1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/prefetch.h>
32 #include <linux/pinctrl/consumer.h>
33 #ifdef CONFIG_DEBUG_FS
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif /* CONFIG_DEBUG_FS */
37 #include <linux/net_tstamp.h>
38 #include <linux/phylink.h>
39 #include <linux/udp.h>
40 #include <net/pkt_cls.h>
41 #include "stmmac_ptp.h"
42 #include "stmmac.h"
43 #include <linux/reset.h>
44 #include <linux/of_mdio.h>
45 #include "dwmac1000.h"
46 #include "dwxgmac2.h"
47 #include "hwif.h"
48 
49 #define	STMMAC_ALIGN(x)		__ALIGN_KERNEL(x, SMP_CACHE_BYTES)
50 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
51 
52 /* Module parameters */
53 #define TX_TIMEO	5000
54 static int watchdog = TX_TIMEO;
55 module_param(watchdog, int, 0644);
56 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
57 
58 static int debug = -1;
59 module_param(debug, int, 0644);
60 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
61 
62 static int phyaddr = -1;
63 module_param(phyaddr, int, 0444);
64 MODULE_PARM_DESC(phyaddr, "Physical device address");
65 
66 #define STMMAC_TX_THRESH	(DMA_TX_SIZE / 4)
67 #define STMMAC_RX_THRESH	(DMA_RX_SIZE / 4)
68 
69 static int flow_ctrl = FLOW_AUTO;
70 module_param(flow_ctrl, int, 0644);
71 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
72 
73 static int pause = PAUSE_TIME;
74 module_param(pause, int, 0644);
75 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
76 
77 #define TC_DEFAULT 64
78 static int tc = TC_DEFAULT;
79 module_param(tc, int, 0644);
80 MODULE_PARM_DESC(tc, "DMA threshold control value");
81 
82 #define	DEFAULT_BUFSIZE	1536
83 static int buf_sz = DEFAULT_BUFSIZE;
84 module_param(buf_sz, int, 0644);
85 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
86 
87 #define	STMMAC_RX_COPYBREAK	256
88 
89 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
90 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
91 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
92 
93 #define STMMAC_DEFAULT_LPI_TIMER	1000
94 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
95 module_param(eee_timer, int, 0644);
96 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
97 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
98 
99 /* By default the driver will use the ring mode to manage tx and rx descriptors,
100  * but allow user to force to use the chain instead of the ring
101  */
102 static unsigned int chain_mode;
103 module_param(chain_mode, int, 0444);
104 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
105 
106 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
107 
108 #ifdef CONFIG_DEBUG_FS
109 static void stmmac_init_fs(struct net_device *dev);
110 static void stmmac_exit_fs(struct net_device *dev);
111 #endif
112 
113 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
114 
115 /**
116  * stmmac_verify_args - verify the driver parameters.
117  * Description: it checks the driver parameters and set a default in case of
118  * errors.
119  */
120 static void stmmac_verify_args(void)
121 {
122 	if (unlikely(watchdog < 0))
123 		watchdog = TX_TIMEO;
124 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
125 		buf_sz = DEFAULT_BUFSIZE;
126 	if (unlikely(flow_ctrl > 1))
127 		flow_ctrl = FLOW_AUTO;
128 	else if (likely(flow_ctrl < 0))
129 		flow_ctrl = FLOW_OFF;
130 	if (unlikely((pause < 0) || (pause > 0xffff)))
131 		pause = PAUSE_TIME;
132 	if (eee_timer < 0)
133 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
134 }
135 
136 /**
137  * stmmac_disable_all_queues - Disable all queues
138  * @priv: driver private structure
139  */
140 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
141 {
142 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
143 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
144 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
145 	u32 queue;
146 
147 	for (queue = 0; queue < maxq; queue++) {
148 		struct stmmac_channel *ch = &priv->channel[queue];
149 
150 		if (queue < rx_queues_cnt)
151 			napi_disable(&ch->rx_napi);
152 		if (queue < tx_queues_cnt)
153 			napi_disable(&ch->tx_napi);
154 	}
155 }
156 
157 /**
158  * stmmac_enable_all_queues - Enable all queues
159  * @priv: driver private structure
160  */
161 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
162 {
163 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
164 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
165 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
166 	u32 queue;
167 
168 	for (queue = 0; queue < maxq; queue++) {
169 		struct stmmac_channel *ch = &priv->channel[queue];
170 
171 		if (queue < rx_queues_cnt)
172 			napi_enable(&ch->rx_napi);
173 		if (queue < tx_queues_cnt)
174 			napi_enable(&ch->tx_napi);
175 	}
176 }
177 
178 /**
179  * stmmac_stop_all_queues - Stop all queues
180  * @priv: driver private structure
181  */
182 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
183 {
184 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
185 	u32 queue;
186 
187 	for (queue = 0; queue < tx_queues_cnt; queue++)
188 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
189 }
190 
191 /**
192  * stmmac_start_all_queues - Start all queues
193  * @priv: driver private structure
194  */
195 static void stmmac_start_all_queues(struct stmmac_priv *priv)
196 {
197 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
198 	u32 queue;
199 
200 	for (queue = 0; queue < tx_queues_cnt; queue++)
201 		netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
202 }
203 
204 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
205 {
206 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
207 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
208 		queue_work(priv->wq, &priv->service_task);
209 }
210 
211 static void stmmac_global_err(struct stmmac_priv *priv)
212 {
213 	netif_carrier_off(priv->dev);
214 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
215 	stmmac_service_event_schedule(priv);
216 }
217 
218 /**
219  * stmmac_clk_csr_set - dynamically set the MDC clock
220  * @priv: driver private structure
221  * Description: this is to dynamically set the MDC clock according to the csr
222  * clock input.
223  * Note:
224  *	If a specific clk_csr value is passed from the platform
225  *	this means that the CSR Clock Range selection cannot be
226  *	changed at run-time and it is fixed (as reported in the driver
227  *	documentation). Viceversa the driver will try to set the MDC
228  *	clock dynamically according to the actual clock input.
229  */
230 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
231 {
232 	u32 clk_rate;
233 
234 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
235 
236 	/* Platform provided default clk_csr would be assumed valid
237 	 * for all other cases except for the below mentioned ones.
238 	 * For values higher than the IEEE 802.3 specified frequency
239 	 * we can not estimate the proper divider as it is not known
240 	 * the frequency of clk_csr_i. So we do not change the default
241 	 * divider.
242 	 */
243 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
244 		if (clk_rate < CSR_F_35M)
245 			priv->clk_csr = STMMAC_CSR_20_35M;
246 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
247 			priv->clk_csr = STMMAC_CSR_35_60M;
248 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
249 			priv->clk_csr = STMMAC_CSR_60_100M;
250 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
251 			priv->clk_csr = STMMAC_CSR_100_150M;
252 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
253 			priv->clk_csr = STMMAC_CSR_150_250M;
254 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
255 			priv->clk_csr = STMMAC_CSR_250_300M;
256 	}
257 
258 	if (priv->plat->has_sun8i) {
259 		if (clk_rate > 160000000)
260 			priv->clk_csr = 0x03;
261 		else if (clk_rate > 80000000)
262 			priv->clk_csr = 0x02;
263 		else if (clk_rate > 40000000)
264 			priv->clk_csr = 0x01;
265 		else
266 			priv->clk_csr = 0;
267 	}
268 
269 	if (priv->plat->has_xgmac) {
270 		if (clk_rate > 400000000)
271 			priv->clk_csr = 0x5;
272 		else if (clk_rate > 350000000)
273 			priv->clk_csr = 0x4;
274 		else if (clk_rate > 300000000)
275 			priv->clk_csr = 0x3;
276 		else if (clk_rate > 250000000)
277 			priv->clk_csr = 0x2;
278 		else if (clk_rate > 150000000)
279 			priv->clk_csr = 0x1;
280 		else
281 			priv->clk_csr = 0x0;
282 	}
283 }
284 
285 static void print_pkt(unsigned char *buf, int len)
286 {
287 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
288 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
289 }
290 
291 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
292 {
293 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
294 	u32 avail;
295 
296 	if (tx_q->dirty_tx > tx_q->cur_tx)
297 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
298 	else
299 		avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
300 
301 	return avail;
302 }
303 
304 /**
305  * stmmac_rx_dirty - Get RX queue dirty
306  * @priv: driver private structure
307  * @queue: RX queue index
308  */
309 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
310 {
311 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
312 	u32 dirty;
313 
314 	if (rx_q->dirty_rx <= rx_q->cur_rx)
315 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
316 	else
317 		dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
318 
319 	return dirty;
320 }
321 
322 /**
323  * stmmac_enable_eee_mode - check and enter in LPI mode
324  * @priv: driver private structure
325  * Description: this function is to verify and enter in LPI mode in case of
326  * EEE.
327  */
328 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
329 {
330 	u32 tx_cnt = priv->plat->tx_queues_to_use;
331 	u32 queue;
332 
333 	/* check if all TX queues have the work finished */
334 	for (queue = 0; queue < tx_cnt; queue++) {
335 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
336 
337 		if (tx_q->dirty_tx != tx_q->cur_tx)
338 			return; /* still unfinished work */
339 	}
340 
341 	/* Check and enter in LPI mode */
342 	if (!priv->tx_path_in_lpi_mode)
343 		stmmac_set_eee_mode(priv, priv->hw,
344 				priv->plat->en_tx_lpi_clockgating);
345 }
346 
347 /**
348  * stmmac_disable_eee_mode - disable and exit from LPI mode
349  * @priv: driver private structure
350  * Description: this function is to exit and disable EEE in case of
351  * LPI state is true. This is called by the xmit.
352  */
353 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
354 {
355 	stmmac_reset_eee_mode(priv, priv->hw);
356 	del_timer_sync(&priv->eee_ctrl_timer);
357 	priv->tx_path_in_lpi_mode = false;
358 }
359 
360 /**
361  * stmmac_eee_ctrl_timer - EEE TX SW timer.
362  * @arg : data hook
363  * Description:
364  *  if there is no data transfer and if we are not in LPI state,
365  *  then MAC Transmitter can be moved to LPI state.
366  */
367 static void stmmac_eee_ctrl_timer(struct timer_list *t)
368 {
369 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
370 
371 	stmmac_enable_eee_mode(priv);
372 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
373 }
374 
375 /**
376  * stmmac_eee_init - init EEE
377  * @priv: driver private structure
378  * Description:
379  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
380  *  can also manage EEE, this function enable the LPI state and start related
381  *  timer.
382  */
383 bool stmmac_eee_init(struct stmmac_priv *priv)
384 {
385 	int tx_lpi_timer = priv->tx_lpi_timer;
386 
387 	/* Using PCS we cannot dial with the phy registers at this stage
388 	 * so we do not support extra feature like EEE.
389 	 */
390 	if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
391 	    (priv->hw->pcs == STMMAC_PCS_TBI) ||
392 	    (priv->hw->pcs == STMMAC_PCS_RTBI))
393 		return false;
394 
395 	/* Check if MAC core supports the EEE feature. */
396 	if (!priv->dma_cap.eee)
397 		return false;
398 
399 	mutex_lock(&priv->lock);
400 
401 	/* Check if it needs to be deactivated */
402 	if (!priv->eee_active) {
403 		if (priv->eee_enabled) {
404 			netdev_dbg(priv->dev, "disable EEE\n");
405 			del_timer_sync(&priv->eee_ctrl_timer);
406 			stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer);
407 		}
408 		mutex_unlock(&priv->lock);
409 		return false;
410 	}
411 
412 	if (priv->eee_active && !priv->eee_enabled) {
413 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
414 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
415 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
416 				     tx_lpi_timer);
417 	}
418 
419 	mutex_unlock(&priv->lock);
420 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
421 	return true;
422 }
423 
424 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
425  * @priv: driver private structure
426  * @p : descriptor pointer
427  * @skb : the socket buffer
428  * Description :
429  * This function will read timestamp from the descriptor & pass it to stack.
430  * and also perform some sanity checks.
431  */
432 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
433 				   struct dma_desc *p, struct sk_buff *skb)
434 {
435 	struct skb_shared_hwtstamps shhwtstamp;
436 	bool found = false;
437 	u64 ns = 0;
438 
439 	if (!priv->hwts_tx_en)
440 		return;
441 
442 	/* exit if skb doesn't support hw tstamp */
443 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
444 		return;
445 
446 	/* check tx tstamp status */
447 	if (stmmac_get_tx_timestamp_status(priv, p)) {
448 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
449 		found = true;
450 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
451 		found = true;
452 	}
453 
454 	if (found) {
455 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
456 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
457 
458 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
459 		/* pass tstamp to stack */
460 		skb_tstamp_tx(skb, &shhwtstamp);
461 	}
462 }
463 
464 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
465  * @priv: driver private structure
466  * @p : descriptor pointer
467  * @np : next descriptor pointer
468  * @skb : the socket buffer
469  * Description :
470  * This function will read received packet's timestamp from the descriptor
471  * and pass it to stack. It also perform some sanity checks.
472  */
473 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
474 				   struct dma_desc *np, struct sk_buff *skb)
475 {
476 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
477 	struct dma_desc *desc = p;
478 	u64 ns = 0;
479 
480 	if (!priv->hwts_rx_en)
481 		return;
482 	/* For GMAC4, the valid timestamp is from CTX next desc. */
483 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
484 		desc = np;
485 
486 	/* Check if timestamp is available */
487 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
488 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
489 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
490 		shhwtstamp = skb_hwtstamps(skb);
491 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
492 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
493 	} else  {
494 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
495 	}
496 }
497 
498 /**
499  *  stmmac_hwtstamp_set - control hardware timestamping.
500  *  @dev: device pointer.
501  *  @ifr: An IOCTL specific structure, that can contain a pointer to
502  *  a proprietary structure used to pass information to the driver.
503  *  Description:
504  *  This function configures the MAC to enable/disable both outgoing(TX)
505  *  and incoming(RX) packets time stamping based on user input.
506  *  Return Value:
507  *  0 on success and an appropriate -ve integer on failure.
508  */
509 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
510 {
511 	struct stmmac_priv *priv = netdev_priv(dev);
512 	struct hwtstamp_config config;
513 	struct timespec64 now;
514 	u64 temp = 0;
515 	u32 ptp_v2 = 0;
516 	u32 tstamp_all = 0;
517 	u32 ptp_over_ipv4_udp = 0;
518 	u32 ptp_over_ipv6_udp = 0;
519 	u32 ptp_over_ethernet = 0;
520 	u32 snap_type_sel = 0;
521 	u32 ts_master_en = 0;
522 	u32 ts_event_en = 0;
523 	u32 sec_inc = 0;
524 	u32 value = 0;
525 	bool xmac;
526 
527 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
528 
529 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
530 		netdev_alert(priv->dev, "No support for HW time stamping\n");
531 		priv->hwts_tx_en = 0;
532 		priv->hwts_rx_en = 0;
533 
534 		return -EOPNOTSUPP;
535 	}
536 
537 	if (copy_from_user(&config, ifr->ifr_data,
538 			   sizeof(config)))
539 		return -EFAULT;
540 
541 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
542 		   __func__, config.flags, config.tx_type, config.rx_filter);
543 
544 	/* reserved for future extensions */
545 	if (config.flags)
546 		return -EINVAL;
547 
548 	if (config.tx_type != HWTSTAMP_TX_OFF &&
549 	    config.tx_type != HWTSTAMP_TX_ON)
550 		return -ERANGE;
551 
552 	if (priv->adv_ts) {
553 		switch (config.rx_filter) {
554 		case HWTSTAMP_FILTER_NONE:
555 			/* time stamp no incoming packet at all */
556 			config.rx_filter = HWTSTAMP_FILTER_NONE;
557 			break;
558 
559 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
560 			/* PTP v1, UDP, any kind of event packet */
561 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
562 			/* 'xmac' hardware can support Sync, Pdelay_Req and
563 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
564 			 * This leaves Delay_Req timestamps out.
565 			 * Enable all events *and* general purpose message
566 			 * timestamping
567 			 */
568 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
569 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
570 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
571 			break;
572 
573 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
574 			/* PTP v1, UDP, Sync packet */
575 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
576 			/* take time stamp for SYNC messages only */
577 			ts_event_en = PTP_TCR_TSEVNTENA;
578 
579 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
580 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
581 			break;
582 
583 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
584 			/* PTP v1, UDP, Delay_req packet */
585 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
586 			/* take time stamp for Delay_Req messages only */
587 			ts_master_en = PTP_TCR_TSMSTRENA;
588 			ts_event_en = PTP_TCR_TSEVNTENA;
589 
590 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
591 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
592 			break;
593 
594 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
595 			/* PTP v2, UDP, any kind of event packet */
596 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
597 			ptp_v2 = PTP_TCR_TSVER2ENA;
598 			/* take time stamp for all event messages */
599 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
600 
601 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
602 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
603 			break;
604 
605 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
606 			/* PTP v2, UDP, Sync packet */
607 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
608 			ptp_v2 = PTP_TCR_TSVER2ENA;
609 			/* take time stamp for SYNC messages only */
610 			ts_event_en = PTP_TCR_TSEVNTENA;
611 
612 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
613 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
614 			break;
615 
616 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
617 			/* PTP v2, UDP, Delay_req packet */
618 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
619 			ptp_v2 = PTP_TCR_TSVER2ENA;
620 			/* take time stamp for Delay_Req messages only */
621 			ts_master_en = PTP_TCR_TSMSTRENA;
622 			ts_event_en = PTP_TCR_TSEVNTENA;
623 
624 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
625 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
626 			break;
627 
628 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
629 			/* PTP v2/802.AS1 any layer, any kind of event packet */
630 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
631 			ptp_v2 = PTP_TCR_TSVER2ENA;
632 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
633 			ts_event_en = PTP_TCR_TSEVNTENA;
634 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
635 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
636 			ptp_over_ethernet = PTP_TCR_TSIPENA;
637 			break;
638 
639 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
640 			/* PTP v2/802.AS1, any layer, Sync packet */
641 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
642 			ptp_v2 = PTP_TCR_TSVER2ENA;
643 			/* take time stamp for SYNC messages only */
644 			ts_event_en = PTP_TCR_TSEVNTENA;
645 
646 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
647 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
648 			ptp_over_ethernet = PTP_TCR_TSIPENA;
649 			break;
650 
651 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
652 			/* PTP v2/802.AS1, any layer, Delay_req packet */
653 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
654 			ptp_v2 = PTP_TCR_TSVER2ENA;
655 			/* take time stamp for Delay_Req messages only */
656 			ts_master_en = PTP_TCR_TSMSTRENA;
657 			ts_event_en = PTP_TCR_TSEVNTENA;
658 
659 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
660 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
661 			ptp_over_ethernet = PTP_TCR_TSIPENA;
662 			break;
663 
664 		case HWTSTAMP_FILTER_NTP_ALL:
665 		case HWTSTAMP_FILTER_ALL:
666 			/* time stamp any incoming packet */
667 			config.rx_filter = HWTSTAMP_FILTER_ALL;
668 			tstamp_all = PTP_TCR_TSENALL;
669 			break;
670 
671 		default:
672 			return -ERANGE;
673 		}
674 	} else {
675 		switch (config.rx_filter) {
676 		case HWTSTAMP_FILTER_NONE:
677 			config.rx_filter = HWTSTAMP_FILTER_NONE;
678 			break;
679 		default:
680 			/* PTP v1, UDP, any kind of event packet */
681 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
682 			break;
683 		}
684 	}
685 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
686 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
687 
688 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
689 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
690 	else {
691 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
692 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
693 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
694 			 ts_master_en | snap_type_sel);
695 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
696 
697 		/* program Sub Second Increment reg */
698 		stmmac_config_sub_second_increment(priv,
699 				priv->ptpaddr, priv->plat->clk_ptp_rate,
700 				xmac, &sec_inc);
701 		temp = div_u64(1000000000ULL, sec_inc);
702 
703 		/* Store sub second increment and flags for later use */
704 		priv->sub_second_inc = sec_inc;
705 		priv->systime_flags = value;
706 
707 		/* calculate default added value:
708 		 * formula is :
709 		 * addend = (2^32)/freq_div_ratio;
710 		 * where, freq_div_ratio = 1e9ns/sec_inc
711 		 */
712 		temp = (u64)(temp << 32);
713 		priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
714 		stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
715 
716 		/* initialize system time */
717 		ktime_get_real_ts64(&now);
718 
719 		/* lower 32 bits of tv_sec are safe until y2106 */
720 		stmmac_init_systime(priv, priv->ptpaddr,
721 				(u32)now.tv_sec, now.tv_nsec);
722 	}
723 
724 	memcpy(&priv->tstamp_config, &config, sizeof(config));
725 
726 	return copy_to_user(ifr->ifr_data, &config,
727 			    sizeof(config)) ? -EFAULT : 0;
728 }
729 
730 /**
731  *  stmmac_hwtstamp_get - read hardware timestamping.
