss(priv, mss_desc, mss); 4149 tx_q->mss = mss; 4150 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 4151 priv->dma_conf.dma_tx_size); 4152 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 4153 } 4154 4155 if (netif_msg_tx_queued(priv)) { 4156 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n", 4157 __func__, hdr, proto_hdr_len, pay_len, mss); 4158 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len, 4159 skb->data_len); 4160 } 4161 4162 /* Check if VLAN can be inserted by HW */ 4163 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 4164 4165 first_entry = tx_q->cur_tx; 4166 WARN_ON(tx_q->tx_skbuff[first_entry]); 4167 4168 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4169 desc = &tx_q->dma_entx[first_entry].basic; 4170 else 4171 desc = &tx_q->dma_tx[first_entry]; 4172 first = desc; 4173 4174 if (has_vlan) 4175 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 4176 4177 /* first descriptor: fill Headers on Buf1 */ 4178 des = dma_map_single(priv->device, skb->data, skb_headlen(skb), 4179 DMA_TO_DEVICE); 4180 if (dma_mapping_error(priv->device, des)) 4181 goto dma_map_err; 4182 4183 tx_q->tx_skbuff_dma[first_entry].buf = des; 4184 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb); 4185 tx_q->tx_skbuff_dma[first_entry].map_as_page = false; 4186 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; 4187 4188 if (priv->dma_cap.addr64 <= 32) { 4189 first->des0 = cpu_to_le32(des); 4190 4191 /* Fill start of payload in buff2 of first descriptor */ 4192 if (pay_len) 4193 first->des1 = cpu_to_le32(des + proto_hdr_len); 4194 4195 /* If needed take extra descriptors to fill the remaining payload */ 4196 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE; 4197 } else { 4198 stmmac_set_desc_addr(priv, first, des); 4199 tmp_pay_len = pay_len; 4200 des += proto_hdr_len; 4201 pay_len = 0; 4202 } 4203 4204 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue); 4205 4206 /* Prepare fragments */ 4207 for (i = 0; i < nfrags; i++) { 4208 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4209 4210 des = skb_frag_dma_map(priv->device, frag, 0, 4211 skb_frag_size(frag), 4212 DMA_TO_DEVICE); 4213 if (dma_mapping_error(priv->device, des)) 4214 goto dma_map_err; 4215 4216 stmmac_tso_allocator(priv, des, skb_frag_size(frag), 4217 (i == nfrags - 1), queue); 4218 4219 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des; 4220 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag); 4221 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true; 4222 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; 4223 } 4224 4225 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true; 4226 4227 /* Only the last descriptor gets to point to the skb. */ 4228 tx_q->tx_skbuff[tx_q->cur_tx] = skb; 4229 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; 4230 4231 /* Manage tx mitigation */ 4232 tx_packets = (tx_q->cur_tx + 1) - first_tx; 4233 tx_q->tx_count_frames += tx_packets; 4234 4235 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 4236 set_ic = true; 4237 else if (!priv->tx_coal_frames[queue]) 4238 set_ic = false; 4239 else if (tx_packets > priv->tx_coal_frames[queue]) 4240 set_ic = true; 4241 else if ((tx_q->tx_count_frames % 4242 priv->tx_coal_frames[queue]) < tx_packets) 4243 set_ic = true; 4244 else 4245 set_ic = false; 4246 4247 if (set_ic) { 4248 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4249 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 4250 else 4251 desc = &tx_q->dma_tx[tx_q->cur_tx]; 4252 4253 tx_q->tx_count_frames = 0; 4254 stmmac_set_tx_ic(priv, desc); 4255 priv->xstats.tx_set_ic_bit++; 4256 } 4257 4258 /* We've used all descriptors we need for this skb, however, 4259 * advance cur_tx so that it references a fresh descriptor. 4260 * ndo_start_xmit will fill this descriptor the next time it's 4261 * called and stmmac_tx_clean may clean up to this descriptor. 4262 */ 4263 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size); 4264 4265 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 4266 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 4267 __func__); 4268 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 4269 } 4270 4271 dev->stats.tx_bytes += skb->len; 4272 priv->xstats.tx_tso_frames++; 4273 priv->xstats.tx_tso_nfrags += nfrags; 4274 4275 if (priv->sarc_type) 4276 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 4277 4278 skb_tx_timestamp(skb); 4279 4280 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 4281 priv->hwts_tx_en)) { 4282 /* declare that device is doing timestamping */ 4283 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4284 stmmac_enable_tx_timestamp(priv, first); 4285 } 4286 4287 /* Complete the first descriptor before granting the DMA */ 4288 stmmac_prepare_tso_tx_desc(priv, first, 1, 4289 proto_hdr_len, 4290 pay_len, 4291 1, tx_q->tx_skbuff_dma[first_entry].last_segment, 4292 hdr / 4, (skb->len - proto_hdr_len)); 4293 4294 /* If context desc is used to change MSS */ 4295 if (mss_desc) { 4296 /* Make sure that first descriptor has been completely 4297 * written, including its own bit. This is because MSS is 4298 * actually before first descriptor, so we need to make 4299 * sure that MSS's own bit is the last thing written. 4300 */ 4301 dma_wmb(); 4302 stmmac_set_tx_owner(priv, mss_desc); 4303 } 4304 4305 if (netif_msg_pktdata(priv)) { 4306 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n", 4307 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 4308 tx_q->cur_tx, first, nfrags); 4309 pr_info(">>> frame to be transmitted: "); 4310 print_pkt(skb->data, skb_headlen(skb)); 4311 } 4312 4313 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 4314 4315 stmmac_flush_tx_descriptors(priv, queue); 4316 stmmac_tx_timer_arm(priv, queue); 4317 4318 return NETDEV_TX_OK; 4319 4320 dma_map_err: 4321 dev_err(priv->device, "Tx dma map failed\n"); 4322 dev_kfree_skb(skb); 4323 priv->dev->stats.tx_dropped++; 4324 return NETDEV_TX_OK; 4325 } 4326 4327 /** 4328 * stmmac_xmit - Tx entry point of the driver 4329 * @skb : the socket buffer 4330 * @dev : device pointer 4331 * Description : this is the tx entry point of the driver. 4332 * It programs the chain or the ring and supports oversized frames 4333 * and SG feature. 4334 */ 4335 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) 4336 { 4337 unsigned int first_entry, tx_packets, enh_desc; 4338 struct stmmac_priv *priv = netdev_priv(dev); 4339 unsigned int nopaged_len = skb_headlen(skb); 4340 int i, csum_insertion = 0, is_jumbo = 0; 4341 u32 queue = skb_get_queue_mapping(skb); 4342 int nfrags = skb_shinfo(skb)->nr_frags; 4343 int gso = skb_shinfo(skb)->gso_type; 4344 struct dma_edesc *tbs_desc = NULL; 4345 struct dma_desc *desc, *first; 4346 struct stmmac_tx_queue *tx_q; 4347 bool has_vlan, set_ic; 4348 int entry, first_tx; 4349 dma_addr_t des; 4350 4351 tx_q = &priv->dma_conf.tx_queue[queue]; 4352 first_tx = tx_q->cur_tx; 4353 4354 if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en) 4355 stmmac_disable_eee_mode(priv); 4356 4357 /* Manage oversized TCP frames for GMAC4 device */ 4358 if (skb_is_gso(skb) && priv->tso) { 4359 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) 4360 return stmmac_tso_xmit(skb, dev); 4361 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4)) 4362 return stmmac_tso_xmit(skb, dev); 4363 } 4364 4365 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) { 4366 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 4367 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 4368 queue)); 4369 /* This is a hard error, log it. */ 4370 netdev_err(priv->dev, 4371 "%s: Tx Ring full when queue awake\n", 4372 __func__); 4373 } 4374 return NETDEV_TX_BUSY; 4375 } 4376 4377 /* Check if VLAN can be inserted by HW */ 4378 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 4379 4380 entry = tx_q->cur_tx; 4381 first_entry = entry; 4382 WARN_ON(tx_q->tx_skbuff[first_entry]); 4383 4384 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); 4385 4386 if (likely(priv->extend_desc)) 4387 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4388 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4389 desc = &tx_q->dma_entx[entry].basic; 4390 else 4391 desc = tx_q->dma_tx + entry; 4392 4393 first = desc; 4394 4395 if (has_vlan) 4396 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 4397 4398 enh_desc = priv->plat->enh_desc; 4399 /* To program the descriptors according to the size of the frame */ 4400 if (enh_desc) 4401 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc); 4402 4403 if (unlikely(is_jumbo)) { 4404 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion); 4405 if (unlikely(entry < 0) && (entry != -EINVAL)) 4406 goto dma_map_err; 4407 } 4408 4409 for (i = 0; i < nfrags; i++) { 4410 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4411 int len = skb_frag_size(frag); 4412 bool last_segment = (i == (nfrags - 1)); 4413 4414 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size); 4415 WARN_ON(tx_q->tx_skbuff[entry]); 4416 4417 if (likely(priv->extend_desc)) 4418 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4419 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4420 desc = &tx_q->dma_entx[entry].basic; 4421 else 4422 desc = tx_q->dma_tx + entry; 4423 4424 des = skb_frag_dma_map(priv->device, frag, 0, len, 4425 DMA_TO_DEVICE); 4426 if (dma_mapping_error(priv->device, des)) 4427 goto dma_map_err; /* should reuse desc w/o issues */ 4428 4429 tx_q->tx_skbuff_dma[entry].buf = des; 4430 4431 stmmac_set_desc_addr(priv, desc, des); 4432 4433 tx_q->tx_skbuff_dma[entry].map_as_page = true; 4434 tx_q->tx_skbuff_dma[entry].len = len; 4435 tx_q->tx_skbuff_dma[entry].last_segment = last_segment; 4436 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; 4437 4438 /* Prepare the descriptor and set the own bit too */ 4439 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion, 4440 priv->mode, 1, last_segment, skb->len); 4441 } 4442 4443 /* Only the last descriptor gets to point to the skb. */ 4444 tx_q->tx_skbuff[entry] = skb; 4445 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; 4446 4447 /* According to the coalesce parameter the IC bit for the latest 4448 * segment is reset and the timer re-started to clean the tx status. 4449 * This approach takes care about the fragments: desc is the first 4450 * element in case of no SG. 4451 */ 4452 tx_packets = (entry + 1) - first_tx; 4453 tx_q->tx_count_frames += tx_packets; 4454 4455 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 4456 set_ic = true; 4457 else if (!priv->tx_coal_frames[queue]) 4458 set_ic = false; 4459 else if (tx_packets > priv->tx_coal_frames[queue]) 4460 set_ic = true; 4461 else if ((tx_q->tx_count_frames % 4462 priv->tx_coal_frames[queue]) < tx_packets) 4463 set_ic = true; 4464 else 4465 set_ic = false; 4466 4467 if (set_ic) { 4468 if (likely(priv->extend_desc)) 4469 desc = &tx_q->dma_etx[entry].basic; 4470 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4471 desc = &tx_q->dma_entx[entry].basic; 4472 else 4473 desc = &tx_q->dma_tx[entry]; 4474 4475 tx_q->tx_count_frames = 0; 4476 stmmac_set_tx_ic(priv, desc); 4477 priv->xstats.tx_set_ic_bit++; 4478 } 4479 4480 /* We've used all descriptors we need for this skb, however, 4481 * advance cur_tx so that it references a fresh descriptor. 4482 * ndo_start_xmit will fill this descriptor the next time it's 4483 * called and stmmac_tx_clean may clean up to this descriptor. 4484 */ 4485 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size); 4486 tx_q->cur_tx = entry; 4487 4488 if (netif_msg_pktdata(priv)) { 4489 netdev_dbg(priv->dev, 4490 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d", 4491 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 4492 entry, first, nfrags); 4493 4494 netdev_dbg(priv->dev, ">>> frame to be transmitted: "); 4495 print_pkt(skb->data, skb->len); 4496 } 4497 4498 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 4499 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 4500 __func__); 4501 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 4502 } 4503 4504 dev->stats.tx_bytes += skb->len; 4505 4506 if (priv->sarc_type) 4507 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 4508 4509 skb_tx_timestamp(skb); 4510 4511 /* Ready to fill the first descriptor and set the OWN bit w/o any 4512 * problems because all the descriptors are actually ready to be 4513 * passed to the DMA engine. 