1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/pkt_cls.h>
43 #include <net/xdp_sock_drv.h>
44 #include "stmmac_ptp.h"
45 #include "stmmac.h"
46 #include "stmmac_xdp.h"
47 #include <linux/reset.h>
48 #include <linux/of_mdio.h>
49 #include "dwmac1000.h"
50 #include "dwxgmac2.h"
51 #include "hwif.h"
52 
53 /* As long as the interface is active, we keep the timestamping counter enabled
54  * with fine resolution and binary rollover. This avoid non-monotonic behavior
55  * (clock jumps) when changing timestamping settings at runtime.
56  */
57 #define STMMAC_HWTS_ACTIVE	(PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
58 				 PTP_TCR_TSCTRLSSR)
59 
60 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
61 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
62 
63 /* Module parameters */
64 #define TX_TIMEO	5000
65 static int watchdog = TX_TIMEO;
66 module_param(watchdog, int, 0644);
67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
68 
69 static int debug = -1;
70 module_param(debug, int, 0644);
71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
72 
73 static int phyaddr = -1;
74 module_param(phyaddr, int, 0444);
75 MODULE_PARM_DESC(phyaddr, "Physical device address");
76 
77 #define STMMAC_TX_THRESH(x)	((x)->dma_conf.dma_tx_size / 4)
78 #define STMMAC_RX_THRESH(x)	((x)->dma_conf.dma_rx_size / 4)
79 
80 /* Limit to make sure XDP TX and slow path can coexist */
81 #define STMMAC_XSK_TX_BUDGET_MAX	256
82 #define STMMAC_TX_XSK_AVAIL		16
83 #define STMMAC_RX_FILL_BATCH		16
84 
85 #define STMMAC_XDP_PASS		0
86 #define STMMAC_XDP_CONSUMED	BIT(0)
87 #define STMMAC_XDP_TX		BIT(1)
88 #define STMMAC_XDP_REDIRECT	BIT(2)
89 
90 static int flow_ctrl = FLOW_AUTO;
91 module_param(flow_ctrl, int, 0644);
92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
93 
94 static int pause = PAUSE_TIME;
95 module_param(pause, int, 0644);
96 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
97 
98 #define TC_DEFAULT 64
99 static int tc = TC_DEFAULT;
100 module_param(tc, int, 0644);
101 MODULE_PARM_DESC(tc, "DMA threshold control value");
102 
103 #define	DEFAULT_BUFSIZE	1536
104 static int buf_sz = DEFAULT_BUFSIZE;
105 module_param(buf_sz, int, 0644);
106 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
107 
108 #define	STMMAC_RX_COPYBREAK	256
109 
110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
111 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
112 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
113 
114 #define STMMAC_DEFAULT_LPI_TIMER	1000
115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
116 module_param(eee_timer, int, 0644);
117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
119 
120 /* By default the driver will use the ring mode to manage tx and rx descriptors,
121  * but allow user to force to use the chain instead of the ring
122  */
123 static unsigned int chain_mode;
124 module_param(chain_mode, int, 0444);
125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
126 
127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
128 /* For MSI interrupts handling */
129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
133 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue);
134 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue);
135 static void stmmac_reset_queues_param(struct stmmac_priv *priv);
136 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
137 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
138 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
139 					  u32 rxmode, u32 chan);
140 
141 #ifdef CONFIG_DEBUG_FS
142 static const struct net_device_ops stmmac_netdev_ops;
143 static void stmmac_init_fs(struct net_device *dev);
144 static void stmmac_exit_fs(struct net_device *dev);
145 #endif
146 
147 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
148 
149 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
150 {
151 	int ret = 0;
152 
153 	if (enabled) {
154 		ret = clk_prepare_enable(priv->plat->stmmac_clk);
155 		if (ret)
156 			return ret;
157 		ret = clk_prepare_enable(priv->plat->pclk);
158 		if (ret) {
159 			clk_disable_unprepare(priv->plat->stmmac_clk);
160 			return ret;
161 		}
162 		if (priv->plat->clks_config) {
163 			ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
164 			if (ret) {
165 				clk_disable_unprepare(priv->plat->stmmac_clk);
166 				clk_disable_unprepare(priv->plat->pclk);
167 				return ret;
168 			}
169 		}
170 	} else {
171 		clk_disable_unprepare(priv->plat->stmmac_clk);
172 		clk_disable_unprepare(priv->plat->pclk);
173 		if (priv->plat->clks_config)
174 			priv->plat->clks_config(priv->plat->bsp_priv, enabled);
175 	}
176 
177 	return ret;
178 }
179 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
180 
181 /**
182  * stmmac_verify_args - verify the driver parameters.
183  * Description: it checks the driver parameters and set a default in case of
184  * errors.
185  */
186 static void stmmac_verify_args(void)
187 {
188 	if (unlikely(watchdog < 0))
189 		watchdog = TX_TIMEO;
190 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
191 		buf_sz = DEFAULT_BUFSIZE;
192 	if (unlikely(flow_ctrl > 1))
193 		flow_ctrl = FLOW_AUTO;
194 	else if (likely(flow_ctrl < 0))
195 		flow_ctrl = FLOW_OFF;
196 	if (unlikely((pause < 0) || (pause > 0xffff)))
197 		pause = PAUSE_TIME;
198 	if (eee_timer < 0)
199 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
200 }
201 
202 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
203 {
204 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
205 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
206 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
207 	u32 queue;
208 
209 	for (queue = 0; queue < maxq; queue++) {
210 		struct stmmac_channel *ch = &priv->channel[queue];
211 
212 		if (stmmac_xdp_is_enabled(priv) &&
213 		    test_bit(queue, priv->af_xdp_zc_qps)) {
214 			napi_disable(&ch->rxtx_napi);
215 			continue;
216 		}
217 
218 		if (queue < rx_queues_cnt)
219 			napi_disable(&ch->rx_napi);
220 		if (queue < tx_queues_cnt)
221 			napi_disable(&ch->tx_napi);
222 	}
223 }
224 
225 /**
226  * stmmac_disable_all_queues - Disable all queues
227  * @priv: driver private structure
228  */
229 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
230 {
231 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
232 	struct stmmac_rx_queue *rx_q;
233 	u32 queue;
234 
235 	/* synchronize_rcu() needed for pending XDP buffers to drain */
236 	for (queue = 0; queue < rx_queues_cnt; queue++) {
237 		rx_q = &priv->dma_conf.rx_queue[queue];
238 		if (rx_q->xsk_pool) {
239 			synchronize_rcu();
240 			break;
241 		}
242 	}
243 
244 	__stmmac_disable_all_queues(priv);
245 }
246 
247 /**
248  * stmmac_enable_all_queues - Enable all queues
249  * @priv: driver private structure
250  */
251 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
252 {
253 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
254 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
255 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
256 	u32 queue;
257 
258 	for (queue = 0; queue < maxq; queue++) {
259 		struct stmmac_channel *ch = &priv->channel[queue];
260 
261 		if (stmmac_xdp_is_enabled(priv) &&
262 		    test_bit(queue, priv->af_xdp_zc_qps)) {
263 			napi_enable(&ch->rxtx_napi);
264 			continue;
265 		}
266 
267 		if (queue < rx_queues_cnt)
268 			napi_enable(&ch->rx_napi);
269 		if (queue < tx_queues_cnt)
270 			napi_enable(&ch->tx_napi);
271 	}
272 }
273 
274 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
275 {
276 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
277 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
278 		queue_work(priv->wq, &priv->service_task);
279 }
280 
281 static void stmmac_global_err(struct stmmac_priv *priv)
282 {
283 	netif_carrier_off(priv->dev);
284 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
285 	stmmac_service_event_schedule(priv);
286 }
287 
288 /**
289  * stmmac_clk_csr_set - dynamically set the MDC clock
290  * @priv: driver private structure
291  * Description: this is to dynamically set the MDC clock according to the csr
292  * clock input.
293  * Note:
294  *	If a specific clk_csr value is passed from the platform
295  *	this means that the CSR Clock Range selection cannot be
296  *	changed at run-time and it is fixed (as reported in the driver
297  *	documentation). Viceversa the driver will try to set the MDC
298  *	clock dynamically according to the actual clock input.
299  */
300 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
301 {
302 	u32 clk_rate;
303 
304 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
305 
306 	/* Platform provided default clk_csr would be assumed valid
307 	 * for all other cases except for the below mentioned ones.
308 	 * For values higher than the IEEE 802.3 specified frequency
309 	 * we can not estimate the proper divider as it is not known
310 	 * the frequency of clk_csr_i. So we do not change the default
311 	 * divider.
312 	 */
313 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
314 		if (clk_rate < CSR_F_35M)
315 			priv->clk_csr = STMMAC_CSR_20_35M;
316 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
317 			priv->clk_csr = STMMAC_CSR_35_60M;
318 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
319 			priv->clk_csr = STMMAC_CSR_60_100M;
320 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
321 			priv->clk_csr = STMMAC_CSR_100_150M;
322 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
323 			priv->clk_csr = STMMAC_CSR_150_250M;
324 		else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
325 			priv->clk_csr = STMMAC_CSR_250_300M;
326 	}
327 
328 	if (priv->plat->has_sun8i) {
329 		if (clk_rate > 160000000)
330 			priv->clk_csr = 0x03;
331 		else if (clk_rate > 80000000)
332 			priv->clk_csr = 0x02;
333 		else if (clk_rate > 40000000)
334 			priv->clk_csr = 0x01;
335 		else
336 			priv->clk_csr = 0;
337 	}
338 
339 	if (priv->plat->has_xgmac) {
340 		if (clk_rate > 400000000)
341 			priv->clk_csr = 0x5;
342 		else if (clk_rate > 350000000)
343 			priv->clk_csr = 0x4;
344 		else if (clk_rate > 300000000)
345 			priv->clk_csr = 0x3;
346 		else if (clk_rate > 250000000)
347 			priv->clk_csr = 0x2;
348 		else if (clk_rate > 150000000)
349 			priv->clk_csr = 0x1;
350 		else
351 			priv->clk_csr = 0x0;
352 	}
353 }
354 
355 static void print_pkt(unsigned char *buf, int len)
356 {
357 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
358 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
359 }
360 
361 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
362 {
363 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
364 	u32 avail;
365 
366 	if (tx_q->dirty_tx > tx_q->cur_tx)
367 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
368 	else
369 		avail = priv->dma_conf.dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
370 
371 	return avail;
372 }
373 
374 /**
375  * stmmac_rx_dirty - Get RX queue dirty
376  * @priv: driver private structure
377  * @queue: RX queue index
378  */
379 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
380 {
381 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
382 	u32 dirty;
383 
384 	if (rx_q->dirty_rx <= rx_q->cur_rx)
385 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
386 	else
387 		dirty = priv->dma_conf.dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
388 
389 	return dirty;
390 }
391 
392 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
393 {
394 	int tx_lpi_timer;
395 
396 	/* Clear/set the SW EEE timer flag based on LPI ET enablement */
397 	priv->eee_sw_timer_en = en ? 0 : 1;
398 	tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
399 	stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
400 }
401 
402 /**
403  * stmmac_enable_eee_mode - check and enter in LPI mode
404  * @priv: driver private structure
405  * Description: this function is to verify and enter in LPI mode in case of
406  * EEE.
407  */
408 static int stmmac_enable_eee_mode(struct stmmac_priv *priv)
409 {
410 	u32 tx_cnt = priv->plat->tx_queues_to_use;
411 	u32 queue;
412 
413 	/* check if all TX queues have the work finished */
414 	for (queue = 0; queue < tx_cnt; queue++) {
415 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
416 
417 		if (tx_q->dirty_tx != tx_q->cur_tx)
418 			return -EBUSY; /* still unfinished work */
419 	}
420 
421 	/* Check and enter in LPI mode */
422 	if (!priv->tx_path_in_lpi_mode)
423 		stmmac_set_eee_mode(priv, priv->hw,
424 				priv->plat->en_tx_lpi_clockgating);
425 	return 0;
426 }
427 
428 /**
429  * stmmac_disable_eee_mode - disable and exit from LPI mode
430  * @priv: driver private structure
431  * Description: this function is to exit and disable EEE in case of
432  * LPI state is true. This is called by the xmit.
433  */
434 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
435 {
436 	if (!priv->eee_sw_timer_en) {
437 		stmmac_lpi_entry_timer_config(priv, 0);
438 		return;
439 	}
440 
441 	stmmac_reset_eee_mode(priv, priv->hw);
442 	del_timer_sync(&priv->eee_ctrl_timer);
443 	priv->tx_path_in_lpi_mode = false;
444 }
445 
446 /**
447  * stmmac_eee_ctrl_timer - EEE TX SW timer.
448  * @t:  timer_list struct containing private info
449  * Description:
450  *  if there is no data transfer and if we are not in LPI state,
451  *  then MAC Transmitter can be moved to LPI state.
452  */
453 static void stmmac_eee_ctrl_timer(struct timer_list *t)
454 {
455 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
456 
457 	if (stmmac_enable_eee_mode(priv))
458 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
459 }
460 
461 /**
462  * stmmac_eee_init - init EEE
463  * @priv: driver private structure
464  * Description:
465  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
466  *  can also manage EEE, this function enable the LPI state and start related
467  *  timer.
468  */
469 bool stmmac_eee_init(struct stmmac_priv *priv)
470 {
471 	int eee_tw_timer = priv->eee_tw_timer;
472 
473 	/* Using PCS we cannot dial with the phy registers at this stage
474 	 * so we do not support extra feature like EEE.
475 	 */
476 	if (priv->hw->pcs == STMMAC_PCS_TBI ||
477 	    priv->hw->pcs == STMMAC_PCS_RTBI)
478 		return false;
479 
480 	/* Check if MAC core supports the EEE feature. */
481 	if (!priv->dma_cap.eee)
482 		return false;
483 
484 	mutex_lock(&priv->lock);
485 
486 	/* Check if it needs to be deactivated */
487 	if (!priv->eee_active) {
488 		if (priv->eee_enabled) {
489 			netdev_dbg(priv->dev, "disable EEE\n");
490 			stmmac_lpi_entry_timer_config(priv, 0);
491 			del_timer_sync(&priv->eee_ctrl_timer);
492 			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
493 			if (priv->hw->xpcs)
494 				xpcs_config_eee(priv->hw->xpcs,
495 						priv->plat->mult_fact_100ns,
496 						false);
497 		}
498 		mutex_unlock(&priv->lock);
499 		return false;
500 	}
501 
502 	if (priv->eee_active && !priv->eee_enabled) {
503 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
504 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
505 				     eee_tw_timer);
506 		if (priv->hw->xpcs)
507 			xpcs_config_eee(priv->hw->xpcs,
508 					priv->plat->mult_fact_100ns,
509 					true);
510 	}
511 
512 	if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
513 		del_timer_sync(&priv->eee_ctrl_timer);
514 		priv->tx_path_in_lpi_mode = false;
515 		stmmac_lpi_entry_timer_config(priv, 1);
516 	} else {
517 		stmmac_lpi_entry_timer_config(priv, 0);
518 		mod_timer(&priv->eee_ctrl_timer,
519 			  STMMAC_LPI_T(priv->tx_lpi_timer));
520 	}
521 
522 	mutex_unlock(&priv->lock);
523 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
524 	return true;
525 }
526 
527 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
528  * @priv: driver private structure
529  * @p : descriptor pointer
530  * @skb : the socket buffer
531  * Description :
532  * This function will read timestamp from the descriptor & pass it to stack.
533  * and also perform some sanity checks.
534  */
535 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
536 				   struct dma_desc *p, struct sk_buff *skb)
537 {
538 	struct skb_shared_hwtstamps shhwtstamp;
539 	bool found = false;
540 	u64 ns = 0;
541 
542 	if (!priv->hwts_tx_en)
543 		return;
544 
545 	/* exit if skb doesn't support hw tstamp */
546 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
547 		return;
548 
549 	/* check tx tstamp status */
550 	if (stmmac_get_tx_timestamp_status(priv, p)) {
551 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
552 		found = true;
553 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
554 		found = true;
555 	}
556 
557 	if (found) {
558 		ns -= priv->plat->cdc_error_adj;
559 
560 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
561 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
562 
563 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
564 		/* pass tstamp to stack */
565 		skb_tstamp_tx(skb, &shhwtstamp);
566 	}
567 }
568 
569 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
570  * @priv: driver private structure
571  * @p : descriptor pointer
572  * @np : next descriptor pointer
573  * @skb : the socket buffer
574  * Description :
575  * This function will read received packet's timestamp from the descriptor
576  * and pass it to stack. It also perform some sanity checks.
577  */
578 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
579 				   struct dma_desc *np, struct sk_buff *skb)
580 {
581 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
582 	struct dma_desc *desc = p;
583 	u64 ns = 0;
584 
585 	if (!priv->hwts_rx_en)
586 		return;
587 	/* For GMAC4, the valid timestamp is from CTX next desc. */
588 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
589 		desc = np;
590 
591 	/* Check if timestamp is available */
592 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
593 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
594 
595 		ns -= priv->plat->cdc_error_adj;
596 
597 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
598 		shhwtstamp = skb_hwtstamps(skb);
599 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
600 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
601 	} else  {
602 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
603 	}
604 }
605 
606 /**
607  *  stmmac_hwtstamp_set - control hardware timestamping.
608  *  @dev: device pointer.
609  *  @ifr: An IOCTL specific structure, that can contain a pointer to
610  *  a proprietary structure used to pass information to the driver.
611  *  Description:
612  *  This function configures the MAC to enable/disable both outgoing(TX)
613  *  and incoming(RX) packets time stamping based on user input.
614  *  Return Value:
615  *  0 on success and an appropriate -ve integer on failure.
616  */
617 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
618 {
619 	struct stmmac_priv *priv = netdev_priv(dev);
620 	struct hwtstamp_config config;
621 	u32 ptp_v2 = 0;
622 	u32 tstamp_all = 0;
623 	u32 ptp_over_ipv4_udp = 0;
624 	u32 ptp_over_ipv6_udp = 0;
625 	u32 ptp_over_ethernet = 0;
626 	u32 snap_type_sel = 0;
627 	u32 ts_master_en = 0;
628 	u32 ts_event_en = 0;
629 
630 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
631 		netdev_alert(priv->dev, "No support for HW time stamping\n");
632 		priv->hwts_tx_en = 0;
633 		priv->hwts_rx_en = 0;
634 
635 		return -EOPNOTSUPP;
636 	}
637 
638 	if (copy_from_user(&config, ifr->ifr_data,
639 			   sizeof(config)))
640 		return -EFAULT;
641 
642 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
643 		   __func__, config.flags, config.tx_type, config.rx_filter);
644 
645 	if (config.tx_type != HWTSTAMP_TX_OFF &&
646 	    config.tx_type != HWTSTAMP_TX_ON)
647 		return -ERANGE;
648 
649 	if (priv->adv_ts) {
650 		switch (config.rx_filter) {
651 		case HWTSTAMP_FILTER_NONE:
652 			/* time stamp no incoming packet at all */
653 			config.rx_filter = HWTSTAMP_FILTER_NONE;
654 			break;
655 
656 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
657 			/* PTP v1, UDP, any kind of event packet */
658 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
659 			/* 'xmac' hardware can support Sync, Pdelay_Req and
660 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
661 			 * This leaves Delay_Req timestamps out.
662 			 * Enable all events *and* general purpose message
663 			 * timestamping
664 			 */
665 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
666 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
667 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
668 			break;
669 
670 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
671 			/* PTP v1, UDP, Sync packet */
672 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
673 			/* take time stamp for SYNC messages only */
674 			ts_event_en = PTP_TCR_TSEVNTENA;
675 
676 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
677 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
678 			break;
679 
680 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
681 			/* PTP v1, UDP, Delay_req packet */
682 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
683 			/* take time stamp for Delay_Req messages only */
684 			ts_master_en = PTP_TCR_TSMSTRENA;
685 			ts_event_en = PTP_TCR_TSEVNTENA;
686 
687 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
688 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
689 			break;
690 
691 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
692 			/* PTP v2, UDP, any kind of event packet */
693 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
694 			ptp_v2 = PTP_TCR_TSVER2ENA;
695 			/* take time stamp for all event messages */
696 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
697 
698 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
699 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
700 			break;
701 
702 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
703 			/* PTP v2, UDP, Sync packet */
704 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
705 			ptp_v2 = PTP_TCR_TSVER2ENA;
706 			/* take time stamp for SYNC messages only */
707 			ts_event_en = PTP_TCR_TSEVNTENA;
708 
709 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
710 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
711 			break;
712 
713 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
714 			/* PTP v2, UDP, Delay_req packet */
715 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
716 			ptp_v2 = PTP_TCR_TSVER2ENA;
717 			/* take time stamp for Delay_Req messages only */
718 			ts_master_en = PTP_TCR_TSMSTRENA;
719 			ts_event_en = PTP_TCR_TSEVNTENA;
720 
721 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
722 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
723 			break;
724 
725 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
726 			/* PTP v2/802.AS1 any layer, any kind of event packet */
727 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
728 			ptp_v2 = PTP_TCR_TSVER2ENA;
729 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
730 			if (priv->synopsys_id < DWMAC_CORE_4_10)
731 				ts_event_en = PTP_TCR_TSEVNTENA;
732 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
733 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
734 			ptp_over_ethernet = PTP_TCR_TSIPENA;
735 			break;
736 
737 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
738 			/* PTP v2/802.AS1, any layer, Sync packet */
739 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
740 			ptp_v2 = PTP_TCR_TSVER2ENA;
741 			/* take time stamp for SYNC messages only */
742 			ts_event_en = PTP_TCR_TSEVNTENA;
743 
744 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
745 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
746 			ptp_over_ethernet = PTP_TCR_TSIPENA;
747 			break;
748 
749 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
750 			/* PTP v2/802.AS1, any layer, Delay_req packet */
751 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
752 			ptp_v2 = PTP_TCR_TSVER2ENA;
753 			/* take time stamp for Delay_Req messages only */
754 			ts_master_en = PTP_TCR_TSMSTRENA;
755 			ts_event_en = PTP_TCR_TSEVNTENA;
756 
757 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
758 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
759 			ptp_over_ethernet = PTP_TCR_TSIPENA;
760 			break;
761 
762 		case HWTSTAMP_FILTER_NTP_ALL:
763 		case HWTSTAMP_FILTER_ALL:
764 			/* time stamp any incoming packet */
765 			config.rx_filter = HWTSTAMP_FILTER_ALL;
766 			tstamp_all = PTP_TCR_TSENALL;
767 			break;
768 
769 		default:
770 			return -ERANGE;
771 		}
772 	} else {
773 		switch (config.rx_filter) {
774 		case HWTSTAMP_FILTER_NONE:
775 			config.rx_filter = HWTSTAMP_FILTER_NONE;
776 			break;
777 		default:
778 			/* PTP v1, UDP, any kind of event packet */
779 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
780 			break;
781 		}
782 	}
783 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
784 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
785 
786 	priv->systime_flags = STMMAC_HWTS_ACTIVE;
787 
788 	if (priv->hwts_tx_en || priv->hwts_rx_en) {
789 		priv->systime_flags |= tstamp_all | ptp_v2 |
790 				       ptp_over_ethernet | ptp_over_ipv6_udp |
791 				       ptp_over_ipv4_udp | ts_event_en |
792 				       ts_master_en | snap_type_sel;
793 	}
794 
795 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
796 
797 	memcpy(&priv->tstamp_config, &config, sizeof(config));
798 
799 	return copy_to_user(ifr->ifr_data, &config,
800 			    sizeof(config)) ? -EFAULT : 0;
801 }
802 
803 /**
804  *  stmmac_hwtstamp_get - read hardware timestamping.
805  *  @dev: device pointer.
806  *  @ifr: An IOCTL specific structure, that can contain a pointer to
807  *  a proprietary structure used to pass information to the driver.
808  *  Description:
809  *  This function obtain the current hardware timestamping settings
810  *  as requested.
811  */
812 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
813 {
814 	struct stmmac_priv *priv = netdev_priv(dev);
815 	struct hwtstamp_config *config = &priv->tstamp_config;
816 
817 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
818 		return -EOPNOTSUPP;
819 
820 	return copy_to_user(ifr->ifr_data, config,
821 			    sizeof(*config)) ? -EFAULT : 0;
822 }
823 
824 /**
825  * stmmac_init_tstamp_counter - init hardware timestamping counter
826  * @priv: driver private structure
827  * @systime_flags: timestamping flags
828  * Description:
829  * Initialize hardware counter for packet timestamping.
830  * This is valid as long as the interface is open and not suspended.
831  * Will be rerun after resuming from suspend, case in which the timestamping
832  * flags updated by stmmac_hwtstamp_set() also need to be restored.
833  */
834 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
835 {
836 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
837 	struct timespec64 now;
838 	u32 sec_inc = 0;
839 	u64 temp = 0;
840 
841 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
842 		return -EOPNOTSUPP;
843 
844 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
845 	priv->systime_flags = systime_flags;
846 
847 	/* program Sub Second Increment reg */
848 	stmmac_config_sub_second_increment(priv, priv->ptpaddr,
849 					   priv->plat->clk_ptp_rate,
850 					   xmac, &sec_inc);
851 	temp = div_u64(1000000000ULL, sec_inc);
852 
853 	/* Store sub second increment for later use */
854 	priv->sub_second_inc = sec_inc;
855 
856 	/* calculate default added value:
857 	 * formula is :
858 	 * addend = (2^32)/freq_div_ratio;
859 	 * where, freq_div_ratio = 1e9ns/sec_inc
860 	 */
861 	temp = (u64)(temp << 32);
862 	priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
863 	stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
864 
865 	/* initialize system time */
866 	ktime_get_real_ts64(&now);
867 
868 	/* lower 32 bits of tv_sec are safe until y2106 */
869 	stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
870 
871 	return 0;
872 }
873 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
874 
875 /**
876  * stmmac_init_ptp - init PTP
877  * @priv: driver private structure
878  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
879  * This is done by looking at the HW cap. register.
880  * This function also registers the ptp driver.
881  */
882 static int stmmac_init_ptp(struct stmmac_priv *priv)
883 {
884 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
885 	int ret;
886 
887 	if (priv->plat->ptp_clk_freq_config)
888 		priv->plat->ptp_clk_freq_config(priv);
889 
890 	ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
891 	if (ret)
892 		return ret;
893 
894 	priv->adv_ts = 0;
895 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
896 	if (xmac && priv->dma_cap.atime_stamp)
897 		priv->adv_ts = 1;
898 	/* Dwmac 3.x core with extend_desc can support adv_ts */
899 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
900 		priv->adv_ts = 1;
901 
902 	if (priv->dma_cap.time_stamp)
903 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
904 
905 	if (priv->adv_ts)
906 		netdev_info(priv->dev,
907 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
908 
909 	priv->hwts_tx_en = 0;
910 	priv->hwts_rx_en = 0;
911 
912 	return 0;
913 }
914 
915 static void stmmac_release_ptp(struct stmmac_priv *priv)
916 {
917 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
918 	stmmac_ptp_unregister(priv);
919 }
920 
921 /**
922  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
923  *  @priv: driver private structure
924  *  @duplex: duplex passed to the next function
925  *  Description: It is used for configuring the flow control in all queues
926  */
927 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
928 {
929 	u32 tx_cnt = priv->plat->tx_queues_to_use;
930 
931 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
932 			priv->pause, tx_cnt);
933 }
934 
935 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config,
936 						 phy_interface_t interface)
937 {
938 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
939 
940 	if (!priv->hw->xpcs)
941 		return NULL;
942 
943 	return &priv->hw->xpcs->pcs;
944 }
945 
946 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
947 			      const struct phylink_link_state *state)
948 {
949 	/* Nothing to do, xpcs_config() handles everything */
950 }
951 
952 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
953 {
954 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
955 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
956 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
957 	bool *hs_enable = &fpe_cfg->hs_enable;
958 
959 	if (is_up && *hs_enable) {
960 		stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
961 	} else {
962 		*lo_state = FPE_STATE_OFF;
963 		*lp_state = FPE_STATE_OFF;
964 	}
965 }
966 
967 static void stmmac_mac_link_down(struct phylink_config *config,
968 				 unsigned int mode, phy_interface_t interface)
969 {
970 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
971 
972 	stmmac_mac_set(priv, priv->ioaddr, false);
973 	priv->eee_active = false;
974 	priv->tx_lpi_enabled = false;
975 	priv->eee_enabled = stmmac_eee_init(priv);
976 	stmmac_set_eee_pls(priv, priv->hw, false);
977 
978 	if (priv->dma_cap.fpesel)
979 		stmmac_fpe_link_state_handle(priv, false);
980 }
981 
982 static void stmmac_mac_link_up(struct phylink_config *config,
983 			       struct phy_device *phy,
984 			       unsigned int mode, phy_interface_t interface,
985 			       int speed, int duplex,
986 			       bool tx_pause, bool rx_pause)
987 {
988 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
989 	u32 old_ctrl, ctrl;
990 
991 	if (priv->plat->serdes_up_after_phy_linkup && priv->plat->serdes_powerup)
992 		priv->plat->serdes_powerup(priv->dev, priv->plat->bsp_priv);
993 
994 	old_ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
995 	ctrl = old_ctrl & ~priv->hw->link.speed_mask;
996 
997 	if (interface == PHY_INTERFACE_MODE_USXGMII) {
998 		switch (speed) {
999 		case SPEED_10000:
1000 			ctrl |= priv->hw->link.xgmii.speed10000;
1001 			break;
1002 		case SPEED_5000:
1003 			ctrl |= priv->hw->link.xgmii.speed5000;
1004 			break;
1005 		case SPEED_2500:
1006 			ctrl |= priv->hw->link.xgmii.speed2500;
1007 			break;
1008 		default:
1009 			return;
1010 		}
1011 	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1012 		switch (speed) {
1013 		case SPEED_100000:
1014 			ctrl |= priv->hw->link.xlgmii.speed100000;
1015 			break;
1016 		case SPEED_50000:
1017 			ctrl |= priv->hw->link.xlgmii.speed50000;
1018 			break;
1019 		case SPEED_40000:
1020 			ctrl |= priv->hw->link.xlgmii.speed40000;
1021 			break;
1022 		case SPEED_25000:
1023 			ctrl |= priv->hw->link.xlgmii.speed25000;
1024 			break;
1025 		case SPEED_10000:
1026 			ctrl |= priv->hw->link.xgmii.speed10000;
1027 			break;
1028 		case SPEED_2500:
1029 			ctrl |= priv->hw->link.speed2500;
1030 			break;
1031 		case SPEED_1000:
1032 			ctrl |= priv->hw->link.speed1000;
1033 			break;
1034 		default:
1035 			return;
1036 		}
1037 	} else {
1038 		switch (speed) {
1039 		case SPEED_2500:
1040 			ctrl |= priv->hw->link.speed2500;
1041 			break;
1042 		case SPEED_1000:
1043 			ctrl |= priv->hw->link.speed1000;
1044 			break;
1045 		case SPEED_100:
1046 			ctrl |= priv->hw->link.speed100;
1047 			break;
1048 		case SPEED_10:
1049 			ctrl |= priv->hw->link.speed10;
1050 			break;
1051 		default:
1052 			return;
1053 		}
1054 	}
1055 
1056 	priv->speed = speed;
1057 
1058 	if (priv->plat->fix_mac_speed)
1059 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1060 
1061 	if (!duplex)
1062 		ctrl &= ~priv->hw->link.duplex;
1063 	else
1064 		ctrl |= priv->hw->link.duplex;
1065 
1066 	/* Flow Control operation */
1067 	if (rx_pause && tx_pause)
1068 		priv->flow_ctrl = FLOW_AUTO;
1069 	else if (rx_pause && !tx_pause)
1070 		priv->flow_ctrl = FLOW_RX;
1071 	else if (!rx_pause && tx_pause)
1072 		priv->flow_ctrl = FLOW_TX;
1073 	else
1074 		priv->flow_ctrl = FLOW_OFF;
1075 
1076 	stmmac_mac_flow_ctrl(priv, duplex);
1077 
1078 	if (ctrl != old_ctrl)
1079 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1080 
1081 	stmmac_mac_set(priv, priv->ioaddr, true);
1082 	if (phy && priv->dma_cap.eee) {
1083 		priv->eee_active =
1084 			phy_init_eee(phy, !priv->plat->rx_clk_runs_in_lpi) >= 0;
1085 		priv->eee_enabled = stmmac_eee_init(priv);
1086 		priv->tx_lpi_enabled = priv->eee_enabled;
1087 		stmmac_set_eee_pls(priv, priv->hw, true);
1088 	}
1089 
1090 	if (priv->dma_cap.fpesel)
1091 		stmmac_fpe_link_state_handle(priv, true);
1092 }
1093 
1094 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1095 	.mac_select_pcs = stmmac_mac_select_pcs,
1096 	.mac_config = stmmac_mac_config,
1097 	.mac_link_down = stmmac_mac_link_down,
1098 	.mac_link_up = stmmac_mac_link_up,
1099 };
1100 
1101 /**
1102  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1103  * @priv: driver private structure
1104  * Description: this is to verify if the HW supports the PCS.
