1 /******************************************************************************* 2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. 3 ST Ethernet IPs are built around a Synopsys IP Core. 4 5 Copyright(C) 2007-2011 STMicroelectronics Ltd 6 7 This program is free software; you can redistribute it and/or modify it 8 under the terms and conditions of the GNU General Public License, 9 version 2, as published by the Free Software Foundation. 10 11 This program is distributed in the hope it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 more details. 15 16 The full GNU General Public License is included in this distribution in 17 the file called "COPYING". 18 19 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> 20 21 Documentation available at: 22 http://www.stlinux.com 23 Support available at: 24 https://bugzilla.stlinux.com/ 25 *******************************************************************************/ 26 27 #include <linux/clk.h> 28 #include <linux/kernel.h> 29 #include <linux/interrupt.h> 30 #include <linux/ip.h> 31 #include <linux/tcp.h> 32 #include <linux/skbuff.h> 33 #include <linux/ethtool.h> 34 #include <linux/if_ether.h> 35 #include <linux/crc32.h> 36 #include <linux/mii.h> 37 #include <linux/if.h> 38 #include <linux/if_vlan.h> 39 #include <linux/dma-mapping.h> 40 #include <linux/slab.h> 41 #include <linux/prefetch.h> 42 #include <linux/pinctrl/consumer.h> 43 #ifdef CONFIG_DEBUG_FS 44 #include <linux/debugfs.h> 45 #include <linux/seq_file.h> 46 #endif /* CONFIG_DEBUG_FS */ 47 #include <linux/net_tstamp.h> 48 #include <net/pkt_cls.h> 49 #include "stmmac_ptp.h" 50 #include "stmmac.h" 51 #include <linux/reset.h> 52 #include <linux/of_mdio.h> 53 #include "dwmac1000.h" 54 #include "dwxgmac2.h" 55 #include "hwif.h" 56 57 #define STMMAC_ALIGN(x) __ALIGN_KERNEL(x, SMP_CACHE_BYTES) 58 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1) 59 60 /* Module parameters */ 61 #define TX_TIMEO 5000 62 static int watchdog = TX_TIMEO; 63 module_param(watchdog, int, 0644); 64 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); 65 66 static int debug = -1; 67 module_param(debug, int, 0644); 68 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 69 70 static int phyaddr = -1; 71 module_param(phyaddr, int, 0444); 72 MODULE_PARM_DESC(phyaddr, "Physical device address"); 73 74 #define STMMAC_TX_THRESH (DMA_TX_SIZE / 4) 75 #define STMMAC_RX_THRESH (DMA_RX_SIZE / 4) 76 77 static int flow_ctrl = FLOW_OFF; 78 module_param(flow_ctrl, int, 0644); 79 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); 80 81 static int pause = PAUSE_TIME; 82 module_param(pause, int, 0644); 83 MODULE_PARM_DESC(pause, "Flow Control Pause Time"); 84 85 #define TC_DEFAULT 64 86 static int tc = TC_DEFAULT; 87 module_param(tc, int, 0644); 88 MODULE_PARM_DESC(tc, "DMA threshold control value"); 89 90 #define DEFAULT_BUFSIZE 1536 91 static int buf_sz = DEFAULT_BUFSIZE; 92 module_param(buf_sz, int, 0644); 93 MODULE_PARM_DESC(buf_sz, "DMA buffer size"); 94 95 #define STMMAC_RX_COPYBREAK 256 96 97 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 98 NETIF_MSG_LINK | NETIF_MSG_IFUP | 99 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 100 101 #define STMMAC_DEFAULT_LPI_TIMER 1000 102 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; 103 module_param(eee_timer, int, 0644); 104 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); 105 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x)) 106 107 /* By default the driver will use the ring mode to manage tx and rx descriptors, 108 * but allow user to force to use the chain instead of the ring 109 */ 110 static unsigned int chain_mode; 111 module_param(chain_mode, int, 0444); 112 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); 113 114 static irqreturn_t stmmac_interrupt(int irq, void *dev_id); 115 116 #ifdef CONFIG_DEBUG_FS 117 static int stmmac_init_fs(struct net_device *dev); 118 static void stmmac_exit_fs(struct net_device *dev); 119 #endif 120 121 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x)) 122 123 /** 124 * stmmac_verify_args - verify the driver parameters. 125 * Description: it checks the driver parameters and set a default in case of 126 * errors. 127 */ 128 static void stmmac_verify_args(void) 129 { 130 if (unlikely(watchdog < 0)) 131 watchdog = TX_TIMEO; 132 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) 133 buf_sz = DEFAULT_BUFSIZE; 134 if (unlikely(flow_ctrl > 1)) 135 flow_ctrl = FLOW_AUTO; 136 else if (likely(flow_ctrl < 0)) 137 flow_ctrl = FLOW_OFF; 138 if (unlikely((pause < 0) || (pause > 0xffff))) 139 pause = PAUSE_TIME; 140 if (eee_timer < 0) 141 eee_timer = STMMAC_DEFAULT_LPI_TIMER; 142 } 143 144 /** 145 * stmmac_disable_all_queues - Disable all queues 146 * @priv: driver private structure 147 */ 148 static void stmmac_disable_all_queues(struct stmmac_priv *priv) 149 { 150 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 151 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 152 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 153 u32 queue; 154 155 for (queue = 0; queue < maxq; queue++) { 156 struct stmmac_channel *ch = &priv->channel[queue]; 157 158 napi_disable(&ch->napi); 159 } 160 } 161 162 /** 163 * stmmac_enable_all_queues - Enable all queues 164 * @priv: driver private structure 165 */ 166 static void stmmac_enable_all_queues(struct stmmac_priv *priv) 167 { 168 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 169 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 170 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 171 u32 queue; 172 173 for (queue = 0; queue < maxq; queue++) { 174 struct stmmac_channel *ch = &priv->channel[queue]; 175 176 napi_enable(&ch->napi); 177 } 178 } 179 180 /** 181 * stmmac_stop_all_queues - Stop all queues 182 * @priv: driver private structure 183 */ 184 static void stmmac_stop_all_queues(struct stmmac_priv *priv) 185 { 186 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 187 u32 queue; 188 189 for (queue = 0; queue < tx_queues_cnt; queue++) 190 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 191 } 192 193 /** 194 * stmmac_start_all_queues - Start all queues 195 * @priv: driver private structure 196 */ 197 static void stmmac_start_all_queues(struct stmmac_priv *priv) 198 { 199 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 200 u32 queue; 201 202 for (queue = 0; queue < tx_queues_cnt; queue++) 203 netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue)); 204 } 205 206 static void stmmac_service_event_schedule(struct stmmac_priv *priv) 207 { 208 if (!test_bit(STMMAC_DOWN, &priv->state) && 209 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state)) 210 queue_work(priv->wq, &priv->service_task); 211 } 212 213 static void stmmac_global_err(struct stmmac_priv *priv) 214 { 215 netif_carrier_off(priv->dev); 216 set_bit(STMMAC_RESET_REQUESTED, &priv->state); 217 stmmac_service_event_schedule(priv); 218 } 219 220 /** 221 * stmmac_clk_csr_set - dynamically set the MDC clock 222 * @priv: driver private structure 223 * Description: this is to dynamically set the MDC clock according to the csr 224 * clock input. 225 * Note: 226 * If a specific clk_csr value is passed from the platform 227 * this means that the CSR Clock Range selection cannot be 228 * changed at run-time and it is fixed (as reported in the driver 229 * documentation). Viceversa the driver will try to set the MDC 230 * clock dynamically according to the actual clock input. 231 */ 232 static void stmmac_clk_csr_set(struct stmmac_priv *priv) 233 { 234 u32 clk_rate; 235 236 clk_rate = clk_get_rate(priv->plat->stmmac_clk); 237 238 /* Platform provided default clk_csr would be assumed valid 239 * for all other cases except for the below mentioned ones. 240 * For values higher than the IEEE 802.3 specified frequency 241 * we can not estimate the proper divider as it is not known 242 * the frequency of clk_csr_i. So we do not change the default 243 * divider. 244 */ 245 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { 246 if (clk_rate < CSR_F_35M) 247 priv->clk_csr = STMMAC_CSR_20_35M; 248 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) 249 priv->clk_csr = STMMAC_CSR_35_60M; 250 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) 251 priv->clk_csr = STMMAC_CSR_60_100M; 252 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) 253 priv->clk_csr = STMMAC_CSR_100_150M; 254 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) 255 priv->clk_csr = STMMAC_CSR_150_250M; 256 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M)) 257 priv->clk_csr = STMMAC_CSR_250_300M; 258 } 259 260 if (priv->plat->has_sun8i) { 261 if (clk_rate > 160000000) 262 priv->clk_csr = 0x03; 263 else if (clk_rate > 80000000) 264 priv->clk_csr = 0x02; 265 else if (clk_rate > 40000000) 266 priv->clk_csr = 0x01; 267 else 268 priv->clk_csr = 0; 269 } 270 271 if (priv->plat->has_xgmac) { 272 if (clk_rate > 400000000) 273 priv->clk_csr = 0x5; 274 else if (clk_rate > 350000000) 275 priv->clk_csr = 0x4; 276 else if (clk_rate > 300000000) 277 priv->clk_csr = 0x3; 278 else if (clk_rate > 250000000) 279 priv->clk_csr = 0x2; 280 else if (clk_rate > 150000000) 281 priv->clk_csr = 0x1; 282 else 283 priv->clk_csr = 0x0; 284 } 285 } 286 287 static void print_pkt(unsigned char *buf, int len) 288 { 289 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); 290 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); 291 } 292 293 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue) 294 { 295 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 296 u32 avail; 297 298 if (tx_q->dirty_tx > tx_q->cur_tx) 299 avail = tx_q->dirty_tx - tx_q->cur_tx - 1; 300 else 301 avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1; 302 303 return avail; 304 } 305 306 /** 307 * stmmac_rx_dirty - Get RX queue dirty 308 * @priv: driver private structure 309 * @queue: RX queue index 310 */ 311 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue) 312 { 313 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 314 u32 dirty; 315 316 if (rx_q->dirty_rx <= rx_q->cur_rx) 317 dirty = rx_q->cur_rx - rx_q->dirty_rx; 318 else 319 dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx; 320 321 return dirty; 322 } 323 324 /** 325 * stmmac_hw_fix_mac_speed - callback for speed selection 326 * @priv: driver private structure 327 * Description: on some platforms (e.g. ST), some HW system configuration 328 * registers have to be set according to the link speed negotiated. 329 */ 330 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv) 331 { 332 struct net_device *ndev = priv->dev; 333 struct phy_device *phydev = ndev->phydev; 334 335 if (likely(priv->plat->fix_mac_speed)) 336 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed); 337 } 338 339 /** 340 * stmmac_enable_eee_mode - check and enter in LPI mode 341 * @priv: driver private structure 342 * Description: this function is to verify and enter in LPI mode in case of 343 * EEE. 344 */ 345 static void stmmac_enable_eee_mode(struct stmmac_priv *priv) 346 { 347 u32 tx_cnt = priv->plat->tx_queues_to_use; 348 u32 queue; 349 350 /* check if all TX queues have the work finished */ 351 for (queue = 0; queue < tx_cnt; queue++) { 352 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 353 354 if (tx_q->dirty_tx != tx_q->cur_tx) 355 return; /* still unfinished work */ 356 } 357 358 /* Check and enter in LPI mode */ 359 if (!priv->tx_path_in_lpi_mode) 360 stmmac_set_eee_mode(priv, priv->hw, 361 priv->plat->en_tx_lpi_clockgating); 362 } 363 364 /** 365 * stmmac_disable_eee_mode - disable and exit from LPI mode 366 * @priv: driver private structure 367 * Description: this function is to exit and disable EEE in case of 368 * LPI state is true. This is called by the xmit. 369 */ 370 void stmmac_disable_eee_mode(struct stmmac_priv *priv) 371 { 372 stmmac_reset_eee_mode(priv, priv->hw); 373 del_timer_sync(&priv->eee_ctrl_timer); 374 priv->tx_path_in_lpi_mode = false; 375 } 376 377 /** 378 * stmmac_eee_ctrl_timer - EEE TX SW timer. 379 * @arg : data hook 380 * Description: 381 * if there is no data transfer and if we are not in LPI state, 382 * then MAC Transmitter can be moved to LPI state. 383 */ 384 static void stmmac_eee_ctrl_timer(struct timer_list *t) 385 { 386 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer); 387 388 stmmac_enable_eee_mode(priv); 389 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); 390 } 391 392 /** 393 * stmmac_eee_init - init EEE 394 * @priv: driver private structure 395 * Description: 396 * if the GMAC supports the EEE (from the HW cap reg) and the phy device 397 * can also manage EEE, this function enable the LPI state and start related 398 * timer. 399 */ 400 bool stmmac_eee_init(struct stmmac_priv *priv) 401 { 402 struct net_device *ndev = priv->dev; 403 int interface = priv->plat->interface; 404 bool ret = false; 405 406 if ((interface != PHY_INTERFACE_MODE_MII) && 407 (interface != PHY_INTERFACE_MODE_GMII) && 408 !phy_interface_mode_is_rgmii(interface)) 409 goto out; 410 411 /* Using PCS we cannot dial with the phy registers at this stage 412 * so we do not support extra feature like EEE. 413 */ 414 if ((priv->hw->pcs == STMMAC_PCS_RGMII) || 415 (priv->hw->pcs == STMMAC_PCS_TBI) || 416 (priv->hw->pcs == STMMAC_PCS_RTBI)) 417 goto out; 418 419 /* MAC core supports the EEE feature. */ 420 if (priv->dma_cap.eee) { 421 int tx_lpi_timer = priv->tx_lpi_timer; 422 423 /* Check if the PHY supports EEE */ 424 if (phy_init_eee(ndev->phydev, 1)) { 425 /* To manage at run-time if the EEE cannot be supported 426 * anymore (for example because the lp caps have been 427 * changed). 428 * In that case the driver disable own timers. 429 */ 430 mutex_lock(&priv->lock); 431 if (priv->eee_active) { 432 netdev_dbg(priv->dev, "disable EEE\n"); 433 del_timer_sync(&priv->eee_ctrl_timer); 434 stmmac_set_eee_timer(priv, priv->hw, 0, 435 tx_lpi_timer); 436 } 437 priv->eee_active = 0; 438 mutex_unlock(&priv->lock); 439 goto out; 440 } 441 /* Activate the EEE and start timers */ 442 mutex_lock(&priv->lock); 443 if (!priv->eee_active) { 444 priv->eee_active = 1; 445 timer_setup(&priv->eee_ctrl_timer, 446 stmmac_eee_ctrl_timer, 0); 447 mod_timer(&priv->eee_ctrl_timer, 448 STMMAC_LPI_T(eee_timer)); 449 450 stmmac_set_eee_timer(priv, priv->hw, 451 STMMAC_DEFAULT_LIT_LS, tx_lpi_timer); 452 } 453 /* Set HW EEE according to the speed */ 454 stmmac_set_eee_pls(priv, priv->hw, ndev->phydev->link); 455 456 ret = true; 457 mutex_unlock(&priv->lock); 458 459 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n"); 460 } 461 out: 462 return ret; 463 } 464 465 /* stmmac_get_tx_hwtstamp - get HW TX timestamps 466 * @priv: driver private structure 467 * @p : descriptor pointer 468 * @skb : the socket buffer 469 * Description : 470 * This function will read timestamp from the descriptor & pass it to stack. 471 * and also perform some sanity checks. 472 */ 473 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, 474 struct dma_desc *p, struct sk_buff *skb) 475 { 476 struct skb_shared_hwtstamps shhwtstamp; 477 u64 ns; 478 479 if (!priv->hwts_tx_en) 480 return; 481 482 /* exit if skb doesn't support hw tstamp */ 483 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) 484 return; 485 486 /* check tx tstamp status */ 487 if (stmmac_get_tx_timestamp_status(priv, p)) { 488 /* get the valid tstamp */ 489 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns); 490 491 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 492 shhwtstamp.hwtstamp = ns_to_ktime(ns); 493 494 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns); 495 /* pass tstamp to stack */ 496 skb_tstamp_tx(skb, &shhwtstamp); 497 } 498 499 return; 500 } 501 502 /* stmmac_get_rx_hwtstamp - get HW RX timestamps 503 * @priv: driver private structure 504 * @p : descriptor pointer 505 * @np : next descriptor pointer 506 * @skb : the socket buffer 507 * Description : 508 * This function will read received packet's timestamp from the descriptor 509 * and pass it to stack. It also perform some sanity checks. 510 */ 511 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p, 512 struct dma_desc *np, struct sk_buff *skb) 513 { 514 struct skb_shared_hwtstamps *shhwtstamp = NULL; 515 struct dma_desc *desc = p; 516 u64 ns; 517 518 if (!priv->hwts_rx_en) 519 return; 520 /* For GMAC4, the valid timestamp is from CTX next desc. */ 521 if (priv->plat->has_gmac4 || priv->plat->has_xgmac) 522 desc = np; 523 524 /* Check if timestamp is available */ 525 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) { 526 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns); 527 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns); 528 shhwtstamp = skb_hwtstamps(skb); 529 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 530 shhwtstamp->hwtstamp = ns_to_ktime(ns); 531 } else { 532 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n"); 533 } 534 } 535 536 /** 537 * stmmac_hwtstamp_ioctl - control hardware timestamping. 538 * @dev: device pointer. 539 * @ifr: An IOCTL specific structure, that can contain a pointer to 540 * a proprietary structure used to pass information to the driver. 541 * Description: 542 * This function configures the MAC to enable/disable both outgoing(TX) 543 * and incoming(RX) packets time stamping based on user input. 544 * Return Value: 545 * 0 on success and an appropriate -ve integer on failure. 