xref: /openbmc/linux/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c (revision 22fc4c4c9fd60427bcda00878cee94e7622cfa7a)
1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   The full GNU General Public License is included in this distribution in
17   the file called "COPYING".
18 
19   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
20 
21   Documentation available at:
22 	http://www.stlinux.com
23   Support available at:
24 	https://bugzilla.stlinux.com/
25 *******************************************************************************/
26 
27 #include <linux/clk.h>
28 #include <linux/kernel.h>
29 #include <linux/interrupt.h>
30 #include <linux/ip.h>
31 #include <linux/tcp.h>
32 #include <linux/skbuff.h>
33 #include <linux/ethtool.h>
34 #include <linux/if_ether.h>
35 #include <linux/crc32.h>
36 #include <linux/mii.h>
37 #include <linux/if.h>
38 #include <linux/if_vlan.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/slab.h>
41 #include <linux/prefetch.h>
42 #include <linux/pinctrl/consumer.h>
43 #ifdef CONFIG_DEBUG_FS
44 #include <linux/debugfs.h>
45 #include <linux/seq_file.h>
46 #endif /* CONFIG_DEBUG_FS */
47 #include <linux/net_tstamp.h>
48 #include <net/pkt_cls.h>
49 #include "stmmac_ptp.h"
50 #include "stmmac.h"
51 #include <linux/reset.h>
52 #include <linux/of_mdio.h>
53 #include "dwmac1000.h"
54 #include "dwxgmac2.h"
55 #include "hwif.h"
56 
57 #define	STMMAC_ALIGN(x)		__ALIGN_KERNEL(x, SMP_CACHE_BYTES)
58 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
59 
60 /* Module parameters */
61 #define TX_TIMEO	5000
62 static int watchdog = TX_TIMEO;
63 module_param(watchdog, int, 0644);
64 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
65 
66 static int debug = -1;
67 module_param(debug, int, 0644);
68 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
69 
70 static int phyaddr = -1;
71 module_param(phyaddr, int, 0444);
72 MODULE_PARM_DESC(phyaddr, "Physical device address");
73 
74 #define STMMAC_TX_THRESH	(DMA_TX_SIZE / 4)
75 #define STMMAC_RX_THRESH	(DMA_RX_SIZE / 4)
76 
77 static int flow_ctrl = FLOW_OFF;
78 module_param(flow_ctrl, int, 0644);
79 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
80 
81 static int pause = PAUSE_TIME;
82 module_param(pause, int, 0644);
83 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
84 
85 #define TC_DEFAULT 64
86 static int tc = TC_DEFAULT;
87 module_param(tc, int, 0644);
88 MODULE_PARM_DESC(tc, "DMA threshold control value");
89 
90 #define	DEFAULT_BUFSIZE	1536
91 static int buf_sz = DEFAULT_BUFSIZE;
92 module_param(buf_sz, int, 0644);
93 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
94 
95 #define	STMMAC_RX_COPYBREAK	256
96 
97 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
98 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
99 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
100 
101 #define STMMAC_DEFAULT_LPI_TIMER	1000
102 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
103 module_param(eee_timer, int, 0644);
104 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
105 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
106 
107 /* By default the driver will use the ring mode to manage tx and rx descriptors,
108  * but allow user to force to use the chain instead of the ring
109  */
110 static unsigned int chain_mode;
111 module_param(chain_mode, int, 0444);
112 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
113 
114 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
115 
116 #ifdef CONFIG_DEBUG_FS
117 static int stmmac_init_fs(struct net_device *dev);
118 static void stmmac_exit_fs(struct net_device *dev);
119 #endif
120 
121 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
122 
123 /**
124  * stmmac_verify_args - verify the driver parameters.
125  * Description: it checks the driver parameters and set a default in case of
126  * errors.
127  */
128 static void stmmac_verify_args(void)
129 {
130 	if (unlikely(watchdog < 0))
131 		watchdog = TX_TIMEO;
132 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
133 		buf_sz = DEFAULT_BUFSIZE;
134 	if (unlikely(flow_ctrl > 1))
135 		flow_ctrl = FLOW_AUTO;
136 	else if (likely(flow_ctrl < 0))
137 		flow_ctrl = FLOW_OFF;
138 	if (unlikely((pause < 0) || (pause > 0xffff)))
139 		pause = PAUSE_TIME;
140 	if (eee_timer < 0)
141 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
142 }
143 
144 /**
145  * stmmac_disable_all_queues - Disable all queues
146  * @priv: driver private structure
147  */
148 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
149 {
150 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
151 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
152 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
153 	u32 queue;
154 
155 	for (queue = 0; queue < maxq; queue++) {
156 		struct stmmac_channel *ch = &priv->channel[queue];
157 
158 		napi_disable(&ch->napi);
159 	}
160 }
161 
162 /**
163  * stmmac_enable_all_queues - Enable all queues
164  * @priv: driver private structure
165  */
166 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
167 {
168 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
169 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
170 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
171 	u32 queue;
172 
173 	for (queue = 0; queue < maxq; queue++) {
174 		struct stmmac_channel *ch = &priv->channel[queue];
175 
176 		napi_enable(&ch->napi);
177 	}
178 }
179 
180 /**
181  * stmmac_stop_all_queues - Stop all queues
182  * @priv: driver private structure
183  */
184 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
185 {
186 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
187 	u32 queue;
188 
189 	for (queue = 0; queue < tx_queues_cnt; queue++)
190 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
191 }
192 
193 /**
194  * stmmac_start_all_queues - Start all queues
195  * @priv: driver private structure
196  */
197 static void stmmac_start_all_queues(struct stmmac_priv *priv)
198 {
199 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
200 	u32 queue;
201 
202 	for (queue = 0; queue < tx_queues_cnt; queue++)
203 		netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
204 }
205 
206 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
207 {
208 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
209 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
210 		queue_work(priv->wq, &priv->service_task);
211 }
212 
213 static void stmmac_global_err(struct stmmac_priv *priv)
214 {
215 	netif_carrier_off(priv->dev);
216 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
217 	stmmac_service_event_schedule(priv);
218 }
219 
220 /**
221  * stmmac_clk_csr_set - dynamically set the MDC clock
222  * @priv: driver private structure
223  * Description: this is to dynamically set the MDC clock according to the csr
224  * clock input.
225  * Note:
226  *	If a specific clk_csr value is passed from the platform
227  *	this means that the CSR Clock Range selection cannot be
228  *	changed at run-time and it is fixed (as reported in the driver
229  *	documentation). Viceversa the driver will try to set the MDC
230  *	clock dynamically according to the actual clock input.
231  */
232 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
233 {
234 	u32 clk_rate;
235 
236 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
237 
238 	/* Platform provided default clk_csr would be assumed valid
239 	 * for all other cases except for the below mentioned ones.
240 	 * For values higher than the IEEE 802.3 specified frequency
241 	 * we can not estimate the proper divider as it is not known
242 	 * the frequency of clk_csr_i. So we do not change the default
243 	 * divider.
244 	 */
245 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
246 		if (clk_rate < CSR_F_35M)
247 			priv->clk_csr = STMMAC_CSR_20_35M;
248 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
249 			priv->clk_csr = STMMAC_CSR_35_60M;
250 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
251 			priv->clk_csr = STMMAC_CSR_60_100M;
252 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
253 			priv->clk_csr = STMMAC_CSR_100_150M;
254 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
255 			priv->clk_csr = STMMAC_CSR_150_250M;
256 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
257 			priv->clk_csr = STMMAC_CSR_250_300M;
258 	}
259 
260 	if (priv->plat->has_sun8i) {
261 		if (clk_rate > 160000000)
262 			priv->clk_csr = 0x03;
263 		else if (clk_rate > 80000000)
264 			priv->clk_csr = 0x02;
265 		else if (clk_rate > 40000000)
266 			priv->clk_csr = 0x01;
267 		else
268 			priv->clk_csr = 0;
269 	}
270 
271 	if (priv->plat->has_xgmac) {
272 		if (clk_rate > 400000000)
273 			priv->clk_csr = 0x5;
274 		else if (clk_rate > 350000000)
275 			priv->clk_csr = 0x4;
276 		else if (clk_rate > 300000000)
277 			priv->clk_csr = 0x3;
278 		else if (clk_rate > 250000000)
279 			priv->clk_csr = 0x2;
280 		else if (clk_rate > 150000000)
281 			priv->clk_csr = 0x1;
282 		else
283 			priv->clk_csr = 0x0;
284 	}
285 }
286 
287 static void print_pkt(unsigned char *buf, int len)
288 {
289 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
290 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
291 }
292 
293 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
294 {
295 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
296 	u32 avail;
297 
298 	if (tx_q->dirty_tx > tx_q->cur_tx)
299 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
300 	else
301 		avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
302 
303 	return avail;
304 }
305 
306 /**
307  * stmmac_rx_dirty - Get RX queue dirty
308  * @priv: driver private structure
309  * @queue: RX queue index
310  */
311 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
312 {
313 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
314 	u32 dirty;
315 
316 	if (rx_q->dirty_rx <= rx_q->cur_rx)
317 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
318 	else
319 		dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
320 
321 	return dirty;
322 }
323 
324 /**
325  * stmmac_hw_fix_mac_speed - callback for speed selection
326  * @priv: driver private structure
327  * Description: on some platforms (e.g. ST), some HW system configuration
328  * registers have to be set according to the link speed negotiated.
329  */
330 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
331 {
332 	struct net_device *ndev = priv->dev;
333 	struct phy_device *phydev = ndev->phydev;
334 
335 	if (likely(priv->plat->fix_mac_speed))
336 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
337 }
338 
339 /**
340  * stmmac_enable_eee_mode - check and enter in LPI mode
341  * @priv: driver private structure
342  * Description: this function is to verify and enter in LPI mode in case of
343  * EEE.
344  */
345 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
346 {
347 	u32 tx_cnt = priv->plat->tx_queues_to_use;
348 	u32 queue;
349 
350 	/* check if all TX queues have the work finished */
351 	for (queue = 0; queue < tx_cnt; queue++) {
352 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
353 
354 		if (tx_q->dirty_tx != tx_q->cur_tx)
355 			return; /* still unfinished work */
356 	}
357 
358 	/* Check and enter in LPI mode */
359 	if (!priv->tx_path_in_lpi_mode)
360 		stmmac_set_eee_mode(priv, priv->hw,
361 				priv->plat->en_tx_lpi_clockgating);
362 }
363 
364 /**
365  * stmmac_disable_eee_mode - disable and exit from LPI mode
366  * @priv: driver private structure
367  * Description: this function is to exit and disable EEE in case of
368  * LPI state is true. This is called by the xmit.
369  */
370 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
371 {
372 	stmmac_reset_eee_mode(priv, priv->hw);
373 	del_timer_sync(&priv->eee_ctrl_timer);
374 	priv->tx_path_in_lpi_mode = false;
375 }
376 
377 /**
378  * stmmac_eee_ctrl_timer - EEE TX SW timer.
379  * @arg : data hook
380  * Description:
381  *  if there is no data transfer and if we are not in LPI state,
382  *  then MAC Transmitter can be moved to LPI state.
383  */
384 static void stmmac_eee_ctrl_timer(struct timer_list *t)
385 {
386 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
387 
388 	stmmac_enable_eee_mode(priv);
389 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
390 }
391 
392 /**
393  * stmmac_eee_init - init EEE
394  * @priv: driver private structure
395  * Description:
396  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
397  *  can also manage EEE, this function enable the LPI state and start related
398  *  timer.
399  */
400 bool stmmac_eee_init(struct stmmac_priv *priv)
401 {
402 	struct net_device *ndev = priv->dev;
403 	int interface = priv->plat->interface;
404 	bool ret = false;
405 
406 	if ((interface != PHY_INTERFACE_MODE_MII) &&
407 	    (interface != PHY_INTERFACE_MODE_GMII) &&
408 	    !phy_interface_mode_is_rgmii(interface))
409 		goto out;
410 
411 	/* Using PCS we cannot dial with the phy registers at this stage
412 	 * so we do not support extra feature like EEE.
413 	 */
414 	if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
415 	    (priv->hw->pcs == STMMAC_PCS_TBI) ||
416 	    (priv->hw->pcs == STMMAC_PCS_RTBI))
417 		goto out;
418 
419 	/* MAC core supports the EEE feature. */
420 	if (priv->dma_cap.eee) {
421 		int tx_lpi_timer = priv->tx_lpi_timer;
422 
423 		/* Check if the PHY supports EEE */
424 		if (phy_init_eee(ndev->phydev, 1)) {
425 			/* To manage at run-time if the EEE cannot be supported
426 			 * anymore (for example because the lp caps have been
427 			 * changed).
428 			 * In that case the driver disable own timers.
429 			 */
430 			mutex_lock(&priv->lock);
431 			if (priv->eee_active) {
432 				netdev_dbg(priv->dev, "disable EEE\n");
433 				del_timer_sync(&priv->eee_ctrl_timer);
434 				stmmac_set_eee_timer(priv, priv->hw, 0,
435 						tx_lpi_timer);
436 			}
437 			priv->eee_active = 0;
438 			mutex_unlock(&priv->lock);
439 			goto out;
440 		}
441 		/* Activate the EEE and start timers */
442 		mutex_lock(&priv->lock);
443 		if (!priv->eee_active) {
444 			priv->eee_active = 1;
445 			timer_setup(&priv->eee_ctrl_timer,
446 				    stmmac_eee_ctrl_timer, 0);
447 			mod_timer(&priv->eee_ctrl_timer,
448 				  STMMAC_LPI_T(eee_timer));
449 
450 			stmmac_set_eee_timer(priv, priv->hw,
451 					STMMAC_DEFAULT_LIT_LS, tx_lpi_timer);
452 		}
453 		/* Set HW EEE according to the speed */
454 		stmmac_set_eee_pls(priv, priv->hw, ndev->phydev->link);
455 
456 		ret = true;
457 		mutex_unlock(&priv->lock);
458 
459 		netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
460 	}
461 out:
462 	return ret;
463 }
464 
465 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
466  * @priv: driver private structure
467  * @p : descriptor pointer
468  * @skb : the socket buffer
469  * Description :
470  * This function will read timestamp from the descriptor & pass it to stack.
471  * and also perform some sanity checks.
472  */
473 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
474 				   struct dma_desc *p, struct sk_buff *skb)
475 {
476 	struct skb_shared_hwtstamps shhwtstamp;
477 	u64 ns;
478 
479 	if (!priv->hwts_tx_en)
480 		return;
481 
482 	/* exit if skb doesn't support hw tstamp */
483 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
484 		return;
485 
486 	/* check tx tstamp status */
487 	if (stmmac_get_tx_timestamp_status(priv, p)) {
488 		/* get the valid tstamp */
489 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
490 
491 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
492 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
493 
494 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
495 		/* pass tstamp to stack */
496 		skb_tstamp_tx(skb, &shhwtstamp);
497 	}
498 
499 	return;
500 }
501 
502 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
503  * @priv: driver private structure
504  * @p : descriptor pointer
505  * @np : next descriptor pointer
506  * @skb : the socket buffer
507  * Description :
508  * This function will read received packet's timestamp from the descriptor
509  * and pass it to stack. It also perform some sanity checks.
510  */
511 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
512 				   struct dma_desc *np, struct sk_buff *skb)
513 {
514 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
515 	struct dma_desc *desc = p;
516 	u64 ns;
517 
518 	if (!priv->hwts_rx_en)
519 		return;
520 	/* For GMAC4, the valid timestamp is from CTX next desc. */
521 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
522 		desc = np;
523 
524 	/* Check if timestamp is available */
525 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
526 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
527 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
528 		shhwtstamp = skb_hwtstamps(skb);
529 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
530 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
531 	} else  {
532 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
533 	}
534 }
535 
536 /**
537  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
538  *  @dev: device pointer.
539  *  @ifr: An IOCTL specific structure, that can contain a pointer to
540  *  a proprietary structure used to pass information to the driver.
541  *  Description:
542  *  This function configures the MAC to enable/disable both outgoing(TX)
543  *  and incoming(RX) packets time stamping based on user input.
544  *  Return Value:
545  *  0 on success and an appropriate -ve integer on failure.