1105  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1106  * configured for the TBI, RTBI, or SGMII PHY interface.
1107  */
1108 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1109 {
1110 	int interface = priv->plat->interface;
1111 
1112 	if (priv->dma_cap.pcs) {
1113 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1114 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1115 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1116 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1117 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1118 			priv->hw->pcs = STMMAC_PCS_RGMII;
1119 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1120 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1121 			priv->hw->pcs = STMMAC_PCS_SGMII;
1122 		}
1123 	}
1124 }
1125 
1126 /**
1127  * stmmac_init_phy - PHY initialization
1128  * @dev: net device structure
1129  * Description: it initializes the driver's PHY state, and attaches the PHY
1130  * to the mac driver.
1131  *  Return value:
1132  *  0 on success
1133  */
1134 static int stmmac_init_phy(struct net_device *dev)
1135 {
1136 	struct stmmac_priv *priv = netdev_priv(dev);
1137 	struct fwnode_handle *fwnode;
1138 	int ret;
1139 
1140 	fwnode = of_fwnode_handle(priv->plat->phylink_node);
1141 	if (!fwnode)
1142 		fwnode = dev_fwnode(priv->device);
1143 
1144 	if (fwnode)
1145 		ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0);
1146 
1147 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1148 	 * manually parse it
1149 	 */
1150 	if (!fwnode || ret) {
1151 		int addr = priv->plat->phy_addr;
1152 		struct phy_device *phydev;
1153 
1154 		if (addr < 0) {
1155 			netdev_err(priv->dev, "no phy found\n");
1156 			return -ENODEV;
1157 		}
1158 
1159 		phydev = mdiobus_get_phy(priv->mii, addr);
1160 		if (!phydev) {
1161 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1162 			return -ENODEV;
1163 		}
1164 
1165 		ret = phylink_connect_phy(priv->phylink, phydev);
1166 	}
1167 
1168 	if (!priv->plat->pmt) {
1169 		struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1170 
1171 		phylink_ethtool_get_wol(priv->phylink, &wol);
1172 		device_set_wakeup_capable(priv->device, !!wol.supported);
1173 		device_set_wakeup_enable(priv->device, !!wol.wolopts);
1174 	}
1175 
1176 	return ret;
1177 }
1178 
1179 static int stmmac_phy_setup(struct stmmac_priv *priv)
1180 {
1181 	struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1182 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1183 	int max_speed = priv->plat->max_speed;
1184 	int mode = priv->plat->phy_interface;
1185 	struct phylink *phylink;
1186 
1187 	priv->phylink_config.dev = &priv->dev->dev;
1188 	priv->phylink_config.type = PHYLINK_NETDEV;
1189 	if (priv->plat->mdio_bus_data)
1190 		priv->phylink_config.ovr_an_inband =
1191 			mdio_bus_data->xpcs_an_inband;
1192 
1193 	if (!fwnode)
1194 		fwnode = dev_fwnode(priv->device);
1195 
1196 	/* Set the platform/firmware specified interface mode */
1197 	__set_bit(mode, priv->phylink_config.supported_interfaces);
1198 
1199 	/* If we have an xpcs, it defines which PHY interfaces are supported. */
1200 	if (priv->hw->xpcs)
1201 		xpcs_get_interfaces(priv->hw->xpcs,
1202 				    priv->phylink_config.supported_interfaces);
1203 
1204 	priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1205 		MAC_10 | MAC_100;
1206 
1207 	if (!max_speed || max_speed >= 1000)
1208 		priv->phylink_config.mac_capabilities |= MAC_1000;
1209 
1210 	if (priv->plat->has_gmac4) {
1211 		if (!max_speed || max_speed >= 2500)
1212 			priv->phylink_config.mac_capabilities |= MAC_2500FD;
1213 	} else if (priv->plat->has_xgmac) {
1214 		if (!max_speed || max_speed >= 2500)
1215 			priv->phylink_config.mac_capabilities |= MAC_2500FD;
1216 		if (!max_speed || max_speed >= 5000)
1217 			priv->phylink_config.mac_capabilities |= MAC_5000FD;
1218 		if (!max_speed || max_speed >= 10000)
1219 			priv->phylink_config.mac_capabilities |= MAC_10000FD;
1220 		if (!max_speed || max_speed >= 25000)
1221 			priv->phylink_config.mac_capabilities |= MAC_25000FD;
1222 		if (!max_speed || max_speed >= 40000)
1223 			priv->phylink_config.mac_capabilities |= MAC_40000FD;
1224 		if (!max_speed || max_speed >= 50000)
1225 			priv->phylink_config.mac_capabilities |= MAC_50000FD;
1226 		if (!max_speed || max_speed >= 100000)
1227 			priv->phylink_config.mac_capabilities |= MAC_100000FD;
1228 	}
1229 
1230 	/* Half-Duplex can only work with single queue */
1231 	if (priv->plat->tx_queues_to_use > 1)
1232 		priv->phylink_config.mac_capabilities &=
1233 			~(MAC_10HD | MAC_100HD | MAC_1000HD);
1234 	priv->phylink_config.mac_managed_pm = true;
1235 
1236 	phylink = phylink_create(&priv->phylink_config, fwnode,
1237 				 mode, &stmmac_phylink_mac_ops);
1238 	if (IS_ERR(phylink))
1239 		return PTR_ERR(phylink);
1240 
1241 	priv->phylink = phylink;
1242 	return 0;
1243 }
1244 
1245 static void stmmac_display_rx_rings(struct stmmac_priv *priv,
1246 				    struct stmmac_dma_conf *dma_conf)
1247 {
1248 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1249 	unsigned int desc_size;
1250 	void *head_rx;
1251 	u32 queue;
1252 
1253 	/* Display RX rings */
1254 	for (queue = 0; queue < rx_cnt; queue++) {
1255 		struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1256 
1257 		pr_info("\tRX Queue %u rings\n", queue);
1258 
1259 		if (priv->extend_desc) {
1260 			head_rx = (void *)rx_q->dma_erx;
1261 			desc_size = sizeof(struct dma_extended_desc);
1262 		} else {
1263 			head_rx = (void *)rx_q->dma_rx;
1264 			desc_size = sizeof(struct dma_desc);
1265 		}
1266 
1267 		/* Display RX ring */
1268 		stmmac_display_ring(priv, head_rx, dma_conf->dma_rx_size, true,
1269 				    rx_q->dma_rx_phy, desc_size);
1270 	}
1271 }
1272 
1273 static void stmmac_display_tx_rings(struct stmmac_priv *priv,
1274 				    struct stmmac_dma_conf *dma_conf)
1275 {
1276 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1277 	unsigned int desc_size;
1278 	void *head_tx;
1279 	u32 queue;
1280 
1281 	/* Display TX rings */
1282 	for (queue = 0; queue < tx_cnt; queue++) {
1283 		struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1284 
1285 		pr_info("\tTX Queue %d rings\n", queue);
1286 
1287 		if (priv->extend_desc) {
1288 			head_tx = (void *)tx_q->dma_etx;
1289 			desc_size = sizeof(struct dma_extended_desc);
1290 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1291 			head_tx = (void *)tx_q->dma_entx;
1292 			desc_size = sizeof(struct dma_edesc);
1293 		} else {
1294 			head_tx = (void *)tx_q->dma_tx;
1295 			desc_size = sizeof(struct dma_desc);
1296 		}
1297 
1298 		stmmac_display_ring(priv, head_tx, dma_conf->dma_tx_size, false,
1299 				    tx_q->dma_tx_phy, desc_size);
1300 	}
1301 }
1302 
1303 static void stmmac_display_rings(struct stmmac_priv *priv,
1304 				 struct stmmac_dma_conf *dma_conf)
1305 {
1306 	/* Display RX ring */
1307 	stmmac_display_rx_rings(priv, dma_conf);
1308 
1309 	/* Display TX ring */
1310 	stmmac_display_tx_rings(priv, dma_conf);
1311 }
1312 
1313 static int stmmac_set_bfsize(int mtu, int bufsize)
1314 {
1315 	int ret = bufsize;
1316 
1317 	if (mtu >= BUF_SIZE_8KiB)
1318 		ret = BUF_SIZE_16KiB;
1319 	else if (mtu >= BUF_SIZE_4KiB)
1320 		ret = BUF_SIZE_8KiB;
1321 	else if (mtu >= BUF_SIZE_2KiB)
1322 		ret = BUF_SIZE_4KiB;
1323 	else if (mtu > DEFAULT_BUFSIZE)
1324 		ret = BUF_SIZE_2KiB;
1325 	else
1326 		ret = DEFAULT_BUFSIZE;
1327 
1328 	return ret;
1329 }
1330 
1331 /**
1332  * stmmac_clear_rx_descriptors - clear RX descriptors
1333  * @priv: driver private structure
1334  * @dma_conf: structure to take the dma data
1335  * @queue: RX queue index
1336  * Description: this function is called to clear the RX descriptors
1337  * in case of both basic and extended descriptors are used.
1338  */
1339 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv,
1340 					struct stmmac_dma_conf *dma_conf,
1341 					u32 queue)
1342 {
1343 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1344 	int i;
1345 
1346 	/* Clear the RX descriptors */
1347 	for (i = 0; i < dma_conf->dma_rx_size; i++)
1348 		if (priv->extend_desc)
1349 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1350 					priv->use_riwt, priv->mode,
1351 					(i == dma_conf->dma_rx_size - 1),
1352 					dma_conf->dma_buf_sz);
1353 		else
1354 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1355 					priv->use_riwt, priv->mode,
1356 					(i == dma_conf->dma_rx_size - 1),
1357 					dma_conf->dma_buf_sz);
1358 }
1359 
1360 /**
1361  * stmmac_clear_tx_descriptors - clear tx descriptors
1362  * @priv: driver private structure
1363  * @dma_conf: structure to take the dma data
1364  * @queue: TX queue index.
1365  * Description: this function is called to clear the TX descriptors
1366  * in case of both basic and extended descriptors are used.
1367  */
1368 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv,
1369 					struct stmmac_dma_conf *dma_conf,
1370 					u32 queue)
1371 {
1372 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1373 	int i;
1374 
1375 	/* Clear the TX descriptors */
1376 	for (i = 0; i < dma_conf->dma_tx_size; i++) {
1377 		int last = (i == (dma_conf->dma_tx_size - 1));
1378 		struct dma_desc *p;
1379 
1380 		if (priv->extend_desc)
1381 			p = &tx_q->dma_etx[i].basic;
1382 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1383 			p = &tx_q->dma_entx[i].basic;
1384 		else
1385 			p = &tx_q->dma_tx[i];
1386 
1387 		stmmac_init_tx_desc(priv, p, priv->mode, last);
1388 	}
1389 }
1390 
1391 /**
1392  * stmmac_clear_descriptors - clear descriptors
1393  * @priv: driver private structure
1394  * @dma_conf: structure to take the dma data
1395  * Description: this function is called to clear the TX and RX descriptors
1396  * in case of both basic and extended descriptors are used.
1397  */
1398 static void stmmac_clear_descriptors(struct stmmac_priv *priv,
1399 				     struct stmmac_dma_conf *dma_conf)
1400 {
1401 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1402 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1403 	u32 queue;
1404 
1405 	/* Clear the RX descriptors */
1406 	for (queue = 0; queue < rx_queue_cnt; queue++)
1407 		stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1408 
1409 	/* Clear the TX descriptors */
1410 	for (queue = 0; queue < tx_queue_cnt; queue++)
1411 		stmmac_clear_tx_descriptors(priv, dma_conf, queue);
1412 }
1413 
1414 /**
1415  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1416  * @priv: driver private structure
1417  * @dma_conf: structure to take the dma data
1418  * @p: descriptor pointer
1419  * @i: descriptor index
1420  * @flags: gfp flag
1421  * @queue: RX queue index
1422  * Description: this function is called to allocate a receive buffer, perform
1423  * the DMA mapping and init the descriptor.
1424  */
1425 static int stmmac_init_rx_buffers(struct stmmac_priv *priv,
1426 				  struct stmmac_dma_conf *dma_conf,
1427 				  struct dma_desc *p,
1428 				  int i, gfp_t flags, u32 queue)
1429 {
1430 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1431 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1432 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1433 
1434 	if (priv->dma_cap.host_dma_width <= 32)
1435 		gfp |= GFP_DMA32;
1436 
1437 	if (!buf->page) {
1438 		buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1439 		if (!buf->page)
1440 			return -ENOMEM;
1441 		buf->page_offset = stmmac_rx_offset(priv);
1442 	}
1443 
1444 	if (priv->sph && !buf->sec_page) {
1445 		buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1446 		if (!buf->sec_page)
1447 			return -ENOMEM;
1448 
1449 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1450 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1451 	} else {
1452 		buf->sec_page = NULL;
1453 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1454 	}
1455 
1456 	buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1457 
1458 	stmmac_set_desc_addr(priv, p, buf->addr);
1459 	if (dma_conf->dma_buf_sz == BUF_SIZE_16KiB)
1460 		stmmac_init_desc3(priv, p);
1461 
1462 	return 0;
1463 }
1464 
1465 /**
1466  * stmmac_free_rx_buffer - free RX dma buffers
1467  * @priv: private structure
1468  * @rx_q: RX queue
1469  * @i: buffer index.
1470  */
1471 static void stmmac_free_rx_buffer(struct stmmac_priv *priv,
1472 				  struct stmmac_rx_queue *rx_q,
1473 				  int i)
1474 {
1475 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1476 
1477 	if (buf->page)
1478 		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1479 	buf->page = NULL;
1480 
1481 	if (buf->sec_page)
1482 		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1483 	buf->sec_page = NULL;
1484 }
1485 
1486 /**
1487  * stmmac_free_tx_buffer - free RX dma buffers
1488  * @priv: private structure
1489  * @dma_conf: structure to take the dma data
1490  * @queue: RX queue index
1491  * @i: buffer index.
1492  */
1493 static void stmmac_free_tx_buffer(struct stmmac_priv *priv,
1494 				  struct stmmac_dma_conf *dma_conf,
1495 				  u32 queue, int i)
1496 {
1497 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1498 
1499 	if (tx_q->tx_skbuff_dma[i].buf &&
1500 	    tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1501 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1502 			dma_unmap_page(priv->device,
1503 				       tx_q->tx_skbuff_dma[i].buf,
1504 				       tx_q->tx_skbuff_dma[i].len,
1505 				       DMA_TO_DEVICE);
1506 		else
1507 			dma_unmap_single(priv->device,
1508 					 tx_q->tx_skbuff_dma[i].buf,
1509 					 tx_q->tx_skbuff_dma[i].len,
1510 					 DMA_TO_DEVICE);
1511 	}
1512 
1513 	if (tx_q->xdpf[i] &&
1514 	    (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1515 	     tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1516 		xdp_return_frame(tx_q->xdpf[i]);
1517 		tx_q->xdpf[i] = NULL;
1518 	}
1519 
1520 	if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1521 		tx_q->xsk_frames_done++;
1522 
1523 	if (tx_q->tx_skbuff[i] &&
1524 	    tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1525 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1526 		tx_q->tx_skbuff[i] = NULL;
1527 	}
1528 
1529 	tx_q->tx_skbuff_dma[i].buf = 0;
1530 	tx_q->tx_skbuff_dma[i].map_as_page = false;
1531 }
1532 
1533 /**
1534  * dma_free_rx_skbufs - free RX dma buffers
1535  * @priv: private structure
1536  * @dma_conf: structure to take the dma data
1537  * @queue: RX queue index
1538  */
1539 static void dma_free_rx_skbufs(struct stmmac_priv *priv,
1540 			       struct stmmac_dma_conf *dma_conf,
1541 			       u32 queue)
1542 {
1543 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1544 	int i;
1545 
1546 	for (i = 0; i < dma_conf->dma_rx_size; i++)
1547 		stmmac_free_rx_buffer(priv, rx_q, i);
1548 }
1549 
1550 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv,
1551 				   struct stmmac_dma_conf *dma_conf,
1552 				   u32 queue, gfp_t flags)
1553 {
1554 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1555 	int i;
1556 
1557 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1558 		struct dma_desc *p;
1559 		int ret;
1560 
1561 		if (priv->extend_desc)
1562 			p = &((rx_q->dma_erx + i)->basic);
1563 		else
1564 			p = rx_q->dma_rx + i;
1565 
1566 		ret = stmmac_init_rx_buffers(priv, dma_conf, p, i, flags,
1567 					     queue);
1568 		if (ret)
1569 			return ret;
1570 
1571 		rx_q->buf_alloc_num++;
1572 	}
1573 
1574 	return 0;
1575 }
1576 
1577 /**
1578  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1579  * @priv: private structure
1580  * @dma_conf: structure to take the dma data
1581  * @queue: RX queue index
1582  */
1583 static void dma_free_rx_xskbufs(struct stmmac_priv *priv,
1584 				struct stmmac_dma_conf *dma_conf,
1585 				u32 queue)
1586 {
1587 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1588 	int i;
1589 
1590 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1591 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1592 
1593 		if (!buf->xdp)
1594 			continue;
1595 
1596 		xsk_buff_free(buf->xdp);
1597 		buf->xdp = NULL;
1598 	}
1599 }
1600 
1601 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv,
1602 				      struct stmmac_dma_conf *dma_conf,
1603 				      u32 queue)
1604 {
1605 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1606 	int i;
1607 
1608 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1609 		struct stmmac_rx_buffer *buf;
1610 		dma_addr_t dma_addr;
1611 		struct dma_desc *p;
1612 
1613 		if (priv->extend_desc)
1614 			p = (struct dma_desc *)(rx_q->dma_erx + i);
1615 		else
1616 			p = rx_q->dma_rx + i;
1617 
1618 		buf = &rx_q->buf_pool[i];
1619 
1620 		buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1621 		if (!buf->xdp)
1622 			return -ENOMEM;
1623 
1624 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1625 		stmmac_set_desc_addr(priv, p, dma_addr);
1626 		rx_q->buf_alloc_num++;
1627 	}
1628 
1629 	return 0;
1630 }
1631 
1632 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1633 {
1634 	if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1635 		return NULL;
1636 
1637 	return xsk_get_pool_from_qid(priv->dev, queue);
1638 }
1639 
1640 /**
1641  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1642  * @priv: driver private structure
1643  * @dma_conf: structure to take the dma data
1644  * @queue: RX queue index
1645  * @flags: gfp flag.
1646  * Description: this function initializes the DMA RX descriptors
1647  * and allocates the socket buffers. It supports the chained and ring
1648  * modes.
1649  */
1650 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv,
1651 				    struct stmmac_dma_conf *dma_conf,
1652 				    u32 queue, gfp_t flags)
1653 {
1654 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1655 	int ret;
1656 
1657 	netif_dbg(priv, probe, priv->dev,
1658 		  "(%s) dma_rx_phy=0x%08x\n", __func__,
1659 		  (u32)rx_q->dma_rx_phy);
1660 
1661 	stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1662 
1663 	xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1664 
1665 	rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1666 
1667 	if (rx_q->xsk_pool) {
1668 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1669 						   MEM_TYPE_XSK_BUFF_POOL,
1670 						   NULL));
1671 		netdev_info(priv->dev,
1672 			    "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1673 			    rx_q->queue_index);
1674 		xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1675 	} else {
1676 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1677 						   MEM_TYPE_PAGE_POOL,
1678 						   rx_q->page_pool));
1679 		netdev_info(priv->dev,
1680 			    "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1681 			    rx_q->queue_index);
1682 	}
1683 
1684 	if (rx_q->xsk_pool) {
1685 		/* RX XDP ZC buffer pool may not be populated, e.g.
1686 		 * xdpsock TX-only.
1687 		 */
1688 		stmmac_alloc_rx_buffers_zc(priv, dma_conf, queue);
1689 	} else {
1690 		ret = stmmac_alloc_rx_buffers(priv, dma_conf, queue, flags);
1691 		if (ret < 0)
1692 			return -ENOMEM;
1693 	}
1694 
1695 	/* Setup the chained descriptor addresses */
1696 	if (priv->mode == STMMAC_CHAIN_MODE) {
1697 		if (priv->extend_desc)
1698 			stmmac_mode_init(priv, rx_q->dma_erx,
1699 					 rx_q->dma_rx_phy,
1700 					 dma_conf->dma_rx_size, 1);
1701 		else
1702 			stmmac_mode_init(priv, rx_q->dma_rx,
1703 					 rx_q->dma_rx_phy,
1704 					 dma_conf->dma_rx_size, 0);
1705 	}
1706 
1707 	return 0;
1708 }
1709 
1710 static int init_dma_rx_desc_rings(struct net_device *dev,
1711 				  struct stmmac_dma_conf *dma_conf,
1712 				  gfp_t flags)
1713 {
1714 	struct stmmac_priv *priv = netdev_priv(dev);
1715 	u32 rx_count = priv->plat->rx_queues_to_use;
1716 	int queue;
1717 	int ret;
1718 
1719 	/* RX INITIALIZATION */
1720 	netif_dbg(priv, probe, priv->dev,
1721 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1722 
1723 	for (queue = 0; queue < rx_count; queue++) {
1724 		ret = __init_dma_rx_desc_rings(priv, dma_conf, queue, flags);
1725 		if (ret)
1726 			goto err_init_rx_buffers;
1727 	}
1728 
1729 	return 0;
1730 
1731 err_init_rx_buffers:
1732 	while (queue >= 0) {
1733 		struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1734 
1735 		if (rx_q->xsk_pool)
1736 			dma_free_rx_xskbufs(priv, dma_conf, queue);
1737 		else
1738 			dma_free_rx_skbufs(priv, dma_conf, queue);
1739 
1740 		rx_q->buf_alloc_num = 0;
1741 		rx_q->xsk_pool = NULL;
1742 
1743 		queue--;
1744 	}
1745 
1746 	return ret;
1747 }
1748 
1749 /**
1750  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1751  * @priv: driver private structure
1752  * @dma_conf: structure to take the dma data
1753  * @queue: TX queue index
1754  * Description: this function initializes the DMA TX descriptors
1755  * and allocates the socket buffers. It supports the chained and ring
1756  * modes.
1757  */
1758 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv,
1759 				    struct stmmac_dma_conf *dma_conf,
1760 				    u32 queue)
1761 {
1762 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1763 	int i;
1764 
1765 	netif_dbg(priv, probe, priv->dev,
1766 		  "(%s) dma_tx_phy=0x%08x\n", __func__,
1767 		  (u32)tx_q->dma_tx_phy);
1768 
1769 	/* Setup the chained descriptor addresses */
1770 	if (priv->mode == STMMAC_CHAIN_MODE) {
1771 		if (priv->extend_desc)
1772 			stmmac_mode_init(priv, tx_q->dma_etx,
1773 					 tx_q->dma_tx_phy,
1774 					 dma_conf->dma_tx_size, 1);
1775 		else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1776 			stmmac_mode_init(priv, tx_q->dma_tx,
1777 					 tx_q->dma_tx_phy,
1778 					 dma_conf->dma_tx_size, 0);
1779 	}
1780 
1781 	tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1782 
1783 	for (i = 0; i < dma_conf->dma_tx_size; i++) {
1784 		struct dma_desc *p;
1785 
1786 		if (priv->extend_desc)
1787 			p = &((tx_q->dma_etx + i)->basic);
1788 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1789 			p = &((tx_q->dma_entx + i)->basic);
1790 		else
1791 			p = tx_q->dma_tx + i;
1792 
1793 		stmmac_clear_desc(priv, p);
1794 
1795 		tx_q->tx_skbuff_dma[i].buf = 0;
1796 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1797 		tx_q->tx_skbuff_dma[i].len = 0;
1798 		tx_q->tx_skbuff_dma[i].last_segment = false;
1799 		tx_q->tx_skbuff[i] = NULL;
1800 	}
1801 
1802 	return 0;
1803 }
1804 
1805 static int init_dma_tx_desc_rings(struct net_device *dev,
1806 				  struct stmmac_dma_conf *dma_conf)
1807 {
1808 	struct stmmac_priv *priv = netdev_priv(dev);
1809 	u32 tx_queue_cnt;
1810 	u32 queue;
1811 
1812 	tx_queue_cnt = priv->plat->tx_queues_to_use;
1813 
1814 	for (queue = 0; queue < tx_queue_cnt; queue++)
1815 		__init_dma_tx_desc_rings(priv, dma_conf, queue);
1816 
1817 	return 0;
1818 }
1819 
1820 /**
1821  * init_dma_desc_rings - init the RX/TX descriptor rings
1822  * @dev: net device structure
1823  * @dma_conf: structure to take the dma data
1824  * @flags: gfp flag.
1825  * Description: this function initializes the DMA RX/TX descriptors
1826  * and allocates the socket buffers. It supports the chained and ring
1827  * modes.
1828  */
1829 static int init_dma_desc_rings(struct net_device *dev,
1830 			       struct stmmac_dma_conf *dma_conf,
1831 			       gfp_t flags)
1832 {
1833 	struct stmmac_priv *priv = netdev_priv(dev);
1834 	int ret;
1835 
1836 	ret = init_dma_rx_desc_rings(dev, dma_conf, flags);
1837 	if (ret)
1838 		return ret;
1839 
1840 	ret = init_dma_tx_desc_rings(dev, dma_conf);
1841 
1842 	stmmac_clear_descriptors(priv, dma_conf);
1843 
1844 	if (netif_msg_hw(priv))
1845 		stmmac_display_rings(priv, dma_conf);
1846 
1847 	return ret;
1848 }
1849 
1850 /**
1851  * dma_free_tx_skbufs - free TX dma buffers
1852  * @priv: private structure
1853  * @dma_conf: structure to take the dma data
1854  * @queue: TX queue index
1855  */
1856 static void dma_free_tx_skbufs(struct stmmac_priv *priv,
1857 			       struct stmmac_dma_conf *dma_conf,
1858 			       u32 queue)
1859 {
1860 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1861 	int i;
1862 
1863 	tx_q->xsk_frames_done = 0;
1864 
1865 	for (i = 0; i < dma_conf->dma_tx_size; i++)
1866 		stmmac_free_tx_buffer(priv, dma_conf, queue, i);
1867 
1868 	if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1869 		xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1870 		tx_q->xsk_frames_done = 0;
1871 		tx_q->xsk_pool = NULL;
1872 	}
1873 }
1874 
1875 /**
1876  * stmmac_free_tx_skbufs - free TX skb buffers
1877  * @priv: private structure
1878  */
1879 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1880 {
1881 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1882 	u32 queue;
1883 
1884 	for (queue = 0; queue < tx_queue_cnt; queue++)
1885 		dma_free_tx_skbufs(priv, &priv->dma_conf, queue);
1886 }
1887 
1888 /**
1889  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1890  * @priv: private structure
1891  * @dma_conf: structure to take the dma data
1892  * @queue: RX queue index
1893  */
1894 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv,
1895 					 struct stmmac_dma_conf *dma_conf,
1896 					 u32 queue)
1897 {
1898 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1899 
1900 	/* Release the DMA RX socket buffers */
1901 	if (rx_q->xsk_pool)
1902 		dma_free_rx_xskbufs(priv, dma_conf, queue);
1903 	else
1904 		dma_free_rx_skbufs(priv, dma_conf, queue);
1905 
1906 	rx_q->buf_alloc_num = 0;
1907 	rx_q->xsk_pool = NULL;
1908 
1909 	/* Free DMA regions of consistent memory previously allocated */
1910 	if (!priv->extend_desc)
1911 		dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1912 				  sizeof(struct dma_desc),
1913 				  rx_q->dma_rx, rx_q->dma_rx_phy);
1914 	else
1915 		dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1916 				  sizeof(struct dma_extended_desc),
1917 				  rx_q->dma_erx, rx_q->dma_rx_phy);
1918 
1919 	if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1920 		xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1921 
1922 	kfree(rx_q->buf_pool);
1923 	if (rx_q->page_pool)
1924 		page_pool_destroy(rx_q->page_pool);
1925 }
1926 
1927 static void free_dma_rx_desc_resources(struct stmmac_priv *priv,
1928 				       struct stmmac_dma_conf *dma_conf)
1929 {
1930 	u32 rx_count = priv->plat->rx_queues_to_use;
1931 	u32 queue;
1932 
1933 	/* Free RX queue resources */
1934 	for (queue = 0; queue < rx_count; queue++)
1935 		__free_dma_rx_desc_resources(priv, dma_conf, queue);
1936 }
1937 
1938 /**
1939  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1940  * @priv: private structure
1941  * @dma_conf: structure to take the dma data
1942  * @queue: TX queue index
1943  */
1944 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv,
1945 					 struct stmmac_dma_conf *dma_conf,
1946 					 u32 queue)
1947 {
1948 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1949 	size_t size;
1950 	void *addr;
1951 
1952 	/* Release the DMA TX socket buffers */
1953 	dma_free_tx_skbufs(priv, dma_conf, queue);
1954 
1955 	if (priv->extend_desc) {
1956 		size = sizeof(struct dma_extended_desc);
1957 		addr = tx_q->dma_etx;
1958 	} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1959 		size = sizeof(struct dma_edesc);
1960 		addr = tx_q->dma_entx;
1961 	} else {
1962 		size = sizeof(struct dma_desc);
1963 		addr = tx_q->dma_tx;
1964 	}
1965 
1966 	size *= dma_conf->dma_tx_size;
1967 
1968 	dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1969 
1970 	kfree(tx_q->tx_skbuff_dma);
1971 	kfree(tx_q->tx_skbuff);
1972 }
1973 
1974 static void free_dma_tx_desc_resources(struct stmmac_priv *priv,
1975 				       struct stmmac_dma_conf *dma_conf)
1976 {
1977 	u32 tx_count = priv->plat->tx_queues_to_use;
1978 	u32 queue;
1979 
1980 	/* Free TX queue resources */
1981 	for (queue = 0; queue < tx_count; queue++)
1982 		__free_dma_tx_desc_resources(priv, dma_conf, queue);
1983 }
1984 
1985 /**
1986  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1987  * @priv: private structure
1988  * @dma_conf: structure to take the dma data
1989  * @queue: RX queue index
1990  * Description: according to which descriptor can be used (extend or basic)
1991  * this function allocates the resources for TX and RX paths. In case of
1992  * reception, for example, it pre-allocated the RX socket buffer in order to
1993  * allow zero-copy mechanism.