546 */ 547 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr) 548 { 549 struct stmmac_priv *priv = netdev_priv(dev); 550 struct hwtstamp_config config; 551 struct timespec64 now; 552 u64 temp = 0; 553 u32 ptp_v2 = 0; 554 u32 tstamp_all = 0; 555 u32 ptp_over_ipv4_udp = 0; 556 u32 ptp_over_ipv6_udp = 0; 557 u32 ptp_over_ethernet = 0; 558 u32 snap_type_sel = 0; 559 u32 ts_master_en = 0; 560 u32 ts_event_en = 0; 561 u32 value = 0; 562 u32 sec_inc; 563 bool xmac; 564 565 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 566 567 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { 568 netdev_alert(priv->dev, "No support for HW time stamping\n"); 569 priv->hwts_tx_en = 0; 570 priv->hwts_rx_en = 0; 571 572 return -EOPNOTSUPP; 573 } 574 575 if (copy_from_user(&config, ifr->ifr_data, 576 sizeof(struct hwtstamp_config))) 577 return -EFAULT; 578 579 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", 580 __func__, config.flags, config.tx_type, config.rx_filter); 581 582 /* reserved for future extensions */ 583 if (config.flags) 584 return -EINVAL; 585 586 if (config.tx_type != HWTSTAMP_TX_OFF && 587 config.tx_type != HWTSTAMP_TX_ON) 588 return -ERANGE; 589 590 if (priv->adv_ts) { 591 switch (config.rx_filter) { 592 case HWTSTAMP_FILTER_NONE: 593 /* time stamp no incoming packet at all */ 594 config.rx_filter = HWTSTAMP_FILTER_NONE; 595 break; 596 597 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 598 /* PTP v1, UDP, any kind of event packet */ 599 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 600 /* take time stamp for all event messages */ 601 if (xmac) 602 snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1; 603 else 604 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 605 606 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 607 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 608 break; 609 610 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 611 /* PTP v1, UDP, Sync packet */ 612 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; 613 /* take time stamp for SYNC messages only */ 614 ts_event_en = PTP_TCR_TSEVNTENA; 615 616 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 617 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 618 break; 619 620 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 621 /* PTP v1, UDP, Delay_req packet */ 622 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; 623 /* take time stamp for Delay_Req messages only */ 624 ts_master_en = PTP_TCR_TSMSTRENA; 625 ts_event_en = PTP_TCR_TSEVNTENA; 626 627 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 628 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 629 break; 630 631 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 632 /* PTP v2, UDP, any kind of event packet */ 633 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 634 ptp_v2 = PTP_TCR_TSVER2ENA; 635 /* take time stamp for all event messages */ 636 if (xmac) 637 snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1; 638 else 639 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 640 641 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 642 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 643 break; 644 645 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 646 /* PTP v2, UDP, Sync packet */ 647 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; 648 ptp_v2 = PTP_TCR_TSVER2ENA; 649 /* take time stamp for SYNC messages only */ 650 ts_event_en = PTP_TCR_TSEVNTENA; 651 652 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 653 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 654 break; 655 656 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 657 /* PTP v2, UDP, Delay_req packet */ 658 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; 659 ptp_v2 = PTP_TCR_TSVER2ENA; 660 /* take time stamp for Delay_Req messages only */ 661 ts_master_en = PTP_TCR_TSMSTRENA; 662 ts_event_en = PTP_TCR_TSEVNTENA; 663 664 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 665 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 666 break; 667 668 case HWTSTAMP_FILTER_PTP_V2_EVENT: 669 /* PTP v2/802.AS1 any layer, any kind of event packet */ 670 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 671 ptp_v2 = PTP_TCR_TSVER2ENA; 672 /* take time stamp for all event messages */ 673 if (xmac) 674 snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1; 675 else 676 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 677 678 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 679 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 680 ptp_over_ethernet = PTP_TCR_TSIPENA; 681 break; 682 683 case HWTSTAMP_FILTER_PTP_V2_SYNC: 684 /* PTP v2/802.AS1, any layer, Sync packet */ 685 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; 686 ptp_v2 = PTP_TCR_TSVER2ENA; 687 /* take time stamp for SYNC messages only */ 688 ts_event_en = PTP_TCR_TSEVNTENA; 689 690 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 691 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 692 ptp_over_ethernet = PTP_TCR_TSIPENA; 693 break; 694 695 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 696 /* PTP v2/802.AS1, any layer, Delay_req packet */ 697 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; 698 ptp_v2 = PTP_TCR_TSVER2ENA; 699 /* take time stamp for Delay_Req messages only */ 700 ts_master_en = PTP_TCR_TSMSTRENA; 701 ts_event_en = PTP_TCR_TSEVNTENA; 702 703 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 704 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 705 ptp_over_ethernet = PTP_TCR_TSIPENA; 706 break; 707 708 case HWTSTAMP_FILTER_NTP_ALL: 709 case HWTSTAMP_FILTER_ALL: 710 /* time stamp any incoming packet */ 711 config.rx_filter = HWTSTAMP_FILTER_ALL; 712 tstamp_all = PTP_TCR_TSENALL; 713 break; 714 715 default: 716 return -ERANGE; 717 } 718 } else { 719 switch (config.rx_filter) { 720 case HWTSTAMP_FILTER_NONE: 721 config.rx_filter = HWTSTAMP_FILTER_NONE; 722 break; 723 default: 724 /* PTP v1, UDP, any kind of event packet */ 725 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 726 break; 727 } 728 } 729 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); 730 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; 731 732 if (!priv->hwts_tx_en && !priv->hwts_rx_en) 733 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0); 734 else { 735 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR | 736 tstamp_all | ptp_v2 | ptp_over_ethernet | 737 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en | 738 ts_master_en | snap_type_sel); 739 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value); 740 741 /* program Sub Second Increment reg */ 742 stmmac_config_sub_second_increment(priv, 743 priv->ptpaddr, priv->plat->clk_ptp_rate, 744 xmac, &sec_inc); 745 temp = div_u64(1000000000ULL, sec_inc); 746 747 /* Store sub second increment and flags for later use */ 748 priv->sub_second_inc = sec_inc; 749 priv->systime_flags = value; 750 751 /* calculate default added value: 752 * formula is : 753 * addend = (2^32)/freq_div_ratio; 754 * where, freq_div_ratio = 1e9ns/sec_inc 755 */ 756 temp = (u64)(temp << 32); 757 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate); 758 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend); 759 760 /* initialize system time */ 761 ktime_get_real_ts64(&now); 762 763 /* lower 32 bits of tv_sec are safe until y2106 */ 764 stmmac_init_systime(priv, priv->ptpaddr, 765 (u32)now.tv_sec, now.tv_nsec); 766 } 767 768 return copy_to_user(ifr->ifr_data, &config, 769 sizeof(struct hwtstamp_config)) ? -EFAULT : 0; 770 } 771 772 /** 773 * stmmac_init_ptp - init PTP 774 * @priv: driver private structure 775 * Description: this is to verify if the HW supports the PTPv1 or PTPv2. 776 * This is done by looking at the HW cap. register. 777 * This function also registers the ptp driver. 778 */ 779 static int stmmac_init_ptp(struct stmmac_priv *priv) 780 { 781 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 782 783 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 784 return -EOPNOTSUPP; 785 786 priv->adv_ts = 0; 787 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */ 788 if (xmac && priv->dma_cap.atime_stamp) 789 priv->adv_ts = 1; 790 /* Dwmac 3.x core with extend_desc can support adv_ts */ 791 else if (priv->extend_desc && priv->dma_cap.atime_stamp) 792 priv->adv_ts = 1; 793 794 if (priv->dma_cap.time_stamp) 795 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n"); 796 797 if (priv->adv_ts) 798 netdev_info(priv->dev, 799 "IEEE 1588-2008 Advanced Timestamp supported\n"); 800 801 priv->hwts_tx_en = 0; 802 priv->hwts_rx_en = 0; 803 804 stmmac_ptp_register(priv); 805 806 return 0; 807 } 808 809 static void stmmac_release_ptp(struct stmmac_priv *priv) 810 { 811 if (priv->plat->clk_ptp_ref) 812 clk_disable_unprepare(priv->plat->clk_ptp_ref); 813 stmmac_ptp_unregister(priv); 814 } 815 816 /** 817 * stmmac_mac_flow_ctrl - Configure flow control in all queues 818 * @priv: driver private structure 819 * Description: It is used for configuring the flow control in all queues 820 */ 821 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex) 822 { 823 u32 tx_cnt = priv->plat->tx_queues_to_use; 824 825 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl, 826 priv->pause, tx_cnt); 827 } 828 829 /** 830 * stmmac_adjust_link - adjusts the link parameters 831 * @dev: net device structure 832 * Description: this is the helper called by the physical abstraction layer 833 * drivers to communicate the phy link status. According the speed and duplex 834 * this driver can invoke registered glue-logic as well. 835 * It also invoke the eee initialization because it could happen when switch 836 * on different networks (that are eee capable). 837 */ 838 static void stmmac_adjust_link(struct net_device *dev) 839 { 840 struct stmmac_priv *priv = netdev_priv(dev); 841 struct phy_device *phydev = dev->phydev; 842 bool new_state = false; 843 844 if (!phydev) 845 return; 846 847 mutex_lock(&priv->lock); 848 849 if (phydev->link) { 850 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG); 851 852 /* Now we make sure that we can be in full duplex mode. 853 * If not, we operate in half-duplex mode. */ 854 if (phydev->duplex != priv->oldduplex) { 855 new_state = true; 856 if (!phydev->duplex) 857 ctrl &= ~priv->hw->link.duplex; 858 else 859 ctrl |= priv->hw->link.duplex; 860 priv->oldduplex = phydev->duplex; 861 } 862 /* Flow Control operation */ 863 if (phydev->pause) 864 stmmac_mac_flow_ctrl(priv, phydev->duplex); 865 866 if (phydev->speed != priv->speed) { 867 new_state = true; 868 ctrl &= ~priv->hw->link.speed_mask; 869 switch (phydev->speed) { 870 case SPEED_1000: 871 ctrl |= priv->hw->link.speed1000; 872 break; 873 case SPEED_100: 874 ctrl |= priv->hw->link.speed100; 875 break; 876 case SPEED_10: 877 ctrl |= priv->hw->link.speed10; 878 break; 879 default: 880 netif_warn(priv, link, priv->dev, 881 "broken speed: %d\n", phydev->speed); 882 phydev->speed = SPEED_UNKNOWN; 883 break; 884 } 885 if (phydev->speed != SPEED_UNKNOWN) 886 stmmac_hw_fix_mac_speed(priv); 887 priv->speed = phydev->speed; 888 } 889 890 writel(ctrl, priv->ioaddr + MAC_CTRL_REG); 891 892 if (!priv->oldlink) { 893 new_state = true; 894 priv->oldlink = true; 895 } 896 } else if (priv->oldlink) { 897 new_state = true; 898 priv->oldlink = false; 899 priv->speed = SPEED_UNKNOWN; 900 priv->oldduplex = DUPLEX_UNKNOWN; 901 } 902 903 if (new_state && netif_msg_link(priv)) 904 phy_print_status(phydev); 905 906 mutex_unlock(&priv->lock); 907 908 if (phydev->is_pseudo_fixed_link) 909 /* Stop PHY layer to call the hook to adjust the link in case 910 * of a switch is attached to the stmmac driver. 911 */ 912 phydev->irq = PHY_IGNORE_INTERRUPT; 913 else 914 /* At this stage, init the EEE if supported. 915 * Never called in case of fixed_link. 916 */ 917 priv->eee_enabled = stmmac_eee_init(priv); 918 } 919 920 /** 921 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported 922 * @priv: driver private structure 923 * Description: this is to verify if the HW supports the PCS. 924 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is 925 * configured for the TBI, RTBI, or SGMII PHY interface. 926 */ 927 static void stmmac_check_pcs_mode(struct stmmac_priv *priv) 928 { 929 int interface = priv->plat->interface; 930 931 if (priv->dma_cap.pcs) { 932 if ((interface == PHY_INTERFACE_MODE_RGMII) || 933 (interface == PHY_INTERFACE_MODE_RGMII_ID) || 934 (interface == PHY_INTERFACE_MODE_RGMII_RXID) || 935 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) { 936 netdev_dbg(priv->dev, "PCS RGMII support enabled\n"); 937 priv->hw->pcs = STMMAC_PCS_RGMII; 938 } else if (interface == PHY_INTERFACE_MODE_SGMII) { 939 netdev_dbg(priv->dev, "PCS SGMII support enabled\n"); 940 priv->hw->pcs = STMMAC_PCS_SGMII; 941 } 942 } 943 } 944 945 /** 946 * stmmac_init_phy - PHY initialization 947 * @dev: net device structure 948 * Description: it initializes the driver's PHY state, and attaches the PHY 949 * to the mac driver. 950 * Return value: 951 * 0 on success 952 */ 953 static int stmmac_init_phy(struct net_device *dev) 954 { 955 struct stmmac_priv *priv = netdev_priv(dev); 956 u32 tx_cnt = priv->plat->tx_queues_to_use; 957 struct phy_device *phydev; 958 char phy_id_fmt[MII_BUS_ID_SIZE + 3]; 959 char bus_id[MII_BUS_ID_SIZE]; 960 int interface = priv->plat->interface; 961 int max_speed = priv->plat->max_speed; 962 priv->oldlink = false; 963 priv->speed = SPEED_UNKNOWN; 964 priv->oldduplex = DUPLEX_UNKNOWN; 965 966 if (priv->plat->phy_node) { 967 phydev = of_phy_connect(dev, priv->plat->phy_node, 968 &stmmac_adjust_link, 0, interface); 969 } else { 970 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x", 971 priv->plat->bus_id); 972 973 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id, 974 priv->plat->phy_addr); 975 netdev_dbg(priv->dev, "%s: trying to attach to %s\n", __func__, 976 phy_id_fmt); 977 978 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, 979 interface); 980 } 981 982 if (IS_ERR_OR_NULL(phydev)) { 983 netdev_err(priv->dev, "Could not attach to PHY\n"); 984 if (!phydev) 985 return -ENODEV; 986 987 return PTR_ERR(phydev); 988 } 989 990 /* Stop Advertising 1000BASE Capability if interface is not GMII */ 991 if ((interface == PHY_INTERFACE_MODE_MII) || 992 (interface == PHY_INTERFACE_MODE_RMII) || 993 (max_speed < 1000 && max_speed > 0)) 994 phy_set_max_speed(phydev, SPEED_100); 995 996 /* 997 * Half-duplex mode not supported with multiqueue 998 * half-duplex can only works with single queue 999 */ 1000 if (tx_cnt > 1) { 1001 phy_remove_link_mode(phydev, 1002 ETHTOOL_LINK_MODE_10baseT_Half_BIT); 1003 phy_remove_link_mode(phydev, 1004 ETHTOOL_LINK_MODE_100baseT_Half_BIT); 1005 phy_remove_link_mode(phydev, 1006 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 1007 } 1008 1009 /* 1010 * Broken HW is sometimes missing the pull-up resistor on the 1011 * MDIO line, which results in reads to non-existent devices returning 1012 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent 1013 * device as well. 1014 * Note: phydev->phy_id is the result of reading the UID PHY registers. 1015 */ 1016 if (!priv->plat->phy_node && phydev->phy_id == 0) { 1017 phy_disconnect(phydev); 1018 return -ENODEV; 1019 } 1020 1021 /* stmmac_adjust_link will change this to PHY_IGNORE_INTERRUPT to avoid 1022 * subsequent PHY polling, make sure we force a link transition if 1023 * we have a UP/DOWN/UP transition 1024 */ 1025 if (phydev->is_pseudo_fixed_link) 1026 phydev->irq = PHY_POLL; 1027 1028 phy_attached_info(phydev); 1029 return 0; 1030 } 1031 1032 static void stmmac_display_rx_rings(struct stmmac_priv *priv) 1033 { 1034 u32 rx_cnt = priv->plat->rx_queues_to_use; 1035 void *head_rx; 1036 u32 queue; 1037 1038 /* Display RX rings */ 1039 for (queue = 0; queue < rx_cnt; queue++) { 1040 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1041 1042 pr_info("\tRX Queue %u rings\n", queue); 1043 1044 if (priv->extend_desc) 1045 head_rx = (void *)rx_q->dma_erx; 1046 else 1047 head_rx = (void *)rx_q->dma_rx; 1048 1049 /* Display RX ring */ 1050 stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true); 1051 } 1052 } 1053 1054 static void stmmac_display_tx_rings(struct stmmac_priv *priv) 1055 { 1056 u32 tx_cnt = priv->plat->tx_queues_to_use; 1057 void *head_tx; 1058 u32 queue; 1059 1060 /* Display TX rings */ 1061 for (queue = 0; queue < tx_cnt; queue++) { 1062 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1063 1064 pr_info("\tTX Queue %d rings\n", queue); 1065 1066 if (priv->extend_desc) 1067 head_tx = (void *)tx_q->dma_etx; 1068 else 1069 head_tx = (void *)tx_q->dma_tx; 1070 1071 stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false); 1072 } 1073 } 1074 1075 static void stmmac_display_rings(struct stmmac_priv *priv) 1076 { 1077 /* Display RX ring */ 1078 stmmac_display_rx_rings(priv); 1079 1080 /* Display TX ring */ 1081 stmmac_display_tx_rings(priv); 1082 } 1083 1084 static int stmmac_set_bfsize(int mtu, int bufsize) 1085 { 1086 int ret = bufsize; 1087 1088 if (mtu >= BUF_SIZE_4KiB) 1089 ret = BUF_SIZE_8KiB; 1090 else if (mtu >= BUF_SIZE_2KiB) 1091 ret = BUF_SIZE_4KiB; 1092 else if (mtu > DEFAULT_BUFSIZE) 1093 ret = BUF_SIZE_2KiB; 1094 else 1095 ret = DEFAULT_BUFSIZE; 1096 1097 return ret; 1098 } 1099 1100 /** 1101 * stmmac_clear_rx_descriptors - clear RX descriptors 1102 * @priv: driver private structure 1103 * @queue: RX queue index 1104 * Description: this function is called to clear the RX descriptors 1105 * in case of both basic and extended descriptors are used. 1106 */ 1107 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue) 1108 { 1109 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1110 int i; 1111 1112 /* Clear the RX descriptors */ 1113 for (i = 0; i < DMA_RX_SIZE; i++) 1114 if (priv->extend_desc) 1115 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic, 1116 priv->use_riwt, priv->mode, 1117 (i == DMA_RX_SIZE - 1)); 1118 else 1119 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i], 1120 priv->use_riwt, priv->mode, 1121 (i == DMA_RX_SIZE - 1)); 1122 } 1123 1124 /** 1125 * stmmac_clear_tx_descriptors - clear tx descriptors 1126 * @priv: driver private structure 1127 * @queue: TX queue index. 