732  *  @dev: device pointer.
733  *  @ifr: An IOCTL specific structure, that can contain a pointer to
734  *  a proprietary structure used to pass information to the driver.
735  *  Description:
736  *  This function obtain the current hardware timestamping settings
737     as requested.
738  */
739 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
740 {
741 	struct stmmac_priv *priv = netdev_priv(dev);
742 	struct hwtstamp_config *config = &priv->tstamp_config;
743 
744 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
745 		return -EOPNOTSUPP;
746 
747 	return copy_to_user(ifr->ifr_data, config,
748 			    sizeof(*config)) ? -EFAULT : 0;
749 }
750 
751 /**
752  * stmmac_init_ptp - init PTP
753  * @priv: driver private structure
754  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
755  * This is done by looking at the HW cap. register.
756  * This function also registers the ptp driver.
757  */
758 static int stmmac_init_ptp(struct stmmac_priv *priv)
759 {
760 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
761 
762 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
763 		return -EOPNOTSUPP;
764 
765 	priv->adv_ts = 0;
766 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
767 	if (xmac && priv->dma_cap.atime_stamp)
768 		priv->adv_ts = 1;
769 	/* Dwmac 3.x core with extend_desc can support adv_ts */
770 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
771 		priv->adv_ts = 1;
772 
773 	if (priv->dma_cap.time_stamp)
774 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
775 
776 	if (priv->adv_ts)
777 		netdev_info(priv->dev,
778 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
779 
780 	priv->hwts_tx_en = 0;
781 	priv->hwts_rx_en = 0;
782 
783 	stmmac_ptp_register(priv);
784 
785 	return 0;
786 }
787 
788 static void stmmac_release_ptp(struct stmmac_priv *priv)
789 {
790 	if (priv->plat->clk_ptp_ref)
791 		clk_disable_unprepare(priv->plat->clk_ptp_ref);
792 	stmmac_ptp_unregister(priv);
793 }
794 
795 /**
796  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
797  *  @priv: driver private structure
798  *  Description: It is used for configuring the flow control in all queues
799  */
800 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
801 {
802 	u32 tx_cnt = priv->plat->tx_queues_to_use;
803 
804 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
805 			priv->pause, tx_cnt);
806 }
807 
808 static void stmmac_validate(struct phylink_config *config,
809 			    unsigned long *supported,
810 			    struct phylink_link_state *state)
811 {
812 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
813 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
814 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
815 	int tx_cnt = priv->plat->tx_queues_to_use;
816 	int max_speed = priv->plat->max_speed;
817 
818 	phylink_set(mac_supported, 10baseT_Half);
819 	phylink_set(mac_supported, 10baseT_Full);
820 	phylink_set(mac_supported, 100baseT_Half);
821 	phylink_set(mac_supported, 100baseT_Full);
822 	phylink_set(mac_supported, 1000baseT_Half);
823 	phylink_set(mac_supported, 1000baseT_Full);
824 	phylink_set(mac_supported, 1000baseKX_Full);
825 
826 	phylink_set(mac_supported, Autoneg);
827 	phylink_set(mac_supported, Pause);
828 	phylink_set(mac_supported, Asym_Pause);
829 	phylink_set_port_modes(mac_supported);
830 
831 	/* Cut down 1G if asked to */
832 	if ((max_speed > 0) && (max_speed < 1000)) {
833 		phylink_set(mask, 1000baseT_Full);
834 		phylink_set(mask, 1000baseX_Full);
835 	} else if (priv->plat->has_xgmac) {
836 		if (!max_speed || (max_speed >= 2500)) {
837 			phylink_set(mac_supported, 2500baseT_Full);
838 			phylink_set(mac_supported, 2500baseX_Full);
839 		}
840 		if (!max_speed || (max_speed >= 5000)) {
841 			phylink_set(mac_supported, 5000baseT_Full);
842 		}
843 		if (!max_speed || (max_speed >= 10000)) {
844 			phylink_set(mac_supported, 10000baseSR_Full);
845 			phylink_set(mac_supported, 10000baseLR_Full);
846 			phylink_set(mac_supported, 10000baseER_Full);
847 			phylink_set(mac_supported, 10000baseLRM_Full);
848 			phylink_set(mac_supported, 10000baseT_Full);
849 			phylink_set(mac_supported, 10000baseKX4_Full);
850 			phylink_set(mac_supported, 10000baseKR_Full);
851 		}
852 	}
853 
854 	/* Half-Duplex can only work with single queue */
855 	if (tx_cnt > 1) {
856 		phylink_set(mask, 10baseT_Half);
857 		phylink_set(mask, 100baseT_Half);
858 		phylink_set(mask, 1000baseT_Half);
859 	}
860 
861 	bitmap_and(supported, supported, mac_supported,
862 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
863 	bitmap_andnot(supported, supported, mask,
864 		      __ETHTOOL_LINK_MODE_MASK_NBITS);
865 	bitmap_and(state->advertising, state->advertising, mac_supported,
866 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
867 	bitmap_andnot(state->advertising, state->advertising, mask,
868 		      __ETHTOOL_LINK_MODE_MASK_NBITS);
869 }
870 
871 static void stmmac_mac_pcs_get_state(struct phylink_config *config,
872 				     struct phylink_link_state *state)
873 {
874 	state->link = 0;
875 }
876 
877 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
878 			      const struct phylink_link_state *state)
879 {
880 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
881 	u32 ctrl;
882 
883 	ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
884 	ctrl &= ~priv->hw->link.speed_mask;
885 
886 	if (state->interface == PHY_INTERFACE_MODE_USXGMII) {
887 		switch (state->speed) {
888 		case SPEED_10000:
889 			ctrl |= priv->hw->link.xgmii.speed10000;
890 			break;
891 		case SPEED_5000:
892 			ctrl |= priv->hw->link.xgmii.speed5000;
893 			break;
894 		case SPEED_2500:
895 			ctrl |= priv->hw->link.xgmii.speed2500;
896 			break;
897 		default:
898 			return;
899 		}
900 	} else {
901 		switch (state->speed) {
902 		case SPEED_2500:
903 			ctrl |= priv->hw->link.speed2500;
904 			break;
905 		case SPEED_1000:
906 			ctrl |= priv->hw->link.speed1000;
907 			break;
908 		case SPEED_100:
909 			ctrl |= priv->hw->link.speed100;
910 			break;
911 		case SPEED_10:
912 			ctrl |= priv->hw->link.speed10;
913 			break;
914 		default:
915 			return;
916 		}
917 	}
918 
919 	priv->speed = state->speed;
920 
921 	if (priv->plat->fix_mac_speed)
922 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, state->speed);
923 
924 	if (!state->duplex)
925 		ctrl &= ~priv->hw->link.duplex;
926 	else
927 		ctrl |= priv->hw->link.duplex;
928 
929 	/* Flow Control operation */
930 	if (state->pause)
931 		stmmac_mac_flow_ctrl(priv, state->duplex);
932 
933 	writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
934 }
935 
936 static void stmmac_mac_an_restart(struct phylink_config *config)
937 {
938 	/* Not Supported */
939 }
940 
941 static void stmmac_mac_link_down(struct phylink_config *config,
942 				 unsigned int mode, phy_interface_t interface)
943 {
944 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
945 
946 	stmmac_mac_set(priv, priv->ioaddr, false);
947 	priv->eee_active = false;
948 	stmmac_eee_init(priv);
949 	stmmac_set_eee_pls(priv, priv->hw, false);
950 }
951 
952 static void stmmac_mac_link_up(struct phylink_config *config,
953 			       unsigned int mode, phy_interface_t interface,
954 			       struct phy_device *phy)
955 {
956 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
957 
958 	stmmac_mac_set(priv, priv->ioaddr, true);
959 	if (phy && priv->dma_cap.eee) {
960 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
961 		priv->eee_enabled = stmmac_eee_init(priv);
962 		stmmac_set_eee_pls(priv, priv->hw, true);
963 	}
964 }
965 
966 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
967 	.validate = stmmac_validate,
968 	.mac_pcs_get_state = stmmac_mac_pcs_get_state,
969 	.mac_config = stmmac_mac_config,
970 	.mac_an_restart = stmmac_mac_an_restart,
971 	.mac_link_down = stmmac_mac_link_down,
972 	.mac_link_up = stmmac_mac_link_up,
973 };
974 
975 /**
976  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
977  * @priv: driver private structure
978  * Description: this is to verify if the HW supports the PCS.
979  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
980  * configured for the TBI, RTBI, or SGMII PHY interface.
981  */
982 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
983 {
984 	int interface = priv->plat->interface;
985 
986 	if (priv->dma_cap.pcs) {
987 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
988 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
989 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
990 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
991 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
992 			priv->hw->pcs = STMMAC_PCS_RGMII;
993 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
994 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
995 			priv->hw->pcs = STMMAC_PCS_SGMII;
996 		}
997 	}
998 }
999 
1000 /**
1001  * stmmac_init_phy - PHY initialization
1002  * @dev: net device structure
1003  * Description: it initializes the driver's PHY state, and attaches the PHY
1004  * to the mac driver.
1005  *  Return value:
1006  *  0 on success
1007  */
1008 static int stmmac_init_phy(struct net_device *dev)
1009 {
1010 	struct stmmac_priv *priv = netdev_priv(dev);
1011 	struct device_node *node;
1012 	int ret;
1013 
1014 	node = priv->plat->phylink_node;
1015 
1016 	if (node)
1017 		ret = phylink_of_phy_connect(priv->phylink, node, 0);
1018 
1019 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1020 	 * manually parse it
1021 	 */
1022 	if (!node || ret) {
1023 		int addr = priv->plat->phy_addr;
1024 		struct phy_device *phydev;
1025 
1026 		phydev = mdiobus_get_phy(priv->mii, addr);
1027 		if (!phydev) {
1028 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1029 			return -ENODEV;
1030 		}
1031 
1032 		ret = phylink_connect_phy(priv->phylink, phydev);
1033 	}
1034 
1035 	return ret;
1036 }
1037 
1038 static int stmmac_phy_setup(struct stmmac_priv *priv)
1039 {
1040 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1041 	int mode = priv->plat->phy_interface;
1042 	struct phylink *phylink;
1043 
1044 	priv->phylink_config.dev = &priv->dev->dev;
1045 	priv->phylink_config.type = PHYLINK_NETDEV;
1046 
1047 	phylink = phylink_create(&priv->phylink_config, fwnode,
1048 				 mode, &stmmac_phylink_mac_ops);
1049 	if (IS_ERR(phylink))
1050 		return PTR_ERR(phylink);
1051 
1052 	priv->phylink = phylink;
1053 	return 0;
1054 }
1055 
1056 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1057 {
1058 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1059 	void *head_rx;
1060 	u32 queue;
1061 
1062 	/* Display RX rings */
1063 	for (queue = 0; queue < rx_cnt; queue++) {
1064 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1065 
1066 		pr_info("\tRX Queue %u rings\n", queue);
1067 
1068 		if (priv->extend_desc)
1069 			head_rx = (void *)rx_q->dma_erx;
1070 		else
1071 			head_rx = (void *)rx_q->dma_rx;
1072 
1073 		/* Display RX ring */
1074 		stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1075 	}
1076 }
1077 
1078 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1079 {
1080 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1081 	void *head_tx;
1082 	u32 queue;
1083 
1084 	/* Display TX rings */
1085 	for (queue = 0; queue < tx_cnt; queue++) {
1086 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1087 
1088 		pr_info("\tTX Queue %d rings\n", queue);
1089 
1090 		if (priv->extend_desc)
1091 			head_tx = (void *)tx_q->dma_etx;
1092 		else
1093 			head_tx = (void *)tx_q->dma_tx;
1094 
1095 		stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1096 	}
1097 }
1098 
1099 static void stmmac_display_rings(struct stmmac_priv *priv)
1100 {
1101 	/* Display RX ring */
1102 	stmmac_display_rx_rings(priv);
1103 
1104 	/* Display TX ring */
1105 	stmmac_display_tx_rings(priv);
1106 }
1107 
1108 static int stmmac_set_bfsize(int mtu, int bufsize)
1109 {
1110 	int ret = bufsize;
1111 
1112 	if (mtu >= BUF_SIZE_4KiB)
1113 		ret = BUF_SIZE_8KiB;
1114 	else if (mtu >= BUF_SIZE_2KiB)
1115 		ret = BUF_SIZE_4KiB;
1116 	else if (mtu > DEFAULT_BUFSIZE)
1117 		ret = BUF_SIZE_2KiB;
1118 	else
1119 		ret = DEFAULT_BUFSIZE;
1120 
1121 	return ret;
1122 }
1123 
1124 /**
1125  * stmmac_clear_rx_descriptors - clear RX descriptors
1126  * @priv: driver private structure
1127  * @queue: RX queue index
1128  * Description: this function is called to clear the RX descriptors
1129  * in case of both basic and extended descriptors are used.
1130  */
1131 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1132 {
1133 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1134 	int i;
1135 
1136 	/* Clear the RX descriptors */
1137 	for (i = 0; i < DMA_RX_SIZE; i++)
1138 		if (priv->extend_desc)
1139 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1140 					priv->use_riwt, priv->mode,
1141 					(i == DMA_RX_SIZE - 1),
1142 					priv->dma_buf_sz);
1143 		else
1144 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1145 					priv->use_riwt, priv->mode,
1146 					(i == DMA_RX_SIZE - 1),
1147 					priv->dma_buf_sz);
1148 }
1149 
1150 /**
1151  * stmmac_clear_tx_descriptors - clear tx descriptors
1152  * @priv: driver private structure
1153  * @queue: TX queue index.
1154  * Description: this function is called to clear the TX descriptors
1155  * in case of both basic and extended descriptors are used.
1156  */
1157 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1158 {
1159 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1160 	int i;
1161 
1162 	/* Clear the TX descriptors */
1163 	for (i = 0; i < DMA_TX_SIZE; i++)
1164 		if (priv->extend_desc)
1165 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1166 					priv->mode, (i == DMA_TX_SIZE - 1));
1167 		else
1168 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1169 					priv->mode, (i == DMA_TX_SIZE - 1));
1170 }
1171 
1172 /**
1173  * stmmac_clear_descriptors - clear descriptors
1174  * @priv: driver private structure
1175  * Description: this function is called to clear the TX and RX descriptors
1176  * in case of both basic and extended descriptors are used.
1177  */
1178 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1179 {
1180 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1181 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1182 	u32 queue;
1183 
1184 	/* Clear the RX descriptors */
1185 	for (queue = 0; queue < rx_queue_cnt; queue++)
1186 		stmmac_clear_rx_descriptors(priv, queue);
1187 
1188 	/* Clear the TX descriptors */
1189 	for (queue = 0; queue < tx_queue_cnt; queue++)
1190 		stmmac_clear_tx_descriptors(priv, queue);
1191 }
1192 
1193 /**
1194  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1195  * @priv: driver private structure
1196  * @p: descriptor pointer
1197  * @i: descriptor index
1198  * @flags: gfp flag
1199  * @queue: RX queue index
1200  * Description: this function is called to allocate a receive buffer, perform
1201  * the DMA mapping and init the descriptor.
1202  */
1203 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1204 				  int i, gfp_t flags, u32 queue)
1205 {
1206 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1207 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1208 
1209 	buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1210 	if (!buf->page)
1211 		return -ENOMEM;
1212 
1213 	if (priv->sph) {
1214 		buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1215 		if (!buf->sec_page)
1216 			return -ENOMEM;
1217 
1218 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1219 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
1220 	} else {
1221 		buf->sec_page = NULL;
1222 	}
1223 
1224 	buf->addr = page_pool_get_dma_addr(buf->page);
1225 	stmmac_set_desc_addr(priv, p, buf->addr);
1226 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1227 		stmmac_init_desc3(priv, p);
1228 
1229 	return 0;
1230 }
1231 
1232 /**
1233  * stmmac_free_rx_buffer - free RX dma buffers
1234  * @priv: private structure
1235  * @queue: RX queue index
1236  * @i: buffer index.
1237  */
1238 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1239 {
1240 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1241 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1242 
1243 	if (buf->page)
1244 		page_pool_put_page(rx_q->page_pool, buf->page, false);
1245 	buf->page = NULL;
1246 
1247 	if (buf->sec_page)
1248 		page_pool_put_page(rx_q->page_pool, buf->sec_page, false);
1249 	buf->sec_page = NULL;
1250 }
1251 
1252 /**
1253  * stmmac_free_tx_buffer - free RX dma buffers
1254  * @priv: private structure
1255  * @queue: RX queue index
1256  * @i: buffer index.