1994  */
1995 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
1996 					 struct stmmac_dma_conf *dma_conf,
1997 					 u32 queue)
1998 {
1999 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
2000 	struct stmmac_channel *ch = &priv->channel[queue];
2001 	bool xdp_prog = stmmac_xdp_is_enabled(priv);
2002 	struct page_pool_params pp_params = { 0 };
2003 	unsigned int num_pages;
2004 	unsigned int napi_id;
2005 	int ret;
2006 
2007 	rx_q->queue_index = queue;
2008 	rx_q->priv_data = priv;
2009 
2010 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
2011 	pp_params.pool_size = dma_conf->dma_rx_size;
2012 	num_pages = DIV_ROUND_UP(dma_conf->dma_buf_sz, PAGE_SIZE);
2013 	pp_params.order = ilog2(num_pages);
2014 	pp_params.nid = dev_to_node(priv->device);
2015 	pp_params.dev = priv->device;
2016 	pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
2017 	pp_params.offset = stmmac_rx_offset(priv);
2018 	pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
2019 
2020 	rx_q->page_pool = page_pool_create(&pp_params);
2021 	if (IS_ERR(rx_q->page_pool)) {
2022 		ret = PTR_ERR(rx_q->page_pool);
2023 		rx_q->page_pool = NULL;
2024 		return ret;
2025 	}
2026 
2027 	rx_q->buf_pool = kcalloc(dma_conf->dma_rx_size,
2028 				 sizeof(*rx_q->buf_pool),
2029 				 GFP_KERNEL);
2030 	if (!rx_q->buf_pool)
2031 		return -ENOMEM;
2032 
2033 	if (priv->extend_desc) {
2034 		rx_q->dma_erx = dma_alloc_coherent(priv->device,
2035 						   dma_conf->dma_rx_size *
2036 						   sizeof(struct dma_extended_desc),
2037 						   &rx_q->dma_rx_phy,
2038 						   GFP_KERNEL);
2039 		if (!rx_q->dma_erx)
2040 			return -ENOMEM;
2041 
2042 	} else {
2043 		rx_q->dma_rx = dma_alloc_coherent(priv->device,
2044 						  dma_conf->dma_rx_size *
2045 						  sizeof(struct dma_desc),
2046 						  &rx_q->dma_rx_phy,
2047 						  GFP_KERNEL);
2048 		if (!rx_q->dma_rx)
2049 			return -ENOMEM;
2050 	}
2051 
2052 	if (stmmac_xdp_is_enabled(priv) &&
2053 	    test_bit(queue, priv->af_xdp_zc_qps))
2054 		napi_id = ch->rxtx_napi.napi_id;
2055 	else
2056 		napi_id = ch->rx_napi.napi_id;
2057 
2058 	ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2059 			       rx_q->queue_index,
2060 			       napi_id);
2061 	if (ret) {
2062 		netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2063 		return -EINVAL;
2064 	}
2065 
2066 	return 0;
2067 }
2068 
2069 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
2070 				       struct stmmac_dma_conf *dma_conf)
2071 {
2072 	u32 rx_count = priv->plat->rx_queues_to_use;
2073 	u32 queue;
2074 	int ret;
2075 
2076 	/* RX queues buffers and DMA */
2077 	for (queue = 0; queue < rx_count; queue++) {
2078 		ret = __alloc_dma_rx_desc_resources(priv, dma_conf, queue);
2079 		if (ret)
2080 			goto err_dma;
2081 	}
2082 
2083 	return 0;
2084 
2085 err_dma:
2086 	free_dma_rx_desc_resources(priv, dma_conf);
2087 
2088 	return ret;
2089 }
2090 
2091 /**
2092  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2093  * @priv: private structure
2094  * @dma_conf: structure to take the dma data
2095  * @queue: TX queue index
2096  * Description: according to which descriptor can be used (extend or basic)
2097  * this function allocates the resources for TX and RX paths. In case of
2098  * reception, for example, it pre-allocated the RX socket buffer in order to
2099  * allow zero-copy mechanism.
2100  */
2101 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2102 					 struct stmmac_dma_conf *dma_conf,
2103 					 u32 queue)
2104 {
2105 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
2106 	size_t size;
2107 	void *addr;
2108 
2109 	tx_q->queue_index = queue;
2110 	tx_q->priv_data = priv;
2111 
2112 	tx_q->tx_skbuff_dma = kcalloc(dma_conf->dma_tx_size,
2113 				      sizeof(*tx_q->tx_skbuff_dma),
2114 				      GFP_KERNEL);
2115 	if (!tx_q->tx_skbuff_dma)
2116 		return -ENOMEM;
2117 
2118 	tx_q->tx_skbuff = kcalloc(dma_conf->dma_tx_size,
2119 				  sizeof(struct sk_buff *),
2120 				  GFP_KERNEL);
2121 	if (!tx_q->tx_skbuff)
2122 		return -ENOMEM;
2123 
2124 	if (priv->extend_desc)
2125 		size = sizeof(struct dma_extended_desc);
2126 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2127 		size = sizeof(struct dma_edesc);
2128 	else
2129 		size = sizeof(struct dma_desc);
2130 
2131 	size *= dma_conf->dma_tx_size;
2132 
2133 	addr = dma_alloc_coherent(priv->device, size,
2134 				  &tx_q->dma_tx_phy, GFP_KERNEL);
2135 	if (!addr)
2136 		return -ENOMEM;
2137 
2138 	if (priv->extend_desc)
2139 		tx_q->dma_etx = addr;
2140 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2141 		tx_q->dma_entx = addr;
2142 	else
2143 		tx_q->dma_tx = addr;
2144 
2145 	return 0;
2146 }
2147 
2148 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2149 				       struct stmmac_dma_conf *dma_conf)
2150 {
2151 	u32 tx_count = priv->plat->tx_queues_to_use;
2152 	u32 queue;
2153 	int ret;
2154 
2155 	/* TX queues buffers and DMA */
2156 	for (queue = 0; queue < tx_count; queue++) {
2157 		ret = __alloc_dma_tx_desc_resources(priv, dma_conf, queue);
2158 		if (ret)
2159 			goto err_dma;
2160 	}
2161 
2162 	return 0;
2163 
2164 err_dma:
2165 	free_dma_tx_desc_resources(priv, dma_conf);
2166 	return ret;
2167 }
2168 
2169 /**
2170  * alloc_dma_desc_resources - alloc TX/RX resources.
2171  * @priv: private structure
2172  * @dma_conf: structure to take the dma data
2173  * Description: according to which descriptor can be used (extend or basic)
2174  * this function allocates the resources for TX and RX paths. In case of
2175  * reception, for example, it pre-allocated the RX socket buffer in order to
2176  * allow zero-copy mechanism.
2177  */
2178 static int alloc_dma_desc_resources(struct stmmac_priv *priv,
2179 				    struct stmmac_dma_conf *dma_conf)
2180 {
2181 	/* RX Allocation */
2182 	int ret = alloc_dma_rx_desc_resources(priv, dma_conf);
2183 
2184 	if (ret)
2185 		return ret;
2186 
2187 	ret = alloc_dma_tx_desc_resources(priv, dma_conf);
2188 
2189 	return ret;
2190 }
2191 
2192 /**
2193  * free_dma_desc_resources - free dma desc resources
2194  * @priv: private structure
2195  * @dma_conf: structure to take the dma data
2196  */
2197 static void free_dma_desc_resources(struct stmmac_priv *priv,
2198 				    struct stmmac_dma_conf *dma_conf)
2199 {
2200 	/* Release the DMA TX socket buffers */
2201 	free_dma_tx_desc_resources(priv, dma_conf);
2202 
2203 	/* Release the DMA RX socket buffers later
2204 	 * to ensure all pending XDP_TX buffers are returned.
2205 	 */
2206 	free_dma_rx_desc_resources(priv, dma_conf);
2207 }
2208 
2209 /**
2210  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2211  *  @priv: driver private structure
2212  *  Description: It is used for enabling the rx queues in the MAC
2213  */
2214 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2215 {
2216 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2217 	int queue;
2218 	u8 mode;
2219 
2220 	for (queue = 0; queue < rx_queues_count; queue++) {
2221 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2222 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2223 	}
2224 }
2225 
2226 /**
2227  * stmmac_start_rx_dma - start RX DMA channel
2228  * @priv: driver private structure
2229  * @chan: RX channel index
2230  * Description:
2231  * This starts a RX DMA channel
2232  */
2233 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2234 {
2235 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2236 	stmmac_start_rx(priv, priv->ioaddr, chan);
2237 }
2238 
2239 /**
2240  * stmmac_start_tx_dma - start TX DMA channel
2241  * @priv: driver private structure
2242  * @chan: TX channel index
2243  * Description:
2244  * This starts a TX DMA channel
2245  */
2246 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2247 {
2248 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2249 	stmmac_start_tx(priv, priv->ioaddr, chan);
2250 }
2251 
2252 /**
2253  * stmmac_stop_rx_dma - stop RX DMA channel
2254  * @priv: driver private structure
2255  * @chan: RX channel index
2256  * Description:
2257  * This stops a RX DMA channel
2258  */
2259 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2260 {
2261 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2262 	stmmac_stop_rx(priv, priv->ioaddr, chan);
2263 }
2264 
2265 /**
2266  * stmmac_stop_tx_dma - stop TX DMA channel
2267  * @priv: driver private structure
2268  * @chan: TX channel index
2269  * Description:
2270  * This stops a TX DMA channel
2271  */
2272 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2273 {
2274 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2275 	stmmac_stop_tx(priv, priv->ioaddr, chan);
2276 }
2277 
2278 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv)
2279 {
2280 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2281 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2282 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2283 	u32 chan;
2284 
2285 	for (chan = 0; chan < dma_csr_ch; chan++) {
2286 		struct stmmac_channel *ch = &priv->channel[chan];
2287 		unsigned long flags;
2288 
2289 		spin_lock_irqsave(&ch->lock, flags);
2290 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2291 		spin_unlock_irqrestore(&ch->lock, flags);
2292 	}
2293 }
2294 
2295 /**
2296  * stmmac_start_all_dma - start all RX and TX DMA channels
2297  * @priv: driver private structure
2298  * Description:
2299  * This starts all the RX and TX DMA channels
2300  */
2301 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2302 {
2303 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2304 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2305 	u32 chan = 0;
2306 
2307 	for (chan = 0; chan < rx_channels_count; chan++)
2308 		stmmac_start_rx_dma(priv, chan);
2309 
2310 	for (chan = 0; chan < tx_channels_count; chan++)
2311 		stmmac_start_tx_dma(priv, chan);
2312 }
2313 
2314 /**
2315  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2316  * @priv: driver private structure
2317  * Description:
2318  * This stops the RX and TX DMA channels
2319  */
2320 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2321 {
2322 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2323 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2324 	u32 chan = 0;
2325 
2326 	for (chan = 0; chan < rx_channels_count; chan++)
2327 		stmmac_stop_rx_dma(priv, chan);
2328 
2329 	for (chan = 0; chan < tx_channels_count; chan++)
2330 		stmmac_stop_tx_dma(priv, chan);
2331 }
2332 
2333 /**
2334  *  stmmac_dma_operation_mode - HW DMA operation mode
2335  *  @priv: driver private structure
2336  *  Description: it is used for configuring the DMA operation mode register in
2337  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2338  */
2339 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2340 {
2341 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2342 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2343 	int rxfifosz = priv->plat->rx_fifo_size;
2344 	int txfifosz = priv->plat->tx_fifo_size;
2345 	u32 txmode = 0;
2346 	u32 rxmode = 0;
2347 	u32 chan = 0;
2348 	u8 qmode = 0;
2349 
2350 	if (rxfifosz == 0)
2351 		rxfifosz = priv->dma_cap.rx_fifo_size;
2352 	if (txfifosz == 0)
2353 		txfifosz = priv->dma_cap.tx_fifo_size;
2354 
2355 	/* Adjust for real per queue fifo size */
2356 	rxfifosz /= rx_channels_count;
2357 	txfifosz /= tx_channels_count;
2358 
2359 	if (priv->plat->force_thresh_dma_mode) {
2360 		txmode = tc;
2361 		rxmode = tc;
2362 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2363 		/*
2364 		 * In case of GMAC, SF mode can be enabled
2365 		 * to perform the TX COE in HW. This depends on:
2366 		 * 1) TX COE if actually supported
2367 		 * 2) There is no bugged Jumbo frame support
2368 		 *    that needs to not insert csum in the TDES.
2369 		 */
2370 		txmode = SF_DMA_MODE;
2371 		rxmode = SF_DMA_MODE;
2372 		priv->xstats.threshold = SF_DMA_MODE;
2373 	} else {
2374 		txmode = tc;
2375 		rxmode = SF_DMA_MODE;
2376 	}
2377 
2378 	/* configure all channels */
2379 	for (chan = 0; chan < rx_channels_count; chan++) {
2380 		struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2381 		u32 buf_size;
2382 
2383 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2384 
2385 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2386 				rxfifosz, qmode);
2387 
2388 		if (rx_q->xsk_pool) {
2389 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2390 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2391 					      buf_size,
2392 					      chan);
2393 		} else {
2394 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2395 					      priv->dma_conf.dma_buf_sz,
2396 					      chan);
2397 		}
2398 	}
2399 
2400 	for (chan = 0; chan < tx_channels_count; chan++) {
2401 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2402 
2403 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2404 				txfifosz, qmode);
2405 	}
2406 }
2407 
2408 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2409 {
2410 	struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2411 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2412 	struct xsk_buff_pool *pool = tx_q->xsk_pool;
2413 	unsigned int entry = tx_q->cur_tx;
2414 	struct dma_desc *tx_desc = NULL;
2415 	struct xdp_desc xdp_desc;
2416 	bool work_done = true;
2417 
2418 	/* Avoids TX time-out as we are sharing with slow path */
2419 	txq_trans_cond_update(nq);
2420 
2421 	budget = min(budget, stmmac_tx_avail(priv, queue));
2422 
2423 	while (budget-- > 0) {
2424 		dma_addr_t dma_addr;
2425 		bool set_ic;
2426 
2427 		/* We are sharing with slow path and stop XSK TX desc submission when
2428 		 * available TX ring is less than threshold.
2429 		 */
2430 		if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2431 		    !netif_carrier_ok(priv->dev)) {
2432 			work_done = false;
2433 			break;
2434 		}
2435 
2436 		if (!xsk_tx_peek_desc(pool, &xdp_desc))
2437 			break;
2438 
2439 		if (likely(priv->extend_desc))
2440 			tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2441 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2442 			tx_desc = &tx_q->dma_entx[entry].basic;
2443 		else
2444 			tx_desc = tx_q->dma_tx + entry;
2445 
2446 		dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2447 		xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2448 
2449 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2450 
2451 		/* To return XDP buffer to XSK pool, we simple call
2452 		 * xsk_tx_completed(), so we don't need to fill up
2453 		 * 'buf' and 'xdpf'.
2454 		 */
2455 		tx_q->tx_skbuff_dma[entry].buf = 0;
2456 		tx_q->xdpf[entry] = NULL;
2457 
2458 		tx_q->tx_skbuff_dma[entry].map_as_page = false;
2459 		tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2460 		tx_q->tx_skbuff_dma[entry].last_segment = true;
2461 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2462 
2463 		stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2464 
2465 		tx_q->tx_count_frames++;
2466 
2467 		if (!priv->tx_coal_frames[queue])
2468 			set_ic = false;
2469 		else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2470 			set_ic = true;
2471 		else
2472 			set_ic = false;
2473 
2474 		if (set_ic) {
2475 			tx_q->tx_count_frames = 0;
2476 			stmmac_set_tx_ic(priv, tx_desc);
2477 			priv->xstats.tx_set_ic_bit++;
2478 		}
2479 
2480 		stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2481 				       true, priv->mode, true, true,
2482 				       xdp_desc.len);
2483 
2484 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
2485 
2486 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
2487 		entry = tx_q->cur_tx;
2488 	}
2489 
2490 	if (tx_desc) {
2491 		stmmac_flush_tx_descriptors(priv, queue);
2492 		xsk_tx_release(pool);
2493 	}
2494 
2495 	/* Return true if all of the 3 conditions are met
2496 	 *  a) TX Budget is still available
2497 	 *  b) work_done = true when XSK TX desc peek is empty (no more
2498 	 *     pending XSK TX for transmission)
2499 	 */
2500 	return !!budget && work_done;
2501 }
2502 
2503 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
2504 {
2505 	if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
2506 		tc += 64;
2507 
2508 		if (priv->plat->force_thresh_dma_mode)
2509 			stmmac_set_dma_operation_mode(priv, tc, tc, chan);
2510 		else
2511 			stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
2512 						      chan);
2513 
2514 		priv->xstats.threshold = tc;
2515 	}
2516 }
2517 
2518 /**
2519  * stmmac_tx_clean - to manage the transmission completion
2520  * @priv: driver private structure
2521  * @budget: napi budget limiting this functions packet handling
2522  * @queue: TX queue index
2523  * Description: it reclaims the transmit resources after transmission completes.
2524  */
2525 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2526 {
2527 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2528 	unsigned int bytes_compl = 0, pkts_compl = 0;
2529 	unsigned int entry, xmits = 0, count = 0;
2530 
2531 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2532 
2533 	priv->xstats.tx_clean++;
2534 
2535 	tx_q->xsk_frames_done = 0;
2536 
2537 	entry = tx_q->dirty_tx;
2538 
2539 	/* Try to clean all TX complete frame in 1 shot */
2540 	while ((entry != tx_q->cur_tx) && count < priv->dma_conf.dma_tx_size) {
2541 		struct xdp_frame *xdpf;
2542 		struct sk_buff *skb;
2543 		struct dma_desc *p;
2544 		int status;
2545 
2546 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2547 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2548 			xdpf = tx_q->xdpf[entry];
2549 			skb = NULL;
2550 		} else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2551 			xdpf = NULL;
2552 			skb = tx_q->tx_skbuff[entry];
2553 		} else {
2554 			xdpf = NULL;
2555 			skb = NULL;
2556 		}
2557 
2558 		if (priv->extend_desc)
2559 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
2560 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2561 			p = &tx_q->dma_entx[entry].basic;
2562 		else
2563 			p = tx_q->dma_tx + entry;
2564 
2565 		status = stmmac_tx_status(priv, &priv->dev->stats,
2566 				&priv->xstats, p, priv->ioaddr);
2567 		/* Check if the descriptor is owned by the DMA */
2568 		if (unlikely(status & tx_dma_own))
2569 			break;
2570 
2571 		count++;
2572 
2573 		/* Make sure descriptor fields are read after reading
2574 		 * the own bit.
2575 		 */
2576 		dma_rmb();
2577 
2578 		/* Just consider the last segment and ...*/
2579 		if (likely(!(status & tx_not_ls))) {
2580 			/* ... verify the status error condition */
2581 			if (unlikely(status & tx_err)) {
2582 				priv->dev->stats.tx_errors++;
2583 				if (unlikely(status & tx_err_bump_tc))
2584 					stmmac_bump_dma_threshold(priv, queue);
2585 			} else {
2586 				priv->dev->stats.tx_packets++;
2587 				priv->xstats.tx_pkt_n++;
2588 				priv->xstats.txq_stats[queue].tx_pkt_n++;
2589 			}
2590 			if (skb)
2591 				stmmac_get_tx_hwtstamp(priv, p, skb);
2592 		}
2593 
2594 		if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2595 			   tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2596 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2597 				dma_unmap_page(priv->device,
2598 					       tx_q->tx_skbuff_dma[entry].buf,
2599 					       tx_q->tx_skbuff_dma[entry].len,
2600 					       DMA_TO_DEVICE);
2601 			else
2602 				dma_unmap_single(priv->device,
2603 						 tx_q->tx_skbuff_dma[entry].buf,
2604 						 tx_q->tx_skbuff_dma[entry].len,
2605 						 DMA_TO_DEVICE);
2606 			tx_q->tx_skbuff_dma[entry].buf = 0;
2607 			tx_q->tx_skbuff_dma[entry].len = 0;
2608 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2609 		}
2610 
2611 		stmmac_clean_desc3(priv, tx_q, p);
2612 
2613 		tx_q->tx_skbuff_dma[entry].last_segment = false;
2614 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2615 
2616 		if (xdpf &&
2617 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2618 			xdp_return_frame_rx_napi(xdpf);
2619 			tx_q->xdpf[entry] = NULL;
2620 		}
2621 
2622 		if (xdpf &&
2623 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2624 			xdp_return_frame(xdpf);
2625 			tx_q->xdpf[entry] = NULL;
2626 		}
2627 
2628 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2629 			tx_q->xsk_frames_done++;
2630 
2631 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2632 			if (likely(skb)) {
2633 				pkts_compl++;
2634 				bytes_compl += skb->len;
2635 				dev_consume_skb_any(skb);
2636 				tx_q->tx_skbuff[entry] = NULL;
2637 			}
2638 		}
2639 
2640 		stmmac_release_tx_desc(priv, p, priv->mode);
2641 
2642 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
2643 	}
2644 	tx_q->dirty_tx = entry;
2645 
2646 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2647 				  pkts_compl, bytes_compl);
2648 
2649 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2650 								queue))) &&
2651 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2652 
2653 		netif_dbg(priv, tx_done, priv->dev,
2654 			  "%s: restart transmit\n", __func__);
2655 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2656 	}
2657 
2658 	if (tx_q->xsk_pool) {
2659 		bool work_done;
2660 
2661 		if (tx_q->xsk_frames_done)
2662 			xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2663 
2664 		if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2665 			xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2666 
2667 		/* For XSK TX, we try to send as many as possible.
2668 		 * If XSK work done (XSK TX desc empty and budget still
2669 		 * available), return "budget - 1" to reenable TX IRQ.
2670 		 * Else, return "budget" to make NAPI continue polling.
2671 		 */
2672 		work_done = stmmac_xdp_xmit_zc(priv, queue,
2673 					       STMMAC_XSK_TX_BUDGET_MAX);
2674 		if (work_done)
2675 			xmits = budget - 1;
2676 		else
2677 			xmits = budget;
2678 	}
2679 
2680 	if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2681 	    priv->eee_sw_timer_en) {
2682 		if (stmmac_enable_eee_mode(priv))
2683 			mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2684 	}
2685 
2686 	/* We still have pending packets, let's call for a new scheduling */
2687 	if (tx_q->dirty_tx != tx_q->cur_tx)
2688 		hrtimer_start(&tx_q->txtimer,
2689 			      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2690 			      HRTIMER_MODE_REL);
2691 
2692 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2693 
2694 	/* Combine decisions from TX clean and XSK TX */
2695 	return max(count, xmits);
2696 }
2697 
2698 /**
2699  * stmmac_tx_err - to manage the tx error
2700  * @priv: driver private structure
2701  * @chan: channel index
2702  * Description: it cleans the descriptors and restarts the transmission
2703  * in case of transmission errors.
2704  */
2705 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2706 {
2707 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2708 
2709 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2710 
2711 	stmmac_stop_tx_dma(priv, chan);
2712 	dma_free_tx_skbufs(priv, &priv->dma_conf, chan);
2713 	stmmac_clear_tx_descriptors(priv, &priv->dma_conf, chan);
2714 	stmmac_reset_tx_queue(priv, chan);
2715 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2716 			    tx_q->dma_tx_phy, chan);
2717 	stmmac_start_tx_dma(priv, chan);
2718 
2719 	priv->dev->stats.tx_errors++;
2720 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2721 }
2722 
2723 /**
2724  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2725  *  @priv: driver private structure
2726  *  @txmode: TX operating mode
2727  *  @rxmode: RX operating mode
2728  *  @chan: channel index
2729  *  Description: it is used for configuring of the DMA operation mode in
2730  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2731  *  mode.
2732  */
2733 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2734 					  u32 rxmode, u32 chan)
2735 {
2736 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2737 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2738 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2739 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2740 	int rxfifosz = priv->plat->rx_fifo_size;
2741 	int txfifosz = priv->plat->tx_fifo_size;
2742 
2743 	if (rxfifosz == 0)
2744 		rxfifosz = priv->dma_cap.rx_fifo_size;
2745 	if (txfifosz == 0)
2746 		txfifosz = priv->dma_cap.tx_fifo_size;
2747 
2748 	/* Adjust for real per queue fifo size */
2749 	rxfifosz /= rx_channels_count;
2750 	txfifosz /= tx_channels_count;
2751 
2752 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2753 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2754 }
2755 
2756 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2757 {
2758 	int ret;
2759 
2760 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2761 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2762 	if (ret && (ret != -EINVAL)) {
2763 		stmmac_global_err(priv);
2764 		return true;
2765 	}
2766 
2767 	return false;
2768 }
2769 
2770 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2771 {
2772 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2773 						 &priv->xstats, chan, dir);
2774 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2775 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2776 	struct stmmac_channel *ch = &priv->channel[chan];
2777 	struct napi_struct *rx_napi;
2778 	struct napi_struct *tx_napi;
2779 	unsigned long flags;
2780 
2781 	rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2782 	tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2783 
2784 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2785 		if (napi_schedule_prep(rx_napi)) {
2786 			spin_lock_irqsave(&ch->lock, flags);
2787 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2788 			spin_unlock_irqrestore(&ch->lock, flags);
2789 			__napi_schedule(rx_napi);
2790 		}
2791 	}
2792 
2793 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2794 		if (napi_schedule_prep(tx_napi)) {
2795 			spin_lock_irqsave(&ch->lock, flags);
2796 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2797 			spin_unlock_irqrestore(&ch->lock, flags);
2798 			__napi_schedule(tx_napi);
2799 		}
2800 	}
2801 
2802 	return status;
2803 }
2804 
2805 /**
2806  * stmmac_dma_interrupt - DMA ISR
2807  * @priv: driver private structure
2808  * Description: this is the DMA ISR. It is called by the main ISR.
2809  * It calls the dwmac dma routine and schedule poll method in case of some
2810  * work can be done.
2811  */
2812 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2813 {
2814 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2815 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2816 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2817 				tx_channel_count : rx_channel_count;
2818 	u32 chan;
2819 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2820 
2821 	/* Make sure we never check beyond our status buffer. */
2822 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2823 		channels_to_check = ARRAY_SIZE(status);
2824 
2825 	for (chan = 0; chan < channels_to_check; chan++)
2826 		status[chan] = stmmac_napi_check(priv, chan,
2827 						 DMA_DIR_RXTX);
2828 
2829 	for (chan = 0; chan < tx_channel_count; chan++) {
2830 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2831 			/* Try to bump up the dma threshold on this failure */
2832 			stmmac_bump_dma_threshold(priv, chan);
2833 		} else if (unlikely(status[chan] == tx_hard_error)) {
2834 			stmmac_tx_err(priv, chan);
2835 		}
2836 	}
2837 }
2838 
2839 /**
2840  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2841  * @priv: driver private structure
2842  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2843  */
2844 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2845 {
2846 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2847 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2848 
2849 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2850 
2851 	if (priv->dma_cap.rmon) {
2852 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2853 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2854 	} else
2855 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2856 }
2857 
2858 /**
2859  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2860  * @priv: driver private structure
2861  * Description:
2862  *  new GMAC chip generations have a new register to indicate the
2863  *  presence of the optional feature/functions.
2864  *  This can be also used to override the value passed through the
2865  *  platform and necessary for old MAC10/100 and GMAC chips.
2866  */
2867 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2868 {
2869 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2870 }
2871 
2872 /**
2873  * stmmac_check_ether_addr - check if the MAC addr is valid
2874  * @priv: driver private structure
2875  * Description:
2876  * it is to verify if the MAC address is valid, in case of failures it
2877  * generates a random MAC address
2878  */
2879 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2880 {
2881 	u8 addr[ETH_ALEN];
2882 
2883 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2884 		stmmac_get_umac_addr(priv, priv->hw, addr, 0);
2885 		if (is_valid_ether_addr(addr))
2886 			eth_hw_addr_set(priv->dev, addr);
2887 		else
2888 			eth_hw_addr_random(priv->dev);
2889 		dev_info(priv->device, "device MAC address %pM\n",
2890 			 priv->dev->dev_addr);
2891 	}
2892 }
2893 
2894 /**
2895  * stmmac_init_dma_engine - DMA init.
2896  * @priv: driver private structure
2897  * Description:
2898  * It inits the DMA invoking the specific MAC/GMAC callback.
2899  * Some DMA parameters can be passed from the platform;
2900  * in case of these are not passed a default is kept for the MAC or GMAC.