1128 * Description: this function is called to clear the TX descriptors 1129 * in case of both basic and extended descriptors are used. 1130 */ 1131 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue) 1132 { 1133 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1134 int i; 1135 1136 /* Clear the TX descriptors */ 1137 for (i = 0; i < DMA_TX_SIZE; i++) 1138 if (priv->extend_desc) 1139 stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic, 1140 priv->mode, (i == DMA_TX_SIZE - 1)); 1141 else 1142 stmmac_init_tx_desc(priv, &tx_q->dma_tx[i], 1143 priv->mode, (i == DMA_TX_SIZE - 1)); 1144 } 1145 1146 /** 1147 * stmmac_clear_descriptors - clear descriptors 1148 * @priv: driver private structure 1149 * Description: this function is called to clear the TX and RX descriptors 1150 * in case of both basic and extended descriptors are used. 1151 */ 1152 static void stmmac_clear_descriptors(struct stmmac_priv *priv) 1153 { 1154 u32 rx_queue_cnt = priv->plat->rx_queues_to_use; 1155 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1156 u32 queue; 1157 1158 /* Clear the RX descriptors */ 1159 for (queue = 0; queue < rx_queue_cnt; queue++) 1160 stmmac_clear_rx_descriptors(priv, queue); 1161 1162 /* Clear the TX descriptors */ 1163 for (queue = 0; queue < tx_queue_cnt; queue++) 1164 stmmac_clear_tx_descriptors(priv, queue); 1165 } 1166 1167 /** 1168 * stmmac_init_rx_buffers - init the RX descriptor buffer. 1169 * @priv: driver private structure 1170 * @p: descriptor pointer 1171 * @i: descriptor index 1172 * @flags: gfp flag 1173 * @queue: RX queue index 1174 * Description: this function is called to allocate a receive buffer, perform 1175 * the DMA mapping and init the descriptor. 1176 */ 1177 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p, 1178 int i, gfp_t flags, u32 queue) 1179 { 1180 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1181 struct sk_buff *skb; 1182 1183 skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags); 1184 if (!skb) { 1185 netdev_err(priv->dev, 1186 "%s: Rx init fails; skb is NULL\n", __func__); 1187 return -ENOMEM; 1188 } 1189 rx_q->rx_skbuff[i] = skb; 1190 rx_q->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data, 1191 priv->dma_buf_sz, 1192 DMA_FROM_DEVICE); 1193 if (dma_mapping_error(priv->device, rx_q->rx_skbuff_dma[i])) { 1194 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__); 1195 dev_kfree_skb_any(skb); 1196 return -EINVAL; 1197 } 1198 1199 stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[i]); 1200 1201 if (priv->dma_buf_sz == BUF_SIZE_16KiB) 1202 stmmac_init_desc3(priv, p); 1203 1204 return 0; 1205 } 1206 1207 /** 1208 * stmmac_free_rx_buffer - free RX dma buffers 1209 * @priv: private structure 1210 * @queue: RX queue index 1211 * @i: buffer index. 1212 */ 1213 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1214 { 1215 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1216 1217 if (rx_q->rx_skbuff[i]) { 1218 dma_unmap_single(priv->device, rx_q->rx_skbuff_dma[i], 1219 priv->dma_buf_sz, DMA_FROM_DEVICE); 1220 dev_kfree_skb_any(rx_q->rx_skbuff[i]); 1221 } 1222 rx_q->rx_skbuff[i] = NULL; 1223 } 1224 1225 /** 1226 * stmmac_free_tx_buffer - free RX dma buffers 1227 * @priv: private structure 1228 * @queue: RX queue index 1229 * @i: buffer index. 1230 */ 1231 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1232 { 1233 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1234 1235 if (tx_q->tx_skbuff_dma[i].buf) { 1236 if (tx_q->tx_skbuff_dma[i].map_as_page) 1237 dma_unmap_page(priv->device, 1238 tx_q->tx_skbuff_dma[i].buf, 1239 tx_q->tx_skbuff_dma[i].len, 1240 DMA_TO_DEVICE); 1241 else 1242 dma_unmap_single(priv->device, 1243 tx_q->tx_skbuff_dma[i].buf, 1244 tx_q->tx_skbuff_dma[i].len, 1245 DMA_TO_DEVICE); 1246 } 1247 1248 if (tx_q->tx_skbuff[i]) { 1249 dev_kfree_skb_any(tx_q->tx_skbuff[i]); 1250 tx_q->tx_skbuff[i] = NULL; 1251 tx_q->tx_skbuff_dma[i].buf = 0; 1252 tx_q->tx_skbuff_dma[i].map_as_page = false; 1253 } 1254 } 1255 1256 /** 1257 * init_dma_rx_desc_rings - init the RX descriptor rings 1258 * @dev: net device structure 1259 * @flags: gfp flag. 1260 * Description: this function initializes the DMA RX descriptors 1261 * and allocates the socket buffers. It supports the chained and ring 1262 * modes. 1263 */ 1264 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags) 1265 { 1266 struct stmmac_priv *priv = netdev_priv(dev); 1267 u32 rx_count = priv->plat->rx_queues_to_use; 1268 int ret = -ENOMEM; 1269 int bfsize = 0; 1270 int queue; 1271 int i; 1272 1273 bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu); 1274 if (bfsize < 0) 1275 bfsize = 0; 1276 1277 if (bfsize < BUF_SIZE_16KiB) 1278 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz); 1279 1280 priv->dma_buf_sz = bfsize; 1281 1282 /* RX INITIALIZATION */ 1283 netif_dbg(priv, probe, priv->dev, 1284 "SKB addresses:\nskb\t\tskb data\tdma data\n"); 1285 1286 for (queue = 0; queue < rx_count; queue++) { 1287 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1288 1289 netif_dbg(priv, probe, priv->dev, 1290 "(%s) dma_rx_phy=0x%08x\n", __func__, 1291 (u32)rx_q->dma_rx_phy); 1292 1293 for (i = 0; i < DMA_RX_SIZE; i++) { 1294 struct dma_desc *p; 1295 1296 if (priv->extend_desc) 1297 p = &((rx_q->dma_erx + i)->basic); 1298 else 1299 p = rx_q->dma_rx + i; 1300 1301 ret = stmmac_init_rx_buffers(priv, p, i, flags, 1302 queue); 1303 if (ret) 1304 goto err_init_rx_buffers; 1305 1306 netif_dbg(priv, probe, priv->dev, "[%p]\t[%p]\t[%x]\n", 1307 rx_q->rx_skbuff[i], rx_q->rx_skbuff[i]->data, 1308 (unsigned int)rx_q->rx_skbuff_dma[i]); 1309 } 1310 1311 rx_q->cur_rx = 0; 1312 rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE); 1313 1314 stmmac_clear_rx_descriptors(priv, queue); 1315 1316 /* Setup the chained descriptor addresses */ 1317 if (priv->mode == STMMAC_CHAIN_MODE) { 1318 if (priv->extend_desc) 1319 stmmac_mode_init(priv, rx_q->dma_erx, 1320 rx_q->dma_rx_phy, DMA_RX_SIZE, 1); 1321 else 1322 stmmac_mode_init(priv, rx_q->dma_rx, 1323 rx_q->dma_rx_phy, DMA_RX_SIZE, 0); 1324 } 1325 } 1326 1327 buf_sz = bfsize; 1328 1329 return 0; 1330 1331 err_init_rx_buffers: 1332 while (queue >= 0) { 1333 while (--i >= 0) 1334 stmmac_free_rx_buffer(priv, queue, i); 1335 1336 if (queue == 0) 1337 break; 1338 1339 i = DMA_RX_SIZE; 1340 queue--; 1341 } 1342 1343 return ret; 1344 } 1345 1346 /** 1347 * init_dma_tx_desc_rings - init the TX descriptor rings 1348 * @dev: net device structure. 1349 * Description: this function initializes the DMA TX descriptors 1350 * and allocates the socket buffers. It supports the chained and ring 1351 * modes. 1352 */ 1353 static int init_dma_tx_desc_rings(struct net_device *dev) 1354 { 1355 struct stmmac_priv *priv = netdev_priv(dev); 1356 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1357 u32 queue; 1358 int i; 1359 1360 for (queue = 0; queue < tx_queue_cnt; queue++) { 1361 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1362 1363 netif_dbg(priv, probe, priv->dev, 1364 "(%s) dma_tx_phy=0x%08x\n", __func__, 1365 (u32)tx_q->dma_tx_phy); 1366 1367 /* Setup the chained descriptor addresses */ 1368 if (priv->mode == STMMAC_CHAIN_MODE) { 1369 if (priv->extend_desc) 1370 stmmac_mode_init(priv, tx_q->dma_etx, 1371 tx_q->dma_tx_phy, DMA_TX_SIZE, 1); 1372 else 1373 stmmac_mode_init(priv, tx_q->dma_tx, 1374 tx_q->dma_tx_phy, DMA_TX_SIZE, 0); 1375 } 1376 1377 for (i = 0; i < DMA_TX_SIZE; i++) { 1378 struct dma_desc *p; 1379 if (priv->extend_desc) 1380 p = &((tx_q->dma_etx + i)->basic); 1381 else 1382 p = tx_q->dma_tx + i; 1383 1384 stmmac_clear_desc(priv, p); 1385 1386 tx_q->tx_skbuff_dma[i].buf = 0; 1387 tx_q->tx_skbuff_dma[i].map_as_page = false; 1388 tx_q->tx_skbuff_dma[i].len = 0; 1389 tx_q->tx_skbuff_dma[i].last_segment = false; 1390 tx_q->tx_skbuff[i] = NULL; 1391 } 1392 1393 tx_q->dirty_tx = 0; 1394 tx_q->cur_tx = 0; 1395 tx_q->mss = 0; 1396 1397 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 1398 } 1399 1400 return 0; 1401 } 1402 1403 /** 1404 * init_dma_desc_rings - init the RX/TX descriptor rings 1405 * @dev: net device structure 1406 * @flags: gfp flag. 1407 * Description: this function initializes the DMA RX/TX descriptors 1408 * and allocates the socket buffers. It supports the chained and ring 1409 * modes. 1410 */ 1411 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags) 1412 { 1413 struct stmmac_priv *priv = netdev_priv(dev); 1414 int ret; 1415 1416 ret = init_dma_rx_desc_rings(dev, flags); 1417 if (ret) 1418 return ret; 1419 1420 ret = init_dma_tx_desc_rings(dev); 1421 1422 stmmac_clear_descriptors(priv); 1423 1424 if (netif_msg_hw(priv)) 1425 stmmac_display_rings(priv); 1426 1427 return ret; 1428 } 1429 1430 /** 1431 * dma_free_rx_skbufs - free RX dma buffers 1432 * @priv: private structure 1433 * @queue: RX queue index 1434 */ 1435 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue) 1436 { 1437 int i; 1438 1439 for (i = 0; i < DMA_RX_SIZE; i++) 1440 stmmac_free_rx_buffer(priv, queue, i); 1441 } 1442 1443 /** 1444 * dma_free_tx_skbufs - free TX dma buffers 1445 * @priv: private structure 1446 * @queue: TX queue index 1447 */ 1448 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue) 1449 { 1450 int i; 1451 1452 for (i = 0; i < DMA_TX_SIZE; i++) 1453 stmmac_free_tx_buffer(priv, queue, i); 1454 } 1455 1456 /** 1457 * free_dma_rx_desc_resources - free RX dma desc resources 1458 * @priv: private structure 1459 */ 1460 static void free_dma_rx_desc_resources(struct stmmac_priv *priv) 1461 { 1462 u32 rx_count = priv->plat->rx_queues_to_use; 1463 u32 queue; 1464 1465 /* Free RX queue resources */ 1466 for (queue = 0; queue < rx_count; queue++) { 1467 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1468 1469 /* Release the DMA RX socket buffers */ 1470 dma_free_rx_skbufs(priv, queue); 1471 1472 /* Free DMA regions of consistent memory previously allocated */ 1473 if (!priv->extend_desc) 1474 dma_free_coherent(priv->device, 1475 DMA_RX_SIZE * sizeof(struct dma_desc), 1476 rx_q->dma_rx, rx_q->dma_rx_phy); 1477 else 1478 dma_free_coherent(priv->device, DMA_RX_SIZE * 1479 sizeof(struct dma_extended_desc), 1480 rx_q->dma_erx, rx_q->dma_rx_phy); 1481 1482 kfree(rx_q->rx_skbuff_dma); 1483 kfree(rx_q->rx_skbuff); 1484 } 1485 } 1486 1487 /** 1488 * free_dma_tx_desc_resources - free TX dma desc resources 1489 * @priv: private structure 1490 */ 1491 static void free_dma_tx_desc_resources(struct stmmac_priv *priv) 1492 { 1493 u32 tx_count = priv->plat->tx_queues_to_use; 1494 u32 queue; 1495 1496 /* Free TX queue resources */ 1497 for (queue = 0; queue < tx_count; queue++) { 1498 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1499 1500 /* Release the DMA TX socket buffers */ 1501 dma_free_tx_skbufs(priv, queue); 1502 1503 /* Free DMA regions of consistent memory previously allocated */ 1504 if (!priv->extend_desc) 1505 dma_free_coherent(priv->device, 1506 DMA_TX_SIZE * sizeof(struct dma_desc), 1507 tx_q->dma_tx, tx_q->dma_tx_phy); 1508 else 1509 dma_free_coherent(priv->device, DMA_TX_SIZE * 1510 sizeof(struct dma_extended_desc), 1511 tx_q->dma_etx, tx_q->dma_tx_phy); 1512 1513 kfree(tx_q->tx_skbuff_dma); 1514 kfree(tx_q->tx_skbuff); 1515 } 1516 } 1517 1518 /** 1519 * alloc_dma_rx_desc_resources - alloc RX resources. 1520 * @priv: private structure 1521 * Description: according to which descriptor can be used (extend or basic) 1522 * this function allocates the resources for TX and RX paths. In case of 1523 * reception, for example, it pre-allocated the RX socket buffer in order to 1524 * allow zero-copy mechanism. 1525 */ 1526 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv) 1527 { 1528 u32 rx_count = priv->plat->rx_queues_to_use; 1529 int ret = -ENOMEM; 1530 u32 queue; 1531 1532 /* RX queues buffers and DMA */ 1533 for (queue = 0; queue < rx_count; queue++) { 1534 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1535 1536 rx_q->queue_index = queue; 1537 rx_q->priv_data = priv; 1538 1539 rx_q->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE, 1540 sizeof(dma_addr_t), 1541 GFP_KERNEL); 1542 if (!rx_q->rx_skbuff_dma) 1543 goto err_dma; 1544 1545 rx_q->rx_skbuff = kmalloc_array(DMA_RX_SIZE, 1546 sizeof(struct sk_buff *), 1547 GFP_KERNEL); 1548 if (!rx_q->rx_skbuff) 1549 goto err_dma; 1550 1551 if (priv->extend_desc) { 1552 rx_q->dma_erx = dma_alloc_coherent(priv->device, 1553 DMA_RX_SIZE * sizeof(struct dma_extended_desc), 1554 &rx_q->dma_rx_phy, 1555 GFP_KERNEL); 1556 if (!rx_q->dma_erx) 1557 goto err_dma; 1558 1559 } else { 1560 rx_q->dma_rx = dma_alloc_coherent(priv->device, 1561 DMA_RX_SIZE * sizeof(struct dma_desc), 1562 &rx_q->dma_rx_phy, 1563 GFP_KERNEL); 1564 if (!rx_q->dma_rx) 1565 goto err_dma; 1566 } 1567 } 1568 1569 return 0; 1570 1571 err_dma: 1572 free_dma_rx_desc_resources(priv); 1573 1574 return ret; 1575 } 1576 1577 /** 1578 * alloc_dma_tx_desc_resources - alloc TX resources. 1579 * @priv: private structure 1580 * Description: according to which descriptor can be used (extend or basic) 1581 * this function allocates the resources for TX and RX paths. In case of 1582 * reception, for example, it pre-allocated the RX socket buffer in order to 1583 * allow zero-copy mechanism. 1584 */ 1585 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv) 1586 { 1587 u32 tx_count = priv->plat->tx_queues_to_use; 1588 int ret = -ENOMEM; 1589 u32 queue; 1590 1591 /* TX queues buffers and DMA */ 1592 for (queue = 0; queue < tx_count; queue++) { 1593 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1594 1595 tx_q->queue_index = queue; 1596 tx_q->priv_data = priv; 1597 1598 tx_q->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE, 1599 sizeof(*tx_q->tx_skbuff_dma), 1600 GFP_KERNEL); 1601 if (!tx_q->tx_skbuff_dma) 1602 goto err_dma; 1603 1604 tx_q->tx_skbuff = kmalloc_array(DMA_TX_SIZE, 1605 sizeof(struct sk_buff *), 1606 GFP_KERNEL); 1607 if (!tx_q->tx_skbuff) 1608 goto err_dma; 1609 1610 if (priv->extend_desc) { 1611 tx_q->dma_etx = dma_alloc_coherent(priv->device, 1612 DMA_TX_SIZE * sizeof(struct dma_extended_desc), 1613 &tx_q->dma_tx_phy, 1614 GFP_KERNEL); 1615 if (!tx_q->dma_etx) 1616 goto err_dma; 1617 } else { 1618 tx_q->dma_tx = dma_alloc_coherent(priv->device, 1619 DMA_TX_SIZE * sizeof(struct dma_desc), 1620 &tx_q->dma_tx_phy, 1621 GFP_KERNEL); 1622 if (!tx_q->dma_tx) 1623 goto err_dma; 1624 } 1625 } 1626 1627 return 0; 1628 1629 err_dma: 1630 free_dma_tx_desc_resources(priv); 1631 1632 return ret; 1633 } 1634 1635 /** 1636 * alloc_dma_desc_resources - alloc TX/RX resources. 1637 * @priv: private structure 1638 * Description: according to which descriptor can be used (extend or basic) 1639 * this function allocates the resources for TX and RX paths. In case of 1640 * reception, for example, it pre-allocated the RX socket buffer in order to 1641 * allow zero-copy mechanism. 1642 */ 1643 static int alloc_dma_desc_resources(struct stmmac_priv *priv) 1644 { 1645 /* RX Allocation */ 1646 int ret = alloc_dma_rx_desc_resources(priv); 1647 1648 if (ret) 1649 return ret; 1650 1651 ret = alloc_dma_tx_desc_resources(priv); 1652 1653 return ret; 1654 } 1655 1656 /** 1657 * free_dma_desc_resources - free dma desc resources 1658 * @priv: private structure 1659 */ 1660 static void free_dma_desc_resources(struct stmmac_priv *priv) 1661 { 1662 /* Release the DMA RX socket buffers */ 1663 free_dma_rx_desc_resources(priv); 1664 1665 /* Release the DMA TX socket buffers */ 1666 free_dma_tx_desc_resources(priv); 1667 } 1668 1669 /** 1670 * stmmac_mac_enable_rx_queues - Enable MAC rx queues 1671 * @priv: driver private structure 1672 * Description: It is used for enabling the rx queues in the MAC 1673 */ 1674 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv) 1675 { 1676 u32 rx_queues_count = priv->plat->rx_queues_to_use; 1677 int queue; 1678 u8 mode; 1679 1680 for (queue = 0; queue < rx_queues_count; queue++) { 1681 mode = priv->plat->rx_queues_cfg[queue].mode_to_use; 1682 stmmac_rx_queue_enable(priv, priv->hw, mode, queue); 1683 } 1684 } 1685 1686 /** 1687 * stmmac_start_rx_dma - start RX DMA channel 1688 * @priv: driver private structure 1689 * @chan: RX channel index 1690 * Description: 1691 * This starts a RX DMA channel 1692 */ 1693 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan) 1694 { 1695 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan); 1696 stmmac_start_rx(priv, priv->ioaddr, chan); 1697 } 1698 1699 /** 1700 * stmmac_start_tx_dma - start TX DMA channel 1701 * @priv: driver private structure 1702 * @chan: TX channel index 1703 * Description: 1704 * This starts a TX DMA channel 1705 */ 1706 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan) 1707 { 1708 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan); 1709 stmmac_start_tx(priv, priv->ioaddr, chan); 1710 } 1711 1712 /** 1713 * stmmac_stop_rx_dma - stop RX DMA channel 1714 * @priv: driver private structure 1715 * @chan: RX channel index 1716 * Description: 1717 * This stops a RX DMA channel 1718 */ 1719 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan) 1720 { 1721 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan); 1722 stmmac_stop_rx(priv, priv->ioaddr, chan); 1723 } 1724 1725 /** 1726 * stmmac_stop_tx_dma - stop TX DMA channel 1727 * @priv: driver private structure 1728 * @chan: TX channel index 1729 * Description: 1730 * This stops a TX DMA channel 1731 */ 1732 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan) 1733 { 1734 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan); 1735 stmmac_stop_tx(priv, priv->ioaddr, chan); 1736 } 1737 1738 /** 1739 * stmmac_start_all_dma - start all RX and TX DMA channels 1740 * @priv: driver private structure 1741 * Description: 1742 * This starts all the RX and TX DMA channels 1743 */ 1744 static void stmmac_start_all_dma(struct stmmac_priv *priv) 1745 { 1746 u32 rx_channels_count = priv->plat->rx_queues_to_use; 1747 u32 tx_channels_count = priv->plat->tx_queues_to_use; 1748 u32 chan = 0; 1749 1750 for (chan = 0; chan < rx_channels_count; chan++) 1751 stmmac_start_rx_dma(priv, chan); 1752 1753 for (chan = 0; chan < tx_channels_count; chan++) 1754 stmmac_start_tx_dma(priv, chan); 1755 } 1756 1757 /** 1758 * stmmac_stop_all_dma - stop all RX and TX DMA channels 1759 * @priv: driver private structure 1760 * Description: 1761 * This stops the RX and TX DMA channels 1762 */ 1763 static void stmmac_stop_all_dma(struct stmmac_priv *priv) 1764 { 1765 u32 rx_channels_count = priv->plat->rx_queues_to_use; 1766 u32 tx_channels_count = priv->plat->tx_queues_to_use; 1767 u32 chan = 0; 1768 1769 for (chan = 0; chan < rx_channels_count; chan++) 1770 stmmac_stop_rx_dma(priv, chan); 1771 1772 for (chan = 0; chan < tx_channels_count; chan++) 1773 stmmac_stop_tx_dma(priv, chan); 1774 } 1775 1776 /** 1777 * stmmac_dma_operation_mode - HW DMA operation mode 1778 * @priv: driver private structure 1779 * Description: it is used for configuring the DMA operation mode register in 1780 * order to program the tx/rx DMA thresholds or Store-And-Forward mode. 1781 */ 1782 static void stmmac_dma_operation_mode(struct stmmac_priv *priv) 1783 { 1784 u32 rx_channels_count = priv->plat->rx_queues_to_use; 1785 u32 tx_channels_count = priv->plat->tx_queues_to_use; 1786 int rxfifosz = priv->plat->rx_fifo_size; 1787 int txfifosz = priv->plat->tx_fifo_size; 1788 u32 txmode = 0; 1789 u32 rxmode = 0; 1790 u32 chan = 0; 1791 u8 qmode = 0; 1792 1793 if (rxfifosz == 0) 1794 rxfifosz = priv->dma_cap.rx_fifo_size; 1795 if (txfifosz == 0) 1796 txfifosz = priv->dma_cap.tx_fifo_size; 1797 1798 /* Adjust for real per queue fifo size */ 1799 rxfifosz /= rx_channels_count; 1800 txfifosz /= tx_channels_count; 1801 1802 if (priv->plat->force_thresh_dma_mode) { 1803 txmode = tc; 1804 rxmode = tc; 1805 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { 1806 /* 1807 * In case of GMAC, SF mode can be enabled 1808 * to perform the TX COE in HW. This depends on: 1809 * 1) TX COE if actually supported 1810 * 2) There is no bugged Jumbo frame support 1811 * that needs to not insert csum in the TDES. 1812 */ 1813 txmode = SF_DMA_MODE; 1814 rxmode = SF_DMA_MODE; 1815 priv->xstats.threshold = SF_DMA_MODE; 1816 } else { 1817 txmode = tc; 1818 rxmode = SF_DMA_MODE; 1819 } 1820 1821 /* configure all channels */ 1822 for (chan = 0; chan < rx_channels_count; chan++) { 1823 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 1824 1825 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, 1826 rxfifosz, qmode); 1827 stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz, 1828 chan); 1829 } 1830 1831 for (chan = 0; chan < tx_channels_count; chan++) { 1832 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 1833 1834 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, 1835 txfifosz, qmode); 1836 } 1837 } 1838 1839 /** 1840 * stmmac_tx_clean - to manage the transmission completion 1841 * @priv: driver private structure 1842 * @queue: TX queue index 1843 * Description: it reclaims the transmit resources after transmission completes. 1844 */ 1845 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue) 1846 { 1847 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1848 unsigned int bytes_compl = 0, pkts_compl = 0; 1849 unsigned int entry, count = 0; 1850 1851 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue)); 1852 1853 priv->xstats.tx_clean++; 1854 1855 entry = tx_q->dirty_tx; 1856 while ((entry != tx_q->cur_tx) && (count < budget)) { 1857 struct sk_buff *skb = tx_q->tx_skbuff[entry]; 1858 struct dma_desc *p; 1859 int status; 1860 1861 if (priv->extend_desc) 1862 p = (struct dma_desc *)(tx_q->dma_etx + entry); 1863 else 1864 p = tx_q->dma_tx + entry; 1865 1866 status = stmmac_tx_status(priv, &priv->dev->stats, 1867 &priv->xstats, p, priv->ioaddr); 1868 /* Check if the descriptor is owned by the DMA */ 1869 if (unlikely(status & tx_dma_own)) 1870 break; 1871 1872 count++; 1873 1874 /* Make sure descriptor fields are read after reading 1875 * the own bit. 1876 */ 1877 dma_rmb(); 1878 1879 /* Just consider the last segment and ...*/ 1880 if (likely(!(status & tx_not_ls))) { 1881 /* ... verify the status error condition */ 1882 if (unlikely(status & tx_err)) { 1883 priv->dev->stats.tx_errors++; 1884 } else { 1885 priv->dev->stats.tx_packets++; 1886 priv->xstats.tx_pkt_n++; 1887 } 1888 stmmac_get_tx_hwtstamp(priv, p, skb); 1889 } 1890 1891 if (likely(tx_q->tx_skbuff_dma[entry].buf)) { 1892 if (tx_q->tx_skbuff_dma[entry].map_as_page) 1893 dma_unmap_page(priv->device, 1894 tx_q->tx_skbuff_dma[entry].buf, 1895 tx_q->tx_skbuff_dma[entry].len, 1896 DMA_TO_DEVICE); 1897 else 1898 dma_unmap_single(priv->device, 1899 tx_q->tx_skbuff_dma[entry].buf, 1900 tx_q->tx_skbuff_dma[entry].len, 1901 DMA_TO_DEVICE); 1902 tx_q->tx_skbuff_dma[entry].buf = 0; 1903 tx_q->tx_skbuff_dma[entry].len = 0; 1904 tx_q->tx_skbuff_dma[entry].map_as_page = false; 1905 } 1906 1907 stmmac_clean_desc3(priv, tx_q, p); 1908 1909 tx_q->tx_skbuff_dma[entry].last_segment = false; 1910 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 1911 1912 if (likely(skb != NULL)) { 1913 pkts_compl++; 1914 bytes_compl += skb->len; 1915 dev_consume_skb_any(skb); 1916 tx_q->tx_skbuff[entry] = NULL; 1917 } 1918 1919 stmmac_release_tx_desc(priv, p, priv->mode); 1920 1921 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); 1922 } 1923 tx_q->dirty_tx = entry; 1924 1925 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue), 1926 pkts_compl, bytes_compl); 1927 1928 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev, 1929 queue))) && 1930 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) { 1931 1932 netif_dbg(priv, tx_done, priv->dev, 1933 "%s: restart transmit\n", __func__); 1934 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue)); 1935 } 1936 1937 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) { 1938 stmmac_enable_eee_mode(priv); 1939 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); 1940 } 1941 1942 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue)); 1943 1944 return count; 1945 } 1946 1947 /** 1948 * stmmac_tx_err - to manage the tx error 1949 * @priv: driver private structure 1950 * @chan: channel index 1951 * Description: it cleans the descriptors and restarts the transmission 1952 * in case of transmission errors. 1953 */ 1954 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan) 1955 { 1956 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 1957 int i; 1958 1959 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan)); 1960 1961 stmmac_stop_tx_dma(priv, chan); 1962 dma_free_tx_skbufs(priv, chan); 1963 for (i = 0; i < DMA_TX_SIZE; i++) 1964 if (priv->extend_desc) 1965 stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic, 1966 priv->mode, (i == DMA_TX_SIZE - 1)); 1967 else 1968 stmmac_init_tx_desc(priv, &tx_q->dma_tx[i], 1969 priv->mode, (i == DMA_TX_SIZE - 1)); 1970 tx_q->dirty_tx = 0; 1971 tx_q->cur_tx = 0; 1972 tx_q->mss = 0; 1973 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan)); 1974 stmmac_start_tx_dma(priv, chan); 1975 1976 priv->dev->stats.tx_errors++; 1977 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan)); 1978 } 1979 1980 /** 1981 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel 1982 * @priv: driver private structure 1983 * @txmode: TX operating mode 1984 * @rxmode: RX operating mode 1985 * @chan: channel index 1986 * Description: it is used for configuring of the DMA operation mode in 1987 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward 1988 * mode. 1989 */ 1990 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 1991 u32 rxmode, u32 chan) 1992 { 1993 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 1994 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 1995 u32 rx_channels_count = priv->plat->rx_queues_to_use; 1996 u32 tx_channels_count = priv->plat->tx_queues_to_use; 1997 int rxfifosz = priv->plat->rx_fifo_size; 1998 int txfifosz = priv->plat->tx_fifo_size; 1999 2000 if (rxfifosz == 0) 2001 rxfifosz = priv->dma_cap.rx_fifo_size; 2002 if (txfifosz == 0) 2003 txfifosz = priv->dma_cap.tx_fifo_size; 2004 2005 /* Adjust for real per queue fifo size */ 2006 rxfifosz /= rx_channels_count; 2007 txfifosz /= tx_channels_count; 2008 2009 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode); 2010 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode); 2011 } 2012 2013 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv) 2014 { 2015 int ret; 2016 2017 ret = stmmac_safety_feat_irq_status(priv, priv->dev, 2018 priv->ioaddr, priv->dma_cap.asp, &priv->sstats); 2019 if (ret && (ret != -EINVAL)) { 2020 stmmac_global_err(priv); 2021 return true; 2022 } 2023 2024 return false; 2025 } 2026 2027 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan) 2028 { 2029 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr, 2030 &priv->xstats, chan); 2031 struct stmmac_channel *ch = &priv->channel[chan]; 2032 bool needs_work = false; 2033 2034 if ((status & handle_rx) && ch->has_rx) { 2035 needs_work = true; 2036 } else { 2037 status &= ~handle_rx; 2038 } 2039 2040 if ((status & handle_tx) && ch->has_tx) { 2041 needs_work = true; 2042 } else { 2043 status &= ~handle_tx; 2044 } 2045 2046 if (needs_work && napi_schedule_prep(&ch->napi)) { 2047 stmmac_disable_dma_irq(priv, priv->ioaddr, chan); 2048 __napi_schedule(&ch->napi); 2049 } 2050 2051 return status; 2052 } 2053 2054 /** 2055 * stmmac_dma_interrupt - DMA ISR 2056 * @priv: driver private structure 2057 * Description: this is the DMA ISR. It is called by the main ISR. 2058 * It calls the dwmac dma routine and schedule poll method in case of some 2059 * work can be done. 2060 */ 2061 static void stmmac_dma_interrupt(struct stmmac_priv *priv) 2062 { 2063 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2064 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2065 u32 channels_to_check = tx_channel_count > rx_channel_count ? 2066 tx_channel_count : rx_channel_count; 2067 u32 chan; 2068 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)]; 2069 2070 /* Make sure we never check beyond our status buffer. */ 2071 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status))) 2072 channels_to_check = ARRAY_SIZE(status); 2073 2074 for (chan = 0; chan < channels_to_check; chan++) 2075 status[chan] = stmmac_napi_check(priv, chan); 2076 2077 for (chan = 0; chan < tx_channel_count; chan++) { 2078 if (unlikely(status[chan] & tx_hard_error_bump_tc)) { 2079 /* Try to bump up the dma threshold on this failure */ 2080 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && 2081 (tc <= 256)) { 2082 tc += 64; 2083 if (priv->plat->force_thresh_dma_mode) 2084 stmmac_set_dma_operation_mode(priv, 2085 tc, 2086 tc, 2087 chan); 2088 else 2089 stmmac_set_dma_operation_mode(priv, 2090 tc, 2091 SF_DMA_MODE, 2092 chan); 2093 priv->xstats.threshold = tc; 2094 } 2095 } else if (unlikely(status[chan] == tx_hard_error)) { 2096 stmmac_tx_err(priv, chan); 2097 } 2098 } 2099 } 2100 2101 /** 2102 * stmmac_mmc_setup: setup the Mac Management Counters (MMC) 2103 * @priv: driver private structure 2104 * Description: this masks the MMC irq, in fact, the counters are managed in SW. 2105 */ 2106 static void stmmac_mmc_setup(struct stmmac_priv *priv) 2107 { 2108 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | 2109 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; 2110 2111 dwmac_mmc_intr_all_mask(priv->mmcaddr); 2112 2113 if (priv->dma_cap.rmon) { 2114 dwmac_mmc_ctrl(priv->mmcaddr, mode); 2115 memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); 2116 } else 2117 netdev_info(priv->dev, "No MAC Management Counters available\n"); 2118 } 2119 2120 /** 2121 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register. 2122 * @priv: driver private structure 2123 * Description: 2124 * new GMAC chip generations have a new register to indicate the 2125 * presence of the optional feature/functions. 2126 * This can be also used to override the value passed through the 2127 * platform and necessary for old MAC10/100 and GMAC chips. 2128 */ 2129 static int stmmac_get_hw_features(struct stmmac_priv *priv) 2130 { 2131 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0; 2132 } 2133 2134 /** 2135 * stmmac_check_ether_addr - check if the MAC addr is valid 2136 * @priv: driver private structure 2137 * Description: 2138 * it is to verify if the MAC address is valid, in case of failures it 2139 * generates a random MAC address 2140 */ 2141 static void stmmac_check_ether_addr(struct stmmac_priv *priv) 2142 { 2143 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 2144 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0); 2145 if (!is_valid_ether_addr(priv->dev->dev_addr)) 2146 eth_hw_addr_random(priv->dev); 2147 netdev_info(priv->dev, "device MAC address %pM\n", 2148 priv->dev->dev_addr); 2149 } 2150 } 2151 2152 /** 2153 * stmmac_init_dma_engine - DMA init. 2154 * @priv: driver private structure 2155 * Description: 2156 * It inits the DMA invoking the specific MAC/GMAC callback. 2157 * Some DMA parameters can be passed from the platform; 2158 * in case of these are not passed a default is kept for the MAC or GMAC. 2159 */ 2160 static int stmmac_init_dma_engine(struct stmmac_priv *priv) 2161 { 2162 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2163 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2164 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); 2165 struct stmmac_rx_queue *rx_q; 2166 struct stmmac_tx_queue *tx_q; 2167 u32 chan = 0; 2168 int atds = 0; 2169 int ret = 0; 2170 2171 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) { 2172 dev_err(priv->device, "Invalid DMA configuration\n"); 2173 return -EINVAL; 2174 } 2175 2176 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) 2177 atds = 1; 2178 2179 ret = stmmac_reset(priv, priv->ioaddr); 2180 if (ret) { 2181 dev_err(priv->device, "Failed to reset the dma\n"); 2182 return ret; 2183 } 2184 2185 /* DMA Configuration */ 2186 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds); 2187 2188 if (priv->plat->axi) 2189 stmmac_axi(priv, priv->ioaddr, priv->plat->axi); 2190 2191 /* DMA RX Channel Configuration */ 2192 for (chan = 0; chan < rx_channels_count; chan++) { 2193 rx_q = &priv->rx_queue[chan]; 2194 2195 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2196 rx_q->dma_rx_phy, chan); 2197 2198 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 2199 (DMA_RX_SIZE * sizeof(struct dma_desc)); 2200 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 2201 rx_q->rx_tail_addr, chan); 2202 } 2203 2204 /* DMA TX Channel Configuration */ 2205 for (chan = 0; chan < tx_channels_count; chan++) { 2206 tx_q = &priv->tx_queue[chan]; 2207 2208 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2209 tx_q->dma_tx_phy, chan); 2210 2211 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 2212 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 2213 tx_q->tx_tail_addr, chan); 2214 } 2215 2216 /* DMA CSR Channel configuration */ 2217 for (chan = 0; chan < dma_csr_ch; chan++) 2218 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 2219 2220 return ret; 2221 } 2222 2223 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue) 2224 { 2225 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2226 2227 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer)); 2228 } 2229 2230 /** 2231 * stmmac_tx_timer - mitigation sw timer for tx. 2232 * @data: data pointer 2233 * Description: 2234 * This is the timer handler to directly invoke the stmmac_tx_clean. 2235 */ 2236 static void stmmac_tx_timer(struct timer_list *t) 2237 { 2238 struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer); 2239 struct stmmac_priv *priv = tx_q->priv_data; 2240 struct stmmac_channel *ch; 2241 2242 ch = &priv->channel[tx_q->queue_index]; 2243 2244 if (likely(napi_schedule_prep(&ch->napi))) 2245 __napi_schedule(&ch->napi); 2246 } 2247 2248 /** 2249 * stmmac_init_tx_coalesce - init tx mitigation options. 