4514 */ 4515 if (likely(!is_jumbo)) { 4516 bool last_segment = (nfrags == 0); 4517 4518 des = dma_map_single(priv->device, skb->data, 4519 nopaged_len, DMA_TO_DEVICE); 4520 if (dma_mapping_error(priv->device, des)) 4521 goto dma_map_err; 4522 4523 tx_q->tx_skbuff_dma[first_entry].buf = des; 4524 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; 4525 tx_q->tx_skbuff_dma[first_entry].map_as_page = false; 4526 4527 stmmac_set_desc_addr(priv, first, des); 4528 4529 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len; 4530 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment; 4531 4532 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 4533 priv->hwts_tx_en)) { 4534 /* declare that device is doing timestamping */ 4535 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4536 stmmac_enable_tx_timestamp(priv, first); 4537 } 4538 4539 /* Prepare the first descriptor setting the OWN bit too */ 4540 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len, 4541 csum_insertion, priv->mode, 0, last_segment, 4542 skb->len); 4543 } 4544 4545 if (tx_q->tbs & STMMAC_TBS_EN) { 4546 struct timespec64 ts = ns_to_timespec64(skb->tstamp); 4547 4548 tbs_desc = &tx_q->dma_entx[first_entry]; 4549 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec); 4550 } 4551 4552 stmmac_set_tx_owner(priv, first); 4553 4554 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 4555 4556 stmmac_enable_dma_transmission(priv, priv->ioaddr); 4557 4558 stmmac_flush_tx_descriptors(priv, queue); 4559 stmmac_tx_timer_arm(priv, queue); 4560 4561 return NETDEV_TX_OK; 4562 4563 dma_map_err: 4564 netdev_err(priv->dev, "Tx DMA map failed\n"); 4565 dev_kfree_skb(skb); 4566 priv->dev->stats.tx_dropped++; 4567 return NETDEV_TX_OK; 4568 } 4569 4570 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) 4571 { 4572 struct vlan_ethhdr *veth = skb_vlan_eth_hdr(skb); 4573 __be16 vlan_proto = veth->h_vlan_proto; 4574 u16 vlanid; 4575 4576 if ((vlan_proto == htons(ETH_P_8021Q) && 4577 dev->features & NETIF_F_HW_VLAN_CTAG_RX) || 4578 (vlan_proto == htons(ETH_P_8021AD) && 4579 dev->features & NETIF_F_HW_VLAN_STAG_RX)) { 4580 /* pop the vlan tag */ 4581 vlanid = ntohs(veth->h_vlan_TCI); 4582 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2); 4583 skb_pull(skb, VLAN_HLEN); 4584 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid); 4585 } 4586 } 4587 4588 /** 4589 * stmmac_rx_refill - refill used skb preallocated buffers 4590 * @priv: driver private structure 4591 * @queue: RX queue index 4592 * Description : this is to reallocate the skb for the reception process 4593 * that is based on zero-copy. 4594 */ 4595 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue) 4596 { 4597 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 4598 int dirty = stmmac_rx_dirty(priv, queue); 4599 unsigned int entry = rx_q->dirty_rx; 4600 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 4601 4602 if (priv->dma_cap.host_dma_width <= 32) 4603 gfp |= GFP_DMA32; 4604 4605 while (dirty-- > 0) { 4606 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 4607 struct dma_desc *p; 4608 bool use_rx_wd; 4609 4610 if (priv->extend_desc) 4611 p = (struct dma_desc *)(rx_q->dma_erx + entry); 4612 else 4613 p = rx_q->dma_rx + entry; 4614 4615 if (!buf->page) { 4616 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp); 4617 if (!buf->page) 4618 break; 4619 } 4620 4621 if (priv->sph && !buf->sec_page) { 4622 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp); 4623 if (!buf->sec_page) 4624 break; 4625 4626 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 4627 } 4628 4629 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; 4630 4631 stmmac_set_desc_addr(priv, p, buf->addr); 4632 if (priv->sph) 4633 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); 4634 else 4635 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); 4636 stmmac_refill_desc3(priv, rx_q, p); 4637 4638 rx_q->rx_count_frames++; 4639 rx_q->rx_count_frames += priv->rx_coal_frames[queue]; 4640 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) 4641 rx_q->rx_count_frames = 0; 4642 4643 use_rx_wd = !priv->rx_coal_frames[queue]; 4644 use_rx_wd |= rx_q->rx_count_frames > 0; 4645 if (!priv->use_riwt) 4646 use_rx_wd = false; 4647 4648 dma_wmb(); 4649 stmmac_set_rx_owner(priv, p, use_rx_wd); 4650 4651 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size); 4652 } 4653 rx_q->dirty_rx = entry; 4654 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 4655 (rx_q->dirty_rx * sizeof(struct dma_desc)); 4656 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 4657 } 4658 4659 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv, 4660 struct dma_desc *p, 4661 int status, unsigned int len) 4662 { 4663 unsigned int plen = 0, hlen = 0; 4664 int coe = priv->hw->rx_csum; 4665 4666 /* Not first descriptor, buffer is always zero */ 4667 if (priv->sph && len) 4668 return 0; 4669 4670 /* First descriptor, get split header length */ 4671 stmmac_get_rx_header_len(priv, p, &hlen); 4672 if (priv->sph && hlen) { 4673 priv->xstats.rx_split_hdr_pkt_n++; 4674 return hlen; 4675 } 4676 4677 /* First descriptor, not last descriptor and not split header */ 4678 if (status & rx_not_ls) 4679 return priv->dma_conf.dma_buf_sz; 4680 4681 plen = stmmac_get_rx_frame_len(priv, p, coe); 4682 4683 /* First descriptor and last descriptor and not split header */ 4684 return min_t(unsigned int, priv->dma_conf.dma_buf_sz, plen); 4685 } 4686 4687 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv, 4688 struct dma_desc *p, 4689 int status, unsigned int len) 4690 { 4691 int coe = priv->hw->rx_csum; 4692 unsigned int plen = 0; 4693 4694 /* Not split header, buffer is not available */ 4695 if (!priv->sph) 4696 return 0; 4697 4698 /* Not last descriptor */ 4699 if (status & rx_not_ls) 4700 return priv->dma_conf.dma_buf_sz; 4701 4702 plen = stmmac_get_rx_frame_len(priv, p, coe); 4703 4704 /* Last descriptor */ 4705 return plen - len; 4706 } 4707 4708 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue, 4709 struct xdp_frame *xdpf, bool dma_map) 4710 { 4711 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 4712 unsigned int entry = tx_q->cur_tx; 4713 struct dma_desc *tx_desc; 4714 dma_addr_t dma_addr; 4715 bool set_ic; 4716 4717 if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv)) 4718 return STMMAC_XDP_CONSUMED; 4719 4720 if (likely(priv->extend_desc)) 4721 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4722 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4723 tx_desc = &tx_q->dma_entx[entry].basic; 4724 else 4725 tx_desc = tx_q->dma_tx + entry; 4726 4727 if (dma_map) { 4728 dma_addr = dma_map_single(priv->device, xdpf->data, 4729 xdpf->len, DMA_TO_DEVICE); 4730 if (dma_mapping_error(priv->device, dma_addr)) 4731 return STMMAC_XDP_CONSUMED; 4732 4733 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO; 4734 } else { 4735 struct page *page = virt_to_page(xdpf->data); 4736 4737 dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) + 4738 xdpf->headroom; 4739 dma_sync_single_for_device(priv->device, dma_addr, 4740 xdpf->len, DMA_BIDIRECTIONAL); 4741 4742 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX; 4743 } 4744 4745 tx_q->tx_skbuff_dma[entry].buf = dma_addr; 4746 tx_q->tx_skbuff_dma[entry].map_as_page = false; 4747 tx_q->tx_skbuff_dma[entry].len = xdpf->len; 4748 tx_q->tx_skbuff_dma[entry].last_segment = true; 4749 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 4750 4751 tx_q->xdpf[entry] = xdpf; 4752 4753 stmmac_set_desc_addr(priv, tx_desc, dma_addr); 4754 4755 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len, 4756 true, priv->mode, true, true, 4757 xdpf->len); 4758 4759 tx_q->tx_count_frames++; 4760 4761 if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) 4762 set_ic = true; 4763 else 4764 set_ic = false; 4765 4766 if (set_ic) { 4767 tx_q->tx_count_frames = 0; 4768 stmmac_set_tx_ic(priv, tx_desc); 4769 priv->xstats.tx_set_ic_bit++; 4770 } 4771 4772 stmmac_enable_dma_transmission(priv, priv->ioaddr); 4773 4774 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size); 4775 tx_q->cur_tx = entry; 4776 4777 return STMMAC_XDP_TX; 4778 } 4779 4780 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv, 4781 int cpu) 4782 { 4783 int index = cpu; 4784 4785 if (unlikely(index < 0)) 4786 index = 0; 4787 4788 while (index >= priv->plat->tx_queues_to_use) 4789 index -= priv->plat->tx_queues_to_use; 4790 4791 return index; 4792 } 4793 4794 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv, 4795 struct xdp_buff *xdp) 4796 { 4797 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 4798 int cpu = smp_processor_id(); 4799 struct netdev_queue *nq; 4800 int queue; 4801 int res; 4802 4803 if (unlikely(!xdpf)) 4804 return STMMAC_XDP_CONSUMED; 4805 4806 queue = stmmac_xdp_get_tx_queue(priv, cpu); 4807 nq = netdev_get_tx_queue(priv->dev, queue); 4808 4809 __netif_tx_lock(nq, cpu); 4810 /* Avoids TX time-out as we are sharing with slow path */ 4811 txq_trans_cond_update(nq); 4812 4813 res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false); 4814 if (res == STMMAC_XDP_TX) 4815 stmmac_flush_tx_descriptors(priv, queue); 4816 4817 __netif_tx_unlock(nq); 4818 4819 return res; 4820 } 4821 4822 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv, 4823 struct bpf_prog *prog, 4824 struct xdp_buff *xdp) 4825 { 4826 u32 act; 4827 int res; 4828 4829 act = bpf_prog_run_xdp(prog, xdp); 4830 switch (act) { 4831 case XDP_PASS: 4832 res = STMMAC_XDP_PASS; 4833 break; 4834 case XDP_TX: 4835 res = stmmac_xdp_xmit_back(priv, xdp); 4836 break; 4837 case XDP_REDIRECT: 4838 if (xdp_do_redirect(priv->dev, xdp, prog) < 0) 4839 res = STMMAC_XDP_CONSUMED; 4840 else 4841 res = STMMAC_XDP_REDIRECT; 4842 break; 4843 default: 4844 bpf_warn_invalid_xdp_action(priv->dev, prog, act); 4845 fallthrough; 4846 case XDP_ABORTED: 4847 trace_xdp_exception(priv->dev, prog, act); 4848 fallthrough; 4849 case XDP_DROP: 4850 res = STMMAC_XDP_CONSUMED; 4851 break; 4852 } 4853 4854 return res; 4855 } 4856 4857 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv, 4858 struct xdp_buff *xdp) 4859 { 4860 struct bpf_prog *prog; 4861 int res; 4862 4863 prog = READ_ONCE(priv->xdp_prog); 4864 if (!prog) { 4865 res = STMMAC_XDP_PASS; 4866 goto out; 4867 } 4868 4869 res = __stmmac_xdp_run_prog(priv, prog, xdp); 4870 out: 4871 return ERR_PTR(-res); 4872 } 4873 4874 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv, 4875 int xdp_status) 4876 { 4877 int cpu = smp_processor_id(); 4878 int queue; 4879 4880 queue = stmmac_xdp_get_tx_queue(priv, cpu); 4881 4882 if (xdp_status & STMMAC_XDP_TX) 4883 stmmac_tx_timer_arm(priv, queue); 4884 4885 if (xdp_status & STMMAC_XDP_REDIRECT) 4886 xdp_do_flush(); 4887 } 4888 4889 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch, 4890 struct xdp_buff *xdp) 4891 { 4892 unsigned int metasize = xdp->data - xdp->data_meta; 4893 unsigned int datasize = xdp->data_end - xdp->data; 4894 struct sk_buff *skb; 4895 4896 skb = __napi_alloc_skb(&ch->rxtx_napi, 4897 xdp->data_end - xdp->data_hard_start, 4898 GFP_ATOMIC | __GFP_NOWARN); 4899 if (unlikely(!skb)) 4900 return NULL; 4901 4902 skb_reserve(skb, xdp->data - xdp->data_hard_start); 4903 memcpy(__skb_put(skb, datasize), xdp->data, datasize); 4904 if (metasize) 4905 skb_metadata_set(skb, metasize); 4906 4907 return skb; 4908 } 4909 4910 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue, 4911 struct dma_desc *p, struct dma_desc *np, 4912 struct xdp_buff *xdp) 4913 { 4914 struct stmmac_channel *ch = &priv->channel[queue]; 4915 unsigned int len = xdp->data_end - xdp->data; 4916 enum pkt_hash_types hash_type; 4917 int coe = priv->hw->rx_csum; 4918 struct sk_buff *skb; 4919 u32 hash; 4920 4921 skb = stmmac_construct_skb_zc(ch, xdp); 4922 if (!skb) { 4923 priv->dev->stats.rx_dropped++; 4924 return; 4925 } 4926 4927 stmmac_get_rx_hwtstamp(priv, p, np, skb); 4928 stmmac_rx_vlan(priv->dev, skb); 4929 skb->protocol = eth_type_trans(skb, priv->dev); 4930 4931 if (unlikely(!coe)) 4932 skb_checksum_none_assert(skb); 4933 else 4934 skb->ip_summed = CHECKSUM_UNNECESSARY; 4935 4936 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 4937 skb_set_hash(skb, hash, hash_type); 4938 4939 skb_record_rx_queue(skb, queue); 4940 napi_gro_receive(&ch->rxtx_napi, skb); 4941 4942 priv->dev->stats.rx_packets++; 4943 priv->dev->stats.rx_bytes += len; 4944 } 4945 4946 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget) 4947 { 4948 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 4949 unsigned int entry = rx_q->dirty_rx; 4950 struct dma_desc *rx_desc = NULL; 4951 bool ret = true; 4952 4953 budget = min(budget, stmmac_rx_dirty(priv, queue)); 4954 4955 while (budget-- > 0 && entry != rx_q->cur_rx) { 4956 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 4957 dma_addr_t dma_addr; 4958 bool use_rx_wd; 4959 4960 if (!buf->xdp) { 4961 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); 4962 if (!buf->xdp) { 4963 ret = false; 4964 break; 4965 } 4966 } 4967 4968 if (priv->extend_desc) 4969 rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry); 4970 else 4971 rx_desc = rx_q->dma_rx + entry; 4972 4973 dma_addr = xsk_buff_xdp_get_dma(buf->xdp); 4974 stmmac_set_desc_addr(priv, rx_desc, dma_addr); 4975 stmmac_set_desc_sec_addr(priv, rx_desc, 0, false); 4976 stmmac_refill_desc3(priv, rx_q, rx_desc); 4977 4978 rx_q->rx_count_frames++; 4979 rx_q->rx_count_frames += priv->rx_coal_frames[queue]; 4980 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) 4981 rx_q->rx_count_frames = 0; 4982 4983 use_rx_wd = !priv->rx_coal_frames[queue]; 4984 use_rx_wd |= rx_q->rx_count_frames > 0; 4985 if (!priv->use_riwt) 4986 use_rx_wd = false; 4987 4988 dma_wmb(); 4989 stmmac_set_rx_owner(priv, rx_desc, use_rx_wd); 4990 4991 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size); 4992 } 4993 4994 if (rx_desc) { 4995 rx_q->dirty_rx = entry; 4996 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 4997 (rx_q->dirty_rx * sizeof(struct dma_desc)); 4998 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 4999 } 5000 5001 return ret; 5002 } 5003 5004 static struct stmmac_xdp_buff *xsk_buff_to_stmmac_ctx(struct xdp_buff *xdp) 5005 { 5006 /* In XDP zero copy data path, xdp field in struct xdp_buff_xsk is used 5007 * to represent incoming packet, whereas cb field in the same structure 5008 * is used to store driver specific info. Thus, struct stmmac_xdp_buff 5009 * is laid on top of xdp and cb fields of struct xdp_buff_xsk. 5010 */ 5011 return (struct stmmac_xdp_buff *)xdp; 5012 } 5013 5014 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue) 5015 { 5016 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 5017 unsigned int count = 0, error = 0, len = 0; 5018 int dirty = stmmac_rx_dirty(priv, queue); 5019 unsigned int next_entry = rx_q->cur_rx; 5020 