2901  */
2902 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2903 {
2904 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2905 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2906 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2907 	struct stmmac_rx_queue *rx_q;
2908 	struct stmmac_tx_queue *tx_q;
2909 	u32 chan = 0;
2910 	int atds = 0;
2911 	int ret = 0;
2912 
2913 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2914 		dev_err(priv->device, "Invalid DMA configuration\n");
2915 		return -EINVAL;
2916 	}
2917 
2918 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2919 		atds = 1;
2920 
2921 	ret = stmmac_reset(priv, priv->ioaddr);
2922 	if (ret) {
2923 		dev_err(priv->device, "Failed to reset the dma\n");
2924 		return ret;
2925 	}
2926 
2927 	/* DMA Configuration */
2928 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2929 
2930 	if (priv->plat->axi)
2931 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2932 
2933 	/* DMA CSR Channel configuration */
2934 	for (chan = 0; chan < dma_csr_ch; chan++) {
2935 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2936 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2937 	}
2938 
2939 	/* DMA RX Channel Configuration */
2940 	for (chan = 0; chan < rx_channels_count; chan++) {
2941 		rx_q = &priv->dma_conf.rx_queue[chan];
2942 
2943 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2944 				    rx_q->dma_rx_phy, chan);
2945 
2946 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2947 				     (rx_q->buf_alloc_num *
2948 				      sizeof(struct dma_desc));
2949 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2950 				       rx_q->rx_tail_addr, chan);
2951 	}
2952 
2953 	/* DMA TX Channel Configuration */
2954 	for (chan = 0; chan < tx_channels_count; chan++) {
2955 		tx_q = &priv->dma_conf.tx_queue[chan];
2956 
2957 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2958 				    tx_q->dma_tx_phy, chan);
2959 
2960 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2961 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2962 				       tx_q->tx_tail_addr, chan);
2963 	}
2964 
2965 	return ret;
2966 }
2967 
2968 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2969 {
2970 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2971 
2972 	hrtimer_start(&tx_q->txtimer,
2973 		      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2974 		      HRTIMER_MODE_REL);
2975 }
2976 
2977 /**
2978  * stmmac_tx_timer - mitigation sw timer for tx.
2979  * @t: data pointer
2980  * Description:
2981  * This is the timer handler to directly invoke the stmmac_tx_clean.
2982  */
2983 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2984 {
2985 	struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2986 	struct stmmac_priv *priv = tx_q->priv_data;
2987 	struct stmmac_channel *ch;
2988 	struct napi_struct *napi;
2989 
2990 	ch = &priv->channel[tx_q->queue_index];
2991 	napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2992 
2993 	if (likely(napi_schedule_prep(napi))) {
2994 		unsigned long flags;
2995 
2996 		spin_lock_irqsave(&ch->lock, flags);
2997 		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2998 		spin_unlock_irqrestore(&ch->lock, flags);
2999 		__napi_schedule(napi);
3000 	}
3001 
3002 	return HRTIMER_NORESTART;
3003 }
3004 
3005 /**
3006  * stmmac_init_coalesce - init mitigation options.
3007  * @priv: driver private structure
3008  * Description:
3009  * This inits the coalesce parameters: i.e. timer rate,
3010  * timer handler and default threshold used for enabling the
3011  * interrupt on completion bit.
3012  */
3013 static void stmmac_init_coalesce(struct stmmac_priv *priv)
3014 {
3015 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
3016 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
3017 	u32 chan;
3018 
3019 	for (chan = 0; chan < tx_channel_count; chan++) {
3020 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3021 
3022 		priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
3023 		priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
3024 
3025 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3026 		tx_q->txtimer.function = stmmac_tx_timer;
3027 	}
3028 
3029 	for (chan = 0; chan < rx_channel_count; chan++)
3030 		priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
3031 }
3032 
3033 static void stmmac_set_rings_length(struct stmmac_priv *priv)
3034 {
3035 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
3036 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
3037 	u32 chan;
3038 
3039 	/* set TX ring length */
3040 	for (chan = 0; chan < tx_channels_count; chan++)
3041 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
3042 				       (priv->dma_conf.dma_tx_size - 1), chan);
3043 
3044 	/* set RX ring length */
3045 	for (chan = 0; chan < rx_channels_count; chan++)
3046 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
3047 				       (priv->dma_conf.dma_rx_size - 1), chan);
3048 }
3049 
3050 /**
3051  *  stmmac_set_tx_queue_weight - Set TX queue weight
3052  *  @priv: driver private structure
3053  *  Description: It is used for setting TX queues weight
3054  */
3055 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
3056 {
3057 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3058 	u32 weight;
3059 	u32 queue;
3060 
3061 	for (queue = 0; queue < tx_queues_count; queue++) {
3062 		weight = priv->plat->tx_queues_cfg[queue].weight;
3063 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
3064 	}
3065 }
3066 
3067 /**
3068  *  stmmac_configure_cbs - Configure CBS in TX queue
3069  *  @priv: driver private structure
3070  *  Description: It is used for configuring CBS in AVB TX queues
3071  */
3072 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3073 {
3074 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3075 	u32 mode_to_use;
3076 	u32 queue;
3077 
3078 	/* queue 0 is reserved for legacy traffic */
3079 	for (queue = 1; queue < tx_queues_count; queue++) {
3080 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3081 		if (mode_to_use == MTL_QUEUE_DCB)
3082 			continue;
3083 
3084 		stmmac_config_cbs(priv, priv->hw,
3085 				priv->plat->tx_queues_cfg[queue].send_slope,
3086 				priv->plat->tx_queues_cfg[queue].idle_slope,
3087 				priv->plat->tx_queues_cfg[queue].high_credit,
3088 				priv->plat->tx_queues_cfg[queue].low_credit,
3089 				queue);
3090 	}
3091 }
3092 
3093 /**
3094  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3095  *  @priv: driver private structure
3096  *  Description: It is used for mapping RX queues to RX dma channels
3097  */
3098 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3099 {
3100 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3101 	u32 queue;
3102 	u32 chan;
3103 
3104 	for (queue = 0; queue < rx_queues_count; queue++) {
3105 		chan = priv->plat->rx_queues_cfg[queue].chan;
3106 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3107 	}
3108 }
3109 
3110 /**
3111  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3112  *  @priv: driver private structure
3113  *  Description: It is used for configuring the RX Queue Priority
3114  */
3115 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3116 {
3117 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3118 	u32 queue;
3119 	u32 prio;
3120 
3121 	for (queue = 0; queue < rx_queues_count; queue++) {
3122 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
3123 			continue;
3124 
3125 		prio = priv->plat->rx_queues_cfg[queue].prio;
3126 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3127 	}
3128 }
3129 
3130 /**
3131  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3132  *  @priv: driver private structure
3133  *  Description: It is used for configuring the TX Queue Priority
3134  */
3135 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3136 {
3137 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3138 	u32 queue;
3139 	u32 prio;
3140 
3141 	for (queue = 0; queue < tx_queues_count; queue++) {
3142 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
3143 			continue;
3144 
3145 		prio = priv->plat->tx_queues_cfg[queue].prio;
3146 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3147 	}
3148 }
3149 
3150 /**
3151  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3152  *  @priv: driver private structure
3153  *  Description: It is used for configuring the RX queue routing
3154  */
3155 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3156 {
3157 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3158 	u32 queue;
3159 	u8 packet;
3160 
3161 	for (queue = 0; queue < rx_queues_count; queue++) {
3162 		/* no specific packet type routing specified for the queue */
3163 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3164 			continue;
3165 
3166 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3167 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3168 	}
3169 }
3170 
3171 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3172 {
3173 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3174 		priv->rss.enable = false;
3175 		return;
3176 	}
3177 
3178 	if (priv->dev->features & NETIF_F_RXHASH)
3179 		priv->rss.enable = true;
3180 	else
3181 		priv->rss.enable = false;
3182 
3183 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
3184 			     priv->plat->rx_queues_to_use);
3185 }
3186 
3187 /**
3188  *  stmmac_mtl_configuration - Configure MTL
3189  *  @priv: driver private structure
3190  *  Description: It is used for configurring MTL
3191  */
3192 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3193 {
3194 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3195 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3196 
3197 	if (tx_queues_count > 1)
3198 		stmmac_set_tx_queue_weight(priv);
3199 
3200 	/* Configure MTL RX algorithms */
3201 	if (rx_queues_count > 1)
3202 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3203 				priv->plat->rx_sched_algorithm);
3204 
3205 	/* Configure MTL TX algorithms */
3206 	if (tx_queues_count > 1)
3207 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3208 				priv->plat->tx_sched_algorithm);
3209 
3210 	/* Configure CBS in AVB TX queues */
3211 	if (tx_queues_count > 1)
3212 		stmmac_configure_cbs(priv);
3213 
3214 	/* Map RX MTL to DMA channels */
3215 	stmmac_rx_queue_dma_chan_map(priv);
3216 
3217 	/* Enable MAC RX Queues */
3218 	stmmac_mac_enable_rx_queues(priv);
3219 
3220 	/* Set RX priorities */
3221 	if (rx_queues_count > 1)
3222 		stmmac_mac_config_rx_queues_prio(priv);
3223 
3224 	/* Set TX priorities */
3225 	if (tx_queues_count > 1)
3226 		stmmac_mac_config_tx_queues_prio(priv);
3227 
3228 	/* Set RX routing */
3229 	if (rx_queues_count > 1)
3230 		stmmac_mac_config_rx_queues_routing(priv);
3231 
3232 	/* Receive Side Scaling */
3233 	if (rx_queues_count > 1)
3234 		stmmac_mac_config_rss(priv);
3235 }
3236 
3237 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3238 {
3239 	if (priv->dma_cap.asp) {
3240 		netdev_info(priv->dev, "Enabling Safety Features\n");
3241 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3242 					  priv->plat->safety_feat_cfg);
3243 	} else {
3244 		netdev_info(priv->dev, "No Safety Features support found\n");
3245 	}
3246 }
3247 
3248 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3249 {
3250 	char *name;
3251 
3252 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3253 	clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3254 
3255 	name = priv->wq_name;
3256 	sprintf(name, "%s-fpe", priv->dev->name);
3257 
3258 	priv->fpe_wq = create_singlethread_workqueue(name);
3259 	if (!priv->fpe_wq) {
3260 		netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3261 
3262 		return -ENOMEM;
3263 	}
3264 	netdev_info(priv->dev, "FPE workqueue start");
3265 
3266 	return 0;
3267 }
3268 
3269 /**
3270  * stmmac_hw_setup - setup mac in a usable state.
3271  *  @dev : pointer to the device structure.
3272  *  @ptp_register: register PTP if set
3273  *  Description:
3274  *  this is the main function to setup the HW in a usable state because the
3275  *  dma engine is reset, the core registers are configured (e.g. AXI,
3276  *  Checksum features, timers). The DMA is ready to start receiving and
3277  *  transmitting.
3278  *  Return value:
3279  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3280  *  file on failure.
3281  */
3282 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
3283 {
3284 	struct stmmac_priv *priv = netdev_priv(dev);
3285 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3286 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3287 	bool sph_en;
3288 	u32 chan;
3289 	int ret;
3290 
3291 	/* DMA initialization and SW reset */
3292 	ret = stmmac_init_dma_engine(priv);
3293 	if (ret < 0) {
3294 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3295 			   __func__);
3296 		return ret;
3297 	}
3298 
3299 	/* Copy the MAC addr into the HW  */
3300 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3301 
3302 	/* PS and related bits will be programmed according to the speed */
3303 	if (priv->hw->pcs) {
3304 		int speed = priv->plat->mac_port_sel_speed;
3305 
3306 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
3307 		    (speed == SPEED_1000)) {
3308 			priv->hw->ps = speed;
3309 		} else {
3310 			dev_warn(priv->device, "invalid port speed\n");
3311 			priv->hw->ps = 0;
3312 		}
3313 	}
3314 
3315 	/* Initialize the MAC Core */
3316 	stmmac_core_init(priv, priv->hw, dev);
3317 
3318 	/* Initialize MTL*/
3319 	stmmac_mtl_configuration(priv);
3320 
3321 	/* Initialize Safety Features */
3322 	stmmac_safety_feat_configuration(priv);
3323 
3324 	ret = stmmac_rx_ipc(priv, priv->hw);
3325 	if (!ret) {
3326 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3327 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3328 		priv->hw->rx_csum = 0;
3329 	}
3330 
3331 	/* Enable the MAC Rx/Tx */
3332 	stmmac_mac_set(priv, priv->ioaddr, true);
3333 
3334 	/* Set the HW DMA mode and the COE */
3335 	stmmac_dma_operation_mode(priv);
3336 
3337 	stmmac_mmc_setup(priv);
3338 
3339 	if (ptp_register) {
3340 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3341 		if (ret < 0)
3342 			netdev_warn(priv->dev,
3343 				    "failed to enable PTP reference clock: %pe\n",
3344 				    ERR_PTR(ret));
3345 	}
3346 
3347 	ret = stmmac_init_ptp(priv);
3348 	if (ret == -EOPNOTSUPP)
3349 		netdev_info(priv->dev, "PTP not supported by HW\n");
3350 	else if (ret)
3351 		netdev_warn(priv->dev, "PTP init failed\n");
3352 	else if (ptp_register)
3353 		stmmac_ptp_register(priv);
3354 
3355 	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3356 
3357 	/* Convert the timer from msec to usec */
3358 	if (!priv->tx_lpi_timer)
3359 		priv->tx_lpi_timer = eee_timer * 1000;
3360 
3361 	if (priv->use_riwt) {
3362 		u32 queue;
3363 
3364 		for (queue = 0; queue < rx_cnt; queue++) {
3365 			if (!priv->rx_riwt[queue])
3366 				priv->rx_riwt[queue] = DEF_DMA_RIWT;
3367 
3368 			stmmac_rx_watchdog(priv, priv->ioaddr,
3369 					   priv->rx_riwt[queue], queue);
3370 		}
3371 	}
3372 
3373 	if (priv->hw->pcs)
3374 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3375 
3376 	/* set TX and RX rings length */
3377 	stmmac_set_rings_length(priv);
3378 
3379 	/* Enable TSO */
3380 	if (priv->tso) {
3381 		for (chan = 0; chan < tx_cnt; chan++) {
3382 			struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3383 
3384 			/* TSO and TBS cannot co-exist */
3385 			if (tx_q->tbs & STMMAC_TBS_AVAIL)
3386 				continue;
3387 
3388 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3389 		}
3390 	}
3391 
3392 	/* Enable Split Header */
3393 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3394 	for (chan = 0; chan < rx_cnt; chan++)
3395 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3396 
3397 
3398 	/* VLAN Tag Insertion */
3399 	if (priv->dma_cap.vlins)
3400 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3401 
3402 	/* TBS */
3403 	for (chan = 0; chan < tx_cnt; chan++) {
3404 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3405 		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3406 
3407 		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3408 	}
3409 
3410 	/* Configure real RX and TX queues */
3411 	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3412 	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3413 
3414 	/* Start the ball rolling... */
3415 	stmmac_start_all_dma(priv);
3416 
3417 	if (priv->dma_cap.fpesel) {
3418 		stmmac_fpe_start_wq(priv);
3419 
3420 		if (priv->plat->fpe_cfg->enable)
3421 			stmmac_fpe_handshake(priv, true);
3422 	}
3423 
3424 	return 0;
3425 }
3426 
3427 static void stmmac_hw_teardown(struct net_device *dev)
3428 {
3429 	struct stmmac_priv *priv = netdev_priv(dev);
3430 
3431 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
3432 }
3433 
3434 static void stmmac_free_irq(struct net_device *dev,
3435 			    enum request_irq_err irq_err, int irq_idx)
3436 {
3437 	struct stmmac_priv *priv = netdev_priv(dev);
3438 	int j;
3439 
3440 	switch (irq_err) {
3441 	case REQ_IRQ_ERR_ALL:
3442 		irq_idx = priv->plat->tx_queues_to_use;
3443 		fallthrough;
3444 	case REQ_IRQ_ERR_TX:
3445 		for (j = irq_idx - 1; j >= 0; j--) {
3446 			if (priv->tx_irq[j] > 0) {
3447 				irq_set_affinity_hint(priv->tx_irq[j], NULL);
3448 				free_irq(priv->tx_irq[j], &priv->dma_conf.tx_queue[j]);
3449 			}
3450 		}
3451 		irq_idx = priv->plat->rx_queues_to_use;
3452 		fallthrough;
3453 	case REQ_IRQ_ERR_RX:
3454 		for (j = irq_idx - 1; j >= 0; j--) {
3455 			if (priv->rx_irq[j] > 0) {
3456 				irq_set_affinity_hint(priv->rx_irq[j], NULL);
3457 				free_irq(priv->rx_irq[j], &priv->dma_conf.rx_queue[j]);
3458 			}
3459 		}
3460 
3461 		if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3462 			free_irq(priv->sfty_ue_irq, dev);
3463 		fallthrough;
3464 	case REQ_IRQ_ERR_SFTY_UE:
3465 		if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3466 			free_irq(priv->sfty_ce_irq, dev);
3467 		fallthrough;
3468 	case REQ_IRQ_ERR_SFTY_CE:
3469 		if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3470 			free_irq(priv->lpi_irq, dev);
3471 		fallthrough;
3472 	case REQ_IRQ_ERR_LPI:
3473 		if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3474 			free_irq(priv->wol_irq, dev);
3475 		fallthrough;
3476 	case REQ_IRQ_ERR_WOL:
3477 		free_irq(dev->irq, dev);
3478 		fallthrough;
3479 	case REQ_IRQ_ERR_MAC:
3480 	case REQ_IRQ_ERR_NO:
3481 		/* If MAC IRQ request error, no more IRQ to free */
3482 		break;
3483 	}
3484 }
3485 
3486 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3487 {
3488 	struct stmmac_priv *priv = netdev_priv(dev);
3489 	enum request_irq_err irq_err;
3490 	cpumask_t cpu_mask;
3491 	int irq_idx = 0;
3492 	char *int_name;
3493 	int ret;
3494 	int i;
3495 
3496 	/* For common interrupt */
3497 	int_name = priv->int_name_mac;
3498 	sprintf(int_name, "%s:%s", dev->name, "mac");
3499 	ret = request_irq(dev->irq, stmmac_mac_interrupt,
3500 			  0, int_name, dev);
3501 	if (unlikely(ret < 0)) {
3502 		netdev_err(priv->dev,
3503 			   "%s: alloc mac MSI %d (error: %d)\n",
3504 			   __func__, dev->irq, ret);
3505 		irq_err = REQ_IRQ_ERR_MAC;
3506 		goto irq_error;
3507 	}
3508 
3509 	/* Request the Wake IRQ in case of another line
3510 	 * is used for WoL
3511 	 */
3512 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3513 		int_name = priv->int_name_wol;
3514 		sprintf(int_name, "%s:%s", dev->name, "wol");
3515 		ret = request_irq(priv->wol_irq,
3516 				  stmmac_mac_interrupt,
3517 				  0, int_name, dev);
3518 		if (unlikely(ret < 0)) {
3519 			netdev_err(priv->dev,
3520 				   "%s: alloc wol MSI %d (error: %d)\n",
3521 				   __func__, priv->wol_irq, ret);
3522 			irq_err = REQ_IRQ_ERR_WOL;
3523 			goto irq_error;
3524 		}
3525 	}
3526 
3527 	/* Request the LPI IRQ in case of another line
3528 	 * is used for LPI
3529 	 */
3530 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3531 		int_name = priv->int_name_lpi;
3532 		sprintf(int_name, "%s:%s", dev->name, "lpi");
3533 		ret = request_irq(priv->lpi_irq,
3534 				  stmmac_mac_interrupt,
3535 				  0, int_name, dev);
3536 		if (unlikely(ret < 0)) {
3537 			netdev_err(priv->dev,
3538 				   "%s: alloc lpi MSI %d (error: %d)\n",
3539 				   __func__, priv->lpi_irq, ret);
3540 			irq_err = REQ_IRQ_ERR_LPI;
3541 			goto irq_error;
3542 		}
3543 	}
3544 
3545 	/* Request the Safety Feature Correctible Error line in
3546 	 * case of another line is used
3547 	 */
3548 	if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3549 		int_name = priv->int_name_sfty_ce;
3550 		sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3551 		ret = request_irq(priv->sfty_ce_irq,
3552 				  stmmac_safety_interrupt,
3553 				  0, int_name, dev);
3554 		if (unlikely(ret < 0)) {
3555 			netdev_err(priv->dev,
3556 				   "%s: alloc sfty ce MSI %d (error: %d)\n",
3557 				   __func__, priv->sfty_ce_irq, ret);
3558 			irq_err = REQ_IRQ_ERR_SFTY_CE;
3559 			goto irq_error;
3560 		}
3561 	}
3562 
3563 	/* Request the Safety Feature Uncorrectible Error line in
3564 	 * case of another line is used
3565 	 */
3566 	if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3567 		int_name = priv->int_name_sfty_ue;
3568 		sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3569 		ret = request_irq(priv->sfty_ue_irq,
3570 				  stmmac_safety_interrupt,
3571 				  0, int_name, dev);
3572 		if (unlikely(ret < 0)) {
3573 			netdev_err(priv->dev,
3574 				   "%s: alloc sfty ue MSI %d (error: %d)\n",
3575 				   __func__, priv->sfty_ue_irq, ret);
3576 			irq_err = REQ_IRQ_ERR_SFTY_UE;
3577 			goto irq_error;
3578 		}
3579 	}
3580 
3581 	/* Request Rx MSI irq */
3582 	for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3583 		if (i >= MTL_MAX_RX_QUEUES)
3584 			break;
3585 		if (priv->rx_irq[i] == 0)
3586 			continue;
3587 
3588 		int_name = priv->int_name_rx_irq[i];
3589 		sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3590 		ret = request_irq(priv->rx_irq[i],
3591 				  stmmac_msi_intr_rx,
3592 				  0, int_name, &priv->dma_conf.rx_queue[i]);
3593 		if (unlikely(ret < 0)) {
3594 			netdev_err(priv->dev,
3595 				   "%s: alloc rx-%d  MSI %d (error: %d)\n",
3596 				   __func__, i, priv->rx_irq[i], ret);
3597 			irq_err = REQ_IRQ_ERR_RX;
3598 			irq_idx = i;
3599 			goto irq_error;
3600 		}
3601 		cpumask_clear(&cpu_mask);
3602 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3603 		irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3604 	}
3605 
3606 	/* Request Tx MSI irq */
3607 	for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3608 		if (i >= MTL_MAX_TX_QUEUES)
3609 			break;
3610 		if (priv->tx_irq[i] == 0)
3611 			continue;
3612 
3613 		int_name = priv->int_name_tx_irq[i];
3614 		sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3615 		ret = request_irq(priv->tx_irq[i],
3616 				  stmmac_msi_intr_tx,
3617 				  0, int_name, &priv->dma_conf.tx_queue[i]);
3618 		if (unlikely(ret < 0)) {
3619 			netdev_err(priv->dev,
3620 				   "%s: alloc tx-%d  MSI %d (error: %d)\n",
3621 				   __func__, i, priv->tx_irq[i], ret);
3622 			irq_err = REQ_IRQ_ERR_TX;
3623 			irq_idx = i;
3624 			goto irq_error;
3625 		}
3626 		cpumask_clear(&cpu_mask);
3627 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3628 		irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3629 	}
3630 
3631 	return 0;
3632 
3633 irq_error:
3634 	stmmac_free_irq(dev, irq_err, irq_idx);
3635 	return ret;
3636 }
3637 
3638 static int stmmac_request_irq_single(struct net_device *dev)
3639 {
3640 	struct stmmac_priv *priv = netdev_priv(dev);
3641 	enum request_irq_err irq_err;
3642 	int ret;
3643 
3644 	ret = request_irq(dev->irq, stmmac_interrupt,
3645 			  IRQF_SHARED, dev->name, dev);
3646 	if (unlikely(ret < 0)) {
3647 		netdev_err(priv->dev,
3648 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3649 			   __func__, dev->irq, ret);
3650 		irq_err = REQ_IRQ_ERR_MAC;
3651 		goto irq_error;
3652 	}
3653 
3654 	/* Request the Wake IRQ in case of another line
3655 	 * is used for WoL
3656 	 */
3657 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3658 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
3659 				  IRQF_SHARED, dev->name, dev);
3660 		if (unlikely(ret < 0)) {
3661 			netdev_err(priv->dev,
3662 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3663 				   __func__, priv->wol_irq, ret);
3664 			irq_err = REQ_IRQ_ERR_WOL;
3665 			goto irq_error;
3666 		}
3667 	}
3668 
3669 	/* Request the IRQ lines */
3670 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3671 		ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3672 				  IRQF_SHARED, dev->name, dev);
3673 		if (unlikely(ret < 0)) {
3674 			netdev_err(priv->dev,
3675 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3676 				   __func__, priv->lpi_irq, ret);
3677 			irq_err = REQ_IRQ_ERR_LPI;
3678 			goto irq_error;
3679 		}
3680 	}
3681 
3682 	return 0;
3683 
3684 irq_error:
3685 	stmmac_free_irq(dev, irq_err, 0);
3686 	return ret;
3687 }
3688 
3689 static int stmmac_request_irq(struct net_device *dev)
3690 {
3691 	struct stmmac_priv *priv = netdev_priv(dev);
3692 	int ret;
3693 
3694 	/* Request the IRQ lines */
3695 	if (priv->plat->multi_msi_en)
3696 		ret = stmmac_request_irq_multi_msi(dev);
3697 	else
3698 		ret = stmmac_request_irq_single(dev);
3699 
3700 	return ret;
3701 }
3702 
3703 /**
3704  *  stmmac_setup_dma_desc - Generate a dma_conf and allocate DMA queue
3705  *  @priv: driver private structure
3706  *  @mtu: MTU to setup the dma queue and buf with
3707  *  Description: Allocate and generate a dma_conf based on the provided MTU.
3708  *  Allocate the Tx/Rx DMA queue and init them.
3709  *  Return value:
3710  *  the dma_conf allocated struct on success and an appropriate ERR_PTR on failure.
3711  */
3712 static struct stmmac_dma_conf *
3713 stmmac_setup_dma_desc(struct stmmac_priv *priv, unsigned int mtu)
3714 {
3715 	struct stmmac_dma_conf *dma_conf;
3716 	int chan, bfsize, ret;
3717 
3718 	dma_conf = kzalloc(sizeof(*dma_conf), GFP_KERNEL);
3719 	if (!dma_conf) {
3720 		netdev_err(priv->dev, "%s: DMA conf allocation failed\n",
3721 			   __func__);
3722 		return ERR_PTR(-ENOMEM);
3723 	}
3724 
3725 	bfsize = stmmac_set_16kib_bfsize(priv, mtu);
3726 	if (bfsize < 0)
3727 		bfsize = 0;
3728 
3729 	if (bfsize < BUF_SIZE_16KiB)
3730 		bfsize = stmmac_set_bfsize(mtu, 0);
3731 
3732 	dma_conf->dma_buf_sz = bfsize;
3733 	/* Chose the tx/rx size from the already defined one in the
3734 	 * priv struct. (if defined)
3735 	 */
3736 	dma_conf->dma_tx_size = priv->dma_conf.dma_tx_size;
3737 	dma_conf->dma_rx_size = priv->dma_conf.dma_rx_size;
3738 
3739 	if (!dma_conf->dma_tx_size)
3740 		dma_conf->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3741 	if (!dma_conf->dma_rx_size)
3742 		dma_conf->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3743 
3744 	/* Earlier check for TBS */
3745 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3746 		struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[chan];
3747 		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3748 
3749 		/* Setup per-TXQ tbs flag before TX descriptor alloc */
3750 		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3751 	}
3752 
3753 	ret = alloc_dma_desc_resources(priv, dma_conf);
3754 	if (ret < 0) {
3755 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3756 			   __func__);
3757 		goto alloc_error;
3758 	}
3759 
3760 	ret = init_dma_desc_rings(priv->dev, dma_conf, GFP_KERNEL);
3761 	if (ret < 0) {
3762 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3763 			   __func__);
3764 		goto init_error;
3765 	}
3766 
3767 	return dma_conf;
3768 
3769 init_error:
3770 	free_dma_desc_resources(priv, dma_conf);
3771 alloc_error:
3772 	kfree(dma_conf);
3773 	return ERR_PTR(ret);
3774 }
3775 
3776 /**
3777  *  __stmmac_open - open entry point of the driver
3778  *  @dev : pointer to the device structure.
3779  *  @dma_conf :  structure to take the dma data
3780  *  Description:
3781  *  This function is the open entry point of the driver.
3782  *  Return value:
3783  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3784  *  file on failure.
3785  */
3786 static int __stmmac_open(struct net_device *dev,
3787 			 struct stmmac_dma_conf *dma_conf)
3788 {
3789 	struct stmmac_priv *priv = netdev_priv(dev);
3790 	int mode = priv->plat->phy_interface;
3791 	u32 chan;
3792 	int ret;
3793 
3794 	ret = pm_runtime_resume_and_get(priv->device);
3795 	if (ret < 0)
3796 		return ret;
3797 
3798 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
3799 	    priv->hw->pcs != STMMAC_PCS_RTBI &&
3800 	    (!priv->hw->xpcs ||
3801 	     xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
3802 		ret = stmmac_init_phy(dev);
3803 		if (ret) {
3804 			netdev_err(priv->dev,
3805 				   "%s: Cannot attach to PHY (error: %d)\n",
3806 				   __func__, ret);
3807 			goto init_phy_error;
3808 		}
3809 	}
3810 
3811 	/* Extra statistics */
3812 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3813 	priv->xstats.threshold = tc;
3814 
3815 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3816 
3817 	buf_sz = dma_conf->dma_buf_sz;
3818 	memcpy(&priv->dma_conf, dma_conf, sizeof(*dma_conf));
3819 
3820 	stmmac_reset_queues_param(priv);
3821 
3822 	if (!priv->plat->serdes_up_after_phy_linkup && priv->plat->serdes_powerup) {
3823 		ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv);
3824 		if (ret < 0) {
3825 			netdev_err(priv->dev, "%s: Serdes powerup failed\n",
3826 				   __func__);
3827 			goto init_error;
3828 		}
3829 	}
3830 
3831 	ret = stmmac_hw_setup(dev, true);
3832 	if (ret < 0) {
3833 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3834 		goto init_error;
3835 	}
3836 
3837 	stmmac_init_coalesce(priv);
3838 
3839 	phylink_start(priv->phylink);
3840 	/* We may have called phylink_speed_down before */
3841 	phylink_speed_up(priv->phylink);
3842 
3843 	ret = stmmac_request_irq(dev);
3844 	if (ret)
3845 		goto irq_error;
3846 
3847 	stmmac_enable_all_queues(priv);
3848 	netif_tx_start_all_queues(priv->dev);
3849 	stmmac_enable_all_dma_irq(priv);
3850 
3851 	return 0;
3852 
3853 irq_error:
3854 	phylink_stop(priv->phylink);
3855 
3856 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3857 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3858 
3859 	stmmac_hw_teardown(dev);
3860 init_error:
3861 	free_dma_desc_resources(priv, &priv->dma_conf);
3862 	phylink_disconnect_phy(priv->phylink);
3863 init_phy_error:
3864 	pm_runtime_put(priv->device);
3865 	return ret;
3866 }
3867 
3868 static int stmmac_open(struct net_device *dev)
3869 {
3870 	struct stmmac_priv *priv = netdev_priv(dev);
3871 	struct stmmac_dma_conf *dma_conf;
3872 	int ret;
3873 
3874 	dma_conf = stmmac_setup_dma_desc(priv, dev->mtu);
3875 	if (IS_ERR(dma_conf))
3876 		return PTR_ERR(dma_conf);
3877 
3878 	ret = __stmmac_open(dev, dma_conf);
3879 	kfree(dma_conf);
3880 	return ret;
3881 }
3882 
3883 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3884 {
3885 	set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3886 
3887 	if (priv->fpe_wq)
3888 		destroy_workqueue(priv->fpe_wq);
3889 
3890 	netdev_info(priv->dev, "FPE workqueue stop");
3891 }
3892 
3893 /**
3894  *  stmmac_release - close entry point of the driver
3895  *  @dev : device pointer.