2250 * @priv: driver private structure 2251 * Description: 2252 * This inits the transmit coalesce parameters: i.e. timer rate, 2253 * timer handler and default threshold used for enabling the 2254 * interrupt on completion bit. 2255 */ 2256 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv) 2257 { 2258 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2259 u32 chan; 2260 2261 priv->tx_coal_frames = STMMAC_TX_FRAMES; 2262 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER; 2263 2264 for (chan = 0; chan < tx_channel_count; chan++) { 2265 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2266 2267 timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0); 2268 } 2269 } 2270 2271 static void stmmac_set_rings_length(struct stmmac_priv *priv) 2272 { 2273 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2274 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2275 u32 chan; 2276 2277 /* set TX ring length */ 2278 for (chan = 0; chan < tx_channels_count; chan++) 2279 stmmac_set_tx_ring_len(priv, priv->ioaddr, 2280 (DMA_TX_SIZE - 1), chan); 2281 2282 /* set RX ring length */ 2283 for (chan = 0; chan < rx_channels_count; chan++) 2284 stmmac_set_rx_ring_len(priv, priv->ioaddr, 2285 (DMA_RX_SIZE - 1), chan); 2286 } 2287 2288 /** 2289 * stmmac_set_tx_queue_weight - Set TX queue weight 2290 * @priv: driver private structure 2291 * Description: It is used for setting TX queues weight 2292 */ 2293 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv) 2294 { 2295 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2296 u32 weight; 2297 u32 queue; 2298 2299 for (queue = 0; queue < tx_queues_count; queue++) { 2300 weight = priv->plat->tx_queues_cfg[queue].weight; 2301 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue); 2302 } 2303 } 2304 2305 /** 2306 * stmmac_configure_cbs - Configure CBS in TX queue 2307 * @priv: driver private structure 2308 * Description: It is used for configuring CBS in AVB TX queues 2309 */ 2310 static void stmmac_configure_cbs(struct stmmac_priv *priv) 2311 { 2312 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2313 u32 mode_to_use; 2314 u32 queue; 2315 2316 /* queue 0 is reserved for legacy traffic */ 2317 for (queue = 1; queue < tx_queues_count; queue++) { 2318 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use; 2319 if (mode_to_use == MTL_QUEUE_DCB) 2320 continue; 2321 2322 stmmac_config_cbs(priv, priv->hw, 2323 priv->plat->tx_queues_cfg[queue].send_slope, 2324 priv->plat->tx_queues_cfg[queue].idle_slope, 2325 priv->plat->tx_queues_cfg[queue].high_credit, 2326 priv->plat->tx_queues_cfg[queue].low_credit, 2327 queue); 2328 } 2329 } 2330 2331 /** 2332 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel 2333 * @priv: driver private structure 2334 * Description: It is used for mapping RX queues to RX dma channels 2335 */ 2336 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv) 2337 { 2338 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2339 u32 queue; 2340 u32 chan; 2341 2342 for (queue = 0; queue < rx_queues_count; queue++) { 2343 chan = priv->plat->rx_queues_cfg[queue].chan; 2344 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan); 2345 } 2346 } 2347 2348 /** 2349 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority 2350 * @priv: driver private structure 2351 * Description: It is used for configuring the RX Queue Priority 2352 */ 2353 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv) 2354 { 2355 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2356 u32 queue; 2357 u32 prio; 2358 2359 for (queue = 0; queue < rx_queues_count; queue++) { 2360 if (!priv->plat->rx_queues_cfg[queue].use_prio) 2361 continue; 2362 2363 prio = priv->plat->rx_queues_cfg[queue].prio; 2364 stmmac_rx_queue_prio(priv, priv->hw, prio, queue); 2365 } 2366 } 2367 2368 /** 2369 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority 2370 * @priv: driver private structure 2371 * Description: It is used for configuring the TX Queue Priority 2372 */ 2373 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv) 2374 { 2375 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2376 u32 queue; 2377 u32 prio; 2378 2379 for (queue = 0; queue < tx_queues_count; queue++) { 2380 if (!priv->plat->tx_queues_cfg[queue].use_prio) 2381 continue; 2382 2383 prio = priv->plat->tx_queues_cfg[queue].prio; 2384 stmmac_tx_queue_prio(priv, priv->hw, prio, queue); 2385 } 2386 } 2387 2388 /** 2389 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing 2390 * @priv: driver private structure 2391 * Description: It is used for configuring the RX queue routing 2392 */ 2393 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv) 2394 { 2395 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2396 u32 queue; 2397 u8 packet; 2398 2399 for (queue = 0; queue < rx_queues_count; queue++) { 2400 /* no specific packet type routing specified for the queue */ 2401 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0) 2402 continue; 2403 2404 packet = priv->plat->rx_queues_cfg[queue].pkt_route; 2405 stmmac_rx_queue_routing(priv, priv->hw, packet, queue); 2406 } 2407 } 2408 2409 /** 2410 * stmmac_mtl_configuration - Configure MTL 2411 * @priv: driver private structure 2412 * Description: It is used for configurring MTL 2413 */ 2414 static void stmmac_mtl_configuration(struct stmmac_priv *priv) 2415 { 2416 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2417 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2418 2419 if (tx_queues_count > 1) 2420 stmmac_set_tx_queue_weight(priv); 2421 2422 /* Configure MTL RX algorithms */ 2423 if (rx_queues_count > 1) 2424 stmmac_prog_mtl_rx_algorithms(priv, priv->hw, 2425 priv->plat->rx_sched_algorithm); 2426 2427 /* Configure MTL TX algorithms */ 2428 if (tx_queues_count > 1) 2429 stmmac_prog_mtl_tx_algorithms(priv, priv->hw, 2430 priv->plat->tx_sched_algorithm); 2431 2432 /* Configure CBS in AVB TX queues */ 2433 if (tx_queues_count > 1) 2434 stmmac_configure_cbs(priv); 2435 2436 /* Map RX MTL to DMA channels */ 2437 stmmac_rx_queue_dma_chan_map(priv); 2438 2439 /* Enable MAC RX Queues */ 2440 stmmac_mac_enable_rx_queues(priv); 2441 2442 /* Set RX priorities */ 2443 if (rx_queues_count > 1) 2444 stmmac_mac_config_rx_queues_prio(priv); 2445 2446 /* Set TX priorities */ 2447 if (tx_queues_count > 1) 2448 stmmac_mac_config_tx_queues_prio(priv); 2449 2450 /* Set RX routing */ 2451 if (rx_queues_count > 1) 2452 stmmac_mac_config_rx_queues_routing(priv); 2453 } 2454 2455 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv) 2456 { 2457 if (priv->dma_cap.asp) { 2458 netdev_info(priv->dev, "Enabling Safety Features\n"); 2459 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp); 2460 } else { 2461 netdev_info(priv->dev, "No Safety Features support found\n"); 2462 } 2463 } 2464 2465 /** 2466 * stmmac_hw_setup - setup mac in a usable state. 2467 * @dev : pointer to the device structure. 2468 * Description: 2469 * this is the main function to setup the HW in a usable state because the 2470 * dma engine is reset, the core registers are configured (e.g. AXI, 2471 * Checksum features, timers). The DMA is ready to start receiving and 2472 * transmitting. 2473 * Return value: 2474 * 0 on success and an appropriate (-)ve integer as defined in errno.h 2475 * file on failure. 2476 */ 2477 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp) 2478 { 2479 struct stmmac_priv *priv = netdev_priv(dev); 2480 u32 rx_cnt = priv->plat->rx_queues_to_use; 2481 u32 tx_cnt = priv->plat->tx_queues_to_use; 2482 u32 chan; 2483 int ret; 2484 2485 /* DMA initialization and SW reset */ 2486 ret = stmmac_init_dma_engine(priv); 2487 if (ret < 0) { 2488 netdev_err(priv->dev, "%s: DMA engine initialization failed\n", 2489 __func__); 2490 return ret; 2491 } 2492 2493 /* Copy the MAC addr into the HW */ 2494 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0); 2495 2496 /* PS and related bits will be programmed according to the speed */ 2497 if (priv->hw->pcs) { 2498 int speed = priv->plat->mac_port_sel_speed; 2499 2500 if ((speed == SPEED_10) || (speed == SPEED_100) || 2501 (speed == SPEED_1000)) { 2502 priv->hw->ps = speed; 2503 } else { 2504 dev_warn(priv->device, "invalid port speed\n"); 2505 priv->hw->ps = 0; 2506 } 2507 } 2508 2509 /* Initialize the MAC Core */ 2510 stmmac_core_init(priv, priv->hw, dev); 2511 2512 /* Initialize MTL*/ 2513 stmmac_mtl_configuration(priv); 2514 2515 /* Initialize Safety Features */ 2516 stmmac_safety_feat_configuration(priv); 2517 2518 ret = stmmac_rx_ipc(priv, priv->hw); 2519 if (!ret) { 2520 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n"); 2521 priv->plat->rx_coe = STMMAC_RX_COE_NONE; 2522 priv->hw->rx_csum = 0; 2523 } 2524 2525 /* Enable the MAC Rx/Tx */ 2526 stmmac_mac_set(priv, priv->ioaddr, true); 2527 2528 /* Set the HW DMA mode and the COE */ 2529 stmmac_dma_operation_mode(priv); 2530 2531 stmmac_mmc_setup(priv); 2532 2533 if (init_ptp) { 2534 ret = clk_prepare_enable(priv->plat->clk_ptp_ref); 2535 if (ret < 0) 2536 netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret); 2537 2538 ret = stmmac_init_ptp(priv); 2539 if (ret == -EOPNOTSUPP) 2540 netdev_warn(priv->dev, "PTP not supported by HW\n"); 2541 else if (ret) 2542 netdev_warn(priv->dev, "PTP init failed\n"); 2543 } 2544 2545 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS; 2546 2547 if (priv->use_riwt) { 2548 ret = stmmac_rx_watchdog(priv, priv->ioaddr, MAX_DMA_RIWT, rx_cnt); 2549 if (!ret) 2550 priv->rx_riwt = MAX_DMA_RIWT; 2551 } 2552 2553 if (priv->hw->pcs) 2554 stmmac_pcs_ctrl_ane(priv, priv->hw, 1, priv->hw->ps, 0); 2555 2556 /* set TX and RX rings length */ 2557 stmmac_set_rings_length(priv); 2558 2559 /* Enable TSO */ 2560 if (priv->tso) { 2561 for (chan = 0; chan < tx_cnt; chan++) 2562 stmmac_enable_tso(priv, priv->ioaddr, 1, chan); 2563 } 2564 2565 /* Start the ball rolling... */ 2566 stmmac_start_all_dma(priv); 2567 2568 return 0; 2569 } 2570 2571 static void stmmac_hw_teardown(struct net_device *dev) 2572 { 2573 struct stmmac_priv *priv = netdev_priv(dev); 2574 2575 clk_disable_unprepare(priv->plat->clk_ptp_ref); 2576 } 2577 2578 /** 2579 * stmmac_open - open entry point of the driver 2580 * @dev : pointer to the device structure. 2581 * Description: 2582 * This function is the open entry point of the driver. 2583 * Return value: 2584 * 0 on success and an appropriate (-)ve integer as defined in errno.h 2585 * file on failure. 2586 */ 2587 static int stmmac_open(struct net_device *dev) 2588 { 2589 struct stmmac_priv *priv = netdev_priv(dev); 2590 u32 chan; 2591 int ret; 2592 2593 stmmac_check_ether_addr(priv); 2594 2595 if (priv->hw->pcs != STMMAC_PCS_RGMII && 2596 priv->hw->pcs != STMMAC_PCS_TBI && 2597 priv->hw->pcs != STMMAC_PCS_RTBI) { 2598 ret = stmmac_init_phy(dev); 2599 if (ret) { 2600 netdev_err(priv->dev, 2601 "%s: Cannot attach to PHY (error: %d)\n", 2602 __func__, ret); 2603 return ret; 2604 } 2605 } 2606 2607 /* Extra statistics */ 2608 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats)); 2609 priv->xstats.threshold = tc; 2610 2611 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz); 2612 priv->rx_copybreak = STMMAC_RX_COPYBREAK; 2613 2614 ret = alloc_dma_desc_resources(priv); 2615 if (ret < 0) { 2616 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n", 2617 __func__); 2618 goto dma_desc_error; 2619 } 2620 2621 ret = init_dma_desc_rings(dev, GFP_KERNEL); 2622 if (ret < 0) { 2623 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n", 2624 __func__); 2625 goto init_error; 2626 } 2627 2628 ret = stmmac_hw_setup(dev, true); 2629 if (ret < 0) { 2630 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__); 2631 goto init_error; 2632 } 2633 2634 stmmac_init_tx_coalesce(priv); 2635 2636 if (dev->phydev) 2637 phy_start(dev->phydev); 2638 2639 /* Request the IRQ lines */ 2640 ret = request_irq(dev->irq, stmmac_interrupt, 2641 IRQF_SHARED, dev->name, dev); 2642 if (unlikely(ret < 0)) { 2643 netdev_err(priv->dev, 2644 "%s: ERROR: allocating the IRQ %d (error: %d)\n", 2645 __func__, dev->irq, ret); 2646 goto irq_error; 2647 } 2648 2649 /* Request the Wake IRQ in case of another line is used for WoL */ 2650 if (priv->wol_irq != dev->irq) { 2651 ret = request_irq(priv->wol_irq, stmmac_interrupt, 2652 IRQF_SHARED, dev->name, dev); 2653 if (unlikely(ret < 0)) { 2654 netdev_err(priv->dev, 2655 "%s: ERROR: allocating the WoL IRQ %d (%d)\n", 2656 __func__, priv->wol_irq, ret); 2657 goto wolirq_error; 2658 } 2659 } 2660 2661 /* Request the IRQ lines */ 2662 if (priv->lpi_irq > 0) { 2663 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED, 2664 dev->name, dev); 2665 if (unlikely(ret < 0)) { 2666 netdev_err(priv->dev, 2667 "%s: ERROR: allocating the LPI IRQ %d (%d)\n", 2668 __func__, priv->lpi_irq, ret); 2669 goto lpiirq_error; 2670 } 2671 } 2672 2673 stmmac_enable_all_queues(priv); 2674 stmmac_start_all_queues(priv); 2675 2676 return 0; 2677 2678 lpiirq_error: 2679 if (priv->wol_irq != dev->irq) 2680 free_irq(priv->wol_irq, dev); 2681 wolirq_error: 2682 free_irq(dev->irq, dev); 2683 irq_error: 2684 if (dev->phydev) 2685 phy_stop(dev->phydev); 2686 2687 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 2688 del_timer_sync(&priv->tx_queue[chan].txtimer); 2689 2690 stmmac_hw_teardown(dev); 2691 init_error: 2692 free_dma_desc_resources(priv); 2693 dma_desc_error: 2694 if (dev->phydev) 2695 phy_disconnect(dev->phydev); 2696 2697 return ret; 2698 } 2699 2700 /** 2701 * stmmac_release - close entry point of the driver 2702 * @dev : device pointer. 2703 * Description: 2704 * This is the stop entry point of the driver. 2705 */ 2706 static int stmmac_release(struct net_device *dev) 2707 { 2708 struct stmmac_priv *priv = netdev_priv(dev); 2709 u32 chan; 2710 2711 if (priv->eee_enabled) 2712 del_timer_sync(&priv->eee_ctrl_timer); 2713 2714 /* Stop and disconnect the PHY */ 2715 if (dev->phydev) { 2716 phy_stop(dev->phydev); 2717 phy_disconnect(dev->phydev); 2718 } 2719 2720 stmmac_stop_all_queues(priv); 2721 2722 stmmac_disable_all_queues(priv); 2723 2724 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 2725 del_timer_sync(&priv->tx_queue[chan].txtimer); 2726 2727 /* Free the IRQ lines */ 2728 free_irq(dev->irq, dev); 2729 if (priv->wol_irq != dev->irq) 2730 free_irq(priv->wol_irq, dev); 2731 if (priv->lpi_irq > 0) 2732 free_irq(priv->lpi_irq, dev); 2733 2734 /* Stop TX/RX DMA and clear the descriptors */ 2735 stmmac_stop_all_dma(priv); 2736 2737 /* Release and free the Rx/Tx resources */ 2738 free_dma_desc_resources(priv); 2739 2740 /* Disable the MAC Rx/Tx */ 2741 stmmac_mac_set(priv, priv->ioaddr, false); 2742 2743 netif_carrier_off(dev); 2744 2745 stmmac_release_ptp(priv); 2746 2747 return 0; 2748 } 2749 2750 /** 2751 * stmmac_tso_allocator - close entry point of the driver 2752 * @priv: driver private structure 2753 * @des: buffer start address 2754 * @total_len: total length to fill in descriptors 2755 * @last_segmant: condition for the last descriptor 2756 * @queue: TX queue index 2757 * Description: 2758 * This function fills descriptor and request new descriptors according to 2759 * buffer length to fill 2760 */ 2761 static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des, 2762 int total_len, bool last_segment, u32 queue) 2763 { 2764 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2765 struct dma_desc *desc; 2766 u32 buff_size; 2767 int tmp_len; 2768 2769 tmp_len = total_len; 2770 2771 while (tmp_len > 0) { 2772 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE); 2773 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 2774 desc = tx_q->dma_tx + tx_q->cur_tx; 2775 2776 desc->des0 = cpu_to_le32(des + (total_len - tmp_len)); 2777 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ? 2778 TSO_MAX_BUFF_SIZE : tmp_len; 2779 2780 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size, 2781 0, 1, 2782 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE), 2783 0, 0); 2784 2785 tmp_len -= TSO_MAX_BUFF_SIZE; 2786 } 2787 } 2788 2789 /** 2790 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO) 2791 * @skb : the socket buffer 2792 * @dev : device pointer 2793 * Description: this is the transmit function that is called on TSO frames 2794 * (support available on GMAC4 and newer chips). 2795 * Diagram below show the ring programming in case of TSO frames: 2796 * 2797 * First Descriptor 2798 * -------- 2799 * | DES0 |---> buffer1 = L2/L3/L4 header 2800 * | DES1 |---> TCP Payload (can continue on next descr...) 2801 * | DES2 |---> buffer 1 and 2 len 2802 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0] 2803 * -------- 2804 * | 2805 * ... 2806 * | 2807 * -------- 2808 * | DES0 | --| Split TCP Payload on Buffers 1 and 2 2809 * | DES1 | --| 2810 * | DES2 | --> buffer 1 and 2 len 2811 * | DES3 | 2812 * -------- 2813 * 2814 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field. 2815 */ 2816 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) 2817 { 2818 struct dma_desc *desc, *first, *mss_desc = NULL; 2819 struct stmmac_priv *priv = netdev_priv(dev); 2820 int nfrags = skb_shinfo(skb)->nr_frags; 2821 u32 queue = skb_get_queue_mapping(skb); 2822 unsigned int first_entry, des; 2823 struct stmmac_tx_queue *tx_q; 2824 int tmp_pay_len = 0; 2825 u32 pay_len, mss; 2826 u8 proto_hdr_len; 2827 int i; 2828 2829 tx_q = &priv->tx_queue[queue]; 2830 2831 /* Compute header lengths */ 2832 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2833 2834 /* Desc availability based on threshold should be enough safe */ 2835 if (unlikely(stmmac_tx_avail(priv, queue) < 2836 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) { 2837 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 2838 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 2839 queue)); 2840 /* This is a hard error, log it. */ 2841 netdev_err(priv->dev, 2842 "%s: Tx Ring full when queue awake\n", 2843 __func__); 2844 } 2845 return NETDEV_TX_BUSY; 2846 } 2847 2848 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */ 2849 2850 mss = skb_shinfo(skb)->gso_size; 2851 2852 /* set new MSS value if needed */ 2853 if (mss != tx_q->mss) { 2854 mss_desc = tx_q->dma_tx + tx_q->cur_tx; 2855 stmmac_set_mss(priv, mss_desc, mss); 2856 tx_q->mss = mss; 2857 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE); 2858 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 2859 } 2860 2861 if (netif_msg_tx_queued(priv)) { 2862 pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n", 2863 __func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss); 2864 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len, 2865 skb->data_len); 2866 } 2867 2868 first_entry = tx_q->cur_tx; 2869 WARN_ON(tx_q->tx_skbuff[first_entry]); 2870 2871 desc = tx_q->dma_tx + first_entry; 2872 first = desc; 2873 2874 /* first descriptor: fill Headers on Buf1 */ 2875 des = dma_map_single(priv->device, skb->data, skb_headlen(skb), 2876 DMA_TO_DEVICE); 2877 if (dma_mapping_error(priv->device, des)) 2878 goto dma_map_err; 2879 2880 tx_q->tx_skbuff_dma[first_entry].buf = des; 2881 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb); 2882 2883 first->des0 = cpu_to_le32(des); 2884 2885 /* Fill start of payload in buff2 of first descriptor */ 2886 if (pay_len) 2887 first->des1 = cpu_to_le32(des + proto_hdr_len); 2888 2889 /* If needed take extra descriptors to fill the remaining payload */ 2890 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE; 2891 2892 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue); 2893 2894 /* Prepare fragments */ 2895 for (i = 0; i < nfrags; i++) { 2896 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2897 2898 des = skb_frag_dma_map(priv->device, frag, 0, 2899 skb_frag_size(frag), 2900 DMA_TO_DEVICE); 2901 if (dma_mapping_error(priv->device, des)) 2902 goto dma_map_err; 2903 2904 stmmac_tso_allocator(priv, des, skb_frag_size(frag), 2905 (i == nfrags - 1), queue); 2906 2907 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des; 2908 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag); 2909 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true; 2910 } 2911 2912 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true; 2913 2914 /* Only the last descriptor gets to point to the skb. */ 2915 tx_q->tx_skbuff[tx_q->cur_tx] = skb; 2916 2917 /* We've used all descriptors we need for this skb, however, 2918 * advance cur_tx so that it references a fresh descriptor. 