1257  */
1258 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1259 {
1260 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1261 
1262 	if (tx_q->tx_skbuff_dma[i].buf) {
1263 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1264 			dma_unmap_page(priv->device,
1265 				       tx_q->tx_skbuff_dma[i].buf,
1266 				       tx_q->tx_skbuff_dma[i].len,
1267 				       DMA_TO_DEVICE);
1268 		else
1269 			dma_unmap_single(priv->device,
1270 					 tx_q->tx_skbuff_dma[i].buf,
1271 					 tx_q->tx_skbuff_dma[i].len,
1272 					 DMA_TO_DEVICE);
1273 	}
1274 
1275 	if (tx_q->tx_skbuff[i]) {
1276 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1277 		tx_q->tx_skbuff[i] = NULL;
1278 		tx_q->tx_skbuff_dma[i].buf = 0;
1279 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1280 	}
1281 }
1282 
1283 /**
1284  * init_dma_rx_desc_rings - init the RX descriptor rings
1285  * @dev: net device structure
1286  * @flags: gfp flag.
1287  * Description: this function initializes the DMA RX descriptors
1288  * and allocates the socket buffers. It supports the chained and ring
1289  * modes.
1290  */
1291 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1292 {
1293 	struct stmmac_priv *priv = netdev_priv(dev);
1294 	u32 rx_count = priv->plat->rx_queues_to_use;
1295 	int ret = -ENOMEM;
1296 	int bfsize = 0;
1297 	int queue;
1298 	int i;
1299 
1300 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
1301 	if (bfsize < 0)
1302 		bfsize = 0;
1303 
1304 	if (bfsize < BUF_SIZE_16KiB)
1305 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1306 
1307 	priv->dma_buf_sz = bfsize;
1308 
1309 	/* RX INITIALIZATION */
1310 	netif_dbg(priv, probe, priv->dev,
1311 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1312 
1313 	for (queue = 0; queue < rx_count; queue++) {
1314 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1315 
1316 		netif_dbg(priv, probe, priv->dev,
1317 			  "(%s) dma_rx_phy=0x%08x\n", __func__,
1318 			  (u32)rx_q->dma_rx_phy);
1319 
1320 		stmmac_clear_rx_descriptors(priv, queue);
1321 
1322 		for (i = 0; i < DMA_RX_SIZE; i++) {
1323 			struct dma_desc *p;
1324 
1325 			if (priv->extend_desc)
1326 				p = &((rx_q->dma_erx + i)->basic);
1327 			else
1328 				p = rx_q->dma_rx + i;
1329 
1330 			ret = stmmac_init_rx_buffers(priv, p, i, flags,
1331 						     queue);
1332 			if (ret)
1333 				goto err_init_rx_buffers;
1334 		}
1335 
1336 		rx_q->cur_rx = 0;
1337 		rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1338 
1339 		/* Setup the chained descriptor addresses */
1340 		if (priv->mode == STMMAC_CHAIN_MODE) {
1341 			if (priv->extend_desc)
1342 				stmmac_mode_init(priv, rx_q->dma_erx,
1343 						rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1344 			else
1345 				stmmac_mode_init(priv, rx_q->dma_rx,
1346 						rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1347 		}
1348 	}
1349 
1350 	buf_sz = bfsize;
1351 
1352 	return 0;
1353 
1354 err_init_rx_buffers:
1355 	while (queue >= 0) {
1356 		while (--i >= 0)
1357 			stmmac_free_rx_buffer(priv, queue, i);
1358 
1359 		if (queue == 0)
1360 			break;
1361 
1362 		i = DMA_RX_SIZE;
1363 		queue--;
1364 	}
1365 
1366 	return ret;
1367 }
1368 
1369 /**
1370  * init_dma_tx_desc_rings - init the TX descriptor rings
1371  * @dev: net device structure.
1372  * Description: this function initializes the DMA TX descriptors
1373  * and allocates the socket buffers. It supports the chained and ring
1374  * modes.
1375  */
1376 static int init_dma_tx_desc_rings(struct net_device *dev)
1377 {
1378 	struct stmmac_priv *priv = netdev_priv(dev);
1379 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1380 	u32 queue;
1381 	int i;
1382 
1383 	for (queue = 0; queue < tx_queue_cnt; queue++) {
1384 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1385 
1386 		netif_dbg(priv, probe, priv->dev,
1387 			  "(%s) dma_tx_phy=0x%08x\n", __func__,
1388 			 (u32)tx_q->dma_tx_phy);
1389 
1390 		/* Setup the chained descriptor addresses */
1391 		if (priv->mode == STMMAC_CHAIN_MODE) {
1392 			if (priv->extend_desc)
1393 				stmmac_mode_init(priv, tx_q->dma_etx,
1394 						tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1395 			else
1396 				stmmac_mode_init(priv, tx_q->dma_tx,
1397 						tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1398 		}
1399 
1400 		for (i = 0; i < DMA_TX_SIZE; i++) {
1401 			struct dma_desc *p;
1402 			if (priv->extend_desc)
1403 				p = &((tx_q->dma_etx + i)->basic);
1404 			else
1405 				p = tx_q->dma_tx + i;
1406 
1407 			stmmac_clear_desc(priv, p);
1408 
1409 			tx_q->tx_skbuff_dma[i].buf = 0;
1410 			tx_q->tx_skbuff_dma[i].map_as_page = false;
1411 			tx_q->tx_skbuff_dma[i].len = 0;
1412 			tx_q->tx_skbuff_dma[i].last_segment = false;
1413 			tx_q->tx_skbuff[i] = NULL;
1414 		}
1415 
1416 		tx_q->dirty_tx = 0;
1417 		tx_q->cur_tx = 0;
1418 		tx_q->mss = 0;
1419 
1420 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1421 	}
1422 
1423 	return 0;
1424 }
1425 
1426 /**
1427  * init_dma_desc_rings - init the RX/TX descriptor rings
1428  * @dev: net device structure
1429  * @flags: gfp flag.
1430  * Description: this function initializes the DMA RX/TX descriptors
1431  * and allocates the socket buffers. It supports the chained and ring
1432  * modes.
1433  */
1434 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1435 {
1436 	struct stmmac_priv *priv = netdev_priv(dev);
1437 	int ret;
1438 
1439 	ret = init_dma_rx_desc_rings(dev, flags);
1440 	if (ret)
1441 		return ret;
1442 
1443 	ret = init_dma_tx_desc_rings(dev);
1444 
1445 	stmmac_clear_descriptors(priv);
1446 
1447 	if (netif_msg_hw(priv))
1448 		stmmac_display_rings(priv);
1449 
1450 	return ret;
1451 }
1452 
1453 /**
1454  * dma_free_rx_skbufs - free RX dma buffers
1455  * @priv: private structure
1456  * @queue: RX queue index
1457  */
1458 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1459 {
1460 	int i;
1461 
1462 	for (i = 0; i < DMA_RX_SIZE; i++)
1463 		stmmac_free_rx_buffer(priv, queue, i);
1464 }
1465 
1466 /**
1467  * dma_free_tx_skbufs - free TX dma buffers
1468  * @priv: private structure
1469  * @queue: TX queue index
1470  */
1471 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1472 {
1473 	int i;
1474 
1475 	for (i = 0; i < DMA_TX_SIZE; i++)
1476 		stmmac_free_tx_buffer(priv, queue, i);
1477 }
1478 
1479 /**
1480  * free_dma_rx_desc_resources - free RX dma desc resources
1481  * @priv: private structure
1482  */
1483 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1484 {
1485 	u32 rx_count = priv->plat->rx_queues_to_use;
1486 	u32 queue;
1487 
1488 	/* Free RX queue resources */
1489 	for (queue = 0; queue < rx_count; queue++) {
1490 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1491 
1492 		/* Release the DMA RX socket buffers */
1493 		dma_free_rx_skbufs(priv, queue);
1494 
1495 		/* Free DMA regions of consistent memory previously allocated */
1496 		if (!priv->extend_desc)
1497 			dma_free_coherent(priv->device,
1498 					  DMA_RX_SIZE * sizeof(struct dma_desc),
1499 					  rx_q->dma_rx, rx_q->dma_rx_phy);
1500 		else
1501 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1502 					  sizeof(struct dma_extended_desc),
1503 					  rx_q->dma_erx, rx_q->dma_rx_phy);
1504 
1505 		kfree(rx_q->buf_pool);
1506 		if (rx_q->page_pool)
1507 			page_pool_destroy(rx_q->page_pool);
1508 	}
1509 }
1510 
1511 /**
1512  * free_dma_tx_desc_resources - free TX dma desc resources
1513  * @priv: private structure
1514  */
1515 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1516 {
1517 	u32 tx_count = priv->plat->tx_queues_to_use;
1518 	u32 queue;
1519 
1520 	/* Free TX queue resources */
1521 	for (queue = 0; queue < tx_count; queue++) {
1522 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1523 
1524 		/* Release the DMA TX socket buffers */
1525 		dma_free_tx_skbufs(priv, queue);
1526 
1527 		/* Free DMA regions of consistent memory previously allocated */
1528 		if (!priv->extend_desc)
1529 			dma_free_coherent(priv->device,
1530 					  DMA_TX_SIZE * sizeof(struct dma_desc),
1531 					  tx_q->dma_tx, tx_q->dma_tx_phy);
1532 		else
1533 			dma_free_coherent(priv->device, DMA_TX_SIZE *
1534 					  sizeof(struct dma_extended_desc),
1535 					  tx_q->dma_etx, tx_q->dma_tx_phy);
1536 
1537 		kfree(tx_q->tx_skbuff_dma);
1538 		kfree(tx_q->tx_skbuff);
1539 	}
1540 }
1541 
1542 /**
1543  * alloc_dma_rx_desc_resources - alloc RX resources.
1544  * @priv: private structure
1545  * Description: according to which descriptor can be used (extend or basic)
1546  * this function allocates the resources for TX and RX paths. In case of
1547  * reception, for example, it pre-allocated the RX socket buffer in order to
1548  * allow zero-copy mechanism.
1549  */
1550 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1551 {
1552 	u32 rx_count = priv->plat->rx_queues_to_use;
1553 	int ret = -ENOMEM;
1554 	u32 queue;
1555 
1556 	/* RX queues buffers and DMA */
1557 	for (queue = 0; queue < rx_count; queue++) {
1558 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1559 		struct page_pool_params pp_params = { 0 };
1560 		unsigned int num_pages;
1561 
1562 		rx_q->queue_index = queue;
1563 		rx_q->priv_data = priv;
1564 
1565 		pp_params.flags = PP_FLAG_DMA_MAP;
1566 		pp_params.pool_size = DMA_RX_SIZE;
1567 		num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1568 		pp_params.order = ilog2(num_pages);
1569 		pp_params.nid = dev_to_node(priv->device);
1570 		pp_params.dev = priv->device;
1571 		pp_params.dma_dir = DMA_FROM_DEVICE;
1572 
1573 		rx_q->page_pool = page_pool_create(&pp_params);
1574 		if (IS_ERR(rx_q->page_pool)) {
1575 			ret = PTR_ERR(rx_q->page_pool);
1576 			rx_q->page_pool = NULL;
1577 			goto err_dma;
1578 		}
1579 
1580 		rx_q->buf_pool = kcalloc(DMA_RX_SIZE, sizeof(*rx_q->buf_pool),
1581 					 GFP_KERNEL);
1582 		if (!rx_q->buf_pool)
1583 			goto err_dma;
1584 
1585 		if (priv->extend_desc) {
1586 			rx_q->dma_erx = dma_alloc_coherent(priv->device,
1587 							   DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1588 							   &rx_q->dma_rx_phy,
1589 							   GFP_KERNEL);
1590 			if (!rx_q->dma_erx)
1591 				goto err_dma;
1592 
1593 		} else {
1594 			rx_q->dma_rx = dma_alloc_coherent(priv->device,
1595 							  DMA_RX_SIZE * sizeof(struct dma_desc),
1596 							  &rx_q->dma_rx_phy,
1597 							  GFP_KERNEL);
1598 			if (!rx_q->dma_rx)
1599 				goto err_dma;
1600 		}
1601 	}
1602 
1603 	return 0;
1604 
1605 err_dma:
1606 	free_dma_rx_desc_resources(priv);
1607 
1608 	return ret;
1609 }
1610 
1611 /**
1612  * alloc_dma_tx_desc_resources - alloc TX resources.
1613  * @priv: private structure
1614  * Description: according to which descriptor can be used (extend or basic)
1615  * this function allocates the resources for TX and RX paths. In case of
1616  * reception, for example, it pre-allocated the RX socket buffer in order to
1617  * allow zero-copy mechanism.
1618  */
1619 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1620 {
1621 	u32 tx_count = priv->plat->tx_queues_to_use;
1622 	int ret = -ENOMEM;
1623 	u32 queue;
1624 
1625 	/* TX queues buffers and DMA */
1626 	for (queue = 0; queue < tx_count; queue++) {
1627 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1628 
1629 		tx_q->queue_index = queue;
1630 		tx_q->priv_data = priv;
1631 
1632 		tx_q->tx_skbuff_dma = kcalloc(DMA_TX_SIZE,
1633 					      sizeof(*tx_q->tx_skbuff_dma),
1634 					      GFP_KERNEL);
1635 		if (!tx_q->tx_skbuff_dma)
1636 			goto err_dma;
1637 
1638 		tx_q->tx_skbuff = kcalloc(DMA_TX_SIZE,
1639 					  sizeof(struct sk_buff *),
1640 					  GFP_KERNEL);
1641 		if (!tx_q->tx_skbuff)
1642 			goto err_dma;
1643 
1644 		if (priv->extend_desc) {
1645 			tx_q->dma_etx = dma_alloc_coherent(priv->device,
1646 							   DMA_TX_SIZE * sizeof(struct dma_extended_desc),
1647 							   &tx_q->dma_tx_phy,
1648 							   GFP_KERNEL);
1649 			if (!tx_q->dma_etx)
1650 				goto err_dma;
1651 		} else {
1652 			tx_q->dma_tx = dma_alloc_coherent(priv->device,
1653 							  DMA_TX_SIZE * sizeof(struct dma_desc),
1654 							  &tx_q->dma_tx_phy,
1655 							  GFP_KERNEL);
1656 			if (!tx_q->dma_tx)
1657 				goto err_dma;
1658 		}
1659 	}
1660 
1661 	return 0;
1662 
1663 err_dma:
1664 	free_dma_tx_desc_resources(priv);
1665 
1666 	return ret;
1667 }
1668 
1669 /**
1670  * alloc_dma_desc_resources - alloc TX/RX resources.
1671  * @priv: private structure
1672  * Description: according to which descriptor can be used (extend or basic)
1673  * this function allocates the resources for TX and RX paths. In case of
1674  * reception, for example, it pre-allocated the RX socket buffer in order to
1675  * allow zero-copy mechanism.
1676  */
1677 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1678 {
1679 	/* RX Allocation */
1680 	int ret = alloc_dma_rx_desc_resources(priv);
1681 
1682 	if (ret)
1683 		return ret;
1684 
1685 	ret = alloc_dma_tx_desc_resources(priv);
1686 
1687 	return ret;
1688 }
1689 
1690 /**
1691  * free_dma_desc_resources - free dma desc resources
1692  * @priv: private structure
1693  */
1694 static void free_dma_desc_resources(struct stmmac_priv *priv)
1695 {
1696 	/* Release the DMA RX socket buffers */
1697 	free_dma_rx_desc_resources(priv);
1698 
1699 	/* Release the DMA TX socket buffers */
1700 	free_dma_tx_desc_resources(priv);
1701 }
1702 
1703 /**
1704  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1705  *  @priv: driver private structure
1706  *  Description: It is used for enabling the rx queues in the MAC
1707  */
1708 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1709 {
1710 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
1711 	int queue;
1712 	u8 mode;
1713 
1714 	for (queue = 0; queue < rx_queues_count; queue++) {
1715 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1716 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1717 	}
1718 }
1719 
1720 /**
1721  * stmmac_start_rx_dma - start RX DMA channel
1722  * @priv: driver private structure
1723  * @chan: RX channel index
1724  * Description:
1725  * This starts a RX DMA channel
1726  */
1727 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1728 {
1729 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1730 	stmmac_start_rx(priv, priv->ioaddr, chan);
1731 }
1732 
1733 /**
1734  * stmmac_start_tx_dma - start TX DMA channel
1735  * @priv: driver private structure
1736  * @chan: TX channel index
1737  * Description:
1738  * This starts a TX DMA channel
1739  */
1740 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1741 {
1742 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1743 	stmmac_start_tx(priv, priv->ioaddr, chan);
1744 }
1745 
1746 /**
1747  * stmmac_stop_rx_dma - stop RX DMA channel
1748  * @priv: driver private structure
1749  * @chan: RX channel index
1750  * Description:
1751  * This stops a RX DMA channel
1752  */
1753 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1754 {
1755 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1756 	stmmac_stop_rx(priv, priv->ioaddr, chan);
1757 }
1758 
1759 /**
1760  * stmmac_stop_tx_dma - stop TX DMA channel
1761  * @priv: driver private structure
1762  * @chan: TX channel index
1763  * Description:
1764  * This stops a TX DMA channel
1765  */
1766 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1767 {
1768 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1769 	stmmac_stop_tx(priv, priv->ioaddr, chan);
1770 }
1771 
1772 /**
1773  * stmmac_start_all_dma - start all RX and TX DMA channels
1774  * @priv: driver private structure
1775  * Description:
1776  * This starts all the RX and TX DMA channels
1777  */
1778 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1779 {
1780 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1781 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1782 	u32 chan = 0;
1783 
1784 	for (chan = 0; chan < rx_channels_count; chan++)
1785 		stmmac_start_rx_dma(priv, chan);
1786 
1787 	for (chan = 0; chan < tx_channels_count; chan++)
1788 		stmmac_start_tx_dma(priv, chan);
1789 }
1790 
1791 /**
1792  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1793  * @priv: driver private structure
1794  * Description:
1795  * This stops the RX and TX DMA channels
1796  */
1797 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1798 {
1799 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1800 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1801 	u32 chan = 0;
1802 
1803 	for (chan = 0; chan < rx_channels_count; chan++)
1804 		stmmac_stop_rx_dma(priv, chan);
1805 
1806 	for (chan = 0; chan < tx_channels_count; chan++)
1807 		stmmac_stop_tx_dma(priv, chan);
1808 }
1809 
1810 /**
1811  *  stmmac_dma_operation_mode - HW DMA operation mode
1812  *  @priv: driver private structure
1813  *  Description: it is used for configuring the DMA operation mode register in
1814  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1815  */
1816 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1817 {
1818 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1819 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1820 	int rxfifosz = priv->plat->rx_fifo_size;
1821 	int txfifosz = priv->plat->tx_fifo_size;
1822 	u32 txmode = 0;
1823 	u32 rxmode = 0;
1824 	u32 chan = 0;
1825 	u8 qmode = 0;
1826 
1827 	if (rxfifosz == 0)
1828 		rxfifosz = priv->dma_cap.rx_fifo_size;
1829 	if (txfifosz == 0)
1830 		txfifosz = priv->dma_cap.tx_fifo_size;
1831 
1832 	/* Adjust for real per queue fifo size */
1833 	rxfifosz /= rx_channels_count;
1834 	txfifosz /= tx_channels_count;
1835 
1836 	if (priv->plat->force_thresh_dma_mode) {
1837 		txmode = tc;
1838 		rxmode = tc;
1839 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1840 		/*
1841 		 * In case of GMAC, SF mode can be enabled
1842 		 * to perform the TX COE in HW. This depends on:
1843 		 * 1) TX COE if actually supported
1844 		 * 2) There is no bugged Jumbo frame support
1845 		 *    that needs to not insert csum in the TDES.