3896  *  Description:
3897  *  This is the stop entry point of the driver.
3898  */
3899 static int stmmac_release(struct net_device *dev)
3900 {
3901 	struct stmmac_priv *priv = netdev_priv(dev);
3902 	u32 chan;
3903 
3904 	if (device_may_wakeup(priv->device))
3905 		phylink_speed_down(priv->phylink, false);
3906 	/* Stop and disconnect the PHY */
3907 	phylink_stop(priv->phylink);
3908 	phylink_disconnect_phy(priv->phylink);
3909 
3910 	stmmac_disable_all_queues(priv);
3911 
3912 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3913 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3914 
3915 	netif_tx_disable(dev);
3916 
3917 	/* Free the IRQ lines */
3918 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3919 
3920 	if (priv->eee_enabled) {
3921 		priv->tx_path_in_lpi_mode = false;
3922 		del_timer_sync(&priv->eee_ctrl_timer);
3923 	}
3924 
3925 	/* Stop TX/RX DMA and clear the descriptors */
3926 	stmmac_stop_all_dma(priv);
3927 
3928 	/* Release and free the Rx/Tx resources */
3929 	free_dma_desc_resources(priv, &priv->dma_conf);
3930 
3931 	/* Disable the MAC Rx/Tx */
3932 	stmmac_mac_set(priv, priv->ioaddr, false);
3933 
3934 	/* Powerdown Serdes if there is */
3935 	if (priv->plat->serdes_powerdown)
3936 		priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv);
3937 
3938 	netif_carrier_off(dev);
3939 
3940 	stmmac_release_ptp(priv);
3941 
3942 	pm_runtime_put(priv->device);
3943 
3944 	if (priv->dma_cap.fpesel)
3945 		stmmac_fpe_stop_wq(priv);
3946 
3947 	return 0;
3948 }
3949 
3950 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3951 			       struct stmmac_tx_queue *tx_q)
3952 {
3953 	u16 tag = 0x0, inner_tag = 0x0;
3954 	u32 inner_type = 0x0;
3955 	struct dma_desc *p;
3956 
3957 	if (!priv->dma_cap.vlins)
3958 		return false;
3959 	if (!skb_vlan_tag_present(skb))
3960 		return false;
3961 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3962 		inner_tag = skb_vlan_tag_get(skb);
3963 		inner_type = STMMAC_VLAN_INSERT;
3964 	}
3965 
3966 	tag = skb_vlan_tag_get(skb);
3967 
3968 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3969 		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3970 	else
3971 		p = &tx_q->dma_tx[tx_q->cur_tx];
3972 
3973 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3974 		return false;
3975 
3976 	stmmac_set_tx_owner(priv, p);
3977 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
3978 	return true;
3979 }
3980 
3981 /**
3982  *  stmmac_tso_allocator - close entry point of the driver
3983  *  @priv: driver private structure
3984  *  @des: buffer start address
3985  *  @total_len: total length to fill in descriptors
3986  *  @last_segment: condition for the last descriptor
3987  *  @queue: TX queue index
3988  *  Description:
3989  *  This function fills descriptor and request new descriptors according to
3990  *  buffer length to fill
3991  */
3992 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3993 				 int total_len, bool last_segment, u32 queue)
3994 {
3995 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
3996 	struct dma_desc *desc;
3997 	u32 buff_size;
3998 	int tmp_len;
3999 
4000 	tmp_len = total_len;
4001 
4002 	while (tmp_len > 0) {
4003 		dma_addr_t curr_addr;
4004 
4005 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4006 						priv->dma_conf.dma_tx_size);
4007 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4008 
4009 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4010 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4011 		else
4012 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4013 
4014 		curr_addr = des + (total_len - tmp_len);
4015 		if (priv->dma_cap.addr64 <= 32)
4016 			desc->des0 = cpu_to_le32(curr_addr);
4017 		else
4018 			stmmac_set_desc_addr(priv, desc, curr_addr);
4019 
4020 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
4021 			    TSO_MAX_BUFF_SIZE : tmp_len;
4022 
4023 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
4024 				0, 1,
4025 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
4026 				0, 0);
4027 
4028 		tmp_len -= TSO_MAX_BUFF_SIZE;
4029 	}
4030 }
4031 
4032 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
4033 {
4034 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4035 	int desc_size;
4036 
4037 	if (likely(priv->extend_desc))
4038 		desc_size = sizeof(struct dma_extended_desc);
4039 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4040 		desc_size = sizeof(struct dma_edesc);
4041 	else
4042 		desc_size = sizeof(struct dma_desc);
4043 
4044 	/* The own bit must be the latest setting done when prepare the
4045 	 * descriptor and then barrier is needed to make sure that
4046 	 * all is coherent before granting the DMA engine.
4047 	 */
4048 	wmb();
4049 
4050 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
4051 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
4052 }
4053 
4054 /**
4055  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
4056  *  @skb : the socket buffer
4057  *  @dev : device pointer
4058  *  Description: this is the transmit function that is called on TSO frames
4059  *  (support available on GMAC4 and newer chips).
4060  *  Diagram below show the ring programming in case of TSO frames:
4061  *
4062  *  First Descriptor
4063  *   --------
4064  *   | DES0 |---> buffer1 = L2/L3/L4 header
4065  *   | DES1 |---> TCP Payload (can continue on next descr...)
4066  *   | DES2 |---> buffer 1 and 2 len
4067  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
4068  *   --------
4069  *	|
4070  *     ...
4071  *	|
4072  *   --------
4073  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
4074  *   | DES1 | --|
4075  *   | DES2 | --> buffer 1 and 2 len
4076  *   | DES3 |
4077  *   --------
4078  *
4079  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
4080  */
4081 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
4082 {
4083 	struct dma_desc *desc, *first, *mss_desc = NULL;
4084 	struct stmmac_priv *priv = netdev_priv(dev);
4085 	int nfrags = skb_shinfo(skb)->nr_frags;
4086 	u32 queue = skb_get_queue_mapping(skb);
4087 	unsigned int first_entry, tx_packets;
4088 	int tmp_pay_len = 0, first_tx;
4089 	struct stmmac_tx_queue *tx_q;
4090 	bool has_vlan, set_ic;
4091 	u8 proto_hdr_len, hdr;
4092 	u32 pay_len, mss;
4093 	dma_addr_t des;
4094 	int i;
4095 
4096 	tx_q = &priv->dma_conf.tx_queue[queue];
4097 	first_tx = tx_q->cur_tx;
4098 
4099 	/* Compute header lengths */
4100 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
4101 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
4102 		hdr = sizeof(struct udphdr);
4103 	} else {
4104 		proto_hdr_len = skb_tcp_all_headers(skb);
4105 		hdr = tcp_hdrlen(skb);
4106 	}
4107 
4108 	/* Desc availability based on threshold should be enough safe */
4109 	if (unlikely(stmmac_tx_avail(priv, queue) <
4110 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
4111 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4112 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4113 								queue));
4114 			/* This is a hard error, log it. */
4115 			netdev_err(priv->dev,
4116 				   "%s: Tx Ring full when queue awake\n",
4117 				   __func__);
4118 		}
4119 		return NETDEV_TX_BUSY;
4120 	}
4121 
4122 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
4123 
4124 	mss = skb_shinfo(skb)->gso_size;
4125 
4126 	/* set new MSS value if needed */
4127 	if (mss != tx_q->mss) {
4128 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4129 			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4130 		else
4131 			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
4132 
4133 		stmmac_set_mss(priv, mss_desc, mss);
4134 		tx_q->mss = mss;
4135 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4136 						priv->dma_conf.dma_tx_size);
4137 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4138 	}
4139 
4140 	if (netif_msg_tx_queued(priv)) {
4141 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
4142 			__func__, hdr, proto_hdr_len, pay_len, mss);
4143 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4144 			skb->data_len);
4145 	}
4146 
4147 	/* Check if VLAN can be inserted by HW */
4148 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4149 
4150 	first_entry = tx_q->cur_tx;
4151 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4152 
4153 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
4154 		desc = &tx_q->dma_entx[first_entry].basic;
4155 	else
4156 		desc = &tx_q->dma_tx[first_entry];
4157 	first = desc;
4158 
4159 	if (has_vlan)
4160 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4161 
4162 	/* first descriptor: fill Headers on Buf1 */
4163 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4164 			     DMA_TO_DEVICE);
4165 	if (dma_mapping_error(priv->device, des))
4166 		goto dma_map_err;
4167 
4168 	tx_q->tx_skbuff_dma[first_entry].buf = des;
4169 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4170 	tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4171 	tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4172 
4173 	if (priv->dma_cap.addr64 <= 32) {
4174 		first->des0 = cpu_to_le32(des);
4175 
4176 		/* Fill start of payload in buff2 of first descriptor */
4177 		if (pay_len)
4178 			first->des1 = cpu_to_le32(des + proto_hdr_len);
4179 
4180 		/* If needed take extra descriptors to fill the remaining payload */
4181 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4182 	} else {
4183 		stmmac_set_desc_addr(priv, first, des);
4184 		tmp_pay_len = pay_len;
4185 		des += proto_hdr_len;
4186 		pay_len = 0;
4187 	}
4188 
4189 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4190 
4191 	/* Prepare fragments */
4192 	for (i = 0; i < nfrags; i++) {
4193 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4194 
4195 		des = skb_frag_dma_map(priv->device, frag, 0,
4196 				       skb_frag_size(frag),
4197 				       DMA_TO_DEVICE);
4198 		if (dma_mapping_error(priv->device, des))
4199 			goto dma_map_err;
4200 
4201 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4202 				     (i == nfrags - 1), queue);
4203 
4204 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4205 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4206 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4207 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4208 	}
4209 
4210 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4211 
4212 	/* Only the last descriptor gets to point to the skb. */
4213 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4214 	tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4215 
4216 	/* Manage tx mitigation */
4217 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
4218 	tx_q->tx_count_frames += tx_packets;
4219 
4220 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4221 		set_ic = true;
4222 	else if (!priv->tx_coal_frames[queue])
4223 		set_ic = false;
4224 	else if (tx_packets > priv->tx_coal_frames[queue])
4225 		set_ic = true;
4226 	else if ((tx_q->tx_count_frames %
4227 		  priv->tx_coal_frames[queue]) < tx_packets)
4228 		set_ic = true;
4229 	else
4230 		set_ic = false;
4231 
4232 	if (set_ic) {
4233 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4234 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4235 		else
4236 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4237 
4238 		tx_q->tx_count_frames = 0;
4239 		stmmac_set_tx_ic(priv, desc);
4240 		priv->xstats.tx_set_ic_bit++;
4241 	}
4242 
4243 	/* We've used all descriptors we need for this skb, however,
4244 	 * advance cur_tx so that it references a fresh descriptor.
4245 	 * ndo_start_xmit will fill this descriptor the next time it's
4246 	 * called and stmmac_tx_clean may clean up to this descriptor.
4247 	 */
4248 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
4249 
4250 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4251 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4252 			  __func__);
4253 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4254 	}
4255 
4256 	dev->stats.tx_bytes += skb->len;
4257 	priv->xstats.tx_tso_frames++;
4258 	priv->xstats.tx_tso_nfrags += nfrags;
4259 
4260 	if (priv->sarc_type)
4261 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4262 
4263 	skb_tx_timestamp(skb);
4264 
4265 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4266 		     priv->hwts_tx_en)) {
4267 		/* declare that device is doing timestamping */
4268 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4269 		stmmac_enable_tx_timestamp(priv, first);
4270 	}
4271 
4272 	/* Complete the first descriptor before granting the DMA */
4273 	stmmac_prepare_tso_tx_desc(priv, first, 1,
4274 			proto_hdr_len,
4275 			pay_len,
4276 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4277 			hdr / 4, (skb->len - proto_hdr_len));
4278 
4279 	/* If context desc is used to change MSS */
4280 	if (mss_desc) {
4281 		/* Make sure that first descriptor has been completely
4282 		 * written, including its own bit. This is because MSS is
4283 		 * actually before first descriptor, so we need to make
4284 		 * sure that MSS's own bit is the last thing written.
4285 		 */
4286 		dma_wmb();
4287 		stmmac_set_tx_owner(priv, mss_desc);
4288 	}
4289 
4290 	if (netif_msg_pktdata(priv)) {
4291 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4292 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4293 			tx_q->cur_tx, first, nfrags);
4294 		pr_info(">>> frame to be transmitted: ");
4295 		print_pkt(skb->data, skb_headlen(skb));
4296 	}
4297 
4298 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4299 
4300 	stmmac_flush_tx_descriptors(priv, queue);
4301 	stmmac_tx_timer_arm(priv, queue);
4302 
4303 	return NETDEV_TX_OK;
4304 
4305 dma_map_err:
4306 	dev_err(priv->device, "Tx dma map failed\n");
4307 	dev_kfree_skb(skb);
4308 	priv->dev->stats.tx_dropped++;
4309 	return NETDEV_TX_OK;
4310 }
4311 
4312 /**
4313  *  stmmac_xmit - Tx entry point of the driver
4314  *  @skb : the socket buffer
4315  *  @dev : device pointer
4316  *  Description : this is the tx entry point of the driver.
4317  *  It programs the chain or the ring and supports oversized frames
4318  *  and SG feature.
4319  */
4320 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4321 {
4322 	unsigned int first_entry, tx_packets, enh_desc;
4323 	struct stmmac_priv *priv = netdev_priv(dev);
4324 	unsigned int nopaged_len = skb_headlen(skb);
4325 	int i, csum_insertion = 0, is_jumbo = 0;
4326 	u32 queue = skb_get_queue_mapping(skb);
4327 	int nfrags = skb_shinfo(skb)->nr_frags;
4328 	int gso = skb_shinfo(skb)->gso_type;
4329 	struct dma_edesc *tbs_desc = NULL;
4330 	struct dma_desc *desc, *first;
4331 	struct stmmac_tx_queue *tx_q;
4332 	bool has_vlan, set_ic;
4333 	int entry, first_tx;
4334 	dma_addr_t des;
4335 
4336 	tx_q = &priv->dma_conf.tx_queue[queue];
4337 	first_tx = tx_q->cur_tx;
4338 
4339 	if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4340 		stmmac_disable_eee_mode(priv);
4341 
4342 	/* Manage oversized TCP frames for GMAC4 device */
4343 	if (skb_is_gso(skb) && priv->tso) {
4344 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4345 			return stmmac_tso_xmit(skb, dev);
4346 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4347 			return stmmac_tso_xmit(skb, dev);
4348 	}
4349 
4350 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4351 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4352 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4353 								queue));
4354 			/* This is a hard error, log it. */
4355 			netdev_err(priv->dev,
4356 				   "%s: Tx Ring full when queue awake\n",
4357 				   __func__);
4358 		}
4359 		return NETDEV_TX_BUSY;
4360 	}
4361 
4362 	/* Check if VLAN can be inserted by HW */
4363 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4364 
4365 	entry = tx_q->cur_tx;
4366 	first_entry = entry;
4367 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4368 
4369 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4370 
4371 	if (likely(priv->extend_desc))
4372 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4373 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4374 		desc = &tx_q->dma_entx[entry].basic;
4375 	else
4376 		desc = tx_q->dma_tx + entry;
4377 
4378 	first = desc;
4379 
4380 	if (has_vlan)
4381 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4382 
4383 	enh_desc = priv->plat->enh_desc;
4384 	/* To program the descriptors according to the size of the frame */
4385 	if (enh_desc)
4386 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4387 
4388 	if (unlikely(is_jumbo)) {
4389 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4390 		if (unlikely(entry < 0) && (entry != -EINVAL))
4391 			goto dma_map_err;
4392 	}
4393 
4394 	for (i = 0; i < nfrags; i++) {
4395 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4396 		int len = skb_frag_size(frag);
4397 		bool last_segment = (i == (nfrags - 1));
4398 
4399 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4400 		WARN_ON(tx_q->tx_skbuff[entry]);
4401 
4402 		if (likely(priv->extend_desc))
4403 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4404 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4405 			desc = &tx_q->dma_entx[entry].basic;
4406 		else
4407 			desc = tx_q->dma_tx + entry;
4408 
4409 		des = skb_frag_dma_map(priv->device, frag, 0, len,
4410 				       DMA_TO_DEVICE);
4411 		if (dma_mapping_error(priv->device, des))
4412 			goto dma_map_err; /* should reuse desc w/o issues */
4413 
4414 		tx_q->tx_skbuff_dma[entry].buf = des;
4415 
4416 		stmmac_set_desc_addr(priv, desc, des);
4417 
4418 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
4419 		tx_q->tx_skbuff_dma[entry].len = len;
4420 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4421 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4422 
4423 		/* Prepare the descriptor and set the own bit too */
4424 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4425 				priv->mode, 1, last_segment, skb->len);
4426 	}
4427 
4428 	/* Only the last descriptor gets to point to the skb. */
4429 	tx_q->tx_skbuff[entry] = skb;
4430 	tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4431 
4432 	/* According to the coalesce parameter the IC bit for the latest
4433 	 * segment is reset and the timer re-started to clean the tx status.
4434 	 * This approach takes care about the fragments: desc is the first
4435 	 * element in case of no SG.
4436 	 */
4437 	tx_packets = (entry + 1) - first_tx;
4438 	tx_q->tx_count_frames += tx_packets;
4439 
4440 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4441 		set_ic = true;
4442 	else if (!priv->tx_coal_frames[queue])
4443 		set_ic = false;
4444 	else if (tx_packets > priv->tx_coal_frames[queue])
4445 		set_ic = true;
4446 	else if ((tx_q->tx_count_frames %
4447 		  priv->tx_coal_frames[queue]) < tx_packets)
4448 		set_ic = true;
4449 	else
4450 		set_ic = false;
4451 
4452 	if (set_ic) {
4453 		if (likely(priv->extend_desc))
4454 			desc = &tx_q->dma_etx[entry].basic;
4455 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4456 			desc = &tx_q->dma_entx[entry].basic;
4457 		else
4458 			desc = &tx_q->dma_tx[entry];
4459 
4460 		tx_q->tx_count_frames = 0;
4461 		stmmac_set_tx_ic(priv, desc);
4462 		priv->xstats.tx_set_ic_bit++;
4463 	}
4464 
4465 	/* We've used all descriptors we need for this skb, however,
4466 	 * advance cur_tx so that it references a fresh descriptor.
4467 	 * ndo_start_xmit will fill this descriptor the next time it's
4468 	 * called and stmmac_tx_clean may clean up to this descriptor.
4469 	 */
4470 	entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4471 	tx_q->cur_tx = entry;
4472 
4473 	if (netif_msg_pktdata(priv)) {
4474 		netdev_dbg(priv->dev,
4475 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4476 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4477 			   entry, first, nfrags);
4478 
4479 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4480 		print_pkt(skb->data, skb->len);
4481 	}
4482 
4483 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4484 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4485 			  __func__);
4486 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4487 	}
4488 
4489 	dev->stats.tx_bytes += skb->len;
4490 
4491 	if (priv->sarc_type)
4492 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4493 
4494 	skb_tx_timestamp(skb);
4495 
4496 	/* Ready to fill the first descriptor and set the OWN bit w/o any
4497 	 * problems because all the descriptors are actually ready to be
4498 	 * passed to the DMA engine.
4499 	 */
4500 	if (likely(!is_jumbo)) {
4501 		bool last_segment = (nfrags == 0);
4502 
4503 		des = dma_map_single(priv->device, skb->data,
4504 				     nopaged_len, DMA_TO_DEVICE);
4505 		if (dma_mapping_error(priv->device, des))
4506 			goto dma_map_err;
4507 
4508 		tx_q->tx_skbuff_dma[first_entry].buf = des;
4509 		tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4510 		tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4511 
4512 		stmmac_set_desc_addr(priv, first, des);
4513 
4514 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4515 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4516 
4517 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4518 			     priv->hwts_tx_en)) {
4519 			/* declare that device is doing timestamping */
4520 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4521 			stmmac_enable_tx_timestamp(priv, first);
4522 		}
4523 
4524 		/* Prepare the first descriptor setting the OWN bit too */
4525 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4526 				csum_insertion, priv->mode, 0, last_segment,
4527 				skb->len);
4528 	}
4529 
4530 	if (tx_q->tbs & STMMAC_TBS_EN) {
4531 		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4532 
4533 		tbs_desc = &tx_q->dma_entx[first_entry];
4534 		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4535 	}
4536 
4537 	stmmac_set_tx_owner(priv, first);
4538 
4539 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4540 
4541 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4542 
4543 	stmmac_flush_tx_descriptors(priv, queue);
4544 	stmmac_tx_timer_arm(priv, queue);
4545 
4546 	return NETDEV_TX_OK;
4547 
4548 dma_map_err:
4549 	netdev_err(priv->dev, "Tx DMA map failed\n");
4550 	dev_kfree_skb(skb);
4551 	priv->dev->stats.tx_dropped++;
4552 	return NETDEV_TX_OK;
4553 }
4554 
4555 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4556 {
4557 	struct vlan_ethhdr *veth;
4558 	__be16 vlan_proto;
4559 	u16 vlanid;
4560 
4561 	veth = (struct vlan_ethhdr *)skb->data;
4562 	vlan_proto = veth->h_vlan_proto;
4563 
4564 	if ((vlan_proto == htons(ETH_P_8021Q) &&
4565 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4566 	    (vlan_proto == htons(ETH_P_8021AD) &&
4567 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4568 		/* pop the vlan tag */
4569 		vlanid = ntohs(veth->h_vlan_TCI);
4570 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4571 		skb_pull(skb, VLAN_HLEN);
4572 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4573 	}
4574 }
4575 
4576 /**
4577  * stmmac_rx_refill - refill used skb preallocated buffers
4578  * @priv: driver private structure
4579  * @queue: RX queue index
4580  * Description : this is to reallocate the skb for the reception process
4581  * that is based on zero-copy.
