1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/pkt_cls.h>
43 #include <net/xdp_sock_drv.h>
44 #include "stmmac_ptp.h"
45 #include "stmmac.h"
46 #include "stmmac_xdp.h"
47 #include <linux/reset.h>
48 #include <linux/of_mdio.h>
49 #include "dwmac1000.h"
50 #include "dwxgmac2.h"
51 #include "hwif.h"
52 
53 /* As long as the interface is active, we keep the timestamping counter enabled
54  * with fine resolution and binary rollover. This avoid non-monotonic behavior
55  * (clock jumps) when changing timestamping settings at runtime.
56  */
57 #define STMMAC_HWTS_ACTIVE	(PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
58 				 PTP_TCR_TSCTRLSSR)
59 
60 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
61 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
62 
63 /* Module parameters */
64 #define TX_TIMEO	5000
65 static int watchdog = TX_TIMEO;
66 module_param(watchdog, int, 0644);
67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
68 
69 static int debug = -1;
70 module_param(debug, int, 0644);
71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
72 
73 static int phyaddr = -1;
74 module_param(phyaddr, int, 0444);
75 MODULE_PARM_DESC(phyaddr, "Physical device address");
76 
77 #define STMMAC_TX_THRESH(x)	((x)->dma_tx_size / 4)
78 #define STMMAC_RX_THRESH(x)	((x)->dma_rx_size / 4)
79 
80 /* Limit to make sure XDP TX and slow path can coexist */
81 #define STMMAC_XSK_TX_BUDGET_MAX	256
82 #define STMMAC_TX_XSK_AVAIL		16
83 #define STMMAC_RX_FILL_BATCH		16
84 
85 #define STMMAC_XDP_PASS		0
86 #define STMMAC_XDP_CONSUMED	BIT(0)
87 #define STMMAC_XDP_TX		BIT(1)
88 #define STMMAC_XDP_REDIRECT	BIT(2)
89 
90 static int flow_ctrl = FLOW_AUTO;
91 module_param(flow_ctrl, int, 0644);
92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
93 
94 static int pause = PAUSE_TIME;
95 module_param(pause, int, 0644);
96 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
97 
98 #define TC_DEFAULT 64
99 static int tc = TC_DEFAULT;
100 module_param(tc, int, 0644);
101 MODULE_PARM_DESC(tc, "DMA threshold control value");
102 
103 #define	DEFAULT_BUFSIZE	1536
104 static int buf_sz = DEFAULT_BUFSIZE;
105 module_param(buf_sz, int, 0644);
106 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
107 
108 #define	STMMAC_RX_COPYBREAK	256
109 
110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
111 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
112 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
113 
114 #define STMMAC_DEFAULT_LPI_TIMER	1000
115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
116 module_param(eee_timer, int, 0644);
117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
119 
120 /* By default the driver will use the ring mode to manage tx and rx descriptors,
121  * but allow user to force to use the chain instead of the ring
122  */
123 static unsigned int chain_mode;
124 module_param(chain_mode, int, 0444);
125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
126 
127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
128 /* For MSI interrupts handling */
129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
133 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
134 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
135 
136 #ifdef CONFIG_DEBUG_FS
137 static const struct net_device_ops stmmac_netdev_ops;
138 static void stmmac_init_fs(struct net_device *dev);
139 static void stmmac_exit_fs(struct net_device *dev);
140 #endif
141 
142 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
143 
144 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
145 {
146 	int ret = 0;
147 
148 	if (enabled) {
149 		ret = clk_prepare_enable(priv->plat->stmmac_clk);
150 		if (ret)
151 			return ret;
152 		ret = clk_prepare_enable(priv->plat->pclk);
153 		if (ret) {
154 			clk_disable_unprepare(priv->plat->stmmac_clk);
155 			return ret;
156 		}
157 		if (priv->plat->clks_config) {
158 			ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
159 			if (ret) {
160 				clk_disable_unprepare(priv->plat->stmmac_clk);
161 				clk_disable_unprepare(priv->plat->pclk);
162 				return ret;
163 			}
164 		}
165 	} else {
166 		clk_disable_unprepare(priv->plat->stmmac_clk);
167 		clk_disable_unprepare(priv->plat->pclk);
168 		if (priv->plat->clks_config)
169 			priv->plat->clks_config(priv->plat->bsp_priv, enabled);
170 	}
171 
172 	return ret;
173 }
174 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
175 
176 /**
177  * stmmac_verify_args - verify the driver parameters.
178  * Description: it checks the driver parameters and set a default in case of
179  * errors.
180  */
181 static void stmmac_verify_args(void)
182 {
183 	if (unlikely(watchdog < 0))
184 		watchdog = TX_TIMEO;
185 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
186 		buf_sz = DEFAULT_BUFSIZE;
187 	if (unlikely(flow_ctrl > 1))
188 		flow_ctrl = FLOW_AUTO;
189 	else if (likely(flow_ctrl < 0))
190 		flow_ctrl = FLOW_OFF;
191 	if (unlikely((pause < 0) || (pause > 0xffff)))
192 		pause = PAUSE_TIME;
193 	if (eee_timer < 0)
194 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
195 }
196 
197 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
198 {
199 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
200 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
201 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
202 	u32 queue;
203 
204 	for (queue = 0; queue < maxq; queue++) {
205 		struct stmmac_channel *ch = &priv->channel[queue];
206 
207 		if (stmmac_xdp_is_enabled(priv) &&
208 		    test_bit(queue, priv->af_xdp_zc_qps)) {
209 			napi_disable(&ch->rxtx_napi);
210 			continue;
211 		}
212 
213 		if (queue < rx_queues_cnt)
214 			napi_disable(&ch->rx_napi);
215 		if (queue < tx_queues_cnt)
216 			napi_disable(&ch->tx_napi);
217 	}
218 }
219 
220 /**
221  * stmmac_disable_all_queues - Disable all queues
222  * @priv: driver private structure
223  */
224 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
225 {
226 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
227 	struct stmmac_rx_queue *rx_q;
228 	u32 queue;
229 
230 	/* synchronize_rcu() needed for pending XDP buffers to drain */
231 	for (queue = 0; queue < rx_queues_cnt; queue++) {
232 		rx_q = &priv->rx_queue[queue];
233 		if (rx_q->xsk_pool) {
234 			synchronize_rcu();
235 			break;
236 		}
237 	}
238 
239 	__stmmac_disable_all_queues(priv);
240 }
241 
242 /**
243  * stmmac_enable_all_queues - Enable all queues
244  * @priv: driver private structure
245  */
246 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
247 {
248 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
249 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
250 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
251 	u32 queue;
252 
253 	for (queue = 0; queue < maxq; queue++) {
254 		struct stmmac_channel *ch = &priv->channel[queue];
255 
256 		if (stmmac_xdp_is_enabled(priv) &&
257 		    test_bit(queue, priv->af_xdp_zc_qps)) {
258 			napi_enable(&ch->rxtx_napi);
259 			continue;
260 		}
261 
262 		if (queue < rx_queues_cnt)
263 			napi_enable(&ch->rx_napi);
264 		if (queue < tx_queues_cnt)
265 			napi_enable(&ch->tx_napi);
266 	}
267 }
268 
269 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
270 {
271 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
272 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
273 		queue_work(priv->wq, &priv->service_task);
274 }
275 
276 static void stmmac_global_err(struct stmmac_priv *priv)
277 {
278 	netif_carrier_off(priv->dev);
279 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
280 	stmmac_service_event_schedule(priv);
281 }
282 
283 /**
284  * stmmac_clk_csr_set - dynamically set the MDC clock
285  * @priv: driver private structure
286  * Description: this is to dynamically set the MDC clock according to the csr
287  * clock input.
288  * Note:
289  *	If a specific clk_csr value is passed from the platform
290  *	this means that the CSR Clock Range selection cannot be
291  *	changed at run-time and it is fixed (as reported in the driver
292  *	documentation). Viceversa the driver will try to set the MDC
293  *	clock dynamically according to the actual clock input.
294  */
295 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
296 {
297 	u32 clk_rate;
298 
299 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
300 
301 	/* Platform provided default clk_csr would be assumed valid
302 	 * for all other cases except for the below mentioned ones.
303 	 * For values higher than the IEEE 802.3 specified frequency
304 	 * we can not estimate the proper divider as it is not known
305 	 * the frequency of clk_csr_i. So we do not change the default
306 	 * divider.
307 	 */
308 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
309 		if (clk_rate < CSR_F_35M)
310 			priv->clk_csr = STMMAC_CSR_20_35M;
311 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
312 			priv->clk_csr = STMMAC_CSR_35_60M;
313 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
314 			priv->clk_csr = STMMAC_CSR_60_100M;
315 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
316 			priv->clk_csr = STMMAC_CSR_100_150M;
317 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
318 			priv->clk_csr = STMMAC_CSR_150_250M;
319 		else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
320 			priv->clk_csr = STMMAC_CSR_250_300M;
321 	}
322 
323 	if (priv->plat->has_sun8i) {
324 		if (clk_rate > 160000000)
325 			priv->clk_csr = 0x03;
326 		else if (clk_rate > 80000000)
327 			priv->clk_csr = 0x02;
328 		else if (clk_rate > 40000000)
329 			priv->clk_csr = 0x01;
330 		else
331 			priv->clk_csr = 0;
332 	}
333 
334 	if (priv->plat->has_xgmac) {
335 		if (clk_rate > 400000000)
336 			priv->clk_csr = 0x5;
337 		else if (clk_rate > 350000000)
338 			priv->clk_csr = 0x4;
339 		else if (clk_rate > 300000000)
340 			priv->clk_csr = 0x3;
341 		else if (clk_rate > 250000000)
342 			priv->clk_csr = 0x2;
343 		else if (clk_rate > 150000000)
344 			priv->clk_csr = 0x1;
345 		else
346 			priv->clk_csr = 0x0;
347 	}
348 }
349 
350 static void print_pkt(unsigned char *buf, int len)
351 {
352 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
353 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
354 }
355 
356 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
357 {
358 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
359 	u32 avail;
360 
361 	if (tx_q->dirty_tx > tx_q->cur_tx)
362 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
363 	else
364 		avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
365 
366 	return avail;
367 }
368 
369 /**
370  * stmmac_rx_dirty - Get RX queue dirty
371  * @priv: driver private structure
372  * @queue: RX queue index
373  */
374 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
375 {
376 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
377 	u32 dirty;
378 
379 	if (rx_q->dirty_rx <= rx_q->cur_rx)
380 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
381 	else
382 		dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
383 
384 	return dirty;
385 }
386 
387 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
388 {
389 	int tx_lpi_timer;
390 
391 	/* Clear/set the SW EEE timer flag based on LPI ET enablement */
392 	priv->eee_sw_timer_en = en ? 0 : 1;
393 	tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
394 	stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
395 }
396 
397 /**
398  * stmmac_enable_eee_mode - check and enter in LPI mode
399  * @priv: driver private structure
400  * Description: this function is to verify and enter in LPI mode in case of
401  * EEE.
402  */
403 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
404 {
405 	u32 tx_cnt = priv->plat->tx_queues_to_use;
406 	u32 queue;
407 
408 	/* check if all TX queues have the work finished */
409 	for (queue = 0; queue < tx_cnt; queue++) {
410 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
411 
412 		if (tx_q->dirty_tx != tx_q->cur_tx)
413 			return; /* still unfinished work */
414 	}
415 
416 	/* Check and enter in LPI mode */
417 	if (!priv->tx_path_in_lpi_mode)
418 		stmmac_set_eee_mode(priv, priv->hw,
419 				priv->plat->en_tx_lpi_clockgating);
420 }
421 
422 /**
423  * stmmac_disable_eee_mode - disable and exit from LPI mode
424  * @priv: driver private structure
425  * Description: this function is to exit and disable EEE in case of
426  * LPI state is true. This is called by the xmit.
427  */
428 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
429 {
430 	if (!priv->eee_sw_timer_en) {
431 		stmmac_lpi_entry_timer_config(priv, 0);
432 		return;
433 	}
434 
435 	stmmac_reset_eee_mode(priv, priv->hw);
436 	del_timer_sync(&priv->eee_ctrl_timer);
437 	priv->tx_path_in_lpi_mode = false;
438 }
439 
440 /**
441  * stmmac_eee_ctrl_timer - EEE TX SW timer.
442  * @t:  timer_list struct containing private info
443  * Description:
444  *  if there is no data transfer and if we are not in LPI state,
445  *  then MAC Transmitter can be moved to LPI state.
446  */
447 static void stmmac_eee_ctrl_timer(struct timer_list *t)
448 {
449 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
450 
451 	stmmac_enable_eee_mode(priv);
452 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
453 }
454 
455 /**
456  * stmmac_eee_init - init EEE
457  * @priv: driver private structure
458  * Description:
459  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
460  *  can also manage EEE, this function enable the LPI state and start related
461  *  timer.
462  */
463 bool stmmac_eee_init(struct stmmac_priv *priv)
464 {
465 	int eee_tw_timer = priv->eee_tw_timer;
466 
467 	/* Using PCS we cannot dial with the phy registers at this stage
468 	 * so we do not support extra feature like EEE.
469 	 */
470 	if (priv->hw->pcs == STMMAC_PCS_TBI ||
471 	    priv->hw->pcs == STMMAC_PCS_RTBI)
472 		return false;
473 
474 	/* Check if MAC core supports the EEE feature. */
475 	if (!priv->dma_cap.eee)
476 		return false;
477 
478 	mutex_lock(&priv->lock);
479 
480 	/* Check if it needs to be deactivated */
481 	if (!priv->eee_active) {
482 		if (priv->eee_enabled) {
483 			netdev_dbg(priv->dev, "disable EEE\n");
484 			stmmac_lpi_entry_timer_config(priv, 0);
485 			del_timer_sync(&priv->eee_ctrl_timer);
486 			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
487 			if (priv->hw->xpcs)
488 				xpcs_config_eee(priv->hw->xpcs,
489 						priv->plat->mult_fact_100ns,
490 						false);
491 		}
492 		mutex_unlock(&priv->lock);
493 		return false;
494 	}
495 
496 	if (priv->eee_active && !priv->eee_enabled) {
497 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
498 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
499 				     eee_tw_timer);
500 		if (priv->hw->xpcs)
501 			xpcs_config_eee(priv->hw->xpcs,
502 					priv->plat->mult_fact_100ns,
503 					true);
504 	}
505 
506 	if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
507 		del_timer_sync(&priv->eee_ctrl_timer);
508 		priv->tx_path_in_lpi_mode = false;
509 		stmmac_lpi_entry_timer_config(priv, 1);
510 	} else {
511 		stmmac_lpi_entry_timer_config(priv, 0);
512 		mod_timer(&priv->eee_ctrl_timer,
513 			  STMMAC_LPI_T(priv->tx_lpi_timer));
514 	}
515 
516 	mutex_unlock(&priv->lock);
517 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
518 	return true;
519 }
520 
521 static inline u32 stmmac_cdc_adjust(struct stmmac_priv *priv)
522 {
523 	/* Correct the clk domain crossing(CDC) error */
524 	if (priv->plat->has_gmac4 && priv->plat->clk_ptp_rate)
525 		return (2 * NSEC_PER_SEC) / priv->plat->clk_ptp_rate;
526 	return 0;
527 }
528 
529 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
530  * @priv: driver private structure
531  * @p : descriptor pointer
532  * @skb : the socket buffer
533  * Description :
534  * This function will read timestamp from the descriptor & pass it to stack.
535  * and also perform some sanity checks.
536  */
537 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
538 				   struct dma_desc *p, struct sk_buff *skb)
539 {
540 	struct skb_shared_hwtstamps shhwtstamp;
541 	bool found = false;
542 	u64 ns = 0;
543 
544 	if (!priv->hwts_tx_en)
545 		return;
546 
547 	/* exit if skb doesn't support hw tstamp */
548 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
549 		return;
550 
551 	/* check tx tstamp status */
552 	if (stmmac_get_tx_timestamp_status(priv, p)) {
553 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
554 		found = true;
555 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
556 		found = true;
557 	}
558 
559 	if (found) {
560 		ns -= stmmac_cdc_adjust(priv);
561 
562 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
563 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
564 
565 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
566 		/* pass tstamp to stack */
567 		skb_tstamp_tx(skb, &shhwtstamp);
568 	}
569 }
570 
571 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
572  * @priv: driver private structure
573  * @p : descriptor pointer
574  * @np : next descriptor pointer
575  * @skb : the socket buffer
576  * Description :
577  * This function will read received packet's timestamp from the descriptor
578  * and pass it to stack. It also perform some sanity checks.
579  */
580 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
581 				   struct dma_desc *np, struct sk_buff *skb)
582 {
583 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
584 	struct dma_desc *desc = p;
585 	u64 ns = 0;
586 
587 	if (!priv->hwts_rx_en)
588 		return;
589 	/* For GMAC4, the valid timestamp is from CTX next desc. */
590 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
591 		desc = np;
592 
593 	/* Check if timestamp is available */
594 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
595 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
596 
597 		ns -= stmmac_cdc_adjust(priv);
598 
599 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
600 		shhwtstamp = skb_hwtstamps(skb);
601 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
602 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
603 	} else  {
604 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
605 	}
606 }
607 
608 /**
609  *  stmmac_hwtstamp_set - control hardware timestamping.
610  *  @dev: device pointer.
611  *  @ifr: An IOCTL specific structure, that can contain a pointer to
612  *  a proprietary structure used to pass information to the driver.
613  *  Description:
614  *  This function configures the MAC to enable/disable both outgoing(TX)
615  *  and incoming(RX) packets time stamping based on user input.
616  *  Return Value:
617  *  0 on success and an appropriate -ve integer on failure.
618  */
619 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
620 {
621 	struct stmmac_priv *priv = netdev_priv(dev);
622 	struct hwtstamp_config config;
623 	u32 ptp_v2 = 0;
624 	u32 tstamp_all = 0;
625 	u32 ptp_over_ipv4_udp = 0;
626 	u32 ptp_over_ipv6_udp = 0;
627 	u32 ptp_over_ethernet = 0;
628 	u32 snap_type_sel = 0;
629 	u32 ts_master_en = 0;
630 	u32 ts_event_en = 0;
631 
632 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
633 		netdev_alert(priv->dev, "No support for HW time stamping\n");
634 		priv->hwts_tx_en = 0;
635 		priv->hwts_rx_en = 0;
636 
637 		return -EOPNOTSUPP;
638 	}
639 
640 	if (copy_from_user(&config, ifr->ifr_data,
641 			   sizeof(config)))
642 		return -EFAULT;
643 
644 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
645 		   __func__, config.flags, config.tx_type, config.rx_filter);
646 
647 	/* reserved for future extensions */
648 	if (config.flags)
649 		return -EINVAL;
650 
651 	if (config.tx_type != HWTSTAMP_TX_OFF &&
652 	    config.tx_type != HWTSTAMP_TX_ON)
653 		return -ERANGE;
654 
655 	if (priv->adv_ts) {
656 		switch (config.rx_filter) {
657 		case HWTSTAMP_FILTER_NONE:
658 			/* time stamp no incoming packet at all */
659 			config.rx_filter = HWTSTAMP_FILTER_NONE;
660 			break;
661 
662 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
663 			/* PTP v1, UDP, any kind of event packet */
664 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
665 			/* 'xmac' hardware can support Sync, Pdelay_Req and
666 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
667 			 * This leaves Delay_Req timestamps out.
668 			 * Enable all events *and* general purpose message
669 			 * timestamping
670 			 */
671 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
672 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
673 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
674 			break;
675 
676 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
677 			/* PTP v1, UDP, Sync packet */
678 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
679 			/* take time stamp for SYNC messages only */
680 			ts_event_en = PTP_TCR_TSEVNTENA;
681 
682 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
683 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
684 			break;
685 
686 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
687 			/* PTP v1, UDP, Delay_req packet */
688 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
689 			/* take time stamp for Delay_Req messages only */
690 			ts_master_en = PTP_TCR_TSMSTRENA;
691 			ts_event_en = PTP_TCR_TSEVNTENA;
692 
693 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
694 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
695 			break;
696 
697 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
698 			/* PTP v2, UDP, any kind of event packet */
699 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
700 			ptp_v2 = PTP_TCR_TSVER2ENA;
701 			/* take time stamp for all event messages */
702 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
703 
704 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
705 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
706 			break;
707 
708 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
709 			/* PTP v2, UDP, Sync packet */
710 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
711 			ptp_v2 = PTP_TCR_TSVER2ENA;
712 			/* take time stamp for SYNC messages only */
713 			ts_event_en = PTP_TCR_TSEVNTENA;
714 
715 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
716 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
717 			break;
718 
719 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
720 			/* PTP v2, UDP, Delay_req packet */
721 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
722 			ptp_v2 = PTP_TCR_TSVER2ENA;
723 			/* take time stamp for Delay_Req messages only */
724 			ts_master_en = PTP_TCR_TSMSTRENA;
725 			ts_event_en = PTP_TCR_TSEVNTENA;
726 
727 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
728 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
729 			break;
730 
731 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
732 			/* PTP v2/802.AS1 any layer, any kind of event packet */
733 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
734 			ptp_v2 = PTP_TCR_TSVER2ENA;
735 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
736 			if (priv->synopsys_id < DWMAC_CORE_4_10)
737 				ts_event_en = PTP_TCR_TSEVNTENA;
738 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
739 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
740 			ptp_over_ethernet = PTP_TCR_TSIPENA;
741 			break;
742 
743 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
744 			/* PTP v2/802.AS1, any layer, Sync packet */
745 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
746 			ptp_v2 = PTP_TCR_TSVER2ENA;
747 			/* take time stamp for SYNC messages only */
748 			ts_event_en = PTP_TCR_TSEVNTENA;
749 
750 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
751 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
752 			ptp_over_ethernet = PTP_TCR_TSIPENA;
753 			break;
754 
755 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
756 			/* PTP v2/802.AS1, any layer, Delay_req packet */
757 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
758 			ptp_v2 = PTP_TCR_TSVER2ENA;
759 			/* take time stamp for Delay_Req messages only */
760 			ts_master_en = PTP_TCR_TSMSTRENA;
761 			ts_event_en = PTP_TCR_TSEVNTENA;
762 
763 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
764 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
765 			ptp_over_ethernet = PTP_TCR_TSIPENA;
766 			break;
767 
768 		case HWTSTAMP_FILTER_NTP_ALL:
769 		case HWTSTAMP_FILTER_ALL:
770 			/* time stamp any incoming packet */
771 			config.rx_filter = HWTSTAMP_FILTER_ALL;
772 			tstamp_all = PTP_TCR_TSENALL;
773 			break;
774 
775 		default:
776 			return -ERANGE;
777 		}
778 	} else {
779 		switch (config.rx_filter) {
780 		case HWTSTAMP_FILTER_NONE:
781 			config.rx_filter = HWTSTAMP_FILTER_NONE;
782 			break;
783 		default:
784 			/* PTP v1, UDP, any kind of event packet */
785 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
786 			break;
787 		}
788 	}
789 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
790 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
791 
792 	priv->systime_flags = STMMAC_HWTS_ACTIVE;
793 
794 	if (priv->hwts_tx_en || priv->hwts_rx_en) {
795 		priv->systime_flags |= tstamp_all | ptp_v2 |
796 				       ptp_over_ethernet | ptp_over_ipv6_udp |
797 				       ptp_over_ipv4_udp | ts_event_en |
798 				       ts_master_en | snap_type_sel;
799 	}
800 
801 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
802 
803 	memcpy(&priv->tstamp_config, &config, sizeof(config));
804 
805 	return copy_to_user(ifr->ifr_data, &config,
806 			    sizeof(config)) ? -EFAULT : 0;
807 }
808 
809 /**
810  *  stmmac_hwtstamp_get - read hardware timestamping.
811  *  @dev: device pointer.
812  *  @ifr: An IOCTL specific structure, that can contain a pointer to
813  *  a proprietary structure used to pass information to the driver.
814  *  Description:
815  *  This function obtain the current hardware timestamping settings
816  *  as requested.
817  */
818 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
819 {
820 	struct stmmac_priv *priv = netdev_priv(dev);
821 	struct hwtstamp_config *config = &priv->tstamp_config;
822 
823 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
824 		return -EOPNOTSUPP;
825 
826 	return copy_to_user(ifr->ifr_data, config,
827 			    sizeof(*config)) ? -EFAULT : 0;
828 }
829 
830 /**
831  * stmmac_init_tstamp_counter - init hardware timestamping counter
832  * @priv: driver private structure
833  * @systime_flags: timestamping flags
834  * Description:
835  * Initialize hardware counter for packet timestamping.
836  * This is valid as long as the interface is open and not suspended.
837  * Will be rerun after resuming from suspend, case in which the timestamping
838  * flags updated by stmmac_hwtstamp_set() also need to be restored.
839  */
840 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
841 {
842 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
843 	struct timespec64 now;
844 	u32 sec_inc = 0;
845 	u64 temp = 0;
846 	int ret;
847 
848 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
849 		return -EOPNOTSUPP;
850 
851 	ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
852 	if (ret < 0) {
853 		netdev_warn(priv->dev,
854 			    "failed to enable PTP reference clock: %pe\n",
855 			    ERR_PTR(ret));
856 		return ret;
857 	}
858 
859 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
860 	priv->systime_flags = systime_flags;
861 
862 	/* program Sub Second Increment reg */
863 	stmmac_config_sub_second_increment(priv, priv->ptpaddr,
864 					   priv->plat->clk_ptp_rate,
865 					   xmac, &sec_inc);
866 	temp = div_u64(1000000000ULL, sec_inc);
867 
868 	/* Store sub second increment for later use */
869 	priv->sub_second_inc = sec_inc;
870 
871 	/* calculate default added value:
872 	 * formula is :
873 	 * addend = (2^32)/freq_div_ratio;
874 	 * where, freq_div_ratio = 1e9ns/sec_inc
875 	 */
876 	temp = (u64)(temp << 32);
877 	priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
878 	stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
879 
880 	/* initialize system time */
881 	ktime_get_real_ts64(&now);
882 
883 	/* lower 32 bits of tv_sec are safe until y2106 */
884 	stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
885 
886 	return 0;
887 }
888 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
889 
890 /**
891  * stmmac_init_ptp - init PTP
892  * @priv: driver private structure
893  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
894  * This is done by looking at the HW cap. register.
895  * This function also registers the ptp driver.