1846 		 */
1847 		txmode = SF_DMA_MODE;
1848 		rxmode = SF_DMA_MODE;
1849 		priv->xstats.threshold = SF_DMA_MODE;
1850 	} else {
1851 		txmode = tc;
1852 		rxmode = SF_DMA_MODE;
1853 	}
1854 
1855 	/* configure all channels */
1856 	for (chan = 0; chan < rx_channels_count; chan++) {
1857 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1858 
1859 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1860 				rxfifosz, qmode);
1861 		stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1862 				chan);
1863 	}
1864 
1865 	for (chan = 0; chan < tx_channels_count; chan++) {
1866 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1867 
1868 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1869 				txfifosz, qmode);
1870 	}
1871 }
1872 
1873 /**
1874  * stmmac_tx_clean - to manage the transmission completion
1875  * @priv: driver private structure
1876  * @queue: TX queue index
1877  * Description: it reclaims the transmit resources after transmission completes.
1878  */
1879 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1880 {
1881 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1882 	unsigned int bytes_compl = 0, pkts_compl = 0;
1883 	unsigned int entry, count = 0;
1884 
1885 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1886 
1887 	priv->xstats.tx_clean++;
1888 
1889 	entry = tx_q->dirty_tx;
1890 	while ((entry != tx_q->cur_tx) && (count < budget)) {
1891 		struct sk_buff *skb = tx_q->tx_skbuff[entry];
1892 		struct dma_desc *p;
1893 		int status;
1894 
1895 		if (priv->extend_desc)
1896 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
1897 		else
1898 			p = tx_q->dma_tx + entry;
1899 
1900 		status = stmmac_tx_status(priv, &priv->dev->stats,
1901 				&priv->xstats, p, priv->ioaddr);
1902 		/* Check if the descriptor is owned by the DMA */
1903 		if (unlikely(status & tx_dma_own))
1904 			break;
1905 
1906 		count++;
1907 
1908 		/* Make sure descriptor fields are read after reading
1909 		 * the own bit.
1910 		 */
1911 		dma_rmb();
1912 
1913 		/* Just consider the last segment and ...*/
1914 		if (likely(!(status & tx_not_ls))) {
1915 			/* ... verify the status error condition */
1916 			if (unlikely(status & tx_err)) {
1917 				priv->dev->stats.tx_errors++;
1918 			} else {
1919 				priv->dev->stats.tx_packets++;
1920 				priv->xstats.tx_pkt_n++;
1921 			}
1922 			stmmac_get_tx_hwtstamp(priv, p, skb);
1923 		}
1924 
1925 		if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1926 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
1927 				dma_unmap_page(priv->device,
1928 					       tx_q->tx_skbuff_dma[entry].buf,
1929 					       tx_q->tx_skbuff_dma[entry].len,
1930 					       DMA_TO_DEVICE);
1931 			else
1932 				dma_unmap_single(priv->device,
1933 						 tx_q->tx_skbuff_dma[entry].buf,
1934 						 tx_q->tx_skbuff_dma[entry].len,
1935 						 DMA_TO_DEVICE);
1936 			tx_q->tx_skbuff_dma[entry].buf = 0;
1937 			tx_q->tx_skbuff_dma[entry].len = 0;
1938 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
1939 		}
1940 
1941 		stmmac_clean_desc3(priv, tx_q, p);
1942 
1943 		tx_q->tx_skbuff_dma[entry].last_segment = false;
1944 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1945 
1946 		if (likely(skb != NULL)) {
1947 			pkts_compl++;
1948 			bytes_compl += skb->len;
1949 			dev_consume_skb_any(skb);
1950 			tx_q->tx_skbuff[entry] = NULL;
1951 		}
1952 
1953 		stmmac_release_tx_desc(priv, p, priv->mode);
1954 
1955 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1956 	}
1957 	tx_q->dirty_tx = entry;
1958 
1959 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1960 				  pkts_compl, bytes_compl);
1961 
1962 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1963 								queue))) &&
1964 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1965 
1966 		netif_dbg(priv, tx_done, priv->dev,
1967 			  "%s: restart transmit\n", __func__);
1968 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1969 	}
1970 
1971 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1972 		stmmac_enable_eee_mode(priv);
1973 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1974 	}
1975 
1976 	/* We still have pending packets, let's call for a new scheduling */
1977 	if (tx_q->dirty_tx != tx_q->cur_tx)
1978 		mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
1979 
1980 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
1981 
1982 	return count;
1983 }
1984 
1985 /**
1986  * stmmac_tx_err - to manage the tx error
1987  * @priv: driver private structure
1988  * @chan: channel index
1989  * Description: it cleans the descriptors and restarts the transmission
1990  * in case of transmission errors.
1991  */
1992 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1993 {
1994 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
1995 	int i;
1996 
1997 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
1998 
1999 	stmmac_stop_tx_dma(priv, chan);
2000 	dma_free_tx_skbufs(priv, chan);
2001 	for (i = 0; i < DMA_TX_SIZE; i++)
2002 		if (priv->extend_desc)
2003 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
2004 					priv->mode, (i == DMA_TX_SIZE - 1));
2005 		else
2006 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
2007 					priv->mode, (i == DMA_TX_SIZE - 1));
2008 	tx_q->dirty_tx = 0;
2009 	tx_q->cur_tx = 0;
2010 	tx_q->mss = 0;
2011 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2012 	stmmac_start_tx_dma(priv, chan);
2013 
2014 	priv->dev->stats.tx_errors++;
2015 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2016 }
2017 
2018 /**
2019  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2020  *  @priv: driver private structure
2021  *  @txmode: TX operating mode
2022  *  @rxmode: RX operating mode
2023  *  @chan: channel index
2024  *  Description: it is used for configuring of the DMA operation mode in
2025  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2026  *  mode.
2027  */
2028 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2029 					  u32 rxmode, u32 chan)
2030 {
2031 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2032 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2033 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2034 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2035 	int rxfifosz = priv->plat->rx_fifo_size;
2036 	int txfifosz = priv->plat->tx_fifo_size;
2037 
2038 	if (rxfifosz == 0)
2039 		rxfifosz = priv->dma_cap.rx_fifo_size;
2040 	if (txfifosz == 0)
2041 		txfifosz = priv->dma_cap.tx_fifo_size;
2042 
2043 	/* Adjust for real per queue fifo size */
2044 	rxfifosz /= rx_channels_count;
2045 	txfifosz /= tx_channels_count;
2046 
2047 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2048 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2049 }
2050 
2051 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2052 {
2053 	int ret;
2054 
2055 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2056 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2057 	if (ret && (ret != -EINVAL)) {
2058 		stmmac_global_err(priv);
2059 		return true;
2060 	}
2061 
2062 	return false;
2063 }
2064 
2065 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2066 {
2067 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2068 						 &priv->xstats, chan);
2069 	struct stmmac_channel *ch = &priv->channel[chan];
2070 
2071 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2072 		if (napi_schedule_prep(&ch->rx_napi)) {
2073 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2074 			__napi_schedule_irqoff(&ch->rx_napi);
2075 			status |= handle_tx;
2076 		}
2077 	}
2078 
2079 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use))
2080 		napi_schedule_irqoff(&ch->tx_napi);
2081 
2082 	return status;
2083 }
2084 
2085 /**
2086  * stmmac_dma_interrupt - DMA ISR
2087  * @priv: driver private structure
2088  * Description: this is the DMA ISR. It is called by the main ISR.
2089  * It calls the dwmac dma routine and schedule poll method in case of some
2090  * work can be done.
2091  */
2092 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2093 {
2094 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2095 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2096 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2097 				tx_channel_count : rx_channel_count;
2098 	u32 chan;
2099 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2100 
2101 	/* Make sure we never check beyond our status buffer. */
2102 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2103 		channels_to_check = ARRAY_SIZE(status);
2104 
2105 	for (chan = 0; chan < channels_to_check; chan++)
2106 		status[chan] = stmmac_napi_check(priv, chan);
2107 
2108 	for (chan = 0; chan < tx_channel_count; chan++) {
2109 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2110 			/* Try to bump up the dma threshold on this failure */
2111 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2112 			    (tc <= 256)) {
2113 				tc += 64;
2114 				if (priv->plat->force_thresh_dma_mode)
2115 					stmmac_set_dma_operation_mode(priv,
2116 								      tc,
2117 								      tc,
2118 								      chan);
2119 				else
2120 					stmmac_set_dma_operation_mode(priv,
2121 								    tc,
2122 								    SF_DMA_MODE,
2123 								    chan);
2124 				priv->xstats.threshold = tc;
2125 			}
2126 		} else if (unlikely(status[chan] == tx_hard_error)) {
2127 			stmmac_tx_err(priv, chan);
2128 		}
2129 	}
2130 }
2131 
2132 /**
2133  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2134  * @priv: driver private structure
2135  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2136  */
2137 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2138 {
2139 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2140 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2141 
2142 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2143 
2144 	if (priv->dma_cap.rmon) {
2145 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2146 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2147 	} else
2148 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2149 }
2150 
2151 /**
2152  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2153  * @priv: driver private structure
2154  * Description:
2155  *  new GMAC chip generations have a new register to indicate the
2156  *  presence of the optional feature/functions.
2157  *  This can be also used to override the value passed through the
2158  *  platform and necessary for old MAC10/100 and GMAC chips.
2159  */
2160 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2161 {
2162 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2163 }
2164 
2165 /**
2166  * stmmac_check_ether_addr - check if the MAC addr is valid
2167  * @priv: driver private structure
2168  * Description:
2169  * it is to verify if the MAC address is valid, in case of failures it
2170  * generates a random MAC address
2171  */
2172 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2173 {
2174 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2175 		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2176 		if (!is_valid_ether_addr(priv->dev->dev_addr))
2177 			eth_hw_addr_random(priv->dev);
2178 		dev_info(priv->device, "device MAC address %pM\n",
2179 			 priv->dev->dev_addr);
2180 	}
2181 }
2182 
2183 /**
2184  * stmmac_init_dma_engine - DMA init.
2185  * @priv: driver private structure
2186  * Description:
2187  * It inits the DMA invoking the specific MAC/GMAC callback.
2188  * Some DMA parameters can be passed from the platform;
2189  * in case of these are not passed a default is kept for the MAC or GMAC.
2190  */
2191 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2192 {
2193 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2194 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2195 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2196 	struct stmmac_rx_queue *rx_q;
2197 	struct stmmac_tx_queue *tx_q;
2198 	u32 chan = 0;
2199 	int atds = 0;
2200 	int ret = 0;
2201 
2202 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2203 		dev_err(priv->device, "Invalid DMA configuration\n");
2204 		return -EINVAL;
2205 	}
2206 
2207 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2208 		atds = 1;
2209 
2210 	ret = stmmac_reset(priv, priv->ioaddr);
2211 	if (ret) {
2212 		dev_err(priv->device, "Failed to reset the dma\n");
2213 		return ret;
2214 	}
2215 
2216 	/* DMA Configuration */
2217 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2218 
2219 	if (priv->plat->axi)
2220 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2221 
2222 	/* DMA CSR Channel configuration */
2223 	for (chan = 0; chan < dma_csr_ch; chan++)
2224 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2225 
2226 	/* DMA RX Channel Configuration */
2227 	for (chan = 0; chan < rx_channels_count; chan++) {
2228 		rx_q = &priv->rx_queue[chan];
2229 
2230 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2231 				    rx_q->dma_rx_phy, chan);
2232 
2233 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2234 			    (DMA_RX_SIZE * sizeof(struct dma_desc));
2235 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2236 				       rx_q->rx_tail_addr, chan);
2237 	}
2238 
2239 	/* DMA TX Channel Configuration */
2240 	for (chan = 0; chan < tx_channels_count; chan++) {
2241 		tx_q = &priv->tx_queue[chan];
2242 
2243 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2244 				    tx_q->dma_tx_phy, chan);
2245 
2246 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2247 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2248 				       tx_q->tx_tail_addr, chan);
2249 	}
2250 
2251 	return ret;
2252 }
2253 
2254 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2255 {
2256 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2257 
2258 	mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2259 }
2260 
2261 /**
2262  * stmmac_tx_timer - mitigation sw timer for tx.
2263  * @data: data pointer
2264  * Description:
2265  * This is the timer handler to directly invoke the stmmac_tx_clean.
2266  */
2267 static void stmmac_tx_timer(struct timer_list *t)
2268 {
2269 	struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2270 	struct stmmac_priv *priv = tx_q->priv_data;
2271 	struct stmmac_channel *ch;
2272 
2273 	ch = &priv->channel[tx_q->queue_index];
2274 
2275 	/*
2276 	 * If NAPI is already running we can miss some events. Let's rearm
2277 	 * the timer and try again.
2278 	 */
2279 	if (likely(napi_schedule_prep(&ch->tx_napi)))
2280 		__napi_schedule(&ch->tx_napi);
2281 	else
2282 		mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
2283 }
2284 
2285 /**
2286  * stmmac_init_coalesce - init mitigation options.
2287  * @priv: driver private structure
2288  * Description:
2289  * This inits the coalesce parameters: i.e. timer rate,
2290  * timer handler and default threshold used for enabling the
2291  * interrupt on completion bit.
2292  */
2293 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2294 {
2295 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2296 	u32 chan;
2297 
2298 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
2299 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2300 	priv->rx_coal_frames = STMMAC_RX_FRAMES;
2301 
2302 	for (chan = 0; chan < tx_channel_count; chan++) {
2303 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2304 
2305 		timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2306 	}
2307 }
2308 
2309 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2310 {
2311 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2312 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2313 	u32 chan;
2314 
2315 	/* set TX ring length */
2316 	for (chan = 0; chan < tx_channels_count; chan++)
2317 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2318 				(DMA_TX_SIZE - 1), chan);
2319 
2320 	/* set RX ring length */
2321 	for (chan = 0; chan < rx_channels_count; chan++)
2322 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2323 				(DMA_RX_SIZE - 1), chan);
2324 }
2325 
2326 /**
2327  *  stmmac_set_tx_queue_weight - Set TX queue weight
2328  *  @priv: driver private structure
2329  *  Description: It is used for setting TX queues weight
2330  */
2331 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2332 {
2333 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2334 	u32 weight;
2335 	u32 queue;
2336 
2337 	for (queue = 0; queue < tx_queues_count; queue++) {
2338 		weight = priv->plat->tx_queues_cfg[queue].weight;
2339 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2340 	}
2341 }
2342 
2343 /**
2344  *  stmmac_configure_cbs - Configure CBS in TX queue
2345  *  @priv: driver private structure
2346  *  Description: It is used for configuring CBS in AVB TX queues
2347  */
2348 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2349 {
2350 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2351 	u32 mode_to_use;
2352 	u32 queue;
2353 
2354 	/* queue 0 is reserved for legacy traffic */
2355 	for (queue = 1; queue < tx_queues_count; queue++) {
2356 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2357 		if (mode_to_use == MTL_QUEUE_DCB)
2358 			continue;
2359 
2360 		stmmac_config_cbs(priv, priv->hw,
2361 				priv->plat->tx_queues_cfg[queue].send_slope,
2362 				priv->plat->tx_queues_cfg[queue].idle_slope,
2363 				priv->plat->tx_queues_cfg[queue].high_credit,
2364 				priv->plat->tx_queues_cfg[queue].low_credit,
2365 				queue);
2366 	}
2367 }
2368 
2369 /**
2370  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2371  *  @priv: driver private structure
2372  *  Description: It is used for mapping RX queues to RX dma channels
2373  */
2374 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2375 {
2376 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2377 	u32 queue;
2378 	u32 chan;
2379 
2380 	for (queue = 0; queue < rx_queues_count; queue++) {
2381 		chan = priv->plat->rx_queues_cfg[queue].chan;
2382 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2383 	}
2384 }
2385 
2386 /**
2387  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2388  *  @priv: driver private structure
2389  *  Description: It is used for configuring the RX Queue Priority
2390  */
2391 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2392 {
2393 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2394 	u32 queue;
2395 	u32 prio;
2396 
2397 	for (queue = 0; queue < rx_queues_count; queue++) {
2398 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
2399 			continue;
2400 
2401 		prio = priv->plat->rx_queues_cfg[queue].prio;
2402 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2403 	}
2404 }
2405 
2406 /**
2407  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2408  *  @priv: driver private structure
2409  *  Description: It is used for configuring the TX Queue Priority
2410  */
2411 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2412 {
2413 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2414 	u32 queue;
2415 	u32 prio;
2416 
2417 	for (queue = 0; queue < tx_queues_count; queue++) {
2418 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
2419 			continue;
2420 
2421 		prio = priv->plat->tx_queues_cfg[queue].prio;
2422 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2423 	}
2424 }
2425 
2426 /**
2427  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2428  *  @priv: driver private structure
2429  *  Description: It is used for configuring the RX queue routing
2430  */
2431 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2432 {
2433 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2434 	u32 queue;
2435 	u8 packet;
2436 
2437 	for (queue = 0; queue < rx_queues_count; queue++) {
2438 		/* no specific packet type routing specified for the queue */
2439 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2440 			continue;
2441 
2442 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2443 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2444 	}
2445 }
2446 
2447 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2448 {
2449 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2450 		priv->rss.enable = false;
2451 		return;
2452 	}
2453 
2454 	if (priv->dev->features & NETIF_F_RXHASH)
2455 		priv->rss.enable = true;
2456 	else
2457 		priv->rss.enable = false;
2458 
2459 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
2460 			     priv->plat->rx_queues_to_use);
2461 }
2462 
2463 /**
2464  *  stmmac_mtl_configuration - Configure MTL
2465  *  @priv: driver private structure
2466  *  Description: It is used for configurring MTL
2467  */
2468 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2469 {
2470 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2471 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2472 
2473 	if (tx_queues_count > 1)
2474 		stmmac_set_tx_queue_weight(priv);
2475 
2476 	/* Configure MTL RX algorithms */
2477 	if (rx_queues_count > 1)
2478 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2479 				priv->plat->rx_sched_algorithm);
2480 
2481 	/* Configure MTL TX algorithms */
2482 	if (tx_queues_count > 1)
2483 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2484 				priv->plat->tx_sched_algorithm);
2485 
2486 	/* Configure CBS in AVB TX queues */
2487 	if (tx_queues_count > 1)
2488 		stmmac_configure_cbs(priv);
2489 
2490 	/* Map RX MTL to DMA channels */
2491 	stmmac_rx_queue_dma_chan_map(priv);
2492 
2493 	/* Enable MAC RX Queues */
2494 	stmmac_mac_enable_rx_queues(priv);
2495 
2496 	/* Set RX priorities */
2497 	if (rx_queues_count > 1)
2498 		stmmac_mac_config_rx_queues_prio(priv);
2499 
2500 	/* Set TX priorities */
2501 	if (tx_queues_count > 1)
2502 		stmmac_mac_config_tx_queues_prio(priv);
2503 
2504 	/* Set RX routing */
2505 	if (rx_queues_count > 1)
2506 		stmmac_mac_config_rx_queues_routing(priv);
2507 
2508 	/* Receive Side Scaling */
2509 	if (rx_queues_count > 1)
2510 		stmmac_mac_config_rss(priv);
2511 }
2512 
2513 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2514 {
2515 	if (priv->dma_cap.asp) {
2516 		netdev_info(priv->dev, "Enabling Safety Features\n");
2517 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2518 	} else {
2519 		netdev_info(priv->dev, "No Safety Features support found\n");
2520 	}
2521 }
2522 
2523 /**
2524  * stmmac_hw_setup - setup mac in a usable state.