unsigned int desc_size; 5021 struct bpf_prog *prog; 5022 bool failure = false; 5023 int xdp_status = 0; 5024 int status = 0; 5025 5026 if (netif_msg_rx_status(priv)) { 5027 void *rx_head; 5028 5029 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 5030 if (priv->extend_desc) { 5031 rx_head = (void *)rx_q->dma_erx; 5032 desc_size = sizeof(struct dma_extended_desc); 5033 } else { 5034 rx_head = (void *)rx_q->dma_rx; 5035 desc_size = sizeof(struct dma_desc); 5036 } 5037 5038 stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true, 5039 rx_q->dma_rx_phy, desc_size); 5040 } 5041 while (count < limit) { 5042 struct stmmac_rx_buffer *buf; 5043 struct stmmac_xdp_buff *ctx; 5044 unsigned int buf1_len = 0; 5045 struct dma_desc *np, *p; 5046 int entry; 5047 int res; 5048 5049 if (!count && rx_q->state_saved) { 5050 error = rx_q->state.error; 5051 len = rx_q->state.len; 5052 } else { 5053 rx_q->state_saved = false; 5054 error = 0; 5055 len = 0; 5056 } 5057 5058 if (count >= limit) 5059 break; 5060 5061 read_again: 5062 buf1_len = 0; 5063 entry = next_entry; 5064 buf = &rx_q->buf_pool[entry]; 5065 5066 if (dirty >= STMMAC_RX_FILL_BATCH) { 5067 failure = failure || 5068 !stmmac_rx_refill_zc(priv, queue, dirty); 5069 dirty = 0; 5070 } 5071 5072 if (priv->extend_desc) 5073 p = (struct dma_desc *)(rx_q->dma_erx + entry); 5074 else 5075 p = rx_q->dma_rx + entry; 5076 5077 /* read the status of the incoming frame */ 5078 status = stmmac_rx_status(priv, &priv->dev->stats, 5079 &priv->xstats, p); 5080 /* check if managed by the DMA otherwise go ahead */ 5081 if (unlikely(status & dma_own)) 5082 break; 5083 5084 /* Prefetch the next RX descriptor */ 5085 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, 5086 priv->dma_conf.dma_rx_size); 5087 next_entry = rx_q->cur_rx; 5088 5089 if (priv->extend_desc) 5090 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 5091 else 5092 np = rx_q->dma_rx + next_entry; 5093 5094 prefetch(np); 5095 5096 /* Ensure a valid XSK buffer before proceed */ 5097 if (!buf->xdp) 5098 break; 5099 5100 if (priv->extend_desc) 5101 stmmac_rx_extended_status(priv, &priv->dev->stats, 5102 &priv->xstats, 5103 rx_q->dma_erx + entry); 5104 if (unlikely(status == discard_frame)) { 5105 xsk_buff_free(buf->xdp); 5106 buf->xdp = NULL; 5107 dirty++; 5108 error = 1; 5109 if (!priv->hwts_rx_en) 5110 priv->dev->stats.rx_errors++; 5111 } 5112 5113 if (unlikely(error && (status & rx_not_ls))) 5114 goto read_again; 5115 if (unlikely(error)) { 5116 count++; 5117 continue; 5118 } 5119 5120 /* XSK pool expects RX frame 1:1 mapped to XSK buffer */ 5121 if (likely(status & rx_not_ls)) { 5122 xsk_buff_free(buf->xdp); 5123 buf->xdp = NULL; 5124 dirty++; 5125 count++; 5126 goto read_again; 5127 } 5128 5129 ctx = xsk_buff_to_stmmac_ctx(buf->xdp); 5130 ctx->priv = priv; 5131 ctx->desc = p; 5132 ctx->ndesc = np; 5133 5134 /* XDP ZC Frame only support primary buffers for now */ 5135 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 5136 len += buf1_len; 5137 5138 /* ACS is disabled; strip manually. */ 5139 if (likely(!(status & rx_not_ls))) { 5140 buf1_len -= ETH_FCS_LEN; 5141 len -= ETH_FCS_LEN; 5142 } 5143 5144 /* RX buffer is good and fit into a XSK pool buffer */ 5145 buf->xdp->data_end = buf->xdp->data + buf1_len; 5146 xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool); 5147 5148 prog = READ_ONCE(priv->xdp_prog); 5149 res = __stmmac_xdp_run_prog(priv, prog, buf->xdp); 5150 5151 switch (res) { 5152 case STMMAC_XDP_PASS: 5153 stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp); 5154 xsk_buff_free(buf->xdp); 5155 break; 5156 case STMMAC_XDP_CONSUMED: 5157 xsk_buff_free(buf->xdp); 5158 priv->dev->stats.rx_dropped++; 5159 break; 5160 case STMMAC_XDP_TX: 5161 case STMMAC_XDP_REDIRECT: 5162 xdp_status |= res; 5163 break; 5164 } 5165 5166 buf->xdp = NULL; 5167 dirty++; 5168 count++; 5169 } 5170 5171 if (status & rx_not_ls) { 5172 rx_q->state_saved = true; 5173 rx_q->state.error = error; 5174 rx_q->state.len = len; 5175 } 5176 5177 stmmac_finalize_xdp_rx(priv, xdp_status); 5178 5179 priv->xstats.rx_pkt_n += count; 5180 priv->xstats.rxq_stats[queue].rx_pkt_n += count; 5181 5182 if (xsk_uses_need_wakeup(rx_q->xsk_pool)) { 5183 if (failure || stmmac_rx_dirty(priv, queue) > 0) 5184 xsk_set_rx_need_wakeup(rx_q->xsk_pool); 5185 else 5186 xsk_clear_rx_need_wakeup(rx_q->xsk_pool); 5187 5188 return (int)count; 5189 } 5190 5191 return failure ? limit : (int)count; 5192 } 5193 5194 /** 5195 * stmmac_rx - manage the receive process 5196 * @priv: driver private structure 5197 * @limit: napi bugget 5198 * @queue: RX queue index. 5199 * Description : this the function called by the napi poll method. 5200 * It gets all the frames inside the ring. 5201 */ 5202 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue) 5203 { 5204 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 5205 struct stmmac_channel *ch = &priv->channel[queue]; 5206 unsigned int count = 0, error = 0, len = 0; 5207 int status = 0, coe = priv->hw->rx_csum; 5208 unsigned int next_entry = rx_q->cur_rx; 5209 enum dma_data_direction dma_dir; 5210 unsigned int desc_size; 5211 struct sk_buff *skb = NULL; 5212 struct stmmac_xdp_buff ctx; 5213 int xdp_status = 0; 5214 int buf_sz; 5215 5216 dma_dir = page_pool_get_dma_dir(rx_q->page_pool); 5217 buf_sz = DIV_ROUND_UP(priv->dma_conf.dma_buf_sz, PAGE_SIZE) * PAGE_SIZE; 5218 5219 if (netif_msg_rx_status(priv)) { 5220 void *rx_head; 5221 5222 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 5223 if (priv->extend_desc) { 5224 rx_head = (void *)rx_q->dma_erx; 5225 desc_size = sizeof(struct dma_extended_desc); 5226 } else { 5227 rx_head = (void *)rx_q->dma_rx; 5228 desc_size = sizeof(struct dma_desc); 5229 } 5230 5231 stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true, 5232 rx_q->dma_rx_phy, desc_size); 5233 } 5234 while (count < limit) { 5235 unsigned int buf1_len = 0, buf2_len = 0; 5236 enum pkt_hash_types hash_type; 5237 struct stmmac_rx_buffer *buf; 5238 struct dma_desc *np, *p; 5239 int entry; 5240 u32 hash; 5241 5242 if (!count && rx_q->state_saved) { 5243 skb = rx_q->state.skb; 5244 error = rx_q->state.error; 5245 len = rx_q->state.len; 5246 } else { 5247 rx_q->state_saved = false; 5248 skb = NULL; 5249 error = 0; 5250 len = 0; 5251 } 5252 5253 if (count >= limit) 5254 break; 5255 5256 read_again: 5257 buf1_len = 0; 5258 buf2_len = 0; 5259 entry = next_entry; 5260 buf = &rx_q->buf_pool[entry]; 5261 5262 if (priv->extend_desc) 5263 p = (struct dma_desc *)(rx_q->dma_erx + entry); 5264 else 5265 p = rx_q->dma_rx + entry; 5266 5267 /* read the status of the incoming frame */ 5268 status = stmmac_rx_status(priv, &priv->dev->stats, 5269 &priv->xstats, p); 5270 /* check if managed by the DMA otherwise go ahead */ 5271 if (unlikely(status & dma_own)) 5272 break; 5273 5274 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, 5275 priv->dma_conf.dma_rx_size); 5276 next_entry = rx_q->cur_rx; 5277 5278 if (priv->extend_desc) 5279 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 5280 else 5281 np = rx_q->dma_rx + next_entry; 5282 5283 prefetch(np); 5284 5285 if (priv->extend_desc) 5286 stmmac_rx_extended_status(priv, &priv->dev->stats, 5287 &priv->xstats, rx_q->dma_erx + entry); 5288 if (unlikely(status == discard_frame)) { 5289 page_pool_recycle_direct(rx_q->page_pool, buf->page); 5290 buf->page = NULL; 5291 error = 1; 5292 if (!priv->hwts_rx_en) 5293 priv->dev->stats.rx_errors++; 5294 } 5295 5296 if (unlikely(error && (status & rx_not_ls))) 5297 goto read_again; 5298 if (unlikely(error)) { 5299 dev_kfree_skb(skb); 5300 skb = NULL; 5301 count++; 5302 continue; 5303 } 5304 5305 /* Buffer is good. Go on. */ 5306 5307 prefetch(page_address(buf->page) + buf->page_offset); 5308 if (buf->sec_page) 5309 prefetch(page_address(buf->sec_page)); 5310 5311 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 5312 len += buf1_len; 5313 buf2_len = stmmac_rx_buf2_len(priv, p, status, len); 5314 len += buf2_len; 5315 5316 /* ACS is disabled; strip manually. */ 5317 if (likely(!(status & rx_not_ls))) { 5318 if (buf2_len) { 5319 buf2_len -= ETH_FCS_LEN; 5320 len -= ETH_FCS_LEN; 5321 } else if (buf1_len) { 5322 buf1_len -= ETH_FCS_LEN; 5323 len -= ETH_FCS_LEN; 5324 } 5325 } 5326 5327 if (!skb) { 5328 unsigned int pre_len, sync_len; 5329 5330 dma_sync_single_for_cpu(priv->device, buf->addr, 5331 buf1_len, dma_dir); 5332 5333 xdp_init_buff(&ctx.xdp, buf_sz, &rx_q->xdp_rxq); 5334 xdp_prepare_buff(&ctx.xdp, page_address(buf->page), 5335 buf->page_offset, buf1_len, true); 5336 5337 pre_len = ctx.xdp.data_end - ctx.xdp.data_hard_start - 5338 buf->page_offset; 5339 5340 ctx.priv = priv; 5341 ctx.desc = p; 5342 ctx.ndesc = np; 5343 5344 skb = stmmac_xdp_run_prog(priv, &ctx.xdp); 5345 /* Due xdp_adjust_tail: DMA sync for_device 5346 * cover max len CPU touch 5347 */ 5348 sync_len = ctx.xdp.data_end - ctx.xdp.data_hard_start - 5349 buf->page_offset; 5350 sync_len = max(sync_len, pre_len); 5351 5352 /* For Not XDP_PASS verdict */ 5353 if (IS_ERR(skb)) { 5354 unsigned int xdp_res = -PTR_ERR(skb); 5355 5356 if (xdp_res & STMMAC_XDP_CONSUMED) { 5357 page_pool_put_page(rx_q->page_pool, 5358 virt_to_head_page(ctx.xdp.data), 5359 sync_len, true); 5360 buf->page = NULL; 5361 priv->dev->stats.rx_dropped++; 5362 5363 /* Clear skb as it was set as 5364 * status by XDP program. 5365 */ 5366 skb = NULL; 5367 5368 if (unlikely((status & rx_not_ls))) 5369 goto read_again; 5370 5371 count++; 5372 continue; 5373 } else if (xdp_res & (STMMAC_XDP_TX | 5374 STMMAC_XDP_REDIRECT)) { 5375 xdp_status |= xdp_res; 5376 buf->page = NULL; 5377 skb = NULL; 5378 count++; 5379 continue; 5380 } 5381 } 5382 } 5383 5384 if (!skb) { 5385 /* XDP program may expand or reduce tail */ 5386 buf1_len = ctx.xdp.data_end - ctx.xdp.data; 5387 5388 skb = napi_alloc_skb(&ch->rx_napi, buf1_len); 5389 if (!skb) { 5390 priv->dev->stats.rx_dropped++; 5391 count++; 5392 goto drain_data; 5393 } 5394 5395 /* XDP program may adjust header */ 5396 skb_copy_to_linear_data(skb, ctx.xdp.data, buf1_len); 5397 skb_put(skb, buf1_len); 5398 5399 /* Data payload copied into SKB, page ready for recycle */ 5400 page_pool_recycle_direct(rx_q->page_pool, buf->page); 5401 buf->page = NULL; 5402 } else if (buf1_len) { 5403 dma_sync_single_for_cpu(priv->device, buf->addr, 5404 buf1_len, dma_dir); 5405 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 5406 buf->page, buf->page_offset, buf1_len, 5407 priv->dma_conf.dma_buf_sz); 5408 5409 /* Data payload appended into SKB */ 5410 page_pool_release_page(rx_q->page_pool, buf->page); 5411 buf->page = NULL; 5412 } 5413 5414 if (buf2_len) { 5415 dma_sync_single_for_cpu(priv->device, buf->sec_addr, 5416 buf2_len, dma_dir); 5417 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 5418 buf->sec_page, 0, buf2_len, 5419 priv->dma_conf.dma_buf_sz); 5420 5421 /* Data payload appended into SKB */ 5422 page_pool_release_page(rx_q->page_pool, buf->sec_page); 5423 buf->sec_page = NULL; 5424 } 5425 5426 drain_data: 5427 if (likely(status & rx_not_ls)) 5428 goto read_again; 5429 if (!skb) 5430 continue; 5431 5432 /* Got entire packet into SKB. Finish it. */ 5433 5434 stmmac_get_rx_hwtstamp(priv, p, np, skb); 5435 stmmac_rx_vlan(priv->dev, skb); 5436 skb->protocol = eth_type_trans(skb, priv->dev); 5437 5438 if (unlikely(!coe)) 5439 skb_checksum_none_assert(skb); 5440 else 5441 skb->ip_summed = CHECKSUM_UNNECESSARY; 5442 5443 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 5444 skb_set_hash(skb, hash, hash_type); 5445 5446 skb_record_rx_queue(skb, queue); 5447 napi_gro_receive(&ch->rx_napi, skb); 5448 skb = NULL; 5449 5450 priv->dev->stats.rx_packets++; 5451 priv->dev->stats.rx_bytes += len; 5452 count++; 5453 } 5454 5455 if (status & rx_not_ls || skb) { 5456 rx_q->state_saved = true; 5457 rx_q->state.skb = skb; 5458 rx_q->state.error = error; 5459 rx_q->state.len = len; 5460 } 5461 5462 stmmac_finalize_xdp_rx(priv, xdp_status); 5463 5464 stmmac_rx_refill(priv, queue); 5465 5466 priv->xstats.rx_pkt_n += count; 5467 priv->xstats.rxq_stats[queue].rx_pkt_n += count; 5468 5469 return count; 5470 } 5471 5472 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget) 5473 { 5474 struct stmmac_channel *ch = 5475 container_of(napi, struct stmmac_channel, rx_napi); 5476 struct stmmac_priv *priv = ch->priv_data; 5477 u32 chan = ch->index; 5478 int work_done; 5479 5480 priv->xstats.napi_poll++; 5481 5482 work_done = stmmac_rx(priv, budget, chan); 5483 if (work_done < budget && napi_complete_done(napi, work_done)) { 5484 unsigned long flags; 5485 5486 spin_lock_irqsave(&ch->lock, flags); 5487 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 5488 spin_unlock_irqrestore(&ch->lock, flags); 5489 } 5490 5491 return work_done; 5492 } 5493 5494 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget) 5495 { 5496 struct stmmac_channel *ch = 5497 container_of(napi, struct stmmac_channel, tx_napi); 5498 struct stmmac_priv *priv = ch->priv_data; 5499 u32 chan = ch->index; 5500 int work_done; 5501 5502 priv->xstats.napi_poll++; 5503 5504 work_done = stmmac_tx_clean(priv, budget, chan); 5505 work_done = min(work_done, budget); 5506 5507 if (work_done < budget && napi_complete_done(napi, work_done)) { 5508 unsigned long flags; 5509 5510 spin_lock_irqsave(&ch->lock, flags); 5511 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 5512 spin_unlock_irqrestore(&ch->lock, flags); 5513 } 5514 5515 return work_done; 5516 } 5517 5518 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget) 5519 { 5520 struct stmmac_channel *ch = 5521 container_of(napi, struct stmmac_channel, rxtx_napi); 5522 struct stmmac_priv *priv = ch->priv_data; 5523 int rx_done, tx_done, rxtx_done; 5524 u32 chan = ch->index; 5525 5526 priv->xstats.napi_poll++; 5527 5528 tx_done = stmmac_tx_clean(priv, budget, chan); 5529 tx_done = min(tx_done, budget); 5530 5531 rx_done = stmmac_rx_zc(priv, budget, chan); 5532 5533 rxtx_done = max(tx_done, rx_done); 5534 5535 /* If either TX or RX work is not complete, return budget 5536 * and keep pooling 5537 */ 5538 if (rxtx_done >= budget) 5539 return budget; 5540 5541 /* all work done, exit the polling mode */ 5542 if (napi_complete_done(napi, rxtx_done)) { 5543 unsigned long flags; 5544 5545 spin_lock_irqsave(&ch->lock, flags); 5546 /* Both RX and TX work done are compelte, 5547 * so enable both RX & TX IRQs. 5548 */ 5549 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 5550 spin_unlock_irqrestore(&ch->lock, flags); 5551 } 5552 5553 return min(rxtx_done, budget - 1); 5554 } 5555 5556 /** 5557 * stmmac_tx_timeout 5558 * @dev : Pointer to net device structure 5559 * @txqueue: the index of the hanging transmit queue 5560 * Description: this function is called when a packet transmission fails to 5561 * complete within a reasonable time. The driver will mark the error in the 5562 * netdev structure and arrange for the device to be reset to a sane state 5563 * in order to transmit a new packet. 