896  */
897 static int stmmac_init_ptp(struct stmmac_priv *priv)
898 {
899 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
900 	int ret;
901 
902 	ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
903 	if (ret)
904 		return ret;
905 
906 	priv->adv_ts = 0;
907 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
908 	if (xmac && priv->dma_cap.atime_stamp)
909 		priv->adv_ts = 1;
910 	/* Dwmac 3.x core with extend_desc can support adv_ts */
911 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
912 		priv->adv_ts = 1;
913 
914 	if (priv->dma_cap.time_stamp)
915 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
916 
917 	if (priv->adv_ts)
918 		netdev_info(priv->dev,
919 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
920 
921 	priv->hwts_tx_en = 0;
922 	priv->hwts_rx_en = 0;
923 
924 	stmmac_ptp_register(priv);
925 
926 	return 0;
927 }
928 
929 static void stmmac_release_ptp(struct stmmac_priv *priv)
930 {
931 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
932 	stmmac_ptp_unregister(priv);
933 }
934 
935 /**
936  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
937  *  @priv: driver private structure
938  *  @duplex: duplex passed to the next function
939  *  Description: It is used for configuring the flow control in all queues
940  */
941 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
942 {
943 	u32 tx_cnt = priv->plat->tx_queues_to_use;
944 
945 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
946 			priv->pause, tx_cnt);
947 }
948 
949 static void stmmac_validate(struct phylink_config *config,
950 			    unsigned long *supported,
951 			    struct phylink_link_state *state)
952 {
953 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
954 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
955 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
956 	int tx_cnt = priv->plat->tx_queues_to_use;
957 	int max_speed = priv->plat->max_speed;
958 
959 	phylink_set(mac_supported, 10baseT_Half);
960 	phylink_set(mac_supported, 10baseT_Full);
961 	phylink_set(mac_supported, 100baseT_Half);
962 	phylink_set(mac_supported, 100baseT_Full);
963 	phylink_set(mac_supported, 1000baseT_Half);
964 	phylink_set(mac_supported, 1000baseT_Full);
965 	phylink_set(mac_supported, 1000baseKX_Full);
966 
967 	phylink_set(mac_supported, Autoneg);
968 	phylink_set(mac_supported, Pause);
969 	phylink_set(mac_supported, Asym_Pause);
970 	phylink_set_port_modes(mac_supported);
971 
972 	/* Cut down 1G if asked to */
973 	if ((max_speed > 0) && (max_speed < 1000)) {
974 		phylink_set(mask, 1000baseT_Full);
975 		phylink_set(mask, 1000baseX_Full);
976 	} else if (priv->plat->has_gmac4) {
977 		if (!max_speed || max_speed >= 2500) {
978 			phylink_set(mac_supported, 2500baseT_Full);
979 			phylink_set(mac_supported, 2500baseX_Full);
980 		}
981 	} else if (priv->plat->has_xgmac) {
982 		if (!max_speed || (max_speed >= 2500)) {
983 			phylink_set(mac_supported, 2500baseT_Full);
984 			phylink_set(mac_supported, 2500baseX_Full);
985 		}
986 		if (!max_speed || (max_speed >= 5000)) {
987 			phylink_set(mac_supported, 5000baseT_Full);
988 		}
989 		if (!max_speed || (max_speed >= 10000)) {
990 			phylink_set(mac_supported, 10000baseSR_Full);
991 			phylink_set(mac_supported, 10000baseLR_Full);
992 			phylink_set(mac_supported, 10000baseER_Full);
993 			phylink_set(mac_supported, 10000baseLRM_Full);
994 			phylink_set(mac_supported, 10000baseT_Full);
995 			phylink_set(mac_supported, 10000baseKX4_Full);
996 			phylink_set(mac_supported, 10000baseKR_Full);
997 		}
998 		if (!max_speed || (max_speed >= 25000)) {
999 			phylink_set(mac_supported, 25000baseCR_Full);
1000 			phylink_set(mac_supported, 25000baseKR_Full);
1001 			phylink_set(mac_supported, 25000baseSR_Full);
1002 		}
1003 		if (!max_speed || (max_speed >= 40000)) {
1004 			phylink_set(mac_supported, 40000baseKR4_Full);
1005 			phylink_set(mac_supported, 40000baseCR4_Full);
1006 			phylink_set(mac_supported, 40000baseSR4_Full);
1007 			phylink_set(mac_supported, 40000baseLR4_Full);
1008 		}
1009 		if (!max_speed || (max_speed >= 50000)) {
1010 			phylink_set(mac_supported, 50000baseCR2_Full);
1011 			phylink_set(mac_supported, 50000baseKR2_Full);
1012 			phylink_set(mac_supported, 50000baseSR2_Full);
1013 			phylink_set(mac_supported, 50000baseKR_Full);
1014 			phylink_set(mac_supported, 50000baseSR_Full);
1015 			phylink_set(mac_supported, 50000baseCR_Full);
1016 			phylink_set(mac_supported, 50000baseLR_ER_FR_Full);
1017 			phylink_set(mac_supported, 50000baseDR_Full);
1018 		}
1019 		if (!max_speed || (max_speed >= 100000)) {
1020 			phylink_set(mac_supported, 100000baseKR4_Full);
1021 			phylink_set(mac_supported, 100000baseSR4_Full);
1022 			phylink_set(mac_supported, 100000baseCR4_Full);
1023 			phylink_set(mac_supported, 100000baseLR4_ER4_Full);
1024 			phylink_set(mac_supported, 100000baseKR2_Full);
1025 			phylink_set(mac_supported, 100000baseSR2_Full);
1026 			phylink_set(mac_supported, 100000baseCR2_Full);
1027 			phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full);
1028 			phylink_set(mac_supported, 100000baseDR2_Full);
1029 		}
1030 	}
1031 
1032 	/* Half-Duplex can only work with single queue */
1033 	if (tx_cnt > 1) {
1034 		phylink_set(mask, 10baseT_Half);
1035 		phylink_set(mask, 100baseT_Half);
1036 		phylink_set(mask, 1000baseT_Half);
1037 	}
1038 
1039 	linkmode_and(supported, supported, mac_supported);
1040 	linkmode_andnot(supported, supported, mask);
1041 
1042 	linkmode_and(state->advertising, state->advertising, mac_supported);
1043 	linkmode_andnot(state->advertising, state->advertising, mask);
1044 
1045 	/* If PCS is supported, check which modes it supports. */
1046 	if (priv->hw->xpcs)
1047 		xpcs_validate(priv->hw->xpcs, supported, state);
1048 }
1049 
1050 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
1051 			      const struct phylink_link_state *state)
1052 {
1053 	/* Nothing to do, xpcs_config() handles everything */
1054 }
1055 
1056 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
1057 {
1058 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
1059 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
1060 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
1061 	bool *hs_enable = &fpe_cfg->hs_enable;
1062 
1063 	if (is_up && *hs_enable) {
1064 		stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
1065 	} else {
1066 		*lo_state = FPE_STATE_OFF;
1067 		*lp_state = FPE_STATE_OFF;
1068 	}
1069 }
1070 
1071 static void stmmac_mac_link_down(struct phylink_config *config,
1072 				 unsigned int mode, phy_interface_t interface)
1073 {
1074 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
1075 
1076 	stmmac_mac_set(priv, priv->ioaddr, false);
1077 	priv->eee_active = false;
1078 	priv->tx_lpi_enabled = false;
1079 	priv->eee_enabled = stmmac_eee_init(priv);
1080 	stmmac_set_eee_pls(priv, priv->hw, false);
1081 
1082 	if (priv->dma_cap.fpesel)
1083 		stmmac_fpe_link_state_handle(priv, false);
1084 }
1085 
1086 static void stmmac_mac_link_up(struct phylink_config *config,
1087 			       struct phy_device *phy,
1088 			       unsigned int mode, phy_interface_t interface,
1089 			       int speed, int duplex,
1090 			       bool tx_pause, bool rx_pause)
1091 {
1092 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
1093 	u32 ctrl;
1094 
1095 	ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
1096 	ctrl &= ~priv->hw->link.speed_mask;
1097 
1098 	if (interface == PHY_INTERFACE_MODE_USXGMII) {
1099 		switch (speed) {
1100 		case SPEED_10000:
1101 			ctrl |= priv->hw->link.xgmii.speed10000;
1102 			break;
1103 		case SPEED_5000:
1104 			ctrl |= priv->hw->link.xgmii.speed5000;
1105 			break;
1106 		case SPEED_2500:
1107 			ctrl |= priv->hw->link.xgmii.speed2500;
1108 			break;
1109 		default:
1110 			return;
1111 		}
1112 	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1113 		switch (speed) {
1114 		case SPEED_100000:
1115 			ctrl |= priv->hw->link.xlgmii.speed100000;
1116 			break;
1117 		case SPEED_50000:
1118 			ctrl |= priv->hw->link.xlgmii.speed50000;
1119 			break;
1120 		case SPEED_40000:
1121 			ctrl |= priv->hw->link.xlgmii.speed40000;
1122 			break;
1123 		case SPEED_25000:
1124 			ctrl |= priv->hw->link.xlgmii.speed25000;
1125 			break;
1126 		case SPEED_10000:
1127 			ctrl |= priv->hw->link.xgmii.speed10000;
1128 			break;
1129 		case SPEED_2500:
1130 			ctrl |= priv->hw->link.speed2500;
1131 			break;
1132 		case SPEED_1000:
1133 			ctrl |= priv->hw->link.speed1000;
1134 			break;
1135 		default:
1136 			return;
1137 		}
1138 	} else {
1139 		switch (speed) {
1140 		case SPEED_2500:
1141 			ctrl |= priv->hw->link.speed2500;
1142 			break;
1143 		case SPEED_1000:
1144 			ctrl |= priv->hw->link.speed1000;
1145 			break;
1146 		case SPEED_100:
1147 			ctrl |= priv->hw->link.speed100;
1148 			break;
1149 		case SPEED_10:
1150 			ctrl |= priv->hw->link.speed10;
1151 			break;
1152 		default:
1153 			return;
1154 		}
1155 	}
1156 
1157 	priv->speed = speed;
1158 
1159 	if (priv->plat->fix_mac_speed)
1160 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1161 
1162 	if (!duplex)
1163 		ctrl &= ~priv->hw->link.duplex;
1164 	else
1165 		ctrl |= priv->hw->link.duplex;
1166 
1167 	/* Flow Control operation */
1168 	if (tx_pause && rx_pause)
1169 		stmmac_mac_flow_ctrl(priv, duplex);
1170 
1171 	writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1172 
1173 	stmmac_mac_set(priv, priv->ioaddr, true);
1174 	if (phy && priv->dma_cap.eee) {
1175 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
1176 		priv->eee_enabled = stmmac_eee_init(priv);
1177 		priv->tx_lpi_enabled = priv->eee_enabled;
1178 		stmmac_set_eee_pls(priv, priv->hw, true);
1179 	}
1180 
1181 	if (priv->dma_cap.fpesel)
1182 		stmmac_fpe_link_state_handle(priv, true);
1183 }
1184 
1185 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1186 	.validate = stmmac_validate,
1187 	.mac_config = stmmac_mac_config,
1188 	.mac_link_down = stmmac_mac_link_down,
1189 	.mac_link_up = stmmac_mac_link_up,
1190 };
1191 
1192 /**
1193  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1194  * @priv: driver private structure
1195  * Description: this is to verify if the HW supports the PCS.
1196  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1197  * configured for the TBI, RTBI, or SGMII PHY interface.
1198  */
1199 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1200 {
1201 	int interface = priv->plat->interface;
1202 
1203 	if (priv->dma_cap.pcs) {
1204 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1205 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1206 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1207 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1208 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1209 			priv->hw->pcs = STMMAC_PCS_RGMII;
1210 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1211 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1212 			priv->hw->pcs = STMMAC_PCS_SGMII;
1213 		}
1214 	}
1215 }
1216 
1217 /**
1218  * stmmac_init_phy - PHY initialization
1219  * @dev: net device structure
1220  * Description: it initializes the driver's PHY state, and attaches the PHY
1221  * to the mac driver.
1222  *  Return value:
1223  *  0 on success
1224  */
1225 static int stmmac_init_phy(struct net_device *dev)
1226 {
1227 	struct stmmac_priv *priv = netdev_priv(dev);
1228 	struct device_node *node;
1229 	int ret;
1230 
1231 	node = priv->plat->phylink_node;
1232 
1233 	if (node)
1234 		ret = phylink_of_phy_connect(priv->phylink, node, 0);
1235 
1236 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1237 	 * manually parse it
1238 	 */
1239 	if (!node || ret) {
1240 		int addr = priv->plat->phy_addr;
1241 		struct phy_device *phydev;
1242 
1243 		phydev = mdiobus_get_phy(priv->mii, addr);
1244 		if (!phydev) {
1245 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1246 			return -ENODEV;
1247 		}
1248 
1249 		ret = phylink_connect_phy(priv->phylink, phydev);
1250 	}
1251 
1252 	if (!priv->plat->pmt) {
1253 		struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1254 
1255 		phylink_ethtool_get_wol(priv->phylink, &wol);
1256 		device_set_wakeup_capable(priv->device, !!wol.supported);
1257 	}
1258 
1259 	return ret;
1260 }
1261 
1262 static int stmmac_phy_setup(struct stmmac_priv *priv)
1263 {
1264 	struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1265 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1266 	int mode = priv->plat->phy_interface;
1267 	struct phylink *phylink;
1268 
1269 	priv->phylink_config.dev = &priv->dev->dev;
1270 	priv->phylink_config.type = PHYLINK_NETDEV;
1271 	priv->phylink_config.pcs_poll = true;
1272 	if (priv->plat->mdio_bus_data)
1273 		priv->phylink_config.ovr_an_inband =
1274 			mdio_bus_data->xpcs_an_inband;
1275 
1276 	if (!fwnode)
1277 		fwnode = dev_fwnode(priv->device);
1278 
1279 	phylink = phylink_create(&priv->phylink_config, fwnode,
1280 				 mode, &stmmac_phylink_mac_ops);
1281 	if (IS_ERR(phylink))
1282 		return PTR_ERR(phylink);
1283 
1284 	if (priv->hw->xpcs)
1285 		phylink_set_pcs(phylink, &priv->hw->xpcs->pcs);
1286 
1287 	priv->phylink = phylink;
1288 	return 0;
1289 }
1290 
1291 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1292 {
1293 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1294 	unsigned int desc_size;
1295 	void *head_rx;
1296 	u32 queue;
1297 
1298 	/* Display RX rings */
1299 	for (queue = 0; queue < rx_cnt; queue++) {
1300 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1301 
1302 		pr_info("\tRX Queue %u rings\n", queue);
1303 
1304 		if (priv->extend_desc) {
1305 			head_rx = (void *)rx_q->dma_erx;
1306 			desc_size = sizeof(struct dma_extended_desc);
1307 		} else {
1308 			head_rx = (void *)rx_q->dma_rx;
1309 			desc_size = sizeof(struct dma_desc);
1310 		}
1311 
1312 		/* Display RX ring */
1313 		stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true,
1314 				    rx_q->dma_rx_phy, desc_size);
1315 	}
1316 }
1317 
1318 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1319 {
1320 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1321 	unsigned int desc_size;
1322 	void *head_tx;
1323 	u32 queue;
1324 
1325 	/* Display TX rings */
1326 	for (queue = 0; queue < tx_cnt; queue++) {
1327 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1328 
1329 		pr_info("\tTX Queue %d rings\n", queue);
1330 
1331 		if (priv->extend_desc) {
1332 			head_tx = (void *)tx_q->dma_etx;
1333 			desc_size = sizeof(struct dma_extended_desc);
1334 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1335 			head_tx = (void *)tx_q->dma_entx;
1336 			desc_size = sizeof(struct dma_edesc);
1337 		} else {
1338 			head_tx = (void *)tx_q->dma_tx;
1339 			desc_size = sizeof(struct dma_desc);
1340 		}
1341 
1342 		stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false,
1343 				    tx_q->dma_tx_phy, desc_size);
1344 	}
1345 }
1346 
1347 static void stmmac_display_rings(struct stmmac_priv *priv)
1348 {
1349 	/* Display RX ring */
1350 	stmmac_display_rx_rings(priv);
1351 
1352 	/* Display TX ring */
1353 	stmmac_display_tx_rings(priv);
1354 }
1355 
1356 static int stmmac_set_bfsize(int mtu, int bufsize)
1357 {
1358 	int ret = bufsize;
1359 
1360 	if (mtu >= BUF_SIZE_8KiB)
1361 		ret = BUF_SIZE_16KiB;
1362 	else if (mtu >= BUF_SIZE_4KiB)
1363 		ret = BUF_SIZE_8KiB;
1364 	else if (mtu >= BUF_SIZE_2KiB)
1365 		ret = BUF_SIZE_4KiB;
1366 	else if (mtu > DEFAULT_BUFSIZE)
1367 		ret = BUF_SIZE_2KiB;
1368 	else
1369 		ret = DEFAULT_BUFSIZE;
1370 
1371 	return ret;
1372 }
1373 
1374 /**
1375  * stmmac_clear_rx_descriptors - clear RX descriptors
1376  * @priv: driver private structure
1377  * @queue: RX queue index
1378  * Description: this function is called to clear the RX descriptors
1379  * in case of both basic and extended descriptors are used.
1380  */
1381 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1382 {
1383 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1384 	int i;
1385 
1386 	/* Clear the RX descriptors */
1387 	for (i = 0; i < priv->dma_rx_size; i++)
1388 		if (priv->extend_desc)
1389 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1390 					priv->use_riwt, priv->mode,
1391 					(i == priv->dma_rx_size - 1),
1392 					priv->dma_buf_sz);
1393 		else
1394 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1395 					priv->use_riwt, priv->mode,
1396 					(i == priv->dma_rx_size - 1),
1397 					priv->dma_buf_sz);
1398 }
1399 
1400 /**
1401  * stmmac_clear_tx_descriptors - clear tx descriptors
1402  * @priv: driver private structure
1403  * @queue: TX queue index.
1404  * Description: this function is called to clear the TX descriptors
1405  * in case of both basic and extended descriptors are used.
1406  */
1407 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1408 {
1409 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1410 	int i;
1411 
1412 	/* Clear the TX descriptors */
1413 	for (i = 0; i < priv->dma_tx_size; i++) {
1414 		int last = (i == (priv->dma_tx_size - 1));
1415 		struct dma_desc *p;
1416 
1417 		if (priv->extend_desc)
1418 			p = &tx_q->dma_etx[i].basic;
1419 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1420 			p = &tx_q->dma_entx[i].basic;
1421 		else
1422 			p = &tx_q->dma_tx[i];
1423 
1424 		stmmac_init_tx_desc(priv, p, priv->mode, last);
1425 	}
1426 }
1427 
1428 /**
1429  * stmmac_clear_descriptors - clear descriptors
1430  * @priv: driver private structure
1431  * Description: this function is called to clear the TX and RX descriptors
1432  * in case of both basic and extended descriptors are used.
1433  */
1434 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1435 {
1436 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1437 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1438 	u32 queue;
1439 
1440 	/* Clear the RX descriptors */
1441 	for (queue = 0; queue < rx_queue_cnt; queue++)
1442 		stmmac_clear_rx_descriptors(priv, queue);
1443 
1444 	/* Clear the TX descriptors */
1445 	for (queue = 0; queue < tx_queue_cnt; queue++)
1446 		stmmac_clear_tx_descriptors(priv, queue);
1447 }
1448 
1449 /**
1450  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1451  * @priv: driver private structure
1452  * @p: descriptor pointer
1453  * @i: descriptor index
1454  * @flags: gfp flag
1455  * @queue: RX queue index
1456  * Description: this function is called to allocate a receive buffer, perform
1457  * the DMA mapping and init the descriptor.
1458  */
1459 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1460 				  int i, gfp_t flags, u32 queue)
1461 {
1462 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1463 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1464 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1465 
1466 	if (priv->dma_cap.addr64 <= 32)
1467 		gfp |= GFP_DMA32;
1468 
1469 	if (!buf->page) {
1470 		buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1471 		if (!buf->page)
1472 			return -ENOMEM;
1473 		buf->page_offset = stmmac_rx_offset(priv);
1474 	}
1475 
1476 	if (priv->sph && !buf->sec_page) {
1477 		buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1478 		if (!buf->sec_page)
1479 			return -ENOMEM;
1480 
1481 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1482 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1483 	} else {
1484 		buf->sec_page = NULL;
1485 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1486 	}
1487 
1488 	buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1489 
1490 	stmmac_set_desc_addr(priv, p, buf->addr);
1491 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1492 		stmmac_init_desc3(priv, p);
1493 
1494 	return 0;
1495 }
1496 
1497 /**
1498  * stmmac_free_rx_buffer - free RX dma buffers
1499  * @priv: private structure
1500  * @queue: RX queue index
1501  * @i: buffer index.
1502  */
1503 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1504 {
1505 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1506 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1507 
1508 	if (buf->page)
1509 		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1510 	buf->page = NULL;
1511 
1512 	if (buf->sec_page)
1513 		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1514 	buf->sec_page = NULL;
1515 }
1516 
1517 /**
1518  * stmmac_free_tx_buffer - free RX dma buffers
1519  * @priv: private structure
1520  * @queue: RX queue index
1521  * @i: buffer index.
1522  */
1523 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1524 {
1525 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1526 
1527 	if (tx_q->tx_skbuff_dma[i].buf &&
1528 	    tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1529 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1530 			dma_unmap_page(priv->device,
1531 				       tx_q->tx_skbuff_dma[i].buf,
1532 				       tx_q->tx_skbuff_dma[i].len,
1533 				       DMA_TO_DEVICE);
1534 		else
1535 			dma_unmap_single(priv->device,
1536 					 tx_q->tx_skbuff_dma[i].buf,
1537 					 tx_q->tx_skbuff_dma[i].len,
1538 					 DMA_TO_DEVICE);
1539 	}
1540 
1541 	if (tx_q->xdpf[i] &&
1542 	    (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1543 	     tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1544 		xdp_return_frame(tx_q->xdpf[i]);
1545 		tx_q->xdpf[i] = NULL;
1546 	}
1547 
1548 	if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1549 		tx_q->xsk_frames_done++;
1550 
1551 	if (tx_q->tx_skbuff[i] &&
1552 	    tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1553 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1554 		tx_q->tx_skbuff[i] = NULL;
1555 	}
1556 
1557 	tx_q->tx_skbuff_dma[i].buf = 0;
1558 	tx_q->tx_skbuff_dma[i].map_as_page = false;
1559 }
1560 
1561 /**
1562  * dma_free_rx_skbufs - free RX dma buffers
1563  * @priv: private structure
1564  * @queue: RX queue index
1565  */
1566 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1567 {
1568 	int i;
1569 
1570 	for (i = 0; i < priv->dma_rx_size; i++)
1571 		stmmac_free_rx_buffer(priv, queue, i);
1572 }
1573 
1574 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, u32 queue,
1575 				   gfp_t flags)
1576 {
1577 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1578 	int i;
1579 
1580 	for (i = 0; i < priv->dma_rx_size; i++) {
1581 		struct dma_desc *p;
1582 		int ret;
1583 
1584 		if (priv->extend_desc)
1585 			p = &((rx_q->dma_erx + i)->basic);
1586 		else
1587 			p = rx_q->dma_rx + i;
1588 
1589 		ret = stmmac_init_rx_buffers(priv, p, i, flags,
1590 					     queue);
1591 		if (ret)
1592 			return ret;
1593 
1594 		rx_q->buf_alloc_num++;
1595 	}
1596 
1597 	return 0;
1598 }
1599 
1600 /**
1601  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1602  * @priv: private structure
1603  * @queue: RX queue index
1604  */
1605 static void dma_free_rx_xskbufs(struct stmmac_priv *priv, u32 queue)
1606 {
1607 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1608 	int i;
1609 
1610 	for (i = 0; i < priv->dma_rx_size; i++) {
1611 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1612 
1613 		if (!buf->xdp)
1614 			continue;
1615 
1616 		xsk_buff_free(buf->xdp);
1617 		buf->xdp = NULL;
1618 	}
1619 }
1620 
1621 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, u32 queue)
1622 {
1623 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1624 	int i;
1625 
1626 	for (i = 0; i < priv->dma_rx_size; i++) {
1627 		struct stmmac_rx_buffer *buf;
1628 		dma_addr_t dma_addr;
1629 		struct dma_desc *p;
1630 
1631 		if (priv->extend_desc)
1632 			p = (struct dma_desc *)(rx_q->dma_erx + i);
1633 		else
1634 			p = rx_q->dma_rx + i;
1635 
1636 		buf = &rx_q->buf_pool[i];
1637 
1638 		buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1639 		if (!buf->xdp)
1640 			return -ENOMEM;
1641 
1642 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1643 		stmmac_set_desc_addr(priv, p, dma_addr);
1644 		rx_q->buf_alloc_num++;
1645 	}
1646 
1647 	return 0;
1648 }
1649 
1650 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1651 {
1652 	if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1653 		return NULL;
1654 
1655 	return xsk_get_pool_from_qid(priv->dev, queue);
1656 }
1657 
1658 /**
1659  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1660  * @priv: driver private structure
1661  * @queue: RX queue index
1662  * @flags: gfp flag.
1663  * Description: this function initializes the DMA RX descriptors
1664  * and allocates the socket buffers. It supports the chained and ring
1665  * modes.
1666  */
1667 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, u32 queue, gfp_t flags)
1668 {
1669 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1670 	int ret;
1671 
1672 	netif_dbg(priv, probe, priv->dev,
1673 		  "(%s) dma_rx_phy=0x%08x\n", __func__,
1674 		  (u32)rx_q->dma_rx_phy);
1675 
1676 	stmmac_clear_rx_descriptors(priv, queue);
1677 
1678 	xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1679 
1680 	rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1681 
1682 	if (rx_q->xsk_pool) {
1683 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1684 						   MEM_TYPE_XSK_BUFF_POOL,
1685 						   NULL));
1686 		netdev_info(priv->dev,
1687 			    "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1688 			    rx_q->queue_index);
1689 		xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1690 	} else {
1691 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1692 						   MEM_TYPE_PAGE_POOL,
1693 						   rx_q->page_pool));
1694 		netdev_info(priv->dev,
1695 			    "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1696 			    rx_q->queue_index);
1697 	}
1698 
1699 	if (rx_q->xsk_pool) {
1700 		/* RX XDP ZC buffer pool may not be populated, e.g.
1701 		 * xdpsock TX-only.
1702 		 */
1703 		stmmac_alloc_rx_buffers_zc(priv, queue);
1704 	} else {
1705 		ret = stmmac_alloc_rx_buffers(priv, queue, flags);
1706 		if (ret < 0)
1707 			return -ENOMEM;
1708 	}
1709 
1710 	rx_q->cur_rx = 0;
1711 	rx_q->dirty_rx = 0;
1712 
1713 	/* Setup the chained descriptor addresses */
1714 	if (priv->mode == STMMAC_CHAIN_MODE) {
1715 		if (priv->extend_desc)
1716 			stmmac_mode_init(priv, rx_q->dma_erx,
1717 					 rx_q->dma_rx_phy,
1718 					 priv->dma_rx_size, 1);
1719 		else
1720 			stmmac_mode_init(priv, rx_q->dma_rx,
1721 					 rx_q->dma_rx_phy,
1722 					 priv->dma_rx_size, 0);
1723 	}
1724 
1725 	return 0;
1726 }
1727 
1728 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1729 {
1730 	struct stmmac_priv *priv = netdev_priv(dev);
1731 	u32 rx_count = priv->plat->rx_queues_to_use;
1732 	u32 queue;
1733 	int ret;
1734 
1735 	/* RX INITIALIZATION */
1736 	netif_dbg(priv, probe, priv->dev,
1737 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1738 
1739 	for (queue = 0; queue < rx_count; queue++) {
1740 		ret = __init_dma_rx_desc_rings(priv, queue, flags);
1741 		if (ret)
1742 			goto err_init_rx_buffers;
1743 	}
1744 
1745 	return 0;
1746 
1747 err_init_rx_buffers:
1748 	while (queue >= 0) {
1749 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1750 
1751 		if (rx_q->xsk_pool)
1752 			dma_free_rx_xskbufs(priv, queue);
1753 		else
1754 			dma_free_rx_skbufs(priv, queue);
1755 
1756 		rx_q->buf_alloc_num = 0;
1757 		rx_q->xsk_pool = NULL;
1758 
1759 		if (queue == 0)
1760 			break;
1761 
1762 		queue--;
1763 	}
1764 
1765 	return ret;
1766 }
1767 
1768 /**
1769  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1770  * @priv: driver private structure
1771  * @queue : TX queue index
1772  * Description: this function initializes the DMA TX descriptors
1773  * and allocates the socket buffers. It supports the chained and ring
1774  * modes.
1775  */
1776 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, u32 queue)
1777 {
1778 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1779 	int i;
1780 
1781 	netif_dbg(priv, probe, priv->dev,
1782 		  "(%s) dma_tx_phy=0x%08x\n", __func__,
1783 		  (u32)tx_q->dma_tx_phy);
1784 
1785 	/* Setup the chained descriptor addresses */
1786 	if (priv->mode == STMMAC_CHAIN_MODE) {
1787 		if (priv->extend_desc)
1788 			stmmac_mode_init(priv, tx_q->dma_etx,
1789 					 tx_q->dma_tx_phy,
1790 					 priv->dma_tx_size, 1);
1791 		else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1792 			stmmac_mode_init(priv, tx_q->dma_tx,
1793 					 tx_q->dma_tx_phy,
1794 					 priv->dma_tx_size, 0);
1795 	}
1796 
1797 	tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1798 
1799 	for (i = 0; i < priv->dma_tx_size; i++) {
1800 		struct dma_desc *p;
1801 
1802 		if (priv->extend_desc)
1803 			p = &((tx_q->dma_etx + i)->basic);
1804 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1805 			p = &((tx_q->dma_entx + i)->basic);
1806 		else
1807 			p = tx_q->dma_tx + i;
1808 
1809 		stmmac_clear_desc(priv, p);
1810 
1811 		tx_q->tx_skbuff_dma[i].buf = 0;
1812 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1813 		tx_q->tx_skbuff_dma[i].len = 0;
1814 		tx_q->tx_skbuff_dma[i].last_segment = false;
1815 		tx_q->tx_skbuff[i] = NULL;
1816 	}
1817 
1818 	tx_q->dirty_tx = 0;
1819 	tx_q->cur_tx = 0;
1820 	tx_q->mss = 0;
1821 
1822 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1823 
1824 	return 0;
1825 }
1826 
1827 static int init_dma_tx_desc_rings(struct net_device *dev)
1828 {
1829 	struct stmmac_priv *priv = netdev_priv(dev);
1830 	u32 tx_queue_cnt;
1831 	u32 queue;
1832 
1833 	tx_queue_cnt = priv->plat->tx_queues_to_use;
1834 
1835 	for (queue = 0; queue < tx_queue_cnt; queue++)
1836 		__init_dma_tx_desc_rings(priv, queue);
1837 
1838 	return 0;
1839 }
1840 
1841 /**
1842  * init_dma_desc_rings - init the RX/TX descriptor rings
1843  * @dev: net device structure
1844  * @flags: gfp flag.
1845  * Description: this function initializes the DMA RX/TX descriptors
1846  * and allocates the socket buffers. It supports the chained and ring
1847  * modes.