2525  *  @dev : pointer to the device structure.
2526  *  Description:
2527  *  this is the main function to setup the HW in a usable state because the
2528  *  dma engine is reset, the core registers are configured (e.g. AXI,
2529  *  Checksum features, timers). The DMA is ready to start receiving and
2530  *  transmitting.
2531  *  Return value:
2532  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2533  *  file on failure.
2534  */
2535 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2536 {
2537 	struct stmmac_priv *priv = netdev_priv(dev);
2538 	u32 rx_cnt = priv->plat->rx_queues_to_use;
2539 	u32 tx_cnt = priv->plat->tx_queues_to_use;
2540 	u32 chan;
2541 	int ret;
2542 
2543 	/* DMA initialization and SW reset */
2544 	ret = stmmac_init_dma_engine(priv);
2545 	if (ret < 0) {
2546 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2547 			   __func__);
2548 		return ret;
2549 	}
2550 
2551 	/* Copy the MAC addr into the HW  */
2552 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2553 
2554 	/* PS and related bits will be programmed according to the speed */
2555 	if (priv->hw->pcs) {
2556 		int speed = priv->plat->mac_port_sel_speed;
2557 
2558 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
2559 		    (speed == SPEED_1000)) {
2560 			priv->hw->ps = speed;
2561 		} else {
2562 			dev_warn(priv->device, "invalid port speed\n");
2563 			priv->hw->ps = 0;
2564 		}
2565 	}
2566 
2567 	/* Initialize the MAC Core */
2568 	stmmac_core_init(priv, priv->hw, dev);
2569 
2570 	/* Initialize MTL*/
2571 	stmmac_mtl_configuration(priv);
2572 
2573 	/* Initialize Safety Features */
2574 	stmmac_safety_feat_configuration(priv);
2575 
2576 	ret = stmmac_rx_ipc(priv, priv->hw);
2577 	if (!ret) {
2578 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2579 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2580 		priv->hw->rx_csum = 0;
2581 	}
2582 
2583 	/* Enable the MAC Rx/Tx */
2584 	stmmac_mac_set(priv, priv->ioaddr, true);
2585 
2586 	/* Set the HW DMA mode and the COE */
2587 	stmmac_dma_operation_mode(priv);
2588 
2589 	stmmac_mmc_setup(priv);
2590 
2591 	if (init_ptp) {
2592 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2593 		if (ret < 0)
2594 			netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2595 
2596 		ret = stmmac_init_ptp(priv);
2597 		if (ret == -EOPNOTSUPP)
2598 			netdev_warn(priv->dev, "PTP not supported by HW\n");
2599 		else if (ret)
2600 			netdev_warn(priv->dev, "PTP init failed\n");
2601 	}
2602 
2603 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2604 
2605 	if (priv->use_riwt) {
2606 		if (!priv->rx_riwt)
2607 			priv->rx_riwt = DEF_DMA_RIWT;
2608 
2609 		ret = stmmac_rx_watchdog(priv, priv->ioaddr, priv->rx_riwt, rx_cnt);
2610 	}
2611 
2612 	if (priv->hw->pcs)
2613 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
2614 
2615 	/* set TX and RX rings length */
2616 	stmmac_set_rings_length(priv);
2617 
2618 	/* Enable TSO */
2619 	if (priv->tso) {
2620 		for (chan = 0; chan < tx_cnt; chan++)
2621 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2622 	}
2623 
2624 	/* Enable Split Header */
2625 	if (priv->sph && priv->hw->rx_csum) {
2626 		for (chan = 0; chan < rx_cnt; chan++)
2627 			stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2628 	}
2629 
2630 	/* VLAN Tag Insertion */
2631 	if (priv->dma_cap.vlins)
2632 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2633 
2634 	/* Start the ball rolling... */
2635 	stmmac_start_all_dma(priv);
2636 
2637 	return 0;
2638 }
2639 
2640 static void stmmac_hw_teardown(struct net_device *dev)
2641 {
2642 	struct stmmac_priv *priv = netdev_priv(dev);
2643 
2644 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
2645 }
2646 
2647 /**
2648  *  stmmac_open - open entry point of the driver
2649  *  @dev : pointer to the device structure.
2650  *  Description:
2651  *  This function is the open entry point of the driver.
2652  *  Return value:
2653  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2654  *  file on failure.
2655  */
2656 static int stmmac_open(struct net_device *dev)
2657 {
2658 	struct stmmac_priv *priv = netdev_priv(dev);
2659 	u32 chan;
2660 	int ret;
2661 
2662 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2663 	    priv->hw->pcs != STMMAC_PCS_TBI &&
2664 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
2665 		ret = stmmac_init_phy(dev);
2666 		if (ret) {
2667 			netdev_err(priv->dev,
2668 				   "%s: Cannot attach to PHY (error: %d)\n",
2669 				   __func__, ret);
2670 			return ret;
2671 		}
2672 	}
2673 
2674 	/* Extra statistics */
2675 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2676 	priv->xstats.threshold = tc;
2677 
2678 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
2679 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2680 
2681 	ret = alloc_dma_desc_resources(priv);
2682 	if (ret < 0) {
2683 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2684 			   __func__);
2685 		goto dma_desc_error;
2686 	}
2687 
2688 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
2689 	if (ret < 0) {
2690 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2691 			   __func__);
2692 		goto init_error;
2693 	}
2694 
2695 	ret = stmmac_hw_setup(dev, true);
2696 	if (ret < 0) {
2697 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2698 		goto init_error;
2699 	}
2700 
2701 	stmmac_init_coalesce(priv);
2702 
2703 	phylink_start(priv->phylink);
2704 
2705 	/* Request the IRQ lines */
2706 	ret = request_irq(dev->irq, stmmac_interrupt,
2707 			  IRQF_SHARED, dev->name, dev);
2708 	if (unlikely(ret < 0)) {
2709 		netdev_err(priv->dev,
2710 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2711 			   __func__, dev->irq, ret);
2712 		goto irq_error;
2713 	}
2714 
2715 	/* Request the Wake IRQ in case of another line is used for WoL */
2716 	if (priv->wol_irq != dev->irq) {
2717 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
2718 				  IRQF_SHARED, dev->name, dev);
2719 		if (unlikely(ret < 0)) {
2720 			netdev_err(priv->dev,
2721 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2722 				   __func__, priv->wol_irq, ret);
2723 			goto wolirq_error;
2724 		}
2725 	}
2726 
2727 	/* Request the IRQ lines */
2728 	if (priv->lpi_irq > 0) {
2729 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2730 				  dev->name, dev);
2731 		if (unlikely(ret < 0)) {
2732 			netdev_err(priv->dev,
2733 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2734 				   __func__, priv->lpi_irq, ret);
2735 			goto lpiirq_error;
2736 		}
2737 	}
2738 
2739 	stmmac_enable_all_queues(priv);
2740 	stmmac_start_all_queues(priv);
2741 
2742 	return 0;
2743 
2744 lpiirq_error:
2745 	if (priv->wol_irq != dev->irq)
2746 		free_irq(priv->wol_irq, dev);
2747 wolirq_error:
2748 	free_irq(dev->irq, dev);
2749 irq_error:
2750 	phylink_stop(priv->phylink);
2751 
2752 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2753 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2754 
2755 	stmmac_hw_teardown(dev);
2756 init_error:
2757 	free_dma_desc_resources(priv);
2758 dma_desc_error:
2759 	phylink_disconnect_phy(priv->phylink);
2760 	return ret;
2761 }
2762 
2763 /**
2764  *  stmmac_release - close entry point of the driver
2765  *  @dev : device pointer.
2766  *  Description:
2767  *  This is the stop entry point of the driver.
2768  */
2769 static int stmmac_release(struct net_device *dev)
2770 {
2771 	struct stmmac_priv *priv = netdev_priv(dev);
2772 	u32 chan;
2773 
2774 	if (priv->eee_enabled)
2775 		del_timer_sync(&priv->eee_ctrl_timer);
2776 
2777 	/* Stop and disconnect the PHY */
2778 	phylink_stop(priv->phylink);
2779 	phylink_disconnect_phy(priv->phylink);
2780 
2781 	stmmac_stop_all_queues(priv);
2782 
2783 	stmmac_disable_all_queues(priv);
2784 
2785 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2786 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2787 
2788 	/* Free the IRQ lines */
2789 	free_irq(dev->irq, dev);
2790 	if (priv->wol_irq != dev->irq)
2791 		free_irq(priv->wol_irq, dev);
2792 	if (priv->lpi_irq > 0)
2793 		free_irq(priv->lpi_irq, dev);
2794 
2795 	/* Stop TX/RX DMA and clear the descriptors */
2796 	stmmac_stop_all_dma(priv);
2797 
2798 	/* Release and free the Rx/Tx resources */
2799 	free_dma_desc_resources(priv);
2800 
2801 	/* Disable the MAC Rx/Tx */
2802 	stmmac_mac_set(priv, priv->ioaddr, false);
2803 
2804 	netif_carrier_off(dev);
2805 
2806 	stmmac_release_ptp(priv);
2807 
2808 	return 0;
2809 }
2810 
2811 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
2812 			       struct stmmac_tx_queue *tx_q)
2813 {
2814 	u16 tag = 0x0, inner_tag = 0x0;
2815 	u32 inner_type = 0x0;
2816 	struct dma_desc *p;
2817 
2818 	if (!priv->dma_cap.vlins)
2819 		return false;
2820 	if (!skb_vlan_tag_present(skb))
2821 		return false;
2822 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
2823 		inner_tag = skb_vlan_tag_get(skb);
2824 		inner_type = STMMAC_VLAN_INSERT;
2825 	}
2826 
2827 	tag = skb_vlan_tag_get(skb);
2828 
2829 	p = tx_q->dma_tx + tx_q->cur_tx;
2830 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
2831 		return false;
2832 
2833 	stmmac_set_tx_owner(priv, p);
2834 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2835 	return true;
2836 }
2837 
2838 /**
2839  *  stmmac_tso_allocator - close entry point of the driver
2840  *  @priv: driver private structure
2841  *  @des: buffer start address
2842  *  @total_len: total length to fill in descriptors
2843  *  @last_segmant: condition for the last descriptor
2844  *  @queue: TX queue index
2845  *  Description:
2846  *  This function fills descriptor and request new descriptors according to
2847  *  buffer length to fill
2848  */
2849 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
2850 				 int total_len, bool last_segment, u32 queue)
2851 {
2852 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2853 	struct dma_desc *desc;
2854 	u32 buff_size;
2855 	int tmp_len;
2856 
2857 	tmp_len = total_len;
2858 
2859 	while (tmp_len > 0) {
2860 		dma_addr_t curr_addr;
2861 
2862 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2863 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2864 		desc = tx_q->dma_tx + tx_q->cur_tx;
2865 
2866 		curr_addr = des + (total_len - tmp_len);
2867 		if (priv->dma_cap.addr64 <= 32)
2868 			desc->des0 = cpu_to_le32(curr_addr);
2869 		else
2870 			stmmac_set_desc_addr(priv, desc, curr_addr);
2871 
2872 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2873 			    TSO_MAX_BUFF_SIZE : tmp_len;
2874 
2875 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2876 				0, 1,
2877 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2878 				0, 0);
2879 
2880 		tmp_len -= TSO_MAX_BUFF_SIZE;
2881 	}
2882 }
2883 
2884 /**
2885  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2886  *  @skb : the socket buffer
2887  *  @dev : device pointer
2888  *  Description: this is the transmit function that is called on TSO frames
2889  *  (support available on GMAC4 and newer chips).
2890  *  Diagram below show the ring programming in case of TSO frames:
2891  *
2892  *  First Descriptor
2893  *   --------
2894  *   | DES0 |---> buffer1 = L2/L3/L4 header
2895  *   | DES1 |---> TCP Payload (can continue on next descr...)
2896  *   | DES2 |---> buffer 1 and 2 len
2897  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2898  *   --------
2899  *	|
2900  *     ...
2901  *	|
2902  *   --------
2903  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2904  *   | DES1 | --|
2905  *   | DES2 | --> buffer 1 and 2 len
2906  *   | DES3 |
2907  *   --------
2908  *
2909  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2910  */
2911 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2912 {
2913 	struct dma_desc *desc, *first, *mss_desc = NULL;
2914 	struct stmmac_priv *priv = netdev_priv(dev);
2915 	int nfrags = skb_shinfo(skb)->nr_frags;
2916 	u32 queue = skb_get_queue_mapping(skb);
2917 	unsigned int first_entry, tx_packets;
2918 	int tmp_pay_len = 0, first_tx;
2919 	struct stmmac_tx_queue *tx_q;
2920 	u8 proto_hdr_len, hdr;
2921 	bool has_vlan, set_ic;
2922 	u32 pay_len, mss;
2923 	dma_addr_t des;
2924 	int i;
2925 
2926 	tx_q = &priv->tx_queue[queue];
2927 	first_tx = tx_q->cur_tx;
2928 
2929 	/* Compute header lengths */
2930 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2931 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
2932 		hdr = sizeof(struct udphdr);
2933 	} else {
2934 		proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2935 		hdr = tcp_hdrlen(skb);
2936 	}
2937 
2938 	/* Desc availability based on threshold should be enough safe */
2939 	if (unlikely(stmmac_tx_avail(priv, queue) <
2940 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2941 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2942 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2943 								queue));
2944 			/* This is a hard error, log it. */
2945 			netdev_err(priv->dev,
2946 				   "%s: Tx Ring full when queue awake\n",
2947 				   __func__);
2948 		}
2949 		return NETDEV_TX_BUSY;
2950 	}
2951 
2952 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2953 
2954 	mss = skb_shinfo(skb)->gso_size;
2955 
2956 	/* set new MSS value if needed */
2957 	if (mss != tx_q->mss) {
2958 		mss_desc = tx_q->dma_tx + tx_q->cur_tx;
2959 		stmmac_set_mss(priv, mss_desc, mss);
2960 		tx_q->mss = mss;
2961 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2962 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2963 	}
2964 
2965 	if (netif_msg_tx_queued(priv)) {
2966 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2967 			__func__, hdr, proto_hdr_len, pay_len, mss);
2968 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2969 			skb->data_len);
2970 	}
2971 
2972 	/* Check if VLAN can be inserted by HW */
2973 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
2974 
2975 	first_entry = tx_q->cur_tx;
2976 	WARN_ON(tx_q->tx_skbuff[first_entry]);
2977 
2978 	desc = tx_q->dma_tx + first_entry;
2979 	first = desc;
2980 
2981 	if (has_vlan)
2982 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
2983 
2984 	/* first descriptor: fill Headers on Buf1 */
2985 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2986 			     DMA_TO_DEVICE);
2987 	if (dma_mapping_error(priv->device, des))
2988 		goto dma_map_err;
2989 
2990 	tx_q->tx_skbuff_dma[first_entry].buf = des;
2991 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2992 
2993 	if (priv->dma_cap.addr64 <= 32) {
2994 		first->des0 = cpu_to_le32(des);
2995 
2996 		/* Fill start of payload in buff2 of first descriptor */
2997 		if (pay_len)
2998 			first->des1 = cpu_to_le32(des + proto_hdr_len);
2999 
3000 		/* If needed take extra descriptors to fill the remaining payload */
3001 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
3002 	} else {
3003 		stmmac_set_desc_addr(priv, first, des);
3004 		tmp_pay_len = pay_len;
3005 		des += proto_hdr_len;
3006 		pay_len = 0;
3007 	}
3008 
3009 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
3010 
3011 	/* Prepare fragments */
3012 	for (i = 0; i < nfrags; i++) {
3013 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3014 
3015 		des = skb_frag_dma_map(priv->device, frag, 0,
3016 				       skb_frag_size(frag),
3017 				       DMA_TO_DEVICE);
3018 		if (dma_mapping_error(priv->device, des))
3019 			goto dma_map_err;
3020 
3021 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3022 				     (i == nfrags - 1), queue);
3023 
3024 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3025 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3026 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3027 	}
3028 
3029 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3030 
3031 	/* Only the last descriptor gets to point to the skb. */
3032 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3033 
3034 	/* Manage tx mitigation */
3035 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
3036 	tx_q->tx_count_frames += tx_packets;
3037 
3038 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3039 		set_ic = true;
3040 	else if (!priv->tx_coal_frames)
3041 		set_ic = false;
3042 	else if (tx_packets > priv->tx_coal_frames)
3043 		set_ic = true;
3044 	else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3045 		set_ic = true;
3046 	else
3047 		set_ic = false;
3048 
3049 	if (set_ic) {
3050 		desc = &tx_q->dma_tx[tx_q->cur_tx];
3051 		tx_q->tx_count_frames = 0;
3052 		stmmac_set_tx_ic(priv, desc);
3053 		priv->xstats.tx_set_ic_bit++;
3054 	} else {
3055 		stmmac_tx_timer_arm(priv, queue);
3056 	}
3057 
3058 	/* We've used all descriptors we need for this skb, however,
3059 	 * advance cur_tx so that it references a fresh descriptor.