546  */
547 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
548 {
549 	struct stmmac_priv *priv = netdev_priv(dev);
550 	struct hwtstamp_config config;
551 	struct timespec64 now;
552 	u64 temp = 0;
553 	u32 ptp_v2 = 0;
554 	u32 tstamp_all = 0;
555 	u32 ptp_over_ipv4_udp = 0;
556 	u32 ptp_over_ipv6_udp = 0;
557 	u32 ptp_over_ethernet = 0;
558 	u32 snap_type_sel = 0;
559 	u32 ts_master_en = 0;
560 	u32 ts_event_en = 0;
561 	u32 value = 0;
562 	u32 sec_inc;
563 	bool xmac;
564 
565 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
566 
567 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
568 		netdev_alert(priv->dev, "No support for HW time stamping\n");
569 		priv->hwts_tx_en = 0;
570 		priv->hwts_rx_en = 0;
571 
572 		return -EOPNOTSUPP;
573 	}
574 
575 	if (copy_from_user(&config, ifr->ifr_data,
576 			   sizeof(struct hwtstamp_config)))
577 		return -EFAULT;
578 
579 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
580 		   __func__, config.flags, config.tx_type, config.rx_filter);
581 
582 	/* reserved for future extensions */
583 	if (config.flags)
584 		return -EINVAL;
585 
586 	if (config.tx_type != HWTSTAMP_TX_OFF &&
587 	    config.tx_type != HWTSTAMP_TX_ON)
588 		return -ERANGE;
589 
590 	if (priv->adv_ts) {
591 		switch (config.rx_filter) {
592 		case HWTSTAMP_FILTER_NONE:
593 			/* time stamp no incoming packet at all */
594 			config.rx_filter = HWTSTAMP_FILTER_NONE;
595 			break;
596 
597 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
598 			/* PTP v1, UDP, any kind of event packet */
599 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
600 			/* take time stamp for all event messages */
601 			if (xmac)
602 				snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1;
603 			else
604 				snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
605 
606 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
607 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
608 			break;
609 
610 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
611 			/* PTP v1, UDP, Sync packet */
612 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
613 			/* take time stamp for SYNC messages only */
614 			ts_event_en = PTP_TCR_TSEVNTENA;
615 
616 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
617 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
618 			break;
619 
620 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
621 			/* PTP v1, UDP, Delay_req packet */
622 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
623 			/* take time stamp for Delay_Req messages only */
624 			ts_master_en = PTP_TCR_TSMSTRENA;
625 			ts_event_en = PTP_TCR_TSEVNTENA;
626 
627 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
628 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
629 			break;
630 
631 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
632 			/* PTP v2, UDP, any kind of event packet */
633 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
634 			ptp_v2 = PTP_TCR_TSVER2ENA;
635 			/* take time stamp for all event messages */
636 			if (xmac)
637 				snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1;
638 			else
639 				snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
640 
641 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
642 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
643 			break;
644 
645 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
646 			/* PTP v2, UDP, Sync packet */
647 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
648 			ptp_v2 = PTP_TCR_TSVER2ENA;
649 			/* take time stamp for SYNC messages only */
650 			ts_event_en = PTP_TCR_TSEVNTENA;
651 
652 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
653 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
654 			break;
655 
656 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
657 			/* PTP v2, UDP, Delay_req packet */
658 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
659 			ptp_v2 = PTP_TCR_TSVER2ENA;
660 			/* take time stamp for Delay_Req messages only */
661 			ts_master_en = PTP_TCR_TSMSTRENA;
662 			ts_event_en = PTP_TCR_TSEVNTENA;
663 
664 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
665 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
666 			break;
667 
668 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
669 			/* PTP v2/802.AS1 any layer, any kind of event packet */
670 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
671 			ptp_v2 = PTP_TCR_TSVER2ENA;
672 			/* take time stamp for all event messages */
673 			if (xmac)
674 				snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1;
675 			else
676 				snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
677 
678 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
679 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
680 			ptp_over_ethernet = PTP_TCR_TSIPENA;
681 			break;
682 
683 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
684 			/* PTP v2/802.AS1, any layer, Sync packet */
685 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
686 			ptp_v2 = PTP_TCR_TSVER2ENA;
687 			/* take time stamp for SYNC messages only */
688 			ts_event_en = PTP_TCR_TSEVNTENA;
689 
690 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
691 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
692 			ptp_over_ethernet = PTP_TCR_TSIPENA;
693 			break;
694 
695 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
696 			/* PTP v2/802.AS1, any layer, Delay_req packet */
697 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
698 			ptp_v2 = PTP_TCR_TSVER2ENA;
699 			/* take time stamp for Delay_Req messages only */
700 			ts_master_en = PTP_TCR_TSMSTRENA;
701 			ts_event_en = PTP_TCR_TSEVNTENA;
702 
703 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
704 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
705 			ptp_over_ethernet = PTP_TCR_TSIPENA;
706 			break;
707 
708 		case HWTSTAMP_FILTER_NTP_ALL:
709 		case HWTSTAMP_FILTER_ALL:
710 			/* time stamp any incoming packet */
711 			config.rx_filter = HWTSTAMP_FILTER_ALL;
712 			tstamp_all = PTP_TCR_TSENALL;
713 			break;
714 
715 		default:
716 			return -ERANGE;
717 		}
718 	} else {
719 		switch (config.rx_filter) {
720 		case HWTSTAMP_FILTER_NONE:
721 			config.rx_filter = HWTSTAMP_FILTER_NONE;
722 			break;
723 		default:
724 			/* PTP v1, UDP, any kind of event packet */
725 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
726 			break;
727 		}
728 	}
729 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
730 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
731 
732 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
733 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
734 	else {
735 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
736 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
737 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
738 			 ts_master_en | snap_type_sel);
739 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
740 
741 		/* program Sub Second Increment reg */
742 		stmmac_config_sub_second_increment(priv,
743 				priv->ptpaddr, priv->plat->clk_ptp_rate,
744 				xmac, &sec_inc);
745 		temp = div_u64(1000000000ULL, sec_inc);
746 
747 		/* Store sub second increment and flags for later use */
748 		priv->sub_second_inc = sec_inc;
749 		priv->systime_flags = value;
750 
751 		/* calculate default added value:
752 		 * formula is :
753 		 * addend = (2^32)/freq_div_ratio;
754 		 * where, freq_div_ratio = 1e9ns/sec_inc
755 		 */
756 		temp = (u64)(temp << 32);
757 		priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
758 		stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
759 
760 		/* initialize system time */
761 		ktime_get_real_ts64(&now);
762 
763 		/* lower 32 bits of tv_sec are safe until y2106 */
764 		stmmac_init_systime(priv, priv->ptpaddr,
765 				(u32)now.tv_sec, now.tv_nsec);
766 	}
767 
768 	return copy_to_user(ifr->ifr_data, &config,
769 			    sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
770 }
771 
772 /**
773  * stmmac_init_ptp - init PTP
774  * @priv: driver private structure
775  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
776  * This is done by looking at the HW cap. register.
777  * This function also registers the ptp driver.
778  */
779 static int stmmac_init_ptp(struct stmmac_priv *priv)
780 {
781 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
782 
783 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
784 		return -EOPNOTSUPP;
785 
786 	priv->adv_ts = 0;
787 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
788 	if (xmac && priv->dma_cap.atime_stamp)
789 		priv->adv_ts = 1;
790 	/* Dwmac 3.x core with extend_desc can support adv_ts */
791 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
792 		priv->adv_ts = 1;
793 
794 	if (priv->dma_cap.time_stamp)
795 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
796 
797 	if (priv->adv_ts)
798 		netdev_info(priv->dev,
799 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
800 
801 	priv->hwts_tx_en = 0;
802 	priv->hwts_rx_en = 0;
803 
804 	stmmac_ptp_register(priv);
805 
806 	return 0;
807 }
808 
809 static void stmmac_release_ptp(struct stmmac_priv *priv)
810 {
811 	if (priv->plat->clk_ptp_ref)
812 		clk_disable_unprepare(priv->plat->clk_ptp_ref);
813 	stmmac_ptp_unregister(priv);
814 }
815 
816 /**
817  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
818  *  @priv: driver private structure
819  *  Description: It is used for configuring the flow control in all queues
820  */
821 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
822 {
823 	u32 tx_cnt = priv->plat->tx_queues_to_use;
824 
825 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
826 			priv->pause, tx_cnt);
827 }
828 
829 /**
830  * stmmac_adjust_link - adjusts the link parameters
831  * @dev: net device structure
832  * Description: this is the helper called by the physical abstraction layer
833  * drivers to communicate the phy link status. According the speed and duplex
834  * this driver can invoke registered glue-logic as well.
835  * It also invoke the eee initialization because it could happen when switch
836  * on different networks (that are eee capable).
837  */
838 static void stmmac_adjust_link(struct net_device *dev)
839 {
840 	struct stmmac_priv *priv = netdev_priv(dev);
841 	struct phy_device *phydev = dev->phydev;
842 	bool new_state = false;
843 
844 	if (!phydev)
845 		return;
846 
847 	mutex_lock(&priv->lock);
848 
849 	if (phydev->link) {
850 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
851 
852 		/* Now we make sure that we can be in full duplex mode.
853 		 * If not, we operate in half-duplex mode. */
854 		if (phydev->duplex != priv->oldduplex) {
855 			new_state = true;
856 			if (!phydev->duplex)
857 				ctrl &= ~priv->hw->link.duplex;
858 			else
859 				ctrl |= priv->hw->link.duplex;
860 			priv->oldduplex = phydev->duplex;
861 		}
862 		/* Flow Control operation */
863 		if (phydev->pause)
864 			stmmac_mac_flow_ctrl(priv, phydev->duplex);
865 
866 		if (phydev->speed != priv->speed) {
867 			new_state = true;
868 			ctrl &= ~priv->hw->link.speed_mask;
869 			switch (phydev->speed) {
870 			case SPEED_1000:
871 				ctrl |= priv->hw->link.speed1000;
872 				break;
873 			case SPEED_100:
874 				ctrl |= priv->hw->link.speed100;
875 				break;
876 			case SPEED_10:
877 				ctrl |= priv->hw->link.speed10;
878 				break;
879 			default:
880 				netif_warn(priv, link, priv->dev,
881 					   "broken speed: %d\n", phydev->speed);
882 				phydev->speed = SPEED_UNKNOWN;
883 				break;
884 			}
885 			if (phydev->speed != SPEED_UNKNOWN)
886 				stmmac_hw_fix_mac_speed(priv);
887 			priv->speed = phydev->speed;
888 		}
889 
890 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
891 
892 		if (!priv->oldlink) {
893 			new_state = true;
894 			priv->oldlink = true;
895 		}
896 	} else if (priv->oldlink) {
897 		new_state = true;
898 		priv->oldlink = false;
899 		priv->speed = SPEED_UNKNOWN;
900 		priv->oldduplex = DUPLEX_UNKNOWN;
901 	}
902 
903 	if (new_state && netif_msg_link(priv))
904 		phy_print_status(phydev);
905 
906 	mutex_unlock(&priv->lock);
907 
908 	if (phydev->is_pseudo_fixed_link)
909 		/* Stop PHY layer to call the hook to adjust the link in case
910 		 * of a switch is attached to the stmmac driver.
911 		 */
912 		phydev->irq = PHY_IGNORE_INTERRUPT;
913 	else
914 		/* At this stage, init the EEE if supported.
915 		 * Never called in case of fixed_link.
916 		 */
917 		priv->eee_enabled = stmmac_eee_init(priv);
918 }
919 
920 /**
921  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
922  * @priv: driver private structure
923  * Description: this is to verify if the HW supports the PCS.
924  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
925  * configured for the TBI, RTBI, or SGMII PHY interface.
926  */
927 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
928 {
929 	int interface = priv->plat->interface;
930 
931 	if (priv->dma_cap.pcs) {
932 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
933 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
934 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
935 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
936 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
937 			priv->hw->pcs = STMMAC_PCS_RGMII;
938 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
939 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
940 			priv->hw->pcs = STMMAC_PCS_SGMII;
941 		}
942 	}
943 }
944 
945 /**
946  * stmmac_init_phy - PHY initialization
947  * @dev: net device structure
948  * Description: it initializes the driver's PHY state, and attaches the PHY
949  * to the mac driver.
950  *  Return value:
951  *  0 on success
952  */
953 static int stmmac_init_phy(struct net_device *dev)
954 {
955 	struct stmmac_priv *priv = netdev_priv(dev);
956 	u32 tx_cnt = priv->plat->tx_queues_to_use;
957 	struct phy_device *phydev;
958 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
959 	char bus_id[MII_BUS_ID_SIZE];
960 	int interface = priv->plat->interface;
961 	int max_speed = priv->plat->max_speed;
962 	priv->oldlink = false;
963 	priv->speed = SPEED_UNKNOWN;
964 	priv->oldduplex = DUPLEX_UNKNOWN;
965 
966 	if (priv->plat->phy_node) {
967 		phydev = of_phy_connect(dev, priv->plat->phy_node,
968 					&stmmac_adjust_link, 0, interface);
969 	} else {
970 		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
971 			 priv->plat->bus_id);
972 
973 		snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
974 			 priv->plat->phy_addr);
975 		netdev_dbg(priv->dev, "%s: trying to attach to %s\n", __func__,
976 			   phy_id_fmt);
977 
978 		phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
979 				     interface);
980 	}
981 
982 	if (IS_ERR_OR_NULL(phydev)) {
983 		netdev_err(priv->dev, "Could not attach to PHY\n");
984 		if (!phydev)
985 			return -ENODEV;
986 
987 		return PTR_ERR(phydev);
988 	}
989 
990 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
991 	if ((interface == PHY_INTERFACE_MODE_MII) ||
992 	    (interface == PHY_INTERFACE_MODE_RMII) ||
993 		(max_speed < 1000 && max_speed > 0))
994 		phy_set_max_speed(phydev, SPEED_100);
995 
996 	/*
997 	 * Half-duplex mode not supported with multiqueue
998 	 * half-duplex can only works with single queue
999 	 */
1000 	if (tx_cnt > 1) {
1001 		phy_remove_link_mode(phydev,
1002 				     ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1003 		phy_remove_link_mode(phydev,
1004 				     ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1005 		phy_remove_link_mode(phydev,
1006 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1007 	}
1008 
1009 	/*
1010 	 * Broken HW is sometimes missing the pull-up resistor on the
1011 	 * MDIO line, which results in reads to non-existent devices returning
1012 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
1013 	 * device as well.
1014 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
1015 	 */
1016 	if (!priv->plat->phy_node && phydev->phy_id == 0) {
1017 		phy_disconnect(phydev);
1018 		return -ENODEV;
1019 	}
1020 
1021 	/* stmmac_adjust_link will change this to PHY_IGNORE_INTERRUPT to avoid
1022 	 * subsequent PHY polling, make sure we force a link transition if
1023 	 * we have a UP/DOWN/UP transition
1024 	 */
1025 	if (phydev->is_pseudo_fixed_link)
1026 		phydev->irq = PHY_POLL;
1027 
1028 	phy_attached_info(phydev);
1029 	return 0;
1030 }
1031 
1032 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1033 {
1034 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1035 	void *head_rx;
1036 	u32 queue;
1037 
1038 	/* Display RX rings */
1039 	for (queue = 0; queue < rx_cnt; queue++) {
1040 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1041 
1042 		pr_info("\tRX Queue %u rings\n", queue);
1043 
1044 		if (priv->extend_desc)
1045 			head_rx = (void *)rx_q->dma_erx;
1046 		else
1047 			head_rx = (void *)rx_q->dma_rx;
1048 
1049 		/* Display RX ring */
1050 		stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1051 	}
1052 }
1053 
1054 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1055 {
1056 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1057 	void *head_tx;
1058 	u32 queue;
1059 
1060 	/* Display TX rings */
1061 	for (queue = 0; queue < tx_cnt; queue++) {
1062 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1063 
1064 		pr_info("\tTX Queue %d rings\n", queue);
1065 
1066 		if (priv->extend_desc)
1067 			head_tx = (void *)tx_q->dma_etx;
1068 		else
1069 			head_tx = (void *)tx_q->dma_tx;
1070 
1071 		stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1072 	}
1073 }
1074 
1075 static void stmmac_display_rings(struct stmmac_priv *priv)
1076 {
1077 	/* Display RX ring */
1078 	stmmac_display_rx_rings(priv);
1079 
1080 	/* Display TX ring */
1081 	stmmac_display_tx_rings(priv);
1082 }
1083 
1084 static int stmmac_set_bfsize(int mtu, int bufsize)
1085 {
1086 	int ret = bufsize;
1087 
1088 	if (mtu >= BUF_SIZE_4KiB)
1089 		ret = BUF_SIZE_8KiB;
1090 	else if (mtu >= BUF_SIZE_2KiB)
1091 		ret = BUF_SIZE_4KiB;
1092 	else if (mtu > DEFAULT_BUFSIZE)
1093 		ret = BUF_SIZE_2KiB;
1094 	else
1095 		ret = DEFAULT_BUFSIZE;
1096 
1097 	return ret;
1098 }
1099 
1100 /**
1101  * stmmac_clear_rx_descriptors - clear RX descriptors
1102  * @priv: driver private structure
1103  * @queue: RX queue index
1104  * Description: this function is called to clear the RX descriptors
1105  * in case of both basic and extended descriptors are used.
1106  */
1107 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1108 {
1109 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1110 	int i;
1111 
1112 	/* Clear the RX descriptors */
1113 	for (i = 0; i < DMA_RX_SIZE; i++)
1114 		if (priv->extend_desc)
1115 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1116 					priv->use_riwt, priv->mode,
1117 					(i == DMA_RX_SIZE - 1));
1118 		else
1119 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1120 					priv->use_riwt, priv->mode,
1121 					(i == DMA_RX_SIZE - 1));
1122 }
1123 
1124 /**
1125  * stmmac_clear_tx_descriptors - clear tx descriptors
1126  * @priv: driver private structure
1127  * @queue: TX queue index.
1128  * Description: this function is called to clear the TX descriptors
1129  * in case of both basic and extended descriptors are used.
1130  */
1131 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1132 {
1133 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1134 	int i;
1135 
1136 	/* Clear the TX descriptors */
1137 	for (i = 0; i < DMA_TX_SIZE; i++)
1138 		if (priv->extend_desc)
1139 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1140 					priv->mode, (i == DMA_TX_SIZE - 1));
1141 		else
1142 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1143 					priv->mode, (i == DMA_TX_SIZE - 1));
1144 }
1145 
1146 /**
1147  * stmmac_clear_descriptors - clear descriptors
1148  * @priv: driver private structure
1149  * Description: this function is called to clear the TX and RX descriptors
1150  * in case of both basic and extended descriptors are used.
1151  */
1152 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1153 {
1154 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1155 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1156 	u32 queue;
1157 
1158 	/* Clear the RX descriptors */
1159 	for (queue = 0; queue < rx_queue_cnt; queue++)
1160 		stmmac_clear_rx_descriptors(priv, queue);
1161 
1162 	/* Clear the TX descriptors */
1163 	for (queue = 0; queue < tx_queue_cnt; queue++)
1164 		stmmac_clear_tx_descriptors(priv, queue);
1165 }
1166 
1167 /**
1168  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1169  * @priv: driver private structure
1170  * @p: descriptor pointer
1171  * @i: descriptor index
1172  * @flags: gfp flag
1173  * @queue: RX queue index
1174  * Description: this function is called to allocate a receive buffer, perform
1175  * the DMA mapping and init the descriptor.
1176  */
1177 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1178 				  int i, gfp_t flags, u32 queue)
1179 {
1180 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1181 	struct sk_buff *skb;
1182 
1183 	skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
1184 	if (!skb) {
1185 		netdev_err(priv->dev,
1186 			   "%s: Rx init fails; skb is NULL\n", __func__);
1187 		return -ENOMEM;
1188 	}
1189 	rx_q->rx_skbuff[i] = skb;
1190 	rx_q->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
1191 						priv->dma_buf_sz,
1192 						DMA_FROM_DEVICE);
1193 	if (dma_mapping_error(priv->device, rx_q->rx_skbuff_dma[i])) {
1194 		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
1195 		dev_kfree_skb_any(skb);
1196 		return -EINVAL;
1197 	}
1198 
1199 	stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[i]);
1200 
1201 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1202 		stmmac_init_desc3(priv, p);
1203 
1204 	return 0;
1205 }
1206 
1207 /**
1208  * stmmac_free_rx_buffer - free RX dma buffers
1209  * @priv: private structure
1210  * @queue: RX queue index
1211  * @i: buffer index.
1212  */
1213 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1214 {
1215 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1216 
1217 	if (rx_q->rx_skbuff[i]) {
1218 		dma_unmap_single(priv->device, rx_q->rx_skbuff_dma[i],
1219 				 priv->dma_buf_sz, DMA_FROM_DEVICE);
1220 		dev_kfree_skb_any(rx_q->rx_skbuff[i]);
1221 	}
1222 	rx_q->rx_skbuff[i] = NULL;
1223 }
1224 
1225 /**
1226  * stmmac_free_tx_buffer - free RX dma buffers
1227  * @priv: private structure
1228  * @queue: RX queue index
1229  * @i: buffer index.