1848  */
1849 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1850 {
1851 	struct stmmac_priv *priv = netdev_priv(dev);
1852 	int ret;
1853 
1854 	ret = init_dma_rx_desc_rings(dev, flags);
1855 	if (ret)
1856 		return ret;
1857 
1858 	ret = init_dma_tx_desc_rings(dev);
1859 
1860 	stmmac_clear_descriptors(priv);
1861 
1862 	if (netif_msg_hw(priv))
1863 		stmmac_display_rings(priv);
1864 
1865 	return ret;
1866 }
1867 
1868 /**
1869  * dma_free_tx_skbufs - free TX dma buffers
1870  * @priv: private structure
1871  * @queue: TX queue index
1872  */
1873 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1874 {
1875 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1876 	int i;
1877 
1878 	tx_q->xsk_frames_done = 0;
1879 
1880 	for (i = 0; i < priv->dma_tx_size; i++)
1881 		stmmac_free_tx_buffer(priv, queue, i);
1882 
1883 	if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1884 		xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1885 		tx_q->xsk_frames_done = 0;
1886 		tx_q->xsk_pool = NULL;
1887 	}
1888 }
1889 
1890 /**
1891  * stmmac_free_tx_skbufs - free TX skb buffers
1892  * @priv: private structure
1893  */
1894 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1895 {
1896 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1897 	u32 queue;
1898 
1899 	for (queue = 0; queue < tx_queue_cnt; queue++)
1900 		dma_free_tx_skbufs(priv, queue);
1901 }
1902 
1903 /**
1904  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1905  * @priv: private structure
1906  * @queue: RX queue index
1907  */
1908 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1909 {
1910 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1911 
1912 	/* Release the DMA RX socket buffers */
1913 	if (rx_q->xsk_pool)
1914 		dma_free_rx_xskbufs(priv, queue);
1915 	else
1916 		dma_free_rx_skbufs(priv, queue);
1917 
1918 	rx_q->buf_alloc_num = 0;
1919 	rx_q->xsk_pool = NULL;
1920 
1921 	/* Free DMA regions of consistent memory previously allocated */
1922 	if (!priv->extend_desc)
1923 		dma_free_coherent(priv->device, priv->dma_rx_size *
1924 				  sizeof(struct dma_desc),
1925 				  rx_q->dma_rx, rx_q->dma_rx_phy);
1926 	else
1927 		dma_free_coherent(priv->device, priv->dma_rx_size *
1928 				  sizeof(struct dma_extended_desc),
1929 				  rx_q->dma_erx, rx_q->dma_rx_phy);
1930 
1931 	if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1932 		xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1933 
1934 	kfree(rx_q->buf_pool);
1935 	if (rx_q->page_pool)
1936 		page_pool_destroy(rx_q->page_pool);
1937 }
1938 
1939 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1940 {
1941 	u32 rx_count = priv->plat->rx_queues_to_use;
1942 	u32 queue;
1943 
1944 	/* Free RX queue resources */
1945 	for (queue = 0; queue < rx_count; queue++)
1946 		__free_dma_rx_desc_resources(priv, queue);
1947 }
1948 
1949 /**
1950  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1951  * @priv: private structure
1952  * @queue: TX queue index
1953  */
1954 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
1955 {
1956 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1957 	size_t size;
1958 	void *addr;
1959 
1960 	/* Release the DMA TX socket buffers */
1961 	dma_free_tx_skbufs(priv, queue);
1962 
1963 	if (priv->extend_desc) {
1964 		size = sizeof(struct dma_extended_desc);
1965 		addr = tx_q->dma_etx;
1966 	} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1967 		size = sizeof(struct dma_edesc);
1968 		addr = tx_q->dma_entx;
1969 	} else {
1970 		size = sizeof(struct dma_desc);
1971 		addr = tx_q->dma_tx;
1972 	}
1973 
1974 	size *= priv->dma_tx_size;
1975 
1976 	dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1977 
1978 	kfree(tx_q->tx_skbuff_dma);
1979 	kfree(tx_q->tx_skbuff);
1980 }
1981 
1982 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1983 {
1984 	u32 tx_count = priv->plat->tx_queues_to_use;
1985 	u32 queue;
1986 
1987 	/* Free TX queue resources */
1988 	for (queue = 0; queue < tx_count; queue++)
1989 		__free_dma_tx_desc_resources(priv, queue);
1990 }
1991 
1992 /**
1993  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1994  * @priv: private structure
1995  * @queue: RX queue index
1996  * Description: according to which descriptor can be used (extend or basic)
1997  * this function allocates the resources for TX and RX paths. In case of
1998  * reception, for example, it pre-allocated the RX socket buffer in order to
1999  * allow zero-copy mechanism.
2000  */
2001 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
2002 {
2003 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
2004 	struct stmmac_channel *ch = &priv->channel[queue];
2005 	bool xdp_prog = stmmac_xdp_is_enabled(priv);
2006 	struct page_pool_params pp_params = { 0 };
2007 	unsigned int num_pages;
2008 	unsigned int napi_id;
2009 	int ret;
2010 
2011 	rx_q->queue_index = queue;
2012 	rx_q->priv_data = priv;
2013 
2014 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
2015 	pp_params.pool_size = priv->dma_rx_size;
2016 	num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
2017 	pp_params.order = ilog2(num_pages);
2018 	pp_params.nid = dev_to_node(priv->device);
2019 	pp_params.dev = priv->device;
2020 	pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
2021 	pp_params.offset = stmmac_rx_offset(priv);
2022 	pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
2023 
2024 	rx_q->page_pool = page_pool_create(&pp_params);
2025 	if (IS_ERR(rx_q->page_pool)) {
2026 		ret = PTR_ERR(rx_q->page_pool);
2027 		rx_q->page_pool = NULL;
2028 		return ret;
2029 	}
2030 
2031 	rx_q->buf_pool = kcalloc(priv->dma_rx_size,
2032 				 sizeof(*rx_q->buf_pool),
2033 				 GFP_KERNEL);
2034 	if (!rx_q->buf_pool)
2035 		return -ENOMEM;
2036 
2037 	if (priv->extend_desc) {
2038 		rx_q->dma_erx = dma_alloc_coherent(priv->device,
2039 						   priv->dma_rx_size *
2040 						   sizeof(struct dma_extended_desc),
2041 						   &rx_q->dma_rx_phy,
2042 						   GFP_KERNEL);
2043 		if (!rx_q->dma_erx)
2044 			return -ENOMEM;
2045 
2046 	} else {
2047 		rx_q->dma_rx = dma_alloc_coherent(priv->device,
2048 						  priv->dma_rx_size *
2049 						  sizeof(struct dma_desc),
2050 						  &rx_q->dma_rx_phy,
2051 						  GFP_KERNEL);
2052 		if (!rx_q->dma_rx)
2053 			return -ENOMEM;
2054 	}
2055 
2056 	if (stmmac_xdp_is_enabled(priv) &&
2057 	    test_bit(queue, priv->af_xdp_zc_qps))
2058 		napi_id = ch->rxtx_napi.napi_id;
2059 	else
2060 		napi_id = ch->rx_napi.napi_id;
2061 
2062 	ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2063 			       rx_q->queue_index,
2064 			       napi_id);
2065 	if (ret) {
2066 		netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2067 		return -EINVAL;
2068 	}
2069 
2070 	return 0;
2071 }
2072 
2073 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
2074 {
2075 	u32 rx_count = priv->plat->rx_queues_to_use;
2076 	u32 queue;
2077 	int ret;
2078 
2079 	/* RX queues buffers and DMA */
2080 	for (queue = 0; queue < rx_count; queue++) {
2081 		ret = __alloc_dma_rx_desc_resources(priv, queue);
2082 		if (ret)
2083 			goto err_dma;
2084 	}
2085 
2086 	return 0;
2087 
2088 err_dma:
2089 	free_dma_rx_desc_resources(priv);
2090 
2091 	return ret;
2092 }
2093 
2094 /**
2095  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2096  * @priv: private structure
2097  * @queue: TX queue index
2098  * Description: according to which descriptor can be used (extend or basic)
2099  * this function allocates the resources for TX and RX paths. In case of
2100  * reception, for example, it pre-allocated the RX socket buffer in order to
2101  * allow zero-copy mechanism.
2102  */
2103 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
2104 {
2105 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2106 	size_t size;
2107 	void *addr;
2108 
2109 	tx_q->queue_index = queue;
2110 	tx_q->priv_data = priv;
2111 
2112 	tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size,
2113 				      sizeof(*tx_q->tx_skbuff_dma),
2114 				      GFP_KERNEL);
2115 	if (!tx_q->tx_skbuff_dma)
2116 		return -ENOMEM;
2117 
2118 	tx_q->tx_skbuff = kcalloc(priv->dma_tx_size,
2119 				  sizeof(struct sk_buff *),
2120 				  GFP_KERNEL);
2121 	if (!tx_q->tx_skbuff)
2122 		return -ENOMEM;
2123 
2124 	if (priv->extend_desc)
2125 		size = sizeof(struct dma_extended_desc);
2126 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2127 		size = sizeof(struct dma_edesc);
2128 	else
2129 		size = sizeof(struct dma_desc);
2130 
2131 	size *= priv->dma_tx_size;
2132 
2133 	addr = dma_alloc_coherent(priv->device, size,
2134 				  &tx_q->dma_tx_phy, GFP_KERNEL);
2135 	if (!addr)
2136 		return -ENOMEM;
2137 
2138 	if (priv->extend_desc)
2139 		tx_q->dma_etx = addr;
2140 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2141 		tx_q->dma_entx = addr;
2142 	else
2143 		tx_q->dma_tx = addr;
2144 
2145 	return 0;
2146 }
2147 
2148 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
2149 {
2150 	u32 tx_count = priv->plat->tx_queues_to_use;
2151 	u32 queue;
2152 	int ret;
2153 
2154 	/* TX queues buffers and DMA */
2155 	for (queue = 0; queue < tx_count; queue++) {
2156 		ret = __alloc_dma_tx_desc_resources(priv, queue);
2157 		if (ret)
2158 			goto err_dma;
2159 	}
2160 
2161 	return 0;
2162 
2163 err_dma:
2164 	free_dma_tx_desc_resources(priv);
2165 	return ret;
2166 }
2167 
2168 /**
2169  * alloc_dma_desc_resources - alloc TX/RX resources.
2170  * @priv: private structure
2171  * Description: according to which descriptor can be used (extend or basic)
2172  * this function allocates the resources for TX and RX paths. In case of
2173  * reception, for example, it pre-allocated the RX socket buffer in order to
2174  * allow zero-copy mechanism.
2175  */
2176 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
2177 {
2178 	/* RX Allocation */
2179 	int ret = alloc_dma_rx_desc_resources(priv);
2180 
2181 	if (ret)
2182 		return ret;
2183 
2184 	ret = alloc_dma_tx_desc_resources(priv);
2185 
2186 	return ret;
2187 }
2188 
2189 /**
2190  * free_dma_desc_resources - free dma desc resources
2191  * @priv: private structure
2192  */
2193 static void free_dma_desc_resources(struct stmmac_priv *priv)
2194 {
2195 	/* Release the DMA TX socket buffers */
2196 	free_dma_tx_desc_resources(priv);
2197 
2198 	/* Release the DMA RX socket buffers later
2199 	 * to ensure all pending XDP_TX buffers are returned.
2200 	 */
2201 	free_dma_rx_desc_resources(priv);
2202 }
2203 
2204 /**
2205  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2206  *  @priv: driver private structure
2207  *  Description: It is used for enabling the rx queues in the MAC
2208  */
2209 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2210 {
2211 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2212 	int queue;
2213 	u8 mode;
2214 
2215 	for (queue = 0; queue < rx_queues_count; queue++) {
2216 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2217 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2218 	}
2219 }
2220 
2221 /**
2222  * stmmac_start_rx_dma - start RX DMA channel
2223  * @priv: driver private structure
2224  * @chan: RX channel index
2225  * Description:
2226  * This starts a RX DMA channel
2227  */
2228 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2229 {
2230 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2231 	stmmac_start_rx(priv, priv->ioaddr, chan);
2232 }
2233 
2234 /**
2235  * stmmac_start_tx_dma - start TX DMA channel
2236  * @priv: driver private structure
2237  * @chan: TX channel index
2238  * Description:
2239  * This starts a TX DMA channel
2240  */
2241 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2242 {
2243 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2244 	stmmac_start_tx(priv, priv->ioaddr, chan);
2245 }
2246 
2247 /**
2248  * stmmac_stop_rx_dma - stop RX DMA channel
2249  * @priv: driver private structure
2250  * @chan: RX channel index
2251  * Description:
2252  * This stops a RX DMA channel
2253  */
2254 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2255 {
2256 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2257 	stmmac_stop_rx(priv, priv->ioaddr, chan);
2258 }
2259 
2260 /**
2261  * stmmac_stop_tx_dma - stop TX DMA channel
2262  * @priv: driver private structure
2263  * @chan: TX channel index
2264  * Description:
2265  * This stops a TX DMA channel
2266  */
2267 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2268 {
2269 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2270 	stmmac_stop_tx(priv, priv->ioaddr, chan);
2271 }
2272 
2273 /**
2274  * stmmac_start_all_dma - start all RX and TX DMA channels
2275  * @priv: driver private structure
2276  * Description:
2277  * This starts all the RX and TX DMA channels
2278  */
2279 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2280 {
2281 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2282 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2283 	u32 chan = 0;
2284 
2285 	for (chan = 0; chan < rx_channels_count; chan++)
2286 		stmmac_start_rx_dma(priv, chan);
2287 
2288 	for (chan = 0; chan < tx_channels_count; chan++)
2289 		stmmac_start_tx_dma(priv, chan);
2290 }
2291 
2292 /**
2293  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2294  * @priv: driver private structure
2295  * Description:
2296  * This stops the RX and TX DMA channels
2297  */
2298 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2299 {
2300 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2301 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2302 	u32 chan = 0;
2303 
2304 	for (chan = 0; chan < rx_channels_count; chan++)
2305 		stmmac_stop_rx_dma(priv, chan);
2306 
2307 	for (chan = 0; chan < tx_channels_count; chan++)
2308 		stmmac_stop_tx_dma(priv, chan);
2309 }
2310 
2311 /**
2312  *  stmmac_dma_operation_mode - HW DMA operation mode
2313  *  @priv: driver private structure
2314  *  Description: it is used for configuring the DMA operation mode register in
2315  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2316  */
2317 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2318 {
2319 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2320 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2321 	int rxfifosz = priv->plat->rx_fifo_size;
2322 	int txfifosz = priv->plat->tx_fifo_size;
2323 	u32 txmode = 0;
2324 	u32 rxmode = 0;
2325 	u32 chan = 0;
2326 	u8 qmode = 0;
2327 
2328 	if (rxfifosz == 0)
2329 		rxfifosz = priv->dma_cap.rx_fifo_size;
2330 	if (txfifosz == 0)
2331 		txfifosz = priv->dma_cap.tx_fifo_size;
2332 
2333 	/* Adjust for real per queue fifo size */
2334 	rxfifosz /= rx_channels_count;
2335 	txfifosz /= tx_channels_count;
2336 
2337 	if (priv->plat->force_thresh_dma_mode) {
2338 		txmode = tc;
2339 		rxmode = tc;
2340 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2341 		/*
2342 		 * In case of GMAC, SF mode can be enabled
2343 		 * to perform the TX COE in HW. This depends on:
2344 		 * 1) TX COE if actually supported
2345 		 * 2) There is no bugged Jumbo frame support
2346 		 *    that needs to not insert csum in the TDES.
2347 		 */
2348 		txmode = SF_DMA_MODE;
2349 		rxmode = SF_DMA_MODE;
2350 		priv->xstats.threshold = SF_DMA_MODE;
2351 	} else {
2352 		txmode = tc;
2353 		rxmode = SF_DMA_MODE;
2354 	}
2355 
2356 	/* configure all channels */
2357 	for (chan = 0; chan < rx_channels_count; chan++) {
2358 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2359 		u32 buf_size;
2360 
2361 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2362 
2363 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2364 				rxfifosz, qmode);
2365 
2366 		if (rx_q->xsk_pool) {
2367 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2368 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2369 					      buf_size,
2370 					      chan);
2371 		} else {
2372 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2373 					      priv->dma_buf_sz,
2374 					      chan);
2375 		}
2376 	}
2377 
2378 	for (chan = 0; chan < tx_channels_count; chan++) {
2379 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2380 
2381 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2382 				txfifosz, qmode);
2383 	}
2384 }
2385 
2386 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2387 {
2388 	struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2389 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2390 	struct xsk_buff_pool *pool = tx_q->xsk_pool;
2391 	unsigned int entry = tx_q->cur_tx;
2392 	struct dma_desc *tx_desc = NULL;
2393 	struct xdp_desc xdp_desc;
2394 	bool work_done = true;
2395 
2396 	/* Avoids TX time-out as we are sharing with slow path */
2397 	nq->trans_start = jiffies;
2398 
2399 	budget = min(budget, stmmac_tx_avail(priv, queue));
2400 
2401 	while (budget-- > 0) {
2402 		dma_addr_t dma_addr;
2403 		bool set_ic;
2404 
2405 		/* We are sharing with slow path and stop XSK TX desc submission when
2406 		 * available TX ring is less than threshold.
2407 		 */
2408 		if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2409 		    !netif_carrier_ok(priv->dev)) {
2410 			work_done = false;
2411 			break;
2412 		}
2413 
2414 		if (!xsk_tx_peek_desc(pool, &xdp_desc))
2415 			break;
2416 
2417 		if (likely(priv->extend_desc))
2418 			tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2419 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2420 			tx_desc = &tx_q->dma_entx[entry].basic;
2421 		else
2422 			tx_desc = tx_q->dma_tx + entry;
2423 
2424 		dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2425 		xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2426 
2427 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2428 
2429 		/* To return XDP buffer to XSK pool, we simple call
2430 		 * xsk_tx_completed(), so we don't need to fill up
2431 		 * 'buf' and 'xdpf'.
2432 		 */
2433 		tx_q->tx_skbuff_dma[entry].buf = 0;
2434 		tx_q->xdpf[entry] = NULL;
2435 
2436 		tx_q->tx_skbuff_dma[entry].map_as_page = false;
2437 		tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2438 		tx_q->tx_skbuff_dma[entry].last_segment = true;
2439 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2440 
2441 		stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2442 
2443 		tx_q->tx_count_frames++;
2444 
2445 		if (!priv->tx_coal_frames[queue])
2446 			set_ic = false;
2447 		else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2448 			set_ic = true;
2449 		else
2450 			set_ic = false;
2451 
2452 		if (set_ic) {
2453 			tx_q->tx_count_frames = 0;
2454 			stmmac_set_tx_ic(priv, tx_desc);
2455 			priv->xstats.tx_set_ic_bit++;
2456 		}
2457 
2458 		stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2459 				       true, priv->mode, true, true,
2460 				       xdp_desc.len);
2461 
2462 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
2463 
2464 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
2465 		entry = tx_q->cur_tx;
2466 	}
2467 
2468 	if (tx_desc) {
2469 		stmmac_flush_tx_descriptors(priv, queue);
2470 		xsk_tx_release(pool);
2471 	}
2472 
2473 	/* Return true if all of the 3 conditions are met
2474 	 *  a) TX Budget is still available
2475 	 *  b) work_done = true when XSK TX desc peek is empty (no more
2476 	 *     pending XSK TX for transmission)
2477 	 */
2478 	return !!budget && work_done;
2479 }
2480 
2481 /**
2482  * stmmac_tx_clean - to manage the transmission completion
2483  * @priv: driver private structure
2484  * @budget: napi budget limiting this functions packet handling
2485  * @queue: TX queue index
2486  * Description: it reclaims the transmit resources after transmission completes.
2487  */
2488 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2489 {
2490 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2491 	unsigned int bytes_compl = 0, pkts_compl = 0;
2492 	unsigned int entry, xmits = 0, count = 0;
2493 
2494 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2495 
2496 	priv->xstats.tx_clean++;
2497 
2498 	tx_q->xsk_frames_done = 0;
2499 
2500 	entry = tx_q->dirty_tx;
2501 
2502 	/* Try to clean all TX complete frame in 1 shot */
2503 	while ((entry != tx_q->cur_tx) && count < priv->dma_tx_size) {
2504 		struct xdp_frame *xdpf;
2505 		struct sk_buff *skb;
2506 		struct dma_desc *p;
2507 		int status;
2508 
2509 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2510 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2511 			xdpf = tx_q->xdpf[entry];
2512 			skb = NULL;
2513 		} else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2514 			xdpf = NULL;
2515 			skb = tx_q->tx_skbuff[entry];
2516 		} else {
2517 			xdpf = NULL;
2518 			skb = NULL;
2519 		}
2520 
2521 		if (priv->extend_desc)
2522 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
2523 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2524 			p = &tx_q->dma_entx[entry].basic;
2525 		else
2526 			p = tx_q->dma_tx + entry;
2527 
2528 		status = stmmac_tx_status(priv, &priv->dev->stats,
2529 				&priv->xstats, p, priv->ioaddr);
2530 		/* Check if the descriptor is owned by the DMA */
2531 		if (unlikely(status & tx_dma_own))
2532 			break;
2533 
2534 		count++;
2535 
2536 		/* Make sure descriptor fields are read after reading
2537 		 * the own bit.
2538 		 */
2539 		dma_rmb();
2540 
2541 		/* Just consider the last segment and ...*/
2542 		if (likely(!(status & tx_not_ls))) {
2543 			/* ... verify the status error condition */
2544 			if (unlikely(status & tx_err)) {
2545 				priv->dev->stats.tx_errors++;
2546 			} else {
2547 				priv->dev->stats.tx_packets++;
2548 				priv->xstats.tx_pkt_n++;
2549 				priv->xstats.txq_stats[queue].tx_pkt_n++;
2550 			}
2551 			if (skb)
2552 				stmmac_get_tx_hwtstamp(priv, p, skb);
2553 		}
2554 
2555 		if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2556 			   tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2557 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2558 				dma_unmap_page(priv->device,
2559 					       tx_q->tx_skbuff_dma[entry].buf,
2560 					       tx_q->tx_skbuff_dma[entry].len,
2561 					       DMA_TO_DEVICE);
2562 			else
2563 				dma_unmap_single(priv->device,
2564 						 tx_q->tx_skbuff_dma[entry].buf,
2565 						 tx_q->tx_skbuff_dma[entry].len,
2566 						 DMA_TO_DEVICE);
2567 			tx_q->tx_skbuff_dma[entry].buf = 0;
2568 			tx_q->tx_skbuff_dma[entry].len = 0;
2569 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2570 		}
2571 
2572 		stmmac_clean_desc3(priv, tx_q, p);
2573 
2574 		tx_q->tx_skbuff_dma[entry].last_segment = false;
2575 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2576 
2577 		if (xdpf &&
2578 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2579 			xdp_return_frame_rx_napi(xdpf);
2580 			tx_q->xdpf[entry] = NULL;
2581 		}
2582 
2583 		if (xdpf &&
2584 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2585 			xdp_return_frame(xdpf);
2586 			tx_q->xdpf[entry] = NULL;
2587 		}
2588 
2589 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2590 			tx_q->xsk_frames_done++;
2591 
2592 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2593 			if (likely(skb)) {
2594 				pkts_compl++;
2595 				bytes_compl += skb->len;
2596 				dev_consume_skb_any(skb);
2597 				tx_q->tx_skbuff[entry] = NULL;
2598 			}
2599 		}
2600 
2601 		stmmac_release_tx_desc(priv, p, priv->mode);
2602 
2603 		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
2604 	}
2605 	tx_q->dirty_tx = entry;
2606 
2607 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2608 				  pkts_compl, bytes_compl);
2609 
2610 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2611 								queue))) &&
2612 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2613 
2614 		netif_dbg(priv, tx_done, priv->dev,
2615 			  "%s: restart transmit\n", __func__);
2616 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2617 	}
2618 
2619 	if (tx_q->xsk_pool) {
2620 		bool work_done;
2621 
2622 		if (tx_q->xsk_frames_done)
2623 			xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2624 
2625 		if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2626 			xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2627 
2628 		/* For XSK TX, we try to send as many as possible.
2629 		 * If XSK work done (XSK TX desc empty and budget still
2630 		 * available), return "budget - 1" to reenable TX IRQ.
2631 		 * Else, return "budget" to make NAPI continue polling.
2632 		 */
2633 		work_done = stmmac_xdp_xmit_zc(priv, queue,
2634 					       STMMAC_XSK_TX_BUDGET_MAX);
2635 		if (work_done)
2636 			xmits = budget - 1;
2637 		else
2638 			xmits = budget;
2639 	}
2640 
2641 	if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2642 	    priv->eee_sw_timer_en) {
2643 		stmmac_enable_eee_mode(priv);
2644 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2645 	}
2646 
2647 	/* We still have pending packets, let's call for a new scheduling */
2648 	if (tx_q->dirty_tx != tx_q->cur_tx)
2649 		hrtimer_start(&tx_q->txtimer,
2650 			      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2651 			      HRTIMER_MODE_REL);
2652 
2653 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2654 
2655 	/* Combine decisions from TX clean and XSK TX */
2656 	return max(count, xmits);
2657 }
2658 
2659 /**
2660  * stmmac_tx_err - to manage the tx error
2661  * @priv: driver private structure
2662  * @chan: channel index
2663  * Description: it cleans the descriptors and restarts the transmission
2664  * in case of transmission errors.
2665  */
2666 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2667 {
2668 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2669 
2670 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2671 
2672 	stmmac_stop_tx_dma(priv, chan);
2673 	dma_free_tx_skbufs(priv, chan);
2674 	stmmac_clear_tx_descriptors(priv, chan);
2675 	tx_q->dirty_tx = 0;
2676 	tx_q->cur_tx = 0;
2677 	tx_q->mss = 0;
2678 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2679 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2680 			    tx_q->dma_tx_phy, chan);
2681 	stmmac_start_tx_dma(priv, chan);
2682 
2683 	priv->dev->stats.tx_errors++;
2684 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2685 }
2686 
2687 /**
2688  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2689  *  @priv: driver private structure
2690  *  @txmode: TX operating mode
2691  *  @rxmode: RX operating mode
2692  *  @chan: channel index
2693  *  Description: it is used for configuring of the DMA operation mode in
2694  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2695  *  mode.
2696  */
2697 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2698 					  u32 rxmode, u32 chan)
2699 {
2700 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2701 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2702 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2703 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2704 	int rxfifosz = priv->plat->rx_fifo_size;
2705 	int txfifosz = priv->plat->tx_fifo_size;
2706 
2707 	if (rxfifosz == 0)
2708 		rxfifosz = priv->dma_cap.rx_fifo_size;
2709 	if (txfifosz == 0)
2710 		txfifosz = priv->dma_cap.tx_fifo_size;
2711 
2712 	/* Adjust for real per queue fifo size */
2713 	rxfifosz /= rx_channels_count;
2714 	txfifosz /= tx_channels_count;
2715 
2716 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2717 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2718 }
2719 
2720 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2721 {
2722 	int ret;
2723 
2724 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2725 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2726 	if (ret && (ret != -EINVAL)) {
2727 		stmmac_global_err(priv);
2728 		return true;
2729 	}
2730 
2731 	return false;
2732 }
2733 
2734 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2735 {
2736 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2737 						 &priv->xstats, chan, dir);
2738 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2739 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2740 	struct stmmac_channel *ch = &priv->channel[chan];
2741 	struct napi_struct *rx_napi;
2742 	struct napi_struct *tx_napi;
2743 	unsigned long flags;
2744 
2745 	rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2746 	tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2747 
2748 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2749 		if (napi_schedule_prep(rx_napi)) {
2750 			spin_lock_irqsave(&ch->lock, flags);
2751 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2752 			spin_unlock_irqrestore(&ch->lock, flags);
2753 			__napi_schedule(rx_napi);
2754 		}
2755 	}
2756 
2757 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2758 		if (napi_schedule_prep(tx_napi)) {
2759 			spin_lock_irqsave(&ch->lock, flags);
2760 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2761 			spin_unlock_irqrestore(&ch->lock, flags);
2762 			__napi_schedule(tx_napi);
2763 		}
2764 	}
2765 
2766 	return status;
2767 }
2768 
2769 /**
2770  * stmmac_dma_interrupt - DMA ISR
2771  * @priv: driver private structure
2772  * Description: this is the DMA ISR. It is called by the main ISR.
2773  * It calls the dwmac dma routine and schedule poll method in case of some
2774  * work can be done.
2775  */
2776 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2777 {
2778 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2779 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2780 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2781 				tx_channel_count : rx_channel_count;
2782 	u32 chan;
2783 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2784 
2785 	/* Make sure we never check beyond our status buffer. */
2786 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2787 		channels_to_check = ARRAY_SIZE(status);
2788 
2789 	for (chan = 0; chan < channels_to_check; chan++)
2790 		status[chan] = stmmac_napi_check(priv, chan,
2791 						 DMA_DIR_RXTX);
2792 
2793 	for (chan = 0; chan < tx_channel_count; chan++) {
2794 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2795 			/* Try to bump up the dma threshold on this failure */
2796 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2797 			    (tc <= 256)) {
2798 				tc += 64;
2799 				if (priv->plat->force_thresh_dma_mode)
2800 					stmmac_set_dma_operation_mode(priv,
2801 								      tc,
2802 								      tc,
2803 								      chan);
2804 				else
2805 					stmmac_set_dma_operation_mode(priv,
2806 								    tc,
2807 								    SF_DMA_MODE,
2808 								    chan);
2809 				priv->xstats.threshold = tc;
2810 			}
2811 		} else if (unlikely(status[chan] == tx_hard_error)) {
2812 			stmmac_tx_err(priv, chan);
2813 		}
2814 	}
2815 }
2816 
2817 /**
2818  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2819  * @priv: driver private structure
2820  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2821  */
2822 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2823 {
2824 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2825 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2826 
2827 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2828 
2829 	if (priv->dma_cap.rmon) {
2830 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2831 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2832 	} else
2833 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2834 }
2835 
2836 /**
2837  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2838  * @priv: driver private structure
2839  * Description:
2840  *  new GMAC chip generations have a new register to indicate the
2841  *  presence of the optional feature/functions.