4582  */
4583 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4584 {
4585 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4586 	int dirty = stmmac_rx_dirty(priv, queue);
4587 	unsigned int entry = rx_q->dirty_rx;
4588 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
4589 
4590 	if (priv->dma_cap.host_dma_width <= 32)
4591 		gfp |= GFP_DMA32;
4592 
4593 	while (dirty-- > 0) {
4594 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4595 		struct dma_desc *p;
4596 		bool use_rx_wd;
4597 
4598 		if (priv->extend_desc)
4599 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4600 		else
4601 			p = rx_q->dma_rx + entry;
4602 
4603 		if (!buf->page) {
4604 			buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4605 			if (!buf->page)
4606 				break;
4607 		}
4608 
4609 		if (priv->sph && !buf->sec_page) {
4610 			buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4611 			if (!buf->sec_page)
4612 				break;
4613 
4614 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4615 		}
4616 
4617 		buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4618 
4619 		stmmac_set_desc_addr(priv, p, buf->addr);
4620 		if (priv->sph)
4621 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4622 		else
4623 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4624 		stmmac_refill_desc3(priv, rx_q, p);
4625 
4626 		rx_q->rx_count_frames++;
4627 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4628 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4629 			rx_q->rx_count_frames = 0;
4630 
4631 		use_rx_wd = !priv->rx_coal_frames[queue];
4632 		use_rx_wd |= rx_q->rx_count_frames > 0;
4633 		if (!priv->use_riwt)
4634 			use_rx_wd = false;
4635 
4636 		dma_wmb();
4637 		stmmac_set_rx_owner(priv, p, use_rx_wd);
4638 
4639 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4640 	}
4641 	rx_q->dirty_rx = entry;
4642 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4643 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
4644 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4645 }
4646 
4647 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4648 				       struct dma_desc *p,
4649 				       int status, unsigned int len)
4650 {
4651 	unsigned int plen = 0, hlen = 0;
4652 	int coe = priv->hw->rx_csum;
4653 
4654 	/* Not first descriptor, buffer is always zero */
4655 	if (priv->sph && len)
4656 		return 0;
4657 
4658 	/* First descriptor, get split header length */
4659 	stmmac_get_rx_header_len(priv, p, &hlen);
4660 	if (priv->sph && hlen) {
4661 		priv->xstats.rx_split_hdr_pkt_n++;
4662 		return hlen;
4663 	}
4664 
4665 	/* First descriptor, not last descriptor and not split header */
4666 	if (status & rx_not_ls)
4667 		return priv->dma_conf.dma_buf_sz;
4668 
4669 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4670 
4671 	/* First descriptor and last descriptor and not split header */
4672 	return min_t(unsigned int, priv->dma_conf.dma_buf_sz, plen);
4673 }
4674 
4675 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4676 				       struct dma_desc *p,
4677 				       int status, unsigned int len)
4678 {
4679 	int coe = priv->hw->rx_csum;
4680 	unsigned int plen = 0;
4681 
4682 	/* Not split header, buffer is not available */
4683 	if (!priv->sph)
4684 		return 0;
4685 
4686 	/* Not last descriptor */
4687 	if (status & rx_not_ls)
4688 		return priv->dma_conf.dma_buf_sz;
4689 
4690 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4691 
4692 	/* Last descriptor */
4693 	return plen - len;
4694 }
4695 
4696 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4697 				struct xdp_frame *xdpf, bool dma_map)
4698 {
4699 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4700 	unsigned int entry = tx_q->cur_tx;
4701 	struct dma_desc *tx_desc;
4702 	dma_addr_t dma_addr;
4703 	bool set_ic;
4704 
4705 	if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4706 		return STMMAC_XDP_CONSUMED;
4707 
4708 	if (likely(priv->extend_desc))
4709 		tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4710 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4711 		tx_desc = &tx_q->dma_entx[entry].basic;
4712 	else
4713 		tx_desc = tx_q->dma_tx + entry;
4714 
4715 	if (dma_map) {
4716 		dma_addr = dma_map_single(priv->device, xdpf->data,
4717 					  xdpf->len, DMA_TO_DEVICE);
4718 		if (dma_mapping_error(priv->device, dma_addr))
4719 			return STMMAC_XDP_CONSUMED;
4720 
4721 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4722 	} else {
4723 		struct page *page = virt_to_page(xdpf->data);
4724 
4725 		dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4726 			   xdpf->headroom;
4727 		dma_sync_single_for_device(priv->device, dma_addr,
4728 					   xdpf->len, DMA_BIDIRECTIONAL);
4729 
4730 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4731 	}
4732 
4733 	tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4734 	tx_q->tx_skbuff_dma[entry].map_as_page = false;
4735 	tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4736 	tx_q->tx_skbuff_dma[entry].last_segment = true;
4737 	tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4738 
4739 	tx_q->xdpf[entry] = xdpf;
4740 
4741 	stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4742 
4743 	stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4744 			       true, priv->mode, true, true,
4745 			       xdpf->len);
4746 
4747 	tx_q->tx_count_frames++;
4748 
4749 	if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4750 		set_ic = true;
4751 	else
4752 		set_ic = false;
4753 
4754 	if (set_ic) {
4755 		tx_q->tx_count_frames = 0;
4756 		stmmac_set_tx_ic(priv, tx_desc);
4757 		priv->xstats.tx_set_ic_bit++;
4758 	}
4759 
4760 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4761 
4762 	entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4763 	tx_q->cur_tx = entry;
4764 
4765 	return STMMAC_XDP_TX;
4766 }
4767 
4768 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4769 				   int cpu)
4770 {
4771 	int index = cpu;
4772 
4773 	if (unlikely(index < 0))
4774 		index = 0;
4775 
4776 	while (index >= priv->plat->tx_queues_to_use)
4777 		index -= priv->plat->tx_queues_to_use;
4778 
4779 	return index;
4780 }
4781 
4782 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4783 				struct xdp_buff *xdp)
4784 {
4785 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4786 	int cpu = smp_processor_id();
4787 	struct netdev_queue *nq;
4788 	int queue;
4789 	int res;
4790 
4791 	if (unlikely(!xdpf))
4792 		return STMMAC_XDP_CONSUMED;
4793 
4794 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4795 	nq = netdev_get_tx_queue(priv->dev, queue);
4796 
4797 	__netif_tx_lock(nq, cpu);
4798 	/* Avoids TX time-out as we are sharing with slow path */
4799 	txq_trans_cond_update(nq);
4800 
4801 	res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4802 	if (res == STMMAC_XDP_TX)
4803 		stmmac_flush_tx_descriptors(priv, queue);
4804 
4805 	__netif_tx_unlock(nq);
4806 
4807 	return res;
4808 }
4809 
4810 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4811 				 struct bpf_prog *prog,
4812 				 struct xdp_buff *xdp)
4813 {
4814 	u32 act;
4815 	int res;
4816 
4817 	act = bpf_prog_run_xdp(prog, xdp);
4818 	switch (act) {
4819 	case XDP_PASS:
4820 		res = STMMAC_XDP_PASS;
4821 		break;
4822 	case XDP_TX:
4823 		res = stmmac_xdp_xmit_back(priv, xdp);
4824 		break;
4825 	case XDP_REDIRECT:
4826 		if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4827 			res = STMMAC_XDP_CONSUMED;
4828 		else
4829 			res = STMMAC_XDP_REDIRECT;
4830 		break;
4831 	default:
4832 		bpf_warn_invalid_xdp_action(priv->dev, prog, act);
4833 		fallthrough;
4834 	case XDP_ABORTED:
4835 		trace_xdp_exception(priv->dev, prog, act);
4836 		fallthrough;
4837 	case XDP_DROP:
4838 		res = STMMAC_XDP_CONSUMED;
4839 		break;
4840 	}
4841 
4842 	return res;
4843 }
4844 
4845 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4846 					   struct xdp_buff *xdp)
4847 {
4848 	struct bpf_prog *prog;
4849 	int res;
4850 
4851 	prog = READ_ONCE(priv->xdp_prog);
4852 	if (!prog) {
4853 		res = STMMAC_XDP_PASS;
4854 		goto out;
4855 	}
4856 
4857 	res = __stmmac_xdp_run_prog(priv, prog, xdp);
4858 out:
4859 	return ERR_PTR(-res);
4860 }
4861 
4862 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4863 				   int xdp_status)
4864 {
4865 	int cpu = smp_processor_id();
4866 	int queue;
4867 
4868 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4869 
4870 	if (xdp_status & STMMAC_XDP_TX)
4871 		stmmac_tx_timer_arm(priv, queue);
4872 
4873 	if (xdp_status & STMMAC_XDP_REDIRECT)
4874 		xdp_do_flush();
4875 }
4876 
4877 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4878 					       struct xdp_buff *xdp)
4879 {
4880 	unsigned int metasize = xdp->data - xdp->data_meta;
4881 	unsigned int datasize = xdp->data_end - xdp->data;
4882 	struct sk_buff *skb;
4883 
4884 	skb = __napi_alloc_skb(&ch->rxtx_napi,
4885 			       xdp->data_end - xdp->data_hard_start,
4886 			       GFP_ATOMIC | __GFP_NOWARN);
4887 	if (unlikely(!skb))
4888 		return NULL;
4889 
4890 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
4891 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4892 	if (metasize)
4893 		skb_metadata_set(skb, metasize);
4894 
4895 	return skb;
4896 }
4897 
4898 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4899 				   struct dma_desc *p, struct dma_desc *np,
4900 				   struct xdp_buff *xdp)
4901 {
4902 	struct stmmac_channel *ch = &priv->channel[queue];
4903 	unsigned int len = xdp->data_end - xdp->data;
4904 	enum pkt_hash_types hash_type;
4905 	int coe = priv->hw->rx_csum;
4906 	struct sk_buff *skb;
4907 	u32 hash;
4908 
4909 	skb = stmmac_construct_skb_zc(ch, xdp);
4910 	if (!skb) {
4911 		priv->dev->stats.rx_dropped++;
4912 		return;
4913 	}
4914 
4915 	stmmac_get_rx_hwtstamp(priv, p, np, skb);
4916 	stmmac_rx_vlan(priv->dev, skb);
4917 	skb->protocol = eth_type_trans(skb, priv->dev);
4918 
4919 	if (unlikely(!coe))
4920 		skb_checksum_none_assert(skb);
4921 	else
4922 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4923 
4924 	if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4925 		skb_set_hash(skb, hash, hash_type);
4926 
4927 	skb_record_rx_queue(skb, queue);
4928 	napi_gro_receive(&ch->rxtx_napi, skb);
4929 
4930 	priv->dev->stats.rx_packets++;
4931 	priv->dev->stats.rx_bytes += len;
4932 }
4933 
4934 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4935 {
4936 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4937 	unsigned int entry = rx_q->dirty_rx;
4938 	struct dma_desc *rx_desc = NULL;
4939 	bool ret = true;
4940 
4941 	budget = min(budget, stmmac_rx_dirty(priv, queue));
4942 
4943 	while (budget-- > 0 && entry != rx_q->cur_rx) {
4944 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4945 		dma_addr_t dma_addr;
4946 		bool use_rx_wd;
4947 
4948 		if (!buf->xdp) {
4949 			buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4950 			if (!buf->xdp) {
4951 				ret = false;
4952 				break;
4953 			}
4954 		}
4955 
4956 		if (priv->extend_desc)
4957 			rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4958 		else
4959 			rx_desc = rx_q->dma_rx + entry;
4960 
4961 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4962 		stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4963 		stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4964 		stmmac_refill_desc3(priv, rx_q, rx_desc);
4965 
4966 		rx_q->rx_count_frames++;
4967 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4968 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4969 			rx_q->rx_count_frames = 0;
4970 
4971 		use_rx_wd = !priv->rx_coal_frames[queue];
4972 		use_rx_wd |= rx_q->rx_count_frames > 0;
4973 		if (!priv->use_riwt)
4974 			use_rx_wd = false;
4975 
4976 		dma_wmb();
4977 		stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4978 
4979 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4980 	}
4981 
4982 	if (rx_desc) {
4983 		rx_q->dirty_rx = entry;
4984 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4985 				     (rx_q->dirty_rx * sizeof(struct dma_desc));
4986 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4987 	}
4988 
4989 	return ret;
4990 }
4991 
4992 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
4993 {
4994 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4995 	unsigned int count = 0, error = 0, len = 0;
4996 	int dirty = stmmac_rx_dirty(priv, queue);
4997 	unsigned int next_entry = rx_q->cur_rx;
4998 	unsigned int desc_size;
4999 	struct bpf_prog *prog;
5000 	bool failure = false;
5001 	int xdp_status = 0;
5002 	int status = 0;
5003 
5004 	if (netif_msg_rx_status(priv)) {
5005 		void *rx_head;
5006 
5007 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5008 		if (priv->extend_desc) {
5009 			rx_head = (void *)rx_q->dma_erx;
5010 			desc_size = sizeof(struct dma_extended_desc);
5011 		} else {
5012 			rx_head = (void *)rx_q->dma_rx;
5013 			desc_size = sizeof(struct dma_desc);
5014 		}
5015 
5016 		stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5017 				    rx_q->dma_rx_phy, desc_size);
5018 	}
5019 	while (count < limit) {
5020 		struct stmmac_rx_buffer *buf;
5021 		unsigned int buf1_len = 0;
5022 		struct dma_desc *np, *p;
5023 		int entry;
5024 		int res;
5025 
5026 		if (!count && rx_q->state_saved) {
5027 			error = rx_q->state.error;
5028 			len = rx_q->state.len;
5029 		} else {
5030 			rx_q->state_saved = false;
5031 			error = 0;
5032 			len = 0;
5033 		}
5034 
5035 		if (count >= limit)
5036 			break;
5037 
5038 read_again:
5039 		buf1_len = 0;
5040 		entry = next_entry;
5041 		buf = &rx_q->buf_pool[entry];
5042 
5043 		if (dirty >= STMMAC_RX_FILL_BATCH) {
5044 			failure = failure ||
5045 				  !stmmac_rx_refill_zc(priv, queue, dirty);
5046 			dirty = 0;
5047 		}
5048 
5049 		if (priv->extend_desc)
5050 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5051 		else
5052 			p = rx_q->dma_rx + entry;
5053 
5054 		/* read the status of the incoming frame */
5055 		status = stmmac_rx_status(priv, &priv->dev->stats,
5056 					  &priv->xstats, p);
5057 		/* check if managed by the DMA otherwise go ahead */
5058 		if (unlikely(status & dma_own))
5059 			break;
5060 
5061 		/* Prefetch the next RX descriptor */
5062 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5063 						priv->dma_conf.dma_rx_size);
5064 		next_entry = rx_q->cur_rx;
5065 
5066 		if (priv->extend_desc)
5067 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5068 		else
5069 			np = rx_q->dma_rx + next_entry;
5070 
5071 		prefetch(np);
5072 
5073 		/* Ensure a valid XSK buffer before proceed */
5074 		if (!buf->xdp)
5075 			break;
5076 
5077 		if (priv->extend_desc)
5078 			stmmac_rx_extended_status(priv, &priv->dev->stats,
5079 						  &priv->xstats,
5080 						  rx_q->dma_erx + entry);
5081 		if (unlikely(status == discard_frame)) {
5082 			xsk_buff_free(buf->xdp);
5083 			buf->xdp = NULL;
5084 			dirty++;
5085 			error = 1;
5086 			if (!priv->hwts_rx_en)
5087 				priv->dev->stats.rx_errors++;
5088 		}
5089 
5090 		if (unlikely(error && (status & rx_not_ls)))
5091 			goto read_again;
5092 		if (unlikely(error)) {
5093 			count++;
5094 			continue;
5095 		}
5096 
5097 		/* XSK pool expects RX frame 1:1 mapped to XSK buffer */
5098 		if (likely(status & rx_not_ls)) {
5099 			xsk_buff_free(buf->xdp);
5100 			buf->xdp = NULL;
5101 			dirty++;
5102 			count++;
5103 			goto read_again;
5104 		}
5105 
5106 		/* XDP ZC Frame only support primary buffers for now */
5107 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5108 		len += buf1_len;
5109 
5110 		/* ACS is disabled; strip manually. */
5111 		if (likely(!(status & rx_not_ls))) {
5112 			buf1_len -= ETH_FCS_LEN;
5113 			len -= ETH_FCS_LEN;
5114 		}
5115 
5116 		/* RX buffer is good and fit into a XSK pool buffer */
5117 		buf->xdp->data_end = buf->xdp->data + buf1_len;
5118 		xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
5119 
5120 		prog = READ_ONCE(priv->xdp_prog);
5121 		res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
5122 
5123 		switch (res) {
5124 		case STMMAC_XDP_PASS:
5125 			stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
5126 			xsk_buff_free(buf->xdp);
5127 			break;
5128 		case STMMAC_XDP_CONSUMED:
5129 			xsk_buff_free(buf->xdp);
5130 			priv->dev->stats.rx_dropped++;
5131 			break;
5132 		case STMMAC_XDP_TX:
5133 		case STMMAC_XDP_REDIRECT:
5134 			xdp_status |= res;
5135 			break;
5136 		}
5137 
5138 		buf->xdp = NULL;
5139 		dirty++;
5140 		count++;
5141 	}
5142 
5143 	if (status & rx_not_ls) {
5144 		rx_q->state_saved = true;
5145 		rx_q->state.error = error;
5146 		rx_q->state.len = len;
5147 	}
5148 
5149 	stmmac_finalize_xdp_rx(priv, xdp_status);
5150 
5151 	priv->xstats.rx_pkt_n += count;
5152 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5153 
5154 	if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5155 		if (failure || stmmac_rx_dirty(priv, queue) > 0)
5156 			xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5157 		else
5158 			xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5159 
5160 		return (int)count;
5161 	}
5162 
5163 	return failure ? limit : (int)count;
5164 }
5165 
5166 /**
5167  * stmmac_rx - manage the receive process
5168  * @priv: driver private structure
5169  * @limit: napi bugget
5170  * @queue: RX queue index.
5171  * Description :  this the function called by the napi poll method.
5172  * It gets all the frames inside the ring.
5173  */
5174 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5175 {
5176 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5177 	struct stmmac_channel *ch = &priv->channel[queue];
5178 	unsigned int count = 0, error = 0, len = 0;
5179 	int status = 0, coe = priv->hw->rx_csum;
5180 	unsigned int next_entry = rx_q->cur_rx;
5181 	enum dma_data_direction dma_dir;
5182 	unsigned int desc_size;
5183 	struct sk_buff *skb = NULL;
5184 	struct xdp_buff xdp;
5185 	int xdp_status = 0;
5186 	int buf_sz;
5187 
5188 	dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5189 	buf_sz = DIV_ROUND_UP(priv->dma_conf.dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5190 
5191 	if (netif_msg_rx_status(priv)) {
5192 		void *rx_head;
5193 
5194 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5195 		if (priv->extend_desc) {
5196 			rx_head = (void *)rx_q->dma_erx;
5197 			desc_size = sizeof(struct dma_extended_desc);
5198 		} else {
5199 			rx_head = (void *)rx_q->dma_rx;
5200 			desc_size = sizeof(struct dma_desc);
5201 		}
5202 
5203 		stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5204 				    rx_q->dma_rx_phy, desc_size);
5205 	}
5206 	while (count < limit) {
5207 		unsigned int buf1_len = 0, buf2_len = 0;
5208 		enum pkt_hash_types hash_type;
5209 		struct stmmac_rx_buffer *buf;
5210 		struct dma_desc *np, *p;
5211 		int entry;
5212 		u32 hash;
5213 
5214 		if (!count && rx_q->state_saved) {
5215 			skb = rx_q->state.skb;
5216 			error = rx_q->state.error;
5217 			len = rx_q->state.len;
5218 		} else {
5219 			rx_q->state_saved = false;
5220 			skb = NULL;
5221 			error = 0;
5222 			len = 0;
5223 		}
5224 
5225 		if (count >= limit)
5226 			break;
5227 
5228 read_again:
5229 		buf1_len = 0;
5230 		buf2_len = 0;
5231 		entry = next_entry;
5232 		buf = &rx_q->buf_pool[entry];
5233 
5234 		if (priv->extend_desc)
5235 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5236 		else
5237 			p = rx_q->dma_rx + entry;
5238 
5239 		/* read the status of the incoming frame */
5240 		status = stmmac_rx_status(priv, &priv->dev->stats,
5241 				&priv->xstats, p);
5242 		/* check if managed by the DMA otherwise go ahead */
5243 		if (unlikely(status & dma_own))
5244 			break;
5245 
5246 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5247 						priv->dma_conf.dma_rx_size);
5248 		next_entry = rx_q->cur_rx;
5249 
5250 		if (priv->extend_desc)
5251 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5252 		else
5253 			np = rx_q->dma_rx + next_entry;
5254 
5255 		prefetch(np);
5256 
5257 		if (priv->extend_desc)
5258 			stmmac_rx_extended_status(priv, &priv->dev->stats,
5259 					&priv->xstats, rx_q->dma_erx + entry);
5260 		if (unlikely(status == discard_frame)) {
5261 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5262 			buf->page = NULL;
5263 			error = 1;
5264 			if (!priv->hwts_rx_en)
5265 				priv->dev->stats.rx_errors++;
5266 		}
5267 
5268 		if (unlikely(error && (status & rx_not_ls)))
5269 			goto read_again;
5270 		if (unlikely(error)) {
5271 			dev_kfree_skb(skb);
5272 			skb = NULL;
5273 			count++;
5274 			continue;
5275 		}
5276 
5277 		/* Buffer is good. Go on. */
5278 
5279 		prefetch(page_address(buf->page) + buf->page_offset);
5280 		if (buf->sec_page)
5281 			prefetch(page_address(buf->sec_page));
5282 
5283 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5284 		len += buf1_len;
5285 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5286 		len += buf2_len;
5287 
5288 		/* ACS is disabled; strip manually. */
5289 		if (likely(!(status & rx_not_ls))) {
5290 			if (buf2_len) {
5291 				buf2_len -= ETH_FCS_LEN;
5292 				len -= ETH_FCS_LEN;
5293 			} else if (buf1_len) {
5294 				buf1_len -= ETH_FCS_LEN;
5295 				len -= ETH_FCS_LEN;
5296 			}
5297 		}
5298 
5299 		if (!skb) {
5300 			unsigned int pre_len, sync_len;
5301 
5302 			dma_sync_single_for_cpu(priv->device, buf->addr,
5303 						buf1_len, dma_dir);
5304 
5305 			xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
5306 			xdp_prepare_buff(&xdp, page_address(buf->page),
5307 					 buf->page_offset, buf1_len, false);
5308 
5309 			pre_len = xdp.data_end - xdp.data_hard_start -
5310 				  buf->page_offset;
5311 			skb = stmmac_xdp_run_prog(priv, &xdp);
5312 			/* Due xdp_adjust_tail: DMA sync for_device
5313 			 * cover max len CPU touch
5314 			 */
5315 			sync_len = xdp.data_end - xdp.data_hard_start -
5316 				   buf->page_offset;
5317 			sync_len = max(sync_len, pre_len);
5318 
5319 			/* For Not XDP_PASS verdict */
5320 			if (IS_ERR(skb)) {
5321 				unsigned int xdp_res = -PTR_ERR(skb);
5322 
5323 				if (xdp_res & STMMAC_XDP_CONSUMED) {
5324 					page_pool_put_page(rx_q->page_pool,
5325 							   virt_to_head_page(xdp.data),
5326 							   sync_len, true);
5327 					buf->page = NULL;
5328 					priv->dev->stats.rx_dropped++;
5329 
5330 					/* Clear skb as it was set as
5331 					 * status by XDP program.
5332 					 */
5333 					skb = NULL;
5334 
5335 					if (unlikely((status & rx_not_ls)))
5336 						goto read_again;
5337 
5338 					count++;
5339 					continue;
5340 				} else if (xdp_res & (STMMAC_XDP_TX |
5341 						      STMMAC_XDP_REDIRECT)) {
5342 					xdp_status |= xdp_res;
5343 					buf->page = NULL;
5344 					skb = NULL;
5345 					count++;
5346 					continue;
5347 				}
5348 			}
5349 		}
5350 
5351 		if (!skb) {
5352 			/* XDP program may expand or reduce tail */
5353 			buf1_len = xdp.data_end - xdp.data;
5354 
5355 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5356 			if (!skb) {
5357 				priv->dev->stats.rx_dropped++;
5358 				count++;
5359 				goto drain_data;
5360 			}
5361 
5362 			/* XDP program may adjust header */
5363 			skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5364 			skb_put(skb, buf1_len);
5365 
5366 			/* Data payload copied into SKB, page ready for recycle */
5367 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5368 			buf->page = NULL;
5369 		} else if (buf1_len) {
5370 			dma_sync_single_for_cpu(priv->device, buf->addr,
5371 						buf1_len, dma_dir);
5372 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5373 					buf->page, buf->page_offset, buf1_len,
5374 					priv->dma_conf.dma_buf_sz);
5375 
5376 			/* Data payload appended into SKB */
5377 			page_pool_release_page(rx_q->page_pool, buf->page);
5378 			buf->page = NULL;
5379 		}
5380 
5381 		if (buf2_len) {
5382 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5383 						buf2_len, dma_dir);
5384 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5385 					buf->sec_page, 0, buf2_len,
5386 					priv->dma_conf.dma_buf_sz);
5387 
5388 			/* Data payload appended into SKB */
5389 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
5390 			buf->sec_page = NULL;
5391 		}
5392 
5393 drain_data:
5394 		if (likely(status & rx_not_ls))
5395 			goto read_again;
5396 		if (!skb)
5397 			continue;
5398 
5399 		/* Got entire packet into SKB. Finish it. */
5400 
5401 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
5402 		stmmac_rx_vlan(priv->dev, skb);
5403 		skb->protocol = eth_type_trans(skb, priv->dev);
5404 
5405 		if (unlikely(!coe))
5406 			skb_checksum_none_assert(skb);
5407 		else
5408 			skb->ip_summed = CHECKSUM_UNNECESSARY;
5409 
5410 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5411 			skb_set_hash(skb, hash, hash_type);
5412 
5413 		skb_record_rx_queue(skb, queue);
5414 		napi_gro_receive(&ch->rx_napi, skb);
5415 		skb = NULL;
5416 
5417 		priv->dev->stats.rx_packets++;
5418 		priv->dev->stats.rx_bytes += len;
5419 		count++;
5420 	}
5421 
5422 	if (status & rx_not_ls || skb) {
5423 		rx_q->state_saved = true;
5424 		rx_q->state.skb = skb;
5425 		rx_q->state.error = error;
5426 		rx_q->state.len = len;
5427 	}
5428 
5429 	stmmac_finalize_xdp_rx(priv, xdp_status);
5430 
5431 	stmmac_rx_refill(priv, queue);
5432 
5433 	priv->xstats.rx_pkt_n += count;
5434 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5435 
5436 	return count;
5437 }
5438 
5439 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5440 {
5441 	struct stmmac_channel *ch =
5442 		container_of(napi, struct stmmac_channel, rx_napi);
5443 	struct stmmac_priv *priv = ch->priv_data;
5444 	u32 chan = ch->index;
5445 	int work_done;
5446 
5447 	priv->xstats.napi_poll++;
5448 
5449 	work_done = stmmac_rx(priv, budget, chan);
5450 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5451 		unsigned long flags;
5452 
5453 		spin_lock_irqsave(&ch->lock, flags);
5454 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5455 		spin_unlock_irqrestore(&ch->lock, flags);
5456 	}
5457 
5458 	return work_done;
5459 }
5460 
5461 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5462 {
5463 	struct stmmac_channel *ch =
5464 		container_of(napi, struct stmmac_channel, tx_napi);
5465 	struct stmmac_priv *priv = ch->priv_data;
5466 	u32 chan = ch->index;
5467 	int work_done;
5468 
5469 	priv->xstats.napi_poll++;
5470 
5471 	work_done = stmmac_tx_clean(priv, budget, chan);
5472 	work_done = min(work_done, budget);
5473 
5474 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5475 		unsigned long flags;
5476 
5477 		spin_lock_irqsave(&ch->lock, flags);
5478 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5479 		spin_unlock_irqrestore(&ch->lock, flags);
5480 	}
5481 
5482 	return work_done;
5483 }
5484 
5485 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5486 {
5487 	struct stmmac_channel *ch =
5488 		container_of(napi, struct stmmac_channel, rxtx_napi);
5489 	struct stmmac_priv *priv = ch->priv_data;
5490 	int rx_done, tx_done, rxtx_done;
5491 	u32 chan = ch->index;
5492 
5493 	priv->xstats.napi_poll++;
5494 
5495 	tx_done = stmmac_tx_clean(priv, budget, chan);
5496 	tx_done = min(tx_done, budget);
5497 
5498 	rx_done = stmmac_rx_zc(priv, budget, chan);
5499 
5500 	rxtx_done = max(tx_done, rx_done);
5501 
5502 	/* If either TX or RX work is not complete, return budget
5503 	 * and keep pooling
5504 	 */
5505 	if (rxtx_done >= budget)
5506 		return budget;
5507 
5508 	/* all work done, exit the polling mode */
5509 	if (napi_complete_done(napi, rxtx_done)) {
5510 		unsigned long flags;
5511 
5512 		spin_lock_irqsave(&ch->lock, flags);
5513 		/* Both RX and TX work done are compelte,
5514 		 * so enable both RX & TX IRQs.
5515 		 */
5516 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5517 		spin_unlock_irqrestore(&ch->lock, flags);
5518 	}
5519 
5520 	return min(rxtx_done, budget - 1);
5521 }
5522 
5523 /**
5524  *  stmmac_tx_timeout
5525  *  @dev : Pointer to net device structure
5526  *  @txqueue: the index of the hanging transmit queue
5527  *  Description: this function is called when a packet transmission fails to
5528  *   complete within a reasonable time. The driver will mark the error in the
5529  *   netdev structure and arrange for the device to be reset to a sane state
5530  *   in order to transmit a new packet.
5531  */
5532 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5533 {
5534 	struct stmmac_priv *priv = netdev_priv(dev);
5535 
5536 	stmmac_global_err(priv);
5537 }
5538 
5539 /**
5540  *  stmmac_set_rx_mode - entry point for multicast addressing
5541  *  @dev : pointer to the device structure
5542  *  Description:
5543  *  This function is a driver entry point which gets called by the kernel
5544  *  whenever multicast addresses must be enabled/disabled.
5545  *  Return value:
5546  *  void.
5547  */
5548 static void stmmac_set_rx_mode(struct net_device *dev)
5549 {
5550 	struct stmmac_priv *priv = netdev_priv(dev);
5551 
5552 	stmmac_set_filter(priv, priv->hw, dev);
5553 }
5554 
5555 /**
5556  *  stmmac_change_mtu - entry point to change MTU size for the device.
5557  *  @dev : device pointer.
5558  *  @new_mtu : the new MTU size for the device.
5559  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5560  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5561  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5562  *  Return value:
5563  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5564  *  file on failure.
5565  */
5566 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5567 {
5568 	struct stmmac_priv *priv = netdev_priv(dev);
5569 	int txfifosz = priv->plat->tx_fifo_size;
5570 	struct stmmac_dma_conf *dma_conf;
5571 	const int mtu = new_mtu;
5572 	int ret;
5573 
5574 	if (txfifosz == 0)
5575 		txfifosz = priv->dma_cap.tx_fifo_size;
5576 
5577 	txfifosz /= priv->plat->tx_queues_to_use;
5578 
5579 	if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5580 		netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5581 		return -EINVAL;
5582 	}
5583 
5584 	new_mtu = STMMAC_ALIGN(new_mtu);
5585 
5586 	/* If condition true, FIFO is too small or MTU too large */
5587 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5588 		return -EINVAL;
5589 
5590 	if (netif_running(dev)) {
5591 		netdev_dbg(priv->dev, "restarting interface to change its MTU\n");
5592 		/* Try to allocate the new DMA conf with the new mtu */
5593 		dma_conf = stmmac_setup_dma_desc(priv, mtu);
5594 		if (IS_ERR(dma_conf)) {
5595 			netdev_err(priv->dev, "failed allocating new dma conf for new MTU %d\n",
5596 				   mtu);
5597 			return PTR_ERR(dma_conf);
5598 		}
5599 
5600 		stmmac_release(dev);
5601 
5602 		ret = __stmmac_open(dev, dma_conf);
5603 		kfree(dma_conf);
5604 		if (ret) {
5605 			netdev_err(priv->dev, "failed reopening the interface after MTU change\n");
5606 			return ret;
5607 		}
5608 
5609 		stmmac_set_rx_mode(dev);
5610 	}
5611 
5612 	dev->mtu = mtu;
5613 	netdev_update_features(dev);
5614 
5615 	return 0;
5616 }
5617 
5618 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5619 					     netdev_features_t features)
5620 {
5621 	struct stmmac_priv *priv = netdev_priv(dev);
5622 
5623 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5624 		features &= ~NETIF_F_RXCSUM;
5625 
5626 	if (!priv->plat->tx_coe)
5627 		features &= ~NETIF_F_CSUM_MASK;
5628 
5629 	/* Some GMAC devices have a bugged Jumbo frame support that
5630 	 * needs to have the Tx COE disabled for oversized frames
5631 	 * (due to limited buffer sizes). In this case we disable
5632 	 * the TX csum insertion in the TDES and not use SF.
5633 	 */
5634 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5635 		features &= ~NETIF_F_CSUM_MASK;
5636 
5637 	/* Disable tso if asked by ethtool */
5638 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5639 		if (features & NETIF_F_TSO)
5640 			priv->tso = true;
5641 		else
5642 			priv->tso = false;
5643 	}
5644 
5645 	return features;
5646 }
5647 
5648 static int stmmac_set_features(struct net_device *netdev,
5649 			       netdev_features_t features)
5650 {
5651 	struct stmmac_priv *priv = netdev_priv(netdev);
5652 
5653 	/* Keep the COE Type in case of csum is supporting */
5654 	if (features & NETIF_F_RXCSUM)
5655 		priv->hw->rx_csum = priv->plat->rx_coe;
5656 	else
5657 		priv->hw->rx_csum = 0;
5658 	/* No check needed because rx_coe has been set before and it will be
5659 	 * fixed in case of issue.
5660 	 */
5661 	stmmac_rx_ipc(priv, priv->hw);
5662 
5663 	if (priv->sph_cap) {
5664 		bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5665 		u32 chan;
5666 
5667 		for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5668 			stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5669 	}
5670 
5671 	return 0;
5672 }
5673 
5674 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5675 {
5676 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5677 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5678 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5679 	bool *hs_enable = &fpe_cfg->hs_enable;
5680 
5681 	if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5682 		return;
5683 
5684 	/* If LP has sent verify mPacket, LP is FPE capable */
5685 	if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5686 		if (*lp_state < FPE_STATE_CAPABLE)
5687 			*lp_state = FPE_STATE_CAPABLE;
5688 
5689 		/* If user has requested FPE enable, quickly response */
5690 		if (*hs_enable)
5691 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5692 						MPACKET_RESPONSE);
5693 	}
5694 
5695 	/* If Local has sent verify mPacket, Local is FPE capable */
5696 	if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5697 		if (*lo_state < FPE_STATE_CAPABLE)
5698 			*lo_state = FPE_STATE_CAPABLE;
5699 	}
5700 
5701 	/* If LP has sent response mPacket, LP is entering FPE ON */
5702 	if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5703 		*lp_state = FPE_STATE_ENTERING_ON;
5704 
5705 	/* If Local has sent response mPacket, Local is entering FPE ON */
5706 	if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5707 		*lo_state = FPE_STATE_ENTERING_ON;
5708 
5709 	if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5710 	    !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5711 	    priv->fpe_wq) {
5712 		queue_work(priv->fpe_wq, &priv->fpe_task);
5713 	}
5714 }
5715 
5716 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5717 {
5718 	u32 rx_cnt = priv->plat->rx_queues_to_use;
5719 	u32 tx_cnt = priv->plat->tx_queues_to_use;
5720 	u32 queues_count;
5721 	u32 queue;
5722 	bool xmac;
5723 
5724 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5725 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5726 
5727 	if (priv->irq_wake)
5728 		pm_wakeup_event(priv->device, 0);
5729 
5730 	if (priv->dma_cap.estsel)
5731 		stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5732 				      &priv->xstats, tx_cnt);
5733 
5734 	if (priv->dma_cap.fpesel) {
5735 		int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5736 						   priv->dev);
5737 
5738 		stmmac_fpe_event_status(priv, status);
5739 	}
5740 
5741 	/* To handle GMAC own interrupts */
5742 	if ((priv->plat->has_gmac) || xmac) {
5743 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5744 
5745 		if (unlikely(status)) {
5746 			/* For LPI we need to save the tx status */
5747 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5748 				priv->tx_path_in_lpi_mode = true;
5749 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5750 				priv->tx_path_in_lpi_mode = false;
5751 		}
5752 
5753 		for (queue = 0; queue < queues_count; queue++) {
5754 			status = stmmac_host_mtl_irq_status(priv, priv->hw,
5755 							    queue);
5756 		}
5757 
5758 		/* PCS link status */
5759 		if (priv->hw->pcs) {
5760 			if (priv->xstats.pcs_link)
5761 				netif_carrier_on(priv->dev);
5762 			else
5763 				netif_carrier_off(priv->dev);
5764 		}
5765 
5766 		stmmac_timestamp_interrupt(priv, priv);
5767 	}
5768 }
5769 
5770 /**
5771  *  stmmac_interrupt - main ISR
5772  *  @irq: interrupt number.
5773  *  @dev_id: to pass the net device pointer.
5774  *  Description: this is the main driver interrupt service routine.
5775  *  It can call:
5776  *  o DMA service routine (to manage incoming frame reception and transmission
5777  *    status)
5778  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5779  *    interrupts.