5564 */ 5565 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue) 5566 { 5567 struct stmmac_priv *priv = netdev_priv(dev); 5568 5569 stmmac_global_err(priv); 5570 } 5571 5572 /** 5573 * stmmac_set_rx_mode - entry point for multicast addressing 5574 * @dev : pointer to the device structure 5575 * Description: 5576 * This function is a driver entry point which gets called by the kernel 5577 * whenever multicast addresses must be enabled/disabled. 5578 * Return value: 5579 * void. 5580 */ 5581 static void stmmac_set_rx_mode(struct net_device *dev) 5582 { 5583 struct stmmac_priv *priv = netdev_priv(dev); 5584 5585 stmmac_set_filter(priv, priv->hw, dev); 5586 } 5587 5588 /** 5589 * stmmac_change_mtu - entry point to change MTU size for the device. 5590 * @dev : device pointer. 5591 * @new_mtu : the new MTU size for the device. 5592 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 5593 * to drive packet transmission. Ethernet has an MTU of 1500 octets 5594 * (ETH_DATA_LEN). This value can be changed with ifconfig. 5595 * Return value: 5596 * 0 on success and an appropriate (-)ve integer as defined in errno.h 5597 * file on failure. 5598 */ 5599 static int stmmac_change_mtu(struct net_device *dev, int new_mtu) 5600 { 5601 struct stmmac_priv *priv = netdev_priv(dev); 5602 int txfifosz = priv->plat->tx_fifo_size; 5603 struct stmmac_dma_conf *dma_conf; 5604 const int mtu = new_mtu; 5605 int ret; 5606 5607 if (txfifosz == 0) 5608 txfifosz = priv->dma_cap.tx_fifo_size; 5609 5610 txfifosz /= priv->plat->tx_queues_to_use; 5611 5612 if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) { 5613 netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n"); 5614 return -EINVAL; 5615 } 5616 5617 new_mtu = STMMAC_ALIGN(new_mtu); 5618 5619 /* If condition true, FIFO is too small or MTU too large */ 5620 if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB)) 5621 return -EINVAL; 5622 5623 if (netif_running(dev)) { 5624 netdev_dbg(priv->dev, "restarting interface to change its MTU\n"); 5625 /* Try to allocate the new DMA conf with the new mtu */ 5626 dma_conf = stmmac_setup_dma_desc(priv, mtu); 5627 if (IS_ERR(dma_conf)) { 5628 netdev_err(priv->dev, "failed allocating new dma conf for new MTU %d\n", 5629 mtu); 5630 return PTR_ERR(dma_conf); 5631 } 5632 5633 stmmac_release(dev); 5634 5635 ret = __stmmac_open(dev, dma_conf); 5636 kfree(dma_conf); 5637 if (ret) { 5638 netdev_err(priv->dev, "failed reopening the interface after MTU change\n"); 5639 return ret; 5640 } 5641 5642 stmmac_set_rx_mode(dev); 5643 } 5644 5645 dev->mtu = mtu; 5646 netdev_update_features(dev); 5647 5648 return 0; 5649 } 5650 5651 static netdev_features_t stmmac_fix_features(struct net_device *dev, 5652 netdev_features_t features) 5653 { 5654 struct stmmac_priv *priv = netdev_priv(dev); 5655 5656 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) 5657 features &= ~NETIF_F_RXCSUM; 5658 5659 if (!priv->plat->tx_coe) 5660 features &= ~NETIF_F_CSUM_MASK; 5661 5662 /* Some GMAC devices have a bugged Jumbo frame support that 5663 * needs to have the Tx COE disabled for oversized frames 5664 * (due to limited buffer sizes). In this case we disable 5665 * the TX csum insertion in the TDES and not use SF. 5666 */ 5667 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) 5668 features &= ~NETIF_F_CSUM_MASK; 5669 5670 /* Disable tso if asked by ethtool */ 5671 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 5672 if (features & NETIF_F_TSO) 5673 priv->tso = true; 5674 else 5675 priv->tso = false; 5676 } 5677 5678 return features; 5679 } 5680 5681 static int stmmac_set_features(struct net_device *netdev, 5682 netdev_features_t features) 5683 { 5684 struct stmmac_priv *priv = netdev_priv(netdev); 5685 5686 /* Keep the COE Type in case of csum is supporting */ 5687 if (features & NETIF_F_RXCSUM) 5688 priv->hw->rx_csum = priv->plat->rx_coe; 5689 else 5690 priv->hw->rx_csum = 0; 5691 /* No check needed because rx_coe has been set before and it will be 5692 * fixed in case of issue. 5693 */ 5694 stmmac_rx_ipc(priv, priv->hw); 5695 5696 if (priv->sph_cap) { 5697 bool sph_en = (priv->hw->rx_csum > 0) && priv->sph; 5698 u32 chan; 5699 5700 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++) 5701 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 5702 } 5703 5704 return 0; 5705 } 5706 5707 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status) 5708 { 5709 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 5710 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 5711 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 5712 bool *hs_enable = &fpe_cfg->hs_enable; 5713 5714 if (status == FPE_EVENT_UNKNOWN || !*hs_enable) 5715 return; 5716 5717 /* If LP has sent verify mPacket, LP is FPE capable */ 5718 if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) { 5719 if (*lp_state < FPE_STATE_CAPABLE) 5720 *lp_state = FPE_STATE_CAPABLE; 5721 5722 /* If user has requested FPE enable, quickly response */ 5723 if (*hs_enable) 5724 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 5725 MPACKET_RESPONSE); 5726 } 5727 5728 /* If Local has sent verify mPacket, Local is FPE capable */ 5729 if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) { 5730 if (*lo_state < FPE_STATE_CAPABLE) 5731 *lo_state = FPE_STATE_CAPABLE; 5732 } 5733 5734 /* If LP has sent response mPacket, LP is entering FPE ON */ 5735 if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP) 5736 *lp_state = FPE_STATE_ENTERING_ON; 5737 5738 /* If Local has sent response mPacket, Local is entering FPE ON */ 5739 if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP) 5740 *lo_state = FPE_STATE_ENTERING_ON; 5741 5742 if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) && 5743 !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) && 5744 priv->fpe_wq) { 5745 queue_work(priv->fpe_wq, &priv->fpe_task); 5746 } 5747 } 5748 5749 static void stmmac_common_interrupt(struct stmmac_priv *priv) 5750 { 5751 u32 rx_cnt = priv->plat->rx_queues_to_use; 5752 u32 tx_cnt = priv->plat->tx_queues_to_use; 5753 u32 queues_count; 5754 u32 queue; 5755 bool xmac; 5756 5757 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 5758 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt; 5759 5760 if (priv->irq_wake) 5761 pm_wakeup_event(priv->device, 0); 5762 5763 if (priv->dma_cap.estsel) 5764 stmmac_est_irq_status(priv, priv->ioaddr, priv->dev, 5765 &priv->xstats, tx_cnt); 5766 5767 if (priv->dma_cap.fpesel) { 5768 int status = stmmac_fpe_irq_status(priv, priv->ioaddr, 5769 priv->dev); 5770 5771 stmmac_fpe_event_status(priv, status); 5772 } 5773 5774 /* To handle GMAC own interrupts */ 5775 if ((priv->plat->has_gmac) || xmac) { 5776 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats); 5777 5778 if (unlikely(status)) { 5779 /* For LPI we need to save the tx status */ 5780 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) 5781 priv->tx_path_in_lpi_mode = true; 5782 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) 5783 priv->tx_path_in_lpi_mode = false; 5784 } 5785 5786 for (queue = 0; queue < queues_count; queue++) { 5787 status = stmmac_host_mtl_irq_status(priv, priv->hw, 5788 queue); 5789 } 5790 5791 /* PCS link status */ 5792 if (priv->hw->pcs) { 5793 if (priv->xstats.pcs_link) 5794 netif_carrier_on(priv->dev); 5795 else 5796 netif_carrier_off(priv->dev); 5797 } 5798 5799 stmmac_timestamp_interrupt(priv, priv); 5800 } 5801 } 5802 5803 /** 5804 * stmmac_interrupt - main ISR 5805 * @irq: interrupt number. 5806 * @dev_id: to pass the net device pointer. 5807 * Description: this is the main driver interrupt service routine. 5808 * It can call: 5809 * o DMA service routine (to manage incoming frame reception and transmission 5810 * status) 5811 * o Core interrupts to manage: remote wake-up, management counter, LPI 5812 * interrupts. 5813 */ 5814 static irqreturn_t stmmac_interrupt(int irq, void *dev_id) 5815 { 5816 struct net_device *dev = (struct net_device *)dev_id; 5817 struct stmmac_priv *priv = netdev_priv(dev); 5818 5819 /* Check if adapter is up */ 5820 if (test_bit(STMMAC_DOWN, &priv->state)) 5821 return IRQ_HANDLED; 5822 5823 /* Check if a fatal error happened */ 5824 if (stmmac_safety_feat_interrupt(priv)) 5825 return IRQ_HANDLED; 5826 5827 /* To handle Common interrupts */ 5828 stmmac_common_interrupt(priv); 5829 5830 /* To handle DMA interrupts */ 5831 stmmac_dma_interrupt(priv); 5832 5833 return IRQ_HANDLED; 5834 } 5835 5836 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id) 5837 { 5838 struct net_device *dev = (struct net_device *)dev_id; 5839 struct stmmac_priv *priv = netdev_priv(dev); 5840 5841 if (unlikely(!dev)) { 5842 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5843 return IRQ_NONE; 5844 } 5845 5846 /* Check if adapter is up */ 5847 if (test_bit(STMMAC_DOWN, &priv->state)) 5848 return IRQ_HANDLED; 5849 5850 /* To handle Common interrupts */ 5851 stmmac_common_interrupt(priv); 5852 5853 return IRQ_HANDLED; 5854 } 5855 5856 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id) 5857 { 5858 struct net_device *dev = (struct net_device *)dev_id; 5859 struct stmmac_priv *priv = netdev_priv(dev); 5860 5861 if (unlikely(!dev)) { 5862 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5863 return IRQ_NONE; 5864 } 5865 5866 /* Check if adapter is up */ 5867 if (test_bit(STMMAC_DOWN, &priv->state)) 5868 return IRQ_HANDLED; 5869 5870 /* Check if a fatal error happened */ 5871 stmmac_safety_feat_interrupt(priv); 5872 5873 return IRQ_HANDLED; 5874 } 5875 5876 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data) 5877 { 5878 struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data; 5879 struct stmmac_dma_conf *dma_conf; 5880 int chan = tx_q->queue_index; 5881 struct stmmac_priv *priv; 5882 int status; 5883 5884 dma_conf = container_of(tx_q, struct stmmac_dma_conf, tx_queue[chan]); 5885 priv = container_of(dma_conf, struct stmmac_priv, dma_conf); 5886 5887 if (unlikely(!data)) { 5888 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5889 return IRQ_NONE; 5890 } 5891 5892 /* Check if adapter is up */ 5893 if (test_bit(STMMAC_DOWN, &priv->state)) 5894 return IRQ_HANDLED; 5895 5896 status = stmmac_napi_check(priv, chan, DMA_DIR_TX); 5897 5898 if (unlikely(status & tx_hard_error_bump_tc)) { 5899 /* Try to bump up the dma threshold on this failure */ 5900 stmmac_bump_dma_threshold(priv, chan); 5901 } else if (unlikely(status == tx_hard_error)) { 5902 stmmac_tx_err(priv, chan); 5903 } 5904 5905 return IRQ_HANDLED; 5906 } 5907 5908 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data) 5909 { 5910 struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data; 5911 struct stmmac_dma_conf *dma_conf; 5912 int chan = rx_q->queue_index; 5913 struct stmmac_priv *priv; 5914 5915 dma_conf = container_of(rx_q, struct stmmac_dma_conf, rx_queue[chan]); 5916 priv = container_of(dma_conf, struct stmmac_priv, dma_conf); 5917 5918 if (unlikely(!data)) { 5919 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5920 return IRQ_NONE; 5921 } 5922 5923 /* Check if adapter is up */ 5924 if (test_bit(STMMAC_DOWN, &priv->state)) 5925 return IRQ_HANDLED; 5926 5927 stmmac_napi_check(priv, chan, DMA_DIR_RX); 5928 5929 return IRQ_HANDLED; 5930 } 5931 5932 #ifdef CONFIG_NET_POLL_CONTROLLER 5933 /* Polling receive - used by NETCONSOLE and other diagnostic tools 5934 * to allow network I/O with interrupts disabled. 5935 */ 5936 static void stmmac_poll_controller(struct net_device *dev) 5937 { 5938 struct stmmac_priv *priv = netdev_priv(dev); 5939 int i; 5940 5941 /* If adapter is down, do nothing */ 5942 if (test_bit(STMMAC_DOWN, &priv->state)) 5943 return; 5944 5945 if (priv->plat->multi_msi_en) { 5946 for (i = 0; i < priv->plat->rx_queues_to_use; i++) 5947 stmmac_msi_intr_rx(0, &priv->dma_conf.rx_queue[i]); 5948 5949 for (i = 0; i < priv->plat->tx_queues_to_use; i++) 5950 stmmac_msi_intr_tx(0, &priv->dma_conf.tx_queue[i]); 5951 } else { 5952 disable_irq(dev->irq); 5953 stmmac_interrupt(dev->irq, dev); 5954 enable_irq(dev->irq); 5955 } 5956 } 5957 #endif 5958 5959 /** 5960 * stmmac_ioctl - Entry point for the Ioctl 5961 * @dev: Device pointer. 5962 * @rq: An IOCTL specefic structure, that can contain a pointer to 5963 * a proprietary structure used to pass information to the driver. 