3060 	 * ndo_start_xmit will fill this descriptor the next time it's
3061 	 * called and stmmac_tx_clean may clean up to this descriptor.
3062 	 */
3063 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
3064 
3065 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3066 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3067 			  __func__);
3068 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3069 	}
3070 
3071 	dev->stats.tx_bytes += skb->len;
3072 	priv->xstats.tx_tso_frames++;
3073 	priv->xstats.tx_tso_nfrags += nfrags;
3074 
3075 	if (priv->sarc_type)
3076 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3077 
3078 	skb_tx_timestamp(skb);
3079 
3080 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3081 		     priv->hwts_tx_en)) {
3082 		/* declare that device is doing timestamping */
3083 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3084 		stmmac_enable_tx_timestamp(priv, first);
3085 	}
3086 
3087 	/* Complete the first descriptor before granting the DMA */
3088 	stmmac_prepare_tso_tx_desc(priv, first, 1,
3089 			proto_hdr_len,
3090 			pay_len,
3091 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3092 			hdr / 4, (skb->len - proto_hdr_len));
3093 
3094 	/* If context desc is used to change MSS */
3095 	if (mss_desc) {
3096 		/* Make sure that first descriptor has been completely
3097 		 * written, including its own bit. This is because MSS is
3098 		 * actually before first descriptor, so we need to make
3099 		 * sure that MSS's own bit is the last thing written.
3100 		 */
3101 		dma_wmb();
3102 		stmmac_set_tx_owner(priv, mss_desc);
3103 	}
3104 
3105 	/* The own bit must be the latest setting done when prepare the
3106 	 * descriptor and then barrier is needed to make sure that
3107 	 * all is coherent before granting the DMA engine.
3108 	 */
3109 	wmb();
3110 
3111 	if (netif_msg_pktdata(priv)) {
3112 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3113 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3114 			tx_q->cur_tx, first, nfrags);
3115 
3116 		stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0);
3117 
3118 		pr_info(">>> frame to be transmitted: ");
3119 		print_pkt(skb->data, skb_headlen(skb));
3120 	}
3121 
3122 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3123 
3124 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3125 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3126 
3127 	return NETDEV_TX_OK;
3128 
3129 dma_map_err:
3130 	dev_err(priv->device, "Tx dma map failed\n");
3131 	dev_kfree_skb(skb);
3132 	priv->dev->stats.tx_dropped++;
3133 	return NETDEV_TX_OK;
3134 }
3135 
3136 /**
3137  *  stmmac_xmit - Tx entry point of the driver
3138  *  @skb : the socket buffer
3139  *  @dev : device pointer
3140  *  Description : this is the tx entry point of the driver.
3141  *  It programs the chain or the ring and supports oversized frames
3142  *  and SG feature.
3143  */
3144 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3145 {
3146 	unsigned int first_entry, tx_packets, enh_desc;
3147 	struct stmmac_priv *priv = netdev_priv(dev);
3148 	unsigned int nopaged_len = skb_headlen(skb);
3149 	int i, csum_insertion = 0, is_jumbo = 0;
3150 	u32 queue = skb_get_queue_mapping(skb);
3151 	int nfrags = skb_shinfo(skb)->nr_frags;
3152 	int gso = skb_shinfo(skb)->gso_type;
3153 	struct dma_desc *desc, *first;
3154 	struct stmmac_tx_queue *tx_q;
3155 	bool has_vlan, set_ic;
3156 	int entry, first_tx;
3157 	dma_addr_t des;
3158 
3159 	tx_q = &priv->tx_queue[queue];
3160 	first_tx = tx_q->cur_tx;
3161 
3162 	if (priv->tx_path_in_lpi_mode)
3163 		stmmac_disable_eee_mode(priv);
3164 
3165 	/* Manage oversized TCP frames for GMAC4 device */
3166 	if (skb_is_gso(skb) && priv->tso) {
3167 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3168 			return stmmac_tso_xmit(skb, dev);
3169 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
3170 			return stmmac_tso_xmit(skb, dev);
3171 	}
3172 
3173 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3174 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3175 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3176 								queue));
3177 			/* This is a hard error, log it. */
3178 			netdev_err(priv->dev,
3179 				   "%s: Tx Ring full when queue awake\n",
3180 				   __func__);
3181 		}
3182 		return NETDEV_TX_BUSY;
3183 	}
3184 
3185 	/* Check if VLAN can be inserted by HW */
3186 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3187 
3188 	entry = tx_q->cur_tx;
3189 	first_entry = entry;
3190 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3191 
3192 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3193 
3194 	if (likely(priv->extend_desc))
3195 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3196 	else
3197 		desc = tx_q->dma_tx + entry;
3198 
3199 	first = desc;
3200 
3201 	if (has_vlan)
3202 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3203 
3204 	enh_desc = priv->plat->enh_desc;
3205 	/* To program the descriptors according to the size of the frame */
3206 	if (enh_desc)
3207 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3208 
3209 	if (unlikely(is_jumbo)) {
3210 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3211 		if (unlikely(entry < 0) && (entry != -EINVAL))
3212 			goto dma_map_err;
3213 	}
3214 
3215 	for (i = 0; i < nfrags; i++) {
3216 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3217 		int len = skb_frag_size(frag);
3218 		bool last_segment = (i == (nfrags - 1));
3219 
3220 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3221 		WARN_ON(tx_q->tx_skbuff[entry]);
3222 
3223 		if (likely(priv->extend_desc))
3224 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3225 		else
3226 			desc = tx_q->dma_tx + entry;
3227 
3228 		des = skb_frag_dma_map(priv->device, frag, 0, len,
3229 				       DMA_TO_DEVICE);
3230 		if (dma_mapping_error(priv->device, des))
3231 			goto dma_map_err; /* should reuse desc w/o issues */
3232 
3233 		tx_q->tx_skbuff_dma[entry].buf = des;
3234 
3235 		stmmac_set_desc_addr(priv, desc, des);
3236 
3237 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
3238 		tx_q->tx_skbuff_dma[entry].len = len;
3239 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3240 
3241 		/* Prepare the descriptor and set the own bit too */
3242 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3243 				priv->mode, 1, last_segment, skb->len);
3244 	}
3245 
3246 	/* Only the last descriptor gets to point to the skb. */
3247 	tx_q->tx_skbuff[entry] = skb;
3248 
3249 	/* According to the coalesce parameter the IC bit for the latest
3250 	 * segment is reset and the timer re-started to clean the tx status.
3251 	 * This approach takes care about the fragments: desc is the first
3252 	 * element in case of no SG.
3253 	 */
3254 	tx_packets = (entry + 1) - first_tx;
3255 	tx_q->tx_count_frames += tx_packets;
3256 
3257 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3258 		set_ic = true;
3259 	else if (!priv->tx_coal_frames)
3260 		set_ic = false;
3261 	else if (tx_packets > priv->tx_coal_frames)
3262 		set_ic = true;
3263 	else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3264 		set_ic = true;
3265 	else
3266 		set_ic = false;
3267 
3268 	if (set_ic) {
3269 		if (likely(priv->extend_desc))
3270 			desc = &tx_q->dma_etx[entry].basic;
3271 		else
3272 			desc = &tx_q->dma_tx[entry];
3273 
3274 		tx_q->tx_count_frames = 0;
3275 		stmmac_set_tx_ic(priv, desc);
3276 		priv->xstats.tx_set_ic_bit++;
3277 	} else {
3278 		stmmac_tx_timer_arm(priv, queue);
3279 	}
3280 
3281 	/* We've used all descriptors we need for this skb, however,
3282 	 * advance cur_tx so that it references a fresh descriptor.
3283 	 * ndo_start_xmit will fill this descriptor the next time it's
3284 	 * called and stmmac_tx_clean may clean up to this descriptor.
3285 	 */
3286 	entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3287 	tx_q->cur_tx = entry;
3288 
3289 	if (netif_msg_pktdata(priv)) {
3290 		void *tx_head;
3291 
3292 		netdev_dbg(priv->dev,
3293 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3294 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3295 			   entry, first, nfrags);
3296 
3297 		if (priv->extend_desc)
3298 			tx_head = (void *)tx_q->dma_etx;
3299 		else
3300 			tx_head = (void *)tx_q->dma_tx;
3301 
3302 		stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false);
3303 
3304 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3305 		print_pkt(skb->data, skb->len);
3306 	}
3307 
3308 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3309 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3310 			  __func__);
3311 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3312 	}
3313 
3314 	dev->stats.tx_bytes += skb->len;
3315 
3316 	if (priv->sarc_type)
3317 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3318 
3319 	skb_tx_timestamp(skb);
3320 
3321 	/* Ready to fill the first descriptor and set the OWN bit w/o any
3322 	 * problems because all the descriptors are actually ready to be
3323 	 * passed to the DMA engine.
3324 	 */
3325 	if (likely(!is_jumbo)) {
3326 		bool last_segment = (nfrags == 0);
3327 
3328 		des = dma_map_single(priv->device, skb->data,
3329 				     nopaged_len, DMA_TO_DEVICE);
3330 		if (dma_mapping_error(priv->device, des))
3331 			goto dma_map_err;
3332 
3333 		tx_q->tx_skbuff_dma[first_entry].buf = des;
3334 
3335 		stmmac_set_desc_addr(priv, first, des);
3336 
3337 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3338 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3339 
3340 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3341 			     priv->hwts_tx_en)) {
3342 			/* declare that device is doing timestamping */
3343 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3344 			stmmac_enable_tx_timestamp(priv, first);
3345 		}
3346 
3347 		/* Prepare the first descriptor setting the OWN bit too */
3348 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3349 				csum_insertion, priv->mode, 1, last_segment,
3350 				skb->len);
3351 	} else {
3352 		stmmac_set_tx_owner(priv, first);
3353 	}
3354 
3355 	/* The own bit must be the latest setting done when prepare the
3356 	 * descriptor and then barrier is needed to make sure that
3357 	 * all is coherent before granting the DMA engine.
3358 	 */
3359 	wmb();
3360 
3361 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3362 
3363 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
3364 
3365 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3366 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3367 
3368 	return NETDEV_TX_OK;
3369 
3370 dma_map_err:
3371 	netdev_err(priv->dev, "Tx DMA map failed\n");
3372 	dev_kfree_skb(skb);
3373 	priv->dev->stats.tx_dropped++;
3374 	return NETDEV_TX_OK;
3375 }
3376 
3377 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3378 {
3379 	struct vlan_ethhdr *veth;
3380 	__be16 vlan_proto;
3381 	u16 vlanid;
3382 
3383 	veth = (struct vlan_ethhdr *)skb->data;
3384 	vlan_proto = veth->h_vlan_proto;
3385 
3386 	if ((vlan_proto == htons(ETH_P_8021Q) &&
3387 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3388 	    (vlan_proto == htons(ETH_P_8021AD) &&
3389 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3390 		/* pop the vlan tag */
3391 		vlanid = ntohs(veth->h_vlan_TCI);
3392 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3393 		skb_pull(skb, VLAN_HLEN);
3394 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3395 	}
3396 }
3397 
3398 
3399 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3400 {
3401 	if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3402 		return 0;
3403 
3404 	return 1;
3405 }
3406 
3407 /**
3408  * stmmac_rx_refill - refill used skb preallocated buffers
3409  * @priv: driver private structure
3410  * @queue: RX queue index
3411  * Description : this is to reallocate the skb for the reception process
3412  * that is based on zero-copy.
3413  */
3414 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3415 {
3416 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3417 	int len, dirty = stmmac_rx_dirty(priv, queue);
3418 	unsigned int entry = rx_q->dirty_rx;
3419 
3420 	len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3421 
3422 	while (dirty-- > 0) {
3423 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3424 		struct dma_desc *p;
3425 		bool use_rx_wd;
3426 
3427 		if (priv->extend_desc)
3428 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3429 		else
3430 			p = rx_q->dma_rx + entry;
3431 
3432 		if (!buf->page) {
3433 			buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3434 			if (!buf->page)
3435 				break;
3436 		}
3437 
3438 		if (priv->sph && !buf->sec_page) {
3439 			buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
3440 			if (!buf->sec_page)
3441 				break;
3442 
3443 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3444 
3445 			dma_sync_single_for_device(priv->device, buf->sec_addr,
3446 						   len, DMA_FROM_DEVICE);
3447 		}
3448 
3449 		buf->addr = page_pool_get_dma_addr(buf->page);
3450 
3451 		/* Sync whole allocation to device. This will invalidate old
3452 		 * data.
3453 		 */
3454 		dma_sync_single_for_device(priv->device, buf->addr, len,
3455 					   DMA_FROM_DEVICE);
3456 
3457 		stmmac_set_desc_addr(priv, p, buf->addr);
3458 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
3459 		stmmac_refill_desc3(priv, rx_q, p);
3460 
3461 		rx_q->rx_count_frames++;
3462 		rx_q->rx_count_frames += priv->rx_coal_frames;
3463 		if (rx_q->rx_count_frames > priv->rx_coal_frames)
3464 			rx_q->rx_count_frames = 0;
3465 
3466 		use_rx_wd = !priv->rx_coal_frames;
3467 		use_rx_wd |= rx_q->rx_count_frames > 0;
3468 		if (!priv->use_riwt)
3469 			use_rx_wd = false;
3470 
3471 		dma_wmb();
3472 		stmmac_set_rx_owner(priv, p, use_rx_wd);
3473 
3474 		entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3475 	}
3476 	rx_q->dirty_rx = entry;
3477 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3478 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
3479 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3480 }
3481 
3482 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
3483 				       struct dma_desc *p,
3484 				       int status, unsigned int len)
3485 {
3486 	int ret, coe = priv->hw->rx_csum;
3487 	unsigned int plen = 0, hlen = 0;
3488 
3489 	/* Not first descriptor, buffer is always zero */
3490 	if (priv->sph && len)
3491 		return 0;
3492 
3493 	/* First descriptor, get split header length */
3494 	ret = stmmac_get_rx_header_len(priv, p, &hlen);
3495 	if (priv->sph && hlen) {
3496 		priv->xstats.rx_split_hdr_pkt_n++;
3497 		return hlen;
3498 	}
3499 
3500 	/* First descriptor, not last descriptor and not split header */
3501 	if (status & rx_not_ls)
3502 		return priv->dma_buf_sz;
3503 
3504 	plen = stmmac_get_rx_frame_len(priv, p, coe);
3505 
3506 	/* First descriptor and last descriptor and not split header */
3507 	return min_t(unsigned int, priv->dma_buf_sz, plen);
3508 }
3509 
3510 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
3511 				       struct dma_desc *p,
3512 				       int status, unsigned int len)
3513 {
3514 	int coe = priv->hw->rx_csum;
3515 	unsigned int plen = 0;
3516 
3517 	/* Not split header, buffer is not available */
3518 	if (!priv->sph)
3519 		return 0;
3520 
3521 	/* Not last descriptor */
3522 	if (status & rx_not_ls)
3523 		return priv->dma_buf_sz;
3524 
3525 	plen = stmmac_get_rx_frame_len(priv, p, coe);
3526 
3527 	/* Last descriptor */
3528 	return plen - len;
3529 }
3530 
3531 /**
3532  * stmmac_rx - manage the receive process
3533  * @priv: driver private structure
3534  * @limit: napi bugget
3535  * @queue: RX queue index.
3536  * Description :  this the function called by the napi poll method.
3537  * It gets all the frames inside the ring.
3538  */
3539 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3540 {
3541 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3542 	struct stmmac_channel *ch = &priv->channel[queue];
3543 	unsigned int count = 0, error = 0, len = 0;
3544 	int status = 0, coe = priv->hw->rx_csum;
3545 	unsigned int next_entry = rx_q->cur_rx;
3546 	struct sk_buff *skb = NULL;
3547 
3548 	if (netif_msg_rx_status(priv)) {
3549 		void *rx_head;
3550 
3551 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3552 		if (priv->extend_desc)
3553 			rx_head = (void *)rx_q->dma_erx;
3554 		else
3555 			rx_head = (void *)rx_q->dma_rx;
3556 
3557 		stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3558 	}
3559 	while (count < limit) {
3560 		unsigned int buf1_len = 0, buf2_len = 0;
3561 		enum pkt_hash_types hash_type;
3562 		struct stmmac_rx_buffer *buf;
3563 		struct dma_desc *np, *p;
3564 		int entry;
3565 		u32 hash;
3566 
3567 		if (!count && rx_q->state_saved) {
3568 			skb = rx_q->state.skb;
3569 			error = rx_q->state.error;
3570 			len = rx_q->state.len;
3571 		} else {
3572 			rx_q->state_saved = false;
3573 			skb = NULL;
3574 			error = 0;
3575 			len = 0;
3576 		}
3577 
3578 		if (count >= limit)
3579 			break;
3580 
3581 read_again:
3582 		buf1_len = 0;
3583 		buf2_len = 0;
3584 		entry = next_entry;
3585 		buf = &rx_q->buf_pool[entry];
3586 
3587 		if (priv->extend_desc)
3588 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3589 		else
3590 			p = rx_q->dma_rx + entry;
3591 
3592 		/* read the status of the incoming frame */
3593 		status = stmmac_rx_status(priv, &priv->dev->stats,
3594 				&priv->xstats, p);
3595 		/* check if managed by the DMA otherwise go ahead */
3596 		if (unlikely(status & dma_own))
3597 			break;
3598 
3599 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3600 		next_entry = rx_q->cur_rx;
3601 
3602 		if (priv->extend_desc)
3603 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3604 		else
3605 			np = rx_q->dma_rx + next_entry;
3606 
3607 		prefetch(np);
3608 
3609 		if (priv->extend_desc)
3610 			stmmac_rx_extended_status(priv, &priv->dev->stats,
3611 					&priv->xstats, rx_q->dma_erx + entry);
3612 		if (unlikely(status == discard_frame)) {
3613 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3614 			buf->page = NULL;
3615 			error = 1;
3616 			if (!priv->hwts_rx_en)
3617 				priv->dev->stats.rx_errors++;
3618 		}
3619 
3620 		if (unlikely(error && (status & rx_not_ls)))
3621 			goto read_again;
3622 		if (unlikely(error)) {
3623 			dev_kfree_skb(skb);
3624 			skb = NULL;
3625 			count++;
3626 			continue;
3627 		}
3628 
3629 		/* Buffer is good. Go on. */
3630 
3631 		prefetch(page_address(buf->page));
3632 		if (buf->sec_page)
3633 			prefetch(page_address(buf->sec_page));
3634 
3635 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
3636 		len += buf1_len;
3637 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
3638 		len += buf2_len;
3639 
3640 		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3641 		 * Type frames (LLC/LLC-SNAP)
3642 		 *
3643 		 * llc_snap is never checked in GMAC >= 4, so this ACS
3644 		 * feature is always disabled and packets need to be
3645 		 * stripped manually.