2842  *  This can be also used to override the value passed through the
2843  *  platform and necessary for old MAC10/100 and GMAC chips.
2844  */
2845 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2846 {
2847 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2848 }
2849 
2850 /**
2851  * stmmac_check_ether_addr - check if the MAC addr is valid
2852  * @priv: driver private structure
2853  * Description:
2854  * it is to verify if the MAC address is valid, in case of failures it
2855  * generates a random MAC address
2856  */
2857 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2858 {
2859 	u8 addr[ETH_ALEN];
2860 
2861 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2862 		stmmac_get_umac_addr(priv, priv->hw, addr, 0);
2863 		if (is_valid_ether_addr(addr))
2864 			eth_hw_addr_set(priv->dev, addr);
2865 		else
2866 			eth_hw_addr_random(priv->dev);
2867 		dev_info(priv->device, "device MAC address %pM\n",
2868 			 priv->dev->dev_addr);
2869 	}
2870 }
2871 
2872 /**
2873  * stmmac_init_dma_engine - DMA init.
2874  * @priv: driver private structure
2875  * Description:
2876  * It inits the DMA invoking the specific MAC/GMAC callback.
2877  * Some DMA parameters can be passed from the platform;
2878  * in case of these are not passed a default is kept for the MAC or GMAC.
2879  */
2880 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2881 {
2882 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2883 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2884 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2885 	struct stmmac_rx_queue *rx_q;
2886 	struct stmmac_tx_queue *tx_q;
2887 	u32 chan = 0;
2888 	int atds = 0;
2889 	int ret = 0;
2890 
2891 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2892 		dev_err(priv->device, "Invalid DMA configuration\n");
2893 		return -EINVAL;
2894 	}
2895 
2896 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2897 		atds = 1;
2898 
2899 	ret = stmmac_reset(priv, priv->ioaddr);
2900 	if (ret) {
2901 		dev_err(priv->device, "Failed to reset the dma\n");
2902 		return ret;
2903 	}
2904 
2905 	/* DMA Configuration */
2906 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2907 
2908 	if (priv->plat->axi)
2909 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2910 
2911 	/* DMA CSR Channel configuration */
2912 	for (chan = 0; chan < dma_csr_ch; chan++)
2913 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2914 
2915 	/* DMA RX Channel Configuration */
2916 	for (chan = 0; chan < rx_channels_count; chan++) {
2917 		rx_q = &priv->rx_queue[chan];
2918 
2919 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2920 				    rx_q->dma_rx_phy, chan);
2921 
2922 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2923 				     (rx_q->buf_alloc_num *
2924 				      sizeof(struct dma_desc));
2925 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2926 				       rx_q->rx_tail_addr, chan);
2927 	}
2928 
2929 	/* DMA TX Channel Configuration */
2930 	for (chan = 0; chan < tx_channels_count; chan++) {
2931 		tx_q = &priv->tx_queue[chan];
2932 
2933 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2934 				    tx_q->dma_tx_phy, chan);
2935 
2936 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2937 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2938 				       tx_q->tx_tail_addr, chan);
2939 	}
2940 
2941 	return ret;
2942 }
2943 
2944 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2945 {
2946 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2947 
2948 	hrtimer_start(&tx_q->txtimer,
2949 		      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2950 		      HRTIMER_MODE_REL);
2951 }
2952 
2953 /**
2954  * stmmac_tx_timer - mitigation sw timer for tx.
2955  * @t: data pointer
2956  * Description:
2957  * This is the timer handler to directly invoke the stmmac_tx_clean.
2958  */
2959 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2960 {
2961 	struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2962 	struct stmmac_priv *priv = tx_q->priv_data;
2963 	struct stmmac_channel *ch;
2964 	struct napi_struct *napi;
2965 
2966 	ch = &priv->channel[tx_q->queue_index];
2967 	napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2968 
2969 	if (likely(napi_schedule_prep(napi))) {
2970 		unsigned long flags;
2971 
2972 		spin_lock_irqsave(&ch->lock, flags);
2973 		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2974 		spin_unlock_irqrestore(&ch->lock, flags);
2975 		__napi_schedule(napi);
2976 	}
2977 
2978 	return HRTIMER_NORESTART;
2979 }
2980 
2981 /**
2982  * stmmac_init_coalesce - init mitigation options.
2983  * @priv: driver private structure
2984  * Description:
2985  * This inits the coalesce parameters: i.e. timer rate,
2986  * timer handler and default threshold used for enabling the
2987  * interrupt on completion bit.
2988  */
2989 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2990 {
2991 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2992 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2993 	u32 chan;
2994 
2995 	for (chan = 0; chan < tx_channel_count; chan++) {
2996 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2997 
2998 		priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
2999 		priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
3000 
3001 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3002 		tx_q->txtimer.function = stmmac_tx_timer;
3003 	}
3004 
3005 	for (chan = 0; chan < rx_channel_count; chan++)
3006 		priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
3007 }
3008 
3009 static void stmmac_set_rings_length(struct stmmac_priv *priv)
3010 {
3011 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
3012 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
3013 	u32 chan;
3014 
3015 	/* set TX ring length */
3016 	for (chan = 0; chan < tx_channels_count; chan++)
3017 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
3018 				       (priv->dma_tx_size - 1), chan);
3019 
3020 	/* set RX ring length */
3021 	for (chan = 0; chan < rx_channels_count; chan++)
3022 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
3023 				       (priv->dma_rx_size - 1), chan);
3024 }
3025 
3026 /**
3027  *  stmmac_set_tx_queue_weight - Set TX queue weight
3028  *  @priv: driver private structure
3029  *  Description: It is used for setting TX queues weight
3030  */
3031 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
3032 {
3033 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3034 	u32 weight;
3035 	u32 queue;
3036 
3037 	for (queue = 0; queue < tx_queues_count; queue++) {
3038 		weight = priv->plat->tx_queues_cfg[queue].weight;
3039 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
3040 	}
3041 }
3042 
3043 /**
3044  *  stmmac_configure_cbs - Configure CBS in TX queue
3045  *  @priv: driver private structure
3046  *  Description: It is used for configuring CBS in AVB TX queues
3047  */
3048 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3049 {
3050 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3051 	u32 mode_to_use;
3052 	u32 queue;
3053 
3054 	/* queue 0 is reserved for legacy traffic */
3055 	for (queue = 1; queue < tx_queues_count; queue++) {
3056 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3057 		if (mode_to_use == MTL_QUEUE_DCB)
3058 			continue;
3059 
3060 		stmmac_config_cbs(priv, priv->hw,
3061 				priv->plat->tx_queues_cfg[queue].send_slope,
3062 				priv->plat->tx_queues_cfg[queue].idle_slope,
3063 				priv->plat->tx_queues_cfg[queue].high_credit,
3064 				priv->plat->tx_queues_cfg[queue].low_credit,
3065 				queue);
3066 	}
3067 }
3068 
3069 /**
3070  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3071  *  @priv: driver private structure
3072  *  Description: It is used for mapping RX queues to RX dma channels
3073  */
3074 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3075 {
3076 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3077 	u32 queue;
3078 	u32 chan;
3079 
3080 	for (queue = 0; queue < rx_queues_count; queue++) {
3081 		chan = priv->plat->rx_queues_cfg[queue].chan;
3082 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3083 	}
3084 }
3085 
3086 /**
3087  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3088  *  @priv: driver private structure
3089  *  Description: It is used for configuring the RX Queue Priority
3090  */
3091 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3092 {
3093 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3094 	u32 queue;
3095 	u32 prio;
3096 
3097 	for (queue = 0; queue < rx_queues_count; queue++) {
3098 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
3099 			continue;
3100 
3101 		prio = priv->plat->rx_queues_cfg[queue].prio;
3102 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3103 	}
3104 }
3105 
3106 /**
3107  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3108  *  @priv: driver private structure
3109  *  Description: It is used for configuring the TX Queue Priority
3110  */
3111 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3112 {
3113 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3114 	u32 queue;
3115 	u32 prio;
3116 
3117 	for (queue = 0; queue < tx_queues_count; queue++) {
3118 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
3119 			continue;
3120 
3121 		prio = priv->plat->tx_queues_cfg[queue].prio;
3122 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3123 	}
3124 }
3125 
3126 /**
3127  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3128  *  @priv: driver private structure
3129  *  Description: It is used for configuring the RX queue routing
3130  */
3131 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3132 {
3133 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3134 	u32 queue;
3135 	u8 packet;
3136 
3137 	for (queue = 0; queue < rx_queues_count; queue++) {
3138 		/* no specific packet type routing specified for the queue */
3139 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3140 			continue;
3141 
3142 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3143 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3144 	}
3145 }
3146 
3147 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3148 {
3149 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3150 		priv->rss.enable = false;
3151 		return;
3152 	}
3153 
3154 	if (priv->dev->features & NETIF_F_RXHASH)
3155 		priv->rss.enable = true;
3156 	else
3157 		priv->rss.enable = false;
3158 
3159 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
3160 			     priv->plat->rx_queues_to_use);
3161 }
3162 
3163 /**
3164  *  stmmac_mtl_configuration - Configure MTL
3165  *  @priv: driver private structure
3166  *  Description: It is used for configurring MTL
3167  */
3168 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3169 {
3170 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3171 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3172 
3173 	if (tx_queues_count > 1)
3174 		stmmac_set_tx_queue_weight(priv);
3175 
3176 	/* Configure MTL RX algorithms */
3177 	if (rx_queues_count > 1)
3178 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3179 				priv->plat->rx_sched_algorithm);
3180 
3181 	/* Configure MTL TX algorithms */
3182 	if (tx_queues_count > 1)
3183 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3184 				priv->plat->tx_sched_algorithm);
3185 
3186 	/* Configure CBS in AVB TX queues */
3187 	if (tx_queues_count > 1)
3188 		stmmac_configure_cbs(priv);
3189 
3190 	/* Map RX MTL to DMA channels */
3191 	stmmac_rx_queue_dma_chan_map(priv);
3192 
3193 	/* Enable MAC RX Queues */
3194 	stmmac_mac_enable_rx_queues(priv);
3195 
3196 	/* Set RX priorities */
3197 	if (rx_queues_count > 1)
3198 		stmmac_mac_config_rx_queues_prio(priv);
3199 
3200 	/* Set TX priorities */
3201 	if (tx_queues_count > 1)
3202 		stmmac_mac_config_tx_queues_prio(priv);
3203 
3204 	/* Set RX routing */
3205 	if (rx_queues_count > 1)
3206 		stmmac_mac_config_rx_queues_routing(priv);
3207 
3208 	/* Receive Side Scaling */
3209 	if (rx_queues_count > 1)
3210 		stmmac_mac_config_rss(priv);
3211 }
3212 
3213 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3214 {
3215 	if (priv->dma_cap.asp) {
3216 		netdev_info(priv->dev, "Enabling Safety Features\n");
3217 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3218 					  priv->plat->safety_feat_cfg);
3219 	} else {
3220 		netdev_info(priv->dev, "No Safety Features support found\n");
3221 	}
3222 }
3223 
3224 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3225 {
3226 	char *name;
3227 
3228 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3229 	clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3230 
3231 	name = priv->wq_name;
3232 	sprintf(name, "%s-fpe", priv->dev->name);
3233 
3234 	priv->fpe_wq = create_singlethread_workqueue(name);
3235 	if (!priv->fpe_wq) {
3236 		netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3237 
3238 		return -ENOMEM;
3239 	}
3240 	netdev_info(priv->dev, "FPE workqueue start");
3241 
3242 	return 0;
3243 }
3244 
3245 /**
3246  * stmmac_hw_setup - setup mac in a usable state.
3247  *  @dev : pointer to the device structure.
3248  *  @init_ptp: initialize PTP if set
3249  *  Description:
3250  *  this is the main function to setup the HW in a usable state because the
3251  *  dma engine is reset, the core registers are configured (e.g. AXI,
3252  *  Checksum features, timers). The DMA is ready to start receiving and
3253  *  transmitting.
3254  *  Return value:
3255  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3256  *  file on failure.
3257  */
3258 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
3259 {
3260 	struct stmmac_priv *priv = netdev_priv(dev);
3261 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3262 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3263 	bool sph_en;
3264 	u32 chan;
3265 	int ret;
3266 
3267 	/* DMA initialization and SW reset */
3268 	ret = stmmac_init_dma_engine(priv);
3269 	if (ret < 0) {
3270 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3271 			   __func__);
3272 		return ret;
3273 	}
3274 
3275 	/* Copy the MAC addr into the HW  */
3276 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3277 
3278 	/* PS and related bits will be programmed according to the speed */
3279 	if (priv->hw->pcs) {
3280 		int speed = priv->plat->mac_port_sel_speed;
3281 
3282 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
3283 		    (speed == SPEED_1000)) {
3284 			priv->hw->ps = speed;
3285 		} else {
3286 			dev_warn(priv->device, "invalid port speed\n");
3287 			priv->hw->ps = 0;
3288 		}
3289 	}
3290 
3291 	/* Initialize the MAC Core */
3292 	stmmac_core_init(priv, priv->hw, dev);
3293 
3294 	/* Initialize MTL*/
3295 	stmmac_mtl_configuration(priv);
3296 
3297 	/* Initialize Safety Features */
3298 	stmmac_safety_feat_configuration(priv);
3299 
3300 	ret = stmmac_rx_ipc(priv, priv->hw);
3301 	if (!ret) {
3302 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3303 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3304 		priv->hw->rx_csum = 0;
3305 	}
3306 
3307 	/* Enable the MAC Rx/Tx */
3308 	stmmac_mac_set(priv, priv->ioaddr, true);
3309 
3310 	/* Set the HW DMA mode and the COE */
3311 	stmmac_dma_operation_mode(priv);
3312 
3313 	stmmac_mmc_setup(priv);
3314 
3315 	if (init_ptp) {
3316 		ret = stmmac_init_ptp(priv);
3317 		if (ret == -EOPNOTSUPP)
3318 			netdev_warn(priv->dev, "PTP not supported by HW\n");
3319 		else if (ret)
3320 			netdev_warn(priv->dev, "PTP init failed\n");
3321 	}
3322 
3323 	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3324 
3325 	/* Convert the timer from msec to usec */
3326 	if (!priv->tx_lpi_timer)
3327 		priv->tx_lpi_timer = eee_timer * 1000;
3328 
3329 	if (priv->use_riwt) {
3330 		u32 queue;
3331 
3332 		for (queue = 0; queue < rx_cnt; queue++) {
3333 			if (!priv->rx_riwt[queue])
3334 				priv->rx_riwt[queue] = DEF_DMA_RIWT;
3335 
3336 			stmmac_rx_watchdog(priv, priv->ioaddr,
3337 					   priv->rx_riwt[queue], queue);
3338 		}
3339 	}
3340 
3341 	if (priv->hw->pcs)
3342 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3343 
3344 	/* set TX and RX rings length */
3345 	stmmac_set_rings_length(priv);
3346 
3347 	/* Enable TSO */
3348 	if (priv->tso) {
3349 		for (chan = 0; chan < tx_cnt; chan++) {
3350 			struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3351 
3352 			/* TSO and TBS cannot co-exist */
3353 			if (tx_q->tbs & STMMAC_TBS_AVAIL)
3354 				continue;
3355 
3356 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3357 		}
3358 	}
3359 
3360 	/* Enable Split Header */
3361 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3362 	for (chan = 0; chan < rx_cnt; chan++)
3363 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3364 
3365 
3366 	/* VLAN Tag Insertion */
3367 	if (priv->dma_cap.vlins)
3368 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3369 
3370 	/* TBS */
3371 	for (chan = 0; chan < tx_cnt; chan++) {
3372 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3373 		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3374 
3375 		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3376 	}
3377 
3378 	/* Configure real RX and TX queues */
3379 	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3380 	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3381 
3382 	/* Start the ball rolling... */
3383 	stmmac_start_all_dma(priv);
3384 
3385 	if (priv->dma_cap.fpesel) {
3386 		stmmac_fpe_start_wq(priv);
3387 
3388 		if (priv->plat->fpe_cfg->enable)
3389 			stmmac_fpe_handshake(priv, true);
3390 	}
3391 
3392 	return 0;
3393 }
3394 
3395 static void stmmac_hw_teardown(struct net_device *dev)
3396 {
3397 	struct stmmac_priv *priv = netdev_priv(dev);
3398 
3399 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
3400 }
3401 
3402 static void stmmac_free_irq(struct net_device *dev,
3403 			    enum request_irq_err irq_err, int irq_idx)
3404 {
3405 	struct stmmac_priv *priv = netdev_priv(dev);
3406 	int j;
3407 
3408 	switch (irq_err) {
3409 	case REQ_IRQ_ERR_ALL:
3410 		irq_idx = priv->plat->tx_queues_to_use;
3411 		fallthrough;
3412 	case REQ_IRQ_ERR_TX:
3413 		for (j = irq_idx - 1; j >= 0; j--) {
3414 			if (priv->tx_irq[j] > 0) {
3415 				irq_set_affinity_hint(priv->tx_irq[j], NULL);
3416 				free_irq(priv->tx_irq[j], &priv->tx_queue[j]);
3417 			}
3418 		}
3419 		irq_idx = priv->plat->rx_queues_to_use;
3420 		fallthrough;
3421 	case REQ_IRQ_ERR_RX:
3422 		for (j = irq_idx - 1; j >= 0; j--) {
3423 			if (priv->rx_irq[j] > 0) {
3424 				irq_set_affinity_hint(priv->rx_irq[j], NULL);
3425 				free_irq(priv->rx_irq[j], &priv->rx_queue[j]);
3426 			}
3427 		}
3428 
3429 		if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3430 			free_irq(priv->sfty_ue_irq, dev);
3431 		fallthrough;
3432 	case REQ_IRQ_ERR_SFTY_UE:
3433 		if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3434 			free_irq(priv->sfty_ce_irq, dev);
3435 		fallthrough;
3436 	case REQ_IRQ_ERR_SFTY_CE:
3437 		if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3438 			free_irq(priv->lpi_irq, dev);
3439 		fallthrough;
3440 	case REQ_IRQ_ERR_LPI:
3441 		if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3442 			free_irq(priv->wol_irq, dev);
3443 		fallthrough;
3444 	case REQ_IRQ_ERR_WOL:
3445 		free_irq(dev->irq, dev);
3446 		fallthrough;
3447 	case REQ_IRQ_ERR_MAC:
3448 	case REQ_IRQ_ERR_NO:
3449 		/* If MAC IRQ request error, no more IRQ to free */
3450 		break;
3451 	}
3452 }
3453 
3454 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3455 {
3456 	struct stmmac_priv *priv = netdev_priv(dev);
3457 	enum request_irq_err irq_err;
3458 	cpumask_t cpu_mask;
3459 	int irq_idx = 0;
3460 	char *int_name;
3461 	int ret;
3462 	int i;
3463 
3464 	/* For common interrupt */
3465 	int_name = priv->int_name_mac;
3466 	sprintf(int_name, "%s:%s", dev->name, "mac");
3467 	ret = request_irq(dev->irq, stmmac_mac_interrupt,
3468 			  0, int_name, dev);
3469 	if (unlikely(ret < 0)) {
3470 		netdev_err(priv->dev,
3471 			   "%s: alloc mac MSI %d (error: %d)\n",
3472 			   __func__, dev->irq, ret);
3473 		irq_err = REQ_IRQ_ERR_MAC;
3474 		goto irq_error;
3475 	}
3476 
3477 	/* Request the Wake IRQ in case of another line
3478 	 * is used for WoL
3479 	 */
3480 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3481 		int_name = priv->int_name_wol;
3482 		sprintf(int_name, "%s:%s", dev->name, "wol");
3483 		ret = request_irq(priv->wol_irq,
3484 				  stmmac_mac_interrupt,
3485 				  0, int_name, dev);
3486 		if (unlikely(ret < 0)) {
3487 			netdev_err(priv->dev,
3488 				   "%s: alloc wol MSI %d (error: %d)\n",
3489 				   __func__, priv->wol_irq, ret);
3490 			irq_err = REQ_IRQ_ERR_WOL;
3491 			goto irq_error;
3492 		}
3493 	}
3494 
3495 	/* Request the LPI IRQ in case of another line
3496 	 * is used for LPI
3497 	 */
3498 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3499 		int_name = priv->int_name_lpi;
3500 		sprintf(int_name, "%s:%s", dev->name, "lpi");
3501 		ret = request_irq(priv->lpi_irq,
3502 				  stmmac_mac_interrupt,
3503 				  0, int_name, dev);
3504 		if (unlikely(ret < 0)) {
3505 			netdev_err(priv->dev,
3506 				   "%s: alloc lpi MSI %d (error: %d)\n",
3507 				   __func__, priv->lpi_irq, ret);
3508 			irq_err = REQ_IRQ_ERR_LPI;
3509 			goto irq_error;
3510 		}
3511 	}
3512 
3513 	/* Request the Safety Feature Correctible Error line in
3514 	 * case of another line is used
3515 	 */
3516 	if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3517 		int_name = priv->int_name_sfty_ce;
3518 		sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3519 		ret = request_irq(priv->sfty_ce_irq,
3520 				  stmmac_safety_interrupt,
3521 				  0, int_name, dev);
3522 		if (unlikely(ret < 0)) {
3523 			netdev_err(priv->dev,
3524 				   "%s: alloc sfty ce MSI %d (error: %d)\n",
3525 				   __func__, priv->sfty_ce_irq, ret);
3526 			irq_err = REQ_IRQ_ERR_SFTY_CE;
3527 			goto irq_error;
3528 		}
3529 	}
3530 
3531 	/* Request the Safety Feature Uncorrectible Error line in
3532 	 * case of another line is used
3533 	 */
3534 	if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3535 		int_name = priv->int_name_sfty_ue;
3536 		sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3537 		ret = request_irq(priv->sfty_ue_irq,
3538 				  stmmac_safety_interrupt,
3539 				  0, int_name, dev);
3540 		if (unlikely(ret < 0)) {
3541 			netdev_err(priv->dev,
3542 				   "%s: alloc sfty ue MSI %d (error: %d)\n",
3543 				   __func__, priv->sfty_ue_irq, ret);
3544 			irq_err = REQ_IRQ_ERR_SFTY_UE;
3545 			goto irq_error;
3546 		}
3547 	}
3548 
3549 	/* Request Rx MSI irq */
3550 	for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3551 		if (i >= MTL_MAX_RX_QUEUES)
3552 			break;
3553 		if (priv->rx_irq[i] == 0)
3554 			continue;
3555 
3556 		int_name = priv->int_name_rx_irq[i];
3557 		sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3558 		ret = request_irq(priv->rx_irq[i],
3559 				  stmmac_msi_intr_rx,
3560 				  0, int_name, &priv->rx_queue[i]);
3561 		if (unlikely(ret < 0)) {
3562 			netdev_err(priv->dev,
3563 				   "%s: alloc rx-%d  MSI %d (error: %d)\n",
3564 				   __func__, i, priv->rx_irq[i], ret);
3565 			irq_err = REQ_IRQ_ERR_RX;
3566 			irq_idx = i;
3567 			goto irq_error;
3568 		}
3569 		cpumask_clear(&cpu_mask);
3570 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3571 		irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3572 	}
3573 
3574 	/* Request Tx MSI irq */
3575 	for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3576 		if (i >= MTL_MAX_TX_QUEUES)
3577 			break;
3578 		if (priv->tx_irq[i] == 0)
3579 			continue;
3580 
3581 		int_name = priv->int_name_tx_irq[i];
3582 		sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3583 		ret = request_irq(priv->tx_irq[i],
3584 				  stmmac_msi_intr_tx,
3585 				  0, int_name, &priv->tx_queue[i]);
3586 		if (unlikely(ret < 0)) {
3587 			netdev_err(priv->dev,
3588 				   "%s: alloc tx-%d  MSI %d (error: %d)\n",
3589 				   __func__, i, priv->tx_irq[i], ret);
3590 			irq_err = REQ_IRQ_ERR_TX;
3591 			irq_idx = i;
3592 			goto irq_error;
3593 		}
3594 		cpumask_clear(&cpu_mask);
3595 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3596 		irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3597 	}
3598 
3599 	return 0;
3600 
3601 irq_error:
3602 	stmmac_free_irq(dev, irq_err, irq_idx);
3603 	return ret;
3604 }
3605 
3606 static int stmmac_request_irq_single(struct net_device *dev)
3607 {
3608 	struct stmmac_priv *priv = netdev_priv(dev);
3609 	enum request_irq_err irq_err;
3610 	int ret;
3611 
3612 	ret = request_irq(dev->irq, stmmac_interrupt,
3613 			  IRQF_SHARED, dev->name, dev);
3614 	if (unlikely(ret < 0)) {
3615 		netdev_err(priv->dev,
3616 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3617 			   __func__, dev->irq, ret);
3618 		irq_err = REQ_IRQ_ERR_MAC;
3619 		goto irq_error;
3620 	}
3621 
3622 	/* Request the Wake IRQ in case of another line
3623 	 * is used for WoL
3624 	 */
3625 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3626 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
3627 				  IRQF_SHARED, dev->name, dev);
3628 		if (unlikely(ret < 0)) {
3629 			netdev_err(priv->dev,
3630 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3631 				   __func__, priv->wol_irq, ret);
3632 			irq_err = REQ_IRQ_ERR_WOL;
3633 			goto irq_error;
3634 		}
3635 	}
3636 
3637 	/* Request the IRQ lines */
3638 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3639 		ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3640 				  IRQF_SHARED, dev->name, dev);
3641 		if (unlikely(ret < 0)) {
3642 			netdev_err(priv->dev,
3643 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3644 				   __func__, priv->lpi_irq, ret);
3645 			irq_err = REQ_IRQ_ERR_LPI;
3646 			goto irq_error;
3647 		}
3648 	}
3649 
3650 	return 0;
3651 
3652 irq_error:
3653 	stmmac_free_irq(dev, irq_err, 0);
3654 	return ret;
3655 }
3656 
3657 static int stmmac_request_irq(struct net_device *dev)
3658 {
3659 	struct stmmac_priv *priv = netdev_priv(dev);
3660 	int ret;
3661 
3662 	/* Request the IRQ lines */
3663 	if (priv->plat->multi_msi_en)
3664 		ret = stmmac_request_irq_multi_msi(dev);
3665 	else
3666 		ret = stmmac_request_irq_single(dev);
3667 
3668 	return ret;
3669 }
3670 
3671 /**
3672  *  stmmac_open - open entry point of the driver
3673  *  @dev : pointer to the device structure.
3674  *  Description:
3675  *  This function is the open entry point of the driver.
3676  *  Return value:
3677  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3678  *  file on failure.
3679  */
3680 int stmmac_open(struct net_device *dev)
3681 {
3682 	struct stmmac_priv *priv = netdev_priv(dev);
3683 	int mode = priv->plat->phy_interface;
3684 	int bfsize = 0;
3685 	u32 chan;
3686 	int ret;
3687 
3688 	ret = pm_runtime_get_sync(priv->device);
3689 	if (ret < 0) {
3690 		pm_runtime_put_noidle(priv->device);
3691 		return ret;
3692 	}
3693 
3694 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
3695 	    priv->hw->pcs != STMMAC_PCS_RTBI &&
3696 	    (!priv->hw->xpcs ||
3697 	     xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
3698 		ret = stmmac_init_phy(dev);
3699 		if (ret) {
3700 			netdev_err(priv->dev,
3701 				   "%s: Cannot attach to PHY (error: %d)\n",
3702 				   __func__, ret);
3703 			goto init_phy_error;
3704 		}
3705 	}
3706 
3707 	/* Extra statistics */
3708 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3709 	priv->xstats.threshold = tc;
3710 
3711 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
3712 	if (bfsize < 0)
3713 		bfsize = 0;
3714 
3715 	if (bfsize < BUF_SIZE_16KiB)
3716 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
3717 
3718 	priv->dma_buf_sz = bfsize;
3719 	buf_sz = bfsize;
3720 
3721 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3722 
3723 	if (!priv->dma_tx_size)
3724 		priv->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3725 	if (!priv->dma_rx_size)
3726 		priv->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3727 
3728 	/* Earlier check for TBS */
3729 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3730 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3731 		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3732 
3733 		/* Setup per-TXQ tbs flag before TX descriptor alloc */
3734 		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3735 	}
3736 
3737 	ret = alloc_dma_desc_resources(priv);
3738 	if (ret < 0) {
3739 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3740 			   __func__);
3741 		goto dma_desc_error;
3742 	}
3743 
3744 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
3745 	if (ret < 0) {
3746 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3747 			   __func__);
3748 		goto init_error;
3749 	}
3750 
3751 	ret = stmmac_hw_setup(dev, true);
3752 	if (ret < 0) {
3753 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3754 		goto init_error;
3755 	}
3756 
3757 	stmmac_init_coalesce(priv);
3758 
3759 	phylink_start(priv->phylink);
3760 	/* We may have called phylink_speed_down before */
3761 	phylink_speed_up(priv->phylink);
3762 
3763 	ret = stmmac_request_irq(dev);
3764 	if (ret)
3765 		goto irq_error;
3766 
3767 	stmmac_enable_all_queues(priv);
3768 	netif_tx_start_all_queues(priv->dev);
3769 
3770 	return 0;
3771 
3772 irq_error:
3773 	phylink_stop(priv->phylink);
3774 
3775 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3776 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3777 
3778 	stmmac_hw_teardown(dev);
3779 init_error:
3780 	free_dma_desc_resources(priv);
3781 dma_desc_error:
3782 	phylink_disconnect_phy(priv->phylink);
3783 init_phy_error:
3784 	pm_runtime_put(priv->device);
3785 	return ret;
3786 }
3787 
3788 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3789 {
3790 	set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3791 
3792 	if (priv->fpe_wq)
3793 		destroy_workqueue(priv->fpe_wq);
3794 
3795 	netdev_info(priv->dev, "FPE workqueue stop");
3796 }
3797 
3798 /**
3799  *  stmmac_release - close entry point of the driver
3800  *  @dev : device pointer.