2919 * ndo_start_xmit will fill this descriptor the next time it's 2920 * called and stmmac_tx_clean may clean up to this descriptor. 2921 */ 2922 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE); 2923 2924 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 2925 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 2926 __func__); 2927 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 2928 } 2929 2930 dev->stats.tx_bytes += skb->len; 2931 priv->xstats.tx_tso_frames++; 2932 priv->xstats.tx_tso_nfrags += nfrags; 2933 2934 /* Manage tx mitigation */ 2935 tx_q->tx_count_frames += nfrags + 1; 2936 if (priv->tx_coal_frames <= tx_q->tx_count_frames) { 2937 stmmac_set_tx_ic(priv, desc); 2938 priv->xstats.tx_set_ic_bit++; 2939 tx_q->tx_count_frames = 0; 2940 } else { 2941 stmmac_tx_timer_arm(priv, queue); 2942 } 2943 2944 skb_tx_timestamp(skb); 2945 2946 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 2947 priv->hwts_tx_en)) { 2948 /* declare that device is doing timestamping */ 2949 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2950 stmmac_enable_tx_timestamp(priv, first); 2951 } 2952 2953 /* Complete the first descriptor before granting the DMA */ 2954 stmmac_prepare_tso_tx_desc(priv, first, 1, 2955 proto_hdr_len, 2956 pay_len, 2957 1, tx_q->tx_skbuff_dma[first_entry].last_segment, 2958 tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len)); 2959 2960 /* If context desc is used to change MSS */ 2961 if (mss_desc) { 2962 /* Make sure that first descriptor has been completely 2963 * written, including its own bit. This is because MSS is 2964 * actually before first descriptor, so we need to make 2965 * sure that MSS's own bit is the last thing written. 2966 */ 2967 dma_wmb(); 2968 stmmac_set_tx_owner(priv, mss_desc); 2969 } 2970 2971 /* The own bit must be the latest setting done when prepare the 2972 * descriptor and then barrier is needed to make sure that 2973 * all is coherent before granting the DMA engine. 2974 */ 2975 wmb(); 2976 2977 if (netif_msg_pktdata(priv)) { 2978 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n", 2979 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 2980 tx_q->cur_tx, first, nfrags); 2981 2982 stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0); 2983 2984 pr_info(">>> frame to be transmitted: "); 2985 print_pkt(skb->data, skb_headlen(skb)); 2986 } 2987 2988 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 2989 2990 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc)); 2991 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); 2992 2993 return NETDEV_TX_OK; 2994 2995 dma_map_err: 2996 dev_err(priv->device, "Tx dma map failed\n"); 2997 dev_kfree_skb(skb); 2998 priv->dev->stats.tx_dropped++; 2999 return NETDEV_TX_OK; 3000 } 3001 3002 /** 3003 * stmmac_xmit - Tx entry point of the driver 3004 * @skb : the socket buffer 3005 * @dev : device pointer 3006 * Description : this is the tx entry point of the driver. 3007 * It programs the chain or the ring and supports oversized frames 3008 * and SG feature. 3009 */ 3010 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) 3011 { 3012 struct stmmac_priv *priv = netdev_priv(dev); 3013 unsigned int nopaged_len = skb_headlen(skb); 3014 int i, csum_insertion = 0, is_jumbo = 0; 3015 u32 queue = skb_get_queue_mapping(skb); 3016 int nfrags = skb_shinfo(skb)->nr_frags; 3017 int entry; 3018 unsigned int first_entry; 3019 struct dma_desc *desc, *first; 3020 struct stmmac_tx_queue *tx_q; 3021 unsigned int enh_desc; 3022 unsigned int des; 3023 3024 tx_q = &priv->tx_queue[queue]; 3025 3026 /* Manage oversized TCP frames for GMAC4 device */ 3027 if (skb_is_gso(skb) && priv->tso) { 3028 if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) 3029 return stmmac_tso_xmit(skb, dev); 3030 } 3031 3032 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) { 3033 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 3034 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 3035 queue)); 3036 /* This is a hard error, log it. */ 3037 netdev_err(priv->dev, 3038 "%s: Tx Ring full when queue awake\n", 3039 __func__); 3040 } 3041 return NETDEV_TX_BUSY; 3042 } 3043 3044 if (priv->tx_path_in_lpi_mode) 3045 stmmac_disable_eee_mode(priv); 3046 3047 entry = tx_q->cur_tx; 3048 first_entry = entry; 3049 WARN_ON(tx_q->tx_skbuff[first_entry]); 3050 3051 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); 3052 3053 if (likely(priv->extend_desc)) 3054 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 3055 else 3056 desc = tx_q->dma_tx + entry; 3057 3058 first = desc; 3059 3060 enh_desc = priv->plat->enh_desc; 3061 /* To program the descriptors according to the size of the frame */ 3062 if (enh_desc) 3063 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc); 3064 3065 if (unlikely(is_jumbo)) { 3066 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion); 3067 if (unlikely(entry < 0) && (entry != -EINVAL)) 3068 goto dma_map_err; 3069 } 3070 3071 for (i = 0; i < nfrags; i++) { 3072 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3073 int len = skb_frag_size(frag); 3074 bool last_segment = (i == (nfrags - 1)); 3075 3076 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); 3077 WARN_ON(tx_q->tx_skbuff[entry]); 3078 3079 if (likely(priv->extend_desc)) 3080 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 3081 else 3082 desc = tx_q->dma_tx + entry; 3083 3084 des = skb_frag_dma_map(priv->device, frag, 0, len, 3085 DMA_TO_DEVICE); 3086 if (dma_mapping_error(priv->device, des)) 3087 goto dma_map_err; /* should reuse desc w/o issues */ 3088 3089 tx_q->tx_skbuff_dma[entry].buf = des; 3090 3091 stmmac_set_desc_addr(priv, desc, des); 3092 3093 tx_q->tx_skbuff_dma[entry].map_as_page = true; 3094 tx_q->tx_skbuff_dma[entry].len = len; 3095 tx_q->tx_skbuff_dma[entry].last_segment = last_segment; 3096 3097 /* Prepare the descriptor and set the own bit too */ 3098 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion, 3099 priv->mode, 1, last_segment, skb->len); 3100 } 3101 3102 /* Only the last descriptor gets to point to the skb. */ 3103 tx_q->tx_skbuff[entry] = skb; 3104 3105 /* We've used all descriptors we need for this skb, however, 3106 * advance cur_tx so that it references a fresh descriptor. 3107 * ndo_start_xmit will fill this descriptor the next time it's 3108 * called and stmmac_tx_clean may clean up to this descriptor. 3109 */ 3110 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); 3111 tx_q->cur_tx = entry; 3112 3113 if (netif_msg_pktdata(priv)) { 3114 void *tx_head; 3115 3116 netdev_dbg(priv->dev, 3117 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d", 3118 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 3119 entry, first, nfrags); 3120 3121 if (priv->extend_desc) 3122 tx_head = (void *)tx_q->dma_etx; 3123 else 3124 tx_head = (void *)tx_q->dma_tx; 3125 3126 stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false); 3127 3128 netdev_dbg(priv->dev, ">>> frame to be transmitted: "); 3129 print_pkt(skb->data, skb->len); 3130 } 3131 3132 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 3133 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 3134 __func__); 3135 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 3136 } 3137 3138 dev->stats.tx_bytes += skb->len; 3139 3140 /* According to the coalesce parameter the IC bit for the latest 3141 * segment is reset and the timer re-started to clean the tx status. 3142 * This approach takes care about the fragments: desc is the first 3143 * element in case of no SG. 3144 */ 3145 tx_q->tx_count_frames += nfrags + 1; 3146 if (priv->tx_coal_frames <= tx_q->tx_count_frames) { 3147 stmmac_set_tx_ic(priv, desc); 3148 priv->xstats.tx_set_ic_bit++; 3149 tx_q->tx_count_frames = 0; 3150 } else { 3151 stmmac_tx_timer_arm(priv, queue); 3152 } 3153 3154 skb_tx_timestamp(skb); 3155 3156 /* Ready to fill the first descriptor and set the OWN bit w/o any 3157 * problems because all the descriptors are actually ready to be 3158 * passed to the DMA engine. 3159 */ 3160 if (likely(!is_jumbo)) { 3161 bool last_segment = (nfrags == 0); 3162 3163 des = dma_map_single(priv->device, skb->data, 3164 nopaged_len, DMA_TO_DEVICE); 3165 if (dma_mapping_error(priv->device, des)) 3166 goto dma_map_err; 3167 3168 tx_q->tx_skbuff_dma[first_entry].buf = des; 3169 3170 stmmac_set_desc_addr(priv, first, des); 3171 3172 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len; 3173 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment; 3174 3175 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 3176 priv->hwts_tx_en)) { 3177 /* declare that device is doing timestamping */ 3178 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3179 stmmac_enable_tx_timestamp(priv, first); 3180 } 3181 3182 /* Prepare the first descriptor setting the OWN bit too */ 3183 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len, 3184 csum_insertion, priv->mode, 1, last_segment, 3185 skb->len); 3186 3187 /* The own bit must be the latest setting done when prepare the 3188 * descriptor and then barrier is needed to make sure that 3189 * all is coherent before granting the DMA engine. 3190 */ 3191 wmb(); 3192 } 3193 3194 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 3195 3196 stmmac_enable_dma_transmission(priv, priv->ioaddr); 3197 3198 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc)); 3199 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); 3200 3201 return NETDEV_TX_OK; 3202 3203 dma_map_err: 3204 netdev_err(priv->dev, "Tx DMA map failed\n"); 3205 dev_kfree_skb(skb); 3206 priv->dev->stats.tx_dropped++; 3207 return NETDEV_TX_OK; 3208 } 3209 3210 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) 3211 { 3212 struct vlan_ethhdr *veth; 3213 __be16 vlan_proto; 3214 u16 vlanid; 3215 3216 veth = (struct vlan_ethhdr *)skb->data; 3217 vlan_proto = veth->h_vlan_proto; 3218 3219 if ((vlan_proto == htons(ETH_P_8021Q) && 3220 dev->features & NETIF_F_HW_VLAN_CTAG_RX) || 3221 (vlan_proto == htons(ETH_P_8021AD) && 3222 dev->features & NETIF_F_HW_VLAN_STAG_RX)) { 3223 /* pop the vlan tag */ 3224 vlanid = ntohs(veth->h_vlan_TCI); 3225 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2); 3226 skb_pull(skb, VLAN_HLEN); 3227 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid); 3228 } 3229 } 3230 3231 3232 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q) 3233 { 3234 if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH) 3235 return 0; 3236 3237 return 1; 3238 } 3239 3240 /** 3241 * stmmac_rx_refill - refill used skb preallocated buffers 3242 * @priv: driver private structure 3243 * @queue: RX queue index 3244 * Description : this is to reallocate the skb for the reception process 3245 * that is based on zero-copy. 3246 */ 3247 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue) 3248 { 3249 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 3250 int dirty = stmmac_rx_dirty(priv, queue); 3251 unsigned int entry = rx_q->dirty_rx; 3252 3253 int bfsize = priv->dma_buf_sz; 3254 3255 while (dirty-- > 0) { 3256 struct dma_desc *p; 3257 3258 if (priv->extend_desc) 3259 p = (struct dma_desc *)(rx_q->dma_erx + entry); 3260 else 3261 p = rx_q->dma_rx + entry; 3262 3263 if (likely(!rx_q->rx_skbuff[entry])) { 3264 struct sk_buff *skb; 3265 3266 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize); 3267 if (unlikely(!skb)) { 3268 /* so for a while no zero-copy! */ 3269 rx_q->rx_zeroc_thresh = STMMAC_RX_THRESH; 3270 if (unlikely(net_ratelimit())) 3271 dev_err(priv->device, 3272 "fail to alloc skb entry %d\n", 3273 entry); 3274 break; 3275 } 3276 3277 rx_q->rx_skbuff[entry] = skb; 3278 rx_q->rx_skbuff_dma[entry] = 3279 dma_map_single(priv->device, skb->data, bfsize, 3280 DMA_FROM_DEVICE); 3281 if (dma_mapping_error(priv->device, 3282 rx_q->rx_skbuff_dma[entry])) { 3283 netdev_err(priv->dev, "Rx DMA map failed\n"); 3284 dev_kfree_skb(skb); 3285 break; 3286 } 3287 3288 stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[entry]); 3289 stmmac_refill_desc3(priv, rx_q, p); 3290 3291 if (rx_q->rx_zeroc_thresh > 0) 3292 rx_q->rx_zeroc_thresh--; 3293 3294 netif_dbg(priv, rx_status, priv->dev, 3295 "refill entry #%d\n", entry); 3296 } 3297 dma_wmb(); 3298 3299 stmmac_set_rx_owner(priv, p, priv->use_riwt); 3300 3301 dma_wmb(); 3302 3303 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE); 3304 } 3305 rx_q->dirty_rx = entry; 3306 } 3307 3308 /** 3309 * stmmac_rx - manage the receive process 3310 * @priv: driver private structure 3311 * @limit: napi bugget 3312 * @queue: RX queue index. 3313 * Description : this the function called by the napi poll method. 3314 * It gets all the frames inside the ring. 3315 */ 3316 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue) 3317 { 3318 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 3319 struct stmmac_channel *ch = &priv->channel[queue]; 3320 unsigned int entry = rx_q->cur_rx; 3321 int coe = priv->hw->rx_csum; 3322 unsigned int next_entry; 3323 unsigned int count = 0; 3324 bool xmac; 3325 3326 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 3327 3328 if (netif_msg_rx_status(priv)) { 3329 void *rx_head; 3330 3331 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 3332 if (priv->extend_desc) 3333 rx_head = (void *)rx_q->dma_erx; 3334 else 3335 rx_head = (void *)rx_q->dma_rx; 3336 3337 stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true); 3338 } 3339 while (count < limit) { 3340 int status; 3341 struct dma_desc *p; 3342 struct dma_desc *np; 3343 3344 if (priv->extend_desc) 3345 p = (struct dma_desc *)(rx_q->dma_erx + entry); 3346 else 3347 p = rx_q->dma_rx + entry; 3348 3349 /* read the status of the incoming frame */ 3350 status = stmmac_rx_status(priv, &priv->dev->stats, 3351 &priv->xstats, p); 3352 /* check if managed by the DMA otherwise go ahead */ 3353 if (unlikely(status & dma_own)) 3354 break; 3355 3356 count++; 3357 3358 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE); 3359 next_entry = rx_q->cur_rx; 3360 3361 if (priv->extend_desc) 3362 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 3363 else 3364 np = rx_q->dma_rx + next_entry; 3365 3366 prefetch(np); 3367 3368 if (priv->extend_desc) 3369 stmmac_rx_extended_status(priv, &priv->dev->stats, 3370 &priv->xstats, rx_q->dma_erx + entry); 3371 if (unlikely(status == discard_frame)) { 3372 priv->dev->stats.rx_errors++; 3373 if (priv->hwts_rx_en && !priv->extend_desc) { 3374 /* DESC2 & DESC3 will be overwritten by device 3375 * with timestamp value, hence reinitialize 3376 * them in stmmac_rx_refill() function so that 3377 * device can reuse it. 3378 */ 3379 dev_kfree_skb_any(rx_q->rx_skbuff[entry]); 3380 rx_q->rx_skbuff[entry] = NULL; 3381 dma_unmap_single(priv->device, 3382 rx_q->rx_skbuff_dma[entry], 3383 priv->dma_buf_sz, 3384 DMA_FROM_DEVICE); 3385 } 3386 } else { 3387 struct sk_buff *skb; 3388 int frame_len; 3389 unsigned int des; 3390 3391 stmmac_get_desc_addr(priv, p, &des); 3392 frame_len = stmmac_get_rx_frame_len(priv, p, coe); 3393 3394 /* If frame length is greater than skb buffer size 3395 * (preallocated during init) then the packet is 3396 * ignored 3397 */ 3398 if (frame_len > priv->dma_buf_sz) { 3399 netdev_err(priv->dev, 3400 "len %d larger than size (%d)\n", 3401 frame_len, priv->dma_buf_sz); 3402 priv->dev->stats.rx_length_errors++; 3403 break; 3404 } 3405 3406 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 3407 * Type frames (LLC/LLC-SNAP) 3408 * 3409 * llc_snap is never checked in GMAC >= 4, so this ACS 3410 * feature is always disabled and packets need to be 3411 * stripped manually. 3412 */ 3413 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) || 3414 unlikely(status != llc_snap)) 3415 frame_len -= ETH_FCS_LEN; 3416 3417 if (netif_msg_rx_status(priv)) { 3418 netdev_dbg(priv->dev, "\tdesc: %p [entry %d] buff=0x%x\n", 3419 p, entry, des); 3420 netdev_dbg(priv->dev, "frame size %d, COE: %d\n", 3421 frame_len, status); 3422 } 3423 3424 /* The zero-copy is always used for all the sizes 3425 * in case of GMAC4 because it needs 3426 * to refill the used descriptors, always. 3427 */ 3428 if (unlikely(!xmac && 3429 ((frame_len < priv->rx_copybreak) || 3430 stmmac_rx_threshold_count(rx_q)))) { 3431 skb = netdev_alloc_skb_ip_align(priv->dev, 3432 frame_len); 3433 if (unlikely(!skb)) { 3434 if (net_ratelimit()) 3435 dev_warn(priv->device, 3436 "packet dropped\n"); 3437 priv->dev->stats.rx_dropped++; 3438 break; 3439 } 3440 3441 dma_sync_single_for_cpu(priv->device, 3442 rx_q->rx_skbuff_dma 3443 [entry], frame_len, 3444 DMA_FROM_DEVICE); 3445 skb_copy_to_linear_data(skb, 3446 rx_q-> 3447 rx_skbuff[entry]->data, 3448 frame_len); 3449 3450 skb_put(skb, frame_len); 3451 dma_sync_single_for_device(priv->device, 3452 rx_q->rx_skbuff_dma 3453 [entry], frame_len, 3454 DMA_FROM_DEVICE); 3455 } else { 3456 skb = rx_q->rx_skbuff[entry]; 3457 if (unlikely(!skb)) { 3458 netdev_err(priv->dev, 3459 "%s: Inconsistent Rx chain\n", 3460 priv->dev->name); 3461 priv->dev->stats.rx_dropped++; 3462 break; 3463 } 3464 prefetch(skb->data - NET_IP_ALIGN); 3465 rx_q->rx_skbuff[entry] = NULL; 3466 rx_q->rx_zeroc_thresh++; 3467 3468 skb_put(skb, frame_len); 3469 dma_unmap_single(priv->device, 3470 rx_q->rx_skbuff_dma[entry], 3471 priv->dma_buf_sz, 3472 DMA_FROM_DEVICE); 3473 } 3474 3475 if (netif_msg_pktdata(priv)) { 3476 netdev_dbg(priv->dev, "frame received (%dbytes)", 3477 frame_len); 3478 print_pkt(skb->data, frame_len); 3479 } 3480 3481 stmmac_get_rx_hwtstamp(priv, p, np, skb); 3482 3483 stmmac_rx_vlan(priv->dev, skb); 3484 3485 skb->protocol = eth_type_trans(skb, priv->dev); 3486 3487 if (unlikely(!coe)) 3488 skb_checksum_none_assert(skb); 3489 else 3490 skb->ip_summed = CHECKSUM_UNNECESSARY; 3491 3492 napi_gro_receive(&ch->napi, skb); 3493 3494 priv->dev->stats.rx_packets++; 3495 priv->dev->stats.rx_bytes += frame_len; 3496 } 3497 entry = next_entry; 3498 } 3499 3500 stmmac_rx_refill(priv, queue); 3501 3502 priv->xstats.rx_pkt_n += count; 3503 3504 return count; 3505 } 3506 3507 /** 3508 * stmmac_poll - stmmac poll method (NAPI) 3509 * @napi : pointer to the napi structure. 