1230  */
1231 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1232 {
1233 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1234 
1235 	if (tx_q->tx_skbuff_dma[i].buf) {
1236 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1237 			dma_unmap_page(priv->device,
1238 				       tx_q->tx_skbuff_dma[i].buf,
1239 				       tx_q->tx_skbuff_dma[i].len,
1240 				       DMA_TO_DEVICE);
1241 		else
1242 			dma_unmap_single(priv->device,
1243 					 tx_q->tx_skbuff_dma[i].buf,
1244 					 tx_q->tx_skbuff_dma[i].len,
1245 					 DMA_TO_DEVICE);
1246 	}
1247 
1248 	if (tx_q->tx_skbuff[i]) {
1249 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1250 		tx_q->tx_skbuff[i] = NULL;
1251 		tx_q->tx_skbuff_dma[i].buf = 0;
1252 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1253 	}
1254 }
1255 
1256 /**
1257  * init_dma_rx_desc_rings - init the RX descriptor rings
1258  * @dev: net device structure
1259  * @flags: gfp flag.
1260  * Description: this function initializes the DMA RX descriptors
1261  * and allocates the socket buffers. It supports the chained and ring
1262  * modes.
1263  */
1264 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1265 {
1266 	struct stmmac_priv *priv = netdev_priv(dev);
1267 	u32 rx_count = priv->plat->rx_queues_to_use;
1268 	int ret = -ENOMEM;
1269 	int bfsize = 0;
1270 	int queue;
1271 	int i;
1272 
1273 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
1274 	if (bfsize < 0)
1275 		bfsize = 0;
1276 
1277 	if (bfsize < BUF_SIZE_16KiB)
1278 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1279 
1280 	priv->dma_buf_sz = bfsize;
1281 
1282 	/* RX INITIALIZATION */
1283 	netif_dbg(priv, probe, priv->dev,
1284 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1285 
1286 	for (queue = 0; queue < rx_count; queue++) {
1287 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1288 
1289 		netif_dbg(priv, probe, priv->dev,
1290 			  "(%s) dma_rx_phy=0x%08x\n", __func__,
1291 			  (u32)rx_q->dma_rx_phy);
1292 
1293 		for (i = 0; i < DMA_RX_SIZE; i++) {
1294 			struct dma_desc *p;
1295 
1296 			if (priv->extend_desc)
1297 				p = &((rx_q->dma_erx + i)->basic);
1298 			else
1299 				p = rx_q->dma_rx + i;
1300 
1301 			ret = stmmac_init_rx_buffers(priv, p, i, flags,
1302 						     queue);
1303 			if (ret)
1304 				goto err_init_rx_buffers;
1305 
1306 			netif_dbg(priv, probe, priv->dev, "[%p]\t[%p]\t[%x]\n",
1307 				  rx_q->rx_skbuff[i], rx_q->rx_skbuff[i]->data,
1308 				  (unsigned int)rx_q->rx_skbuff_dma[i]);
1309 		}
1310 
1311 		rx_q->cur_rx = 0;
1312 		rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1313 
1314 		stmmac_clear_rx_descriptors(priv, queue);
1315 
1316 		/* Setup the chained descriptor addresses */
1317 		if (priv->mode == STMMAC_CHAIN_MODE) {
1318 			if (priv->extend_desc)
1319 				stmmac_mode_init(priv, rx_q->dma_erx,
1320 						rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1321 			else
1322 				stmmac_mode_init(priv, rx_q->dma_rx,
1323 						rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1324 		}
1325 	}
1326 
1327 	buf_sz = bfsize;
1328 
1329 	return 0;
1330 
1331 err_init_rx_buffers:
1332 	while (queue >= 0) {
1333 		while (--i >= 0)
1334 			stmmac_free_rx_buffer(priv, queue, i);
1335 
1336 		if (queue == 0)
1337 			break;
1338 
1339 		i = DMA_RX_SIZE;
1340 		queue--;
1341 	}
1342 
1343 	return ret;
1344 }
1345 
1346 /**
1347  * init_dma_tx_desc_rings - init the TX descriptor rings
1348  * @dev: net device structure.
1349  * Description: this function initializes the DMA TX descriptors
1350  * and allocates the socket buffers. It supports the chained and ring
1351  * modes.
1352  */
1353 static int init_dma_tx_desc_rings(struct net_device *dev)
1354 {
1355 	struct stmmac_priv *priv = netdev_priv(dev);
1356 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1357 	u32 queue;
1358 	int i;
1359 
1360 	for (queue = 0; queue < tx_queue_cnt; queue++) {
1361 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1362 
1363 		netif_dbg(priv, probe, priv->dev,
1364 			  "(%s) dma_tx_phy=0x%08x\n", __func__,
1365 			 (u32)tx_q->dma_tx_phy);
1366 
1367 		/* Setup the chained descriptor addresses */
1368 		if (priv->mode == STMMAC_CHAIN_MODE) {
1369 			if (priv->extend_desc)
1370 				stmmac_mode_init(priv, tx_q->dma_etx,
1371 						tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1372 			else
1373 				stmmac_mode_init(priv, tx_q->dma_tx,
1374 						tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1375 		}
1376 
1377 		for (i = 0; i < DMA_TX_SIZE; i++) {
1378 			struct dma_desc *p;
1379 			if (priv->extend_desc)
1380 				p = &((tx_q->dma_etx + i)->basic);
1381 			else
1382 				p = tx_q->dma_tx + i;
1383 
1384 			stmmac_clear_desc(priv, p);
1385 
1386 			tx_q->tx_skbuff_dma[i].buf = 0;
1387 			tx_q->tx_skbuff_dma[i].map_as_page = false;
1388 			tx_q->tx_skbuff_dma[i].len = 0;
1389 			tx_q->tx_skbuff_dma[i].last_segment = false;
1390 			tx_q->tx_skbuff[i] = NULL;
1391 		}
1392 
1393 		tx_q->dirty_tx = 0;
1394 		tx_q->cur_tx = 0;
1395 		tx_q->mss = 0;
1396 
1397 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1398 	}
1399 
1400 	return 0;
1401 }
1402 
1403 /**
1404  * init_dma_desc_rings - init the RX/TX descriptor rings
1405  * @dev: net device structure
1406  * @flags: gfp flag.
1407  * Description: this function initializes the DMA RX/TX descriptors
1408  * and allocates the socket buffers. It supports the chained and ring
1409  * modes.
1410  */
1411 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1412 {
1413 	struct stmmac_priv *priv = netdev_priv(dev);
1414 	int ret;
1415 
1416 	ret = init_dma_rx_desc_rings(dev, flags);
1417 	if (ret)
1418 		return ret;
1419 
1420 	ret = init_dma_tx_desc_rings(dev);
1421 
1422 	stmmac_clear_descriptors(priv);
1423 
1424 	if (netif_msg_hw(priv))
1425 		stmmac_display_rings(priv);
1426 
1427 	return ret;
1428 }
1429 
1430 /**
1431  * dma_free_rx_skbufs - free RX dma buffers
1432  * @priv: private structure
1433  * @queue: RX queue index
1434  */
1435 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1436 {
1437 	int i;
1438 
1439 	for (i = 0; i < DMA_RX_SIZE; i++)
1440 		stmmac_free_rx_buffer(priv, queue, i);
1441 }
1442 
1443 /**
1444  * dma_free_tx_skbufs - free TX dma buffers
1445  * @priv: private structure
1446  * @queue: TX queue index
1447  */
1448 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1449 {
1450 	int i;
1451 
1452 	for (i = 0; i < DMA_TX_SIZE; i++)
1453 		stmmac_free_tx_buffer(priv, queue, i);
1454 }
1455 
1456 /**
1457  * free_dma_rx_desc_resources - free RX dma desc resources
1458  * @priv: private structure
1459  */
1460 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1461 {
1462 	u32 rx_count = priv->plat->rx_queues_to_use;
1463 	u32 queue;
1464 
1465 	/* Free RX queue resources */
1466 	for (queue = 0; queue < rx_count; queue++) {
1467 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1468 
1469 		/* Release the DMA RX socket buffers */
1470 		dma_free_rx_skbufs(priv, queue);
1471 
1472 		/* Free DMA regions of consistent memory previously allocated */
1473 		if (!priv->extend_desc)
1474 			dma_free_coherent(priv->device,
1475 					  DMA_RX_SIZE * sizeof(struct dma_desc),
1476 					  rx_q->dma_rx, rx_q->dma_rx_phy);
1477 		else
1478 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1479 					  sizeof(struct dma_extended_desc),
1480 					  rx_q->dma_erx, rx_q->dma_rx_phy);
1481 
1482 		kfree(rx_q->rx_skbuff_dma);
1483 		kfree(rx_q->rx_skbuff);
1484 	}
1485 }
1486 
1487 /**
1488  * free_dma_tx_desc_resources - free TX dma desc resources
1489  * @priv: private structure
1490  */
1491 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1492 {
1493 	u32 tx_count = priv->plat->tx_queues_to_use;
1494 	u32 queue;
1495 
1496 	/* Free TX queue resources */
1497 	for (queue = 0; queue < tx_count; queue++) {
1498 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1499 
1500 		/* Release the DMA TX socket buffers */
1501 		dma_free_tx_skbufs(priv, queue);
1502 
1503 		/* Free DMA regions of consistent memory previously allocated */
1504 		if (!priv->extend_desc)
1505 			dma_free_coherent(priv->device,
1506 					  DMA_TX_SIZE * sizeof(struct dma_desc),
1507 					  tx_q->dma_tx, tx_q->dma_tx_phy);
1508 		else
1509 			dma_free_coherent(priv->device, DMA_TX_SIZE *
1510 					  sizeof(struct dma_extended_desc),
1511 					  tx_q->dma_etx, tx_q->dma_tx_phy);
1512 
1513 		kfree(tx_q->tx_skbuff_dma);
1514 		kfree(tx_q->tx_skbuff);
1515 	}
1516 }
1517 
1518 /**
1519  * alloc_dma_rx_desc_resources - alloc RX resources.
1520  * @priv: private structure
1521  * Description: according to which descriptor can be used (extend or basic)
1522  * this function allocates the resources for TX and RX paths. In case of
1523  * reception, for example, it pre-allocated the RX socket buffer in order to
1524  * allow zero-copy mechanism.
1525  */
1526 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1527 {
1528 	u32 rx_count = priv->plat->rx_queues_to_use;
1529 	int ret = -ENOMEM;
1530 	u32 queue;
1531 
1532 	/* RX queues buffers and DMA */
1533 	for (queue = 0; queue < rx_count; queue++) {
1534 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1535 
1536 		rx_q->queue_index = queue;
1537 		rx_q->priv_data = priv;
1538 
1539 		rx_q->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE,
1540 						    sizeof(dma_addr_t),
1541 						    GFP_KERNEL);
1542 		if (!rx_q->rx_skbuff_dma)
1543 			goto err_dma;
1544 
1545 		rx_q->rx_skbuff = kmalloc_array(DMA_RX_SIZE,
1546 						sizeof(struct sk_buff *),
1547 						GFP_KERNEL);
1548 		if (!rx_q->rx_skbuff)
1549 			goto err_dma;
1550 
1551 		if (priv->extend_desc) {
1552 			rx_q->dma_erx = dma_alloc_coherent(priv->device,
1553 							   DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1554 							   &rx_q->dma_rx_phy,
1555 							   GFP_KERNEL);
1556 			if (!rx_q->dma_erx)
1557 				goto err_dma;
1558 
1559 		} else {
1560 			rx_q->dma_rx = dma_alloc_coherent(priv->device,
1561 							  DMA_RX_SIZE * sizeof(struct dma_desc),
1562 							  &rx_q->dma_rx_phy,
1563 							  GFP_KERNEL);
1564 			if (!rx_q->dma_rx)
1565 				goto err_dma;
1566 		}
1567 	}
1568 
1569 	return 0;
1570 
1571 err_dma:
1572 	free_dma_rx_desc_resources(priv);
1573 
1574 	return ret;
1575 }
1576 
1577 /**
1578  * alloc_dma_tx_desc_resources - alloc TX resources.
1579  * @priv: private structure
1580  * Description: according to which descriptor can be used (extend or basic)
1581  * this function allocates the resources for TX and RX paths. In case of
1582  * reception, for example, it pre-allocated the RX socket buffer in order to
1583  * allow zero-copy mechanism.
1584  */
1585 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1586 {
1587 	u32 tx_count = priv->plat->tx_queues_to_use;
1588 	int ret = -ENOMEM;
1589 	u32 queue;
1590 
1591 	/* TX queues buffers and DMA */
1592 	for (queue = 0; queue < tx_count; queue++) {
1593 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1594 
1595 		tx_q->queue_index = queue;
1596 		tx_q->priv_data = priv;
1597 
1598 		tx_q->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1599 						    sizeof(*tx_q->tx_skbuff_dma),
1600 						    GFP_KERNEL);
1601 		if (!tx_q->tx_skbuff_dma)
1602 			goto err_dma;
1603 
1604 		tx_q->tx_skbuff = kmalloc_array(DMA_TX_SIZE,
1605 						sizeof(struct sk_buff *),
1606 						GFP_KERNEL);
1607 		if (!tx_q->tx_skbuff)
1608 			goto err_dma;
1609 
1610 		if (priv->extend_desc) {
1611 			tx_q->dma_etx = dma_alloc_coherent(priv->device,
1612 							   DMA_TX_SIZE * sizeof(struct dma_extended_desc),
1613 							   &tx_q->dma_tx_phy,
1614 							   GFP_KERNEL);
1615 			if (!tx_q->dma_etx)
1616 				goto err_dma;
1617 		} else {
1618 			tx_q->dma_tx = dma_alloc_coherent(priv->device,
1619 							  DMA_TX_SIZE * sizeof(struct dma_desc),
1620 							  &tx_q->dma_tx_phy,
1621 							  GFP_KERNEL);
1622 			if (!tx_q->dma_tx)
1623 				goto err_dma;
1624 		}
1625 	}
1626 
1627 	return 0;
1628 
1629 err_dma:
1630 	free_dma_tx_desc_resources(priv);
1631 
1632 	return ret;
1633 }
1634 
1635 /**
1636  * alloc_dma_desc_resources - alloc TX/RX resources.
1637  * @priv: private structure
1638  * Description: according to which descriptor can be used (extend or basic)
1639  * this function allocates the resources for TX and RX paths. In case of
1640  * reception, for example, it pre-allocated the RX socket buffer in order to
1641  * allow zero-copy mechanism.
1642  */
1643 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1644 {
1645 	/* RX Allocation */
1646 	int ret = alloc_dma_rx_desc_resources(priv);
1647 
1648 	if (ret)
1649 		return ret;
1650 
1651 	ret = alloc_dma_tx_desc_resources(priv);
1652 
1653 	return ret;
1654 }
1655 
1656 /**
1657  * free_dma_desc_resources - free dma desc resources
1658  * @priv: private structure
1659  */
1660 static void free_dma_desc_resources(struct stmmac_priv *priv)
1661 {
1662 	/* Release the DMA RX socket buffers */
1663 	free_dma_rx_desc_resources(priv);
1664 
1665 	/* Release the DMA TX socket buffers */
1666 	free_dma_tx_desc_resources(priv);
1667 }
1668 
1669 /**
1670  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1671  *  @priv: driver private structure
1672  *  Description: It is used for enabling the rx queues in the MAC
1673  */
1674 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1675 {
1676 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
1677 	int queue;
1678 	u8 mode;
1679 
1680 	for (queue = 0; queue < rx_queues_count; queue++) {
1681 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1682 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1683 	}
1684 }
1685 
1686 /**
1687  * stmmac_start_rx_dma - start RX DMA channel
1688  * @priv: driver private structure
1689  * @chan: RX channel index
1690  * Description:
1691  * This starts a RX DMA channel
1692  */
1693 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1694 {
1695 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1696 	stmmac_start_rx(priv, priv->ioaddr, chan);
1697 }
1698 
1699 /**
1700  * stmmac_start_tx_dma - start TX DMA channel
1701  * @priv: driver private structure
1702  * @chan: TX channel index
1703  * Description:
1704  * This starts a TX DMA channel
1705  */
1706 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1707 {
1708 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1709 	stmmac_start_tx(priv, priv->ioaddr, chan);
1710 }
1711 
1712 /**
1713  * stmmac_stop_rx_dma - stop RX DMA channel
1714  * @priv: driver private structure
1715  * @chan: RX channel index
1716  * Description:
1717  * This stops a RX DMA channel
1718  */
1719 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1720 {
1721 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1722 	stmmac_stop_rx(priv, priv->ioaddr, chan);
1723 }
1724 
1725 /**
1726  * stmmac_stop_tx_dma - stop TX DMA channel
1727  * @priv: driver private structure
1728  * @chan: TX channel index
1729  * Description:
1730  * This stops a TX DMA channel
1731  */
1732 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1733 {
1734 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1735 	stmmac_stop_tx(priv, priv->ioaddr, chan);
1736 }
1737 
1738 /**
1739  * stmmac_start_all_dma - start all RX and TX DMA channels
1740  * @priv: driver private structure
1741  * Description:
1742  * This starts all the RX and TX DMA channels
1743  */
1744 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1745 {
1746 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1747 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1748 	u32 chan = 0;
1749 
1750 	for (chan = 0; chan < rx_channels_count; chan++)
1751 		stmmac_start_rx_dma(priv, chan);
1752 
1753 	for (chan = 0; chan < tx_channels_count; chan++)
1754 		stmmac_start_tx_dma(priv, chan);
1755 }
1756 
1757 /**
1758  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1759  * @priv: driver private structure
1760  * Description:
1761  * This stops the RX and TX DMA channels
1762  */
1763 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1764 {
1765 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1766 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1767 	u32 chan = 0;
1768 
1769 	for (chan = 0; chan < rx_channels_count; chan++)
1770 		stmmac_stop_rx_dma(priv, chan);
1771 
1772 	for (chan = 0; chan < tx_channels_count; chan++)
1773 		stmmac_stop_tx_dma(priv, chan);
1774 }
1775 
1776 /**
1777  *  stmmac_dma_operation_mode - HW DMA operation mode
1778  *  @priv: driver private structure
1779  *  Description: it is used for configuring the DMA operation mode register in
1780  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1781  */
1782 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1783 {
1784 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1785 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1786 	int rxfifosz = priv->plat->rx_fifo_size;
1787 	int txfifosz = priv->plat->tx_fifo_size;
1788 	u32 txmode = 0;
1789 	u32 rxmode = 0;
1790 	u32 chan = 0;
1791 	u8 qmode = 0;
1792 
1793 	if (rxfifosz == 0)
1794 		rxfifosz = priv->dma_cap.rx_fifo_size;
1795 	if (txfifosz == 0)
1796 		txfifosz = priv->dma_cap.tx_fifo_size;
1797 
1798 	/* Adjust for real per queue fifo size */
1799 	rxfifosz /= rx_channels_count;
1800 	txfifosz /= tx_channels_count;
1801 
1802 	if (priv->plat->force_thresh_dma_mode) {
1803 		txmode = tc;
1804 		rxmode = tc;
1805 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1806 		/*
1807 		 * In case of GMAC, SF mode can be enabled
1808 		 * to perform the TX COE in HW. This depends on:
1809 		 * 1) TX COE if actually supported
1810 		 * 2) There is no bugged Jumbo frame support
1811 		 *    that needs to not insert csum in the TDES.