3801  *  Description:
3802  *  This is the stop entry point of the driver.
3803  */
3804 int stmmac_release(struct net_device *dev)
3805 {
3806 	struct stmmac_priv *priv = netdev_priv(dev);
3807 	u32 chan;
3808 
3809 	netif_tx_disable(dev);
3810 
3811 	if (device_may_wakeup(priv->device))
3812 		phylink_speed_down(priv->phylink, false);
3813 	/* Stop and disconnect the PHY */
3814 	phylink_stop(priv->phylink);
3815 	phylink_disconnect_phy(priv->phylink);
3816 
3817 	stmmac_disable_all_queues(priv);
3818 
3819 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3820 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3821 
3822 	/* Free the IRQ lines */
3823 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3824 
3825 	if (priv->eee_enabled) {
3826 		priv->tx_path_in_lpi_mode = false;
3827 		del_timer_sync(&priv->eee_ctrl_timer);
3828 	}
3829 
3830 	/* Stop TX/RX DMA and clear the descriptors */
3831 	stmmac_stop_all_dma(priv);
3832 
3833 	/* Release and free the Rx/Tx resources */
3834 	free_dma_desc_resources(priv);
3835 
3836 	/* Disable the MAC Rx/Tx */
3837 	stmmac_mac_set(priv, priv->ioaddr, false);
3838 
3839 	netif_carrier_off(dev);
3840 
3841 	stmmac_release_ptp(priv);
3842 
3843 	pm_runtime_put(priv->device);
3844 
3845 	if (priv->dma_cap.fpesel)
3846 		stmmac_fpe_stop_wq(priv);
3847 
3848 	return 0;
3849 }
3850 
3851 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3852 			       struct stmmac_tx_queue *tx_q)
3853 {
3854 	u16 tag = 0x0, inner_tag = 0x0;
3855 	u32 inner_type = 0x0;
3856 	struct dma_desc *p;
3857 
3858 	if (!priv->dma_cap.vlins)
3859 		return false;
3860 	if (!skb_vlan_tag_present(skb))
3861 		return false;
3862 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3863 		inner_tag = skb_vlan_tag_get(skb);
3864 		inner_type = STMMAC_VLAN_INSERT;
3865 	}
3866 
3867 	tag = skb_vlan_tag_get(skb);
3868 
3869 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3870 		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3871 	else
3872 		p = &tx_q->dma_tx[tx_q->cur_tx];
3873 
3874 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3875 		return false;
3876 
3877 	stmmac_set_tx_owner(priv, p);
3878 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3879 	return true;
3880 }
3881 
3882 /**
3883  *  stmmac_tso_allocator - close entry point of the driver
3884  *  @priv: driver private structure
3885  *  @des: buffer start address
3886  *  @total_len: total length to fill in descriptors
3887  *  @last_segment: condition for the last descriptor
3888  *  @queue: TX queue index
3889  *  Description:
3890  *  This function fills descriptor and request new descriptors according to
3891  *  buffer length to fill
3892  */
3893 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3894 				 int total_len, bool last_segment, u32 queue)
3895 {
3896 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3897 	struct dma_desc *desc;
3898 	u32 buff_size;
3899 	int tmp_len;
3900 
3901 	tmp_len = total_len;
3902 
3903 	while (tmp_len > 0) {
3904 		dma_addr_t curr_addr;
3905 
3906 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3907 						priv->dma_tx_size);
3908 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3909 
3910 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3911 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3912 		else
3913 			desc = &tx_q->dma_tx[tx_q->cur_tx];
3914 
3915 		curr_addr = des + (total_len - tmp_len);
3916 		if (priv->dma_cap.addr64 <= 32)
3917 			desc->des0 = cpu_to_le32(curr_addr);
3918 		else
3919 			stmmac_set_desc_addr(priv, desc, curr_addr);
3920 
3921 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
3922 			    TSO_MAX_BUFF_SIZE : tmp_len;
3923 
3924 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3925 				0, 1,
3926 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3927 				0, 0);
3928 
3929 		tmp_len -= TSO_MAX_BUFF_SIZE;
3930 	}
3931 }
3932 
3933 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
3934 {
3935 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3936 	int desc_size;
3937 
3938 	if (likely(priv->extend_desc))
3939 		desc_size = sizeof(struct dma_extended_desc);
3940 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3941 		desc_size = sizeof(struct dma_edesc);
3942 	else
3943 		desc_size = sizeof(struct dma_desc);
3944 
3945 	/* The own bit must be the latest setting done when prepare the
3946 	 * descriptor and then barrier is needed to make sure that
3947 	 * all is coherent before granting the DMA engine.
3948 	 */
3949 	wmb();
3950 
3951 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3952 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3953 }
3954 
3955 /**
3956  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3957  *  @skb : the socket buffer
3958  *  @dev : device pointer
3959  *  Description: this is the transmit function that is called on TSO frames
3960  *  (support available on GMAC4 and newer chips).
3961  *  Diagram below show the ring programming in case of TSO frames:
3962  *
3963  *  First Descriptor
3964  *   --------
3965  *   | DES0 |---> buffer1 = L2/L3/L4 header
3966  *   | DES1 |---> TCP Payload (can continue on next descr...)
3967  *   | DES2 |---> buffer 1 and 2 len
3968  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3969  *   --------
3970  *	|
3971  *     ...
3972  *	|
3973  *   --------
3974  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
3975  *   | DES1 | --|
3976  *   | DES2 | --> buffer 1 and 2 len
3977  *   | DES3 |
3978  *   --------
3979  *
3980  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3981  */
3982 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3983 {
3984 	struct dma_desc *desc, *first, *mss_desc = NULL;
3985 	struct stmmac_priv *priv = netdev_priv(dev);
3986 	int nfrags = skb_shinfo(skb)->nr_frags;
3987 	u32 queue = skb_get_queue_mapping(skb);
3988 	unsigned int first_entry, tx_packets;
3989 	int tmp_pay_len = 0, first_tx;
3990 	struct stmmac_tx_queue *tx_q;
3991 	bool has_vlan, set_ic;
3992 	u8 proto_hdr_len, hdr;
3993 	u32 pay_len, mss;
3994 	dma_addr_t des;
3995 	int i;
3996 
3997 	tx_q = &priv->tx_queue[queue];
3998 	first_tx = tx_q->cur_tx;
3999 
4000 	/* Compute header lengths */
4001 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
4002 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
4003 		hdr = sizeof(struct udphdr);
4004 	} else {
4005 		proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4006 		hdr = tcp_hdrlen(skb);
4007 	}
4008 
4009 	/* Desc availability based on threshold should be enough safe */
4010 	if (unlikely(stmmac_tx_avail(priv, queue) <
4011 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
4012 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4013 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4014 								queue));
4015 			/* This is a hard error, log it. */
4016 			netdev_err(priv->dev,
4017 				   "%s: Tx Ring full when queue awake\n",
4018 				   __func__);
4019 		}
4020 		return NETDEV_TX_BUSY;
4021 	}
4022 
4023 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
4024 
4025 	mss = skb_shinfo(skb)->gso_size;
4026 
4027 	/* set new MSS value if needed */
4028 	if (mss != tx_q->mss) {
4029 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4030 			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4031 		else
4032 			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
4033 
4034 		stmmac_set_mss(priv, mss_desc, mss);
4035 		tx_q->mss = mss;
4036 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4037 						priv->dma_tx_size);
4038 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4039 	}
4040 
4041 	if (netif_msg_tx_queued(priv)) {
4042 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
4043 			__func__, hdr, proto_hdr_len, pay_len, mss);
4044 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4045 			skb->data_len);
4046 	}
4047 
4048 	/* Check if VLAN can be inserted by HW */
4049 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4050 
4051 	first_entry = tx_q->cur_tx;
4052 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4053 
4054 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
4055 		desc = &tx_q->dma_entx[first_entry].basic;
4056 	else
4057 		desc = &tx_q->dma_tx[first_entry];
4058 	first = desc;
4059 
4060 	if (has_vlan)
4061 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4062 
4063 	/* first descriptor: fill Headers on Buf1 */
4064 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4065 			     DMA_TO_DEVICE);
4066 	if (dma_mapping_error(priv->device, des))
4067 		goto dma_map_err;
4068 
4069 	tx_q->tx_skbuff_dma[first_entry].buf = des;
4070 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4071 	tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4072 	tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4073 
4074 	if (priv->dma_cap.addr64 <= 32) {
4075 		first->des0 = cpu_to_le32(des);
4076 
4077 		/* Fill start of payload in buff2 of first descriptor */
4078 		if (pay_len)
4079 			first->des1 = cpu_to_le32(des + proto_hdr_len);
4080 
4081 		/* If needed take extra descriptors to fill the remaining payload */
4082 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4083 	} else {
4084 		stmmac_set_desc_addr(priv, first, des);
4085 		tmp_pay_len = pay_len;
4086 		des += proto_hdr_len;
4087 		pay_len = 0;
4088 	}
4089 
4090 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4091 
4092 	/* Prepare fragments */
4093 	for (i = 0; i < nfrags; i++) {
4094 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4095 
4096 		des = skb_frag_dma_map(priv->device, frag, 0,
4097 				       skb_frag_size(frag),
4098 				       DMA_TO_DEVICE);
4099 		if (dma_mapping_error(priv->device, des))
4100 			goto dma_map_err;
4101 
4102 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4103 				     (i == nfrags - 1), queue);
4104 
4105 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4106 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4107 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4108 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4109 	}
4110 
4111 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4112 
4113 	/* Only the last descriptor gets to point to the skb. */
4114 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4115 	tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4116 
4117 	/* Manage tx mitigation */
4118 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
4119 	tx_q->tx_count_frames += tx_packets;
4120 
4121 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4122 		set_ic = true;
4123 	else if (!priv->tx_coal_frames[queue])
4124 		set_ic = false;
4125 	else if (tx_packets > priv->tx_coal_frames[queue])
4126 		set_ic = true;
4127 	else if ((tx_q->tx_count_frames %
4128 		  priv->tx_coal_frames[queue]) < tx_packets)
4129 		set_ic = true;
4130 	else
4131 		set_ic = false;
4132 
4133 	if (set_ic) {
4134 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4135 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4136 		else
4137 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4138 
4139 		tx_q->tx_count_frames = 0;
4140 		stmmac_set_tx_ic(priv, desc);
4141 		priv->xstats.tx_set_ic_bit++;
4142 	}
4143 
4144 	/* We've used all descriptors we need for this skb, however,
4145 	 * advance cur_tx so that it references a fresh descriptor.
4146 	 * ndo_start_xmit will fill this descriptor the next time it's
4147 	 * called and stmmac_tx_clean may clean up to this descriptor.
4148 	 */
4149 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
4150 
4151 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4152 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4153 			  __func__);
4154 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4155 	}
4156 
4157 	dev->stats.tx_bytes += skb->len;
4158 	priv->xstats.tx_tso_frames++;
4159 	priv->xstats.tx_tso_nfrags += nfrags;
4160 
4161 	if (priv->sarc_type)
4162 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4163 
4164 	skb_tx_timestamp(skb);
4165 
4166 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4167 		     priv->hwts_tx_en)) {
4168 		/* declare that device is doing timestamping */
4169 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4170 		stmmac_enable_tx_timestamp(priv, first);
4171 	}
4172 
4173 	/* Complete the first descriptor before granting the DMA */
4174 	stmmac_prepare_tso_tx_desc(priv, first, 1,
4175 			proto_hdr_len,
4176 			pay_len,
4177 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4178 			hdr / 4, (skb->len - proto_hdr_len));
4179 
4180 	/* If context desc is used to change MSS */
4181 	if (mss_desc) {
4182 		/* Make sure that first descriptor has been completely
4183 		 * written, including its own bit. This is because MSS is
4184 		 * actually before first descriptor, so we need to make
4185 		 * sure that MSS's own bit is the last thing written.
4186 		 */
4187 		dma_wmb();
4188 		stmmac_set_tx_owner(priv, mss_desc);
4189 	}
4190 
4191 	if (netif_msg_pktdata(priv)) {
4192 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4193 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4194 			tx_q->cur_tx, first, nfrags);
4195 		pr_info(">>> frame to be transmitted: ");
4196 		print_pkt(skb->data, skb_headlen(skb));
4197 	}
4198 
4199 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4200 
4201 	stmmac_flush_tx_descriptors(priv, queue);
4202 	stmmac_tx_timer_arm(priv, queue);
4203 
4204 	return NETDEV_TX_OK;
4205 
4206 dma_map_err:
4207 	dev_err(priv->device, "Tx dma map failed\n");
4208 	dev_kfree_skb(skb);
4209 	priv->dev->stats.tx_dropped++;
4210 	return NETDEV_TX_OK;
4211 }
4212 
4213 /**
4214  *  stmmac_xmit - Tx entry point of the driver
4215  *  @skb : the socket buffer
4216  *  @dev : device pointer
4217  *  Description : this is the tx entry point of the driver.
4218  *  It programs the chain or the ring and supports oversized frames
4219  *  and SG feature.
4220  */
4221 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4222 {
4223 	unsigned int first_entry, tx_packets, enh_desc;
4224 	struct stmmac_priv *priv = netdev_priv(dev);
4225 	unsigned int nopaged_len = skb_headlen(skb);
4226 	int i, csum_insertion = 0, is_jumbo = 0;
4227 	u32 queue = skb_get_queue_mapping(skb);
4228 	int nfrags = skb_shinfo(skb)->nr_frags;
4229 	int gso = skb_shinfo(skb)->gso_type;
4230 	struct dma_edesc *tbs_desc = NULL;
4231 	struct dma_desc *desc, *first;
4232 	struct stmmac_tx_queue *tx_q;
4233 	bool has_vlan, set_ic;
4234 	int entry, first_tx;
4235 	dma_addr_t des;
4236 
4237 	tx_q = &priv->tx_queue[queue];
4238 	first_tx = tx_q->cur_tx;
4239 
4240 	if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4241 		stmmac_disable_eee_mode(priv);
4242 
4243 	/* Manage oversized TCP frames for GMAC4 device */
4244 	if (skb_is_gso(skb) && priv->tso) {
4245 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4246 			return stmmac_tso_xmit(skb, dev);
4247 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4248 			return stmmac_tso_xmit(skb, dev);
4249 	}
4250 
4251 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4252 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4253 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4254 								queue));
4255 			/* This is a hard error, log it. */
4256 			netdev_err(priv->dev,
4257 				   "%s: Tx Ring full when queue awake\n",
4258 				   __func__);
4259 		}
4260 		return NETDEV_TX_BUSY;
4261 	}
4262 
4263 	/* Check if VLAN can be inserted by HW */
4264 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4265 
4266 	entry = tx_q->cur_tx;
4267 	first_entry = entry;
4268 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4269 
4270 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4271 
4272 	if (likely(priv->extend_desc))
4273 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4274 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4275 		desc = &tx_q->dma_entx[entry].basic;
4276 	else
4277 		desc = tx_q->dma_tx + entry;
4278 
4279 	first = desc;
4280 
4281 	if (has_vlan)
4282 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4283 
4284 	enh_desc = priv->plat->enh_desc;
4285 	/* To program the descriptors according to the size of the frame */
4286 	if (enh_desc)
4287 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4288 
4289 	if (unlikely(is_jumbo)) {
4290 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4291 		if (unlikely(entry < 0) && (entry != -EINVAL))
4292 			goto dma_map_err;
4293 	}
4294 
4295 	for (i = 0; i < nfrags; i++) {
4296 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4297 		int len = skb_frag_size(frag);
4298 		bool last_segment = (i == (nfrags - 1));
4299 
4300 		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4301 		WARN_ON(tx_q->tx_skbuff[entry]);
4302 
4303 		if (likely(priv->extend_desc))
4304 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4305 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4306 			desc = &tx_q->dma_entx[entry].basic;
4307 		else
4308 			desc = tx_q->dma_tx + entry;
4309 
4310 		des = skb_frag_dma_map(priv->device, frag, 0, len,
4311 				       DMA_TO_DEVICE);
4312 		if (dma_mapping_error(priv->device, des))
4313 			goto dma_map_err; /* should reuse desc w/o issues */
4314 
4315 		tx_q->tx_skbuff_dma[entry].buf = des;
4316 
4317 		stmmac_set_desc_addr(priv, desc, des);
4318 
4319 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
4320 		tx_q->tx_skbuff_dma[entry].len = len;
4321 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4322 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4323 
4324 		/* Prepare the descriptor and set the own bit too */
4325 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4326 				priv->mode, 1, last_segment, skb->len);
4327 	}
4328 
4329 	/* Only the last descriptor gets to point to the skb. */
4330 	tx_q->tx_skbuff[entry] = skb;
4331 	tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4332 
4333 	/* According to the coalesce parameter the IC bit for the latest
4334 	 * segment is reset and the timer re-started to clean the tx status.
4335 	 * This approach takes care about the fragments: desc is the first
4336 	 * element in case of no SG.
4337 	 */
4338 	tx_packets = (entry + 1) - first_tx;
4339 	tx_q->tx_count_frames += tx_packets;
4340 
4341 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4342 		set_ic = true;
4343 	else if (!priv->tx_coal_frames[queue])
4344 		set_ic = false;
4345 	else if (tx_packets > priv->tx_coal_frames[queue])
4346 		set_ic = true;
4347 	else if ((tx_q->tx_count_frames %
4348 		  priv->tx_coal_frames[queue]) < tx_packets)
4349 		set_ic = true;
4350 	else
4351 		set_ic = false;
4352 
4353 	if (set_ic) {
4354 		if (likely(priv->extend_desc))
4355 			desc = &tx_q->dma_etx[entry].basic;
4356 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4357 			desc = &tx_q->dma_entx[entry].basic;
4358 		else
4359 			desc = &tx_q->dma_tx[entry];
4360 
4361 		tx_q->tx_count_frames = 0;
4362 		stmmac_set_tx_ic(priv, desc);
4363 		priv->xstats.tx_set_ic_bit++;
4364 	}
4365 
4366 	/* We've used all descriptors we need for this skb, however,
4367 	 * advance cur_tx so that it references a fresh descriptor.
4368 	 * ndo_start_xmit will fill this descriptor the next time it's
4369 	 * called and stmmac_tx_clean may clean up to this descriptor.
4370 	 */
4371 	entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4372 	tx_q->cur_tx = entry;
4373 
4374 	if (netif_msg_pktdata(priv)) {
4375 		netdev_dbg(priv->dev,
4376 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4377 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4378 			   entry, first, nfrags);
4379 
4380 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4381 		print_pkt(skb->data, skb->len);
4382 	}
4383 
4384 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4385 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4386 			  __func__);
4387 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4388 	}
4389 
4390 	dev->stats.tx_bytes += skb->len;
4391 
4392 	if (priv->sarc_type)
4393 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4394 
4395 	skb_tx_timestamp(skb);
4396 
4397 	/* Ready to fill the first descriptor and set the OWN bit w/o any
4398 	 * problems because all the descriptors are actually ready to be
4399 	 * passed to the DMA engine.
4400 	 */
4401 	if (likely(!is_jumbo)) {
4402 		bool last_segment = (nfrags == 0);
4403 
4404 		des = dma_map_single(priv->device, skb->data,
4405 				     nopaged_len, DMA_TO_DEVICE);
4406 		if (dma_mapping_error(priv->device, des))
4407 			goto dma_map_err;
4408 
4409 		tx_q->tx_skbuff_dma[first_entry].buf = des;
4410 		tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4411 		tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4412 
4413 		stmmac_set_desc_addr(priv, first, des);
4414 
4415 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4416 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4417 
4418 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4419 			     priv->hwts_tx_en)) {
4420 			/* declare that device is doing timestamping */
4421 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4422 			stmmac_enable_tx_timestamp(priv, first);
4423 		}
4424 
4425 		/* Prepare the first descriptor setting the OWN bit too */
4426 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4427 				csum_insertion, priv->mode, 0, last_segment,
4428 				skb->len);
4429 	}
4430 
4431 	if (tx_q->tbs & STMMAC_TBS_EN) {
4432 		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4433 
4434 		tbs_desc = &tx_q->dma_entx[first_entry];
4435 		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4436 	}
4437 
4438 	stmmac_set_tx_owner(priv, first);
4439 
4440 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4441 
4442 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4443 
4444 	stmmac_flush_tx_descriptors(priv, queue);
4445 	stmmac_tx_timer_arm(priv, queue);
4446 
4447 	return NETDEV_TX_OK;
4448 
4449 dma_map_err:
4450 	netdev_err(priv->dev, "Tx DMA map failed\n");
4451 	dev_kfree_skb(skb);
4452 	priv->dev->stats.tx_dropped++;
4453 	return NETDEV_TX_OK;
4454 }
4455 
4456 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4457 {
4458 	struct vlan_ethhdr *veth;
4459 	__be16 vlan_proto;
4460 	u16 vlanid;
4461 
4462 	veth = (struct vlan_ethhdr *)skb->data;
4463 	vlan_proto = veth->h_vlan_proto;
4464 
4465 	if ((vlan_proto == htons(ETH_P_8021Q) &&
4466 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4467 	    (vlan_proto == htons(ETH_P_8021AD) &&
4468 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4469 		/* pop the vlan tag */
4470 		vlanid = ntohs(veth->h_vlan_TCI);
4471 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4472 		skb_pull(skb, VLAN_HLEN);
4473 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4474 	}
4475 }
4476 
4477 /**
4478  * stmmac_rx_refill - refill used skb preallocated buffers
4479  * @priv: driver private structure
4480  * @queue: RX queue index
4481  * Description : this is to reallocate the skb for the reception process
4482  * that is based on zero-copy.