3646 		 */
3647 		if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3648 		    unlikely(status != llc_snap)) {
3649 			if (buf2_len)
3650 				buf2_len -= ETH_FCS_LEN;
3651 			else
3652 				buf1_len -= ETH_FCS_LEN;
3653 
3654 			len -= ETH_FCS_LEN;
3655 		}
3656 
3657 		if (!skb) {
3658 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
3659 			if (!skb) {
3660 				priv->dev->stats.rx_dropped++;
3661 				count++;
3662 				goto drain_data;
3663 			}
3664 
3665 			dma_sync_single_for_cpu(priv->device, buf->addr,
3666 						buf1_len, DMA_FROM_DEVICE);
3667 			skb_copy_to_linear_data(skb, page_address(buf->page),
3668 						buf1_len);
3669 			skb_put(skb, buf1_len);
3670 
3671 			/* Data payload copied into SKB, page ready for recycle */
3672 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3673 			buf->page = NULL;
3674 		} else if (buf1_len) {
3675 			dma_sync_single_for_cpu(priv->device, buf->addr,
3676 						buf1_len, DMA_FROM_DEVICE);
3677 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3678 					buf->page, 0, buf1_len,
3679 					priv->dma_buf_sz);
3680 
3681 			/* Data payload appended into SKB */
3682 			page_pool_release_page(rx_q->page_pool, buf->page);
3683 			buf->page = NULL;
3684 		}
3685 
3686 		if (buf2_len) {
3687 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
3688 						buf2_len, DMA_FROM_DEVICE);
3689 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3690 					buf->sec_page, 0, buf2_len,
3691 					priv->dma_buf_sz);
3692 
3693 			/* Data payload appended into SKB */
3694 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
3695 			buf->sec_page = NULL;
3696 		}
3697 
3698 drain_data:
3699 		if (likely(status & rx_not_ls))
3700 			goto read_again;
3701 		if (!skb)
3702 			continue;
3703 
3704 		/* Got entire packet into SKB. Finish it. */
3705 
3706 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
3707 		stmmac_rx_vlan(priv->dev, skb);
3708 		skb->protocol = eth_type_trans(skb, priv->dev);
3709 
3710 		if (unlikely(!coe))
3711 			skb_checksum_none_assert(skb);
3712 		else
3713 			skb->ip_summed = CHECKSUM_UNNECESSARY;
3714 
3715 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
3716 			skb_set_hash(skb, hash, hash_type);
3717 
3718 		skb_record_rx_queue(skb, queue);
3719 		napi_gro_receive(&ch->rx_napi, skb);
3720 		skb = NULL;
3721 
3722 		priv->dev->stats.rx_packets++;
3723 		priv->dev->stats.rx_bytes += len;
3724 		count++;
3725 	}
3726 
3727 	if (status & rx_not_ls || skb) {
3728 		rx_q->state_saved = true;
3729 		rx_q->state.skb = skb;
3730 		rx_q->state.error = error;
3731 		rx_q->state.len = len;
3732 	}
3733 
3734 	stmmac_rx_refill(priv, queue);
3735 
3736 	priv->xstats.rx_pkt_n += count;
3737 
3738 	return count;
3739 }
3740 
3741 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3742 {
3743 	struct stmmac_channel *ch =
3744 		container_of(napi, struct stmmac_channel, rx_napi);
3745 	struct stmmac_priv *priv = ch->priv_data;
3746 	u32 chan = ch->index;
3747 	int work_done;
3748 
3749 	priv->xstats.napi_poll++;
3750 
3751 	work_done = stmmac_rx(priv, budget, chan);
3752 	if (work_done < budget && napi_complete_done(napi, work_done))
3753 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3754 	return work_done;
3755 }
3756 
3757 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3758 {
3759 	struct stmmac_channel *ch =
3760 		container_of(napi, struct stmmac_channel, tx_napi);
3761 	struct stmmac_priv *priv = ch->priv_data;
3762 	struct stmmac_tx_queue *tx_q;
3763 	u32 chan = ch->index;
3764 	int work_done;
3765 
3766 	priv->xstats.napi_poll++;
3767 
3768 	work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan);
3769 	work_done = min(work_done, budget);
3770 
3771 	if (work_done < budget)
3772 		napi_complete_done(napi, work_done);
3773 
3774 	/* Force transmission restart */
3775 	tx_q = &priv->tx_queue[chan];
3776 	if (tx_q->cur_tx != tx_q->dirty_tx) {
3777 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
3778 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr,
3779 				       chan);
3780 	}
3781 
3782 	return work_done;
3783 }
3784 
3785 /**
3786  *  stmmac_tx_timeout
3787  *  @dev : Pointer to net device structure
3788  *  Description: this function is called when a packet transmission fails to
3789  *   complete within a reasonable time. The driver will mark the error in the
3790  *   netdev structure and arrange for the device to be reset to a sane state
3791  *   in order to transmit a new packet.
3792  */
3793 static void stmmac_tx_timeout(struct net_device *dev)
3794 {
3795 	struct stmmac_priv *priv = netdev_priv(dev);
3796 
3797 	stmmac_global_err(priv);
3798 }
3799 
3800 /**
3801  *  stmmac_set_rx_mode - entry point for multicast addressing
3802  *  @dev : pointer to the device structure
3803  *  Description:
3804  *  This function is a driver entry point which gets called by the kernel
3805  *  whenever multicast addresses must be enabled/disabled.
3806  *  Return value:
3807  *  void.
3808  */
3809 static void stmmac_set_rx_mode(struct net_device *dev)
3810 {
3811 	struct stmmac_priv *priv = netdev_priv(dev);
3812 
3813 	stmmac_set_filter(priv, priv->hw, dev);
3814 }
3815 
3816 /**
3817  *  stmmac_change_mtu - entry point to change MTU size for the device.
3818  *  @dev : device pointer.
3819  *  @new_mtu : the new MTU size for the device.
3820  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3821  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3822  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3823  *  Return value:
3824  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3825  *  file on failure.
3826  */
3827 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3828 {
3829 	struct stmmac_priv *priv = netdev_priv(dev);
3830 
3831 	if (netif_running(dev)) {
3832 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
3833 		return -EBUSY;
3834 	}
3835 
3836 	dev->mtu = new_mtu;
3837 
3838 	netdev_update_features(dev);
3839 
3840 	return 0;
3841 }
3842 
3843 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3844 					     netdev_features_t features)
3845 {
3846 	struct stmmac_priv *priv = netdev_priv(dev);
3847 
3848 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3849 		features &= ~NETIF_F_RXCSUM;
3850 
3851 	if (!priv->plat->tx_coe)
3852 		features &= ~NETIF_F_CSUM_MASK;
3853 
3854 	/* Some GMAC devices have a bugged Jumbo frame support that
3855 	 * needs to have the Tx COE disabled for oversized frames
3856 	 * (due to limited buffer sizes). In this case we disable
3857 	 * the TX csum insertion in the TDES and not use SF.
3858 	 */
3859 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3860 		features &= ~NETIF_F_CSUM_MASK;
3861 
3862 	/* Disable tso if asked by ethtool */
3863 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3864 		if (features & NETIF_F_TSO)
3865 			priv->tso = true;
3866 		else
3867 			priv->tso = false;
3868 	}
3869 
3870 	return features;
3871 }
3872 
3873 static int stmmac_set_features(struct net_device *netdev,
3874 			       netdev_features_t features)
3875 {
3876 	struct stmmac_priv *priv = netdev_priv(netdev);
3877 	bool sph_en;
3878 	u32 chan;
3879 
3880 	/* Keep the COE Type in case of csum is supporting */
3881 	if (features & NETIF_F_RXCSUM)
3882 		priv->hw->rx_csum = priv->plat->rx_coe;
3883 	else
3884 		priv->hw->rx_csum = 0;
3885 	/* No check needed because rx_coe has been set before and it will be
3886 	 * fixed in case of issue.
3887 	 */
3888 	stmmac_rx_ipc(priv, priv->hw);
3889 
3890 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3891 	for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
3892 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3893 
3894 	return 0;
3895 }
3896 
3897 /**
3898  *  stmmac_interrupt - main ISR
3899  *  @irq: interrupt number.
3900  *  @dev_id: to pass the net device pointer.
3901  *  Description: this is the main driver interrupt service routine.
3902  *  It can call:
3903  *  o DMA service routine (to manage incoming frame reception and transmission
3904  *    status)
3905  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3906  *    interrupts.
3907  */
3908 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3909 {
3910 	struct net_device *dev = (struct net_device *)dev_id;
3911 	struct stmmac_priv *priv = netdev_priv(dev);
3912 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3913 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3914 	u32 queues_count;
3915 	u32 queue;
3916 	bool xmac;
3917 
3918 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3919 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3920 
3921 	if (priv->irq_wake)
3922 		pm_wakeup_event(priv->device, 0);
3923 
3924 	if (unlikely(!dev)) {
3925 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3926 		return IRQ_NONE;
3927 	}
3928 
3929 	/* Check if adapter is up */
3930 	if (test_bit(STMMAC_DOWN, &priv->state))
3931 		return IRQ_HANDLED;
3932 	/* Check if a fatal error happened */
3933 	if (stmmac_safety_feat_interrupt(priv))
3934 		return IRQ_HANDLED;
3935 
3936 	/* To handle GMAC own interrupts */
3937 	if ((priv->plat->has_gmac) || xmac) {
3938 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
3939 		int mtl_status;
3940 
3941 		if (unlikely(status)) {
3942 			/* For LPI we need to save the tx status */
3943 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3944 				priv->tx_path_in_lpi_mode = true;
3945 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3946 				priv->tx_path_in_lpi_mode = false;
3947 		}
3948 
3949 		for (queue = 0; queue < queues_count; queue++) {
3950 			struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3951 
3952 			mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
3953 								queue);
3954 			if (mtl_status != -EINVAL)
3955 				status |= mtl_status;
3956 
3957 			if (status & CORE_IRQ_MTL_RX_OVERFLOW)
3958 				stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
3959 						       rx_q->rx_tail_addr,
3960 						       queue);
3961 		}
3962 
3963 		/* PCS link status */
3964 		if (priv->hw->pcs) {
3965 			if (priv->xstats.pcs_link)
3966 				netif_carrier_on(dev);
3967 			else
3968 				netif_carrier_off(dev);
3969 		}
3970 	}
3971 
3972 	/* To handle DMA interrupts */
3973 	stmmac_dma_interrupt(priv);
3974 
3975 	return IRQ_HANDLED;
3976 }
3977 
3978 #ifdef CONFIG_NET_POLL_CONTROLLER
3979 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3980  * to allow network I/O with interrupts disabled.
3981  */
3982 static void stmmac_poll_controller(struct net_device *dev)
3983 {
3984 	disable_irq(dev->irq);
3985 	stmmac_interrupt(dev->irq, dev);
3986 	enable_irq(dev->irq);
3987 }
3988 #endif
3989 
3990 /**
3991  *  stmmac_ioctl - Entry point for the Ioctl
3992  *  @dev: Device pointer.
3993  *  @rq: An IOCTL specefic structure, that can contain a pointer to
3994  *  a proprietary structure used to pass information to the driver.
3995  *  @cmd: IOCTL command
3996  *  Description:
3997  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3998  */
3999 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
4000 {
4001 	struct stmmac_priv *priv = netdev_priv (dev);
4002 	int ret = -EOPNOTSUPP;
4003 
4004 	if (!netif_running(dev))
4005 		return -EINVAL;
4006 
4007 	switch (cmd) {
4008 	case SIOCGMIIPHY:
4009 	case SIOCGMIIREG:
4010 	case SIOCSMIIREG:
4011 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
4012 		break;
4013 	case SIOCSHWTSTAMP:
4014 		ret = stmmac_hwtstamp_set(dev, rq);
4015 		break;
4016 	case SIOCGHWTSTAMP:
4017 		ret = stmmac_hwtstamp_get(dev, rq);
4018 		break;
4019 	default:
4020 		break;
4021 	}
4022 
4023 	return ret;
4024 }
4025 
4026 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4027 				    void *cb_priv)
4028 {
4029 	struct stmmac_priv *priv = cb_priv;
4030 	int ret = -EOPNOTSUPP;
4031 
4032 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
4033 		return ret;
4034 
4035 	stmmac_disable_all_queues(priv);
4036 
4037 	switch (type) {
4038 	case TC_SETUP_CLSU32:
4039 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
4040 		break;
4041 	case TC_SETUP_CLSFLOWER:
4042 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
4043 		break;
4044 	default:
4045 		break;
4046 	}
4047 
4048 	stmmac_enable_all_queues(priv);
4049 	return ret;
4050 }
4051 
4052 static LIST_HEAD(stmmac_block_cb_list);
4053 
4054 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
4055 			   void *type_data)
4056 {
4057 	struct stmmac_priv *priv = netdev_priv(ndev);
4058 
4059 	switch (type) {
4060 	case TC_SETUP_BLOCK:
4061 		return flow_block_cb_setup_simple(type_data,
4062 						  &stmmac_block_cb_list,
4063 						  stmmac_setup_tc_block_cb,
4064 						  priv, priv, true);
4065 	case TC_SETUP_QDISC_CBS:
4066 		return stmmac_tc_setup_cbs(priv, priv, type_data);
4067 	default:
4068 		return -EOPNOTSUPP;
4069 	}
4070 }
4071 
4072 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
4073 			       struct net_device *sb_dev)
4074 {
4075 	int gso = skb_shinfo(skb)->gso_type;
4076 
4077 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
4078 		/*
4079 		 * There is no way to determine the number of TSO/USO
4080 		 * capable Queues. Let's use always the Queue 0
4081 		 * because if TSO/USO is supported then at least this
4082 		 * one will be capable.