5780  */
5781 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5782 {
5783 	struct net_device *dev = (struct net_device *)dev_id;
5784 	struct stmmac_priv *priv = netdev_priv(dev);
5785 
5786 	/* Check if adapter is up */
5787 	if (test_bit(STMMAC_DOWN, &priv->state))
5788 		return IRQ_HANDLED;
5789 
5790 	/* Check if a fatal error happened */
5791 	if (stmmac_safety_feat_interrupt(priv))
5792 		return IRQ_HANDLED;
5793 
5794 	/* To handle Common interrupts */
5795 	stmmac_common_interrupt(priv);
5796 
5797 	/* To handle DMA interrupts */
5798 	stmmac_dma_interrupt(priv);
5799 
5800 	return IRQ_HANDLED;
5801 }
5802 
5803 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5804 {
5805 	struct net_device *dev = (struct net_device *)dev_id;
5806 	struct stmmac_priv *priv = netdev_priv(dev);
5807 
5808 	if (unlikely(!dev)) {
5809 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5810 		return IRQ_NONE;
5811 	}
5812 
5813 	/* Check if adapter is up */
5814 	if (test_bit(STMMAC_DOWN, &priv->state))
5815 		return IRQ_HANDLED;
5816 
5817 	/* To handle Common interrupts */
5818 	stmmac_common_interrupt(priv);
5819 
5820 	return IRQ_HANDLED;
5821 }
5822 
5823 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5824 {
5825 	struct net_device *dev = (struct net_device *)dev_id;
5826 	struct stmmac_priv *priv = netdev_priv(dev);
5827 
5828 	if (unlikely(!dev)) {
5829 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5830 		return IRQ_NONE;
5831 	}
5832 
5833 	/* Check if adapter is up */
5834 	if (test_bit(STMMAC_DOWN, &priv->state))
5835 		return IRQ_HANDLED;
5836 
5837 	/* Check if a fatal error happened */
5838 	stmmac_safety_feat_interrupt(priv);
5839 
5840 	return IRQ_HANDLED;
5841 }
5842 
5843 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5844 {
5845 	struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5846 	struct stmmac_dma_conf *dma_conf;
5847 	int chan = tx_q->queue_index;
5848 	struct stmmac_priv *priv;
5849 	int status;
5850 
5851 	dma_conf = container_of(tx_q, struct stmmac_dma_conf, tx_queue[chan]);
5852 	priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5853 
5854 	if (unlikely(!data)) {
5855 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5856 		return IRQ_NONE;
5857 	}
5858 
5859 	/* Check if adapter is up */
5860 	if (test_bit(STMMAC_DOWN, &priv->state))
5861 		return IRQ_HANDLED;
5862 
5863 	status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5864 
5865 	if (unlikely(status & tx_hard_error_bump_tc)) {
5866 		/* Try to bump up the dma threshold on this failure */
5867 		stmmac_bump_dma_threshold(priv, chan);
5868 	} else if (unlikely(status == tx_hard_error)) {
5869 		stmmac_tx_err(priv, chan);
5870 	}
5871 
5872 	return IRQ_HANDLED;
5873 }
5874 
5875 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5876 {
5877 	struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5878 	struct stmmac_dma_conf *dma_conf;
5879 	int chan = rx_q->queue_index;
5880 	struct stmmac_priv *priv;
5881 
5882 	dma_conf = container_of(rx_q, struct stmmac_dma_conf, rx_queue[chan]);
5883 	priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5884 
5885 	if (unlikely(!data)) {
5886 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5887 		return IRQ_NONE;
5888 	}
5889 
5890 	/* Check if adapter is up */
5891 	if (test_bit(STMMAC_DOWN, &priv->state))
5892 		return IRQ_HANDLED;
5893 
5894 	stmmac_napi_check(priv, chan, DMA_DIR_RX);
5895 
5896 	return IRQ_HANDLED;
5897 }
5898 
5899 #ifdef CONFIG_NET_POLL_CONTROLLER
5900 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5901  * to allow network I/O with interrupts disabled.
5902  */
5903 static void stmmac_poll_controller(struct net_device *dev)
5904 {
5905 	struct stmmac_priv *priv = netdev_priv(dev);
5906 	int i;
5907 
5908 	/* If adapter is down, do nothing */
5909 	if (test_bit(STMMAC_DOWN, &priv->state))
5910 		return;
5911 
5912 	if (priv->plat->multi_msi_en) {
5913 		for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5914 			stmmac_msi_intr_rx(0, &priv->dma_conf.rx_queue[i]);
5915 
5916 		for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5917 			stmmac_msi_intr_tx(0, &priv->dma_conf.tx_queue[i]);
5918 	} else {
5919 		disable_irq(dev->irq);
5920 		stmmac_interrupt(dev->irq, dev);
5921 		enable_irq(dev->irq);
5922 	}
5923 }
5924 #endif
5925 
5926 /**
5927  *  stmmac_ioctl - Entry point for the Ioctl
5928  *  @dev: Device pointer.
5929  *  @rq: An IOCTL specefic structure, that can contain a pointer to
5930  *  a proprietary structure used to pass information to the driver.
5931  *  @cmd: IOCTL command
5932  *  Description:
5933  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5934  */
5935 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5936 {
5937 	struct stmmac_priv *priv = netdev_priv (dev);
5938 	int ret = -EOPNOTSUPP;
5939 
5940 	if (!netif_running(dev))
5941 		return -EINVAL;
5942 
5943 	switch (cmd) {
5944 	case SIOCGMIIPHY:
5945 	case SIOCGMIIREG:
5946 	case SIOCSMIIREG:
5947 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5948 		break;
5949 	case SIOCSHWTSTAMP:
5950 		ret = stmmac_hwtstamp_set(dev, rq);
5951 		break;
5952 	case SIOCGHWTSTAMP:
5953 		ret = stmmac_hwtstamp_get(dev, rq);
5954 		break;
5955 	default:
5956 		break;
5957 	}
5958 
5959 	return ret;
5960 }
5961 
5962 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5963 				    void *cb_priv)
5964 {
5965 	struct stmmac_priv *priv = cb_priv;
5966 	int ret = -EOPNOTSUPP;
5967 
5968 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5969 		return ret;
5970 
5971 	__stmmac_disable_all_queues(priv);
5972 
5973 	switch (type) {
5974 	case TC_SETUP_CLSU32:
5975 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5976 		break;
5977 	case TC_SETUP_CLSFLOWER:
5978 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
5979 		break;
5980 	default:
5981 		break;
5982 	}
5983 
5984 	stmmac_enable_all_queues(priv);
5985 	return ret;
5986 }
5987 
5988 static LIST_HEAD(stmmac_block_cb_list);
5989 
5990 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
5991 			   void *type_data)
5992 {
5993 	struct stmmac_priv *priv = netdev_priv(ndev);
5994 
5995 	switch (type) {
5996 	case TC_QUERY_CAPS:
5997 		return stmmac_tc_query_caps(priv, priv, type_data);
5998 	case TC_SETUP_BLOCK:
5999 		return flow_block_cb_setup_simple(type_data,
6000 						  &stmmac_block_cb_list,
6001 						  stmmac_setup_tc_block_cb,
6002 						  priv, priv, true);
6003 	case TC_SETUP_QDISC_CBS:
6004 		return stmmac_tc_setup_cbs(priv, priv, type_data);
6005 	case TC_SETUP_QDISC_TAPRIO:
6006 		return stmmac_tc_setup_taprio(priv, priv, type_data);
6007 	case TC_SETUP_QDISC_ETF:
6008 		return stmmac_tc_setup_etf(priv, priv, type_data);
6009 	default:
6010 		return -EOPNOTSUPP;
6011 	}
6012 }
6013 
6014 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
6015 			       struct net_device *sb_dev)
6016 {
6017 	int gso = skb_shinfo(skb)->gso_type;
6018 
6019 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
6020 		/*
6021 		 * There is no way to determine the number of TSO/USO
6022 		 * capable Queues. Let's use always the Queue 0
6023 		 * because if TSO/USO is supported then at least this
6024 		 * one will be capable.
6025 		 */
6026 		return 0;
6027 	}
6028 
6029 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
6030 }
6031 
6032 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
6033 {
6034 	struct stmmac_priv *priv = netdev_priv(ndev);
6035 	int ret = 0;
6036 
6037 	ret = pm_runtime_resume_and_get(priv->device);
6038 	if (ret < 0)
6039 		return ret;
6040 
6041 	ret = eth_mac_addr(ndev, addr);
6042 	if (ret)
6043 		goto set_mac_error;
6044 
6045 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
6046 
6047 set_mac_error:
6048 	pm_runtime_put(priv->device);
6049 
6050 	return ret;
6051 }
6052 
6053 #ifdef CONFIG_DEBUG_FS
6054 static struct dentry *stmmac_fs_dir;
6055 
6056 static void sysfs_display_ring(void *head, int size, int extend_desc,
6057 			       struct seq_file *seq, dma_addr_t dma_phy_addr)
6058 {
6059 	int i;
6060 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
6061 	struct dma_desc *p = (struct dma_desc *)head;
6062 	dma_addr_t dma_addr;
6063 
6064 	for (i = 0; i < size; i++) {
6065 		if (extend_desc) {
6066 			dma_addr = dma_phy_addr + i * sizeof(*ep);
6067 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6068 				   i, &dma_addr,
6069 				   le32_to_cpu(ep->basic.des0),
6070 				   le32_to_cpu(ep->basic.des1),
6071 				   le32_to_cpu(ep->basic.des2),
6072 				   le32_to_cpu(ep->basic.des3));
6073 			ep++;
6074 		} else {
6075 			dma_addr = dma_phy_addr + i * sizeof(*p);
6076 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6077 				   i, &dma_addr,
6078 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
6079 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
6080 			p++;
6081 		}
6082 		seq_printf(seq, "\n");
6083 	}
6084 }
6085 
6086 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
6087 {
6088 	struct net_device *dev = seq->private;
6089 	struct stmmac_priv *priv = netdev_priv(dev);
6090 	u32 rx_count = priv->plat->rx_queues_to_use;
6091 	u32 tx_count = priv->plat->tx_queues_to_use;
6092 	u32 queue;
6093 
6094 	if ((dev->flags & IFF_UP) == 0)
6095 		return 0;
6096 
6097 	for (queue = 0; queue < rx_count; queue++) {
6098 		struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6099 
6100 		seq_printf(seq, "RX Queue %d:\n", queue);
6101 
6102 		if (priv->extend_desc) {
6103 			seq_printf(seq, "Extended descriptor ring:\n");
6104 			sysfs_display_ring((void *)rx_q->dma_erx,
6105 					   priv->dma_conf.dma_rx_size, 1, seq, rx_q->dma_rx_phy);
6106 		} else {
6107 			seq_printf(seq, "Descriptor ring:\n");
6108 			sysfs_display_ring((void *)rx_q->dma_rx,
6109 					   priv->dma_conf.dma_rx_size, 0, seq, rx_q->dma_rx_phy);
6110 		}
6111 	}
6112 
6113 	for (queue = 0; queue < tx_count; queue++) {
6114 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6115 
6116 		seq_printf(seq, "TX Queue %d:\n", queue);
6117 
6118 		if (priv->extend_desc) {
6119 			seq_printf(seq, "Extended descriptor ring:\n");
6120 			sysfs_display_ring((void *)tx_q->dma_etx,
6121 					   priv->dma_conf.dma_tx_size, 1, seq, tx_q->dma_tx_phy);
6122 		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
6123 			seq_printf(seq, "Descriptor ring:\n");
6124 			sysfs_display_ring((void *)tx_q->dma_tx,
6125 					   priv->dma_conf.dma_tx_size, 0, seq, tx_q->dma_tx_phy);
6126 		}
6127 	}
6128 
6129 	return 0;
6130 }
6131 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
6132 
6133 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
6134 {
6135 	struct net_device *dev = seq->private;
6136 	struct stmmac_priv *priv = netdev_priv(dev);
6137 
6138 	if (!priv->hw_cap_support) {
6139 		seq_printf(seq, "DMA HW features not supported\n");
6140 		return 0;
6141 	}
6142 
6143 	seq_printf(seq, "==============================\n");
6144 	seq_printf(seq, "\tDMA HW features\n");
6145 	seq_printf(seq, "==============================\n");
6146 
6147 	seq_printf(seq, "\t10/100 Mbps: %s\n",
6148 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6149 	seq_printf(seq, "\t1000 Mbps: %s\n",
6150 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
6151 	seq_printf(seq, "\tHalf duplex: %s\n",
6152 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
6153 	seq_printf(seq, "\tHash Filter: %s\n",
6154 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
6155 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6156 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
6157 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6158 		   (priv->dma_cap.pcs) ? "Y" : "N");
6159 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6160 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
6161 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
6162 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6163 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
6164 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6165 	seq_printf(seq, "\tRMON module: %s\n",
6166 		   (priv->dma_cap.rmon) ? "Y" : "N");
6167 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6168 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
6169 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6170 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
6171 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6172 		   (priv->dma_cap.eee) ? "Y" : "N");
6173 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6174 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6175 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
6176 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6177 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6178 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
6179 	} else {
6180 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6181 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6182 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6183 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6184 	}
6185 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6186 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6187 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6188 		   priv->dma_cap.number_rx_channel);
6189 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6190 		   priv->dma_cap.number_tx_channel);
6191 	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6192 		   priv->dma_cap.number_rx_queues);
6193 	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6194 		   priv->dma_cap.number_tx_queues);
6195 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
6196 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
6197 	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6198 	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6199 	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6200 	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6201 	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6202 		   priv->dma_cap.pps_out_num);
6203 	seq_printf(seq, "\tSafety Features: %s\n",
6204 		   priv->dma_cap.asp ? "Y" : "N");
6205 	seq_printf(seq, "\tFlexible RX Parser: %s\n",
6206 		   priv->dma_cap.frpsel ? "Y" : "N");
6207 	seq_printf(seq, "\tEnhanced Addressing: %d\n",
6208 		   priv->dma_cap.host_dma_width);
6209 	seq_printf(seq, "\tReceive Side Scaling: %s\n",
6210 		   priv->dma_cap.rssen ? "Y" : "N");
6211 	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6212 		   priv->dma_cap.vlhash ? "Y" : "N");
6213 	seq_printf(seq, "\tSplit Header: %s\n",
6214 		   priv->dma_cap.sphen ? "Y" : "N");
6215 	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6216 		   priv->dma_cap.vlins ? "Y" : "N");
6217 	seq_printf(seq, "\tDouble VLAN: %s\n",
6218 		   priv->dma_cap.dvlan ? "Y" : "N");
6219 	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6220 		   priv->dma_cap.l3l4fnum);
6221 	seq_printf(seq, "\tARP Offloading: %s\n",
6222 		   priv->dma_cap.arpoffsel ? "Y" : "N");
6223 	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6224 		   priv->dma_cap.estsel ? "Y" : "N");
6225 	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6226 		   priv->dma_cap.fpesel ? "Y" : "N");
6227 	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6228 		   priv->dma_cap.tbssel ? "Y" : "N");
6229 	return 0;
6230 }
6231 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6232 
6233 /* Use network device events to rename debugfs file entries.
6234  */
6235 static int stmmac_device_event(struct notifier_block *unused,
6236 			       unsigned long event, void *ptr)
6237 {
6238 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6239 	struct stmmac_priv *priv = netdev_priv(dev);
6240 
6241 	if (dev->netdev_ops != &stmmac_netdev_ops)
6242 		goto done;
6243 
6244 	switch (event) {
6245 	case NETDEV_CHANGENAME:
6246 		if (priv->dbgfs_dir)
6247 			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6248 							 priv->dbgfs_dir,
6249 							 stmmac_fs_dir,
6250 							 dev->name);
6251 		break;
6252 	}
6253 done:
6254 	return NOTIFY_DONE;
6255 }
6256 
6257 static struct notifier_block stmmac_notifier = {
6258 	.notifier_call = stmmac_device_event,
6259 };
6260 
6261 static void stmmac_init_fs(struct net_device *dev)
6262 {
6263 	struct stmmac_priv *priv = netdev_priv(dev);
6264 
6265 	rtnl_lock();
6266 
6267 	/* Create per netdev entries */
6268 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6269 
6270 	/* Entry to report DMA RX/TX rings */
6271 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6272 			    &stmmac_rings_status_fops);
6273 
6274 	/* Entry to report the DMA HW features */
6275 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6276 			    &stmmac_dma_cap_fops);
6277 
6278 	rtnl_unlock();
6279 }
6280 
6281 static void stmmac_exit_fs(struct net_device *dev)
6282 {
6283 	struct stmmac_priv *priv = netdev_priv(dev);
6284 
6285 	debugfs_remove_recursive(priv->dbgfs_dir);
6286 }
6287 #endif /* CONFIG_DEBUG_FS */
6288 
6289 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6290 {
6291 	unsigned char *data = (unsigned char *)&vid_le;
6292 	unsigned char data_byte = 0;
6293 	u32 crc = ~0x0;
6294 	u32 temp = 0;
6295 	int i, bits;
6296 
6297 	bits = get_bitmask_order(VLAN_VID_MASK);
6298 	for (i = 0; i < bits; i++) {
6299 		if ((i % 8) == 0)
6300 			data_byte = data[i / 8];
6301 
6302 		temp = ((crc & 1) ^ data_byte) & 1;
6303 		crc >>= 1;
6304 		data_byte >>= 1;
6305 
6306 		if (temp)
6307 			crc ^= 0xedb88320;
6308 	}
6309 
6310 	return crc;
6311 }
6312 
6313 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6314 {
6315 	u32 crc, hash = 0;
6316 	__le16 pmatch = 0;
6317 	int count = 0;
6318 	u16 vid = 0;
6319 
6320 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6321 		__le16 vid_le = cpu_to_le16(vid);
6322 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6323 		hash |= (1 << crc);
6324 		count++;
6325 	}
6326 
6327 	if (!priv->dma_cap.vlhash) {
6328 		if (count > 2) /* VID = 0 always passes filter */
6329 			return -EOPNOTSUPP;
6330 
6331 		pmatch = cpu_to_le16(vid);
6332 		hash = 0;
6333 	}
6334 
6335 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6336 }
6337 
6338 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6339 {
6340 	struct stmmac_priv *priv = netdev_priv(ndev);
6341 	bool is_double = false;
6342 	int ret;
6343 
6344 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6345 		is_double = true;
6346 
6347 	set_bit(vid, priv->active_vlans);
6348 	ret = stmmac_vlan_update(priv, is_double);
6349 	if (ret) {
6350 		clear_bit(vid, priv->active_vlans);
6351 		return ret;
6352 	}
6353 
6354 	if (priv->hw->num_vlan) {
6355 		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6356 		if (ret)
6357 			return ret;
6358 	}
6359 
6360 	return 0;
6361 }
6362 
6363 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6364 {
6365 	struct stmmac_priv *priv = netdev_priv(ndev);
6366 	bool is_double = false;
6367 	int ret;
6368 
6369 	ret = pm_runtime_resume_and_get(priv->device);
6370 	if (ret < 0)
6371 		return ret;
6372 
6373 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6374 		is_double = true;
6375 
6376 	clear_bit(vid, priv->active_vlans);
6377 
6378 	if (priv->hw->num_vlan) {
6379 		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6380 		if (ret)
6381 			goto del_vlan_error;
6382 	}
6383 
6384 	ret = stmmac_vlan_update(priv, is_double);
6385 
6386 del_vlan_error:
6387 	pm_runtime_put(priv->device);
6388 
6389 	return ret;
6390 }
6391 
6392 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6393 {
6394 	struct stmmac_priv *priv = netdev_priv(dev);
6395 
6396 	switch (bpf->command) {
6397 	case XDP_SETUP_PROG:
6398 		return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6399 	case XDP_SETUP_XSK_POOL:
6400 		return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6401 					     bpf->xsk.queue_id);
6402 	default:
6403 		return -EOPNOTSUPP;
6404 	}
6405 }
6406 
6407 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6408 			   struct xdp_frame **frames, u32 flags)
6409 {
6410 	struct stmmac_priv *priv = netdev_priv(dev);
6411 	int cpu = smp_processor_id();
6412 	struct netdev_queue *nq;
6413 	int i, nxmit = 0;
6414 	int queue;
6415 
6416 	if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6417 		return -ENETDOWN;
6418 
6419 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6420 		return -EINVAL;
6421 
6422 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
6423 	nq = netdev_get_tx_queue(priv->dev, queue);
6424 
6425 	__netif_tx_lock(nq, cpu);
6426 	/* Avoids TX time-out as we are sharing with slow path */
6427 	txq_trans_cond_update(nq);
6428 
6429 	for (i = 0; i < num_frames; i++) {
6430 		int res;
6431 
6432 		res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6433 		if (res == STMMAC_XDP_CONSUMED)
6434 			break;
6435 
6436 		nxmit++;
6437 	}
6438 
6439 	if (flags & XDP_XMIT_FLUSH) {
6440 		stmmac_flush_tx_descriptors(priv, queue);
6441 		stmmac_tx_timer_arm(priv, queue);
6442 	}
6443 
6444 	__netif_tx_unlock(nq);
6445 
6446 	return nxmit;
6447 }
6448 
6449 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6450 {
6451 	struct stmmac_channel *ch = &priv->channel[queue];
6452 	unsigned long flags;
6453 
6454 	spin_lock_irqsave(&ch->lock, flags);
6455 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6456 	spin_unlock_irqrestore(&ch->lock, flags);
6457 
6458 	stmmac_stop_rx_dma(priv, queue);
6459 	__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6460 }
6461 
6462 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6463 {
6464 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6465 	struct stmmac_channel *ch = &priv->channel[queue];
6466 	unsigned long flags;
6467 	u32 buf_size;
6468 	int ret;
6469 
6470 	ret = __alloc_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6471 	if (ret) {
6472 		netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6473 		return;
6474 	}
6475 
6476 	ret = __init_dma_rx_desc_rings(priv, &priv->dma_conf, queue, GFP_KERNEL);
6477 	if (ret) {
6478 		__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6479 		netdev_err(priv->dev, "Failed to init RX desc.\n");
6480 		return;
6481 	}
6482 
6483 	stmmac_reset_rx_queue(priv, queue);
6484 	stmmac_clear_rx_descriptors(priv, &priv->dma_conf, queue);
6485 
6486 	stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6487 			    rx_q->dma_rx_phy, rx_q->queue_index);
6488 
6489 	rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6490 			     sizeof(struct dma_desc));
6491 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6492 			       rx_q->rx_tail_addr, rx_q->queue_index);
6493 
6494 	if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6495 		buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6496 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6497 				      buf_size,
6498 				      rx_q->queue_index);
6499 	} else {
6500 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6501 				      priv->dma_conf.dma_buf_sz,
6502 				      rx_q->queue_index);
6503 	}
6504 
6505 	stmmac_start_rx_dma(priv, queue);
6506 
6507 	spin_lock_irqsave(&ch->lock, flags);
6508 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6509 	spin_unlock_irqrestore(&ch->lock, flags);
6510 }
6511 
6512 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6513 {
6514 	struct stmmac_channel *ch = &priv->channel[queue];
6515 	unsigned long flags;
6516 
6517 	spin_lock_irqsave(&ch->lock, flags);
6518 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6519 	spin_unlock_irqrestore(&ch->lock, flags);
6520 
6521 	stmmac_stop_tx_dma(priv, queue);
6522 	__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6523 }
6524 
6525 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6526 {
6527 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6528 	struct stmmac_channel *ch = &priv->channel[queue];
6529 	unsigned long flags;
6530 	int ret;
6531 
6532 	ret = __alloc_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6533 	if (ret) {
6534 		netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6535 		return;
6536 	}
6537 
6538 	ret = __init_dma_tx_desc_rings(priv,  &priv->dma_conf, queue);
6539 	if (ret) {
6540 		__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6541 		netdev_err(priv->dev, "Failed to init TX desc.\n");
6542 		return;
6543 	}
6544 
6545 	stmmac_reset_tx_queue(priv, queue);
6546 	stmmac_clear_tx_descriptors(priv, &priv->dma_conf, queue);
6547 
6548 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6549 			    tx_q->dma_tx_phy, tx_q->queue_index);
6550 
6551 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
6552 		stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6553 
6554 	tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6555 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6556 			       tx_q->tx_tail_addr, tx_q->queue_index);
6557 
6558 	stmmac_start_tx_dma(priv, queue);
6559 
6560 	spin_lock_irqsave(&ch->lock, flags);
6561 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6562 	spin_unlock_irqrestore(&ch->lock, flags);
6563 }
6564 
6565 void stmmac_xdp_release(struct net_device *dev)
6566 {
6567 	struct stmmac_priv *priv = netdev_priv(dev);
6568 	u32 chan;
6569 
6570 	/* Ensure tx function is not running */
6571 	netif_tx_disable(dev);
6572 
6573 	/* Disable NAPI process */
6574 	stmmac_disable_all_queues(priv);
6575 
6576 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6577 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6578 
6579 	/* Free the IRQ lines */
6580 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
6581 
6582 	/* Stop TX/RX DMA channels */
6583 	stmmac_stop_all_dma(priv);
6584 
6585 	/* Release and free the Rx/Tx resources */
6586 	free_dma_desc_resources(priv, &priv->dma_conf);
6587 
6588 	/* Disable the MAC Rx/Tx */
6589 	stmmac_mac_set(priv, priv->ioaddr, false);
6590 
6591 	/* set trans_start so we don't get spurious
6592 	 * watchdogs during reset
6593 	 */
6594 	netif_trans_update(dev);
6595 	netif_carrier_off(dev);
6596 }
6597 
6598 int stmmac_xdp_open(struct net_device *dev)
6599 {
6600 	struct stmmac_priv *priv = netdev_priv(dev);
6601 	u32 rx_cnt = priv->plat->rx_queues_to_use;
6602 	u32 tx_cnt = priv->plat->tx_queues_to_use;
6603 	u32 dma_csr_ch = max(rx_cnt, tx_cnt);
6604 	struct stmmac_rx_queue *rx_q;
6605 	struct stmmac_tx_queue *tx_q;
6606 	u32 buf_size;
6607 	bool sph_en;
6608 	u32 chan;
6609 	int ret;
6610 
6611 	ret = alloc_dma_desc_resources(priv, &priv->dma_conf);
6612 	if (ret < 0) {
6613 		netdev_err(dev, "%s: DMA descriptors allocation failed\n",
6614 			   __func__);
6615 		goto dma_desc_error;
6616 	}
6617 
6618 	ret = init_dma_desc_rings(dev, &priv->dma_conf, GFP_KERNEL);
6619 	if (ret < 0) {
6620 		netdev_err(dev, "%s: DMA descriptors initialization failed\n",
6621 			   __func__);
6622 		goto init_error;
6623 	}
6624 
6625 	/* DMA CSR Channel configuration */
6626 	for (chan = 0; chan < dma_csr_ch; chan++) {
6627 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
6628 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
6629 	}
6630 
6631 	/* Adjust Split header */
6632 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
6633 
6634 	/* DMA RX Channel Configuration */
6635 	for (chan = 0; chan < rx_cnt; chan++) {
6636 		rx_q = &priv->dma_conf.rx_queue[chan];
6637 
6638 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6639 				    rx_q->dma_rx_phy, chan);
6640 
6641 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
6642 				     (rx_q->buf_alloc_num *
6643 				      sizeof(struct dma_desc));
6644 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6645 				       rx_q->rx_tail_addr, chan);
6646 
6647 		if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6648 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6649 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6650 					      buf_size,
6651 					      rx_q->queue_index);
6652 		} else {
6653 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6654 					      priv->dma_conf.dma_buf_sz,
6655 					      rx_q->queue_index);
6656 		}
6657 
6658 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
6659 	}
6660 
6661 	/* DMA TX Channel Configuration */
6662 	for (chan = 0; chan < tx_cnt; chan++) {
6663 		tx_q = &priv->dma_conf.tx_queue[chan];
6664 
6665 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6666 				    tx_q->dma_tx_phy, chan);
6667 
6668 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6669 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6670 				       tx_q->tx_tail_addr, chan);
6671 
6672 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6673 		tx_q->txtimer.function = stmmac_tx_timer;
6674 	}
6675 
6676 	/* Enable the MAC Rx/Tx */
6677 	stmmac_mac_set(priv, priv->ioaddr, true);
6678 
6679 	/* Start Rx & Tx DMA Channels */
6680 	stmmac_start_all_dma(priv);
6681 
6682 	ret = stmmac_request_irq(dev);
6683 	if (ret)
6684 		goto irq_error;
6685 
6686 	/* Enable NAPI process*/
6687 	stmmac_enable_all_queues(priv);
6688 	netif_carrier_on(dev);
6689 	netif_tx_start_all_queues(dev);
6690 	stmmac_enable_all_dma_irq(priv);
6691 
6692 	return 0;
6693 
6694 irq_error:
6695 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6696 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6697 
6698 	stmmac_hw_teardown(dev);
6699 init_error:
6700 	free_dma_desc_resources(priv, &priv->dma_conf);
6701 dma_desc_error:
6702 	return ret;
6703 }
6704 
6705 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6706 {
6707 	struct stmmac_priv *priv = netdev_priv(dev);
6708 	struct stmmac_rx_queue *rx_q;
6709 	struct stmmac_tx_queue *tx_q;
6710 	struct stmmac_channel *ch;
6711 
6712 	if (test_bit(STMMAC_DOWN, &priv->state) ||
6713 	    !netif_carrier_ok(priv->dev))
6714 		return -ENETDOWN;
6715 
6716 	if (!stmmac_xdp_is_enabled(priv))
6717 		return -EINVAL;
6718 
6719 	if (queue >= priv->plat->rx_queues_to_use ||
6720 	    queue >= priv->plat->tx_queues_to_use)
6721 		return -EINVAL;
6722 
6723 	rx_q = &priv->dma_conf.rx_queue[queue];
6724 	tx_q = &priv->dma_conf.tx_queue[queue];
6725 	ch = &priv->channel[queue];
6726 
6727 	if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6728 		return -EINVAL;
6729 
6730 	if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6731 		/* EQoS does not have per-DMA channel SW interrupt,
6732 		 * so we schedule RX Napi straight-away.
6733 		 */
6734 		if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6735 			__napi_schedule(&ch->rxtx_napi);
6736 	}
6737 
6738 	return 0;
6739 }
6740 
6741 static const struct net_device_ops stmmac_netdev_ops = {
6742 	.ndo_open = stmmac_open,
6743 	.ndo_start_xmit = stmmac_xmit,
6744 	.ndo_stop = stmmac_release,
6745 	.ndo_change_mtu = stmmac_change_mtu,
6746 	.ndo_fix_features = stmmac_fix_features,
6747 	.ndo_set_features = stmmac_set_features,
6748 	.ndo_set_rx_mode = stmmac_set_rx_mode,
6749 	.ndo_tx_timeout = stmmac_tx_timeout,
6750 	.ndo_eth_ioctl = stmmac_ioctl,
6751 	.ndo_setup_tc = stmmac_setup_tc,
6752 	.ndo_select_queue = stmmac_select_queue,
6753 #ifdef CONFIG_NET_POLL_CONTROLLER
6754 	.ndo_poll_controller = stmmac_poll_controller,
6755 #endif
6756 	.ndo_set_mac_address = stmmac_set_mac_address,
6757 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6758 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6759 	.ndo_bpf = stmmac_bpf,
6760 	.ndo_xdp_xmit = stmmac_xdp_xmit,
6761 	.ndo_xsk_wakeup = stmmac_xsk_wakeup,
6762 };
6763 
6764 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6765 {
6766 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6767 		return;
6768 	if (test_bit(STMMAC_DOWN, &priv->state))
6769 		return;
6770 
6771 	netdev_err(priv->dev, "Reset adapter.\n");
6772 
6773 	rtnl_lock();
6774 	netif_trans_update(priv->dev);
6775 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6776 		usleep_range(1000, 2000);
6777 
6778 	set_bit(STMMAC_DOWN, &priv->state);
6779 	dev_close(priv->dev);
6780 	dev_open(priv->dev, NULL);
6781 	clear_bit(STMMAC_DOWN, &priv->state);
6782 	clear_bit(STMMAC_RESETING, &priv->state);
6783 	rtnl_unlock();
6784 }
6785 
6786 static void stmmac_service_task(struct work_struct *work)
6787 {
6788 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6789 			service_task);
6790 
6791 	stmmac_reset_subtask(priv);
6792 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6793 }
6794 
6795 /**
6796  *  stmmac_hw_init - Init the MAC device
6797  *  @priv: driver private structure
6798  *  Description: this function is to configure the MAC device according to
6799  *  some platform parameters or the HW capability register. It prepares the
6800  *  driver to use either ring or chain modes and to setup either enhanced or
6801  *  normal descriptors.