4483  */
4484 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4485 {
4486 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4487 	int dirty = stmmac_rx_dirty(priv, queue);
4488 	unsigned int entry = rx_q->dirty_rx;
4489 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
4490 
4491 	if (priv->dma_cap.addr64 <= 32)
4492 		gfp |= GFP_DMA32;
4493 
4494 	while (dirty-- > 0) {
4495 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4496 		struct dma_desc *p;
4497 		bool use_rx_wd;
4498 
4499 		if (priv->extend_desc)
4500 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4501 		else
4502 			p = rx_q->dma_rx + entry;
4503 
4504 		if (!buf->page) {
4505 			buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4506 			if (!buf->page)
4507 				break;
4508 		}
4509 
4510 		if (priv->sph && !buf->sec_page) {
4511 			buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4512 			if (!buf->sec_page)
4513 				break;
4514 
4515 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4516 		}
4517 
4518 		buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4519 
4520 		stmmac_set_desc_addr(priv, p, buf->addr);
4521 		if (priv->sph)
4522 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4523 		else
4524 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4525 		stmmac_refill_desc3(priv, rx_q, p);
4526 
4527 		rx_q->rx_count_frames++;
4528 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4529 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4530 			rx_q->rx_count_frames = 0;
4531 
4532 		use_rx_wd = !priv->rx_coal_frames[queue];
4533 		use_rx_wd |= rx_q->rx_count_frames > 0;
4534 		if (!priv->use_riwt)
4535 			use_rx_wd = false;
4536 
4537 		dma_wmb();
4538 		stmmac_set_rx_owner(priv, p, use_rx_wd);
4539 
4540 		entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4541 	}
4542 	rx_q->dirty_rx = entry;
4543 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4544 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
4545 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4546 }
4547 
4548 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4549 				       struct dma_desc *p,
4550 				       int status, unsigned int len)
4551 {
4552 	unsigned int plen = 0, hlen = 0;
4553 	int coe = priv->hw->rx_csum;
4554 
4555 	/* Not first descriptor, buffer is always zero */
4556 	if (priv->sph && len)
4557 		return 0;
4558 
4559 	/* First descriptor, get split header length */
4560 	stmmac_get_rx_header_len(priv, p, &hlen);
4561 	if (priv->sph && hlen) {
4562 		priv->xstats.rx_split_hdr_pkt_n++;
4563 		return hlen;
4564 	}
4565 
4566 	/* First descriptor, not last descriptor and not split header */
4567 	if (status & rx_not_ls)
4568 		return priv->dma_buf_sz;
4569 
4570 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4571 
4572 	/* First descriptor and last descriptor and not split header */
4573 	return min_t(unsigned int, priv->dma_buf_sz, plen);
4574 }
4575 
4576 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4577 				       struct dma_desc *p,
4578 				       int status, unsigned int len)
4579 {
4580 	int coe = priv->hw->rx_csum;
4581 	unsigned int plen = 0;
4582 
4583 	/* Not split header, buffer is not available */
4584 	if (!priv->sph)
4585 		return 0;
4586 
4587 	/* Not last descriptor */
4588 	if (status & rx_not_ls)
4589 		return priv->dma_buf_sz;
4590 
4591 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4592 
4593 	/* Last descriptor */
4594 	return plen - len;
4595 }
4596 
4597 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4598 				struct xdp_frame *xdpf, bool dma_map)
4599 {
4600 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4601 	unsigned int entry = tx_q->cur_tx;
4602 	struct dma_desc *tx_desc;
4603 	dma_addr_t dma_addr;
4604 	bool set_ic;
4605 
4606 	if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4607 		return STMMAC_XDP_CONSUMED;
4608 
4609 	if (likely(priv->extend_desc))
4610 		tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4611 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4612 		tx_desc = &tx_q->dma_entx[entry].basic;
4613 	else
4614 		tx_desc = tx_q->dma_tx + entry;
4615 
4616 	if (dma_map) {
4617 		dma_addr = dma_map_single(priv->device, xdpf->data,
4618 					  xdpf->len, DMA_TO_DEVICE);
4619 		if (dma_mapping_error(priv->device, dma_addr))
4620 			return STMMAC_XDP_CONSUMED;
4621 
4622 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4623 	} else {
4624 		struct page *page = virt_to_page(xdpf->data);
4625 
4626 		dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4627 			   xdpf->headroom;
4628 		dma_sync_single_for_device(priv->device, dma_addr,
4629 					   xdpf->len, DMA_BIDIRECTIONAL);
4630 
4631 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4632 	}
4633 
4634 	tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4635 	tx_q->tx_skbuff_dma[entry].map_as_page = false;
4636 	tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4637 	tx_q->tx_skbuff_dma[entry].last_segment = true;
4638 	tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4639 
4640 	tx_q->xdpf[entry] = xdpf;
4641 
4642 	stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4643 
4644 	stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4645 			       true, priv->mode, true, true,
4646 			       xdpf->len);
4647 
4648 	tx_q->tx_count_frames++;
4649 
4650 	if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4651 		set_ic = true;
4652 	else
4653 		set_ic = false;
4654 
4655 	if (set_ic) {
4656 		tx_q->tx_count_frames = 0;
4657 		stmmac_set_tx_ic(priv, tx_desc);
4658 		priv->xstats.tx_set_ic_bit++;
4659 	}
4660 
4661 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4662 
4663 	entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4664 	tx_q->cur_tx = entry;
4665 
4666 	return STMMAC_XDP_TX;
4667 }
4668 
4669 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4670 				   int cpu)
4671 {
4672 	int index = cpu;
4673 
4674 	if (unlikely(index < 0))
4675 		index = 0;
4676 
4677 	while (index >= priv->plat->tx_queues_to_use)
4678 		index -= priv->plat->tx_queues_to_use;
4679 
4680 	return index;
4681 }
4682 
4683 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4684 				struct xdp_buff *xdp)
4685 {
4686 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4687 	int cpu = smp_processor_id();
4688 	struct netdev_queue *nq;
4689 	int queue;
4690 	int res;
4691 
4692 	if (unlikely(!xdpf))
4693 		return STMMAC_XDP_CONSUMED;
4694 
4695 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4696 	nq = netdev_get_tx_queue(priv->dev, queue);
4697 
4698 	__netif_tx_lock(nq, cpu);
4699 	/* Avoids TX time-out as we are sharing with slow path */
4700 	nq->trans_start = jiffies;
4701 
4702 	res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4703 	if (res == STMMAC_XDP_TX)
4704 		stmmac_flush_tx_descriptors(priv, queue);
4705 
4706 	__netif_tx_unlock(nq);
4707 
4708 	return res;
4709 }
4710 
4711 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4712 				 struct bpf_prog *prog,
4713 				 struct xdp_buff *xdp)
4714 {
4715 	u32 act;
4716 	int res;
4717 
4718 	act = bpf_prog_run_xdp(prog, xdp);
4719 	switch (act) {
4720 	case XDP_PASS:
4721 		res = STMMAC_XDP_PASS;
4722 		break;
4723 	case XDP_TX:
4724 		res = stmmac_xdp_xmit_back(priv, xdp);
4725 		break;
4726 	case XDP_REDIRECT:
4727 		if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4728 			res = STMMAC_XDP_CONSUMED;
4729 		else
4730 			res = STMMAC_XDP_REDIRECT;
4731 		break;
4732 	default:
4733 		bpf_warn_invalid_xdp_action(act);
4734 		fallthrough;
4735 	case XDP_ABORTED:
4736 		trace_xdp_exception(priv->dev, prog, act);
4737 		fallthrough;
4738 	case XDP_DROP:
4739 		res = STMMAC_XDP_CONSUMED;
4740 		break;
4741 	}
4742 
4743 	return res;
4744 }
4745 
4746 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4747 					   struct xdp_buff *xdp)
4748 {
4749 	struct bpf_prog *prog;
4750 	int res;
4751 
4752 	prog = READ_ONCE(priv->xdp_prog);
4753 	if (!prog) {
4754 		res = STMMAC_XDP_PASS;
4755 		goto out;
4756 	}
4757 
4758 	res = __stmmac_xdp_run_prog(priv, prog, xdp);
4759 out:
4760 	return ERR_PTR(-res);
4761 }
4762 
4763 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4764 				   int xdp_status)
4765 {
4766 	int cpu = smp_processor_id();
4767 	int queue;
4768 
4769 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4770 
4771 	if (xdp_status & STMMAC_XDP_TX)
4772 		stmmac_tx_timer_arm(priv, queue);
4773 
4774 	if (xdp_status & STMMAC_XDP_REDIRECT)
4775 		xdp_do_flush();
4776 }
4777 
4778 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4779 					       struct xdp_buff *xdp)
4780 {
4781 	unsigned int metasize = xdp->data - xdp->data_meta;
4782 	unsigned int datasize = xdp->data_end - xdp->data;
4783 	struct sk_buff *skb;
4784 
4785 	skb = __napi_alloc_skb(&ch->rxtx_napi,
4786 			       xdp->data_end - xdp->data_hard_start,
4787 			       GFP_ATOMIC | __GFP_NOWARN);
4788 	if (unlikely(!skb))
4789 		return NULL;
4790 
4791 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
4792 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4793 	if (metasize)
4794 		skb_metadata_set(skb, metasize);
4795 
4796 	return skb;
4797 }
4798 
4799 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4800 				   struct dma_desc *p, struct dma_desc *np,
4801 				   struct xdp_buff *xdp)
4802 {
4803 	struct stmmac_channel *ch = &priv->channel[queue];
4804 	unsigned int len = xdp->data_end - xdp->data;
4805 	enum pkt_hash_types hash_type;
4806 	int coe = priv->hw->rx_csum;
4807 	struct sk_buff *skb;
4808 	u32 hash;
4809 
4810 	skb = stmmac_construct_skb_zc(ch, xdp);
4811 	if (!skb) {
4812 		priv->dev->stats.rx_dropped++;
4813 		return;
4814 	}
4815 
4816 	stmmac_get_rx_hwtstamp(priv, p, np, skb);
4817 	stmmac_rx_vlan(priv->dev, skb);
4818 	skb->protocol = eth_type_trans(skb, priv->dev);
4819 
4820 	if (unlikely(!coe))
4821 		skb_checksum_none_assert(skb);
4822 	else
4823 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4824 
4825 	if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4826 		skb_set_hash(skb, hash, hash_type);
4827 
4828 	skb_record_rx_queue(skb, queue);
4829 	napi_gro_receive(&ch->rxtx_napi, skb);
4830 
4831 	priv->dev->stats.rx_packets++;
4832 	priv->dev->stats.rx_bytes += len;
4833 }
4834 
4835 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4836 {
4837 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4838 	unsigned int entry = rx_q->dirty_rx;
4839 	struct dma_desc *rx_desc = NULL;
4840 	bool ret = true;
4841 
4842 	budget = min(budget, stmmac_rx_dirty(priv, queue));
4843 
4844 	while (budget-- > 0 && entry != rx_q->cur_rx) {
4845 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4846 		dma_addr_t dma_addr;
4847 		bool use_rx_wd;
4848 
4849 		if (!buf->xdp) {
4850 			buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4851 			if (!buf->xdp) {
4852 				ret = false;
4853 				break;
4854 			}
4855 		}
4856 
4857 		if (priv->extend_desc)
4858 			rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4859 		else
4860 			rx_desc = rx_q->dma_rx + entry;
4861 
4862 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4863 		stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4864 		stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4865 		stmmac_refill_desc3(priv, rx_q, rx_desc);
4866 
4867 		rx_q->rx_count_frames++;
4868 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4869 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4870 			rx_q->rx_count_frames = 0;
4871 
4872 		use_rx_wd = !priv->rx_coal_frames[queue];
4873 		use_rx_wd |= rx_q->rx_count_frames > 0;
4874 		if (!priv->use_riwt)
4875 			use_rx_wd = false;
4876 
4877 		dma_wmb();
4878 		stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4879 
4880 		entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4881 	}
4882 
4883 	if (rx_desc) {
4884 		rx_q->dirty_rx = entry;
4885 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4886 				     (rx_q->dirty_rx * sizeof(struct dma_desc));
4887 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4888 	}
4889 
4890 	return ret;
4891 }
4892 
4893 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
4894 {
4895 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4896 	unsigned int count = 0, error = 0, len = 0;
4897 	int dirty = stmmac_rx_dirty(priv, queue);
4898 	unsigned int next_entry = rx_q->cur_rx;
4899 	unsigned int desc_size;
4900 	struct bpf_prog *prog;
4901 	bool failure = false;
4902 	int xdp_status = 0;
4903 	int status = 0;
4904 
4905 	if (netif_msg_rx_status(priv)) {
4906 		void *rx_head;
4907 
4908 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
4909 		if (priv->extend_desc) {
4910 			rx_head = (void *)rx_q->dma_erx;
4911 			desc_size = sizeof(struct dma_extended_desc);
4912 		} else {
4913 			rx_head = (void *)rx_q->dma_rx;
4914 			desc_size = sizeof(struct dma_desc);
4915 		}
4916 
4917 		stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
4918 				    rx_q->dma_rx_phy, desc_size);
4919 	}
4920 	while (count < limit) {
4921 		struct stmmac_rx_buffer *buf;
4922 		unsigned int buf1_len = 0;
4923 		struct dma_desc *np, *p;
4924 		int entry;
4925 		int res;
4926 
4927 		if (!count && rx_q->state_saved) {
4928 			error = rx_q->state.error;
4929 			len = rx_q->state.len;
4930 		} else {
4931 			rx_q->state_saved = false;
4932 			error = 0;
4933 			len = 0;
4934 		}
4935 
4936 		if (count >= limit)
4937 			break;
4938 
4939 read_again:
4940 		buf1_len = 0;
4941 		entry = next_entry;
4942 		buf = &rx_q->buf_pool[entry];
4943 
4944 		if (dirty >= STMMAC_RX_FILL_BATCH) {
4945 			failure = failure ||
4946 				  !stmmac_rx_refill_zc(priv, queue, dirty);
4947 			dirty = 0;
4948 		}
4949 
4950 		if (priv->extend_desc)
4951 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4952 		else
4953 			p = rx_q->dma_rx + entry;
4954 
4955 		/* read the status of the incoming frame */
4956 		status = stmmac_rx_status(priv, &priv->dev->stats,
4957 					  &priv->xstats, p);
4958 		/* check if managed by the DMA otherwise go ahead */
4959 		if (unlikely(status & dma_own))
4960 			break;
4961 
4962 		/* Prefetch the next RX descriptor */
4963 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
4964 						priv->dma_rx_size);
4965 		next_entry = rx_q->cur_rx;
4966 
4967 		if (priv->extend_desc)
4968 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
4969 		else
4970 			np = rx_q->dma_rx + next_entry;
4971 
4972 		prefetch(np);
4973 
4974 		/* Ensure a valid XSK buffer before proceed */
4975 		if (!buf->xdp)
4976 			break;
4977 
4978 		if (priv->extend_desc)
4979 			stmmac_rx_extended_status(priv, &priv->dev->stats,
4980 						  &priv->xstats,
4981 						  rx_q->dma_erx + entry);
4982 		if (unlikely(status == discard_frame)) {
4983 			xsk_buff_free(buf->xdp);
4984 			buf->xdp = NULL;
4985 			dirty++;
4986 			error = 1;
4987 			if (!priv->hwts_rx_en)
4988 				priv->dev->stats.rx_errors++;
4989 		}
4990 
4991 		if (unlikely(error && (status & rx_not_ls)))
4992 			goto read_again;
4993 		if (unlikely(error)) {
4994 			count++;
4995 			continue;
4996 		}
4997 
4998 		/* XSK pool expects RX frame 1:1 mapped to XSK buffer */
4999 		if (likely(status & rx_not_ls)) {
5000 			xsk_buff_free(buf->xdp);
5001 			buf->xdp = NULL;
5002 			dirty++;
5003 			count++;
5004 			goto read_again;
5005 		}
5006 
5007 		/* XDP ZC Frame only support primary buffers for now */
5008 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5009 		len += buf1_len;
5010 
5011 		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
5012 		 * Type frames (LLC/LLC-SNAP)
5013 		 *
5014 		 * llc_snap is never checked in GMAC >= 4, so this ACS
5015 		 * feature is always disabled and packets need to be
5016 		 * stripped manually.
5017 		 */
5018 		if (likely(!(status & rx_not_ls)) &&
5019 		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
5020 		     unlikely(status != llc_snap))) {
5021 			buf1_len -= ETH_FCS_LEN;
5022 			len -= ETH_FCS_LEN;
5023 		}
5024 
5025 		/* RX buffer is good and fit into a XSK pool buffer */
5026 		buf->xdp->data_end = buf->xdp->data + buf1_len;
5027 		xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
5028 
5029 		prog = READ_ONCE(priv->xdp_prog);
5030 		res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
5031 
5032 		switch (res) {
5033 		case STMMAC_XDP_PASS:
5034 			stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
5035 			xsk_buff_free(buf->xdp);
5036 			break;
5037 		case STMMAC_XDP_CONSUMED:
5038 			xsk_buff_free(buf->xdp);
5039 			priv->dev->stats.rx_dropped++;
5040 			break;
5041 		case STMMAC_XDP_TX:
5042 		case STMMAC_XDP_REDIRECT:
5043 			xdp_status |= res;
5044 			break;
5045 		}
5046 
5047 		buf->xdp = NULL;
5048 		dirty++;
5049 		count++;
5050 	}
5051 
5052 	if (status & rx_not_ls) {
5053 		rx_q->state_saved = true;
5054 		rx_q->state.error = error;
5055 		rx_q->state.len = len;
5056 	}
5057 
5058 	stmmac_finalize_xdp_rx(priv, xdp_status);
5059 
5060 	priv->xstats.rx_pkt_n += count;
5061 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5062 
5063 	if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5064 		if (failure || stmmac_rx_dirty(priv, queue) > 0)
5065 			xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5066 		else
5067 			xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5068 
5069 		return (int)count;
5070 	}
5071 
5072 	return failure ? limit : (int)count;
5073 }
5074 
5075 /**
5076  * stmmac_rx - manage the receive process
5077  * @priv: driver private structure
5078  * @limit: napi bugget
5079  * @queue: RX queue index.
5080  * Description :  this the function called by the napi poll method.
5081  * It gets all the frames inside the ring.
5082  */
5083 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5084 {
5085 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5086 	struct stmmac_channel *ch = &priv->channel[queue];
5087 	unsigned int count = 0, error = 0, len = 0;
5088 	int status = 0, coe = priv->hw->rx_csum;
5089 	unsigned int next_entry = rx_q->cur_rx;
5090 	enum dma_data_direction dma_dir;
5091 	unsigned int desc_size;
5092 	struct sk_buff *skb = NULL;
5093 	struct xdp_buff xdp;
5094 	int xdp_status = 0;
5095 	int buf_sz;
5096 
5097 	dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5098 	buf_sz = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5099 
5100 	if (netif_msg_rx_status(priv)) {
5101 		void *rx_head;
5102 
5103 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5104 		if (priv->extend_desc) {
5105 			rx_head = (void *)rx_q->dma_erx;
5106 			desc_size = sizeof(struct dma_extended_desc);
5107 		} else {
5108 			rx_head = (void *)rx_q->dma_rx;
5109 			desc_size = sizeof(struct dma_desc);
5110 		}
5111 
5112 		stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
5113 				    rx_q->dma_rx_phy, desc_size);
5114 	}
5115 	while (count < limit) {
5116 		unsigned int buf1_len = 0, buf2_len = 0;
5117 		enum pkt_hash_types hash_type;
5118 		struct stmmac_rx_buffer *buf;
5119 		struct dma_desc *np, *p;
5120 		int entry;
5121 		u32 hash;
5122 
5123 		if (!count && rx_q->state_saved) {
5124 			skb = rx_q->state.skb;
5125 			error = rx_q->state.error;
5126 			len = rx_q->state.len;
5127 		} else {
5128 			rx_q->state_saved = false;
5129 			skb = NULL;
5130 			error = 0;
5131 			len = 0;
5132 		}
5133 
5134 		if (count >= limit)
5135 			break;
5136 
5137 read_again:
5138 		buf1_len = 0;
5139 		buf2_len = 0;
5140 		entry = next_entry;
5141 		buf = &rx_q->buf_pool[entry];
5142 
5143 		if (priv->extend_desc)
5144 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5145 		else
5146 			p = rx_q->dma_rx + entry;
5147 
5148 		/* read the status of the incoming frame */
5149 		status = stmmac_rx_status(priv, &priv->dev->stats,
5150 				&priv->xstats, p);
5151 		/* check if managed by the DMA otherwise go ahead */
5152 		if (unlikely(status & dma_own))
5153 			break;
5154 
5155 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5156 						priv->dma_rx_size);
5157 		next_entry = rx_q->cur_rx;
5158 
5159 		if (priv->extend_desc)
5160 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5161 		else
5162 			np = rx_q->dma_rx + next_entry;
5163 
5164 		prefetch(np);
5165 
5166 		if (priv->extend_desc)
5167 			stmmac_rx_extended_status(priv, &priv->dev->stats,
5168 					&priv->xstats, rx_q->dma_erx + entry);
5169 		if (unlikely(status == discard_frame)) {
5170 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5171 			buf->page = NULL;
5172 			error = 1;
5173 			if (!priv->hwts_rx_en)
5174 				priv->dev->stats.rx_errors++;
5175 		}
5176 
5177 		if (unlikely(error && (status & rx_not_ls)))
5178 			goto read_again;
5179 		if (unlikely(error)) {
5180 			dev_kfree_skb(skb);
5181 			skb = NULL;
5182 			count++;
5183 			continue;
5184 		}
5185 
5186 		/* Buffer is good. Go on. */
5187 
5188 		prefetch(page_address(buf->page) + buf->page_offset);
5189 		if (buf->sec_page)
5190 			prefetch(page_address(buf->sec_page));
5191 
5192 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5193 		len += buf1_len;
5194 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5195 		len += buf2_len;
5196 
5197 		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
5198 		 * Type frames (LLC/LLC-SNAP)
5199 		 *
5200 		 * llc_snap is never checked in GMAC >= 4, so this ACS
5201 		 * feature is always disabled and packets need to be
5202 		 * stripped manually.
5203 		 */
5204 		if (likely(!(status & rx_not_ls)) &&
5205 		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
5206 		     unlikely(status != llc_snap))) {
5207 			if (buf2_len) {
5208 				buf2_len -= ETH_FCS_LEN;
5209 				len -= ETH_FCS_LEN;
5210 			} else if (buf1_len) {
5211 				buf1_len -= ETH_FCS_LEN;
5212 				len -= ETH_FCS_LEN;
5213 			}
5214 		}
5215 
5216 		if (!skb) {
5217 			unsigned int pre_len, sync_len;
5218 
5219 			dma_sync_single_for_cpu(priv->device, buf->addr,
5220 						buf1_len, dma_dir);
5221 
5222 			xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
5223 			xdp_prepare_buff(&xdp, page_address(buf->page),
5224 					 buf->page_offset, buf1_len, false);
5225 
5226 			pre_len = xdp.data_end - xdp.data_hard_start -
5227 				  buf->page_offset;
5228 			skb = stmmac_xdp_run_prog(priv, &xdp);
5229 			/* Due xdp_adjust_tail: DMA sync for_device
5230 			 * cover max len CPU touch
5231 			 */
5232 			sync_len = xdp.data_end - xdp.data_hard_start -
5233 				   buf->page_offset;
5234 			sync_len = max(sync_len, pre_len);
5235 
5236 			/* For Not XDP_PASS verdict */
5237 			if (IS_ERR(skb)) {
5238 				unsigned int xdp_res = -PTR_ERR(skb);
5239 
5240 				if (xdp_res & STMMAC_XDP_CONSUMED) {
5241 					page_pool_put_page(rx_q->page_pool,
5242 							   virt_to_head_page(xdp.data),
5243 							   sync_len, true);
5244 					buf->page = NULL;
5245 					priv->dev->stats.rx_dropped++;
5246 
5247 					/* Clear skb as it was set as
5248 					 * status by XDP program.
5249 					 */
5250 					skb = NULL;
5251 
5252 					if (unlikely((status & rx_not_ls)))
5253 						goto read_again;
5254 
5255 					count++;
5256 					continue;
5257 				} else if (xdp_res & (STMMAC_XDP_TX |
5258 						      STMMAC_XDP_REDIRECT)) {
5259 					xdp_status |= xdp_res;
5260 					buf->page = NULL;
5261 					skb = NULL;
5262 					count++;
5263 					continue;
5264 				}
5265 			}
5266 		}
5267 
5268 		if (!skb) {
5269 			/* XDP program may expand or reduce tail */
5270 			buf1_len = xdp.data_end - xdp.data;
5271 
5272 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5273 			if (!skb) {
5274 				priv->dev->stats.rx_dropped++;
5275 				count++;
5276 				goto drain_data;
5277 			}
5278 
5279 			/* XDP program may adjust header */
5280 			skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5281 			skb_put(skb, buf1_len);
5282 
5283 			/* Data payload copied into SKB, page ready for recycle */
5284 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5285 			buf->page = NULL;
5286 		} else if (buf1_len) {
5287 			dma_sync_single_for_cpu(priv->device, buf->addr,
5288 						buf1_len, dma_dir);
5289 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5290 					buf->page, buf->page_offset, buf1_len,
5291 					priv->dma_buf_sz);
5292 
5293 			/* Data payload appended into SKB */
5294 			page_pool_release_page(rx_q->page_pool, buf->page);
5295 			buf->page = NULL;
5296 		}
5297 
5298 		if (buf2_len) {
5299 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5300 						buf2_len, dma_dir);
5301 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5302 					buf->sec_page, 0, buf2_len,
5303 					priv->dma_buf_sz);
5304 
5305 			/* Data payload appended into SKB */
5306 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
5307 			buf->sec_page = NULL;
5308 		}
5309 
5310 drain_data:
5311 		if (likely(status & rx_not_ls))
5312 			goto read_again;
5313 		if (!skb)
5314 			continue;
5315 
5316 		/* Got entire packet into SKB. Finish it. */
5317 
5318 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
5319 		stmmac_rx_vlan(priv->dev, skb);
5320 		skb->protocol = eth_type_trans(skb, priv->dev);
5321 
5322 		if (unlikely(!coe))
5323 			skb_checksum_none_assert(skb);
5324 		else
5325 			skb->ip_summed = CHECKSUM_UNNECESSARY;
5326 
5327 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5328 			skb_set_hash(skb, hash, hash_type);
5329 
5330 		skb_record_rx_queue(skb, queue);
5331 		napi_gro_receive(&ch->rx_napi, skb);
5332 		skb = NULL;
5333 
5334 		priv->dev->stats.rx_packets++;
5335 		priv->dev->stats.rx_bytes += len;
5336 		count++;
5337 	}
5338 
5339 	if (status & rx_not_ls || skb) {
5340 		rx_q->state_saved = true;
5341 		rx_q->state.skb = skb;
5342 		rx_q->state.error = error;
5343 		rx_q->state.len = len;
5344 	}
5345 
5346 	stmmac_finalize_xdp_rx(priv, xdp_status);
5347 
5348 	stmmac_rx_refill(priv, queue);
5349 
5350 	priv->xstats.rx_pkt_n += count;
5351 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5352 
5353 	return count;
5354 }
5355 
5356 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5357 {
5358 	struct stmmac_channel *ch =
5359 		container_of(napi, struct stmmac_channel, rx_napi);
5360 	struct stmmac_priv *priv = ch->priv_data;
5361 	u32 chan = ch->index;
5362 	int work_done;
5363 
5364 	priv->xstats.napi_poll++;
5365 
5366 	work_done = stmmac_rx(priv, budget, chan);
5367 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5368 		unsigned long flags;
5369 
5370 		spin_lock_irqsave(&ch->lock, flags);
5371 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5372 		spin_unlock_irqrestore(&ch->lock, flags);
5373 	}
5374 
5375 	return work_done;
5376 }
5377 
5378 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5379 {
5380 	struct stmmac_channel *ch =
5381 		container_of(napi, struct stmmac_channel, tx_napi);
5382 	struct stmmac_priv *priv = ch->priv_data;
5383 	u32 chan = ch->index;
5384 	int work_done;
5385 
5386 	priv->xstats.napi_poll++;
5387 
5388 	work_done = stmmac_tx_clean(priv, budget, chan);
5389 	work_done = min(work_done, budget);
5390 
5391 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5392 		unsigned long flags;
5393 
5394 		spin_lock_irqsave(&ch->lock, flags);
5395 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5396 		spin_unlock_irqrestore(&ch->lock, flags);
5397 	}
5398 
5399 	return work_done;
5400 }
5401 
5402 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5403 {
5404 	struct stmmac_channel *ch =
5405 		container_of(napi, struct stmmac_channel, rxtx_napi);
5406 	struct stmmac_priv *priv = ch->priv_data;
5407 	int rx_done, tx_done, rxtx_done;
5408 	u32 chan = ch->index;
5409 
5410 	priv->xstats.napi_poll++;
5411 
5412 	tx_done = stmmac_tx_clean(priv, budget, chan);
5413 	tx_done = min(tx_done, budget);
5414 
5415 	rx_done = stmmac_rx_zc(priv, budget, chan);
5416 
5417 	rxtx_done = max(tx_done, rx_done);
5418 
5419 	/* If either TX or RX work is not complete, return budget
5420 	 * and keep pooling
5421 	 */
5422 	if (rxtx_done >= budget)
5423 		return budget;
5424 
5425 	/* all work done, exit the polling mode */
5426 	if (napi_complete_done(napi, rxtx_done)) {
5427 		unsigned long flags;
5428 
5429 		spin_lock_irqsave(&ch->lock, flags);
5430 		/* Both RX and TX work done are compelte,
5431 		 * so enable both RX & TX IRQs.
5432 		 */
5433 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5434 		spin_unlock_irqrestore(&ch->lock, flags);
5435 	}
5436 
5437 	return min(rxtx_done, budget - 1);
5438 }
5439 
5440 /**
5441  *  stmmac_tx_timeout
5442  *  @dev : Pointer to net device structure
5443  *  @txqueue: the index of the hanging transmit queue
5444  *  Description: this function is called when a packet transmission fails to
5445  *   complete within a reasonable time. The driver will mark the error in the
5446  *   netdev structure and arrange for the device to be reset to a sane state
5447  *   in order to transmit a new packet.
5448  */
5449 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5450 {
5451 	struct stmmac_priv *priv = netdev_priv(dev);
5452 
5453 	stmmac_global_err(priv);
5454 }
5455 
5456 /**
5457  *  stmmac_set_rx_mode - entry point for multicast addressing
5458  *  @dev : pointer to the device structure
5459  *  Description:
5460  *  This function is a driver entry point which gets called by the kernel
5461  *  whenever multicast addresses must be enabled/disabled.
5462  *  Return value:
5463  *  void.
5464  */
5465 static void stmmac_set_rx_mode(struct net_device *dev)
5466 {
5467 	struct stmmac_priv *priv = netdev_priv(dev);
5468 
5469 	stmmac_set_filter(priv, priv->hw, dev);
5470 }
5471 
5472 /**
5473  *  stmmac_change_mtu - entry point to change MTU size for the device.
5474  *  @dev : device pointer.
5475  *  @new_mtu : the new MTU size for the device.
5476  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5477  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5478  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5479  *  Return value:
5480  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5481  *  file on failure.
5482  */
5483 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5484 {
5485 	struct stmmac_priv *priv = netdev_priv(dev);
5486 	int txfifosz = priv->plat->tx_fifo_size;
5487 	const int mtu = new_mtu;
5488 
5489 	if (txfifosz == 0)
5490 		txfifosz = priv->dma_cap.tx_fifo_size;
5491 
5492 	txfifosz /= priv->plat->tx_queues_to_use;
5493 
5494 	if (netif_running(dev)) {
5495 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
5496 		return -EBUSY;
5497 	}
5498 
5499 	if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5500 		netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5501 		return -EINVAL;
5502 	}
5503 
5504 	new_mtu = STMMAC_ALIGN(new_mtu);
5505 
5506 	/* If condition true, FIFO is too small or MTU too large */
5507 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5508 		return -EINVAL;
5509 
5510 	dev->mtu = mtu;
5511 
5512 	netdev_update_features(dev);
5513 
5514 	return 0;
5515 }
5516 
5517 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5518 					     netdev_features_t features)
5519 {
5520 	struct stmmac_priv *priv = netdev_priv(dev);
5521 
5522 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5523 		features &= ~NETIF_F_RXCSUM;
5524 
5525 	if (!priv->plat->tx_coe)
5526 		features &= ~NETIF_F_CSUM_MASK;
5527 
5528 	/* Some GMAC devices have a bugged Jumbo frame support that
5529 	 * needs to have the Tx COE disabled for oversized frames
5530 	 * (due to limited buffer sizes). In this case we disable
5531 	 * the TX csum insertion in the TDES and not use SF.
5532 	 */
5533 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5534 		features &= ~NETIF_F_CSUM_MASK;
5535 
5536 	/* Disable tso if asked by ethtool */
5537 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5538 		if (features & NETIF_F_TSO)
5539 			priv->tso = true;
5540 		else
5541 			priv->tso = false;
5542 	}
5543 
5544 	return features;
5545 }
5546 
5547 static int stmmac_set_features(struct net_device *netdev,
5548 			       netdev_features_t features)
5549 {
5550 	struct stmmac_priv *priv = netdev_priv(netdev);
5551 
5552 	/* Keep the COE Type in case of csum is supporting */
5553 	if (features & NETIF_F_RXCSUM)
5554 		priv->hw->rx_csum = priv->plat->rx_coe;
5555 	else
5556 		priv->hw->rx_csum = 0;
5557 	/* No check needed because rx_coe has been set before and it will be
5558 	 * fixed in case of issue.
5559 	 */
5560 	stmmac_rx_ipc(priv, priv->hw);
5561 
5562 	if (priv->sph_cap) {
5563 		bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5564 		u32 chan;
5565 
5566 		for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5567 			stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5568 	}
5569 
5570 	return 0;
5571 }
5572 
5573 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5574 {
5575 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5576 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5577 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5578 	bool *hs_enable = &fpe_cfg->hs_enable;
5579 
5580 	if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5581 		return;
5582 
5583 	/* If LP has sent verify mPacket, LP is FPE capable */
5584 	if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5585 		if (*lp_state < FPE_STATE_CAPABLE)
5586 			*lp_state = FPE_STATE_CAPABLE;
5587 
5588 		/* If user has requested FPE enable, quickly response */
5589 		if (*hs_enable)
5590 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5591 						MPACKET_RESPONSE);
5592 	}
5593 
5594 	/* If Local has sent verify mPacket, Local is FPE capable */
5595 	if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5596 		if (*lo_state < FPE_STATE_CAPABLE)
5597 			*lo_state = FPE_STATE_CAPABLE;
5598 	}
5599 
5600 	/* If LP has sent response mPacket, LP is entering FPE ON */
5601 	if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5602 		*lp_state = FPE_STATE_ENTERING_ON;
5603 
5604 	/* If Local has sent response mPacket, Local is entering FPE ON */
5605 	if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5606 		*lo_state = FPE_STATE_ENTERING_ON;
5607 
5608 	if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5609 	    !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5610 	    priv->fpe_wq) {
5611 		queue_work(priv->fpe_wq, &priv->fpe_task);
5612 	}
5613 }
5614 
5615 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5616 {
5617 	u32 rx_cnt = priv->plat->rx_queues_to_use;
5618 	u32 tx_cnt = priv->plat->tx_queues_to_use;
5619 	u32 queues_count;
5620 	u32 queue;
5621 	bool xmac;
5622 
5623 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5624 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5625 
5626 	if (priv->irq_wake)
5627 		pm_wakeup_event(priv->device, 0);
5628 
5629 	if (priv->dma_cap.estsel)
5630 		stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5631 				      &priv->xstats, tx_cnt);
5632 
5633 	if (priv->dma_cap.fpesel) {
5634 		int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5635 						   priv->dev);
5636 
5637 		stmmac_fpe_event_status(priv, status);
5638 	}
5639 
5640 	/* To handle GMAC own interrupts */
5641 	if ((priv->plat->has_gmac) || xmac) {
5642 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5643 
5644 		if (unlikely(status)) {
5645 			/* For LPI we need to save the tx status */
5646 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5647 				priv->tx_path_in_lpi_mode = true;
5648 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5649 				priv->tx_path_in_lpi_mode = false;
5650 		}
5651 
5652 		for (queue = 0; queue < queues_count; queue++) {
5653 			status = stmmac_host_mtl_irq_status(priv, priv->hw,
5654 							    queue);
5655 		}
5656 
5657 		/* PCS link status */
5658 		if (priv->hw->pcs) {
5659 			if (priv->xstats.pcs_link)
5660 				netif_carrier_on(priv->dev);
5661 			else
5662 				netif_carrier_off(priv->dev);
5663 		}
5664 
5665 		stmmac_timestamp_interrupt(priv, priv);
5666 	}
5667 }
5668 
5669 /**
5670  *  stmmac_interrupt - main ISR
5671  *  @irq: interrupt number.