5964 * @cmd: IOCTL command 5965 * Description: 5966 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 5967 */ 5968 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 5969 { 5970 struct stmmac_priv *priv = netdev_priv (dev); 5971 int ret = -EOPNOTSUPP; 5972 5973 if (!netif_running(dev)) 5974 return -EINVAL; 5975 5976 switch (cmd) { 5977 case SIOCGMIIPHY: 5978 case SIOCGMIIREG: 5979 case SIOCSMIIREG: 5980 ret = phylink_mii_ioctl(priv->phylink, rq, cmd); 5981 break; 5982 case SIOCSHWTSTAMP: 5983 ret = stmmac_hwtstamp_set(dev, rq); 5984 break; 5985 case SIOCGHWTSTAMP: 5986 ret = stmmac_hwtstamp_get(dev, rq); 5987 break; 5988 default: 5989 break; 5990 } 5991 5992 return ret; 5993 } 5994 5995 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 5996 void *cb_priv) 5997 { 5998 struct stmmac_priv *priv = cb_priv; 5999 int ret = -EOPNOTSUPP; 6000 6001 if (!tc_cls_can_offload_and_chain0(priv->dev, type_data)) 6002 return ret; 6003 6004 __stmmac_disable_all_queues(priv); 6005 6006 switch (type) { 6007 case TC_SETUP_CLSU32: 6008 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data); 6009 break; 6010 case TC_SETUP_CLSFLOWER: 6011 ret = stmmac_tc_setup_cls(priv, priv, type_data); 6012 break; 6013 default: 6014 break; 6015 } 6016 6017 stmmac_enable_all_queues(priv); 6018 return ret; 6019 } 6020 6021 static LIST_HEAD(stmmac_block_cb_list); 6022 6023 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type, 6024 void *type_data) 6025 { 6026 struct stmmac_priv *priv = netdev_priv(ndev); 6027 6028 switch (type) { 6029 case TC_QUERY_CAPS: 6030 return stmmac_tc_query_caps(priv, priv, type_data); 6031 case TC_SETUP_BLOCK: 6032 return flow_block_cb_setup_simple(type_data, 6033 &stmmac_block_cb_list, 6034 stmmac_setup_tc_block_cb, 6035 priv, priv, true); 6036 case TC_SETUP_QDISC_CBS: 6037 return stmmac_tc_setup_cbs(priv, priv, type_data); 6038 case TC_SETUP_QDISC_TAPRIO: 6039 return stmmac_tc_setup_taprio(priv, priv, type_data); 6040 case TC_SETUP_QDISC_ETF: 6041 return stmmac_tc_setup_etf(priv, priv, type_data); 6042 default: 6043 return -EOPNOTSUPP; 6044 } 6045 } 6046 6047 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb, 6048 struct net_device *sb_dev) 6049 { 6050 int gso = skb_shinfo(skb)->gso_type; 6051 6052 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) { 6053 /* 6054 * There is no way to determine the number of TSO/USO 6055 * capable Queues. Let's use always the Queue 0 6056 * because if TSO/USO is supported then at least this 6057 * one will be capable. 6058 */ 6059 return 0; 6060 } 6061 6062 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; 6063 } 6064 6065 static int stmmac_set_mac_address(struct net_device *ndev, void *addr) 6066 { 6067 struct stmmac_priv *priv = netdev_priv(ndev); 6068 int ret = 0; 6069 6070 ret = pm_runtime_resume_and_get(priv->device); 6071 if (ret < 0) 6072 return ret; 6073 6074 ret = eth_mac_addr(ndev, addr); 6075 if (ret) 6076 goto set_mac_error; 6077 6078 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0); 6079 6080 set_mac_error: 6081 pm_runtime_put(priv->device); 6082 6083 return ret; 6084 } 6085 6086 #ifdef CONFIG_DEBUG_FS 6087 static struct dentry *stmmac_fs_dir; 6088 6089 static void sysfs_display_ring(void *head, int size, int extend_desc, 6090 struct seq_file *seq, dma_addr_t dma_phy_addr) 6091 { 6092 int i; 6093 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 6094 struct dma_desc *p = (struct dma_desc *)head; 6095 dma_addr_t dma_addr; 6096 6097 for (i = 0; i < size; i++) { 6098 if (extend_desc) { 6099 dma_addr = dma_phy_addr + i * sizeof(*ep); 6100 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", 6101 i, &dma_addr, 6102 le32_to_cpu(ep->basic.des0), 6103 le32_to_cpu(ep->basic.des1), 6104 le32_to_cpu(ep->basic.des2), 6105 le32_to_cpu(ep->basic.des3)); 6106 ep++; 6107 } else { 6108 dma_addr = dma_phy_addr + i * sizeof(*p); 6109 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", 6110 i, &dma_addr, 6111 le32_to_cpu(p->des0), le32_to_cpu(p->des1), 6112 le32_to_cpu(p->des2), le32_to_cpu(p->des3)); 6113 p++; 6114 } 6115 seq_printf(seq, "\n"); 6116 } 6117 } 6118 6119 static int stmmac_rings_status_show(struct seq_file *seq, void *v) 6120 { 6121 struct net_device *dev = seq->private; 6122 struct stmmac_priv *priv = netdev_priv(dev); 6123 u32 rx_count = priv->plat->rx_queues_to_use; 6124 u32 tx_count = priv->plat->tx_queues_to_use; 6125 u32 queue; 6126 6127 if ((dev->flags & IFF_UP) == 0) 6128 return 0; 6129 6130 for (queue = 0; queue < rx_count; queue++) { 6131 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 6132 6133 seq_printf(seq, "RX Queue %d:\n", queue); 6134 6135 if (priv->extend_desc) { 6136 seq_printf(seq, "Extended descriptor ring:\n"); 6137 sysfs_display_ring((void *)rx_q->dma_erx, 6138 priv->dma_conf.dma_rx_size, 1, seq, rx_q->dma_rx_phy); 6139 } else { 6140 seq_printf(seq, "Descriptor ring:\n"); 6141 sysfs_display_ring((void *)rx_q->dma_rx, 6142 priv->dma_conf.dma_rx_size, 0, seq, rx_q->dma_rx_phy); 6143 } 6144 } 6145 6146 for (queue = 0; queue < tx_count; queue++) { 6147 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 6148 6149 seq_printf(seq, "TX Queue %d:\n", queue); 6150 6151 if (priv->extend_desc) { 6152 seq_printf(seq, "Extended descriptor ring:\n"); 6153 sysfs_display_ring((void *)tx_q->dma_etx, 6154 priv->dma_conf.dma_tx_size, 1, seq, tx_q->dma_tx_phy); 6155 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) { 6156 seq_printf(seq, "Descriptor ring:\n"); 6157 sysfs_display_ring((void *)tx_q->dma_tx, 6158 priv->dma_conf.dma_tx_size, 0, seq, tx_q->dma_tx_phy); 6159 } 6160 } 6161 6162 return 0; 6163 } 6164 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status); 6165 6166 static int stmmac_dma_cap_show(struct seq_file *seq, void *v) 6167 { 6168 struct net_device *dev = seq->private; 6169 struct stmmac_priv *priv = netdev_priv(dev); 6170 6171 if (!priv->hw_cap_support) { 6172 seq_printf(seq, "DMA HW features not supported\n"); 6173 return 0; 6174 } 6175 6176 seq_printf(seq, "==============================\n"); 6177 seq_printf(seq, "\tDMA HW features\n"); 6178 seq_printf(seq, "==============================\n"); 6179 6180 seq_printf(seq, "\t10/100 Mbps: %s\n", 6181 (priv->dma_cap.mbps_10_100) ? "Y" : "N"); 6182 seq_printf(seq, "\t1000 Mbps: %s\n", 6183 (priv->dma_cap.mbps_1000) ? "Y" : "N"); 6184 seq_printf(seq, "\tHalf duplex: %s\n", 6185 (priv->dma_cap.half_duplex) ? "Y" : "N"); 6186 seq_printf(seq, "\tHash Filter: %s\n", 6187 (priv->dma_cap.hash_filter) ? "Y" : "N"); 6188 seq_printf(seq, "\tMultiple MAC address registers: %s\n", 6189 (priv->dma_cap.multi_addr) ? "Y" : "N"); 6190 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n", 6191 (priv->dma_cap.pcs) ? "Y" : "N"); 6192 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", 6193 (priv->dma_cap.sma_mdio) ? "Y" : "N"); 6194 seq_printf(seq, "\tPMT Remote wake up: %s\n", 6195 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); 6196 seq_printf(seq, "\tPMT Magic Frame: %s\n", 6197 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); 6198 seq_printf(seq, "\tRMON module: %s\n", 6199 (priv->dma_cap.rmon) ? "Y" : "N"); 6200 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", 6201 (priv->dma_cap.time_stamp) ? "Y" : "N"); 6202 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n", 6203 (priv->dma_cap.atime_stamp) ? "Y" : "N"); 6204 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n", 6205 (priv->dma_cap.eee) ? "Y" : "N"); 6206 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); 6207 seq_printf(seq, "\tChecksum Offload in TX: %s\n", 6208 (priv->dma_cap.tx_coe) ? "Y" : "N"); 6209 if (priv->synopsys_id >= DWMAC_CORE_4_00) { 6210 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n", 6211 (priv->dma_cap.rx_coe) ? "Y" : "N"); 6212 } else { 6213 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", 6214 (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); 6215 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", 6216 (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); 6217 } 6218 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", 6219 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); 6220 seq_printf(seq, "\tNumber of Additional RX channel: %d\n", 6221 priv->dma_cap.number_rx_channel); 6222 seq_printf(seq, "\tNumber of Additional TX channel: %d\n", 6223 priv->dma_cap.number_tx_channel); 6224 seq_printf(seq, "\tNumber of Additional RX queues: %d\n", 6225 priv->dma_cap.number_rx_queues); 6226 seq_printf(seq, "\tNumber of Additional TX queues: %d\n", 6227 priv->dma_cap.number_tx_queues); 6228 seq_printf(seq, "\tEnhanced descriptors: %s\n", 6229 (priv->dma_cap.enh_desc) ? "Y" : "N"); 6230 seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size); 6231 seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size); 6232 seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz); 6233 seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N"); 6234 seq_printf(seq, "\tNumber of PPS Outputs: %d\n", 6235 priv->dma_cap.pps_out_num); 6236 seq_printf(seq, "\tSafety Features: %s\n", 6237 priv->dma_cap.asp ? "Y" : "N"); 6238 seq_printf(seq, "\tFlexible RX Parser: %s\n", 6239 priv->dma_cap.frpsel ? "Y" : "N"); 6240 seq_printf(seq, "\tEnhanced Addressing: %d\n", 6241 priv->dma_cap.host_dma_width); 6242 seq_printf(seq, "\tReceive Side Scaling: %s\n", 6243 priv->dma_cap.rssen ? "Y" : "N"); 6244 seq_printf(seq, "\tVLAN Hash Filtering: %s\n", 6245 priv->dma_cap.vlhash ? "Y" : "N"); 6246 seq_printf(seq, "\tSplit Header: %s\n", 6247 priv->dma_cap.sphen ? "Y" : "N"); 6248 seq_printf(seq, "\tVLAN TX Insertion: %s\n", 6249 priv->dma_cap.vlins ? "Y" : "N"); 6250 seq_printf(seq, "\tDouble VLAN: %s\n", 6251 priv->dma_cap.dvlan ? "Y" : "N"); 6252 seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n", 6253 priv->dma_cap.l3l4fnum); 6254 seq_printf(seq, "\tARP Offloading: %s\n", 6255 priv->dma_cap.arpoffsel ? "Y" : "N"); 6256 seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n", 6257 priv->dma_cap.estsel ? "Y" : "N"); 6258 seq_printf(seq, "\tFrame Preemption (FPE): %s\n", 6259 priv->dma_cap.fpesel ? "Y" : "N"); 6260 seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n", 6261 priv->dma_cap.tbssel ? "Y" : "N"); 6262 return 0; 6263 } 6264 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap); 6265 6266 /* Use network device events to rename debugfs file entries. 6267 */ 6268 static int stmmac_device_event(struct notifier_block *unused, 6269 unsigned long event, void *ptr) 6270 { 6271 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 6272 struct stmmac_priv *priv = netdev_priv(dev); 6273 6274 if (dev->netdev_ops != &stmmac_netdev_ops) 6275 goto done; 6276 6277 switch (event) { 6278 case NETDEV_CHANGENAME: 6279 if (priv->dbgfs_dir) 6280 priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir, 6281 priv->dbgfs_dir, 6282 stmmac_fs_dir, 6283 dev->name); 6284 break; 6285 } 6286 done: 6287 return NOTIFY_DONE; 6288 } 6289 6290 static struct notifier_block stmmac_notifier = { 6291 .notifier_call = stmmac_device_event, 6292 }; 6293 6294 static void stmmac_init_fs(struct net_device *dev) 6295 { 6296 struct stmmac_priv *priv = netdev_priv(dev); 6297 6298 rtnl_lock(); 6299 6300 /* Create per netdev entries */ 6301 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir); 6302 6303 /* Entry to report DMA RX/TX rings */ 6304 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev, 6305 &stmmac_rings_status_fops); 6306 6307 /* Entry to report the DMA HW features */ 6308 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev, 6309 &stmmac_dma_cap_fops); 6310 6311 rtnl_unlock(); 6312 } 6313 6314 static void stmmac_exit_fs(struct net_device *dev) 6315 { 6316 struct stmmac_priv *priv = netdev_priv(dev); 6317 6318 debugfs_remove_recursive(priv->dbgfs_dir); 6319 } 6320 #endif /* CONFIG_DEBUG_FS */ 6321 6322 static u32 stmmac_vid_crc32_le(__le16 vid_le) 6323 { 6324 unsigned char *data = (unsigned char *)&vid_le; 6325 unsigned char data_byte = 0; 6326 u32 crc = ~0x0; 6327 u32 temp = 0; 6328 int i, bits; 6329 6330 bits = get_bitmask_order(VLAN_VID_MASK); 6331 for (i = 0; i < bits; i++) { 6332 if ((i % 8) == 0) 6333 data_byte = data[i / 8]; 6334 6335 temp = ((crc & 1) ^ data_byte) & 1; 6336 crc >>= 1; 6337 data_byte >>= 1; 6338 6339 if (temp) 6340 crc ^= 0xedb88320; 6341 } 6342 6343 return crc; 6344 } 6345 6346 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double) 6347 { 6348 u32 crc, hash = 0; 6349 __le16 pmatch = 0; 6350 int count = 0; 6351 u16 vid = 0; 6352 6353 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) { 6354 __le16 vid_le = cpu_to_le16(vid); 6355 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28; 6356 hash |= (1 << crc); 6357 count++; 6358 } 6359 6360 if (!priv->dma_cap.vlhash) { 6361 if (count > 2) /* VID = 0 always passes filter */ 6362 return -EOPNOTSUPP; 6363 6364 pmatch = cpu_to_le16(vid); 6365 hash = 0; 6366 } 6367 6368 return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double); 6369 } 6370 6371 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) 6372 { 6373 struct stmmac_priv *priv = netdev_priv(ndev); 6374 bool is_double = false; 6375 int ret; 6376 6377 ret = pm_runtime_resume_and_get(priv->device); 6378 if (ret < 0) 6379 return ret; 6380 6381 if (be16_to_cpu(proto) == ETH_P_8021AD) 6382 is_double = true; 6383 6384 set_bit(vid, priv->active_vlans); 6385 ret = stmmac_vlan_update(priv, is_double); 6386 if (ret) { 6387 clear_bit(vid, priv->active_vlans); 6388 goto err_pm_put; 6389 } 6390 6391 if (priv->hw->num_vlan) { 6392 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 6393 if (ret) 6394 goto