1812 		 */
1813 		txmode = SF_DMA_MODE;
1814 		rxmode = SF_DMA_MODE;
1815 		priv->xstats.threshold = SF_DMA_MODE;
1816 	} else {
1817 		txmode = tc;
1818 		rxmode = SF_DMA_MODE;
1819 	}
1820 
1821 	/* configure all channels */
1822 	for (chan = 0; chan < rx_channels_count; chan++) {
1823 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1824 
1825 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1826 				rxfifosz, qmode);
1827 		stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1828 				chan);
1829 	}
1830 
1831 	for (chan = 0; chan < tx_channels_count; chan++) {
1832 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1833 
1834 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1835 				txfifosz, qmode);
1836 	}
1837 }
1838 
1839 /**
1840  * stmmac_tx_clean - to manage the transmission completion
1841  * @priv: driver private structure
1842  * @queue: TX queue index
1843  * Description: it reclaims the transmit resources after transmission completes.
1844  */
1845 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1846 {
1847 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1848 	unsigned int bytes_compl = 0, pkts_compl = 0;
1849 	unsigned int entry, count = 0;
1850 
1851 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1852 
1853 	priv->xstats.tx_clean++;
1854 
1855 	entry = tx_q->dirty_tx;
1856 	while ((entry != tx_q->cur_tx) && (count < budget)) {
1857 		struct sk_buff *skb = tx_q->tx_skbuff[entry];
1858 		struct dma_desc *p;
1859 		int status;
1860 
1861 		if (priv->extend_desc)
1862 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
1863 		else
1864 			p = tx_q->dma_tx + entry;
1865 
1866 		status = stmmac_tx_status(priv, &priv->dev->stats,
1867 				&priv->xstats, p, priv->ioaddr);
1868 		/* Check if the descriptor is owned by the DMA */
1869 		if (unlikely(status & tx_dma_own))
1870 			break;
1871 
1872 		count++;
1873 
1874 		/* Make sure descriptor fields are read after reading
1875 		 * the own bit.
1876 		 */
1877 		dma_rmb();
1878 
1879 		/* Just consider the last segment and ...*/
1880 		if (likely(!(status & tx_not_ls))) {
1881 			/* ... verify the status error condition */
1882 			if (unlikely(status & tx_err)) {
1883 				priv->dev->stats.tx_errors++;
1884 			} else {
1885 				priv->dev->stats.tx_packets++;
1886 				priv->xstats.tx_pkt_n++;
1887 			}
1888 			stmmac_get_tx_hwtstamp(priv, p, skb);
1889 		}
1890 
1891 		if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1892 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
1893 				dma_unmap_page(priv->device,
1894 					       tx_q->tx_skbuff_dma[entry].buf,
1895 					       tx_q->tx_skbuff_dma[entry].len,
1896 					       DMA_TO_DEVICE);
1897 			else
1898 				dma_unmap_single(priv->device,
1899 						 tx_q->tx_skbuff_dma[entry].buf,
1900 						 tx_q->tx_skbuff_dma[entry].len,
1901 						 DMA_TO_DEVICE);
1902 			tx_q->tx_skbuff_dma[entry].buf = 0;
1903 			tx_q->tx_skbuff_dma[entry].len = 0;
1904 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
1905 		}
1906 
1907 		stmmac_clean_desc3(priv, tx_q, p);
1908 
1909 		tx_q->tx_skbuff_dma[entry].last_segment = false;
1910 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1911 
1912 		if (likely(skb != NULL)) {
1913 			pkts_compl++;
1914 			bytes_compl += skb->len;
1915 			dev_consume_skb_any(skb);
1916 			tx_q->tx_skbuff[entry] = NULL;
1917 		}
1918 
1919 		stmmac_release_tx_desc(priv, p, priv->mode);
1920 
1921 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1922 	}
1923 	tx_q->dirty_tx = entry;
1924 
1925 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1926 				  pkts_compl, bytes_compl);
1927 
1928 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1929 								queue))) &&
1930 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1931 
1932 		netif_dbg(priv, tx_done, priv->dev,
1933 			  "%s: restart transmit\n", __func__);
1934 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1935 	}
1936 
1937 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1938 		stmmac_enable_eee_mode(priv);
1939 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1940 	}
1941 
1942 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
1943 
1944 	return count;
1945 }
1946 
1947 /**
1948  * stmmac_tx_err - to manage the tx error
1949  * @priv: driver private structure
1950  * @chan: channel index
1951  * Description: it cleans the descriptors and restarts the transmission
1952  * in case of transmission errors.
1953  */
1954 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1955 {
1956 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
1957 	int i;
1958 
1959 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
1960 
1961 	stmmac_stop_tx_dma(priv, chan);
1962 	dma_free_tx_skbufs(priv, chan);
1963 	for (i = 0; i < DMA_TX_SIZE; i++)
1964 		if (priv->extend_desc)
1965 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1966 					priv->mode, (i == DMA_TX_SIZE - 1));
1967 		else
1968 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1969 					priv->mode, (i == DMA_TX_SIZE - 1));
1970 	tx_q->dirty_tx = 0;
1971 	tx_q->cur_tx = 0;
1972 	tx_q->mss = 0;
1973 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
1974 	stmmac_start_tx_dma(priv, chan);
1975 
1976 	priv->dev->stats.tx_errors++;
1977 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
1978 }
1979 
1980 /**
1981  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
1982  *  @priv: driver private structure
1983  *  @txmode: TX operating mode
1984  *  @rxmode: RX operating mode
1985  *  @chan: channel index
1986  *  Description: it is used for configuring of the DMA operation mode in
1987  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
1988  *  mode.
1989  */
1990 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
1991 					  u32 rxmode, u32 chan)
1992 {
1993 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1994 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1995 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1996 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1997 	int rxfifosz = priv->plat->rx_fifo_size;
1998 	int txfifosz = priv->plat->tx_fifo_size;
1999 
2000 	if (rxfifosz == 0)
2001 		rxfifosz = priv->dma_cap.rx_fifo_size;
2002 	if (txfifosz == 0)
2003 		txfifosz = priv->dma_cap.tx_fifo_size;
2004 
2005 	/* Adjust for real per queue fifo size */
2006 	rxfifosz /= rx_channels_count;
2007 	txfifosz /= tx_channels_count;
2008 
2009 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2010 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2011 }
2012 
2013 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2014 {
2015 	int ret;
2016 
2017 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2018 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2019 	if (ret && (ret != -EINVAL)) {
2020 		stmmac_global_err(priv);
2021 		return true;
2022 	}
2023 
2024 	return false;
2025 }
2026 
2027 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2028 {
2029 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2030 						 &priv->xstats, chan);
2031 	struct stmmac_channel *ch = &priv->channel[chan];
2032 	bool needs_work = false;
2033 
2034 	if ((status & handle_rx) && ch->has_rx) {
2035 		needs_work = true;
2036 	} else {
2037 		status &= ~handle_rx;
2038 	}
2039 
2040 	if ((status & handle_tx) && ch->has_tx) {
2041 		needs_work = true;
2042 	} else {
2043 		status &= ~handle_tx;
2044 	}
2045 
2046 	if (needs_work && napi_schedule_prep(&ch->napi)) {
2047 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2048 		__napi_schedule(&ch->napi);
2049 	}
2050 
2051 	return status;
2052 }
2053 
2054 /**
2055  * stmmac_dma_interrupt - DMA ISR
2056  * @priv: driver private structure
2057  * Description: this is the DMA ISR. It is called by the main ISR.
2058  * It calls the dwmac dma routine and schedule poll method in case of some
2059  * work can be done.
2060  */
2061 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2062 {
2063 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2064 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2065 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2066 				tx_channel_count : rx_channel_count;
2067 	u32 chan;
2068 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2069 
2070 	/* Make sure we never check beyond our status buffer. */
2071 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2072 		channels_to_check = ARRAY_SIZE(status);
2073 
2074 	for (chan = 0; chan < channels_to_check; chan++)
2075 		status[chan] = stmmac_napi_check(priv, chan);
2076 
2077 	for (chan = 0; chan < tx_channel_count; chan++) {
2078 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2079 			/* Try to bump up the dma threshold on this failure */
2080 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2081 			    (tc <= 256)) {
2082 				tc += 64;
2083 				if (priv->plat->force_thresh_dma_mode)
2084 					stmmac_set_dma_operation_mode(priv,
2085 								      tc,
2086 								      tc,
2087 								      chan);
2088 				else
2089 					stmmac_set_dma_operation_mode(priv,
2090 								    tc,
2091 								    SF_DMA_MODE,
2092 								    chan);
2093 				priv->xstats.threshold = tc;
2094 			}
2095 		} else if (unlikely(status[chan] == tx_hard_error)) {
2096 			stmmac_tx_err(priv, chan);
2097 		}
2098 	}
2099 }
2100 
2101 /**
2102  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2103  * @priv: driver private structure
2104  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2105  */
2106 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2107 {
2108 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2109 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2110 
2111 	dwmac_mmc_intr_all_mask(priv->mmcaddr);
2112 
2113 	if (priv->dma_cap.rmon) {
2114 		dwmac_mmc_ctrl(priv->mmcaddr, mode);
2115 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2116 	} else
2117 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2118 }
2119 
2120 /**
2121  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2122  * @priv: driver private structure
2123  * Description:
2124  *  new GMAC chip generations have a new register to indicate the
2125  *  presence of the optional feature/functions.
2126  *  This can be also used to override the value passed through the
2127  *  platform and necessary for old MAC10/100 and GMAC chips.
2128  */
2129 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2130 {
2131 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2132 }
2133 
2134 /**
2135  * stmmac_check_ether_addr - check if the MAC addr is valid
2136  * @priv: driver private structure
2137  * Description:
2138  * it is to verify if the MAC address is valid, in case of failures it
2139  * generates a random MAC address
2140  */
2141 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2142 {
2143 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2144 		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2145 		if (!is_valid_ether_addr(priv->dev->dev_addr))
2146 			eth_hw_addr_random(priv->dev);
2147 		netdev_info(priv->dev, "device MAC address %pM\n",
2148 			    priv->dev->dev_addr);
2149 	}
2150 }
2151 
2152 /**
2153  * stmmac_init_dma_engine - DMA init.
2154  * @priv: driver private structure
2155  * Description:
2156  * It inits the DMA invoking the specific MAC/GMAC callback.
2157  * Some DMA parameters can be passed from the platform;
2158  * in case of these are not passed a default is kept for the MAC or GMAC.
2159  */
2160 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2161 {
2162 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2163 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2164 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2165 	struct stmmac_rx_queue *rx_q;
2166 	struct stmmac_tx_queue *tx_q;
2167 	u32 chan = 0;
2168 	int atds = 0;
2169 	int ret = 0;
2170 
2171 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2172 		dev_err(priv->device, "Invalid DMA configuration\n");
2173 		return -EINVAL;
2174 	}
2175 
2176 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2177 		atds = 1;
2178 
2179 	ret = stmmac_reset(priv, priv->ioaddr);
2180 	if (ret) {
2181 		dev_err(priv->device, "Failed to reset the dma\n");
2182 		return ret;
2183 	}
2184 
2185 	/* DMA Configuration */
2186 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2187 
2188 	if (priv->plat->axi)
2189 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2190 
2191 	/* DMA RX Channel Configuration */
2192 	for (chan = 0; chan < rx_channels_count; chan++) {
2193 		rx_q = &priv->rx_queue[chan];
2194 
2195 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2196 				    rx_q->dma_rx_phy, chan);
2197 
2198 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2199 			    (DMA_RX_SIZE * sizeof(struct dma_desc));
2200 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2201 				       rx_q->rx_tail_addr, chan);
2202 	}
2203 
2204 	/* DMA TX Channel Configuration */
2205 	for (chan = 0; chan < tx_channels_count; chan++) {
2206 		tx_q = &priv->tx_queue[chan];
2207 
2208 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2209 				    tx_q->dma_tx_phy, chan);
2210 
2211 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2212 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2213 				       tx_q->tx_tail_addr, chan);
2214 	}
2215 
2216 	/* DMA CSR Channel configuration */
2217 	for (chan = 0; chan < dma_csr_ch; chan++)
2218 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2219 
2220 	return ret;
2221 }
2222 
2223 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2224 {
2225 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2226 
2227 	mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2228 }
2229 
2230 /**
2231  * stmmac_tx_timer - mitigation sw timer for tx.
2232  * @data: data pointer
2233  * Description:
2234  * This is the timer handler to directly invoke the stmmac_tx_clean.
2235  */
2236 static void stmmac_tx_timer(struct timer_list *t)
2237 {
2238 	struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2239 	struct stmmac_priv *priv = tx_q->priv_data;
2240 	struct stmmac_channel *ch;
2241 
2242 	ch = &priv->channel[tx_q->queue_index];
2243 
2244 	if (likely(napi_schedule_prep(&ch->napi)))
2245 		__napi_schedule(&ch->napi);
2246 }
2247 
2248 /**
2249  * stmmac_init_tx_coalesce - init tx mitigation options.
2250  * @priv: driver private structure
2251  * Description:
2252  * This inits the transmit coalesce parameters: i.e. timer rate,
2253  * timer handler and default threshold used for enabling the
2254  * interrupt on completion bit.
2255  */
2256 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
2257 {
2258 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2259 	u32 chan;
2260 
2261 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
2262 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2263 
2264 	for (chan = 0; chan < tx_channel_count; chan++) {
2265 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2266 
2267 		timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2268 	}
2269 }
2270 
2271 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2272 {
2273 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2274 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2275 	u32 chan;
2276 
2277 	/* set TX ring length */
2278 	for (chan = 0; chan < tx_channels_count; chan++)
2279 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2280 				(DMA_TX_SIZE - 1), chan);
2281 
2282 	/* set RX ring length */
2283 	for (chan = 0; chan < rx_channels_count; chan++)
2284 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2285 				(DMA_RX_SIZE - 1), chan);
2286 }
2287 
2288 /**
2289  *  stmmac_set_tx_queue_weight - Set TX queue weight
2290  *  @priv: driver private structure
2291  *  Description: It is used for setting TX queues weight
2292  */
2293 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2294 {
2295 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2296 	u32 weight;
2297 	u32 queue;
2298 
2299 	for (queue = 0; queue < tx_queues_count; queue++) {
2300 		weight = priv->plat->tx_queues_cfg[queue].weight;
2301 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2302 	}
2303 }
2304 
2305 /**
2306  *  stmmac_configure_cbs - Configure CBS in TX queue
2307  *  @priv: driver private structure
2308  *  Description: It is used for configuring CBS in AVB TX queues
2309  */
2310 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2311 {
2312 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2313 	u32 mode_to_use;
2314 	u32 queue;
2315 
2316 	/* queue 0 is reserved for legacy traffic */
2317 	for (queue = 1; queue < tx_queues_count; queue++) {
2318 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2319 		if (mode_to_use == MTL_QUEUE_DCB)
2320 			continue;
2321 
2322 		stmmac_config_cbs(priv, priv->hw,
2323 				priv->plat->tx_queues_cfg[queue].send_slope,
2324 				priv->plat->tx_queues_cfg[queue].idle_slope,
2325 				priv->plat->tx_queues_cfg[queue].high_credit,
2326 				priv->plat->tx_queues_cfg[queue].low_credit,
2327 				queue);
2328 	}
2329 }
2330 
2331 /**
2332  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2333  *  @priv: driver private structure
2334  *  Description: It is used for mapping RX queues to RX dma channels
2335  */
2336 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2337 {
2338 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2339 	u32 queue;
2340 	u32 chan;
2341 
2342 	for (queue = 0; queue < rx_queues_count; queue++) {
2343 		chan = priv->plat->rx_queues_cfg[queue].chan;
2344 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2345 	}
2346 }
2347 
2348 /**
2349  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2350  *  @priv: driver private structure
2351  *  Description: It is used for configuring the RX Queue Priority
2352  */
2353 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2354 {
2355 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2356 	u32 queue;
2357 	u32 prio;
2358 
2359 	for (queue = 0; queue < rx_queues_count; queue++) {
2360 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
2361 			continue;
2362 
2363 		prio = priv->plat->rx_queues_cfg[queue].prio;
2364 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2365 	}
2366 }
2367 
2368 /**
2369  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2370  *  @priv: driver private structure
2371  *  Description: It is used for configuring the TX Queue Priority
2372  */
2373 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2374 {
2375 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2376 	u32 queue;
2377 	u32 prio;
2378 
2379 	for (queue = 0; queue < tx_queues_count; queue++) {
2380 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
2381 			continue;
2382 
2383 		prio = priv->plat->tx_queues_cfg[queue].prio;
2384 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2385 	}
2386 }
2387 
2388 /**
2389  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2390  *  @priv: driver private structure
2391  *  Description: It is used for configuring the RX queue routing
2392  */
2393 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2394 {
2395 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2396 	u32 queue;
2397 	u8 packet;
2398 
2399 	for (queue = 0; queue < rx_queues_count; queue++) {
2400 		/* no specific packet type routing specified for the queue */
2401 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2402 			continue;
2403 
2404 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2405 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2406 	}
2407 }
2408 
2409 /**
2410  *  stmmac_mtl_configuration - Configure MTL
2411  *  @priv: driver private structure
2412  *  Description: It is used for configurring MTL
2413  */
2414 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2415 {
2416 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2417 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2418 
2419 	if (tx_queues_count > 1)
2420 		stmmac_set_tx_queue_weight(priv);
2421 
2422 	/* Configure MTL RX algorithms */
2423 	if (rx_queues_count > 1)
2424 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2425 				priv->plat->rx_sched_algorithm);
2426 
2427 	/* Configure MTL TX algorithms */
2428 	if (tx_queues_count > 1)
2429 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2430 				priv->plat->tx_sched_algorithm);
2431 
2432 	/* Configure CBS in AVB TX queues */
2433 	if (tx_queues_count > 1)
2434 		stmmac_configure_cbs(priv);
2435 
2436 	/* Map RX MTL to DMA channels */
2437 	stmmac_rx_queue_dma_chan_map(priv);
2438 
2439 	/* Enable MAC RX Queues */
2440 	stmmac_mac_enable_rx_queues(priv);
2441 
2442 	/* Set RX priorities */
2443 	if (rx_queues_count > 1)
2444 		stmmac_mac_config_rx_queues_prio(priv);
2445 
2446 	/* Set TX priorities */
2447 	if (tx_queues_count > 1)
2448 		stmmac_mac_config_tx_queues_prio(priv);
2449 
2450 	/* Set RX routing */
2451 	if (rx_queues_count > 1)
2452 		stmmac_mac_config_rx_queues_routing(priv);
2453 }
2454 
2455 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2456 {
2457 	if (priv->dma_cap.asp) {
2458 		netdev_info(priv->dev, "Enabling Safety Features\n");
2459 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2460 	} else {
2461 		netdev_info(priv->dev, "No Safety Features support found\n");
2462 	}
2463 }
2464 
2465 /**
2466  * stmmac_hw_setup - setup mac in a usable state.