5672  *  @dev_id: to pass the net device pointer.
5673  *  Description: this is the main driver interrupt service routine.
5674  *  It can call:
5675  *  o DMA service routine (to manage incoming frame reception and transmission
5676  *    status)
5677  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5678  *    interrupts.
5679  */
5680 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5681 {
5682 	struct net_device *dev = (struct net_device *)dev_id;
5683 	struct stmmac_priv *priv = netdev_priv(dev);
5684 
5685 	/* Check if adapter is up */
5686 	if (test_bit(STMMAC_DOWN, &priv->state))
5687 		return IRQ_HANDLED;
5688 
5689 	/* Check if a fatal error happened */
5690 	if (stmmac_safety_feat_interrupt(priv))
5691 		return IRQ_HANDLED;
5692 
5693 	/* To handle Common interrupts */
5694 	stmmac_common_interrupt(priv);
5695 
5696 	/* To handle DMA interrupts */
5697 	stmmac_dma_interrupt(priv);
5698 
5699 	return IRQ_HANDLED;
5700 }
5701 
5702 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5703 {
5704 	struct net_device *dev = (struct net_device *)dev_id;
5705 	struct stmmac_priv *priv = netdev_priv(dev);
5706 
5707 	if (unlikely(!dev)) {
5708 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5709 		return IRQ_NONE;
5710 	}
5711 
5712 	/* Check if adapter is up */
5713 	if (test_bit(STMMAC_DOWN, &priv->state))
5714 		return IRQ_HANDLED;
5715 
5716 	/* To handle Common interrupts */
5717 	stmmac_common_interrupt(priv);
5718 
5719 	return IRQ_HANDLED;
5720 }
5721 
5722 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5723 {
5724 	struct net_device *dev = (struct net_device *)dev_id;
5725 	struct stmmac_priv *priv = netdev_priv(dev);
5726 
5727 	if (unlikely(!dev)) {
5728 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5729 		return IRQ_NONE;
5730 	}
5731 
5732 	/* Check if adapter is up */
5733 	if (test_bit(STMMAC_DOWN, &priv->state))
5734 		return IRQ_HANDLED;
5735 
5736 	/* Check if a fatal error happened */
5737 	stmmac_safety_feat_interrupt(priv);
5738 
5739 	return IRQ_HANDLED;
5740 }
5741 
5742 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5743 {
5744 	struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5745 	int chan = tx_q->queue_index;
5746 	struct stmmac_priv *priv;
5747 	int status;
5748 
5749 	priv = container_of(tx_q, struct stmmac_priv, tx_queue[chan]);
5750 
5751 	if (unlikely(!data)) {
5752 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5753 		return IRQ_NONE;
5754 	}
5755 
5756 	/* Check if adapter is up */
5757 	if (test_bit(STMMAC_DOWN, &priv->state))
5758 		return IRQ_HANDLED;
5759 
5760 	status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5761 
5762 	if (unlikely(status & tx_hard_error_bump_tc)) {
5763 		/* Try to bump up the dma threshold on this failure */
5764 		if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
5765 		    tc <= 256) {
5766 			tc += 64;
5767 			if (priv->plat->force_thresh_dma_mode)
5768 				stmmac_set_dma_operation_mode(priv,
5769 							      tc,
5770 							      tc,
5771 							      chan);
5772 			else
5773 				stmmac_set_dma_operation_mode(priv,
5774 							      tc,
5775 							      SF_DMA_MODE,
5776 							      chan);
5777 			priv->xstats.threshold = tc;
5778 		}
5779 	} else if (unlikely(status == tx_hard_error)) {
5780 		stmmac_tx_err(priv, chan);
5781 	}
5782 
5783 	return IRQ_HANDLED;
5784 }
5785 
5786 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5787 {
5788 	struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5789 	int chan = rx_q->queue_index;
5790 	struct stmmac_priv *priv;
5791 
5792 	priv = container_of(rx_q, struct stmmac_priv, rx_queue[chan]);
5793 
5794 	if (unlikely(!data)) {
5795 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5796 		return IRQ_NONE;
5797 	}
5798 
5799 	/* Check if adapter is up */
5800 	if (test_bit(STMMAC_DOWN, &priv->state))
5801 		return IRQ_HANDLED;
5802 
5803 	stmmac_napi_check(priv, chan, DMA_DIR_RX);
5804 
5805 	return IRQ_HANDLED;
5806 }
5807 
5808 #ifdef CONFIG_NET_POLL_CONTROLLER
5809 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5810  * to allow network I/O with interrupts disabled.
5811  */
5812 static void stmmac_poll_controller(struct net_device *dev)
5813 {
5814 	struct stmmac_priv *priv = netdev_priv(dev);
5815 	int i;
5816 
5817 	/* If adapter is down, do nothing */
5818 	if (test_bit(STMMAC_DOWN, &priv->state))
5819 		return;
5820 
5821 	if (priv->plat->multi_msi_en) {
5822 		for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5823 			stmmac_msi_intr_rx(0, &priv->rx_queue[i]);
5824 
5825 		for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5826 			stmmac_msi_intr_tx(0, &priv->tx_queue[i]);
5827 	} else {
5828 		disable_irq(dev->irq);
5829 		stmmac_interrupt(dev->irq, dev);
5830 		enable_irq(dev->irq);
5831 	}
5832 }
5833 #endif
5834 
5835 /**
5836  *  stmmac_ioctl - Entry point for the Ioctl
5837  *  @dev: Device pointer.
5838  *  @rq: An IOCTL specefic structure, that can contain a pointer to
5839  *  a proprietary structure used to pass information to the driver.
5840  *  @cmd: IOCTL command
5841  *  Description:
5842  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5843  */
5844 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5845 {
5846 	struct stmmac_priv *priv = netdev_priv (dev);
5847 	int ret = -EOPNOTSUPP;
5848 
5849 	if (!netif_running(dev))
5850 		return -EINVAL;
5851 
5852 	switch (cmd) {
5853 	case SIOCGMIIPHY:
5854 	case SIOCGMIIREG:
5855 	case SIOCSMIIREG:
5856 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5857 		break;
5858 	case SIOCSHWTSTAMP:
5859 		ret = stmmac_hwtstamp_set(dev, rq);
5860 		break;
5861 	case SIOCGHWTSTAMP:
5862 		ret = stmmac_hwtstamp_get(dev, rq);
5863 		break;
5864 	default:
5865 		break;
5866 	}
5867 
5868 	return ret;
5869 }
5870 
5871 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5872 				    void *cb_priv)
5873 {
5874 	struct stmmac_priv *priv = cb_priv;
5875 	int ret = -EOPNOTSUPP;
5876 
5877 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5878 		return ret;
5879 
5880 	__stmmac_disable_all_queues(priv);
5881 
5882 	switch (type) {
5883 	case TC_SETUP_CLSU32:
5884 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5885 		break;
5886 	case TC_SETUP_CLSFLOWER:
5887 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
5888 		break;
5889 	default:
5890 		break;
5891 	}
5892 
5893 	stmmac_enable_all_queues(priv);
5894 	return ret;
5895 }
5896 
5897 static LIST_HEAD(stmmac_block_cb_list);
5898 
5899 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
5900 			   void *type_data)
5901 {
5902 	struct stmmac_priv *priv = netdev_priv(ndev);
5903 
5904 	switch (type) {
5905 	case TC_SETUP_BLOCK:
5906 		return flow_block_cb_setup_simple(type_data,
5907 						  &stmmac_block_cb_list,
5908 						  stmmac_setup_tc_block_cb,
5909 						  priv, priv, true);
5910 	case TC_SETUP_QDISC_CBS:
5911 		return stmmac_tc_setup_cbs(priv, priv, type_data);
5912 	case TC_SETUP_QDISC_TAPRIO:
5913 		return stmmac_tc_setup_taprio(priv, priv, type_data);
5914 	case TC_SETUP_QDISC_ETF:
5915 		return stmmac_tc_setup_etf(priv, priv, type_data);
5916 	default:
5917 		return -EOPNOTSUPP;
5918 	}
5919 }
5920 
5921 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
5922 			       struct net_device *sb_dev)
5923 {
5924 	int gso = skb_shinfo(skb)->gso_type;
5925 
5926 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
5927 		/*
5928 		 * There is no way to determine the number of TSO/USO
5929 		 * capable Queues. Let's use always the Queue 0
5930 		 * because if TSO/USO is supported then at least this
5931 		 * one will be capable.
5932 		 */
5933 		return 0;
5934 	}
5935 
5936 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
5937 }
5938 
5939 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
5940 {
5941 	struct stmmac_priv *priv = netdev_priv(ndev);
5942 	int ret = 0;
5943 
5944 	ret = pm_runtime_get_sync(priv->device);
5945 	if (ret < 0) {
5946 		pm_runtime_put_noidle(priv->device);
5947 		return ret;
5948 	}
5949 
5950 	ret = eth_mac_addr(ndev, addr);
5951 	if (ret)
5952 		goto set_mac_error;
5953 
5954 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
5955 
5956 set_mac_error:
5957 	pm_runtime_put(priv->device);
5958 
5959 	return ret;
5960 }
5961 
5962 #ifdef CONFIG_DEBUG_FS
5963 static struct dentry *stmmac_fs_dir;
5964 
5965 static void sysfs_display_ring(void *head, int size, int extend_desc,
5966 			       struct seq_file *seq, dma_addr_t dma_phy_addr)
5967 {
5968 	int i;
5969 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
5970 	struct dma_desc *p = (struct dma_desc *)head;
5971 	dma_addr_t dma_addr;
5972 
5973 	for (i = 0; i < size; i++) {
5974 		if (extend_desc) {
5975 			dma_addr = dma_phy_addr + i * sizeof(*ep);
5976 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5977 				   i, &dma_addr,
5978 				   le32_to_cpu(ep->basic.des0),
5979 				   le32_to_cpu(ep->basic.des1),
5980 				   le32_to_cpu(ep->basic.des2),
5981 				   le32_to_cpu(ep->basic.des3));
5982 			ep++;
5983 		} else {
5984 			dma_addr = dma_phy_addr + i * sizeof(*p);
5985 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5986 				   i, &dma_addr,
5987 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
5988 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
5989 			p++;
5990 		}
5991 		seq_printf(seq, "\n");
5992 	}
5993 }
5994 
5995 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
5996 {
5997 	struct net_device *dev = seq->private;
5998 	struct stmmac_priv *priv = netdev_priv(dev);
5999 	u32 rx_count = priv->plat->rx_queues_to_use;
6000 	u32 tx_count = priv->plat->tx_queues_to_use;
6001 	u32 queue;
6002 
6003 	if ((dev->flags & IFF_UP) == 0)
6004 		return 0;
6005 
6006 	for (queue = 0; queue < rx_count; queue++) {
6007 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
6008 
6009 		seq_printf(seq, "RX Queue %d:\n", queue);
6010 
6011 		if (priv->extend_desc) {
6012 			seq_printf(seq, "Extended descriptor ring:\n");
6013 			sysfs_display_ring((void *)rx_q->dma_erx,
6014 					   priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy);
6015 		} else {
6016 			seq_printf(seq, "Descriptor ring:\n");
6017 			sysfs_display_ring((void *)rx_q->dma_rx,
6018 					   priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy);
6019 		}
6020 	}
6021 
6022 	for (queue = 0; queue < tx_count; queue++) {
6023 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
6024 
6025 		seq_printf(seq, "TX Queue %d:\n", queue);
6026 
6027 		if (priv->extend_desc) {
6028 			seq_printf(seq, "Extended descriptor ring:\n");
6029 			sysfs_display_ring((void *)tx_q->dma_etx,
6030 					   priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy);
6031 		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
6032 			seq_printf(seq, "Descriptor ring:\n");
6033 			sysfs_display_ring((void *)tx_q->dma_tx,
6034 					   priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy);
6035 		}
6036 	}
6037 
6038 	return 0;
6039 }
6040 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
6041 
6042 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
6043 {
6044 	struct net_device *dev = seq->private;
6045 	struct stmmac_priv *priv = netdev_priv(dev);
6046 
6047 	if (!priv->hw_cap_support) {
6048 		seq_printf(seq, "DMA HW features not supported\n");
6049 		return 0;
6050 	}
6051 
6052 	seq_printf(seq, "==============================\n");
6053 	seq_printf(seq, "\tDMA HW features\n");
6054 	seq_printf(seq, "==============================\n");
6055 
6056 	seq_printf(seq, "\t10/100 Mbps: %s\n",
6057 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6058 	seq_printf(seq, "\t1000 Mbps: %s\n",
6059 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
6060 	seq_printf(seq, "\tHalf duplex: %s\n",
6061 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
6062 	seq_printf(seq, "\tHash Filter: %s\n",
6063 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
6064 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6065 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
6066 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6067 		   (priv->dma_cap.pcs) ? "Y" : "N");
6068 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6069 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
6070 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
6071 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6072 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
6073 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6074 	seq_printf(seq, "\tRMON module: %s\n",
6075 		   (priv->dma_cap.rmon) ? "Y" : "N");
6076 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6077 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
6078 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6079 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
6080 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6081 		   (priv->dma_cap.eee) ? "Y" : "N");
6082 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6083 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6084 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
6085 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6086 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6087 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
6088 	} else {
6089 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6090 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6091 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6092 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6093 	}
6094 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6095 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6096 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6097 		   priv->dma_cap.number_rx_channel);
6098 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6099 		   priv->dma_cap.number_tx_channel);
6100 	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6101 		   priv->dma_cap.number_rx_queues);
6102 	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6103 		   priv->dma_cap.number_tx_queues);
6104 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
6105 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
6106 	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6107 	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6108 	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6109 	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6110 	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6111 		   priv->dma_cap.pps_out_num);
6112 	seq_printf(seq, "\tSafety Features: %s\n",
6113 		   priv->dma_cap.asp ? "Y" : "N");
6114 	seq_printf(seq, "\tFlexible RX Parser: %s\n",
6115 		   priv->dma_cap.frpsel ? "Y" : "N");
6116 	seq_printf(seq, "\tEnhanced Addressing: %d\n",
6117 		   priv->dma_cap.addr64);
6118 	seq_printf(seq, "\tReceive Side Scaling: %s\n",
6119 		   priv->dma_cap.rssen ? "Y" : "N");
6120 	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6121 		   priv->dma_cap.vlhash ? "Y" : "N");
6122 	seq_printf(seq, "\tSplit Header: %s\n",
6123 		   priv->dma_cap.sphen ? "Y" : "N");
6124 	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6125 		   priv->dma_cap.vlins ? "Y" : "N");
6126 	seq_printf(seq, "\tDouble VLAN: %s\n",
6127 		   priv->dma_cap.dvlan ? "Y" : "N");
6128 	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6129 		   priv->dma_cap.l3l4fnum);
6130 	seq_printf(seq, "\tARP Offloading: %s\n",
6131 		   priv->dma_cap.arpoffsel ? "Y" : "N");
6132 	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6133 		   priv->dma_cap.estsel ? "Y" : "N");
6134 	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6135 		   priv->dma_cap.fpesel ? "Y" : "N");
6136 	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6137 		   priv->dma_cap.tbssel ? "Y" : "N");
6138 	return 0;
6139 }
6140 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6141 
6142 /* Use network device events to rename debugfs file entries.
6143  */
6144 static int stmmac_device_event(struct notifier_block *unused,
6145 			       unsigned long event, void *ptr)
6146 {
6147 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6148 	struct stmmac_priv *priv = netdev_priv(dev);
6149 
6150 	if (dev->netdev_ops != &stmmac_netdev_ops)
6151 		goto done;
6152 
6153 	switch (event) {
6154 	case NETDEV_CHANGENAME:
6155 		if (priv->dbgfs_dir)
6156 			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6157 							 priv->dbgfs_dir,
6158 							 stmmac_fs_dir,
6159 							 dev->name);
6160 		break;
6161 	}
6162 done:
6163 	return NOTIFY_DONE;
6164 }
6165 
6166 static struct notifier_block stmmac_notifier = {
6167 	.notifier_call = stmmac_device_event,
6168 };
6169 
6170 static void stmmac_init_fs(struct net_device *dev)
6171 {
6172 	struct stmmac_priv *priv = netdev_priv(dev);
6173 
6174 	rtnl_lock();
6175 
6176 	/* Create per netdev entries */
6177 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6178 
6179 	/* Entry to report DMA RX/TX rings */
6180 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6181 			    &stmmac_rings_status_fops);
6182 
6183 	/* Entry to report the DMA HW features */
6184 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6185 			    &stmmac_dma_cap_fops);
6186 
6187 	rtnl_unlock();
6188 }
6189 
6190 static void stmmac_exit_fs(struct net_device *dev)
6191 {
6192 	struct stmmac_priv *priv = netdev_priv(dev);
6193 
6194 	debugfs_remove_recursive(priv->dbgfs_dir);
6195 }
6196 #endif /* CONFIG_DEBUG_FS */
6197 
6198 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6199 {
6200 	unsigned char *data = (unsigned char *)&vid_le;
6201 	unsigned char data_byte = 0;
6202 	u32 crc = ~0x0;
6203 	u32 temp = 0;
6204 	int i, bits;
6205 
6206 	bits = get_bitmask_order(VLAN_VID_MASK);
6207 	for (i = 0; i < bits; i++) {
6208 		if ((i % 8) == 0)
6209 			data_byte = data[i / 8];
6210 
6211 		temp = ((crc & 1) ^ data_byte) & 1;
6212 		crc >>= 1;
6213 		data_byte >>= 1;
6214 
6215 		if (temp)
6216 			crc ^= 0xedb88320;
6217 	}
6218 
6219 	return crc;
6220 }
6221 
6222 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6223 {
6224 	u32 crc, hash = 0;
6225 	__le16 pmatch = 0;
6226 	int count = 0;
6227 	u16 vid = 0;
6228 
6229 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6230 		__le16 vid_le = cpu_to_le16(vid);
6231 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6232 		hash |= (1 << crc);
6233 		count++;
6234 	}
6235 
6236 	if (!priv->dma_cap.vlhash) {
6237 		if (count > 2) /* VID = 0 always passes filter */
6238 			return -EOPNOTSUPP;
6239 
6240 		pmatch = cpu_to_le16(vid);
6241 		hash = 0;
6242 	}
6243 
6244 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6245 }
6246 
6247 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6248 {
6249 	struct stmmac_priv *priv = netdev_priv(ndev);
6250 	bool is_double = false;
6251 	int ret;
6252 
6253 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6254 		is_double = true;
6255 
6256 	set_bit(vid, priv->active_vlans);
6257 	ret = stmmac_vlan_update(priv, is_double);
6258 	if (ret) {
6259 		clear_bit(vid, priv->active_vlans);
6260 		return ret;
6261 	}
6262 
6263 	if (priv->hw->num_vlan) {
6264 		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6265 		if (ret)
6266 			return ret;
6267 	}
6268 
6269 	return 0;
6270 }
6271 
6272 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6273 {
6274 	struct stmmac_priv *priv = netdev_priv(ndev);
6275 	bool is_double = false;
6276 	int ret;
6277 
6278 	ret = pm_runtime_get_sync(priv->device);
6279 	if (ret < 0) {
6280 		pm_runtime_put_noidle(priv->device);
6281 		return ret;
6282 	}
6283 
6284 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6285 		is_double = true;
6286 
6287 	clear_bit(vid, priv->active_vlans);
6288 
6289 	if (priv->hw->num_vlan) {
6290 		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6291 		if (ret)
6292 			goto del_vlan_error;
6293 	}
6294 
6295 	ret = stmmac_vlan_update(priv, is_double);
6296 
6297 del_vlan_error:
6298 	pm_runtime_put(priv->device);
6299 
6300 	return ret;
6301 }
6302 
6303 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6304 {
6305 	struct stmmac_priv *priv = netdev_priv(dev);
6306 
6307 	switch (bpf->command) {
6308 	case XDP_SETUP_PROG:
6309 		return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6310 	case XDP_SETUP_XSK_POOL:
6311 		return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6312 					     bpf->xsk.queue_id);
6313 	default:
6314 		return -EOPNOTSUPP;
6315 	}
6316 }
6317 
6318 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6319 			   struct xdp_frame **frames, u32 flags)
6320 {
6321 	struct stmmac_priv *priv = netdev_priv(dev);
6322 	int cpu = smp_processor_id();
6323 	struct netdev_queue *nq;
6324 	int i, nxmit = 0;
6325 	int queue;
6326 
6327 	if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6328 		return -ENETDOWN;
6329 
6330 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6331 		return -EINVAL;
6332 
6333 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
6334 	nq = netdev_get_tx_queue(priv->dev, queue);
6335 
6336 	__netif_tx_lock(nq, cpu);
6337 	/* Avoids TX time-out as we are sharing with slow path */
6338 	nq->trans_start = jiffies;
6339 
6340 	for (i = 0; i < num_frames; i++) {
6341 		int res;
6342 
6343 		res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6344 		if (res == STMMAC_XDP_CONSUMED)
6345 			break;
6346 
6347 		nxmit++;
6348 	}
6349 
6350 	if (flags & XDP_XMIT_FLUSH) {
6351 		stmmac_flush_tx_descriptors(priv, queue);
6352 		stmmac_tx_timer_arm(priv, queue);
6353 	}
6354 
6355 	__netif_tx_unlock(nq);
6356 
6357 	return nxmit;
6358 }
6359 
6360 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6361 {
6362 	struct stmmac_channel *ch = &priv->channel[queue];
6363 	unsigned long flags;
6364 
6365 	spin_lock_irqsave(&ch->lock, flags);
6366 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6367 	spin_unlock_irqrestore(&ch->lock, flags);
6368 
6369 	stmmac_stop_rx_dma(priv, queue);
6370 	__free_dma_rx_desc_resources(priv, queue);
6371 }
6372 
6373 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6374 {
6375 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
6376 	struct stmmac_channel *ch = &priv->channel[queue];
6377 	unsigned long flags;
6378 	u32 buf_size;
6379 	int ret;
6380 
6381 	ret = __alloc_dma_rx_desc_resources(priv, queue);
6382 	if (ret) {
6383 		netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6384 		return;
6385 	}
6386 
6387 	ret = __init_dma_rx_desc_rings(priv, queue, GFP_KERNEL);
6388 	if (ret) {
6389 		__free_dma_rx_desc_resources(priv, queue);
6390 		netdev_err(priv->dev, "Failed to init RX desc.\n");
6391 		return;
6392 	}
6393 
6394 	stmmac_clear_rx_descriptors(priv, queue);
6395 
6396 	stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6397 			    rx_q->dma_rx_phy, rx_q->queue_index);
6398 
6399 	rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6400 			     sizeof(struct dma_desc));
6401 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6402 			       rx_q->rx_tail_addr, rx_q->queue_index);
6403 
6404 	if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6405 		buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6406 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6407 				      buf_size,
6408 				      rx_q->queue_index);
6409 	} else {
6410 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6411 				      priv->dma_buf_sz,
6412 				      rx_q->queue_index);
6413 	}
6414 
6415 	stmmac_start_rx_dma(priv, queue);
6416 
6417 	spin_lock_irqsave(&ch->lock, flags);
6418 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6419 	spin_unlock_irqrestore(&ch->lock, flags);
6420 }
6421 
6422 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6423 {
6424 	struct stmmac_channel *ch = &priv->channel[queue];
6425 	unsigned long flags;
6426 
6427 	spin_lock_irqsave(&ch->lock, flags);
6428 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6429 	spin_unlock_irqrestore(&ch->lock, flags);
6430 
6431 	stmmac_stop_tx_dma(priv, queue);
6432 	__free_dma_tx_desc_resources(priv, queue);
6433 }
6434 
6435 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6436 {
6437 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
6438 	struct stmmac_channel *ch = &priv->channel[queue];
6439 	unsigned long flags;
6440 	int ret;
6441 
6442 	ret = __alloc_dma_tx_desc_resources(priv, queue);
6443 	if (ret) {
6444 		netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6445 		return;
6446 	}
6447 
6448 	ret = __init_dma_tx_desc_rings(priv, queue);
6449 	if (ret) {
6450 		__free_dma_tx_desc_resources(priv, queue);
6451 		netdev_err(priv->dev, "Failed to init TX desc.\n");
6452 		return;
6453 	}
6454 
6455 	stmmac_clear_tx_descriptors(priv, queue);
6456 
6457 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6458 			    tx_q->dma_tx_phy, tx_q->queue_index);
6459 
6460 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
6461 		stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6462 
6463 	tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6464 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6465 			       tx_q->tx_tail_addr, tx_q->queue_index);
6466 
6467 	stmmac_start_tx_dma(priv, queue);
6468 
6469 	spin_lock_irqsave(&ch->lock, flags);
6470 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6471 	spin_unlock_irqrestore(&ch->lock, flags);
6472 }
6473 
6474 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6475 {
6476 	struct stmmac_priv *priv = netdev_priv(dev);
6477 	struct stmmac_rx_queue *rx_q;
6478 	struct stmmac_tx_queue *tx_q;
6479 	struct stmmac_channel *ch;
6480 
6481 	if (test_bit(STMMAC_DOWN, &priv->state) ||
6482 	    !netif_carrier_ok(priv->dev))
6483 		return -ENETDOWN;
6484 
6485 	if (!stmmac_xdp_is_enabled(priv))
6486 		return -ENXIO;
6487 
6488 	if (queue >= priv->plat->rx_queues_to_use ||
6489 	    queue >= priv->plat->tx_queues_to_use)
6490 		return -EINVAL;
6491 
6492 	rx_q = &priv->rx_queue[queue];
6493 	tx_q = &priv->tx_queue[queue];
6494 	ch = &priv->channel[queue];
6495 
6496 	if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6497 		return -ENXIO;
6498 
6499 	if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6500 		/* EQoS does not have per-DMA channel SW interrupt,
6501 		 * so we schedule RX Napi straight-away.
6502 		 */
6503 		if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6504 			__napi_schedule(&ch->rxtx_napi);
6505 	}
6506 
6507 	return 0;
6508 }
6509 
6510 static const struct net_device_ops stmmac_netdev_ops = {
6511 	.ndo_open = stmmac_open,
6512 	.ndo_start_xmit = stmmac_xmit,
6513 	.ndo_stop = stmmac_release,
6514 	.ndo_change_mtu = stmmac_change_mtu,
6515 	.ndo_fix_features = stmmac_fix_features,
6516 	.ndo_set_features = stmmac_set_features,
6517 	.ndo_set_rx_mode = stmmac_set_rx_mode,
6518 	.ndo_tx_timeout = stmmac_tx_timeout,
6519 	.ndo_eth_ioctl = stmmac_ioctl,
6520 	.ndo_setup_tc = stmmac_setup_tc,
6521 	.ndo_select_queue = stmmac_select_queue,
6522 #ifdef CONFIG_NET_POLL_CONTROLLER
6523 	.ndo_poll_controller = stmmac_poll_controller,
6524 #endif
6525 	.ndo_set_mac_address = stmmac_set_mac_address,
6526 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6527 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6528 	.ndo_bpf = stmmac_bpf,
6529 	.ndo_xdp_xmit = stmmac_xdp_xmit,
6530 	.ndo_xsk_wakeup = stmmac_xsk_wakeup,
6531 };
6532 
6533 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6534 {
6535 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6536 		return;
6537 	if (test_bit(STMMAC_DOWN, &priv->state))
6538 		return;
6539 
6540 	netdev_err(priv->dev, "Reset adapter.\n");
6541 
6542 	rtnl_lock();
6543 	netif_trans_update(priv->dev);
6544 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6545 		usleep_range(1000, 2000);
6546 
6547 	set_bit(STMMAC_DOWN, &priv->state);
6548 	dev_close(priv->dev);
6549 	dev_open(priv->dev, NULL);
6550 	clear_bit(STMMAC_DOWN, &priv->state);
6551 	clear_bit(STMMAC_RESETING, &priv->state);
6552 	rtnl_unlock();
6553 }
6554 
6555 static void stmmac_service_task(struct work_struct *work)
6556 {
6557 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6558 			service_task);
6559 
6560 	stmmac_reset_subtask(priv);
6561 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6562 }
6563 
6564 /**
6565  *  stmmac_hw_init - Init the MAC device
6566  *  @priv: driver private structure
6567  *  Description: this function is to configure the MAC device according to
6568  *  some platform parameters or the HW capability register. It prepares the
6569  *  driver to use either ring or chain modes and to setup either enhanced or
6570  *  normal descriptors.