3510 * @budget : maximum number of packets that the current CPU can receive from 3511 * all interfaces. 3512 * Description : 3513 * To look at the incoming frames and clear the tx resources. 3514 */ 3515 static int stmmac_napi_poll(struct napi_struct *napi, int budget) 3516 { 3517 struct stmmac_channel *ch = 3518 container_of(napi, struct stmmac_channel, napi); 3519 struct stmmac_priv *priv = ch->priv_data; 3520 int work_done, rx_done = 0, tx_done = 0; 3521 u32 chan = ch->index; 3522 3523 priv->xstats.napi_poll++; 3524 3525 if (ch->has_tx) 3526 tx_done = stmmac_tx_clean(priv, budget, chan); 3527 if (ch->has_rx) 3528 rx_done = stmmac_rx(priv, budget, chan); 3529 3530 work_done = max(rx_done, tx_done); 3531 work_done = min(work_done, budget); 3532 3533 if (work_done < budget && napi_complete_done(napi, work_done)) { 3534 int stat; 3535 3536 stmmac_enable_dma_irq(priv, priv->ioaddr, chan); 3537 stat = stmmac_dma_interrupt_status(priv, priv->ioaddr, 3538 &priv->xstats, chan); 3539 if (stat && napi_reschedule(napi)) 3540 stmmac_disable_dma_irq(priv, priv->ioaddr, chan); 3541 } 3542 3543 return work_done; 3544 } 3545 3546 /** 3547 * stmmac_tx_timeout 3548 * @dev : Pointer to net device structure 3549 * Description: this function is called when a packet transmission fails to 3550 * complete within a reasonable time. The driver will mark the error in the 3551 * netdev structure and arrange for the device to be reset to a sane state 3552 * in order to transmit a new packet. 3553 */ 3554 static void stmmac_tx_timeout(struct net_device *dev) 3555 { 3556 struct stmmac_priv *priv = netdev_priv(dev); 3557 3558 stmmac_global_err(priv); 3559 } 3560 3561 /** 3562 * stmmac_set_rx_mode - entry point for multicast addressing 3563 * @dev : pointer to the device structure 3564 * Description: 3565 * This function is a driver entry point which gets called by the kernel 3566 * whenever multicast addresses must be enabled/disabled. 3567 * Return value: 3568 * void. 3569 */ 3570 static void stmmac_set_rx_mode(struct net_device *dev) 3571 { 3572 struct stmmac_priv *priv = netdev_priv(dev); 3573 3574 stmmac_set_filter(priv, priv->hw, dev); 3575 } 3576 3577 /** 3578 * stmmac_change_mtu - entry point to change MTU size for the device. 3579 * @dev : device pointer. 3580 * @new_mtu : the new MTU size for the device. 3581 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 3582 * to drive packet transmission. Ethernet has an MTU of 1500 octets 3583 * (ETH_DATA_LEN). This value can be changed with ifconfig. 3584 * Return value: 3585 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3586 * file on failure. 3587 */ 3588 static int stmmac_change_mtu(struct net_device *dev, int new_mtu) 3589 { 3590 struct stmmac_priv *priv = netdev_priv(dev); 3591 3592 if (netif_running(dev)) { 3593 netdev_err(priv->dev, "must be stopped to change its MTU\n"); 3594 return -EBUSY; 3595 } 3596 3597 dev->mtu = new_mtu; 3598 3599 netdev_update_features(dev); 3600 3601 return 0; 3602 } 3603 3604 static netdev_features_t stmmac_fix_features(struct net_device *dev, 3605 netdev_features_t features) 3606 { 3607 struct stmmac_priv *priv = netdev_priv(dev); 3608 3609 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) 3610 features &= ~NETIF_F_RXCSUM; 3611 3612 if (!priv->plat->tx_coe) 3613 features &= ~NETIF_F_CSUM_MASK; 3614 3615 /* Some GMAC devices have a bugged Jumbo frame support that 3616 * needs to have the Tx COE disabled for oversized frames 3617 * (due to limited buffer sizes). In this case we disable 3618 * the TX csum insertion in the TDES and not use SF. 3619 */ 3620 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) 3621 features &= ~NETIF_F_CSUM_MASK; 3622 3623 /* Disable tso if asked by ethtool */ 3624 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 3625 if (features & NETIF_F_TSO) 3626 priv->tso = true; 3627 else 3628 priv->tso = false; 3629 } 3630 3631 return features; 3632 } 3633 3634 static int stmmac_set_features(struct net_device *netdev, 3635 netdev_features_t features) 3636 { 3637 struct stmmac_priv *priv = netdev_priv(netdev); 3638 3639 /* Keep the COE Type in case of csum is supporting */ 3640 if (features & NETIF_F_RXCSUM) 3641 priv->hw->rx_csum = priv->plat->rx_coe; 3642 else 3643 priv->hw->rx_csum = 0; 3644 /* No check needed because rx_coe has been set before and it will be 3645 * fixed in case of issue. 3646 */ 3647 stmmac_rx_ipc(priv, priv->hw); 3648 3649 return 0; 3650 } 3651 3652 /** 3653 * stmmac_interrupt - main ISR 3654 * @irq: interrupt number. 3655 * @dev_id: to pass the net device pointer. 3656 * Description: this is the main driver interrupt service routine. 3657 * It can call: 3658 * o DMA service routine (to manage incoming frame reception and transmission 3659 * status) 3660 * o Core interrupts to manage: remote wake-up, management counter, LPI 3661 * interrupts. 3662 */ 3663 static irqreturn_t stmmac_interrupt(int irq, void *dev_id) 3664 { 3665 struct net_device *dev = (struct net_device *)dev_id; 3666 struct stmmac_priv *priv = netdev_priv(dev); 3667 u32 rx_cnt = priv->plat->rx_queues_to_use; 3668 u32 tx_cnt = priv->plat->tx_queues_to_use; 3669 u32 queues_count; 3670 u32 queue; 3671 bool xmac; 3672 3673 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 3674 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt; 3675 3676 if (priv->irq_wake) 3677 pm_wakeup_event(priv->device, 0); 3678 3679 if (unlikely(!dev)) { 3680 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 3681 return IRQ_NONE; 3682 } 3683 3684 /* Check if adapter is up */ 3685 if (test_bit(STMMAC_DOWN, &priv->state)) 3686 return IRQ_HANDLED; 3687 /* Check if a fatal error happened */ 3688 if (stmmac_safety_feat_interrupt(priv)) 3689 return IRQ_HANDLED; 3690 3691 /* To handle GMAC own interrupts */ 3692 if ((priv->plat->has_gmac) || xmac) { 3693 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats); 3694 int mtl_status; 3695 3696 if (unlikely(status)) { 3697 /* For LPI we need to save the tx status */ 3698 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) 3699 priv->tx_path_in_lpi_mode = true; 3700 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) 3701 priv->tx_path_in_lpi_mode = false; 3702 } 3703 3704 for (queue = 0; queue < queues_count; queue++) { 3705 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 3706 3707 mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw, 3708 queue); 3709 if (mtl_status != -EINVAL) 3710 status |= mtl_status; 3711 3712 if (status & CORE_IRQ_MTL_RX_OVERFLOW) 3713 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 3714 rx_q->rx_tail_addr, 3715 queue); 3716 } 3717 3718 /* PCS link status */ 3719 if (priv->hw->pcs) { 3720 if (priv->xstats.pcs_link) 3721 netif_carrier_on(dev); 3722 else 3723 netif_carrier_off(dev); 3724 } 3725 } 3726 3727 /* To handle DMA interrupts */ 3728 stmmac_dma_interrupt(priv); 3729 3730 return IRQ_HANDLED; 3731 } 3732 3733 #ifdef CONFIG_NET_POLL_CONTROLLER 3734 /* Polling receive - used by NETCONSOLE and other diagnostic tools 3735 * to allow network I/O with interrupts disabled. 3736 */ 3737 static void stmmac_poll_controller(struct net_device *dev) 3738 { 3739 disable_irq(dev->irq); 3740 stmmac_interrupt(dev->irq, dev); 3741 enable_irq(dev->irq); 3742 } 3743 #endif 3744 3745 /** 3746 * stmmac_ioctl - Entry point for the Ioctl 3747 * @dev: Device pointer. 3748 * @rq: An IOCTL specefic structure, that can contain a pointer to 3749 * a proprietary structure used to pass information to the driver. 3750 * @cmd: IOCTL command 3751 * Description: 3752 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 3753 */ 3754 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 3755 { 3756 int ret = -EOPNOTSUPP; 3757 3758 if (!netif_running(dev)) 3759 return -EINVAL; 3760 3761 switch (cmd) { 3762 case SIOCGMIIPHY: 3763 case SIOCGMIIREG: 3764 case SIOCSMIIREG: 3765 if (!dev->phydev) 3766 return -EINVAL; 3767 ret = phy_mii_ioctl(dev->phydev, rq, cmd); 3768 break; 3769 case SIOCSHWTSTAMP: 3770 ret = stmmac_hwtstamp_ioctl(dev, rq); 3771 break; 3772 default: 3773 break; 3774 } 3775 3776 return ret; 3777 } 3778 3779 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 3780 void *cb_priv) 3781 { 3782 struct stmmac_priv *priv = cb_priv; 3783 int ret = -EOPNOTSUPP; 3784 3785 stmmac_disable_all_queues(priv); 3786 3787 switch (type) { 3788 case TC_SETUP_CLSU32: 3789 if (tc_cls_can_offload_and_chain0(priv->dev, type_data)) 3790 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data); 3791 break; 3792 default: 3793 break; 3794 } 3795 3796 stmmac_enable_all_queues(priv); 3797 return ret; 3798 } 3799 3800 static int stmmac_setup_tc_block(struct stmmac_priv *priv, 3801 struct tc_block_offload *f) 3802 { 3803 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 3804 return -EOPNOTSUPP; 3805 3806 switch (f->command) { 3807 case TC_BLOCK_BIND: 3808 return tcf_block_cb_register(f->block, stmmac_setup_tc_block_cb, 3809 priv, priv, f->extack); 3810 case TC_BLOCK_UNBIND: 3811 tcf_block_cb_unregister(f->block, stmmac_setup_tc_block_cb, priv); 3812 return 0; 3813 default: 3814 return -EOPNOTSUPP; 3815 } 3816 } 3817 3818 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type, 3819 void *type_data) 3820 { 3821 struct stmmac_priv *priv = netdev_priv(ndev); 3822 3823 switch (type) { 3824 case TC_SETUP_BLOCK: 3825 return stmmac_setup_tc_block(priv, type_data); 3826 case TC_SETUP_QDISC_CBS: 3827 return stmmac_tc_setup_cbs(priv, priv, type_data); 3828 default: 3829 return -EOPNOTSUPP; 3830 } 3831 } 3832 3833 static int stmmac_set_mac_address(struct net_device *ndev, void *addr) 3834 { 3835 struct stmmac_priv *priv = netdev_priv(ndev); 3836 int ret = 0; 3837 3838 ret = eth_mac_addr(ndev, addr); 3839 if (ret) 3840 return ret; 3841 3842 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0); 3843 3844 return ret; 3845 } 3846 3847 #ifdef CONFIG_DEBUG_FS 3848 static struct dentry *stmmac_fs_dir; 3849 3850 static void sysfs_display_ring(void *head, int size, int extend_desc, 3851 struct seq_file *seq) 3852 { 3853 int i; 3854 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 3855 struct dma_desc *p = (struct dma_desc *)head; 3856 3857 for (i = 0; i < size; i++) { 3858 if (extend_desc) { 3859 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 3860 i, (unsigned int)virt_to_phys(ep), 3861 le32_to_cpu(ep->basic.des0), 3862 le32_to_cpu(ep->basic.des1), 3863 le32_to_cpu(ep->basic.des2), 3864 le32_to_cpu(ep->basic.des3)); 3865 ep++; 3866 } else { 3867 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 3868 i, (unsigned int)virt_to_phys(p), 3869 le32_to_cpu(p->des0), le32_to_cpu(p->des1), 3870 le32_to_cpu(p->des2), le32_to_cpu(p->des3)); 3871 p++; 3872 } 3873 seq_printf(seq, "\n"); 3874 } 3875 } 3876 3877 static int stmmac_rings_status_show(struct seq_file *seq, void *v) 3878 { 3879 struct net_device *dev = seq->private; 3880 struct stmmac_priv *priv = netdev_priv(dev); 3881 u32 rx_count = priv->plat->rx_queues_to_use; 3882 u32 tx_count = priv->plat->tx_queues_to_use; 3883 u32 queue; 3884 3885 if ((dev->flags & IFF_UP) == 0) 3886 return 0; 3887 3888 for (queue = 0; queue < rx_count; queue++) { 3889 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 3890 3891 seq_printf(seq, "RX Queue %d:\n", queue); 3892 3893 if (priv->extend_desc) { 3894 seq_printf(seq, "Extended descriptor ring:\n"); 3895 sysfs_display_ring((void *)rx_q->dma_erx, 3896 DMA_RX_SIZE, 1, seq); 3897 } else { 3898 seq_printf(seq, "Descriptor ring:\n"); 3899 sysfs_display_ring((void *)rx_q->dma_rx, 3900 DMA_RX_SIZE, 0, seq); 3901 } 3902 } 3903 3904 for (queue = 0; queue < tx_count; queue++) { 3905 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 3906 3907 seq_printf(seq, "TX Queue %d:\n", queue); 3908 3909 if (priv->extend_desc) { 3910 seq_printf(seq, "Extended descriptor ring:\n"); 3911 sysfs_display_ring((void *)tx_q->dma_etx, 3912 DMA_TX_SIZE, 1, seq); 3913 } else { 3914 seq_printf(seq, "Descriptor ring:\n"); 3915 sysfs_display_ring((void *)tx_q->dma_tx, 3916 DMA_TX_SIZE, 0, seq); 3917 } 3918 } 3919 3920 return 0; 3921 } 3922 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status); 3923 3924 static int stmmac_dma_cap_show(struct seq_file *seq, void *v) 3925 { 3926 struct net_device *dev = seq->private; 3927 struct stmmac_priv *priv = netdev_priv(dev); 3928 3929 if (!priv->hw_cap_support) { 3930 seq_printf(seq, "DMA HW features not supported\n"); 3931 return 0; 3932 } 3933 3934 seq_printf(seq, "==============================\n"); 3935 seq_printf(seq, "\tDMA HW features\n"); 3936 seq_printf(seq, "==============================\n"); 3937 3938 seq_printf(seq, "\t10/100 Mbps: %s\n", 3939 (priv->dma_cap.mbps_10_100) ? "Y" : "N"); 3940 seq_printf(seq, "\t1000 Mbps: %s\n", 3941 (priv->dma_cap.mbps_1000) ? "Y" : "N"); 3942 seq_printf(seq, "\tHalf duplex: %s\n", 3943 (priv->dma_cap.half_duplex) ? "Y" : "N"); 3944 seq_printf(seq, "\tHash Filter: %s\n", 3945 (priv->dma_cap.hash_filter) ? "Y" : "N"); 3946 seq_printf(seq, "\tMultiple MAC address registers: %s\n", 3947 (priv->dma_cap.multi_addr) ? "Y" : "N"); 3948 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n", 3949 (priv->dma_cap.pcs) ? "Y" : "N"); 3950 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", 3951 (priv->dma_cap.sma_mdio) ? "Y" : "N"); 3952 seq_printf(seq, "\tPMT Remote wake up: %s\n", 3953 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); 3954 seq_printf(seq, "\tPMT Magic Frame: %s\n", 3955 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); 3956 seq_printf(seq, "\tRMON module: %s\n", 3957 (priv->dma_cap.rmon) ? "Y" : "N"); 3958 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", 3959 (priv->dma_cap.time_stamp) ? "Y" : "N"); 3960 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n", 3961 (priv->dma_cap.atime_stamp) ? "Y" : "N"); 3962 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n", 3963 (priv->dma_cap.eee) ? "Y" : "N"); 3964 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); 3965 seq_printf(seq, "\tChecksum Offload in TX: %s\n", 3966 (priv->dma_cap.tx_coe) ? "Y" : "N"); 3967 if (priv->synopsys_id >= DWMAC_CORE_4_00) { 3968 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n", 3969 (priv->dma_cap.rx_coe) ? "Y" : "N"); 3970 } else { 3971 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", 3972 (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); 3973 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", 3974 (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); 3975 } 3976 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", 3977 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); 3978 seq_printf(seq, "\tNumber of Additional RX channel: %d\n", 3979 priv->dma_cap.number_rx_channel); 3980 seq_printf(seq, "\tNumber of Additional TX channel: %d\n", 3981 priv->dma_cap.number_tx_channel); 3982 seq_printf(seq, "\tEnhanced descriptors: %s\n", 3983 (priv->dma_cap.enh_desc) ? "Y" : "N"); 3984 3985 return 0; 3986 } 3987 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap); 3988 3989 static int stmmac_init_fs(struct net_device *dev) 3990 { 3991 struct stmmac_priv *priv = netdev_priv(dev); 3992 3993 /* Create per netdev entries */ 3994 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir); 3995 3996 if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) { 3997 netdev_err(priv->dev, "ERROR failed to create debugfs directory\n"); 3998 3999 return -ENOMEM; 4000 } 4001 4002 /* Entry to report DMA RX/TX rings */ 4003 priv->dbgfs_rings_status = 4004 debugfs_create_file("descriptors_status", 0444, 4005 priv->dbgfs_dir, dev, 4006 &stmmac_rings_status_fops); 4007 4008 if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) { 4009 netdev_err(priv->dev, "ERROR creating stmmac ring debugfs file\n"); 4010 debugfs_remove_recursive(priv->dbgfs_dir); 4011 4012 return -ENOMEM; 4013 } 4014 4015 /* Entry to report the DMA HW features */ 4016 priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", 0444, 4017 priv->dbgfs_dir, 4018 dev, &stmmac_dma_cap_fops); 4019 4020 if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) { 4021 netdev_err(priv->dev, "ERROR creating stmmac MMC debugfs file\n"); 4022 debugfs_remove_recursive(priv->dbgfs_dir); 4023 4024 return -ENOMEM; 4025 } 4026 4027 return 0; 4028 } 4029 4030 static void stmmac_exit_fs(struct net_device *dev) 4031 { 4032 struct stmmac_priv *priv = netdev_priv(dev); 4033 4034 debugfs_remove_recursive(priv->dbgfs_dir); 4035 } 4036 #endif /* CONFIG_DEBUG_FS */ 4037 4038 static const struct net_device_ops stmmac_netdev_ops = { 4039 .ndo_open = stmmac_open, 4040 .ndo_start_xmit = stmmac_xmit, 4041 .ndo_stop = stmmac_release, 4042 .ndo_change_mtu = stmmac_change_mtu, 4043 .ndo_fix_features = stmmac_fix_features, 4044 .ndo_set_features = stmmac_set_features, 4045 .ndo_set_rx_mode = stmmac_set_rx_mode, 4046 .ndo_tx_timeout = stmmac_tx_timeout, 4047 .ndo_do_ioctl = stmmac_ioctl, 4048 .ndo_setup_tc = stmmac_setup_tc, 4049 #ifdef CONFIG_NET_POLL_CONTROLLER 4050 .ndo_poll_controller = stmmac_poll_controller, 4051 #endif 4052 .ndo_set_mac_address = stmmac_set_mac_address, 4053 }; 4054 4055 static void stmmac_reset_subtask(struct stmmac_priv *priv) 4056 { 4057 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state)) 4058 return; 4059 if (test_bit(STMMAC_DOWN, &priv->state)) 4060 return; 4061 4062 netdev_err(priv->dev, "Reset adapter.