err_pm_put; 6395 } 6396 err_pm_put: 6397 pm_runtime_put(priv->device); 6398 6399 return ret; 6400 } 6401 6402 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) 6403 { 6404 struct stmmac_priv *priv = netdev_priv(ndev); 6405 bool is_double = false; 6406 int ret; 6407 6408 ret = pm_runtime_resume_and_get(priv->device); 6409 if (ret < 0) 6410 return ret; 6411 6412 if (be16_to_cpu(proto) == ETH_P_8021AD) 6413 is_double = true; 6414 6415 clear_bit(vid, priv->active_vlans); 6416 6417 if (priv->hw->num_vlan) { 6418 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 6419 if (ret) 6420 goto del_vlan_error; 6421 } 6422 6423 ret = stmmac_vlan_update(priv, is_double); 6424 6425 del_vlan_error: 6426 pm_runtime_put(priv->device); 6427 6428 return ret; 6429 } 6430 6431 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf) 6432 { 6433 struct stmmac_priv *priv = netdev_priv(dev); 6434 6435 switch (bpf->command) { 6436 case XDP_SETUP_PROG: 6437 return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack); 6438 case XDP_SETUP_XSK_POOL: 6439 return stmmac_xdp_setup_pool(priv, bpf->xsk.pool, 6440 bpf->xsk.queue_id); 6441 default: 6442 return -EOPNOTSUPP; 6443 } 6444 } 6445 6446 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames, 6447 struct xdp_frame **frames, u32 flags) 6448 { 6449 struct stmmac_priv *priv = netdev_priv(dev); 6450 int cpu = smp_processor_id(); 6451 struct netdev_queue *nq; 6452 int i, nxmit = 0; 6453 int queue; 6454 6455 if (unlikely(test_bit(STMMAC_DOWN, &priv->state))) 6456 return -ENETDOWN; 6457 6458 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 6459 return -EINVAL; 6460 6461 queue = stmmac_xdp_get_tx_queue(priv, cpu); 6462 nq = netdev_get_tx_queue(priv->dev, queue); 6463 6464 __netif_tx_lock(nq, cpu); 6465 /* Avoids TX time-out as we are sharing with slow path */ 6466 txq_trans_cond_update(nq); 6467 6468 for (i = 0; i < num_frames; i++) { 6469 int res; 6470 6471 res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true); 6472 if (res == STMMAC_XDP_CONSUMED) 6473 break; 6474 6475 nxmit++; 6476 } 6477 6478 if (flags & XDP_XMIT_FLUSH) { 6479 stmmac_flush_tx_descriptors(priv, queue); 6480 stmmac_tx_timer_arm(priv, queue); 6481 } 6482 6483 __netif_tx_unlock(nq); 6484 6485 return nxmit; 6486 } 6487 6488 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue) 6489 { 6490 struct stmmac_channel *ch = &priv->channel[queue]; 6491 unsigned long flags; 6492 6493 spin_lock_irqsave(&ch->lock, flags); 6494 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0); 6495 spin_unlock_irqrestore(&ch->lock, flags); 6496 6497 stmmac_stop_rx_dma(priv, queue); 6498 __free_dma_rx_desc_resources(priv, &priv->dma_conf, queue); 6499 } 6500 6501 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue) 6502 { 6503 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 6504 struct stmmac_channel *ch = &priv->channel[queue]; 6505 unsigned long flags; 6506 u32 buf_size; 6507 int ret; 6508 6509 ret = __alloc_dma_rx_desc_resources(priv, &priv->dma_conf, queue); 6510 if (ret) { 6511 netdev_err(priv->dev, "Failed to alloc RX desc.\n"); 6512 return; 6513 } 6514 6515 ret = __init_dma_rx_desc_rings(priv, &priv->dma_conf, queue, GFP_KERNEL); 6516 if (ret) { 6517 __free_dma_rx_desc_resources(priv, &priv->dma_conf, queue); 6518 netdev_err(priv->dev, "Failed to init RX desc.\n"); 6519 return; 6520 } 6521 6522 stmmac_reset_rx_queue(priv, queue); 6523 stmmac_clear_rx_descriptors(priv, &priv->dma_conf, queue); 6524 6525 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6526 rx_q->dma_rx_phy, rx_q->queue_index); 6527 6528 rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num * 6529 sizeof(struct dma_desc)); 6530 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 6531 rx_q->rx_tail_addr, rx_q->queue_index); 6532 6533 if (rx_q->xsk_pool && rx_q->buf_alloc_num) { 6534 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 6535 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6536 buf_size, 6537 rx_q->queue_index); 6538 } else { 6539 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6540 priv->dma_conf.dma_buf_sz, 6541 rx_q->queue_index); 6542 } 6543 6544 stmmac_start_rx_dma(priv, queue); 6545 6546 spin_lock_irqsave(&ch->lock, flags); 6547 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0); 6548 spin_unlock_irqrestore(&ch->lock, flags); 6549 } 6550 6551 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue) 6552 { 6553 struct stmmac_channel *ch = &priv->channel[queue]; 6554 unsigned long flags; 6555 6556 spin_lock_irqsave(&ch->lock, flags); 6557 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1); 6558 spin_unlock_irqrestore(&ch->lock, flags); 6559 6560 stmmac_stop_tx_dma(priv, queue); 6561 __free_dma_tx_desc_resources(priv, &priv->dma_conf, queue); 6562 } 6563 6564 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue) 6565 { 6566 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 6567 struct stmmac_channel *ch = &priv->channel[queue]; 6568 unsigned long flags; 6569 int ret; 6570 6571 ret = __alloc_dma_tx_desc_resources(priv, &priv->dma_conf, queue); 6572 if (ret) { 6573 netdev_err(priv->dev, "Failed to alloc TX desc.\n"); 6574 return; 6575 } 6576 6577 ret = __init_dma_tx_desc_rings(priv, &priv->dma_conf, queue); 6578 if (ret) { 6579 __free_dma_tx_desc_resources(priv, &priv->dma_conf, queue); 6580 netdev_err(priv->dev, "Failed to init TX desc.\n"); 6581 return; 6582 } 6583 6584 stmmac_reset_tx_queue(priv, queue); 6585 stmmac_clear_tx_descriptors(priv, &priv->dma_conf, queue); 6586 6587 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6588 tx_q->dma_tx_phy, tx_q->queue_index); 6589 6590 if (tx_q->tbs & STMMAC_TBS_AVAIL) 6591 stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index); 6592 6593 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 6594 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 6595 tx_q->tx_tail_addr, tx_q->queue_index); 6596 6597 stmmac_start_tx_dma(priv, queue); 6598 6599 spin_lock_irqsave(&ch->lock, flags); 6600 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1); 6601 spin_unlock_irqrestore(&ch->lock, flags); 6602 } 6603 6604 void stmmac_xdp_release(struct net_device *dev) 6605 { 6606 struct stmmac_priv *priv = netdev_priv(dev); 6607 u32 chan; 6608 6609 /* Ensure tx function is not running */ 6610 netif_tx_disable(dev); 6611 6612 /* Disable NAPI process */ 6613 stmmac_disable_all_queues(priv); 6614 6615 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 6616 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); 6617 6618 /* Free the IRQ lines */ 6619 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0); 6620 6621 /* Stop TX/RX DMA channels */ 6622 stmmac_stop_all_dma(priv); 6623 6624 /* Release and free the Rx/Tx resources */ 6625 free_dma_desc_resources(priv, &priv->dma_conf); 6626 6627 /* Disable the MAC Rx/Tx */ 6628 stmmac_mac_set(priv, priv->ioaddr, false); 6629 6630 /* set trans_start so we don't get spurious 6631 * watchdogs during reset 6632 */ 6633 netif_trans_update(dev); 6634 netif_carrier_off(dev); 6635 } 6636 6637 int stmmac_xdp_open(struct net_device *dev) 6638 { 6639 struct stmmac_priv *priv = netdev_priv(dev); 6640 u32 rx_cnt = priv->plat->rx_queues_to_use; 6641 u32 tx_cnt = priv->plat->tx_queues_to_use; 6642 u32 dma_csr_ch = max(rx_cnt, tx_cnt); 6643 struct stmmac_rx_queue *rx_q; 6644 struct stmmac_tx_queue *tx_q; 6645 u32 buf_size; 6646 bool sph_en; 6647 u32 chan; 6648 int ret; 6649 6650 ret = alloc_dma_desc_resources(priv, &priv->dma_conf); 6651 if (ret < 0) { 6652 netdev_err(dev, "%s: DMA descriptors allocation failed\n", 6653 __func__); 6654 goto dma_desc_error; 6655 } 6656 6657 ret = init_dma_desc_rings(dev, &priv->dma_conf, GFP_KERNEL); 6658 if (ret < 0) { 6659 netdev_err(dev, "%s: DMA descriptors initialization failed\n", 6660 __func__); 6661 goto init_error; 6662 } 6663 6664 stmmac_reset_queues_param(priv); 6665 6666 /* DMA CSR Channel configuration */ 6667 for (chan = 0; chan < dma_csr_ch; chan++) { 6668 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 6669 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 6670 } 6671 6672 /* Adjust Split header */ 6673 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 6674 6675 /* DMA RX Channel Configuration */ 6676 for (chan = 0; chan < rx_cnt; chan++) { 6677 rx_q = &priv->dma_conf.rx_queue[chan]; 6678 6679 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6680 rx_q->dma_rx_phy, chan); 6681 6682 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 6683 (rx_q->buf_alloc_num * 6684 sizeof(struct dma_desc)); 6685 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 6686 rx_q->rx_tail_addr, chan); 6687 6688 if (rx_q->xsk_pool && rx_q->buf_alloc_num) { 6689 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 6690 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6691 buf_size, 6692 rx_q->queue_index); 6693 } else { 6694 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6695 priv->dma_conf.dma_buf_sz, 6696 rx_q->queue_index); 6697 } 6698 6699 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 6700 } 6701 6702 /* DMA TX Channel Configuration */ 6703 for (chan = 0; chan < tx_cnt; chan++) { 6704 tx_q = &priv->dma_conf.tx_queue[chan]; 6705 6706 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6707 tx_q->dma_tx_phy, chan); 6708 6709 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 6710 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 6711 tx_q->tx_tail_addr, chan); 6712 6713 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6714 tx_q->txtimer.function = stmmac_tx_timer; 6715 } 6716 6717 /* Enable the MAC Rx/Tx */ 6718 stmmac_mac_set(priv, priv->ioaddr, true); 6719 6720 /* Start Rx & Tx DMA Channels */ 6721 stmmac_start_all_dma(priv); 6722 6723 ret = stmmac_request_irq(dev); 6724 if (ret) 6725 goto irq_error; 6726 6727 /* Enable NAPI process*/ 6728 stmmac_enable_all_queues(priv); 6729 netif_carrier_on(dev); 6730 netif_tx_start_all_queues(dev); 6731 stmmac_enable_all_dma_irq(priv); 6732 6733 return 0; 6734 6735 irq_error: 6736 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 6737 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); 6738 6739 stmmac_hw_teardown(dev); 6740 init_error: 6741 free_dma_desc_resources(priv, &priv->dma_conf); 6742 dma_desc_error: 6743 return ret; 6744 } 6745 6746 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags) 6747 { 6748 struct stmmac_priv *priv = netdev_priv(dev); 6749 struct stmmac_rx_queue *rx_q; 6750 struct stmmac_tx_queue *tx_q; 6751 struct stmmac_channel *ch; 6752 6753 if (test_bit(STMMAC_DOWN, &priv->state) || 6754 !netif_carrier_ok(priv->dev)) 6755 return -ENETDOWN; 6756 6757 if (!stmmac_xdp_is_enabled(priv)) 6758 return -EINVAL; 6759 6760 if (queue >= priv->plat->rx_queues_to_use || 6761 queue >= priv->plat->tx_queues_to_use) 6762 return -EINVAL; 6763 6764 rx_q = &priv->dma_conf.rx_queue[queue]; 6765 tx_q = &priv->dma_conf.tx_queue[queue]; 6766 ch = &priv->channel[queue]; 6767 6768 if (!rx_q->xsk_pool && !tx_q->xsk_pool) 6769 return -EINVAL; 6770 6771 if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) { 6772 /* EQoS does not have per-DMA channel SW interrupt, 6773 * so we schedule RX Napi straight-away. 6774 */ 6775 if (likely(napi_schedule_prep(&ch->rxtx_napi))) 6776 __napi_schedule(&ch->rxtx_napi); 6777 } 6778 6779 return 0; 6780 } 6781 6782 static const struct net_device_ops stmmac_netdev_ops = { 6783 .ndo_open = stmmac_open, 6784 .ndo_start_xmit = stmmac_xmit, 6785 .ndo_stop = stmmac_release, 6786 .ndo_change_mtu = stmmac_change_mtu, 6787 .ndo_fix_features = stmmac_fix_features, 6788 .ndo_set_features = stmmac_set_features, 6789 .ndo_set_rx_mode = stmmac_set_rx_mode, 6790 .ndo_tx_timeout = stmmac_tx_timeout, 6791 .ndo_eth_ioctl = stmmac_ioctl, 6792 .ndo_setup_tc = stmmac_setup_tc, 6793 .ndo_select_queue = stmmac_select_queue, 6794 #ifdef CONFIG_NET_POLL_CONTROLLER 6795 .ndo_poll_controller = stmmac_poll_controller, 6796 #endif 6797 .ndo_set_mac_address = stmmac_set_mac_address, 6798 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid, 6799 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid, 6800 .ndo_bpf = stmmac_bpf, 6801 .ndo_xdp_xmit = stmmac_xdp_xmit, 6802 .ndo_xsk_wakeup = stmmac_xsk_wakeup, 6803 }; 6804 6805 static void stmmac_reset_subtask(struct stmmac_priv *priv) 6806 { 6807 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state)) 6808 return; 6809 if (test_bit(STMMAC_DOWN, &priv->state)) 6810 return; 6811 6812 netdev_err(priv->dev, "Reset adapter.\n"); 6813 6814 rtnl_lock(); 6815 netif_trans_update(priv->dev); 6816 while (test_and_set_bit(STMMAC_RESETING, &priv->state)) 6817 usleep_range(1000, 2000); 6818 6819 set_bit(STMMAC_DOWN, &priv->state); 6820 dev_close(priv->dev); 6821 dev_open(priv->dev, NULL); 6822 clear_bit(STMMAC_DOWN, &priv->state); 6823 clear_bit(STMMAC_RESETING, &priv->state); 6824 rtnl_unlock(); 6825 } 6826 6827 static void stmmac_service_task(struct work_struct *work) 6828 { 6829 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 6830 service_task); 6831 6832 stmmac_reset_subtask(priv); 6833 clear_bit(STMMAC_SERVICE_SCHED, &priv->state); 6834 } 6835 6836 /** 6837 * stmmac_hw_init - Init the MAC device 6838 * @priv: driver private structure 6839 * Description: this function is to configure the MAC device according to 6840 * some platform parameters or the HW capability register. It prepares the 6841 * driver to use either ring or chain modes and to setup either enhanced or 6842 * normal descriptors. 