6571  */
6572 static int stmmac_hw_init(struct stmmac_priv *priv)
6573 {
6574 	int ret;
6575 
6576 	/* dwmac-sun8i only work in chain mode */
6577 	if (priv->plat->has_sun8i)
6578 		chain_mode = 1;
6579 	priv->chain_mode = chain_mode;
6580 
6581 	/* Initialize HW Interface */
6582 	ret = stmmac_hwif_init(priv);
6583 	if (ret)
6584 		return ret;
6585 
6586 	/* Get the HW capability (new GMAC newer than 3.50a) */
6587 	priv->hw_cap_support = stmmac_get_hw_features(priv);
6588 	if (priv->hw_cap_support) {
6589 		dev_info(priv->device, "DMA HW capability register supported\n");
6590 
6591 		/* We can override some gmac/dma configuration fields: e.g.
6592 		 * enh_desc, tx_coe (e.g. that are passed through the
6593 		 * platform) with the values from the HW capability
6594 		 * register (if supported).
6595 		 */
6596 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
6597 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
6598 				!priv->plat->use_phy_wol;
6599 		priv->hw->pmt = priv->plat->pmt;
6600 		if (priv->dma_cap.hash_tb_sz) {
6601 			priv->hw->multicast_filter_bins =
6602 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
6603 			priv->hw->mcast_bits_log2 =
6604 					ilog2(priv->hw->multicast_filter_bins);
6605 		}
6606 
6607 		/* TXCOE doesn't work in thresh DMA mode */
6608 		if (priv->plat->force_thresh_dma_mode)
6609 			priv->plat->tx_coe = 0;
6610 		else
6611 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
6612 
6613 		/* In case of GMAC4 rx_coe is from HW cap register. */
6614 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
6615 
6616 		if (priv->dma_cap.rx_coe_type2)
6617 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6618 		else if (priv->dma_cap.rx_coe_type1)
6619 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6620 
6621 	} else {
6622 		dev_info(priv->device, "No HW DMA feature register supported\n");
6623 	}
6624 
6625 	if (priv->plat->rx_coe) {
6626 		priv->hw->rx_csum = priv->plat->rx_coe;
6627 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6628 		if (priv->synopsys_id < DWMAC_CORE_4_00)
6629 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6630 	}
6631 	if (priv->plat->tx_coe)
6632 		dev_info(priv->device, "TX Checksum insertion supported\n");
6633 
6634 	if (priv->plat->pmt) {
6635 		dev_info(priv->device, "Wake-Up On Lan supported\n");
6636 		device_set_wakeup_capable(priv->device, 1);
6637 	}
6638 
6639 	if (priv->dma_cap.tsoen)
6640 		dev_info(priv->device, "TSO supported\n");
6641 
6642 	priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6643 	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6644 
6645 	/* Run HW quirks, if any */
6646 	if (priv->hwif_quirks) {
6647 		ret = priv->hwif_quirks(priv);
6648 		if (ret)
6649 			return ret;
6650 	}
6651 
6652 	/* Rx Watchdog is available in the COREs newer than the 3.40.
6653 	 * In some case, for example on bugged HW this feature
6654 	 * has to be disable and this can be done by passing the
6655 	 * riwt_off field from the platform.
6656 	 */
6657 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6658 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6659 		priv->use_riwt = 1;
6660 		dev_info(priv->device,
6661 			 "Enable RX Mitigation via HW Watchdog Timer\n");
6662 	}
6663 
6664 	return 0;
6665 }
6666 
6667 static void stmmac_napi_add(struct net_device *dev)
6668 {
6669 	struct stmmac_priv *priv = netdev_priv(dev);
6670 	u32 queue, maxq;
6671 
6672 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6673 
6674 	for (queue = 0; queue < maxq; queue++) {
6675 		struct stmmac_channel *ch = &priv->channel[queue];
6676 
6677 		ch->priv_data = priv;
6678 		ch->index = queue;
6679 		spin_lock_init(&ch->lock);
6680 
6681 		if (queue < priv->plat->rx_queues_to_use) {
6682 			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
6683 				       NAPI_POLL_WEIGHT);
6684 		}
6685 		if (queue < priv->plat->tx_queues_to_use) {
6686 			netif_tx_napi_add(dev, &ch->tx_napi,
6687 					  stmmac_napi_poll_tx,
6688 					  NAPI_POLL_WEIGHT);
6689 		}
6690 		if (queue < priv->plat->rx_queues_to_use &&
6691 		    queue < priv->plat->tx_queues_to_use) {
6692 			netif_napi_add(dev, &ch->rxtx_napi,
6693 				       stmmac_napi_poll_rxtx,
6694 				       NAPI_POLL_WEIGHT);
6695 		}
6696 	}
6697 }
6698 
6699 static void stmmac_napi_del(struct net_device *dev)
6700 {
6701 	struct stmmac_priv *priv = netdev_priv(dev);
6702 	u32 queue, maxq;
6703 
6704 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6705 
6706 	for (queue = 0; queue < maxq; queue++) {
6707 		struct stmmac_channel *ch = &priv->channel[queue];
6708 
6709 		if (queue < priv->plat->rx_queues_to_use)
6710 			netif_napi_del(&ch->rx_napi);
6711 		if (queue < priv->plat->tx_queues_to_use)
6712 			netif_napi_del(&ch->tx_napi);
6713 		if (queue < priv->plat->rx_queues_to_use &&
6714 		    queue < priv->plat->tx_queues_to_use) {
6715 			netif_napi_del(&ch->rxtx_napi);
6716 		}
6717 	}
6718 }
6719 
6720 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6721 {
6722 	struct stmmac_priv *priv = netdev_priv(dev);
6723 	int ret = 0;
6724 
6725 	if (netif_running(dev))
6726 		stmmac_release(dev);
6727 
6728 	stmmac_napi_del(dev);
6729 
6730 	priv->plat->rx_queues_to_use = rx_cnt;
6731 	priv->plat->tx_queues_to_use = tx_cnt;
6732 
6733 	stmmac_napi_add(dev);
6734 
6735 	if (netif_running(dev))
6736 		ret = stmmac_open(dev);
6737 
6738 	return ret;
6739 }
6740 
6741 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6742 {
6743 	struct stmmac_priv *priv = netdev_priv(dev);
6744 	int ret = 0;
6745 
6746 	if (netif_running(dev))
6747 		stmmac_release(dev);
6748 
6749 	priv->dma_rx_size = rx_size;
6750 	priv->dma_tx_size = tx_size;
6751 
6752 	if (netif_running(dev))
6753 		ret = stmmac_open(dev);
6754 
6755 	return ret;
6756 }
6757 
6758 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
6759 static void stmmac_fpe_lp_task(struct work_struct *work)
6760 {
6761 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6762 						fpe_task);
6763 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
6764 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
6765 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
6766 	bool *hs_enable = &fpe_cfg->hs_enable;
6767 	bool *enable = &fpe_cfg->enable;
6768 	int retries = 20;
6769 
6770 	while (retries-- > 0) {
6771 		/* Bail out immediately if FPE handshake is OFF */
6772 		if (*lo_state == FPE_STATE_OFF || !*hs_enable)
6773 			break;
6774 
6775 		if (*lo_state == FPE_STATE_ENTERING_ON &&
6776 		    *lp_state == FPE_STATE_ENTERING_ON) {
6777 			stmmac_fpe_configure(priv, priv->ioaddr,
6778 					     priv->plat->tx_queues_to_use,
6779 					     priv->plat->rx_queues_to_use,
6780 					     *enable);
6781 
6782 			netdev_info(priv->dev, "configured FPE\n");
6783 
6784 			*lo_state = FPE_STATE_ON;
6785 			*lp_state = FPE_STATE_ON;
6786 			netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
6787 			break;
6788 		}
6789 
6790 		if ((*lo_state == FPE_STATE_CAPABLE ||
6791 		     *lo_state == FPE_STATE_ENTERING_ON) &&
6792 		     *lp_state != FPE_STATE_ON) {
6793 			netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
6794 				    *lo_state, *lp_state);
6795 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6796 						MPACKET_VERIFY);
6797 		}
6798 		/* Sleep then retry */
6799 		msleep(500);
6800 	}
6801 
6802 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
6803 }
6804 
6805 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
6806 {
6807 	if (priv->plat->fpe_cfg->hs_enable != enable) {
6808 		if (enable) {
6809 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6810 						MPACKET_VERIFY);
6811 		} else {
6812 			priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
6813 			priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
6814 		}
6815 
6816 		priv->plat->fpe_cfg->hs_enable = enable;
6817 	}
6818 }
6819 
6820 /**
6821  * stmmac_dvr_probe
6822  * @device: device pointer
6823  * @plat_dat: platform data pointer
6824  * @res: stmmac resource pointer
6825  * Description: this is the main probe function used to
6826  * call the alloc_etherdev, allocate the priv structure.
6827  * Return:
6828  * returns 0 on success, otherwise errno.
6829  */
6830 int stmmac_dvr_probe(struct device *device,
6831 		     struct plat_stmmacenet_data *plat_dat,
6832 		     struct stmmac_resources *res)
6833 {
6834 	struct net_device *ndev = NULL;
6835 	struct stmmac_priv *priv;
6836 	u32 rxq;
6837 	int i, ret = 0;
6838 
6839 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
6840 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
6841 	if (!ndev)
6842 		return -ENOMEM;
6843 
6844 	SET_NETDEV_DEV(ndev, device);
6845 
6846 	priv = netdev_priv(ndev);
6847 	priv->device = device;
6848 	priv->dev = ndev;
6849 
6850 	stmmac_set_ethtool_ops(ndev);
6851 	priv->pause = pause;
6852 	priv->plat = plat_dat;
6853 	priv->ioaddr = res->addr;
6854 	priv->dev->base_addr = (unsigned long)res->addr;
6855 	priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
6856 
6857 	priv->dev->irq = res->irq;
6858 	priv->wol_irq = res->wol_irq;
6859 	priv->lpi_irq = res->lpi_irq;
6860 	priv->sfty_ce_irq = res->sfty_ce_irq;
6861 	priv->sfty_ue_irq = res->sfty_ue_irq;
6862 	for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
6863 		priv->rx_irq[i] = res->rx_irq[i];
6864 	for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
6865 		priv->tx_irq[i] = res->tx_irq[i];
6866 
6867 	if (!is_zero_ether_addr(res->mac))
6868 		eth_hw_addr_set(priv->dev, res->mac);
6869 
6870 	dev_set_drvdata(device, priv->dev);
6871 
6872 	/* Verify driver arguments */
6873 	stmmac_verify_args();
6874 
6875 	priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
6876 	if (!priv->af_xdp_zc_qps)
6877 		return -ENOMEM;
6878 
6879 	/* Allocate workqueue */
6880 	priv->wq = create_singlethread_workqueue("stmmac_wq");
6881 	if (!priv->wq) {
6882 		dev_err(priv->device, "failed to create workqueue\n");
6883 		return -ENOMEM;
6884 	}
6885 
6886 	INIT_WORK(&priv->service_task, stmmac_service_task);
6887 
6888 	/* Initialize Link Partner FPE workqueue */
6889 	INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
6890 
6891 	/* Override with kernel parameters if supplied XXX CRS XXX
6892 	 * this needs to have multiple instances
6893 	 */
6894 	if ((phyaddr >= 0) && (phyaddr <= 31))
6895 		priv->plat->phy_addr = phyaddr;
6896 
6897 	if (priv->plat->stmmac_rst) {
6898 		ret = reset_control_assert(priv->plat->stmmac_rst);
6899 		reset_control_deassert(priv->plat->stmmac_rst);
6900 		/* Some reset controllers have only reset callback instead of
6901 		 * assert + deassert callbacks pair.
6902 		 */
6903 		if (ret == -ENOTSUPP)
6904 			reset_control_reset(priv->plat->stmmac_rst);
6905 	}
6906 
6907 	ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
6908 	if (ret == -ENOTSUPP)
6909 		dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
6910 			ERR_PTR(ret));
6911 
6912 	/* Init MAC and get the capabilities */
6913 	ret = stmmac_hw_init(priv);
6914 	if (ret)
6915 		goto error_hw_init;
6916 
6917 	/* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
6918 	 */
6919 	if (priv->synopsys_id < DWMAC_CORE_5_20)
6920 		priv->plat->dma_cfg->dche = false;
6921 
6922 	stmmac_check_ether_addr(priv);
6923 
6924 	ndev->netdev_ops = &stmmac_netdev_ops;
6925 
6926 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6927 			    NETIF_F_RXCSUM;
6928 
6929 	ret = stmmac_tc_init(priv, priv);
6930 	if (!ret) {
6931 		ndev->hw_features |= NETIF_F_HW_TC;
6932 	}
6933 
6934 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
6935 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
6936 		if (priv->plat->has_gmac4)
6937 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
6938 		priv->tso = true;
6939 		dev_info(priv->device, "TSO feature enabled\n");
6940 	}
6941 
6942 	if (priv->dma_cap.sphen) {
6943 		ndev->hw_features |= NETIF_F_GRO;
6944 		priv->sph_cap = true;
6945 		priv->sph = priv->sph_cap;
6946 		dev_info(priv->device, "SPH feature enabled\n");
6947 	}
6948 
6949 	/* The current IP register MAC_HW_Feature1[ADDR64] only define
6950 	 * 32/40/64 bit width, but some SOC support others like i.MX8MP
6951 	 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
6952 	 * So overwrite dma_cap.addr64 according to HW real design.
6953 	 */
6954 	if (priv->plat->addr64)
6955 		priv->dma_cap.addr64 = priv->plat->addr64;
6956 
6957 	if (priv->dma_cap.addr64) {
6958 		ret = dma_set_mask_and_coherent(device,
6959 				DMA_BIT_MASK(priv->dma_cap.addr64));
6960 		if (!ret) {
6961 			dev_info(priv->device, "Using %d bits DMA width\n",
6962 				 priv->dma_cap.addr64);
6963 
6964 			/*
6965 			 * If more than 32 bits can be addressed, make sure to
6966 			 * enable enhanced addressing mode.
6967 			 */
6968 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
6969 				priv->plat->dma_cfg->eame = true;
6970 		} else {
6971 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
6972 			if (ret) {
6973 				dev_err(priv->device, "Failed to set DMA Mask\n");
6974 				goto error_hw_init;
6975 			}
6976 
6977 			priv->dma_cap.addr64 = 32;
6978 		}
6979 	}
6980 
6981 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
6982 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
6983 #ifdef STMMAC_VLAN_TAG_USED
6984 	/* Both mac100 and gmac support receive VLAN tag detection */
6985 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
6986 	if (priv->dma_cap.vlhash) {
6987 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6988 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
6989 	}
6990 	if (priv->dma_cap.vlins) {
6991 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
6992 		if (priv->dma_cap.dvlan)
6993 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
6994 	}
6995 #endif
6996 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
6997 
6998 	/* Initialize RSS */
6999 	rxq = priv->plat->rx_queues_to_use;
7000 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
7001 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7002 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
7003 
7004 	if (priv->dma_cap.rssen && priv->plat->rss_en)
7005 		ndev->features |= NETIF_F_RXHASH;
7006 
7007 	/* MTU range: 46 - hw-specific max */
7008 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
7009 	if (priv->plat->has_xgmac)
7010 		ndev->max_mtu = XGMAC_JUMBO_LEN;
7011 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
7012 		ndev->max_mtu = JUMBO_LEN;
7013 	else
7014 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
7015 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
7016 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
7017 	 */
7018 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
7019 	    (priv->plat->maxmtu >= ndev->min_mtu))
7020 		ndev->max_mtu = priv->plat->maxmtu;
7021 	else if (priv->plat->maxmtu < ndev->min_mtu)
7022 		dev_warn(priv->device,
7023 			 "%s: warning: maxmtu having invalid value (%d)\n",
7024 			 __func__, priv->plat->maxmtu);
7025 
7026 	if (flow_ctrl)
7027 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
7028 
7029 	/* Setup channels NAPI */
7030 	stmmac_napi_add(ndev);
7031 
7032 	mutex_init(&priv->lock);
7033 
7034 	/* If a specific clk_csr value is passed from the platform
7035 	 * this means that the CSR Clock Range selection cannot be
7036 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
7037 	 * set the MDC clock dynamically according to the csr actual
7038 	 * clock input.
7039 	 */
7040 	if (priv->plat->clk_csr >= 0)
7041 		priv->clk_csr = priv->plat->clk_csr;
7042 	else
7043 		stmmac_clk_csr_set(priv);
7044 
7045 	stmmac_check_pcs_mode(priv);
7046 
7047 	pm_runtime_get_noresume(device);
7048 	pm_runtime_set_active(device);
7049 	pm_runtime_enable(device);
7050 
7051 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7052 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
7053 		/* MDIO bus Registration */
7054 		ret = stmmac_mdio_register(ndev);
7055 		if (ret < 0) {
7056 			dev_err(priv->device,
7057 				"%s: MDIO bus (id: %d) registration failed",
7058 				__func__, priv->plat->bus_id);
7059 			goto error_mdio_register;
7060 		}
7061 	}
7062 
7063 	if (priv->plat->speed_mode_2500)
7064 		priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7065 
7066 	if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7067 		ret = stmmac_xpcs_setup(priv->mii);
7068 		if (ret)
7069 			goto error_xpcs_setup;
7070 	}
7071 
7072 	ret = stmmac_phy_setup(priv);
7073 	if (ret) {
7074 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7075 		goto error_phy_setup;
7076 	}
7077 
7078 	ret = register_netdev(ndev);
7079 	if (ret) {
7080 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
7081 			__func__, ret);
7082 		goto error_netdev_register;
7083 	}
7084 
7085 	if (priv->plat->serdes_powerup) {
7086 		ret = priv->plat->serdes_powerup(ndev,
7087 						 priv->plat->bsp_priv);
7088 
7089 		if (ret < 0)
7090 			goto error_serdes_powerup;
7091 	}
7092 
7093 #ifdef CONFIG_DEBUG_FS
7094 	stmmac_init_fs(ndev);
7095 #endif
7096 
7097 	/* Let pm_runtime_put() disable the clocks.
7098 	 * If CONFIG_PM is not enabled, the clocks will stay powered.
7099 	 */
7100 	pm_runtime_put(device);
7101 
7102 	return ret;
7103 
7104 error_serdes_powerup:
7105 	unregister_netdev(ndev);
7106 error_netdev_register:
7107 	phylink_destroy(priv->phylink);
7108 error_xpcs_setup:
7109 error_phy_setup:
7110 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7111 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7112 		stmmac_mdio_unregister(ndev);
7113 error_mdio_register:
7114 	stmmac_napi_del(ndev);
7115 error_hw_init:
7116 	destroy_workqueue(priv->wq);
7117 	bitmap_free(priv->af_xdp_zc_qps);
7118 
7119 	return ret;
7120 }
7121 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7122 
7123 /**
7124  * stmmac_dvr_remove
7125  * @dev: device pointer
7126  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7127  * changes the link status, releases the DMA descriptor rings.
7128  */
7129 int stmmac_dvr_remove(struct device *dev)
7130 {
7131 	struct net_device *ndev = dev_get_drvdata(dev);
7132 	struct stmmac_priv *priv = netdev_priv(ndev);
7133 
7134 	netdev_info(priv->dev, "%s: removing driver", __func__);
7135 
7136 	stmmac_stop_all_dma(priv);
7137 	stmmac_mac_set(priv, priv->ioaddr, false);
7138 	netif_carrier_off(ndev);
7139 	unregister_netdev(ndev);
7140 
7141 	/* Serdes power down needs to happen after VLAN filter
7142 	 * is deleted that is triggered by unregister_netdev().
7143 	 */
7144 	if (priv->plat->serdes_powerdown)
7145 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7146 
7147 #ifdef CONFIG_DEBUG_FS
7148 	stmmac_exit_fs(ndev);
7149 #endif
7150 	phylink_destroy(priv->phylink);
7151 	if (priv->plat->stmmac_rst)
7152 		reset_control_assert(priv->plat->stmmac_rst);
7153 	reset_control_assert(priv->plat->stmmac_ahb_rst);
7154 	pm_runtime_put(dev);
7155 	pm_runtime_disable(dev);
7156 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7157 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7158 		stmmac_mdio_unregister(ndev);
7159 	destroy_workqueue(priv->wq);
7160 	mutex_destroy(&priv->lock);
7161 	bitmap_free(priv->af_xdp_zc_qps);
7162 
7163 	return 0;
7164 }
7165 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7166 
7167 /**
7168  * stmmac_suspend - suspend callback
7169  * @dev: device pointer
7170  * Description: this is the function to suspend the device and it is called
7171  * by the platform driver to stop the network queue, release the resources,
7172  * program the PMT register (for WoL), clean and release driver resources.
7173  */
7174 int stmmac_suspend(struct device *dev)
7175 {
7176 	struct net_device *ndev = dev_get_drvdata(dev);
7177 	struct stmmac_priv *priv = netdev_priv(ndev);
7178 	u32 chan;
7179 
7180 	if (!ndev || !netif_running(ndev))
7181 		return 0;
7182 
7183 	mutex_lock(&priv->lock);
7184 
7185 	netif_device_detach(ndev);
7186 
7187 	stmmac_disable_all_queues(priv);
7188 
7189 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7190 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
7191 
7192 	if (priv->eee_enabled) {
7193 		priv->tx_path_in_lpi_mode = false;
7194 		del_timer_sync(&priv->eee_ctrl_timer);
7195 	}
7196 
7197 	/* Stop TX/RX DMA */
7198 	stmmac_stop_all_dma(priv);
7199 
7200 	if (priv->plat->serdes_powerdown)
7201 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7202 
7203 	/* Enable Power down mode by programming the PMT regs */
7204 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7205 		stmmac_pmt(priv, priv->hw, priv->wolopts);
7206 		priv->irq_wake = 1;
7207 	} else {
7208 		stmmac_mac_set(priv, priv->ioaddr, false);
7209 		pinctrl_pm_select_sleep_state(priv->device);
7210 	}
7211 
7212 	mutex_unlock(&priv->lock);
7213 
7214 	rtnl_lock();
7215 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7216 		phylink_suspend(priv->phylink, true);
7217 	} else {
7218 		if (device_may_wakeup(priv->device))
7219 			phylink_speed_down(priv->phylink, false);
7220 		phylink_suspend(priv->phylink, false);
7221 	}
7222 	rtnl_unlock();
7223 
7224 	if (priv->dma_cap.fpesel) {
7225 		/* Disable FPE */
7226 		stmmac_fpe_configure(priv, priv->ioaddr,
7227 				     priv->plat->tx_queues_to_use,
7228 				     priv->plat->rx_queues_to_use, false);
7229 
7230 		stmmac_fpe_handshake(priv, false);
7231 		stmmac_fpe_stop_wq(priv);
7232 	}
7233 
7234 	priv->speed = SPEED_UNKNOWN;
7235 	return 0;
7236 }
7237 EXPORT_SYMBOL_GPL(stmmac_suspend);
7238 
7239 /**
7240  * stmmac_reset_queues_param - reset queue parameters
7241  * @priv: device pointer
7242  */
7243 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7244 {
7245 	u32 rx_cnt = priv->plat->rx_queues_to_use;
7246 	u32 tx_cnt = priv->plat->tx_queues_to_use;
7247 	u32 queue;
7248 
7249 	for (queue = 0; queue < rx_cnt; queue++) {
7250 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
7251 
7252 		rx_q->cur_rx = 0;
7253 		rx_q->dirty_rx = 0;
7254 	}
7255 
7256 	for (queue = 0; queue < tx_cnt; queue++) {
7257 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
7258 
7259 		tx_q->cur_tx = 0;
7260 		tx_q->dirty_tx = 0;
7261 		tx_q->mss = 0;
7262 
7263 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7264 	}
7265 }
7266 
7267 /**
7268  * stmmac_resume - resume callback
7269  * @dev: device pointer
7270  * Description: when resume this function is invoked to setup the DMA and CORE
7271  * in a usable state.
7272  */
7273 int stmmac_resume(struct device *dev)
7274 {
7275 	struct net_device *ndev = dev_get_drvdata(dev);
7276 	struct stmmac_priv *priv = netdev_priv(ndev);
7277 	int ret;
7278 
7279 	if (!netif_running(ndev))
7280 		return 0;
7281 
7282 	/* Power Down bit, into the PM register, is cleared
7283 	 * automatically as soon as a magic packet or a Wake-up frame
7284 	 * is received. Anyway, it's better to manually clear
7285 	 * this bit because it can generate problems while resuming
7286 	 * from another devices (e.g. serial console).
7287 	 */
7288 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7289 		mutex_lock(&priv->lock);
7290 		stmmac_pmt(priv, priv->hw, 0);
7291 		mutex_unlock(&priv->lock);
7292 		priv->irq_wake = 0;
7293 	} else {
7294 		pinctrl_pm_select_default_state(priv->device);
7295 		/* reset the phy so that it's ready */
7296 		if (priv->mii)
7297 			stmmac_mdio_reset(priv->mii);
7298 	}
7299 
7300 	if (priv->plat->serdes_powerup) {
7301 		ret = priv->plat->serdes_powerup(ndev,
7302 						 priv->plat->bsp_priv);
7303 
7304 		if (ret < 0)
7305 			return ret;
7306 	}
7307 
7308 	rtnl_lock();
7309 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7310 		phylink_resume(priv->phylink);
7311 	} else {
7312 		phylink_resume(priv->phylink);
7313 		if (device_may_wakeup(priv->device))
7314 			phylink_speed_up(priv->phylink);
7315 	}
7316 	rtnl_unlock();
7317 
7318 	rtnl_lock();
7319 	mutex_lock(&priv->lock);
7320 
7321 	stmmac_reset_queues_param(priv);
7322 
7323 	stmmac_free_tx_skbufs(priv);
7324 	stmmac_clear_descriptors(priv);
7325 
7326 	stmmac_hw_setup(ndev, false);
7327 	stmmac_init_coalesce(priv);
7328 	stmmac_set_rx_mode(ndev);
7329 
7330 	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7331 
7332 	stmmac_enable_all_queues(priv);
7333 
7334 	mutex_unlock(&priv->lock);
7335 	rtnl_unlock();
7336 
7337 	netif_device_attach(ndev);
7338 
7339 	return 0;
7340 }
7341 EXPORT_SYMBOL_GPL(stmmac_resume);
7342 
7343 #ifndef MODULE
7344 static int __init stmmac_cmdline_opt(char *str)
7345 {
7346 	char *opt;
7347 
7348 	if (!str || !*str)
7349 		return -EINVAL;
7350 	while ((opt = strsep(&str, ",")) != NULL) {
7351 		if (!strncmp(opt, "debug:", 6)) {
7352 			if (kstrtoint(opt + 6, 0, &debug))
7353 				goto err;
7354 		} else if (!strncmp(opt, "phyaddr:", 8)) {
7355 			if (kstrtoint(opt + 8, 0, &phyaddr))
7356 				goto err;
7357 		} else if (!strncmp(opt, "buf_sz:", 7)) {
7358 			if (kstrtoint(opt + 7, 0, &buf_sz))
7359 				goto err;
7360 		} else if (!strncmp(opt, "tc:", 3)) {
7361 			if (kstrtoint(opt + 3, 0, &tc))
7362 				goto err;
7363 		} else if (!strncmp(opt, "watchdog:", 9)) {
7364 			if (kstrtoint(opt + 9, 0, &watchdog))
7365 				goto err;
7366 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
7367 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
7368 				goto err;
7369 		} else if (!strncmp(opt, "pause:", 6)) {
7370 			if (kstrtoint(opt + 6, 0, &pause))
7371 				goto err;
7372 		} else if (!strncmp(opt, "eee_timer:", 10)) {
7373 			if (kstrtoint(opt + 10, 0, &eee_timer))
7374 				goto err;
7375 		} else if (!strncmp(opt, "chain_mode:", 11)) {
7376 			if (kstrtoint(opt + 11, 0, &chain_mode))
7377 				goto err;
7378 		}
7379 	}
7380 	return 0;
7381 
7382 err:
7383 	pr_err("%s: ERROR broken module parameter conversion", __func__);
7384 	return -EINVAL;
7385 }
7386 
7387 __setup("stmmaceth=", stmmac_cmdline_opt);
7388 #endif /* MODULE */
7389 
7390 static int __init stmmac_init(void)
7391 {
7392 #ifdef CONFIG_DEBUG_FS
7393 	/* Create debugfs main directory if it doesn't exist yet */
7394 	if (!stmmac_fs_dir)
7395 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7396 	register_netdevice_notifier(&stmmac_notifier);
7397 #endif
7398 
7399 	return 0;
7400 }
7401 
7402 static void __exit stmmac_exit(void)
7403 {
7404 #ifdef CONFIG_DEBUG_FS
7405 	unregister_netdevice_notifier(&stmmac_notifier);
7406 	debugfs_remove_recursive(stmmac_fs_dir);
7407 #endif
7408 }
7409 
7410 module_init(stmmac_init)
7411 module_exit(stmmac_exit)
7412 
7413 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7414 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7415 MODULE_LICENSE("GPL");
7416