\n"); 4063 4064 rtnl_lock(); 4065 netif_trans_update(priv->dev); 4066 while (test_and_set_bit(STMMAC_RESETING, &priv->state)) 4067 usleep_range(1000, 2000); 4068 4069 set_bit(STMMAC_DOWN, &priv->state); 4070 dev_close(priv->dev); 4071 dev_open(priv->dev, NULL); 4072 clear_bit(STMMAC_DOWN, &priv->state); 4073 clear_bit(STMMAC_RESETING, &priv->state); 4074 rtnl_unlock(); 4075 } 4076 4077 static void stmmac_service_task(struct work_struct *work) 4078 { 4079 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 4080 service_task); 4081 4082 stmmac_reset_subtask(priv); 4083 clear_bit(STMMAC_SERVICE_SCHED, &priv->state); 4084 } 4085 4086 /** 4087 * stmmac_hw_init - Init the MAC device 4088 * @priv: driver private structure 4089 * Description: this function is to configure the MAC device according to 4090 * some platform parameters or the HW capability register. It prepares the 4091 * driver to use either ring or chain modes and to setup either enhanced or 4092 * normal descriptors. 4093 */ 4094 static int stmmac_hw_init(struct stmmac_priv *priv) 4095 { 4096 int ret; 4097 4098 /* dwmac-sun8i only work in chain mode */ 4099 if (priv->plat->has_sun8i) 4100 chain_mode = 1; 4101 priv->chain_mode = chain_mode; 4102 4103 /* Initialize HW Interface */ 4104 ret = stmmac_hwif_init(priv); 4105 if (ret) 4106 return ret; 4107 4108 /* Get the HW capability (new GMAC newer than 3.50a) */ 4109 priv->hw_cap_support = stmmac_get_hw_features(priv); 4110 if (priv->hw_cap_support) { 4111 dev_info(priv->device, "DMA HW capability register supported\n"); 4112 4113 /* We can override some gmac/dma configuration fields: e.g. 4114 * enh_desc, tx_coe (e.g. that are passed through the 4115 * platform) with the values from the HW capability 4116 * register (if supported). 4117 */ 4118 priv->plat->enh_desc = priv->dma_cap.enh_desc; 4119 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up; 4120 priv->hw->pmt = priv->plat->pmt; 4121 4122 /* TXCOE doesn't work in thresh DMA mode */ 4123 if (priv->plat->force_thresh_dma_mode) 4124 priv->plat->tx_coe = 0; 4125 else 4126 priv->plat->tx_coe = priv->dma_cap.tx_coe; 4127 4128 /* In case of GMAC4 rx_coe is from HW cap register. */ 4129 priv->plat->rx_coe = priv->dma_cap.rx_coe; 4130 4131 if (priv->dma_cap.rx_coe_type2) 4132 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; 4133 else if (priv->dma_cap.rx_coe_type1) 4134 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; 4135 4136 } else { 4137 dev_info(priv->device, "No HW DMA feature register supported\n"); 4138 } 4139 4140 if (priv->plat->rx_coe) { 4141 priv->hw->rx_csum = priv->plat->rx_coe; 4142 dev_info(priv->device, "RX Checksum Offload Engine supported\n"); 4143 if (priv->synopsys_id < DWMAC_CORE_4_00) 4144 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum); 4145 } 4146 if (priv->plat->tx_coe) 4147 dev_info(priv->device, "TX Checksum insertion supported\n"); 4148 4149 if (priv->plat->pmt) { 4150 dev_info(priv->device, "Wake-Up On Lan supported\n"); 4151 device_set_wakeup_capable(priv->device, 1); 4152 } 4153 4154 if (priv->dma_cap.tsoen) 4155 dev_info(priv->device, "TSO supported\n"); 4156 4157 /* Run HW quirks, if any */ 4158 if (priv->hwif_quirks) { 4159 ret = priv->hwif_quirks(priv); 4160 if (ret) 4161 return ret; 4162 } 4163 4164 /* Rx Watchdog is available in the COREs newer than the 3.40. 4165 * In some case, for example on bugged HW this feature 4166 * has to be disable and this can be done by passing the 4167 * riwt_off field from the platform. 4168 */ 4169 if (((priv->synopsys_id >= DWMAC_CORE_3_50) || 4170 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) { 4171 priv->use_riwt = 1; 4172 dev_info(priv->device, 4173 "Enable RX Mitigation via HW Watchdog Timer\n"); 4174 } 4175 4176 return 0; 4177 } 4178 4179 /** 4180 * stmmac_dvr_probe 4181 * @device: device pointer 4182 * @plat_dat: platform data pointer 4183 * @res: stmmac resource pointer 4184 * Description: this is the main probe function used to 4185 * call the alloc_etherdev, allocate the priv structure. 4186 * Return: 4187 * returns 0 on success, otherwise errno. 4188 */ 4189 int stmmac_dvr_probe(struct device *device, 4190 struct plat_stmmacenet_data *plat_dat, 4191 struct stmmac_resources *res) 4192 { 4193 struct net_device *ndev = NULL; 4194 struct stmmac_priv *priv; 4195 u32 queue, maxq; 4196 int ret = 0; 4197 4198 ndev = alloc_etherdev_mqs(sizeof(struct stmmac_priv), 4199 MTL_MAX_TX_QUEUES, 4200 MTL_MAX_RX_QUEUES); 4201 if (!ndev) 4202 return -ENOMEM; 4203 4204 SET_NETDEV_DEV(ndev, device); 4205 4206 priv = netdev_priv(ndev); 4207 priv->device = device; 4208 priv->dev = ndev; 4209 4210 stmmac_set_ethtool_ops(ndev); 4211 priv->pause = pause; 4212 priv->plat = plat_dat; 4213 priv->ioaddr = res->addr; 4214 priv->dev->base_addr = (unsigned long)res->addr; 4215 4216 priv->dev->irq = res->irq; 4217 priv->wol_irq = res->wol_irq; 4218 priv->lpi_irq = res->lpi_irq; 4219 4220 if (res->mac) 4221 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN); 4222 4223 dev_set_drvdata(device, priv->dev); 4224 4225 /* Verify driver arguments */ 4226 stmmac_verify_args(); 4227 4228 /* Allocate workqueue */ 4229 priv->wq = create_singlethread_workqueue("stmmac_wq"); 4230 if (!priv->wq) { 4231 dev_err(priv->device, "failed to create workqueue\n"); 4232 ret = -ENOMEM; 4233 goto error_wq; 4234 } 4235 4236 INIT_WORK(&priv->service_task, stmmac_service_task); 4237 4238 /* Override with kernel parameters if supplied XXX CRS XXX 4239 * this needs to have multiple instances 4240 */ 4241 if ((phyaddr >= 0) && (phyaddr <= 31)) 4242 priv->plat->phy_addr = phyaddr; 4243 4244 if (priv->plat->stmmac_rst) { 4245 ret = reset_control_assert(priv->plat->stmmac_rst); 4246 reset_control_deassert(priv->plat->stmmac_rst); 4247 /* Some reset controllers have only reset callback instead of 4248 * assert + deassert callbacks pair. 4249 */ 4250 if (ret == -ENOTSUPP) 4251 reset_control_reset(priv->plat->stmmac_rst); 4252 } 4253 4254 /* Init MAC and get the capabilities */ 4255 ret = stmmac_hw_init(priv); 4256 if (ret) 4257 goto error_hw_init; 4258 4259 /* Configure real RX and TX queues */ 4260 netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use); 4261 netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use); 4262 4263 ndev->netdev_ops = &stmmac_netdev_ops; 4264 4265 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 4266 NETIF_F_RXCSUM; 4267 4268 ret = stmmac_tc_init(priv, priv); 4269 if (!ret) { 4270 ndev->hw_features |= NETIF_F_HW_TC; 4271 } 4272 4273 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 4274 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 4275 priv->tso = true; 4276 dev_info(priv->device, "TSO feature enabled\n"); 4277 } 4278 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 4279 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 4280 #ifdef STMMAC_VLAN_TAG_USED 4281 /* Both mac100 and gmac support receive VLAN tag detection */ 4282 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX; 4283 #endif 4284 priv->msg_enable = netif_msg_init(debug, default_msg_level); 4285 4286 /* MTU range: 46 - hw-specific max */ 4287 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 4288 if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00)) 4289 ndev->max_mtu = JUMBO_LEN; 4290 else if (priv->plat->has_xgmac) 4291 ndev->max_mtu = XGMAC_JUMBO_LEN; 4292 else 4293 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); 4294 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu 4295 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range. 4296 */ 4297 if ((priv->plat->maxmtu < ndev->max_mtu) && 4298 (priv->plat->maxmtu >= ndev->min_mtu)) 4299 ndev->max_mtu = priv->plat->maxmtu; 4300 else if (priv->plat->maxmtu < ndev->min_mtu) 4301 dev_warn(priv->device, 4302 "%s: warning: maxmtu having invalid value (%d)\n", 4303 __func__, priv->plat->maxmtu); 4304 4305 if (flow_ctrl) 4306 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ 4307 4308 /* Setup channels NAPI */ 4309 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 4310 4311 for (queue = 0; queue < maxq; queue++) { 4312 struct stmmac_channel *ch = &priv->channel[queue]; 4313 4314 ch->priv_data = priv; 4315 ch->index = queue; 4316 4317 if (queue < priv->plat->rx_queues_to_use) 4318 ch->has_rx = true; 4319 if (queue < priv->plat->tx_queues_to_use) 4320 ch->has_tx = true; 4321 4322 netif_napi_add(ndev, &ch->napi, stmmac_napi_poll, 4323 NAPI_POLL_WEIGHT); 4324 } 4325 4326 mutex_init(&priv->lock); 4327 4328 /* If a specific clk_csr value is passed from the platform 4329 * this means that the CSR Clock Range selection cannot be 4330 * changed at run-time and it is fixed. Viceversa the driver'll try to 4331 * set the MDC clock dynamically according to the csr actual 4332 * clock input. 4333 */ 4334 if (!priv->plat->clk_csr) 4335 stmmac_clk_csr_set(priv); 4336 else 4337 priv->clk_csr = priv->plat->clk_csr; 4338 4339 stmmac_check_pcs_mode(priv); 4340 4341 if (priv->hw->pcs != STMMAC_PCS_RGMII && 4342 priv->hw->pcs != STMMAC_PCS_TBI && 4343 priv->hw->pcs != STMMAC_PCS_RTBI) { 4344 /* MDIO bus Registration */ 4345 ret = stmmac_mdio_register(ndev); 4346 if (ret < 0) { 4347 dev_err(priv->device, 4348 "%s: MDIO bus (id: %d) registration failed", 4349 __func__, priv->plat->bus_id); 4350 goto error_mdio_register; 4351 } 4352 } 4353 4354 ret = register_netdev(ndev); 4355 if (ret) { 4356 dev_err(priv->device, "%s: ERROR %i registering the device\n", 4357 __func__, ret); 4358 goto error_netdev_register; 4359 } 4360 4361 #ifdef CONFIG_DEBUG_FS 4362 ret = stmmac_init_fs(ndev); 4363 if (ret < 0) 4364 netdev_warn(priv->dev, "%s: failed debugFS registration\n", 4365 __func__); 4366 #endif 4367 4368 return ret; 4369 4370 error_netdev_register: 4371 if (priv->hw->pcs != STMMAC_PCS_RGMII && 4372 priv->hw->pcs != STMMAC_PCS_TBI && 4373 priv->hw->pcs != STMMAC_PCS_RTBI) 4374 stmmac_mdio_unregister(ndev); 4375 error_mdio_register: 4376 for (queue = 0; queue < maxq; queue++) { 4377 struct stmmac_channel *ch = &priv->channel[queue]; 4378 4379 netif_napi_del(&ch->napi); 4380 } 4381 error_hw_init: 4382 destroy_workqueue(priv->wq); 4383 error_wq: 4384 free_netdev(ndev); 4385 4386 return ret; 4387 } 4388 EXPORT_SYMBOL_GPL(stmmac_dvr_probe); 4389 4390 /** 4391 * stmmac_dvr_remove 4392 * @dev: device pointer 4393 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 4394 * changes the link status, releases the DMA descriptor rings. 4395 */ 4396 int stmmac_dvr_remove(struct device *dev) 4397 { 4398 struct net_device *ndev = dev_get_drvdata(dev); 4399 struct stmmac_priv *priv = netdev_priv(ndev); 4400 4401 netdev_info(priv->dev, "%s: removing driver", __func__); 4402 4403 #ifdef CONFIG_DEBUG_FS 4404 stmmac_exit_fs(ndev); 4405 #endif 4406 stmmac_stop_all_dma(priv); 4407 4408 stmmac_mac_set(priv, priv->ioaddr, false); 4409 netif_carrier_off(ndev); 4410 unregister_netdev(ndev); 4411 if (priv->plat->stmmac_rst) 4412 reset_control_assert(priv->plat->stmmac_rst); 4413 clk_disable_unprepare(priv->plat->pclk); 4414 clk_disable_unprepare(priv->plat->stmmac_clk); 4415 if (priv->hw->pcs != STMMAC_PCS_RGMII && 4416 priv->hw->pcs != STMMAC_PCS_TBI && 4417 priv->hw->pcs != STMMAC_PCS_RTBI) 4418 stmmac_mdio_unregister(ndev); 4419 destroy_workqueue(priv->wq); 4420 mutex_destroy(&priv->lock); 4421 free_netdev(ndev); 4422 4423 return 0; 4424 } 4425 EXPORT_SYMBOL_GPL(stmmac_dvr_remove); 4426 4427 /** 4428 * stmmac_suspend - suspend callback 4429 * @dev: device pointer 4430 * Description: this is the function to suspend the device and it is called 4431 * by the platform driver to stop the network queue, release the resources, 4432 * program the PMT register (for WoL), clean and release driver resources. 4433 */ 4434 int stmmac_suspend(struct device *dev) 4435 { 4436 struct net_device *ndev = dev_get_drvdata(dev); 4437 struct stmmac_priv *priv = netdev_priv(ndev); 4438 4439 if (!ndev || !netif_running(ndev)) 4440 return 0; 4441 4442 if (ndev->phydev) 4443 phy_stop(ndev->phydev); 4444 4445 mutex_lock(&priv->lock); 4446 4447 netif_device_detach(ndev); 4448 stmmac_stop_all_queues(priv); 4449 4450 stmmac_disable_all_queues(priv); 4451 4452 /* Stop TX/RX DMA */ 4453 stmmac_stop_all_dma(priv); 4454 4455 /* Enable Power down mode by programming the PMT regs */ 4456 if (device_may_wakeup(priv->device)) { 4457 stmmac_pmt(priv, priv->hw, priv->wolopts); 4458 priv->irq_wake = 1; 4459 } else { 4460 stmmac_mac_set(priv, priv->ioaddr, false); 4461 pinctrl_pm_select_sleep_state(priv->device); 4462 /* Disable clock in case of PWM is off */ 4463 clk_disable(priv->plat->pclk); 4464 clk_disable(priv->plat->stmmac_clk); 4465 } 4466 mutex_unlock(&priv->lock); 4467 4468 priv->oldlink = false; 4469 priv->speed = SPEED_UNKNOWN; 4470 priv->oldduplex = DUPLEX_UNKNOWN; 4471 return 0; 4472 } 4473 EXPORT_SYMBOL_GPL(stmmac_suspend); 4474 4475 /** 4476 * stmmac_reset_queues_param - reset queue parameters 4477 * @dev: device pointer 4478 */ 4479 static void stmmac_reset_queues_param(struct stmmac_priv *priv) 4480 { 4481 u32 rx_cnt = priv->plat->rx_queues_to_use; 4482 u32 tx_cnt = priv->plat->tx_queues_to_use; 4483 u32 queue; 4484 4485 for (queue = 0; queue < rx_cnt; queue++) { 4486 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4487 4488 rx_q->cur_rx = 0; 4489 rx_q->dirty_rx = 0; 4490 } 4491 4492 for (queue = 0; queue < tx_cnt; queue++) { 4493 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 4494 4495 tx_q->cur_tx = 0; 4496 tx_q->dirty_tx = 0; 4497 tx_q->mss = 0; 4498 } 4499 } 4500 4501 /** 4502 * stmmac_resume - resume callback 4503 * @dev: device pointer 4504 * Description: when resume this function is invoked to setup the DMA and CORE 4505 * in a usable state. 4506 */ 4507 int stmmac_resume(struct device *dev) 4508 { 4509 struct net_device *ndev = dev_get_drvdata(dev); 4510 struct stmmac_priv *priv = netdev_priv(ndev); 4511 4512 if (!netif_running(ndev)) 4513 return 0; 4514 4515 /* Power Down bit, into the PM register, is cleared 4516 * automatically as soon as a magic packet or a Wake-up frame 4517 * is received. Anyway, it's better to manually clear 4518 * this bit because it can generate problems while resuming 4519 * from another devices (e.g. serial console). 4520 */ 4521 if (device_may_wakeup(priv->device)) { 4522 mutex_lock(&priv->lock); 4523 stmmac_pmt(priv, priv->hw, 0); 4524 mutex_unlock(&priv->lock); 4525 priv->irq_wake = 0; 4526 } else { 4527 pinctrl_pm_select_default_state(priv->device); 4528 /* enable the clk previously disabled */ 4529 clk_enable(priv->plat->stmmac_clk); 4530 clk_enable(priv->plat->pclk); 4531 /* reset the phy so that it's ready */ 4532 if (priv->mii) 4533 stmmac_mdio_reset(priv->mii); 4534 } 4535 4536 netif_device_attach(ndev); 4537 4538 mutex_lock(&priv->lock); 4539 4540 stmmac_reset_queues_param(priv); 4541 4542 stmmac_clear_descriptors(priv); 4543 4544 stmmac_hw_setup(ndev, false); 4545 stmmac_init_tx_coalesce(priv); 4546 stmmac_set_rx_mode(ndev); 4547 4548 stmmac_enable_all_queues(priv); 4549 4550 stmmac_start_all_queues(priv); 4551 4552 mutex_unlock(&priv->lock); 4553 4554 if (ndev->phydev) 4555 phy_start(ndev->phydev); 4556 4557 return 0; 4558 } 4559 EXPORT_SYMBOL_GPL(stmmac_resume); 4560 4561 #ifndef MODULE 4562 static int __init stmmac_cmdline_opt(char *str) 4563 { 4564 char *opt; 4565 4566 if (!str || !*str) 4567 return -EINVAL; 4568 while ((opt = strsep(&str, ",")) != NULL) { 4569 if (!strncmp(opt, "debug:", 6)) { 4570 if (kstrtoint(opt + 6, 0, &debug)) 4571 goto err; 4572 } else if (!strncmp(opt, "phyaddr:", 8)) { 4573 if (kstrtoint(opt + 8, 0, &phyaddr)) 4574 goto err; 4575 } else if (!strncmp(opt, "buf_sz:", 7)) { 4576 if (kstrtoint(opt + 7, 0, &buf_sz)) 4577 goto err; 4578 } else if (!strncmp(opt, "tc:", 3)) { 4579 if (kstrtoint(opt + 3, 0, &tc)) 4580 goto err; 4581 } else if (!strncmp(opt, "watchdog:", 9)) { 4582 if (kstrtoint(opt + 9, 0, &watchdog)) 4583 goto err; 4584 } else if (!strncmp(opt, "flow_ctrl:", 10)) { 4585 if (kstrtoint(opt + 10, 0, &flow_ctrl)) 4586 goto err; 4587 } else if (!strncmp(opt, "pause:", 6)) { 4588 if (kstrtoint(opt + 6, 0, &pause)) 4589 goto err; 4590 } else if (!strncmp(opt, "eee_timer:", 10)) { 4591 if (kstrtoint(opt + 10, 0, &eee_timer)) 4592 goto err; 4593 } else if (!strncmp(opt, "chain_mode:", 11)) { 4594 if (kstrtoint(opt + 11, 0, &chain_mode)) 4595 goto err; 4596 } 4597 } 4598 return 0; 4599 4600 err: 4601 pr_err("%s: ERROR broken module parameter conversion", __func__); 4602 return -EINVAL; 4603 } 4604 4605 __setup("stmmaceth=", stmmac_cmdline_opt); 4606 #endif /* MODULE */ 4607 4608 static int __init stmmac_init(void) 4609 { 4610 #ifdef CONFIG_DEBUG_FS 4611 /* Create debugfs main directory if it doesn't exist yet */ 4612 if (!stmmac_fs_dir) { 4613 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); 4614 4615 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) { 4616 pr_err("ERROR %s, debugfs create directory failed\n", 4617 STMMAC_RESOURCE_NAME); 4618 4619 return -ENOMEM; 4620 } 4621 } 4622 #endif 4623 4624 return 0; 4625 } 4626 4627 static void __exit stmmac_exit(void) 4628 { 4629 #ifdef CONFIG_DEBUG_FS 4630 debugfs_remove_recursive(stmmac_fs_dir); 4631 #endif 4632 } 4633 4634 module_init(stmmac_init) 4635 module_exit(stmmac_exit) 4636 4637 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); 4638 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); 4639 MODULE_LICENSE("GPL"); 4640