2467  *  @dev : pointer to the device structure.
2468  *  Description:
2469  *  this is the main function to setup the HW in a usable state because the
2470  *  dma engine is reset, the core registers are configured (e.g. AXI,
2471  *  Checksum features, timers). The DMA is ready to start receiving and
2472  *  transmitting.
2473  *  Return value:
2474  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2475  *  file on failure.
2476  */
2477 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2478 {
2479 	struct stmmac_priv *priv = netdev_priv(dev);
2480 	u32 rx_cnt = priv->plat->rx_queues_to_use;
2481 	u32 tx_cnt = priv->plat->tx_queues_to_use;
2482 	u32 chan;
2483 	int ret;
2484 
2485 	/* DMA initialization and SW reset */
2486 	ret = stmmac_init_dma_engine(priv);
2487 	if (ret < 0) {
2488 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2489 			   __func__);
2490 		return ret;
2491 	}
2492 
2493 	/* Copy the MAC addr into the HW  */
2494 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2495 
2496 	/* PS and related bits will be programmed according to the speed */
2497 	if (priv->hw->pcs) {
2498 		int speed = priv->plat->mac_port_sel_speed;
2499 
2500 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
2501 		    (speed == SPEED_1000)) {
2502 			priv->hw->ps = speed;
2503 		} else {
2504 			dev_warn(priv->device, "invalid port speed\n");
2505 			priv->hw->ps = 0;
2506 		}
2507 	}
2508 
2509 	/* Initialize the MAC Core */
2510 	stmmac_core_init(priv, priv->hw, dev);
2511 
2512 	/* Initialize MTL*/
2513 	stmmac_mtl_configuration(priv);
2514 
2515 	/* Initialize Safety Features */
2516 	stmmac_safety_feat_configuration(priv);
2517 
2518 	ret = stmmac_rx_ipc(priv, priv->hw);
2519 	if (!ret) {
2520 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2521 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2522 		priv->hw->rx_csum = 0;
2523 	}
2524 
2525 	/* Enable the MAC Rx/Tx */
2526 	stmmac_mac_set(priv, priv->ioaddr, true);
2527 
2528 	/* Set the HW DMA mode and the COE */
2529 	stmmac_dma_operation_mode(priv);
2530 
2531 	stmmac_mmc_setup(priv);
2532 
2533 	if (init_ptp) {
2534 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2535 		if (ret < 0)
2536 			netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2537 
2538 		ret = stmmac_init_ptp(priv);
2539 		if (ret == -EOPNOTSUPP)
2540 			netdev_warn(priv->dev, "PTP not supported by HW\n");
2541 		else if (ret)
2542 			netdev_warn(priv->dev, "PTP init failed\n");
2543 	}
2544 
2545 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2546 
2547 	if (priv->use_riwt) {
2548 		ret = stmmac_rx_watchdog(priv, priv->ioaddr, MAX_DMA_RIWT, rx_cnt);
2549 		if (!ret)
2550 			priv->rx_riwt = MAX_DMA_RIWT;
2551 	}
2552 
2553 	if (priv->hw->pcs)
2554 		stmmac_pcs_ctrl_ane(priv, priv->hw, 1, priv->hw->ps, 0);
2555 
2556 	/* set TX and RX rings length */
2557 	stmmac_set_rings_length(priv);
2558 
2559 	/* Enable TSO */
2560 	if (priv->tso) {
2561 		for (chan = 0; chan < tx_cnt; chan++)
2562 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2563 	}
2564 
2565 	/* Start the ball rolling... */
2566 	stmmac_start_all_dma(priv);
2567 
2568 	return 0;
2569 }
2570 
2571 static void stmmac_hw_teardown(struct net_device *dev)
2572 {
2573 	struct stmmac_priv *priv = netdev_priv(dev);
2574 
2575 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
2576 }
2577 
2578 /**
2579  *  stmmac_open - open entry point of the driver
2580  *  @dev : pointer to the device structure.
2581  *  Description:
2582  *  This function is the open entry point of the driver.
2583  *  Return value:
2584  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2585  *  file on failure.
2586  */
2587 static int stmmac_open(struct net_device *dev)
2588 {
2589 	struct stmmac_priv *priv = netdev_priv(dev);
2590 	u32 chan;
2591 	int ret;
2592 
2593 	stmmac_check_ether_addr(priv);
2594 
2595 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2596 	    priv->hw->pcs != STMMAC_PCS_TBI &&
2597 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
2598 		ret = stmmac_init_phy(dev);
2599 		if (ret) {
2600 			netdev_err(priv->dev,
2601 				   "%s: Cannot attach to PHY (error: %d)\n",
2602 				   __func__, ret);
2603 			return ret;
2604 		}
2605 	}
2606 
2607 	/* Extra statistics */
2608 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2609 	priv->xstats.threshold = tc;
2610 
2611 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
2612 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2613 
2614 	ret = alloc_dma_desc_resources(priv);
2615 	if (ret < 0) {
2616 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2617 			   __func__);
2618 		goto dma_desc_error;
2619 	}
2620 
2621 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
2622 	if (ret < 0) {
2623 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2624 			   __func__);
2625 		goto init_error;
2626 	}
2627 
2628 	ret = stmmac_hw_setup(dev, true);
2629 	if (ret < 0) {
2630 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2631 		goto init_error;
2632 	}
2633 
2634 	stmmac_init_tx_coalesce(priv);
2635 
2636 	if (dev->phydev)
2637 		phy_start(dev->phydev);
2638 
2639 	/* Request the IRQ lines */
2640 	ret = request_irq(dev->irq, stmmac_interrupt,
2641 			  IRQF_SHARED, dev->name, dev);
2642 	if (unlikely(ret < 0)) {
2643 		netdev_err(priv->dev,
2644 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2645 			   __func__, dev->irq, ret);
2646 		goto irq_error;
2647 	}
2648 
2649 	/* Request the Wake IRQ in case of another line is used for WoL */
2650 	if (priv->wol_irq != dev->irq) {
2651 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
2652 				  IRQF_SHARED, dev->name, dev);
2653 		if (unlikely(ret < 0)) {
2654 			netdev_err(priv->dev,
2655 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2656 				   __func__, priv->wol_irq, ret);
2657 			goto wolirq_error;
2658 		}
2659 	}
2660 
2661 	/* Request the IRQ lines */
2662 	if (priv->lpi_irq > 0) {
2663 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2664 				  dev->name, dev);
2665 		if (unlikely(ret < 0)) {
2666 			netdev_err(priv->dev,
2667 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2668 				   __func__, priv->lpi_irq, ret);
2669 			goto lpiirq_error;
2670 		}
2671 	}
2672 
2673 	stmmac_enable_all_queues(priv);
2674 	stmmac_start_all_queues(priv);
2675 
2676 	return 0;
2677 
2678 lpiirq_error:
2679 	if (priv->wol_irq != dev->irq)
2680 		free_irq(priv->wol_irq, dev);
2681 wolirq_error:
2682 	free_irq(dev->irq, dev);
2683 irq_error:
2684 	if (dev->phydev)
2685 		phy_stop(dev->phydev);
2686 
2687 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2688 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2689 
2690 	stmmac_hw_teardown(dev);
2691 init_error:
2692 	free_dma_desc_resources(priv);
2693 dma_desc_error:
2694 	if (dev->phydev)
2695 		phy_disconnect(dev->phydev);
2696 
2697 	return ret;
2698 }
2699 
2700 /**
2701  *  stmmac_release - close entry point of the driver
2702  *  @dev : device pointer.
2703  *  Description:
2704  *  This is the stop entry point of the driver.
2705  */
2706 static int stmmac_release(struct net_device *dev)
2707 {
2708 	struct stmmac_priv *priv = netdev_priv(dev);
2709 	u32 chan;
2710 
2711 	if (priv->eee_enabled)
2712 		del_timer_sync(&priv->eee_ctrl_timer);
2713 
2714 	/* Stop and disconnect the PHY */
2715 	if (dev->phydev) {
2716 		phy_stop(dev->phydev);
2717 		phy_disconnect(dev->phydev);
2718 	}
2719 
2720 	stmmac_stop_all_queues(priv);
2721 
2722 	stmmac_disable_all_queues(priv);
2723 
2724 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2725 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2726 
2727 	/* Free the IRQ lines */
2728 	free_irq(dev->irq, dev);
2729 	if (priv->wol_irq != dev->irq)
2730 		free_irq(priv->wol_irq, dev);
2731 	if (priv->lpi_irq > 0)
2732 		free_irq(priv->lpi_irq, dev);
2733 
2734 	/* Stop TX/RX DMA and clear the descriptors */
2735 	stmmac_stop_all_dma(priv);
2736 
2737 	/* Release and free the Rx/Tx resources */
2738 	free_dma_desc_resources(priv);
2739 
2740 	/* Disable the MAC Rx/Tx */
2741 	stmmac_mac_set(priv, priv->ioaddr, false);
2742 
2743 	netif_carrier_off(dev);
2744 
2745 	stmmac_release_ptp(priv);
2746 
2747 	return 0;
2748 }
2749 
2750 /**
2751  *  stmmac_tso_allocator - close entry point of the driver
2752  *  @priv: driver private structure
2753  *  @des: buffer start address
2754  *  @total_len: total length to fill in descriptors
2755  *  @last_segmant: condition for the last descriptor
2756  *  @queue: TX queue index
2757  *  Description:
2758  *  This function fills descriptor and request new descriptors according to
2759  *  buffer length to fill
2760  */
2761 static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des,
2762 				 int total_len, bool last_segment, u32 queue)
2763 {
2764 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2765 	struct dma_desc *desc;
2766 	u32 buff_size;
2767 	int tmp_len;
2768 
2769 	tmp_len = total_len;
2770 
2771 	while (tmp_len > 0) {
2772 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2773 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2774 		desc = tx_q->dma_tx + tx_q->cur_tx;
2775 
2776 		desc->des0 = cpu_to_le32(des + (total_len - tmp_len));
2777 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2778 			    TSO_MAX_BUFF_SIZE : tmp_len;
2779 
2780 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2781 				0, 1,
2782 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2783 				0, 0);
2784 
2785 		tmp_len -= TSO_MAX_BUFF_SIZE;
2786 	}
2787 }
2788 
2789 /**
2790  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2791  *  @skb : the socket buffer
2792  *  @dev : device pointer
2793  *  Description: this is the transmit function that is called on TSO frames
2794  *  (support available on GMAC4 and newer chips).
2795  *  Diagram below show the ring programming in case of TSO frames:
2796  *
2797  *  First Descriptor
2798  *   --------
2799  *   | DES0 |---> buffer1 = L2/L3/L4 header
2800  *   | DES1 |---> TCP Payload (can continue on next descr...)
2801  *   | DES2 |---> buffer 1 and 2 len
2802  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2803  *   --------
2804  *	|
2805  *     ...
2806  *	|
2807  *   --------
2808  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2809  *   | DES1 | --|
2810  *   | DES2 | --> buffer 1 and 2 len
2811  *   | DES3 |
2812  *   --------
2813  *
2814  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2815  */
2816 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2817 {
2818 	struct dma_desc *desc, *first, *mss_desc = NULL;
2819 	struct stmmac_priv *priv = netdev_priv(dev);
2820 	int nfrags = skb_shinfo(skb)->nr_frags;
2821 	u32 queue = skb_get_queue_mapping(skb);
2822 	unsigned int first_entry, des;
2823 	struct stmmac_tx_queue *tx_q;
2824 	int tmp_pay_len = 0;
2825 	u32 pay_len, mss;
2826 	u8 proto_hdr_len;
2827 	int i;
2828 
2829 	tx_q = &priv->tx_queue[queue];
2830 
2831 	/* Compute header lengths */
2832 	proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2833 
2834 	/* Desc availability based on threshold should be enough safe */
2835 	if (unlikely(stmmac_tx_avail(priv, queue) <
2836 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2837 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2838 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2839 								queue));
2840 			/* This is a hard error, log it. */
2841 			netdev_err(priv->dev,
2842 				   "%s: Tx Ring full when queue awake\n",
2843 				   __func__);
2844 		}
2845 		return NETDEV_TX_BUSY;
2846 	}
2847 
2848 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2849 
2850 	mss = skb_shinfo(skb)->gso_size;
2851 
2852 	/* set new MSS value if needed */
2853 	if (mss != tx_q->mss) {
2854 		mss_desc = tx_q->dma_tx + tx_q->cur_tx;
2855 		stmmac_set_mss(priv, mss_desc, mss);
2856 		tx_q->mss = mss;
2857 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2858 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2859 	}
2860 
2861 	if (netif_msg_tx_queued(priv)) {
2862 		pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2863 			__func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2864 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2865 			skb->data_len);
2866 	}
2867 
2868 	first_entry = tx_q->cur_tx;
2869 	WARN_ON(tx_q->tx_skbuff[first_entry]);
2870 
2871 	desc = tx_q->dma_tx + first_entry;
2872 	first = desc;
2873 
2874 	/* first descriptor: fill Headers on Buf1 */
2875 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2876 			     DMA_TO_DEVICE);
2877 	if (dma_mapping_error(priv->device, des))
2878 		goto dma_map_err;
2879 
2880 	tx_q->tx_skbuff_dma[first_entry].buf = des;
2881 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2882 
2883 	first->des0 = cpu_to_le32(des);
2884 
2885 	/* Fill start of payload in buff2 of first descriptor */
2886 	if (pay_len)
2887 		first->des1 = cpu_to_le32(des + proto_hdr_len);
2888 
2889 	/* If needed take extra descriptors to fill the remaining payload */
2890 	tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2891 
2892 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
2893 
2894 	/* Prepare fragments */
2895 	for (i = 0; i < nfrags; i++) {
2896 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2897 
2898 		des = skb_frag_dma_map(priv->device, frag, 0,
2899 				       skb_frag_size(frag),
2900 				       DMA_TO_DEVICE);
2901 		if (dma_mapping_error(priv->device, des))
2902 			goto dma_map_err;
2903 
2904 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
2905 				     (i == nfrags - 1), queue);
2906 
2907 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
2908 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
2909 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
2910 	}
2911 
2912 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
2913 
2914 	/* Only the last descriptor gets to point to the skb. */
2915 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
2916 
2917 	/* We've used all descriptors we need for this skb, however,
2918 	 * advance cur_tx so that it references a fresh descriptor.
2919 	 * ndo_start_xmit will fill this descriptor the next time it's
2920 	 * called and stmmac_tx_clean may clean up to this descriptor.
2921 	 */
2922 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2923 
2924 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
2925 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
2926 			  __func__);
2927 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
2928 	}
2929 
2930 	dev->stats.tx_bytes += skb->len;
2931 	priv->xstats.tx_tso_frames++;
2932 	priv->xstats.tx_tso_nfrags += nfrags;
2933 
2934 	/* Manage tx mitigation */
2935 	tx_q->tx_count_frames += nfrags + 1;
2936 	if (priv->tx_coal_frames <= tx_q->tx_count_frames) {
2937 		stmmac_set_tx_ic(priv, desc);
2938 		priv->xstats.tx_set_ic_bit++;
2939 		tx_q->tx_count_frames = 0;
2940 	} else {
2941 		stmmac_tx_timer_arm(priv, queue);
2942 	}
2943 
2944 	skb_tx_timestamp(skb);
2945 
2946 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2947 		     priv->hwts_tx_en)) {
2948 		/* declare that device is doing timestamping */
2949 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2950 		stmmac_enable_tx_timestamp(priv, first);
2951 	}
2952 
2953 	/* Complete the first descriptor before granting the DMA */
2954 	stmmac_prepare_tso_tx_desc(priv, first, 1,
2955 			proto_hdr_len,
2956 			pay_len,
2957 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
2958 			tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
2959 
2960 	/* If context desc is used to change MSS */
2961 	if (mss_desc) {
2962 		/* Make sure that first descriptor has been completely
2963 		 * written, including its own bit. This is because MSS is
2964 		 * actually before first descriptor, so we need to make
2965 		 * sure that MSS's own bit is the last thing written.
2966 		 */
2967 		dma_wmb();
2968 		stmmac_set_tx_owner(priv, mss_desc);
2969 	}
2970 
2971 	/* The own bit must be the latest setting done when prepare the
2972 	 * descriptor and then barrier is needed to make sure that
2973 	 * all is coherent before granting the DMA engine.
2974 	 */
2975 	wmb();
2976 
2977 	if (netif_msg_pktdata(priv)) {
2978 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
2979 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
2980 			tx_q->cur_tx, first, nfrags);
2981 
2982 		stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0);
2983 
2984 		pr_info(">>> frame to be transmitted: ");
2985 		print_pkt(skb->data, skb_headlen(skb));
2986 	}
2987 
2988 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
2989 
2990 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
2991 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
2992 
2993 	return NETDEV_TX_OK;
2994 
2995 dma_map_err:
2996 	dev_err(priv->device, "Tx dma map failed\n");
2997 	dev_kfree_skb(skb);
2998 	priv->dev->stats.tx_dropped++;
2999 	return NETDEV_TX_OK;
3000 }
3001 
3002 /**
3003  *  stmmac_xmit - Tx entry point of the driver
3004  *  @skb : the socket buffer
3005  *  @dev : device pointer
3006  *  Description : this is the tx entry point of the driver.