6843 */ 6844 static int stmmac_hw_init(struct stmmac_priv *priv) 6845 { 6846 int ret; 6847 6848 /* dwmac-sun8i only work in chain mode */ 6849 if (priv->plat->has_sun8i) 6850 chain_mode = 1; 6851 priv->chain_mode = chain_mode; 6852 6853 /* Initialize HW Interface */ 6854 ret = stmmac_hwif_init(priv); 6855 if (ret) 6856 return ret; 6857 6858 /* Get the HW capability (new GMAC newer than 3.50a) */ 6859 priv->hw_cap_support = stmmac_get_hw_features(priv); 6860 if (priv->hw_cap_support) { 6861 dev_info(priv->device, "DMA HW capability register supported\n"); 6862 6863 /* We can override some gmac/dma configuration fields: e.g. 6864 * enh_desc, tx_coe (e.g. that are passed through the 6865 * platform) with the values from the HW capability 6866 * register (if supported). 6867 */ 6868 priv->plat->enh_desc = priv->dma_cap.enh_desc; 6869 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up && 6870 !priv->plat->use_phy_wol; 6871 priv->hw->pmt = priv->plat->pmt; 6872 if (priv->dma_cap.hash_tb_sz) { 6873 priv->hw->multicast_filter_bins = 6874 (BIT(priv->dma_cap.hash_tb_sz) << 5); 6875 priv->hw->mcast_bits_log2 = 6876 ilog2(priv->hw->multicast_filter_bins); 6877 } 6878 6879 /* TXCOE doesn't work in thresh DMA mode */ 6880 if (priv->plat->force_thresh_dma_mode) 6881 priv->plat->tx_coe = 0; 6882 else 6883 priv->plat->tx_coe = priv->dma_cap.tx_coe; 6884 6885 /* In case of GMAC4 rx_coe is from HW cap register. */ 6886 priv->plat->rx_coe = priv->dma_cap.rx_coe; 6887 6888 if (priv->dma_cap.rx_coe_type2) 6889 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; 6890 else if (priv->dma_cap.rx_coe_type1) 6891 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; 6892 6893 } else { 6894 dev_info(priv->device, "No HW DMA feature register supported\n"); 6895 } 6896 6897 if (priv->plat->rx_coe) { 6898 priv->hw->rx_csum = priv->plat->rx_coe; 6899 dev_info(priv->device, "RX Checksum Offload Engine supported\n"); 6900 if (priv->synopsys_id < DWMAC_CORE_4_00) 6901 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum); 6902 } 6903 if (priv->plat->tx_coe) 6904 dev_info(priv->device, "TX Checksum insertion supported\n"); 6905 6906 if (priv->plat->pmt) { 6907 dev_info(priv->device, "Wake-Up On Lan supported\n"); 6908 device_set_wakeup_capable(priv->device, 1); 6909 } 6910 6911 if (priv->dma_cap.tsoen) 6912 dev_info(priv->device, "TSO supported\n"); 6913 6914 priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en; 6915 priv->hw->vlan_fail_q = priv->plat->vlan_fail_q; 6916 6917 /* Run HW quirks, if any */ 6918 if (priv->hwif_quirks) { 6919 ret = priv->hwif_quirks(priv); 6920 if (ret) 6921 return ret; 6922 } 6923 6924 /* Rx Watchdog is available in the COREs newer than the 3.40. 6925 * In some case, for example on bugged HW this feature 6926 * has to be disable and this can be done by passing the 6927 * riwt_off field from the platform. 6928 */ 6929 if (((priv->synopsys_id >= DWMAC_CORE_3_50) || 6930 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) { 6931 priv->use_riwt = 1; 6932 dev_info(priv->device, 6933 "Enable RX Mitigation via HW Watchdog Timer\n"); 6934 } 6935 6936 return 0; 6937 } 6938 6939 static void stmmac_napi_add(struct net_device *dev) 6940 { 6941 struct stmmac_priv *priv = netdev_priv(dev); 6942 u32 queue, maxq; 6943 6944 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 6945 6946 for (queue = 0; queue < maxq; queue++) { 6947 struct stmmac_channel *ch = &priv->channel[queue]; 6948 6949 ch->priv_data = priv; 6950 ch->index = queue; 6951 spin_lock_init(&ch->lock); 6952 6953 if (queue < priv->plat->rx_queues_to_use) { 6954 netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx); 6955 } 6956 if (queue < priv->plat->tx_queues_to_use) { 6957 netif_napi_add_tx(dev, &ch->tx_napi, 6958 stmmac_napi_poll_tx); 6959 } 6960 if (queue < priv->plat->rx_queues_to_use && 6961 queue < priv->plat->tx_queues_to_use) { 6962 netif_napi_add(dev, &ch->rxtx_napi, 6963 stmmac_napi_poll_rxtx); 6964 } 6965 } 6966 } 6967 6968 static void stmmac_napi_del(struct net_device *dev) 6969 { 6970 struct stmmac_priv *priv = netdev_priv(dev); 6971 u32 queue, maxq; 6972 6973 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 6974 6975 for (queue = 0; queue < maxq; queue++) { 6976 struct stmmac_channel *ch = &priv->channel[queue]; 6977 6978 if (queue < priv->plat->rx_queues_to_use) 6979 netif_napi_del(&ch->rx_napi); 6980 if (queue < priv->plat->tx_queues_to_use) 6981 netif_napi_del(&ch->tx_napi); 6982 if (queue < priv->plat->rx_queues_to_use && 6983 queue < priv->plat->tx_queues_to_use) { 6984 netif_napi_del(&ch->rxtx_napi); 6985 } 6986 } 6987 } 6988 6989 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt) 6990 { 6991 struct stmmac_priv *priv = netdev_priv(dev); 6992 int ret = 0, i; 6993 6994 if (netif_running(dev)) 6995 stmmac_release(dev); 6996 6997 stmmac_napi_del(dev); 6998 6999 priv->plat->rx_queues_to_use = rx_cnt; 7000 priv->plat->tx_queues_to_use = tx_cnt; 7001 if (!netif_is_rxfh_configured(dev)) 7002 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++) 7003 priv->rss.table[i] = ethtool_rxfh_indir_default(i, 7004 rx_cnt); 7005 7006 stmmac_napi_add(dev); 7007 7008 if (netif_running(dev)) 7009 ret = stmmac_open(dev); 7010 7011 return ret; 7012 } 7013 7014 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size) 7015 { 7016 struct stmmac_priv *priv = netdev_priv(dev); 7017 int ret = 0; 7018 7019 if (netif_running(dev)) 7020 stmmac_release(dev); 7021 7022 priv->dma_conf.dma_rx_size = rx_size; 7023 priv->dma_conf.dma_tx_size = tx_size; 7024 7025 if (netif_running(dev)) 7026 ret = stmmac_open(dev); 7027 7028 return ret; 7029 } 7030 7031 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n" 7032 static void stmmac_fpe_lp_task(struct work_struct *work) 7033 { 7034 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 7035 fpe_task); 7036 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 7037 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 7038 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 7039 bool *hs_enable = &fpe_cfg->hs_enable; 7040 bool *enable = &fpe_cfg->enable; 7041 int retries = 20; 7042 7043 while (retries-- > 0) { 7044 /* Bail out immediately if FPE handshake is OFF */ 7045 if (*lo_state == FPE_STATE_OFF || !*hs_enable) 7046 break; 7047 7048 if (*lo_state == FPE_STATE_ENTERING_ON && 7049 *lp_state == FPE_STATE_ENTERING_ON) { 7050 stmmac_fpe_configure(priv, priv->ioaddr, 7051 priv->plat->tx_queues_to_use, 7052 priv->plat->rx_queues_to_use, 7053 *enable); 7054 7055 netdev_info(priv->dev, "configured FPE\n"); 7056 7057 *lo_state = FPE_STATE_ON; 7058 *lp_state = FPE_STATE_ON; 7059 netdev_info(priv->dev, "!!! BOTH FPE stations ON\n"); 7060 break; 7061 } 7062 7063 if ((*lo_state == FPE_STATE_CAPABLE || 7064 *lo_state == FPE_STATE_ENTERING_ON) && 7065 *lp_state != FPE_STATE_ON) { 7066 netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT, 7067 *lo_state, *lp_state); 7068 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 7069 MPACKET_VERIFY); 7070 } 7071 /* Sleep then retry */ 7072 msleep(500); 7073 } 7074 7075 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); 7076 } 7077 7078 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable) 7079 { 7080 if (priv->plat->fpe_cfg->hs_enable != enable) { 7081 if (enable) { 7082 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 7083 MPACKET_VERIFY); 7084 } else { 7085 priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF; 7086 priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF; 7087 } 7088 7089 priv->plat->fpe_cfg->hs_enable = enable; 7090 } 7091 } 7092 7093 static int stmmac_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp) 7094 { 7095 const struct stmmac_xdp_buff *ctx = (void *)_ctx; 7096 struct dma_desc *desc_contains_ts = ctx->desc; 7097 struct stmmac_priv *priv = ctx->priv; 7098 struct dma_desc *ndesc = ctx->ndesc; 7099 struct dma_desc *desc = ctx->desc; 7100 u64 ns = 0; 7101 7102 if (!priv->hwts_rx_en) 7103 return -ENODATA; 7104 7105 /* For GMAC4, the valid timestamp is from CTX next desc. */ 7106 if (priv->plat->has_gmac4 || priv->plat->has_xgmac) 7107 desc_contains_ts = ndesc; 7108 7109 /* Check if timestamp is available */ 7110 if (stmmac_get_rx_timestamp_status(priv, desc, ndesc, priv->adv_ts)) { 7111 stmmac_get_timestamp(priv, desc_contains_ts, priv->adv_ts, &ns); 7112 ns -= priv->plat->cdc_error_adj; 7113 *timestamp = ns_to_ktime(ns); 7114 return 0; 7115 } 7116 7117 return -ENODATA; 7118 } 7119 7120 static const struct xdp_metadata_ops stmmac_xdp_metadata_ops = { 7121 .xmo_rx_timestamp = stmmac_xdp_rx_timestamp, 7122 }; 7123 7124 /** 7125 * stmmac_dvr_probe 7126 * @device: device pointer 7127 * @plat_dat: platform data pointer 7128 * @res: stmmac resource pointer 7129 * Description: this is the main probe function used to 7130 * call the alloc_etherdev, allocate the priv structure. 7131 * Return: 7132 * returns 0 on success, otherwise errno. 7133 */ 7134 int stmmac_dvr_probe(struct device *device, 7135 struct plat_stmmacenet_data *plat_dat, 7136 struct stmmac_resources *res) 7137 { 7138 struct net_device *ndev = NULL; 7139 struct stmmac_priv *priv; 7140 u32 rxq; 7141 int i, ret = 0; 7142 7143 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv), 7144 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES); 7145 if (!ndev) 7146 return -ENOMEM; 7147 7148 SET_NETDEV_DEV(ndev, device); 7149 7150 priv = netdev_priv(ndev); 7151 priv->device = device; 7152 priv->dev = ndev; 7153 7154 stmmac_set_ethtool_ops(ndev); 7155 priv->pause = pause; 7156 priv->plat = plat_dat; 7157 priv->ioaddr = res->addr; 7158 priv->dev->base_addr = (unsigned long)res->addr; 7159 priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en; 7160 7161 priv->dev->irq = res->irq; 7162 priv->wol_irq = res->wol_irq; 7163 priv->lpi_irq = res->lpi_irq; 7164 priv->sfty_ce_irq = res->sfty_ce_irq; 7165 priv->sfty_ue_irq = res->sfty_ue_irq; 7166 for (i = 0; i < MTL_MAX_RX_QUEUES; i++) 7167 priv->rx_irq[i] = res->rx_irq[i]; 7168 for (i = 0; i < MTL_MAX_TX_QUEUES; i++) 7169 priv->tx_irq[i] = res->tx_irq[i]; 7170 7171 if (!is_zero_ether_addr(res->mac)) 7172 eth_hw_addr_set(priv->dev, res->mac); 7173 7174 dev_set_drvdata(device, priv->dev); 7175 7176 /* Verify driver arguments */ 7177 stmmac_verify_args(); 7178 7179 priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL); 7180 if (!priv->af_xdp_zc_qps) 7181 return -ENOMEM; 7182 7183 /* Allocate workqueue */ 7184 priv->wq = create_singlethread_workqueue("stmmac_wq"); 7185 if (!priv->wq) { 7186 dev_err(priv->device, "failed to create workqueue\n"); 7187 ret = -ENOMEM; 7188 goto error_wq_init; 7189 } 7190 7191 INIT_WORK(&priv->service_task, stmmac_service_task); 7192 7193 /* Initialize Link Partner FPE workqueue */ 7194 INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task); 7195 7196 /* Override with kernel parameters if supplied XXX CRS XXX 7197 * this needs to have multiple instances 7198 */ 7199 if ((phyaddr >= 0) && (phyaddr <= 31)) 7200 priv->plat->phy_addr = phyaddr; 7201 7202 if (priv->plat->stmmac_rst) { 7203 ret = reset_control_assert(priv->plat->stmmac_rst); 7204 reset_control_deassert(priv->plat->stmmac_rst); 7205 /* Some reset controllers have only reset callback instead of 7206 * assert + deassert callbacks pair. 7207 */ 7208 if (ret == -ENOTSUPP) 7209 reset_control_reset(priv->plat->stmmac_rst); 7210 } 7211 7212 ret = reset_control_deassert(priv->plat->stmmac_ahb_rst); 7213 if (ret == -ENOTSUPP) 7214 dev_err(priv->device, "unable to bring out of ahb reset: %pe\n", 7215 ERR_PTR(ret)); 7216 7217 /* Init MAC and get the capabilities */ 7218 ret = stmmac_hw_init(priv); 7219 if (ret) 7220 goto error_hw_init; 7221 7222 /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch. 7223 */ 7224 if (priv->synopsys_id < DWMAC_CORE_5_20) 7225 priv->plat->dma_cfg->dche = false; 7226 7227 stmmac_check_ether_addr(priv); 7228 7229 ndev->netdev_ops = &stmmac_netdev_ops; 7230 7231 ndev->xdp_metadata_ops = &stmmac_xdp_metadata_ops; 7232 7233 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 7234 NETIF_F_RXCSUM; 7235 ndev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 7236 NETDEV_XDP_ACT_XSK_ZEROCOPY | 7237 NETDEV_XDP_ACT_NDO_XMIT; 7238 7239 ret = stmmac_tc_init(priv, priv); 7240 if (!ret) { 7241 ndev->hw_features |= NETIF_F_HW_TC; 7242 } 7243 7244 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 7245 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 7246 if (priv->plat->has_gmac4) 7247 ndev->hw_features |= NETIF_F_GSO_UDP_L4; 7248 priv->tso = true; 7249 dev_info(priv->device, "TSO feature enabled\n"); 7250 } 7251 7252 if (priv->dma_cap.sphen && !priv->plat->sph_disable) { 7253 ndev->hw_features |= NETIF_F_GRO; 7254 priv->sph_cap = true; 7255 priv->sph = priv->sph_cap; 7256 dev_info(priv->device, "SPH feature enabled\n"); 7257 } 7258 7259 /* Ideally our host DMA address width is the same as for the 7260 * device. However, it may differ and then we have to use our 7261 * host DMA width for allocation and the device DMA width for 7262 * register handling. 