6802  */
6803 static int stmmac_hw_init(struct stmmac_priv *priv)
6804 {
6805 	int ret;
6806 
6807 	/* dwmac-sun8i only work in chain mode */
6808 	if (priv->plat->has_sun8i)
6809 		chain_mode = 1;
6810 	priv->chain_mode = chain_mode;
6811 
6812 	/* Initialize HW Interface */
6813 	ret = stmmac_hwif_init(priv);
6814 	if (ret)
6815 		return ret;
6816 
6817 	/* Get the HW capability (new GMAC newer than 3.50a) */
6818 	priv->hw_cap_support = stmmac_get_hw_features(priv);
6819 	if (priv->hw_cap_support) {
6820 		dev_info(priv->device, "DMA HW capability register supported\n");
6821 
6822 		/* We can override some gmac/dma configuration fields: e.g.
6823 		 * enh_desc, tx_coe (e.g. that are passed through the
6824 		 * platform) with the values from the HW capability
6825 		 * register (if supported).
6826 		 */
6827 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
6828 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
6829 				!priv->plat->use_phy_wol;
6830 		priv->hw->pmt = priv->plat->pmt;
6831 		if (priv->dma_cap.hash_tb_sz) {
6832 			priv->hw->multicast_filter_bins =
6833 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
6834 			priv->hw->mcast_bits_log2 =
6835 					ilog2(priv->hw->multicast_filter_bins);
6836 		}
6837 
6838 		/* TXCOE doesn't work in thresh DMA mode */
6839 		if (priv->plat->force_thresh_dma_mode)
6840 			priv->plat->tx_coe = 0;
6841 		else
6842 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
6843 
6844 		/* In case of GMAC4 rx_coe is from HW cap register. */
6845 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
6846 
6847 		if (priv->dma_cap.rx_coe_type2)
6848 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6849 		else if (priv->dma_cap.rx_coe_type1)
6850 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6851 
6852 	} else {
6853 		dev_info(priv->device, "No HW DMA feature register supported\n");
6854 	}
6855 
6856 	if (priv->plat->rx_coe) {
6857 		priv->hw->rx_csum = priv->plat->rx_coe;
6858 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6859 		if (priv->synopsys_id < DWMAC_CORE_4_00)
6860 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6861 	}
6862 	if (priv->plat->tx_coe)
6863 		dev_info(priv->device, "TX Checksum insertion supported\n");
6864 
6865 	if (priv->plat->pmt) {
6866 		dev_info(priv->device, "Wake-Up On Lan supported\n");
6867 		device_set_wakeup_capable(priv->device, 1);
6868 	}
6869 
6870 	if (priv->dma_cap.tsoen)
6871 		dev_info(priv->device, "TSO supported\n");
6872 
6873 	priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6874 	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6875 
6876 	/* Run HW quirks, if any */
6877 	if (priv->hwif_quirks) {
6878 		ret = priv->hwif_quirks(priv);
6879 		if (ret)
6880 			return ret;
6881 	}
6882 
6883 	/* Rx Watchdog is available in the COREs newer than the 3.40.
6884 	 * In some case, for example on bugged HW this feature
6885 	 * has to be disable and this can be done by passing the
6886 	 * riwt_off field from the platform.
6887 	 */
6888 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6889 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6890 		priv->use_riwt = 1;
6891 		dev_info(priv->device,
6892 			 "Enable RX Mitigation via HW Watchdog Timer\n");
6893 	}
6894 
6895 	return 0;
6896 }
6897 
6898 static void stmmac_napi_add(struct net_device *dev)
6899 {
6900 	struct stmmac_priv *priv = netdev_priv(dev);
6901 	u32 queue, maxq;
6902 
6903 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6904 
6905 	for (queue = 0; queue < maxq; queue++) {
6906 		struct stmmac_channel *ch = &priv->channel[queue];
6907 
6908 		ch->priv_data = priv;
6909 		ch->index = queue;
6910 		spin_lock_init(&ch->lock);
6911 
6912 		if (queue < priv->plat->rx_queues_to_use) {
6913 			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx);
6914 		}
6915 		if (queue < priv->plat->tx_queues_to_use) {
6916 			netif_napi_add_tx(dev, &ch->tx_napi,
6917 					  stmmac_napi_poll_tx);
6918 		}
6919 		if (queue < priv->plat->rx_queues_to_use &&
6920 		    queue < priv->plat->tx_queues_to_use) {
6921 			netif_napi_add(dev, &ch->rxtx_napi,
6922 				       stmmac_napi_poll_rxtx);
6923 		}
6924 	}
6925 }
6926 
6927 static void stmmac_napi_del(struct net_device *dev)
6928 {
6929 	struct stmmac_priv *priv = netdev_priv(dev);
6930 	u32 queue, maxq;
6931 
6932 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6933 
6934 	for (queue = 0; queue < maxq; queue++) {
6935 		struct stmmac_channel *ch = &priv->channel[queue];
6936 
6937 		if (queue < priv->plat->rx_queues_to_use)
6938 			netif_napi_del(&ch->rx_napi);
6939 		if (queue < priv->plat->tx_queues_to_use)
6940 			netif_napi_del(&ch->tx_napi);
6941 		if (queue < priv->plat->rx_queues_to_use &&
6942 		    queue < priv->plat->tx_queues_to_use) {
6943 			netif_napi_del(&ch->rxtx_napi);
6944 		}
6945 	}
6946 }
6947 
6948 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6949 {
6950 	struct stmmac_priv *priv = netdev_priv(dev);
6951 	int ret = 0;
6952 
6953 	if (netif_running(dev))
6954 		stmmac_release(dev);
6955 
6956 	stmmac_napi_del(dev);
6957 
6958 	priv->plat->rx_queues_to_use = rx_cnt;
6959 	priv->plat->tx_queues_to_use = tx_cnt;
6960 
6961 	stmmac_napi_add(dev);
6962 
6963 	if (netif_running(dev))
6964 		ret = stmmac_open(dev);
6965 
6966 	return ret;
6967 }
6968 
6969 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6970 {
6971 	struct stmmac_priv *priv = netdev_priv(dev);
6972 	int ret = 0;
6973 
6974 	if (netif_running(dev))
6975 		stmmac_release(dev);
6976 
6977 	priv->dma_conf.dma_rx_size = rx_size;
6978 	priv->dma_conf.dma_tx_size = tx_size;
6979 
6980 	if (netif_running(dev))
6981 		ret = stmmac_open(dev);
6982 
6983 	return ret;
6984 }
6985 
6986 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
6987 static void stmmac_fpe_lp_task(struct work_struct *work)
6988 {
6989 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6990 						fpe_task);
6991 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
6992 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
6993 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
6994 	bool *hs_enable = &fpe_cfg->hs_enable;
6995 	bool *enable = &fpe_cfg->enable;
6996 	int retries = 20;
6997 
6998 	while (retries-- > 0) {
6999 		/* Bail out immediately if FPE handshake is OFF */
7000 		if (*lo_state == FPE_STATE_OFF || !*hs_enable)
7001 			break;
7002 
7003 		if (*lo_state == FPE_STATE_ENTERING_ON &&
7004 		    *lp_state == FPE_STATE_ENTERING_ON) {
7005 			stmmac_fpe_configure(priv, priv->ioaddr,
7006 					     priv->plat->tx_queues_to_use,
7007 					     priv->plat->rx_queues_to_use,
7008 					     *enable);
7009 
7010 			netdev_info(priv->dev, "configured FPE\n");
7011 
7012 			*lo_state = FPE_STATE_ON;
7013 			*lp_state = FPE_STATE_ON;
7014 			netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
7015 			break;
7016 		}
7017 
7018 		if ((*lo_state == FPE_STATE_CAPABLE ||
7019 		     *lo_state == FPE_STATE_ENTERING_ON) &&
7020 		     *lp_state != FPE_STATE_ON) {
7021 			netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
7022 				    *lo_state, *lp_state);
7023 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7024 						MPACKET_VERIFY);
7025 		}
7026 		/* Sleep then retry */
7027 		msleep(500);
7028 	}
7029 
7030 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
7031 }
7032 
7033 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
7034 {
7035 	if (priv->plat->fpe_cfg->hs_enable != enable) {
7036 		if (enable) {
7037 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7038 						MPACKET_VERIFY);
7039 		} else {
7040 			priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
7041 			priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
7042 		}
7043 
7044 		priv->plat->fpe_cfg->hs_enable = enable;
7045 	}
7046 }
7047 
7048 /**
7049  * stmmac_dvr_probe
7050  * @device: device pointer
7051  * @plat_dat: platform data pointer
7052  * @res: stmmac resource pointer
7053  * Description: this is the main probe function used to
7054  * call the alloc_etherdev, allocate the priv structure.
7055  * Return:
7056  * returns 0 on success, otherwise errno.
7057  */
7058 int stmmac_dvr_probe(struct device *device,
7059 		     struct plat_stmmacenet_data *plat_dat,
7060 		     struct stmmac_resources *res)
7061 {
7062 	struct net_device *ndev = NULL;
7063 	struct stmmac_priv *priv;
7064 	u32 rxq;
7065 	int i, ret = 0;
7066 
7067 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
7068 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
7069 	if (!ndev)
7070 		return -ENOMEM;
7071 
7072 	SET_NETDEV_DEV(ndev, device);
7073 
7074 	priv = netdev_priv(ndev);
7075 	priv->device = device;
7076 	priv->dev = ndev;
7077 
7078 	stmmac_set_ethtool_ops(ndev);
7079 	priv->pause = pause;
7080 	priv->plat = plat_dat;
7081 	priv->ioaddr = res->addr;
7082 	priv->dev->base_addr = (unsigned long)res->addr;
7083 	priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
7084 
7085 	priv->dev->irq = res->irq;
7086 	priv->wol_irq = res->wol_irq;
7087 	priv->lpi_irq = res->lpi_irq;
7088 	priv->sfty_ce_irq = res->sfty_ce_irq;
7089 	priv->sfty_ue_irq = res->sfty_ue_irq;
7090 	for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
7091 		priv->rx_irq[i] = res->rx_irq[i];
7092 	for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
7093 		priv->tx_irq[i] = res->tx_irq[i];
7094 
7095 	if (!is_zero_ether_addr(res->mac))
7096 		eth_hw_addr_set(priv->dev, res->mac);
7097 
7098 	dev_set_drvdata(device, priv->dev);
7099 
7100 	/* Verify driver arguments */
7101 	stmmac_verify_args();
7102 
7103 	priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
7104 	if (!priv->af_xdp_zc_qps)
7105 		return -ENOMEM;
7106 
7107 	/* Allocate workqueue */
7108 	priv->wq = create_singlethread_workqueue("stmmac_wq");
7109 	if (!priv->wq) {
7110 		dev_err(priv->device, "failed to create workqueue\n");
7111 		ret = -ENOMEM;
7112 		goto error_wq_init;
7113 	}
7114 
7115 	INIT_WORK(&priv->service_task, stmmac_service_task);
7116 
7117 	/* Initialize Link Partner FPE workqueue */
7118 	INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
7119 
7120 	/* Override with kernel parameters if supplied XXX CRS XXX
7121 	 * this needs to have multiple instances
7122 	 */
7123 	if ((phyaddr >= 0) && (phyaddr <= 31))
7124 		priv->plat->phy_addr = phyaddr;
7125 
7126 	if (priv->plat->stmmac_rst) {
7127 		ret = reset_control_assert(priv->plat->stmmac_rst);
7128 		reset_control_deassert(priv->plat->stmmac_rst);
7129 		/* Some reset controllers have only reset callback instead of
7130 		 * assert + deassert callbacks pair.
7131 		 */
7132 		if (ret == -ENOTSUPP)
7133 			reset_control_reset(priv->plat->stmmac_rst);
7134 	}
7135 
7136 	ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
7137 	if (ret == -ENOTSUPP)
7138 		dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
7139 			ERR_PTR(ret));
7140 
7141 	/* Init MAC and get the capabilities */
7142 	ret = stmmac_hw_init(priv);
7143 	if (ret)
7144 		goto error_hw_init;
7145 
7146 	/* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
7147 	 */
7148 	if (priv->synopsys_id < DWMAC_CORE_5_20)
7149 		priv->plat->dma_cfg->dche = false;
7150 
7151 	stmmac_check_ether_addr(priv);
7152 
7153 	ndev->netdev_ops = &stmmac_netdev_ops;
7154 
7155 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
7156 			    NETIF_F_RXCSUM;
7157 	ndev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
7158 			     NETDEV_XDP_ACT_XSK_ZEROCOPY |
7159 			     NETDEV_XDP_ACT_NDO_XMIT;
7160 
7161 	ret = stmmac_tc_init(priv, priv);
7162 	if (!ret) {
7163 		ndev->hw_features |= NETIF_F_HW_TC;
7164 	}
7165 
7166 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
7167 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
7168 		if (priv->plat->has_gmac4)
7169 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
7170 		priv->tso = true;
7171 		dev_info(priv->device, "TSO feature enabled\n");
7172 	}
7173 
7174 	if (priv->dma_cap.sphen && !priv->plat->sph_disable) {
7175 		ndev->hw_features |= NETIF_F_GRO;
7176 		priv->sph_cap = true;
7177 		priv->sph = priv->sph_cap;
7178 		dev_info(priv->device, "SPH feature enabled\n");
7179 	}
7180 
7181 	/* Ideally our host DMA address width is the same as for the
7182 	 * device. However, it may differ and then we have to use our
7183 	 * host DMA width for allocation and the device DMA width for
7184 	 * register handling.
7185 	 */
7186 	if (priv->plat->host_dma_width)
7187 		priv->dma_cap.host_dma_width = priv->plat->host_dma_width;
7188 	else
7189 		priv->dma_cap.host_dma_width = priv->dma_cap.addr64;
7190 
7191 	if (priv->dma_cap.host_dma_width) {
7192 		ret = dma_set_mask_and_coherent(device,
7193 				DMA_BIT_MASK(priv->dma_cap.host_dma_width));
7194 		if (!ret) {
7195 			dev_info(priv->device, "Using %d/%d bits DMA host/device width\n",
7196 				 priv->dma_cap.host_dma_width, priv->dma_cap.addr64);
7197 
7198 			/*
7199 			 * If more than 32 bits can be addressed, make sure to
7200 			 * enable enhanced addressing mode.
7201 			 */
7202 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
7203 				priv->plat->dma_cfg->eame = true;
7204 		} else {
7205 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
7206 			if (ret) {
7207 				dev_err(priv->device, "Failed to set DMA Mask\n");
7208 				goto error_hw_init;
7209 			}
7210 
7211 			priv->dma_cap.host_dma_width = 32;
7212 		}
7213 	}
7214 
7215 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
7216 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
7217 #ifdef STMMAC_VLAN_TAG_USED
7218 	/* Both mac100 and gmac support receive VLAN tag detection */
7219 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
7220 	if (priv->dma_cap.vlhash) {
7221 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7222 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
7223 	}
7224 	if (priv->dma_cap.vlins) {
7225 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
7226 		if (priv->dma_cap.dvlan)
7227 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
7228 	}
7229 #endif
7230 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
7231 
7232 	/* Initialize RSS */
7233 	rxq = priv->plat->rx_queues_to_use;
7234 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
7235 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7236 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
7237 
7238 	if (priv->dma_cap.rssen && priv->plat->rss_en)
7239 		ndev->features |= NETIF_F_RXHASH;
7240 
7241 	/* MTU range: 46 - hw-specific max */
7242 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
7243 	if (priv->plat->has_xgmac)
7244 		ndev->max_mtu = XGMAC_JUMBO_LEN;
7245 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
7246 		ndev->max_mtu = JUMBO_LEN;
7247 	else
7248 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
7249 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
7250 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
7251 	 */
7252 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
7253 	    (priv->plat->maxmtu >= ndev->min_mtu))
7254 		ndev->max_mtu = priv->plat->maxmtu;
7255 	else if (priv->plat->maxmtu < ndev->min_mtu)
7256 		dev_warn(priv->device,
7257 			 "%s: warning: maxmtu having invalid value (%d)\n",
7258 			 __func__, priv->plat->maxmtu);
7259 
7260 	if (flow_ctrl)
7261 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
7262 
7263 	/* Setup channels NAPI */
7264 	stmmac_napi_add(ndev);
7265 
7266 	mutex_init(&priv->lock);
7267 
7268 	/* If a specific clk_csr value is passed from the platform
7269 	 * this means that the CSR Clock Range selection cannot be
7270 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
7271 	 * set the MDC clock dynamically according to the csr actual
7272 	 * clock input.
7273 	 */
7274 	if (priv->plat->clk_csr >= 0)
7275 		priv->clk_csr = priv->plat->clk_csr;
7276 	else
7277 		stmmac_clk_csr_set(priv);
7278 
7279 	stmmac_check_pcs_mode(priv);
7280 
7281 	pm_runtime_get_noresume(device);
7282 	pm_runtime_set_active(device);
7283 	if (!pm_runtime_enabled(device))
7284 		pm_runtime_enable(device);
7285 
7286 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7287 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
7288 		/* MDIO bus Registration */
7289 		ret = stmmac_mdio_register(ndev);
7290 		if (ret < 0) {
7291 			dev_err_probe(priv->device, ret,
7292 				      "%s: MDIO bus (id: %d) registration failed\n",
7293 				      __func__, priv->plat->bus_id);
7294 			goto error_mdio_register;
7295 		}
7296 	}
7297 
7298 	if (priv->plat->speed_mode_2500)
7299 		priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7300 
7301 	if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7302 		ret = stmmac_xpcs_setup(priv->mii);
7303 		if (ret)
7304 			goto error_xpcs_setup;
7305 	}
7306 
7307 	ret = stmmac_phy_setup(priv);
7308 	if (ret) {
7309 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7310 		goto error_phy_setup;
7311 	}
7312 
7313 	ret = register_netdev(ndev);
7314 	if (ret) {
7315 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
7316 			__func__, ret);
7317 		goto error_netdev_register;
7318 	}
7319 
7320 #ifdef CONFIG_DEBUG_FS
7321 	stmmac_init_fs(ndev);
7322 #endif
7323 
7324 	if (priv->plat->dump_debug_regs)
7325 		priv->plat->dump_debug_regs(priv->plat->bsp_priv);
7326 
7327 	/* Let pm_runtime_put() disable the clocks.
7328 	 * If CONFIG_PM is not enabled, the clocks will stay powered.
7329 	 */
7330 	pm_runtime_put(device);
7331 
7332 	return ret;
7333 
7334 error_netdev_register:
7335 	phylink_destroy(priv->phylink);
7336 error_xpcs_setup:
7337 error_phy_setup:
7338 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7339 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7340 		stmmac_mdio_unregister(ndev);
7341 error_mdio_register:
7342 	stmmac_napi_del(ndev);
7343 error_hw_init:
7344 	destroy_workqueue(priv->wq);
7345 error_wq_init:
7346 	bitmap_free(priv->af_xdp_zc_qps);
7347 
7348 	return ret;
7349 }
7350 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7351 
7352 /**
7353  * stmmac_dvr_remove
7354  * @dev: device pointer
7355  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7356  * changes the link status, releases the DMA descriptor rings.
7357  */
7358 void stmmac_dvr_remove(struct device *dev)
7359 {
7360 	struct net_device *ndev = dev_get_drvdata(dev);
7361 	struct stmmac_priv *priv = netdev_priv(ndev);
7362 
7363 	netdev_info(priv->dev, "%s: removing driver", __func__);
7364 
7365 	pm_runtime_get_sync(dev);
7366 
7367 	stmmac_stop_all_dma(priv);
7368 	stmmac_mac_set(priv, priv->ioaddr, false);
7369 	netif_carrier_off(ndev);
7370 	unregister_netdev(ndev);
7371 
7372 	/* Serdes power down needs to happen after VLAN filter
7373 	 * is deleted that is triggered by unregister_netdev().
7374 	 */
7375 	if (priv->plat->serdes_powerdown)
7376 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7377 
7378 #ifdef CONFIG_DEBUG_FS
7379 	stmmac_exit_fs(ndev);
7380 #endif
7381 	phylink_destroy(priv->phylink);
7382 	if (priv->plat->stmmac_rst)
7383 		reset_control_assert(priv->plat->stmmac_rst);
7384 	reset_control_assert(priv->plat->stmmac_ahb_rst);
7385 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7386 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7387 		stmmac_mdio_unregister(ndev);
7388 	destroy_workqueue(priv->wq);
7389 	mutex_destroy(&priv->lock);
7390 	bitmap_free(priv->af_xdp_zc_qps);
7391 
7392 	pm_runtime_disable(dev);
7393 	pm_runtime_put_noidle(dev);
7394 }
7395 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7396 
7397 /**
7398  * stmmac_suspend - suspend callback
7399  * @dev: device pointer
7400  * Description: this is the function to suspend the device and it is called
7401  * by the platform driver to stop the network queue, release the resources,
7402  * program the PMT register (for WoL), clean and release driver resources.
7403  */
7404 int stmmac_suspend(struct device *dev)
7405 {
7406 	struct net_device *ndev = dev_get_drvdata(dev);
7407 	struct stmmac_priv *priv = netdev_priv(ndev);
7408 	u32 chan;
7409 
7410 	if (!ndev || !netif_running(ndev))
7411 		return 0;
7412 
7413 	mutex_lock(&priv->lock);
7414 
7415 	netif_device_detach(ndev);
7416 
7417 	stmmac_disable_all_queues(priv);
7418 
7419 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7420 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
7421 
7422 	if (priv->eee_enabled) {
7423 		priv->tx_path_in_lpi_mode = false;
7424 		del_timer_sync(&priv->eee_ctrl_timer);
7425 	}
7426 
7427 	/* Stop TX/RX DMA */
7428 	stmmac_stop_all_dma(priv);
7429 
7430 	if (priv->plat->serdes_powerdown)
7431 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7432 
7433 	/* Enable Power down mode by programming the PMT regs */
7434 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7435 		stmmac_pmt(priv, priv->hw, priv->wolopts);
7436 		priv->irq_wake = 1;
7437 	} else {
7438 		stmmac_mac_set(priv, priv->ioaddr, false);
7439 		pinctrl_pm_select_sleep_state(priv->device);
7440 	}
7441 
7442 	mutex_unlock(&priv->lock);
7443 
7444 	rtnl_lock();
7445 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7446 		phylink_suspend(priv->phylink, true);
7447 	} else {
7448 		if (device_may_wakeup(priv->device))
7449 			phylink_speed_down(priv->phylink, false);
7450 		phylink_suspend(priv->phylink, false);
7451 	}
7452 	rtnl_unlock();
7453 
7454 	if (priv->dma_cap.fpesel) {
7455 		/* Disable FPE */
7456 		stmmac_fpe_configure(priv, priv->ioaddr,
7457 				     priv->plat->tx_queues_to_use,
7458 				     priv->plat->rx_queues_to_use, false);
7459 
7460 		stmmac_fpe_handshake(priv, false);
7461 		stmmac_fpe_stop_wq(priv);
7462 	}
7463 
7464 	priv->speed = SPEED_UNKNOWN;
7465 	return 0;
7466 }
7467 EXPORT_SYMBOL_GPL(stmmac_suspend);
7468 
7469 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue)
7470 {
7471 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
7472 
7473 	rx_q->cur_rx = 0;
7474 	rx_q->dirty_rx = 0;
7475 }
7476 
7477 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue)
7478 {
7479 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
7480 
7481 	tx_q->cur_tx = 0;
7482 	tx_q->dirty_tx = 0;
7483 	tx_q->mss = 0;
7484 
7485 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7486 }
7487 
7488 /**
7489  * stmmac_reset_queues_param - reset queue parameters
7490  * @priv: device pointer
7491  */
7492 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7493 {
7494 	u32 rx_cnt = priv->plat->rx_queues_to_use;
7495 	u32 tx_cnt = priv->plat->tx_queues_to_use;
7496 	u32 queue;
7497 
7498 	for (queue = 0; queue < rx_cnt; queue++)
7499 		stmmac_reset_rx_queue(priv, queue);
7500 
7501 	for (queue = 0; queue < tx_cnt; queue++)
7502 		stmmac_reset_tx_queue(priv, queue);
7503 }
7504 
7505 /**
7506  * stmmac_resume - resume callback
7507  * @dev: device pointer
7508  * Description: when resume this function is invoked to setup the DMA and CORE
7509  * in a usable state.
7510  */
7511 int stmmac_resume(struct device *dev)
7512 {
7513 	struct net_device *ndev = dev_get_drvdata(dev);
7514 	struct stmmac_priv *priv = netdev_priv(ndev);
7515 	int ret;
7516 
7517 	if (!netif_running(ndev))
7518 		return 0;
7519 
7520 	/* Power Down bit, into the PM register, is cleared
7521 	 * automatically as soon as a magic packet or a Wake-up frame
7522 	 * is received. Anyway, it's better to manually clear
7523 	 * this bit because it can generate problems while resuming
7524 	 * from another devices (e.g. serial console).
7525 	 */
7526 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7527 		mutex_lock(&priv->lock);
7528 		stmmac_pmt(priv, priv->hw, 0);
7529 		mutex_unlock(&priv->lock);
7530 		priv->irq_wake = 0;
7531 	} else {
7532 		pinctrl_pm_select_default_state(priv->device);
7533 		/* reset the phy so that it's ready */
7534 		if (priv->mii)
7535 			stmmac_mdio_reset(priv->mii);
7536 	}
7537 
7538 	if (!priv->plat->serdes_up_after_phy_linkup && priv->plat->serdes_powerup) {
7539 		ret = priv->plat->serdes_powerup(ndev,
7540 						 priv->plat->bsp_priv);
7541 
7542 		if (ret < 0)
7543 			return ret;
7544 	}
7545 
7546 	rtnl_lock();
7547 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7548 		phylink_resume(priv->phylink);
7549 	} else {
7550 		phylink_resume(priv->phylink);
7551 		if (device_may_wakeup(priv->device))
7552 			phylink_speed_up(priv->phylink);
7553 	}
7554 	rtnl_unlock();
7555 
7556 	rtnl_lock();
7557 	mutex_lock(&priv->lock);
7558 
7559 	stmmac_reset_queues_param(priv);
7560 
7561 	stmmac_free_tx_skbufs(priv);
7562 	stmmac_clear_descriptors(priv, &priv->dma_conf);
7563 
7564 	stmmac_hw_setup(ndev, false);
7565 	stmmac_init_coalesce(priv);
7566 	stmmac_set_rx_mode(ndev);
7567 
7568 	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7569 
7570 	stmmac_enable_all_queues(priv);
7571 	stmmac_enable_all_dma_irq(priv);
7572 
7573 	mutex_unlock(&priv->lock);
7574 	rtnl_unlock();
7575 
7576 	netif_device_attach(ndev);
7577 
7578 	return 0;
7579 }
7580 EXPORT_SYMBOL_GPL(stmmac_resume);
7581 
7582 #ifndef MODULE
7583 static int __init stmmac_cmdline_opt(char *str)
7584 {
7585 	char *opt;
7586 
7587 	if (!str || !*str)
7588 		return 1;
7589 	while ((opt = strsep(&str, ",")) != NULL) {
7590 		if (!strncmp(opt, "debug:", 6)) {
7591 			if (kstrtoint(opt + 6, 0, &debug))
7592 				goto err;
7593 		} else if (!strncmp(opt, "phyaddr:", 8)) {
7594 			if (kstrtoint(opt + 8, 0, &phyaddr))
7595 				goto err;
7596 		} else if (!strncmp(opt, "buf_sz:", 7)) {
7597 			if (kstrtoint(opt + 7, 0, &buf_sz))
7598 				goto err;
7599 		} else if (!strncmp(opt, "tc:", 3)) {
7600 			if (kstrtoint(opt + 3, 0, &tc))
7601 				goto err;
7602 		} else if (!strncmp(opt, "watchdog:", 9)) {
7603 			if (kstrtoint(opt + 9, 0, &watchdog))
7604 				goto err;
7605 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
7606 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
7607 				goto err;
7608 		} else if (!strncmp(opt, "pause:", 6)) {
7609 			if (kstrtoint(opt + 6, 0, &pause))
7610 				goto err;
7611 		} else if (!strncmp(opt, "eee_timer:", 10)) {
7612 			if (kstrtoint(opt + 10, 0, &eee_timer))
7613 				goto err;
7614 		} else if (!strncmp(opt, "chain_mode:", 11)) {
7615 			if (kstrtoint(opt + 11, 0, &chain_mode))
7616 				goto err;
7617 		}
7618 	}
7619 	return 1;
7620 
7621 err:
7622 	pr_err("%s: ERROR broken module parameter conversion", __func__);
7623 	return 1;
7624 }
7625 
7626 __setup("stmmaceth=", stmmac_cmdline_opt);
7627 #endif /* MODULE */
7628 
7629 static int __init stmmac_init(void)
7630 {
7631 #ifdef CONFIG_DEBUG_FS
7632 	/* Create debugfs main directory if it doesn't exist yet */
7633 	if (!stmmac_fs_dir)
7634 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7635 	register_netdevice_notifier(&stmmac_notifier);
7636 #endif
7637 
7638 	return 0;
7639 }
7640 
7641 static void __exit stmmac_exit(void)
7642 {
7643 #ifdef CONFIG_DEBUG_FS
7644 	unregister_netdevice_notifier(&stmmac_notifier);
7645 	debugfs_remove_recursive(stmmac_fs_dir);
7646 #endif
7647 }
7648 
7649 module_init(stmmac_init)
7650 module_exit(stmmac_exit)
7651 
7652 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7653 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7654 MODULE_LICENSE("GPL");
7655