3007  *  It programs the chain or the ring and supports oversized frames
3008  *  and SG feature.
3009  */
3010 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3011 {
3012 	struct stmmac_priv *priv = netdev_priv(dev);
3013 	unsigned int nopaged_len = skb_headlen(skb);
3014 	int i, csum_insertion = 0, is_jumbo = 0;
3015 	u32 queue = skb_get_queue_mapping(skb);
3016 	int nfrags = skb_shinfo(skb)->nr_frags;
3017 	int entry;
3018 	unsigned int first_entry;
3019 	struct dma_desc *desc, *first;
3020 	struct stmmac_tx_queue *tx_q;
3021 	unsigned int enh_desc;
3022 	unsigned int des;
3023 
3024 	tx_q = &priv->tx_queue[queue];
3025 
3026 	/* Manage oversized TCP frames for GMAC4 device */
3027 	if (skb_is_gso(skb) && priv->tso) {
3028 		if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3029 			return stmmac_tso_xmit(skb, dev);
3030 	}
3031 
3032 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3033 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3034 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3035 								queue));
3036 			/* This is a hard error, log it. */
3037 			netdev_err(priv->dev,
3038 				   "%s: Tx Ring full when queue awake\n",
3039 				   __func__);
3040 		}
3041 		return NETDEV_TX_BUSY;
3042 	}
3043 
3044 	if (priv->tx_path_in_lpi_mode)
3045 		stmmac_disable_eee_mode(priv);
3046 
3047 	entry = tx_q->cur_tx;
3048 	first_entry = entry;
3049 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3050 
3051 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3052 
3053 	if (likely(priv->extend_desc))
3054 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3055 	else
3056 		desc = tx_q->dma_tx + entry;
3057 
3058 	first = desc;
3059 
3060 	enh_desc = priv->plat->enh_desc;
3061 	/* To program the descriptors according to the size of the frame */
3062 	if (enh_desc)
3063 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3064 
3065 	if (unlikely(is_jumbo)) {
3066 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3067 		if (unlikely(entry < 0) && (entry != -EINVAL))
3068 			goto dma_map_err;
3069 	}
3070 
3071 	for (i = 0; i < nfrags; i++) {
3072 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3073 		int len = skb_frag_size(frag);
3074 		bool last_segment = (i == (nfrags - 1));
3075 
3076 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3077 		WARN_ON(tx_q->tx_skbuff[entry]);
3078 
3079 		if (likely(priv->extend_desc))
3080 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3081 		else
3082 			desc = tx_q->dma_tx + entry;
3083 
3084 		des = skb_frag_dma_map(priv->device, frag, 0, len,
3085 				       DMA_TO_DEVICE);
3086 		if (dma_mapping_error(priv->device, des))
3087 			goto dma_map_err; /* should reuse desc w/o issues */
3088 
3089 		tx_q->tx_skbuff_dma[entry].buf = des;
3090 
3091 		stmmac_set_desc_addr(priv, desc, des);
3092 
3093 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
3094 		tx_q->tx_skbuff_dma[entry].len = len;
3095 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3096 
3097 		/* Prepare the descriptor and set the own bit too */
3098 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3099 				priv->mode, 1, last_segment, skb->len);
3100 	}
3101 
3102 	/* Only the last descriptor gets to point to the skb. */
3103 	tx_q->tx_skbuff[entry] = skb;
3104 
3105 	/* We've used all descriptors we need for this skb, however,
3106 	 * advance cur_tx so that it references a fresh descriptor.
3107 	 * ndo_start_xmit will fill this descriptor the next time it's
3108 	 * called and stmmac_tx_clean may clean up to this descriptor.
3109 	 */
3110 	entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3111 	tx_q->cur_tx = entry;
3112 
3113 	if (netif_msg_pktdata(priv)) {
3114 		void *tx_head;
3115 
3116 		netdev_dbg(priv->dev,
3117 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3118 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3119 			   entry, first, nfrags);
3120 
3121 		if (priv->extend_desc)
3122 			tx_head = (void *)tx_q->dma_etx;
3123 		else
3124 			tx_head = (void *)tx_q->dma_tx;
3125 
3126 		stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false);
3127 
3128 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3129 		print_pkt(skb->data, skb->len);
3130 	}
3131 
3132 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3133 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3134 			  __func__);
3135 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3136 	}
3137 
3138 	dev->stats.tx_bytes += skb->len;
3139 
3140 	/* According to the coalesce parameter the IC bit for the latest
3141 	 * segment is reset and the timer re-started to clean the tx status.
3142 	 * This approach takes care about the fragments: desc is the first
3143 	 * element in case of no SG.
3144 	 */
3145 	tx_q->tx_count_frames += nfrags + 1;
3146 	if (priv->tx_coal_frames <= tx_q->tx_count_frames) {
3147 		stmmac_set_tx_ic(priv, desc);
3148 		priv->xstats.tx_set_ic_bit++;
3149 		tx_q->tx_count_frames = 0;
3150 	} else {
3151 		stmmac_tx_timer_arm(priv, queue);
3152 	}
3153 
3154 	skb_tx_timestamp(skb);
3155 
3156 	/* Ready to fill the first descriptor and set the OWN bit w/o any
3157 	 * problems because all the descriptors are actually ready to be
3158 	 * passed to the DMA engine.
3159 	 */
3160 	if (likely(!is_jumbo)) {
3161 		bool last_segment = (nfrags == 0);
3162 
3163 		des = dma_map_single(priv->device, skb->data,
3164 				     nopaged_len, DMA_TO_DEVICE);
3165 		if (dma_mapping_error(priv->device, des))
3166 			goto dma_map_err;
3167 
3168 		tx_q->tx_skbuff_dma[first_entry].buf = des;
3169 
3170 		stmmac_set_desc_addr(priv, first, des);
3171 
3172 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3173 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3174 
3175 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3176 			     priv->hwts_tx_en)) {
3177 			/* declare that device is doing timestamping */
3178 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3179 			stmmac_enable_tx_timestamp(priv, first);
3180 		}
3181 
3182 		/* Prepare the first descriptor setting the OWN bit too */
3183 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3184 				csum_insertion, priv->mode, 1, last_segment,
3185 				skb->len);
3186 
3187 		/* The own bit must be the latest setting done when prepare the
3188 		 * descriptor and then barrier is needed to make sure that
3189 		 * all is coherent before granting the DMA engine.
3190 		 */
3191 		wmb();
3192 	}
3193 
3194 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3195 
3196 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
3197 
3198 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3199 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3200 
3201 	return NETDEV_TX_OK;
3202 
3203 dma_map_err:
3204 	netdev_err(priv->dev, "Tx DMA map failed\n");
3205 	dev_kfree_skb(skb);
3206 	priv->dev->stats.tx_dropped++;
3207 	return NETDEV_TX_OK;
3208 }
3209 
3210 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3211 {
3212 	struct vlan_ethhdr *veth;
3213 	__be16 vlan_proto;
3214 	u16 vlanid;
3215 
3216 	veth = (struct vlan_ethhdr *)skb->data;
3217 	vlan_proto = veth->h_vlan_proto;
3218 
3219 	if ((vlan_proto == htons(ETH_P_8021Q) &&
3220 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3221 	    (vlan_proto == htons(ETH_P_8021AD) &&
3222 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3223 		/* pop the vlan tag */
3224 		vlanid = ntohs(veth->h_vlan_TCI);
3225 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3226 		skb_pull(skb, VLAN_HLEN);
3227 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3228 	}
3229 }
3230 
3231 
3232 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3233 {
3234 	if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3235 		return 0;
3236 
3237 	return 1;
3238 }
3239 
3240 /**
3241  * stmmac_rx_refill - refill used skb preallocated buffers
3242  * @priv: driver private structure
3243  * @queue: RX queue index
3244  * Description : this is to reallocate the skb for the reception process
3245  * that is based on zero-copy.
3246  */
3247 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3248 {
3249 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3250 	int dirty = stmmac_rx_dirty(priv, queue);
3251 	unsigned int entry = rx_q->dirty_rx;
3252 
3253 	int bfsize = priv->dma_buf_sz;
3254 
3255 	while (dirty-- > 0) {
3256 		struct dma_desc *p;
3257 
3258 		if (priv->extend_desc)
3259 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3260 		else
3261 			p = rx_q->dma_rx + entry;
3262 
3263 		if (likely(!rx_q->rx_skbuff[entry])) {
3264 			struct sk_buff *skb;
3265 
3266 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
3267 			if (unlikely(!skb)) {
3268 				/* so for a while no zero-copy! */
3269 				rx_q->rx_zeroc_thresh = STMMAC_RX_THRESH;
3270 				if (unlikely(net_ratelimit()))
3271 					dev_err(priv->device,
3272 						"fail to alloc skb entry %d\n",
3273 						entry);
3274 				break;
3275 			}
3276 
3277 			rx_q->rx_skbuff[entry] = skb;
3278 			rx_q->rx_skbuff_dma[entry] =
3279 			    dma_map_single(priv->device, skb->data, bfsize,
3280 					   DMA_FROM_DEVICE);
3281 			if (dma_mapping_error(priv->device,
3282 					      rx_q->rx_skbuff_dma[entry])) {
3283 				netdev_err(priv->dev, "Rx DMA map failed\n");
3284 				dev_kfree_skb(skb);
3285 				break;
3286 			}
3287 
3288 			stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[entry]);
3289 			stmmac_refill_desc3(priv, rx_q, p);
3290 
3291 			if (rx_q->rx_zeroc_thresh > 0)
3292 				rx_q->rx_zeroc_thresh--;
3293 
3294 			netif_dbg(priv, rx_status, priv->dev,
3295 				  "refill entry #%d\n", entry);
3296 		}
3297 		dma_wmb();
3298 
3299 		stmmac_set_rx_owner(priv, p, priv->use_riwt);
3300 
3301 		dma_wmb();
3302 
3303 		entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3304 	}
3305 	rx_q->dirty_rx = entry;
3306 }
3307 
3308 /**
3309  * stmmac_rx - manage the receive process
3310  * @priv: driver private structure
3311  * @limit: napi bugget
3312  * @queue: RX queue index.
3313  * Description :  this the function called by the napi poll method.
3314  * It gets all the frames inside the ring.
3315  */
3316 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3317 {
3318 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3319 	struct stmmac_channel *ch = &priv->channel[queue];
3320 	unsigned int entry = rx_q->cur_rx;
3321 	int coe = priv->hw->rx_csum;
3322 	unsigned int next_entry;
3323 	unsigned int count = 0;
3324 	bool xmac;
3325 
3326 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3327 
3328 	if (netif_msg_rx_status(priv)) {
3329 		void *rx_head;
3330 
3331 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3332 		if (priv->extend_desc)
3333 			rx_head = (void *)rx_q->dma_erx;
3334 		else
3335 			rx_head = (void *)rx_q->dma_rx;
3336 
3337 		stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3338 	}
3339 	while (count < limit) {
3340 		int status;
3341 		struct dma_desc *p;
3342 		struct dma_desc *np;
3343 
3344 		if (priv->extend_desc)
3345 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3346 		else
3347 			p = rx_q->dma_rx + entry;
3348 
3349 		/* read the status of the incoming frame */
3350 		status = stmmac_rx_status(priv, &priv->dev->stats,
3351 				&priv->xstats, p);
3352 		/* check if managed by the DMA otherwise go ahead */
3353 		if (unlikely(status & dma_own))
3354 			break;
3355 
3356 		count++;
3357 
3358 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3359 		next_entry = rx_q->cur_rx;
3360 
3361 		if (priv->extend_desc)
3362 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3363 		else
3364 			np = rx_q->dma_rx + next_entry;
3365 
3366 		prefetch(np);
3367 
3368 		if (priv->extend_desc)
3369 			stmmac_rx_extended_status(priv, &priv->dev->stats,
3370 					&priv->xstats, rx_q->dma_erx + entry);
3371 		if (unlikely(status == discard_frame)) {
3372 			priv->dev->stats.rx_errors++;
3373 			if (priv->hwts_rx_en && !priv->extend_desc) {
3374 				/* DESC2 & DESC3 will be overwritten by device
3375 				 * with timestamp value, hence reinitialize
3376 				 * them in stmmac_rx_refill() function so that
3377 				 * device can reuse it.
3378 				 */
3379 				dev_kfree_skb_any(rx_q->rx_skbuff[entry]);
3380 				rx_q->rx_skbuff[entry] = NULL;
3381 				dma_unmap_single(priv->device,
3382 						 rx_q->rx_skbuff_dma[entry],
3383 						 priv->dma_buf_sz,
3384 						 DMA_FROM_DEVICE);
3385 			}
3386 		} else {
3387 			struct sk_buff *skb;
3388 			int frame_len;
3389 			unsigned int des;
3390 
3391 			stmmac_get_desc_addr(priv, p, &des);
3392 			frame_len = stmmac_get_rx_frame_len(priv, p, coe);
3393 
3394 			/*  If frame length is greater than skb buffer size
3395 			 *  (preallocated during init) then the packet is
3396 			 *  ignored
3397 			 */
3398 			if (frame_len > priv->dma_buf_sz) {
3399 				netdev_err(priv->dev,
3400 					   "len %d larger than size (%d)\n",
3401 					   frame_len, priv->dma_buf_sz);
3402 				priv->dev->stats.rx_length_errors++;
3403 				break;
3404 			}
3405 
3406 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3407 			 * Type frames (LLC/LLC-SNAP)
3408 			 *
3409 			 * llc_snap is never checked in GMAC >= 4, so this ACS
3410 			 * feature is always disabled and packets need to be
3411 			 * stripped manually.
3412 			 */
3413 			if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3414 			    unlikely(status != llc_snap))
3415 				frame_len -= ETH_FCS_LEN;
3416 
3417 			if (netif_msg_rx_status(priv)) {
3418 				netdev_dbg(priv->dev, "\tdesc: %p [entry %d] buff=0x%x\n",
3419 					   p, entry, des);
3420 				netdev_dbg(priv->dev, "frame size %d, COE: %d\n",
3421 					   frame_len, status);
3422 			}
3423 
3424 			/* The zero-copy is always used for all the sizes
3425 			 * in case of GMAC4 because it needs
3426 			 * to refill the used descriptors, always.
3427 			 */
3428 			if (unlikely(!xmac &&
3429 				     ((frame_len < priv->rx_copybreak) ||
3430 				     stmmac_rx_threshold_count(rx_q)))) {
3431 				skb = netdev_alloc_skb_ip_align(priv->dev,
3432 								frame_len);
3433 				if (unlikely(!skb)) {
3434 					if (net_ratelimit())
3435 						dev_warn(priv->device,
3436 							 "packet dropped\n");
3437 					priv->dev->stats.rx_dropped++;
3438 					break;
3439 				}
3440 
3441 				dma_sync_single_for_cpu(priv->device,
3442 							rx_q->rx_skbuff_dma
3443 							[entry], frame_len,
3444 							DMA_FROM_DEVICE);
3445 				skb_copy_to_linear_data(skb,
3446 							rx_q->
3447 							rx_skbuff[entry]->data,
3448 							frame_len);
3449 
3450 				skb_put(skb, frame_len);
3451 				dma_sync_single_for_device(priv->device,
3452 							   rx_q->rx_skbuff_dma
3453 							   [entry], frame_len,
3454 							   DMA_FROM_DEVICE);
3455 			} else {
3456 				skb = rx_q->rx_skbuff[entry];
3457 				if (unlikely(!skb)) {
3458 					netdev_err(priv->dev,
3459 						   "%s: Inconsistent Rx chain\n",
3460 						   priv->dev->name);
3461 					priv->dev->stats.rx_dropped++;
3462 					break;
3463 				}
3464 				prefetch(skb->data - NET_IP_ALIGN);
3465 				rx_q->rx_skbuff[entry] = NULL;
3466 				rx_q->rx_zeroc_thresh++;
3467 
3468 				skb_put(skb, frame_len);
3469 				dma_unmap_single(priv->device,
3470 						 rx_q->rx_skbuff_dma[entry],
3471 						 priv->dma_buf_sz,
3472 						 DMA_FROM_DEVICE);
3473 			}
3474 
3475 			if (netif_msg_pktdata(priv)) {
3476 				netdev_dbg(priv->dev, "frame received (%dbytes)",
3477 					   frame_len);
3478 				print_pkt(skb->data, frame_len);
3479 			}
3480 
3481 			stmmac_get_rx_hwtstamp(priv, p, np, skb);
3482 
3483 			stmmac_rx_vlan(priv->dev, skb);
3484 
3485 			skb->protocol = eth_type_trans(skb, priv->dev);
3486 
3487 			if (unlikely(!coe))
3488 				skb_checksum_none_assert(skb);
3489 			else
3490 				skb->ip_summed = CHECKSUM_UNNECESSARY;
3491 
3492 			napi_gro_receive(&ch->napi, skb);
3493 
3494 			priv->dev->stats.rx_packets++;
3495 			priv->dev->stats.rx_bytes += frame_len;
3496 		}
3497 		entry = next_entry;
3498 	}
3499 
3500 	stmmac_rx_refill(priv, queue);
3501 
3502 	priv->xstats.rx_pkt_n += count;
3503 
3504 	return count;
3505 }
3506 
3507 /**
3508  *  stmmac_poll - stmmac poll method (NAPI)
3509  *  @napi : pointer to the napi structure.
3510  *  @budget : maximum number of packets that the current CPU can receive from
3511  *	      all interfaces.
3512  *  Description :
3513  *  To look at the incoming frames and clear the tx resources.
3514  */
3515 static int stmmac_napi_poll(struct napi_struct *napi, int budget)
3516 {
3517 	struct stmmac_channel *ch =
3518 		container_of(napi, struct stmmac_channel, napi);
3519 	struct stmmac_priv *priv = ch->priv_data;
3520 	int work_done, rx_done = 0, tx_done = 0;
3521 	u32 chan = ch->index;
3522 
3523 	priv->xstats.napi_poll++;
3524 
3525 	if (ch->has_tx)
3526 		tx_done = stmmac_tx_clean(priv, budget, chan);
3527 	if (ch->has_rx)
3528 		rx_done = stmmac_rx(priv, budget, chan);
3529 
3530 	work_done = max(rx_done, tx_done);
3531 	work_done = min(work_done, budget);
3532 
3533 	if (work_done < budget && napi_complete_done(napi, work_done)) {
3534 		int stat;
3535 
3536 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3537 		stat = stmmac_dma_interrupt_status(priv, priv->ioaddr,
3538 						   &priv->xstats, chan);
3539 		if (stat && napi_reschedule(napi))
3540 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
3541 	}
3542 
3543 	return work_done;
3544 }
3545 
3546 /**
3547  *  stmmac_tx_timeout
3548  *  @dev : Pointer to net device structure
3549  *  Description: this function is called when a packet transmission fails to
3550  *   complete within a reasonable time. The driver will mark the error in the
3551  *   netdev structure and arrange for the device to be reset to a sane state
3552  *   in order to transmit a new packet.