7263 */ 7264 if (priv->plat->host_dma_width) 7265 priv->dma_cap.host_dma_width = priv->plat->host_dma_width; 7266 else 7267 priv->dma_cap.host_dma_width = priv->dma_cap.addr64; 7268 7269 if (priv->dma_cap.host_dma_width) { 7270 ret = dma_set_mask_and_coherent(device, 7271 DMA_BIT_MASK(priv->dma_cap.host_dma_width)); 7272 if (!ret) { 7273 dev_info(priv->device, "Using %d/%d bits DMA host/device width\n", 7274 priv->dma_cap.host_dma_width, priv->dma_cap.addr64); 7275 7276 /* 7277 * If more than 32 bits can be addressed, make sure to 7278 * enable enhanced addressing mode. 7279 */ 7280 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT)) 7281 priv->plat->dma_cfg->eame = true; 7282 } else { 7283 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32)); 7284 if (ret) { 7285 dev_err(priv->device, "Failed to set DMA Mask\n"); 7286 goto error_hw_init; 7287 } 7288 7289 priv->dma_cap.host_dma_width = 32; 7290 } 7291 } 7292 7293 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 7294 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 7295 #ifdef STMMAC_VLAN_TAG_USED 7296 /* Both mac100 and gmac support receive VLAN tag detection */ 7297 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX; 7298 if (priv->dma_cap.vlhash) { 7299 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 7300 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER; 7301 } 7302 if (priv->dma_cap.vlins) { 7303 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX; 7304 if (priv->dma_cap.dvlan) 7305 ndev->features |= NETIF_F_HW_VLAN_STAG_TX; 7306 } 7307 #endif 7308 priv->msg_enable = netif_msg_init(debug, default_msg_level); 7309 7310 /* Initialize RSS */ 7311 rxq = priv->plat->rx_queues_to_use; 7312 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key)); 7313 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++) 7314 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq); 7315 7316 if (priv->dma_cap.rssen && priv->plat->rss_en) 7317 ndev->features |= NETIF_F_RXHASH; 7318 7319 ndev->vlan_features |= ndev->features; 7320 /* TSO doesn't work on VLANs yet */ 7321 ndev->vlan_features &= ~NETIF_F_TSO; 7322 7323 /* MTU range: 46 - hw-specific max */ 7324 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 7325 if (priv->plat->has_xgmac) 7326 ndev->max_mtu = XGMAC_JUMBO_LEN; 7327 else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00)) 7328 ndev->max_mtu = JUMBO_LEN; 7329 else 7330 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); 7331 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu 7332 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range. 7333 */ 7334 if ((priv->plat->maxmtu < ndev->max_mtu) && 7335 (priv->plat->maxmtu >= ndev->min_mtu)) 7336 ndev->max_mtu = priv->plat->maxmtu; 7337 else if (priv->plat->maxmtu < ndev->min_mtu) 7338 dev_warn(priv->device, 7339 "%s: warning: maxmtu having invalid value (%d)\n", 7340 __func__, priv->plat->maxmtu); 7341 7342 if (flow_ctrl) 7343 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ 7344 7345 ndev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 7346 7347 /* Setup channels NAPI */ 7348 stmmac_napi_add(ndev); 7349 7350 mutex_init(&priv->lock); 7351 7352 /* If a specific clk_csr value is passed from the platform 7353 * this means that the CSR Clock Range selection cannot be 7354 * changed at run-time and it is fixed. Viceversa the driver'll try to 7355 * set the MDC clock dynamically according to the csr actual 7356 * clock input. 7357 */ 7358 if (priv->plat->clk_csr >= 0) 7359 priv->clk_csr = priv->plat->clk_csr; 7360 else 7361 stmmac_clk_csr_set(priv); 7362 7363 stmmac_check_pcs_mode(priv); 7364 7365 pm_runtime_get_noresume(device); 7366 pm_runtime_set_active(device); 7367 if (!pm_runtime_enabled(device)) 7368 pm_runtime_enable(device); 7369 7370 if (priv->hw->pcs != STMMAC_PCS_TBI && 7371 priv->hw->pcs != STMMAC_PCS_RTBI) { 7372 /* MDIO bus Registration */ 7373 ret = stmmac_mdio_register(ndev); 7374 if (ret < 0) { 7375 dev_err_probe(priv->device, ret, 7376 "%s: MDIO bus (id: %d) registration failed\n", 7377 __func__, priv->plat->bus_id); 7378 goto error_mdio_register; 7379 } 7380 } 7381 7382 if (priv->plat->speed_mode_2500) 7383 priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv); 7384 7385 if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) { 7386 ret = stmmac_xpcs_setup(priv->mii); 7387 if (ret) 7388 goto error_xpcs_setup; 7389 } 7390 7391 ret = stmmac_phy_setup(priv); 7392 if (ret) { 7393 netdev_err(ndev, "failed to setup phy (%d)\n", ret); 7394 goto error_phy_setup; 7395 } 7396 7397 ret = register_netdev(ndev); 7398 if (ret) { 7399 dev_err(priv->device, "%s: ERROR %i registering the device\n", 7400 __func__, ret); 7401 goto error_netdev_register; 7402 } 7403 7404 #ifdef CONFIG_DEBUG_FS 7405 stmmac_init_fs(ndev); 7406 #endif 7407 7408 if (priv->plat->dump_debug_regs) 7409 priv->plat->dump_debug_regs(priv->plat->bsp_priv); 7410 7411 /* Let pm_runtime_put() disable the clocks. 7412 * If CONFIG_PM is not enabled, the clocks will stay powered. 7413 */ 7414 pm_runtime_put(device); 7415 7416 return ret; 7417 7418 error_netdev_register: 7419 phylink_destroy(priv->phylink); 7420 error_xpcs_setup: 7421 error_phy_setup: 7422 if (priv->hw->pcs != STMMAC_PCS_TBI && 7423 priv->hw->pcs != STMMAC_PCS_RTBI) 7424 stmmac_mdio_unregister(ndev); 7425 error_mdio_register: 7426 stmmac_napi_del(ndev); 7427 error_hw_init: 7428 destroy_workqueue(priv->wq); 7429 error_wq_init: 7430 bitmap_free(priv->af_xdp_zc_qps); 7431 7432 return ret; 7433 } 7434 EXPORT_SYMBOL_GPL(stmmac_dvr_probe); 7435 7436 /** 7437 * stmmac_dvr_remove 7438 * @dev: device pointer 7439 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 7440 * changes the link status, releases the DMA descriptor rings. 7441 */ 7442 void stmmac_dvr_remove(struct device *dev) 7443 { 7444 struct net_device *ndev = dev_get_drvdata(dev); 7445 struct stmmac_priv *priv = netdev_priv(ndev); 7446 7447 netdev_info(priv->dev, "%s: removing driver", __func__); 7448 7449 pm_runtime_get_sync(dev); 7450 7451 stmmac_stop_all_dma(priv); 7452 stmmac_mac_set(priv, priv->ioaddr, false); 7453 netif_carrier_off(ndev); 7454 unregister_netdev(ndev); 7455 7456 /* Serdes power down needs to happen after VLAN filter 7457 * is deleted that is triggered by unregister_netdev(). 7458 */ 7459 if (priv->plat->serdes_powerdown) 7460 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); 7461 7462 #ifdef CONFIG_DEBUG_FS 7463 stmmac_exit_fs(ndev); 7464 #endif 7465 phylink_destroy(priv->phylink); 7466 if (priv->plat->stmmac_rst) 7467 reset_control_assert(priv->plat->stmmac_rst); 7468 reset_control_assert(priv->plat->stmmac_ahb_rst); 7469 if (priv->hw->pcs != STMMAC_PCS_TBI && 7470 priv->hw->pcs != STMMAC_PCS_RTBI) 7471 stmmac_mdio_unregister(ndev); 7472 destroy_workqueue(priv->wq); 7473 mutex_destroy(&priv->lock); 7474 bitmap_free(priv->af_xdp_zc_qps); 7475 7476 pm_runtime_disable(dev); 7477 pm_runtime_put_noidle(dev); 7478 } 7479 EXPORT_SYMBOL_GPL(stmmac_dvr_remove); 7480 7481 /** 7482 * stmmac_suspend - suspend callback 7483 * @dev: device pointer 7484 * Description: this is the function to suspend the device and it is called 7485 * by the platform driver to stop the network queue, release the resources, 7486 * program the PMT register (for WoL), clean and release driver resources. 7487 */ 7488 int stmmac_suspend(struct device *dev) 7489 { 7490 struct net_device *ndev = dev_get_drvdata(dev); 7491 struct stmmac_priv *priv = netdev_priv(ndev); 7492 u32 chan; 7493 7494 if (!ndev || !netif_running(ndev)) 7495 return 0; 7496 7497 mutex_lock(&priv->lock); 7498 7499 netif_device_detach(ndev); 7500 7501 stmmac_disable_all_queues(priv); 7502 7503 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 7504 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); 7505 7506 if (priv->eee_enabled) { 7507 priv->tx_path_in_lpi_mode = false; 7508 del_timer_sync(&priv->eee_ctrl_timer); 7509 } 7510 7511 /* Stop TX/RX DMA */ 7512 stmmac_stop_all_dma(priv); 7513 7514 if (priv->plat->serdes_powerdown) 7515 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); 7516 7517 /* Enable Power down mode by programming the PMT regs */ 7518 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7519 stmmac_pmt(priv, priv->hw, priv->wolopts); 7520 priv->irq_wake = 1; 7521 } else { 7522 stmmac_mac_set(priv, priv->ioaddr, false); 7523 pinctrl_pm_select_sleep_state(priv->device); 7524 } 7525 7526 mutex_unlock(&priv->lock); 7527 7528 rtnl_lock(); 7529 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7530 phylink_suspend(priv->phylink, true); 7531 } else { 7532 if (device_may_wakeup(priv->device)) 7533 phylink_speed_down(priv->phylink, false); 7534 phylink_suspend(priv->phylink, false); 7535 } 7536 rtnl_unlock(); 7537 7538 if (priv->dma_cap.fpesel) { 7539 /* Disable FPE */ 7540 stmmac_fpe_configure(priv, priv->ioaddr, 7541 priv->plat->tx_queues_to_use, 7542 priv->plat->rx_queues_to_use, false); 7543 7544 stmmac_fpe_handshake(priv, false); 7545 stmmac_fpe_stop_wq(priv); 7546 } 7547 7548 priv->speed = SPEED_UNKNOWN; 7549 return 0; 7550 } 7551 EXPORT_SYMBOL_GPL(stmmac_suspend); 7552 7553 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue) 7554 { 7555 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 7556 7557 rx_q->cur_rx = 0; 7558 rx_q->dirty_rx = 0; 7559 } 7560 7561 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue) 7562 { 7563 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 7564 7565 tx_q->cur_tx = 0; 7566 tx_q->dirty_tx = 0; 7567 tx_q->mss = 0; 7568 7569 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 7570 } 7571 7572 /** 7573 * stmmac_reset_queues_param - reset queue parameters 7574 * @priv: device pointer 7575 */ 7576 static void stmmac_reset_queues_param(struct stmmac_priv *priv) 7577 { 7578 u32 rx_cnt = priv->plat->rx_queues_to_use; 7579 u32 tx_cnt = priv->plat->tx_queues_to_use; 7580 u32 queue; 7581 7582 for (queue = 0; queue < rx_cnt; queue++) 7583 stmmac_reset_rx_queue(priv, queue); 7584 7585 for (queue = 0; queue < tx_cnt; queue++) 7586 stmmac_reset_tx_queue(priv, queue); 7587 } 7588 7589 /** 7590 * stmmac_resume - resume callback 7591 * @dev: device pointer 7592 * Description: when resume this function is invoked to setup the DMA and CORE 7593 * in a usable state. 7594 */ 7595 int stmmac_resume(struct device *dev) 7596 { 7597 struct net_device *ndev = dev_get_drvdata(dev); 7598 struct stmmac_priv *priv = netdev_priv(ndev); 7599 int ret; 7600 7601 if (!netif_running(ndev)) 7602 return 0; 7603 7604 /* Power Down bit, into the PM register, is cleared 7605 * automatically as soon as a magic packet or a Wake-up frame 7606 * is received. Anyway, it's better to manually clear 7607 * this bit because it can generate problems while resuming 7608 * from another devices (e.g. serial console). 7609 */ 7610 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7611 mutex_lock(&priv->lock); 7612 stmmac_pmt(priv, priv->hw, 0); 7613 mutex_unlock(&priv->lock); 7614 priv->irq_wake = 0; 7615 } else { 7616 pinctrl_pm_select_default_state(priv->device); 7617 /* reset the phy so that it's ready */ 7618 if (priv->mii) 7619 stmmac_mdio_reset(priv->mii); 7620 } 7621 7622 if (!priv->plat->serdes_up_after_phy_linkup && priv->plat->serdes_powerup) { 7623 ret = priv->plat->serdes_powerup(ndev, 7624 priv->plat->bsp_priv); 7625 7626 if (ret < 0) 7627 return ret; 7628 } 7629 7630 rtnl_lock(); 7631 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7632 phylink_resume(priv->phylink); 7633 } else { 7634 phylink_resume(priv->phylink); 7635 if (device_may_wakeup(priv->device)) 7636 phylink_speed_up(priv->phylink); 7637 } 7638 rtnl_unlock(); 7639 7640 rtnl_lock(); 7641 mutex_lock(&priv->lock); 7642 7643 stmmac_reset_queues_param(priv); 7644 7645 stmmac_free_tx_skbufs(priv); 7646 stmmac_clear_descriptors(priv, &priv->dma_conf); 7647 7648 stmmac_hw_setup(ndev, false); 7649 stmmac_init_coalesce(priv); 7650 stmmac_set_rx_mode(ndev); 7651 7652 stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw); 7653 7654 stmmac_enable_all_queues(priv); 7655 stmmac_enable_all_dma_irq(priv); 7656 7657 mutex_unlock(&priv->lock); 7658 rtnl_unlock(); 7659 7660 netif_device_attach(ndev); 7661 7662 return 0; 7663 } 7664 EXPORT_SYMBOL_GPL(stmmac_resume); 7665 7666 #ifndef MODULE 7667 static int __init stmmac_cmdline_opt(char *str) 7668 { 7669 char *opt; 7670 7671 if (!str || !*str) 7672 return 1; 7673 while ((opt = strsep(&str, ",")) != NULL) { 7674 if (!strncmp(opt, "debug:", 6)) { 7675 if (kstrtoint(opt + 6, 0, &debug)) 7676 goto err; 7677 } else if (!strncmp(opt, "phyaddr:", 8)) { 7678 if (kstrtoint(opt + 8, 0, &phyaddr)) 7679 goto err; 7680 } else if (!strncmp(opt, "buf_sz:", 7)) { 7681 if (kstrtoint(opt + 7, 0, &buf_sz)) 7682 goto err; 7683 } else if (!strncmp(opt, "tc:", 3)) { 7684 if (kstrtoint(opt + 3, 0, &tc)) 7685 goto err; 7686 } else if (!strncmp(opt, "watchdog:", 9)) { 7687 if (kstrtoint(opt + 9, 0, &watchdog)) 7688 goto err; 7689 } else if (!strncmp(opt, "flow_ctrl:", 10)) { 7690 if (kstrtoint(opt + 10, 0, &flow_ctrl)) 7691 goto err; 7692 } else if (!strncmp(opt, "pause:", 6)) { 7693 if (kstrtoint(opt + 6, 0, &pause)) 7694 goto err; 7695 } else if (!strncmp(opt, "eee_timer:", 10)) { 7696 if (kstrtoint(opt + 10, 0, &eee_timer)) 7697 goto err; 7698 } else if (!strncmp(opt, "chain_mode:", 11)) { 7699 if (kstrtoint(opt + 11, 0, &chain_mode)) 7700 goto err; 7701 } 7702 } 7703 return 1; 7704 7705 err: 7706 pr_err("%s: ERROR broken module parameter conversion", __func__); 7707 return 1; 7708 } 7709 7710 __setup("stmmaceth=", stmmac_cmdline_opt); 7711 #endif /* MODULE */ 7712 7713 static int __init stmmac_init(void) 7714 { 7715 #ifdef CONFIG_DEBUG_FS 7716 /* Create debugfs main directory if it doesn't exist yet */ 7717 if (!stmmac_fs_dir) 7718 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); 7719 register_netdevice_notifier(&stmmac_notifier); 7720 #endif 7721 7722 return 0; 7723 } 7724 7725 static void __exit stmmac_exit(void) 7726 { 7727 #ifdef CONFIG_DEBUG_FS 7728 unregister_netdevice_notifier(&stmmac_notifier); 7729 debugfs_remove_recursive(stmmac_fs_dir); 7730 #endif 7731 } 7732 7733 module_init(stmmac_init) 7734 module_exit(stmmac_exit) 7735 7736 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); 7737 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); 7738 MODULE_LICENSE("GPL"); 7739