3553  */
3554 static void stmmac_tx_timeout(struct net_device *dev)
3555 {
3556 	struct stmmac_priv *priv = netdev_priv(dev);
3557 
3558 	stmmac_global_err(priv);
3559 }
3560 
3561 /**
3562  *  stmmac_set_rx_mode - entry point for multicast addressing
3563  *  @dev : pointer to the device structure
3564  *  Description:
3565  *  This function is a driver entry point which gets called by the kernel
3566  *  whenever multicast addresses must be enabled/disabled.
3567  *  Return value:
3568  *  void.
3569  */
3570 static void stmmac_set_rx_mode(struct net_device *dev)
3571 {
3572 	struct stmmac_priv *priv = netdev_priv(dev);
3573 
3574 	stmmac_set_filter(priv, priv->hw, dev);
3575 }
3576 
3577 /**
3578  *  stmmac_change_mtu - entry point to change MTU size for the device.
3579  *  @dev : device pointer.
3580  *  @new_mtu : the new MTU size for the device.
3581  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3582  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3583  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3584  *  Return value:
3585  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3586  *  file on failure.
3587  */
3588 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3589 {
3590 	struct stmmac_priv *priv = netdev_priv(dev);
3591 
3592 	if (netif_running(dev)) {
3593 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
3594 		return -EBUSY;
3595 	}
3596 
3597 	dev->mtu = new_mtu;
3598 
3599 	netdev_update_features(dev);
3600 
3601 	return 0;
3602 }
3603 
3604 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3605 					     netdev_features_t features)
3606 {
3607 	struct stmmac_priv *priv = netdev_priv(dev);
3608 
3609 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3610 		features &= ~NETIF_F_RXCSUM;
3611 
3612 	if (!priv->plat->tx_coe)
3613 		features &= ~NETIF_F_CSUM_MASK;
3614 
3615 	/* Some GMAC devices have a bugged Jumbo frame support that
3616 	 * needs to have the Tx COE disabled for oversized frames
3617 	 * (due to limited buffer sizes). In this case we disable
3618 	 * the TX csum insertion in the TDES and not use SF.
3619 	 */
3620 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3621 		features &= ~NETIF_F_CSUM_MASK;
3622 
3623 	/* Disable tso if asked by ethtool */
3624 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3625 		if (features & NETIF_F_TSO)
3626 			priv->tso = true;
3627 		else
3628 			priv->tso = false;
3629 	}
3630 
3631 	return features;
3632 }
3633 
3634 static int stmmac_set_features(struct net_device *netdev,
3635 			       netdev_features_t features)
3636 {
3637 	struct stmmac_priv *priv = netdev_priv(netdev);
3638 
3639 	/* Keep the COE Type in case of csum is supporting */
3640 	if (features & NETIF_F_RXCSUM)
3641 		priv->hw->rx_csum = priv->plat->rx_coe;
3642 	else
3643 		priv->hw->rx_csum = 0;
3644 	/* No check needed because rx_coe has been set before and it will be
3645 	 * fixed in case of issue.
3646 	 */
3647 	stmmac_rx_ipc(priv, priv->hw);
3648 
3649 	return 0;
3650 }
3651 
3652 /**
3653  *  stmmac_interrupt - main ISR
3654  *  @irq: interrupt number.
3655  *  @dev_id: to pass the net device pointer.
3656  *  Description: this is the main driver interrupt service routine.
3657  *  It can call:
3658  *  o DMA service routine (to manage incoming frame reception and transmission
3659  *    status)
3660  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3661  *    interrupts.
3662  */
3663 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3664 {
3665 	struct net_device *dev = (struct net_device *)dev_id;
3666 	struct stmmac_priv *priv = netdev_priv(dev);
3667 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3668 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3669 	u32 queues_count;
3670 	u32 queue;
3671 	bool xmac;
3672 
3673 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3674 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3675 
3676 	if (priv->irq_wake)
3677 		pm_wakeup_event(priv->device, 0);
3678 
3679 	if (unlikely(!dev)) {
3680 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3681 		return IRQ_NONE;
3682 	}
3683 
3684 	/* Check if adapter is up */
3685 	if (test_bit(STMMAC_DOWN, &priv->state))
3686 		return IRQ_HANDLED;
3687 	/* Check if a fatal error happened */
3688 	if (stmmac_safety_feat_interrupt(priv))
3689 		return IRQ_HANDLED;
3690 
3691 	/* To handle GMAC own interrupts */
3692 	if ((priv->plat->has_gmac) || xmac) {
3693 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
3694 		int mtl_status;
3695 
3696 		if (unlikely(status)) {
3697 			/* For LPI we need to save the tx status */
3698 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3699 				priv->tx_path_in_lpi_mode = true;
3700 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3701 				priv->tx_path_in_lpi_mode = false;
3702 		}
3703 
3704 		for (queue = 0; queue < queues_count; queue++) {
3705 			struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3706 
3707 			mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
3708 								queue);
3709 			if (mtl_status != -EINVAL)
3710 				status |= mtl_status;
3711 
3712 			if (status & CORE_IRQ_MTL_RX_OVERFLOW)
3713 				stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
3714 						       rx_q->rx_tail_addr,
3715 						       queue);
3716 		}
3717 
3718 		/* PCS link status */
3719 		if (priv->hw->pcs) {
3720 			if (priv->xstats.pcs_link)
3721 				netif_carrier_on(dev);
3722 			else
3723 				netif_carrier_off(dev);
3724 		}
3725 	}
3726 
3727 	/* To handle DMA interrupts */
3728 	stmmac_dma_interrupt(priv);
3729 
3730 	return IRQ_HANDLED;
3731 }
3732 
3733 #ifdef CONFIG_NET_POLL_CONTROLLER
3734 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3735  * to allow network I/O with interrupts disabled.
3736  */
3737 static void stmmac_poll_controller(struct net_device *dev)
3738 {
3739 	disable_irq(dev->irq);
3740 	stmmac_interrupt(dev->irq, dev);
3741 	enable_irq(dev->irq);
3742 }
3743 #endif
3744 
3745 /**
3746  *  stmmac_ioctl - Entry point for the Ioctl
3747  *  @dev: Device pointer.
3748  *  @rq: An IOCTL specefic structure, that can contain a pointer to
3749  *  a proprietary structure used to pass information to the driver.
3750  *  @cmd: IOCTL command
3751  *  Description:
3752  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3753  */
3754 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3755 {
3756 	int ret = -EOPNOTSUPP;
3757 
3758 	if (!netif_running(dev))
3759 		return -EINVAL;
3760 
3761 	switch (cmd) {
3762 	case SIOCGMIIPHY:
3763 	case SIOCGMIIREG:
3764 	case SIOCSMIIREG:
3765 		if (!dev->phydev)
3766 			return -EINVAL;
3767 		ret = phy_mii_ioctl(dev->phydev, rq, cmd);
3768 		break;
3769 	case SIOCSHWTSTAMP:
3770 		ret = stmmac_hwtstamp_ioctl(dev, rq);
3771 		break;
3772 	default:
3773 		break;
3774 	}
3775 
3776 	return ret;
3777 }
3778 
3779 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3780 				    void *cb_priv)
3781 {
3782 	struct stmmac_priv *priv = cb_priv;
3783 	int ret = -EOPNOTSUPP;
3784 
3785 	stmmac_disable_all_queues(priv);
3786 
3787 	switch (type) {
3788 	case TC_SETUP_CLSU32:
3789 		if (tc_cls_can_offload_and_chain0(priv->dev, type_data))
3790 			ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
3791 		break;
3792 	default:
3793 		break;
3794 	}
3795 
3796 	stmmac_enable_all_queues(priv);
3797 	return ret;
3798 }
3799 
3800 static int stmmac_setup_tc_block(struct stmmac_priv *priv,
3801 				 struct tc_block_offload *f)
3802 {
3803 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
3804 		return -EOPNOTSUPP;
3805 
3806 	switch (f->command) {
3807 	case TC_BLOCK_BIND:
3808 		return tcf_block_cb_register(f->block, stmmac_setup_tc_block_cb,
3809 				priv, priv, f->extack);
3810 	case TC_BLOCK_UNBIND:
3811 		tcf_block_cb_unregister(f->block, stmmac_setup_tc_block_cb, priv);
3812 		return 0;
3813 	default:
3814 		return -EOPNOTSUPP;
3815 	}
3816 }
3817 
3818 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
3819 			   void *type_data)
3820 {
3821 	struct stmmac_priv *priv = netdev_priv(ndev);
3822 
3823 	switch (type) {
3824 	case TC_SETUP_BLOCK:
3825 		return stmmac_setup_tc_block(priv, type_data);
3826 	case TC_SETUP_QDISC_CBS:
3827 		return stmmac_tc_setup_cbs(priv, priv, type_data);
3828 	default:
3829 		return -EOPNOTSUPP;
3830 	}
3831 }
3832 
3833 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
3834 {
3835 	struct stmmac_priv *priv = netdev_priv(ndev);
3836 	int ret = 0;
3837 
3838 	ret = eth_mac_addr(ndev, addr);
3839 	if (ret)
3840 		return ret;
3841 
3842 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
3843 
3844 	return ret;
3845 }
3846 
3847 #ifdef CONFIG_DEBUG_FS
3848 static struct dentry *stmmac_fs_dir;
3849 
3850 static void sysfs_display_ring(void *head, int size, int extend_desc,
3851 			       struct seq_file *seq)
3852 {
3853 	int i;
3854 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
3855 	struct dma_desc *p = (struct dma_desc *)head;
3856 
3857 	for (i = 0; i < size; i++) {
3858 		if (extend_desc) {
3859 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3860 				   i, (unsigned int)virt_to_phys(ep),
3861 				   le32_to_cpu(ep->basic.des0),
3862 				   le32_to_cpu(ep->basic.des1),
3863 				   le32_to_cpu(ep->basic.des2),
3864 				   le32_to_cpu(ep->basic.des3));
3865 			ep++;
3866 		} else {
3867 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3868 				   i, (unsigned int)virt_to_phys(p),
3869 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
3870 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
3871 			p++;
3872 		}
3873 		seq_printf(seq, "\n");
3874 	}
3875 }
3876 
3877 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
3878 {
3879 	struct net_device *dev = seq->private;
3880 	struct stmmac_priv *priv = netdev_priv(dev);
3881 	u32 rx_count = priv->plat->rx_queues_to_use;
3882 	u32 tx_count = priv->plat->tx_queues_to_use;
3883 	u32 queue;
3884 
3885 	if ((dev->flags & IFF_UP) == 0)
3886 		return 0;
3887 
3888 	for (queue = 0; queue < rx_count; queue++) {
3889 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3890 
3891 		seq_printf(seq, "RX Queue %d:\n", queue);
3892 
3893 		if (priv->extend_desc) {
3894 			seq_printf(seq, "Extended descriptor ring:\n");
3895 			sysfs_display_ring((void *)rx_q->dma_erx,
3896 					   DMA_RX_SIZE, 1, seq);
3897 		} else {
3898 			seq_printf(seq, "Descriptor ring:\n");
3899 			sysfs_display_ring((void *)rx_q->dma_rx,
3900 					   DMA_RX_SIZE, 0, seq);
3901 		}
3902 	}
3903 
3904 	for (queue = 0; queue < tx_count; queue++) {
3905 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3906 
3907 		seq_printf(seq, "TX Queue %d:\n", queue);
3908 
3909 		if (priv->extend_desc) {
3910 			seq_printf(seq, "Extended descriptor ring:\n");
3911 			sysfs_display_ring((void *)tx_q->dma_etx,
3912 					   DMA_TX_SIZE, 1, seq);
3913 		} else {
3914 			seq_printf(seq, "Descriptor ring:\n");
3915 			sysfs_display_ring((void *)tx_q->dma_tx,
3916 					   DMA_TX_SIZE, 0, seq);
3917 		}
3918 	}
3919 
3920 	return 0;
3921 }
3922 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
3923 
3924 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
3925 {
3926 	struct net_device *dev = seq->private;
3927 	struct stmmac_priv *priv = netdev_priv(dev);
3928 
3929 	if (!priv->hw_cap_support) {
3930 		seq_printf(seq, "DMA HW features not supported\n");
3931 		return 0;
3932 	}
3933 
3934 	seq_printf(seq, "==============================\n");
3935 	seq_printf(seq, "\tDMA HW features\n");
3936 	seq_printf(seq, "==============================\n");
3937 
3938 	seq_printf(seq, "\t10/100 Mbps: %s\n",
3939 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
3940 	seq_printf(seq, "\t1000 Mbps: %s\n",
3941 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
3942 	seq_printf(seq, "\tHalf duplex: %s\n",
3943 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
3944 	seq_printf(seq, "\tHash Filter: %s\n",
3945 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
3946 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
3947 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
3948 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
3949 		   (priv->dma_cap.pcs) ? "Y" : "N");
3950 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
3951 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
3952 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
3953 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
3954 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
3955 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
3956 	seq_printf(seq, "\tRMON module: %s\n",
3957 		   (priv->dma_cap.rmon) ? "Y" : "N");
3958 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
3959 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
3960 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
3961 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
3962 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
3963 		   (priv->dma_cap.eee) ? "Y" : "N");
3964 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
3965 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
3966 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
3967 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3968 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
3969 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
3970 	} else {
3971 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
3972 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
3973 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
3974 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
3975 	}
3976 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
3977 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
3978 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
3979 		   priv->dma_cap.number_rx_channel);
3980 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
3981 		   priv->dma_cap.number_tx_channel);
3982 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
3983 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
3984 
3985 	return 0;
3986 }
3987 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
3988 
3989 static int stmmac_init_fs(struct net_device *dev)
3990 {
3991 	struct stmmac_priv *priv = netdev_priv(dev);
3992 
3993 	/* Create per netdev entries */
3994 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
3995 
3996 	if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
3997 		netdev_err(priv->dev, "ERROR failed to create debugfs directory\n");
3998 
3999 		return -ENOMEM;
4000 	}
4001 
4002 	/* Entry to report DMA RX/TX rings */
4003 	priv->dbgfs_rings_status =
4004 		debugfs_create_file("descriptors_status", 0444,
4005 				    priv->dbgfs_dir, dev,
4006 				    &stmmac_rings_status_fops);
4007 
4008 	if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
4009 		netdev_err(priv->dev, "ERROR creating stmmac ring debugfs file\n");
4010 		debugfs_remove_recursive(priv->dbgfs_dir);
4011 
4012 		return -ENOMEM;
4013 	}
4014 
4015 	/* Entry to report the DMA HW features */
4016 	priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", 0444,
4017 						  priv->dbgfs_dir,
4018 						  dev, &stmmac_dma_cap_fops);
4019 
4020 	if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
4021 		netdev_err(priv->dev, "ERROR creating stmmac MMC debugfs file\n");
4022 		debugfs_remove_recursive(priv->dbgfs_dir);
4023 
4024 		return -ENOMEM;
4025 	}
4026 
4027 	return 0;
4028 }
4029 
4030 static void stmmac_exit_fs(struct net_device *dev)
4031 {
4032 	struct stmmac_priv *priv = netdev_priv(dev);
4033 
4034 	debugfs_remove_recursive(priv->dbgfs_dir);
4035 }
4036 #endif /* CONFIG_DEBUG_FS */
4037 
4038 static const struct net_device_ops stmmac_netdev_ops = {
4039 	.ndo_open = stmmac_open,
4040 	.ndo_start_xmit = stmmac_xmit,
4041 	.ndo_stop = stmmac_release,
4042 	.ndo_change_mtu = stmmac_change_mtu,
4043 	.ndo_fix_features = stmmac_fix_features,
4044 	.ndo_set_features = stmmac_set_features,
4045 	.ndo_set_rx_mode = stmmac_set_rx_mode,
4046 	.ndo_tx_timeout = stmmac_tx_timeout,
4047 	.ndo_do_ioctl = stmmac_ioctl,
4048 	.ndo_setup_tc = stmmac_setup_tc,
4049 #ifdef CONFIG_NET_POLL_CONTROLLER
4050 	.ndo_poll_controller = stmmac_poll_controller,
4051 #endif
4052 	.ndo_set_mac_address = stmmac_set_mac_address,
4053 };
4054 
4055 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4056 {
4057 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4058 		return;
4059 	if (test_bit(STMMAC_DOWN, &priv->state))
4060 		return;
4061 
4062 	netdev_err(priv->dev, "Reset adapter.\n");
4063 
4064 	rtnl_lock();
4065 	netif_trans_update(priv->dev);
4066 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4067 		usleep_range(1000, 2000);
4068 
4069 	set_bit(STMMAC_DOWN, &priv->state);
4070 	dev_close(priv->dev);
4071 	dev_open(priv->dev, NULL);
4072 	clear_bit(STMMAC_DOWN, &priv->state);
4073 	clear_bit(STMMAC_RESETING, &priv->state);
4074 	rtnl_unlock();
4075 }
4076 
4077 static void stmmac_service_task(struct work_struct *work)
4078 {
4079 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4080 			service_task);
4081 
4082 	stmmac_reset_subtask(priv);
4083 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4084 }
4085 
4086 /**
4087  *  stmmac_hw_init - Init the MAC device
4088  *  @priv: driver private structure
4089  *  Description: this function is to configure the MAC device according to
4090  *  some platform parameters or the HW capability register. It prepares the
4091  *  driver to use either ring or chain modes and to setup either enhanced or
4092  *  normal descriptors.
4093  */
4094 static int stmmac_hw_init(struct stmmac_priv *priv)
4095 {
4096 	int ret;
4097 
4098 	/* dwmac-sun8i only work in chain mode */
4099 	if (priv->plat->has_sun8i)
4100 		chain_mode = 1;
4101 	priv->chain_mode = chain_mode;
4102 
4103 	/* Initialize HW Interface */
4104 	ret = stmmac_hwif_init(priv);
4105 	if (ret)
4106 		return ret;
4107 
4108 	/* Get the HW capability (new GMAC newer than 3.50a) */
4109 	priv->hw_cap_support = stmmac_get_hw_features(priv);
4110 	if (priv->hw_cap_support) {
4111 		dev_info(priv->device, "DMA HW capability register supported\n");
4112 
4113 		/* We can override some gmac/dma configuration fields: e.g.
4114 		 * enh_desc, tx_coe (e.g. that are passed through the
4115 		 * platform) with the values from the HW capability
4116 		 * register (if supported).
4117 		 */
4118 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
4119 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4120 		priv->hw->pmt = priv->plat->pmt;
4121 
4122 		/* TXCOE doesn't work in thresh DMA mode */
4123 		if (priv->plat->force_thresh_dma_mode)
4124 			priv->plat->tx_coe = 0;
4125 		else
4126 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
4127 
4128 		/* In case of GMAC4 rx_coe is from HW cap register. */
4129 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
4130 
4131 		if (priv->dma_cap.rx_coe_type2)
4132 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4133 		else if (priv->dma_cap.rx_coe_type1)
4134 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4135 
4136 	} else {
4137 		dev_info(priv->device, "No HW DMA feature register supported\n");
4138 	}
4139 
4140 	if (priv->plat->rx_coe) {
4141 		priv->hw->rx_csum = priv->plat->rx_coe;
4142 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4143 		if (priv->synopsys_id < DWMAC_CORE_4_00)
4144 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4145 	}
4146 	if (priv->plat->tx_coe)
4147 		dev_info(priv->device, "TX Checksum insertion supported\n");
4148 
4149 	if (priv->plat->pmt) {
4150 		dev_info(priv->device, "Wake-Up On Lan supported\n");
4151 		device_set_wakeup_capable(priv->device, 1);
4152 	}
4153 
4154 	if (priv->dma_cap.tsoen)
4155 		dev_info(priv->device, "TSO supported\n");
4156 
4157 	/* Run HW quirks, if any */
4158 	if (priv->hwif_quirks) {
4159 		ret = priv->hwif_quirks(priv);
4160 		if (ret)
4161 			return ret;
4162 	}
4163 
4164 	/* Rx Watchdog is available in the COREs newer than the 3.40.
4165 	 * In some case, for example on bugged HW this feature
4166 	 * has to be disable and this can be done by passing the
4167 	 * riwt_off field from the platform.
4168 	 */
4169 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4170 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4171 		priv->use_riwt = 1;
4172 		dev_info(priv->device,
4173 			 "Enable RX Mitigation via HW Watchdog Timer\n");
4174 	}
4175 
4176 	return 0;
4177 }
4178 
4179 /**
4180  * stmmac_dvr_probe
4181  * @device: device pointer
4182  * @plat_dat: platform data pointer
4183  * @res: stmmac resource pointer
4184  * Description: this is the main probe function used to
4185  * call the alloc_etherdev, allocate the priv structure.
4186  * Return:
4187  * returns 0 on success, otherwise errno.
4188  */
4189 int stmmac_dvr_probe(struct device *device,
4190 		     struct plat_stmmacenet_data *plat_dat,
4191 		     struct stmmac_resources *res)
4192 {
4193 	struct net_device *ndev = NULL;
4194 	struct stmmac_priv *priv;
4195 	u32 queue, maxq;
4196 	int ret = 0;
4197 
4198 	ndev = alloc_etherdev_mqs(sizeof(struct stmmac_priv),
4199 				  MTL_MAX_TX_QUEUES,
4200 				  MTL_MAX_RX_QUEUES);
4201 	if (!ndev)
4202 		return -ENOMEM;
4203 
4204 	SET_NETDEV_DEV(ndev, device);
4205 
4206 	priv = netdev_priv(ndev);
4207 	priv->device = device;
4208 	priv->dev = ndev;
4209 
4210 	stmmac_set_ethtool_ops(ndev);
4211 	priv->pause = pause;
4212 	priv->plat = plat_dat;
4213 	priv->ioaddr = res->addr;
4214 	priv->dev->base_addr = (unsigned long)res->addr;
4215 
4216 	priv->dev->irq = res->irq;
4217 	priv->wol_irq = res->wol_irq;
4218 	priv->lpi_irq = res->lpi_irq;
4219 
4220 	if (res->mac)
4221 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4222 
4223 	dev_set_drvdata(device, priv->dev);
4224 
4225 	/* Verify driver arguments */
4226 	stmmac_verify_args();
4227 
4228 	/* Allocate workqueue */
4229 	priv->wq = create_singlethread_workqueue("stmmac_wq");
4230 	if (!priv->wq) {
4231 		dev_err(priv->device, "failed to create workqueue\n");
4232 		ret = -ENOMEM;
4233 		goto error_wq;
4234 	}
4235 
4236 	INIT_WORK(&priv->service_task, stmmac_service_task);
4237 
4238 	/* Override with kernel parameters if supplied XXX CRS XXX
4239 	 * this needs to have multiple instances
4240 	 */
4241 	if ((phyaddr >= 0) && (phyaddr <= 31))
4242 		priv->plat->phy_addr = phyaddr;
4243 
4244 	if (priv->plat->stmmac_rst) {
4245 		ret = reset_control_assert(priv->plat->stmmac_rst);
4246 		reset_control_deassert(priv->plat->stmmac_rst);
4247 		/* Some reset controllers have only reset callback instead of
4248 		 * assert + deassert callbacks pair.
4249 		 */
4250 		if (ret == -ENOTSUPP)
4251 			reset_control_reset(priv->plat->stmmac_rst);
4252 	}
4253 
4254 	/* Init MAC and get the capabilities */
4255 	ret = stmmac_hw_init(priv);
4256 	if (ret)
4257 		goto error_hw_init;
4258 
4259 	/* Configure real RX and TX queues */
4260 	netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4261 	netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4262 
4263 	ndev->netdev_ops = &stmmac_netdev_ops;
4264 
4265 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4266 			    NETIF_F_RXCSUM;
4267 
4268 	ret = stmmac_tc_init(priv, priv);
4269 	if (!ret) {
4270 		ndev->hw_features |= NETIF_F_HW_TC;
4271 	}
4272 
4273 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4274 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4275 		priv->tso = true;
4276 		dev_info(priv->device, "TSO feature enabled\n");
4277 	}
4278 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4279 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4280 #ifdef STMMAC_VLAN_TAG_USED
4281 	/* Both mac100 and gmac support receive VLAN tag detection */
4282 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4283 #endif
4284 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
4285 
4286 	/* MTU range: 46 - hw-specific max */
4287 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4288 	if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4289 		ndev->max_mtu = JUMBO_LEN;
4290 	else if (priv->plat->has_xgmac)
4291 		ndev->max_mtu = XGMAC_JUMBO_LEN;
4292 	else
4293 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4294 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4295 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4296 	 */
4297 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
4298 	    (priv->plat->maxmtu >= ndev->min_mtu))
4299 		ndev->max_mtu = priv->plat->maxmtu;
4300 	else if (priv->plat->maxmtu < ndev->min_mtu)
4301 		dev_warn(priv->device,
4302 			 "%s: warning: maxmtu having invalid value (%d)\n",
4303 			 __func__, priv->plat->maxmtu);
4304 
4305 	if (flow_ctrl)
4306 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
4307 
4308 	/* Setup channels NAPI */
4309 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4310 
4311 	for (queue = 0; queue < maxq; queue++) {
4312 		struct stmmac_channel *ch = &priv->channel[queue];
4313 
4314 		ch->priv_data = priv;
4315 		ch->index = queue;
4316 
4317 		if (queue < priv->plat->rx_queues_to_use)
4318 			ch->has_rx = true;
4319 		if (queue < priv->plat->tx_queues_to_use)
4320 			ch->has_tx = true;
4321 
4322 		netif_napi_add(ndev, &ch->napi, stmmac_napi_poll,
4323 			       NAPI_POLL_WEIGHT);
4324 	}
4325 
4326 	mutex_init(&priv->lock);
4327 
4328 	/* If a specific clk_csr value is passed from the platform
4329 	 * this means that the CSR Clock Range selection cannot be
4330 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
4331 	 * set the MDC clock dynamically according to the csr actual
4332 	 * clock input.
4333 	 */
4334 	if (!priv->plat->clk_csr)
4335 		stmmac_clk_csr_set(priv);
4336 	else
4337 		priv->clk_csr = priv->plat->clk_csr;
4338 
4339 	stmmac_check_pcs_mode(priv);
4340 
4341 	if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
4342 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4343 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
4344 		/* MDIO bus Registration */
4345 		ret = stmmac_mdio_register(ndev);
4346 		if (ret < 0) {
4347 			dev_err(priv->device,
4348 				"%s: MDIO bus (id: %d) registration failed",
4349 				__func__, priv->plat->bus_id);
4350 			goto error_mdio_register;
4351 		}
4352 	}
4353 
4354 	ret = register_netdev(ndev);
4355 	if (ret) {
4356 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
4357 			__func__, ret);
4358 		goto error_netdev_register;
4359 	}
4360 
4361 #ifdef CONFIG_DEBUG_FS
4362 	ret = stmmac_init_fs(ndev);
4363 	if (ret < 0)
4364 		netdev_warn(priv->dev, "%s: failed debugFS registration\n",
4365 			    __func__);
4366 #endif
4367 
4368 	return ret;
4369 
4370 error_netdev_register:
4371 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4372 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4373 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4374 		stmmac_mdio_unregister(ndev);
4375 error_mdio_register:
4376 	for (queue = 0; queue < maxq; queue++) {
4377 		struct stmmac_channel *ch = &priv->channel[queue];
4378 
4379 		netif_napi_del(&ch->napi);
4380 	}
4381 error_hw_init:
4382 	destroy_workqueue(priv->wq);
4383 error_wq:
4384 	free_netdev(ndev);
4385 
4386 	return ret;
4387 }
4388 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4389 
4390 /**
4391  * stmmac_dvr_remove
4392  * @dev: device pointer
4393  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4394  * changes the link status, releases the DMA descriptor rings.
4395  */
4396 int stmmac_dvr_remove(struct device *dev)
4397 {
4398 	struct net_device *ndev = dev_get_drvdata(dev);
4399 	struct stmmac_priv *priv = netdev_priv(ndev);
4400 
4401 	netdev_info(priv->dev, "%s: removing driver", __func__);
4402 
4403 #ifdef CONFIG_DEBUG_FS
4404 	stmmac_exit_fs(ndev);
4405 #endif
4406 	stmmac_stop_all_dma(priv);
4407 
4408 	stmmac_mac_set(priv, priv->ioaddr, false);
4409 	netif_carrier_off(ndev);
4410 	unregister_netdev(ndev);
4411 	if (priv->plat->stmmac_rst)
4412 		reset_control_assert(priv->plat->stmmac_rst);
4413 	clk_disable_unprepare(priv->plat->pclk);
4414 	clk_disable_unprepare(priv->plat->stmmac_clk);
4415 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4416 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4417 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4418 		stmmac_mdio_unregister(ndev);
4419 	destroy_workqueue(priv->wq);
4420 	mutex_destroy(&priv->lock);
4421 	free_netdev(ndev);
4422 
4423 	return 0;
4424 }
4425 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4426 
4427 /**
4428  * stmmac_suspend - suspend callback
4429  * @dev: device pointer
4430  * Description: this is the function to suspend the device and it is called
4431  * by the platform driver to stop the network queue, release the resources,
4432  * program the PMT register (for WoL), clean and release driver resources.
4433  */
4434 int stmmac_suspend(struct device *dev)
4435 {
4436 	struct net_device *ndev = dev_get_drvdata(dev);
4437 	struct stmmac_priv *priv = netdev_priv(ndev);
4438 
4439 	if (!ndev || !netif_running(ndev))
4440 		return 0;
4441 
4442 	if (ndev->phydev)
4443 		phy_stop(ndev->phydev);
4444 
4445 	mutex_lock(&priv->lock);
4446 
4447 	netif_device_detach(ndev);
4448 	stmmac_stop_all_queues(priv);
4449 
4450 	stmmac_disable_all_queues(priv);
4451 
4452 	/* Stop TX/RX DMA */
4453 	stmmac_stop_all_dma(priv);
4454 
4455 	/* Enable Power down mode by programming the PMT regs */
4456 	if (device_may_wakeup(priv->device)) {
4457 		stmmac_pmt(priv, priv->hw, priv->wolopts);
4458 		priv->irq_wake = 1;
4459 	} else {
4460 		stmmac_mac_set(priv, priv->ioaddr, false);
4461 		pinctrl_pm_select_sleep_state(priv->device);
4462 		/* Disable clock in case of PWM is off */
4463 		clk_disable(priv->plat->pclk);
4464 		clk_disable(priv->plat->stmmac_clk);
4465 	}
4466 	mutex_unlock(&priv->lock);
4467 
4468 	priv->oldlink = false;
4469 	priv->speed = SPEED_UNKNOWN;
4470 	priv->oldduplex = DUPLEX_UNKNOWN;
4471 	return 0;
4472 }
4473 EXPORT_SYMBOL_GPL(stmmac_suspend);
4474 
4475 /**
4476  * stmmac_reset_queues_param - reset queue parameters
4477  * @dev: device pointer
4478  */
4479 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
4480 {
4481 	u32 rx_cnt = priv->plat->rx_queues_to_use;
4482 	u32 tx_cnt = priv->plat->tx_queues_to_use;
4483 	u32 queue;
4484 
4485 	for (queue = 0; queue < rx_cnt; queue++) {
4486 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4487 
4488 		rx_q->cur_rx = 0;
4489 		rx_q->dirty_rx = 0;
4490 	}
4491 
4492 	for (queue = 0; queue < tx_cnt; queue++) {
4493 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4494 
4495 		tx_q->cur_tx = 0;
4496 		tx_q->dirty_tx = 0;
4497 		tx_q->mss = 0;
4498 	}
4499 }
4500 
4501 /**
4502  * stmmac_resume - resume callback
4503  * @dev: device pointer
4504  * Description: when resume this function is invoked to setup the DMA and CORE
4505  * in a usable state.
4506  */
4507 int stmmac_resume(struct device *dev)
4508 {
4509 	struct net_device *ndev = dev_get_drvdata(dev);
4510 	struct stmmac_priv *priv = netdev_priv(ndev);
4511 
4512 	if (!netif_running(ndev))
4513 		return 0;
4514 
4515 	/* Power Down bit, into the PM register, is cleared
4516 	 * automatically as soon as a magic packet or a Wake-up frame
4517 	 * is received. Anyway, it's better to manually clear
4518 	 * this bit because it can generate problems while resuming
4519 	 * from another devices (e.g. serial console).
4520 	 */
4521 	if (device_may_wakeup(priv->device)) {
4522 		mutex_lock(&priv->lock);
4523 		stmmac_pmt(priv, priv->hw, 0);
4524 		mutex_unlock(&priv->lock);
4525 		priv->irq_wake = 0;
4526 	} else {
4527 		pinctrl_pm_select_default_state(priv->device);
4528 		/* enable the clk previously disabled */
4529 		clk_enable(priv->plat->stmmac_clk);
4530 		clk_enable(priv->plat->pclk);
4531 		/* reset the phy so that it's ready */
4532 		if (priv->mii)
4533 			stmmac_mdio_reset(priv->mii);
4534 	}
4535 
4536 	netif_device_attach(ndev);
4537 
4538 	mutex_lock(&priv->lock);
4539 
4540 	stmmac_reset_queues_param(priv);
4541 
4542 	stmmac_clear_descriptors(priv);
4543 
4544 	stmmac_hw_setup(ndev, false);
4545 	stmmac_init_tx_coalesce(priv);
4546 	stmmac_set_rx_mode(ndev);
4547 
4548 	stmmac_enable_all_queues(priv);
4549 
4550 	stmmac_start_all_queues(priv);
4551 
4552 	mutex_unlock(&priv->lock);
4553 
4554 	if (ndev->phydev)
4555 		phy_start(ndev->phydev);
4556 
4557 	return 0;
4558 }
4559 EXPORT_SYMBOL_GPL(stmmac_resume);
4560 
4561 #ifndef MODULE
4562 static int __init stmmac_cmdline_opt(char *str)
4563 {
4564 	char *opt;
4565 
4566 	if (!str || !*str)
4567 		return -EINVAL;
4568 	while ((opt = strsep(&str, ",")) != NULL) {
4569 		if (!strncmp(opt, "debug:", 6)) {
4570 			if (kstrtoint(opt + 6, 0, &debug))
4571 				goto err;
4572 		} else if (!strncmp(opt, "phyaddr:", 8)) {
4573 			if (kstrtoint(opt + 8, 0, &phyaddr))
4574 				goto err;
4575 		} else if (!strncmp(opt, "buf_sz:", 7)) {
4576 			if (kstrtoint(opt + 7, 0, &buf_sz))
4577 				goto err;
4578 		} else if (!strncmp(opt, "tc:", 3)) {
4579 			if (kstrtoint(opt + 3, 0, &tc))
4580 				goto err;
4581 		} else if (!strncmp(opt, "watchdog:", 9)) {
4582 			if (kstrtoint(opt + 9, 0, &watchdog))
4583 				goto err;
4584 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
4585 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
4586 				goto err;
4587 		} else if (!strncmp(opt, "pause:", 6)) {
4588 			if (kstrtoint(opt + 6, 0, &pause))
4589 				goto err;
4590 		} else if (!strncmp(opt, "eee_timer:", 10)) {
4591 			if (kstrtoint(opt + 10, 0, &eee_timer))
4592 				goto err;
4593 		} else if (!strncmp(opt, "chain_mode:", 11)) {
4594 			if (kstrtoint(opt + 11, 0, &chain_mode))
4595 				goto err;
4596 		}
4597 	}
4598 	return 0;
4599 
4600 err:
4601 	pr_err("%s: ERROR broken module parameter conversion", __func__);
4602 	return -EINVAL;
4603 }
4604 
4605 __setup("stmmaceth=", stmmac_cmdline_opt);
4606 #endif /* MODULE */
4607 
4608 static int __init stmmac_init(void)
4609 {
4610 #ifdef CONFIG_DEBUG_FS
4611 	/* Create debugfs main directory if it doesn't exist yet */
4612 	if (!stmmac_fs_dir) {
4613 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
4614 
4615 		if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
4616 			pr_err("ERROR %s, debugfs create directory failed\n",
4617 			       STMMAC_RESOURCE_NAME);
4618 
4619 			return -ENOMEM;
4620 		}
4621 	}
4622 #endif
4623 
4624 	return 0;
4625 }
4626 
4627 static void __exit stmmac_exit(void)
4628 {
4629 #ifdef CONFIG_DEBUG_FS
4630 	debugfs_remove_recursive(stmmac_fs_dir);
4631 #endif
4632 }
4633 
4634 module_init(stmmac_init)
4635 module_exit(stmmac_exit)
4636 
4637 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
4638 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
4639 MODULE_LICENSE("GPL");
4640