4083 		 */
4084 		return 0;
4085 	}
4086 
4087 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
4088 }
4089 
4090 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
4091 {
4092 	struct stmmac_priv *priv = netdev_priv(ndev);
4093 	int ret = 0;
4094 
4095 	ret = eth_mac_addr(ndev, addr);
4096 	if (ret)
4097 		return ret;
4098 
4099 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
4100 
4101 	return ret;
4102 }
4103 
4104 #ifdef CONFIG_DEBUG_FS
4105 static struct dentry *stmmac_fs_dir;
4106 
4107 static void sysfs_display_ring(void *head, int size, int extend_desc,
4108 			       struct seq_file *seq)
4109 {
4110 	int i;
4111 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4112 	struct dma_desc *p = (struct dma_desc *)head;
4113 
4114 	for (i = 0; i < size; i++) {
4115 		if (extend_desc) {
4116 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4117 				   i, (unsigned int)virt_to_phys(ep),
4118 				   le32_to_cpu(ep->basic.des0),
4119 				   le32_to_cpu(ep->basic.des1),
4120 				   le32_to_cpu(ep->basic.des2),
4121 				   le32_to_cpu(ep->basic.des3));
4122 			ep++;
4123 		} else {
4124 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4125 				   i, (unsigned int)virt_to_phys(p),
4126 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4127 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4128 			p++;
4129 		}
4130 		seq_printf(seq, "\n");
4131 	}
4132 }
4133 
4134 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4135 {
4136 	struct net_device *dev = seq->private;
4137 	struct stmmac_priv *priv = netdev_priv(dev);
4138 	u32 rx_count = priv->plat->rx_queues_to_use;
4139 	u32 tx_count = priv->plat->tx_queues_to_use;
4140 	u32 queue;
4141 
4142 	if ((dev->flags & IFF_UP) == 0)
4143 		return 0;
4144 
4145 	for (queue = 0; queue < rx_count; queue++) {
4146 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4147 
4148 		seq_printf(seq, "RX Queue %d:\n", queue);
4149 
4150 		if (priv->extend_desc) {
4151 			seq_printf(seq, "Extended descriptor ring:\n");
4152 			sysfs_display_ring((void *)rx_q->dma_erx,
4153 					   DMA_RX_SIZE, 1, seq);
4154 		} else {
4155 			seq_printf(seq, "Descriptor ring:\n");
4156 			sysfs_display_ring((void *)rx_q->dma_rx,
4157 					   DMA_RX_SIZE, 0, seq);
4158 		}
4159 	}
4160 
4161 	for (queue = 0; queue < tx_count; queue++) {
4162 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4163 
4164 		seq_printf(seq, "TX Queue %d:\n", queue);
4165 
4166 		if (priv->extend_desc) {
4167 			seq_printf(seq, "Extended descriptor ring:\n");
4168 			sysfs_display_ring((void *)tx_q->dma_etx,
4169 					   DMA_TX_SIZE, 1, seq);
4170 		} else {
4171 			seq_printf(seq, "Descriptor ring:\n");
4172 			sysfs_display_ring((void *)tx_q->dma_tx,
4173 					   DMA_TX_SIZE, 0, seq);
4174 		}
4175 	}
4176 
4177 	return 0;
4178 }
4179 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4180 
4181 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4182 {
4183 	struct net_device *dev = seq->private;
4184 	struct stmmac_priv *priv = netdev_priv(dev);
4185 
4186 	if (!priv->hw_cap_support) {
4187 		seq_printf(seq, "DMA HW features not supported\n");
4188 		return 0;
4189 	}
4190 
4191 	seq_printf(seq, "==============================\n");
4192 	seq_printf(seq, "\tDMA HW features\n");
4193 	seq_printf(seq, "==============================\n");
4194 
4195 	seq_printf(seq, "\t10/100 Mbps: %s\n",
4196 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4197 	seq_printf(seq, "\t1000 Mbps: %s\n",
4198 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
4199 	seq_printf(seq, "\tHalf duplex: %s\n",
4200 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
4201 	seq_printf(seq, "\tHash Filter: %s\n",
4202 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
4203 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4204 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
4205 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4206 		   (priv->dma_cap.pcs) ? "Y" : "N");
4207 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4208 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
4209 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
4210 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4211 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
4212 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4213 	seq_printf(seq, "\tRMON module: %s\n",
4214 		   (priv->dma_cap.rmon) ? "Y" : "N");
4215 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4216 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
4217 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4218 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
4219 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4220 		   (priv->dma_cap.eee) ? "Y" : "N");
4221 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4222 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4223 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
4224 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4225 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4226 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
4227 	} else {
4228 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4229 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4230 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4231 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4232 	}
4233 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4234 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4235 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4236 		   priv->dma_cap.number_rx_channel);
4237 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4238 		   priv->dma_cap.number_tx_channel);
4239 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
4240 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
4241 
4242 	return 0;
4243 }
4244 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4245 
4246 static void stmmac_init_fs(struct net_device *dev)
4247 {
4248 	struct stmmac_priv *priv = netdev_priv(dev);
4249 
4250 	/* Create per netdev entries */
4251 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4252 
4253 	/* Entry to report DMA RX/TX rings */
4254 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4255 			    &stmmac_rings_status_fops);
4256 
4257 	/* Entry to report the DMA HW features */
4258 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4259 			    &stmmac_dma_cap_fops);
4260 }
4261 
4262 static void stmmac_exit_fs(struct net_device *dev)
4263 {
4264 	struct stmmac_priv *priv = netdev_priv(dev);
4265 
4266 	debugfs_remove_recursive(priv->dbgfs_dir);
4267 }
4268 #endif /* CONFIG_DEBUG_FS */
4269 
4270 static u32 stmmac_vid_crc32_le(__le16 vid_le)
4271 {
4272 	unsigned char *data = (unsigned char *)&vid_le;
4273 	unsigned char data_byte = 0;
4274 	u32 crc = ~0x0;
4275 	u32 temp = 0;
4276 	int i, bits;
4277 
4278 	bits = get_bitmask_order(VLAN_VID_MASK);
4279 	for (i = 0; i < bits; i++) {
4280 		if ((i % 8) == 0)
4281 			data_byte = data[i / 8];
4282 
4283 		temp = ((crc & 1) ^ data_byte) & 1;
4284 		crc >>= 1;
4285 		data_byte >>= 1;
4286 
4287 		if (temp)
4288 			crc ^= 0xedb88320;
4289 	}
4290 
4291 	return crc;
4292 }
4293 
4294 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4295 {
4296 	u32 crc, hash = 0;
4297 	__le16 pmatch = 0;
4298 	int count = 0;
4299 	u16 vid = 0;
4300 
4301 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4302 		__le16 vid_le = cpu_to_le16(vid);
4303 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4304 		hash |= (1 << crc);
4305 		count++;
4306 	}
4307 
4308 	if (!priv->dma_cap.vlhash) {
4309 		if (count > 2) /* VID = 0 always passes filter */
4310 			return -EOPNOTSUPP;
4311 
4312 		pmatch = cpu_to_le16(vid);
4313 		hash = 0;
4314 	}
4315 
4316 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
4317 }
4318 
4319 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4320 {
4321 	struct stmmac_priv *priv = netdev_priv(ndev);
4322 	bool is_double = false;
4323 	int ret;
4324 
4325 	if (be16_to_cpu(proto) == ETH_P_8021AD)
4326 		is_double = true;
4327 
4328 	set_bit(vid, priv->active_vlans);
4329 	ret = stmmac_vlan_update(priv, is_double);
4330 	if (ret) {
4331 		clear_bit(vid, priv->active_vlans);
4332 		return ret;
4333 	}
4334 
4335 	return ret;
4336 }
4337 
4338 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4339 {
4340 	struct stmmac_priv *priv = netdev_priv(ndev);
4341 	bool is_double = false;
4342 
4343 	if (be16_to_cpu(proto) == ETH_P_8021AD)
4344 		is_double = true;
4345 
4346 	clear_bit(vid, priv->active_vlans);
4347 	return stmmac_vlan_update(priv, is_double);
4348 }
4349 
4350 static const struct net_device_ops stmmac_netdev_ops = {
4351 	.ndo_open = stmmac_open,
4352 	.ndo_start_xmit = stmmac_xmit,
4353 	.ndo_stop = stmmac_release,
4354 	.ndo_change_mtu = stmmac_change_mtu,
4355 	.ndo_fix_features = stmmac_fix_features,
4356 	.ndo_set_features = stmmac_set_features,
4357 	.ndo_set_rx_mode = stmmac_set_rx_mode,
4358 	.ndo_tx_timeout = stmmac_tx_timeout,
4359 	.ndo_do_ioctl = stmmac_ioctl,
4360 	.ndo_setup_tc = stmmac_setup_tc,
4361 	.ndo_select_queue = stmmac_select_queue,
4362 #ifdef CONFIG_NET_POLL_CONTROLLER
4363 	.ndo_poll_controller = stmmac_poll_controller,
4364 #endif
4365 	.ndo_set_mac_address = stmmac_set_mac_address,
4366 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4367 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4368 };
4369 
4370 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4371 {
4372 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4373 		return;
4374 	if (test_bit(STMMAC_DOWN, &priv->state))
4375 		return;
4376 
4377 	netdev_err(priv->dev, "Reset adapter.\n");
4378 
4379 	rtnl_lock();
4380 	netif_trans_update(priv->dev);
4381 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4382 		usleep_range(1000, 2000);
4383 
4384 	set_bit(STMMAC_DOWN, &priv->state);
4385 	dev_close(priv->dev);
4386 	dev_open(priv->dev, NULL);
4387 	clear_bit(STMMAC_DOWN, &priv->state);
4388 	clear_bit(STMMAC_RESETING, &priv->state);
4389 	rtnl_unlock();
4390 }
4391 
4392 static void stmmac_service_task(struct work_struct *work)
4393 {
4394 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4395 			service_task);
4396 
4397 	stmmac_reset_subtask(priv);
4398 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4399 }
4400 
4401 /**
4402  *  stmmac_hw_init - Init the MAC device
4403  *  @priv: driver private structure
4404  *  Description: this function is to configure the MAC device according to
4405  *  some platform parameters or the HW capability register. It prepares the
4406  *  driver to use either ring or chain modes and to setup either enhanced or
4407  *  normal descriptors.
4408  */
4409 static int stmmac_hw_init(struct stmmac_priv *priv)
4410 {
4411 	int ret;
4412 
4413 	/* dwmac-sun8i only work in chain mode */
4414 	if (priv->plat->has_sun8i)
4415 		chain_mode = 1;
4416 	priv->chain_mode = chain_mode;
4417 
4418 	/* Initialize HW Interface */
4419 	ret = stmmac_hwif_init(priv);
4420 	if (ret)
4421 		return ret;
4422 
4423 	/* Get the HW capability (new GMAC newer than 3.50a) */
4424 	priv->hw_cap_support = stmmac_get_hw_features(priv);
4425 	if (priv->hw_cap_support) {
4426 		dev_info(priv->device, "DMA HW capability register supported\n");
4427 
4428 		/* We can override some gmac/dma configuration fields: e.g.
4429 		 * enh_desc, tx_coe (e.g. that are passed through the
4430 		 * platform) with the values from the HW capability
4431 		 * register (if supported).
4432 		 */
4433 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
4434 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4435 		priv->hw->pmt = priv->plat->pmt;
4436 		if (priv->dma_cap.hash_tb_sz) {
4437 			priv->hw->multicast_filter_bins =
4438 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
4439 			priv->hw->mcast_bits_log2 =
4440 					ilog2(priv->hw->multicast_filter_bins);
4441 		}
4442 
4443 		/* TXCOE doesn't work in thresh DMA mode */
4444 		if (priv->plat->force_thresh_dma_mode)
4445 			priv->plat->tx_coe = 0;
4446 		else
4447 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
4448 
4449 		/* In case of GMAC4 rx_coe is from HW cap register. */
4450 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
4451 
4452 		if (priv->dma_cap.rx_coe_type2)
4453 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4454 		else if (priv->dma_cap.rx_coe_type1)
4455 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4456 
4457 	} else {
4458 		dev_info(priv->device, "No HW DMA feature register supported\n");
4459 	}
4460 
4461 	if (priv->plat->rx_coe) {
4462 		priv->hw->rx_csum = priv->plat->rx_coe;
4463 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4464 		if (priv->synopsys_id < DWMAC_CORE_4_00)
4465 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4466 	}
4467 	if (priv->plat->tx_coe)
4468 		dev_info(priv->device, "TX Checksum insertion supported\n");
4469 
4470 	if (priv->plat->pmt) {
4471 		dev_info(priv->device, "Wake-Up On Lan supported\n");
4472 		device_set_wakeup_capable(priv->device, 1);
4473 	}
4474 
4475 	if (priv->dma_cap.tsoen)
4476 		dev_info(priv->device, "TSO supported\n");
4477 
4478 	/* Run HW quirks, if any */
4479 	if (priv->hwif_quirks) {
4480 		ret = priv->hwif_quirks(priv);
4481 		if (ret)
4482 			return ret;
4483 	}
4484 
4485 	/* Rx Watchdog is available in the COREs newer than the 3.40.
4486 	 * In some case, for example on bugged HW this feature
4487 	 * has to be disable and this can be done by passing the
4488 	 * riwt_off field from the platform.
4489 	 */
4490 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4491 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4492 		priv->use_riwt = 1;
4493 		dev_info(priv->device,
4494 			 "Enable RX Mitigation via HW Watchdog Timer\n");
4495 	}
4496 
4497 	return 0;
4498 }
4499 
4500 /**
4501  * stmmac_dvr_probe
4502  * @device: device pointer
4503  * @plat_dat: platform data pointer
4504  * @res: stmmac resource pointer
4505  * Description: this is the main probe function used to
4506  * call the alloc_etherdev, allocate the priv structure.
4507  * Return:
4508  * returns 0 on success, otherwise errno.
4509  */
4510 int stmmac_dvr_probe(struct device *device,
4511 		     struct plat_stmmacenet_data *plat_dat,
4512 		     struct stmmac_resources *res)
4513 {
4514 	struct net_device *ndev = NULL;
4515 	struct stmmac_priv *priv;
4516 	u32 queue, rxq, maxq;
4517 	int i, ret = 0;
4518 
4519 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4520 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4521 	if (!ndev)
4522 		return -ENOMEM;
4523 
4524 	SET_NETDEV_DEV(ndev, device);
4525 
4526 	priv = netdev_priv(ndev);
4527 	priv->device = device;
4528 	priv->dev = ndev;
4529 
4530 	stmmac_set_ethtool_ops(ndev);
4531 	priv->pause = pause;
4532 	priv->plat = plat_dat;
4533 	priv->ioaddr = res->addr;
4534 	priv->dev->base_addr = (unsigned long)res->addr;
4535 
4536 	priv->dev->irq = res->irq;
4537 	priv->wol_irq = res->wol_irq;
4538 	priv->lpi_irq = res->lpi_irq;
4539 
4540 	if (!IS_ERR_OR_NULL(res->mac))
4541 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4542 
4543 	dev_set_drvdata(device, priv->dev);
4544 
4545 	/* Verify driver arguments */
4546 	stmmac_verify_args();
4547 
4548 	/* Allocate workqueue */
4549 	priv->wq = create_singlethread_workqueue("stmmac_wq");
4550 	if (!priv->wq) {
4551 		dev_err(priv->device, "failed to create workqueue\n");
4552 		return -ENOMEM;
4553 	}
4554 
4555 	INIT_WORK(&priv->service_task, stmmac_service_task);
4556 
4557 	/* Override with kernel parameters if supplied XXX CRS XXX
4558 	 * this needs to have multiple instances
4559 	 */
4560 	if ((phyaddr >= 0) && (phyaddr <= 31))
4561 		priv->plat->phy_addr = phyaddr;
4562 
4563 	if (priv->plat->stmmac_rst) {
4564 		ret = reset_control_assert(priv->plat->stmmac_rst);
4565 		reset_control_deassert(priv->plat->stmmac_rst);
4566 		/* Some reset controllers have only reset callback instead of
4567 		 * assert + deassert callbacks pair.
4568 		 */
4569 		if (ret == -ENOTSUPP)
4570 			reset_control_reset(priv->plat->stmmac_rst);
4571 	}
4572 
4573 	/* Init MAC and get the capabilities */
4574 	ret = stmmac_hw_init(priv);
4575 	if (ret)
4576 		goto error_hw_init;
4577 
4578 	stmmac_check_ether_addr(priv);
4579 
4580 	/* Configure real RX and TX queues */
4581 	netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4582 	netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4583 
4584 	ndev->netdev_ops = &stmmac_netdev_ops;
4585 
4586 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4587 			    NETIF_F_RXCSUM;
4588 
4589 	ret = stmmac_tc_init(priv, priv);
4590 	if (!ret) {
4591 		ndev->hw_features |= NETIF_F_HW_TC;
4592 	}
4593 
4594 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4595 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4596 		if (priv->plat->has_gmac4)
4597 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
4598 		priv->tso = true;
4599 		dev_info(priv->device, "TSO feature enabled\n");
4600 	}
4601 
4602 	if (priv->dma_cap.sphen) {
4603 		ndev->hw_features |= NETIF_F_GRO;
4604 		priv->sph = true;
4605 		dev_info(priv->device, "SPH feature enabled\n");
4606 	}
4607 
4608 	if (priv->dma_cap.addr64) {
4609 		ret = dma_set_mask_and_coherent(device,
4610 				DMA_BIT_MASK(priv->dma_cap.addr64));
4611 		if (!ret) {
4612 			dev_info(priv->device, "Using %d bits DMA width\n",
4613 				 priv->dma_cap.addr64);
4614 
4615 			/*
4616 			 * If more than 32 bits can be addressed, make sure to
4617 			 * enable enhanced addressing mode.
4618 			 */
4619 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
4620 				priv->plat->dma_cfg->eame = true;
4621 		} else {
4622 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
4623 			if (ret) {
4624 				dev_err(priv->device, "Failed to set DMA Mask\n");
4625 				goto error_hw_init;
4626 			}
4627 
4628 			priv->dma_cap.addr64 = 32;
4629 		}
4630 	}
4631 
4632 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4633 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4634 #ifdef STMMAC_VLAN_TAG_USED
4635 	/* Both mac100 and gmac support receive VLAN tag detection */
4636 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4637 	if (priv->dma_cap.vlhash) {
4638 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4639 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
4640 	}
4641 	if (priv->dma_cap.vlins) {
4642 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
4643 		if (priv->dma_cap.dvlan)
4644 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
4645 	}
4646 #endif
4647 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
4648 
4649 	/* Initialize RSS */
4650 	rxq = priv->plat->rx_queues_to_use;
4651 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
4652 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
4653 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
4654 
4655 	if (priv->dma_cap.rssen && priv->plat->rss_en)
4656 		ndev->features |= NETIF_F_RXHASH;
4657 
4658 	/* MTU range: 46 - hw-specific max */
4659 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4660 	if (priv->plat->has_xgmac)
4661 		ndev->max_mtu = XGMAC_JUMBO_LEN;
4662 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4663 		ndev->max_mtu = JUMBO_LEN;
4664 	else
4665 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4666 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4667 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4668 	 */
4669 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
4670 	    (priv->plat->maxmtu >= ndev->min_mtu))
4671 		ndev->max_mtu = priv->plat->maxmtu;
4672 	else if (priv->plat->maxmtu < ndev->min_mtu)
4673 		dev_warn(priv->device,
4674 			 "%s: warning: maxmtu having invalid value (%d)\n",
4675 			 __func__, priv->plat->maxmtu);
4676 
4677 	if (flow_ctrl)
4678 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
4679 
4680 	/* Setup channels NAPI */
4681 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4682 
4683 	for (queue = 0; queue < maxq; queue++) {
4684 		struct stmmac_channel *ch = &priv->channel[queue];
4685 
4686 		ch->priv_data = priv;
4687 		ch->index = queue;
4688 
4689 		if (queue < priv->plat->rx_queues_to_use) {
4690 			netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx,
4691 				       NAPI_POLL_WEIGHT);
4692 		}
4693 		if (queue < priv->plat->tx_queues_to_use) {
4694 			netif_tx_napi_add(ndev, &ch->tx_napi,
4695 					  stmmac_napi_poll_tx,
4696 					  NAPI_POLL_WEIGHT);
4697 		}
4698 	}
4699 
4700 	mutex_init(&priv->lock);
4701 
4702 	/* If a specific clk_csr value is passed from the platform
4703 	 * this means that the CSR Clock Range selection cannot be
4704 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
4705 	 * set the MDC clock dynamically according to the csr actual
4706 	 * clock input.
4707 	 */
4708 	if (priv->plat->clk_csr >= 0)
4709 		priv->clk_csr = priv->plat->clk_csr;
4710 	else
4711 		stmmac_clk_csr_set(priv);
4712 
4713 	stmmac_check_pcs_mode(priv);
4714 
4715 	if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
4716 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4717 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
4718 		/* MDIO bus Registration */
4719 		ret = stmmac_mdio_register(ndev);
4720 		if (ret < 0) {
4721 			dev_err(priv->device,
4722 				"%s: MDIO bus (id: %d) registration failed",
4723 				__func__, priv->plat->bus_id);
4724 			goto error_mdio_register;
4725 		}
4726 	}
4727 
4728 	ret = stmmac_phy_setup(priv);
4729 	if (ret) {
4730 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
4731 		goto error_phy_setup;
4732 	}
4733 
4734 	ret = register_netdev(ndev);
4735 	if (ret) {
4736 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
4737 			__func__, ret);
4738 		goto error_netdev_register;
4739 	}
4740 
4741 #ifdef CONFIG_DEBUG_FS
4742 	stmmac_init_fs(ndev);
4743 #endif
4744 
4745 	return ret;
4746 
4747 error_netdev_register:
4748 	phylink_destroy(priv->phylink);
4749 error_phy_setup:
4750 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4751 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4752 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4753 		stmmac_mdio_unregister(ndev);
4754 error_mdio_register:
4755 	for (queue = 0; queue < maxq; queue++) {
4756 		struct stmmac_channel *ch = &priv->channel[queue];
4757 
4758 		if (queue < priv->plat->rx_queues_to_use)
4759 			netif_napi_del(&ch->rx_napi);
4760 		if (queue < priv->plat->tx_queues_to_use)
4761 			netif_napi_del(&ch->tx_napi);
4762 	}
4763 error_hw_init:
4764 	destroy_workqueue(priv->wq);
4765 
4766 	return ret;
4767 }
4768 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4769 
4770 /**
4771  * stmmac_dvr_remove
4772  * @dev: device pointer
4773  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4774  * changes the link status, releases the DMA descriptor rings.
4775  */
4776 int stmmac_dvr_remove(struct device *dev)
4777 {
4778 	struct net_device *ndev = dev_get_drvdata(dev);
4779 	struct stmmac_priv *priv = netdev_priv(ndev);
4780 
4781 	netdev_info(priv->dev, "%s: removing driver", __func__);
4782 
4783 #ifdef CONFIG_DEBUG_FS
4784 	stmmac_exit_fs(ndev);
4785 #endif
4786 	stmmac_stop_all_dma(priv);
4787 
4788 	stmmac_mac_set(priv, priv->ioaddr, false);
4789 	netif_carrier_off(ndev);
4790 	unregister_netdev(ndev);
4791 	phylink_destroy(priv->phylink);
4792 	if (priv->plat->stmmac_rst)
4793 		reset_control_assert(priv->plat->stmmac_rst);
4794 	clk_disable_unprepare(priv->plat->pclk);
4795 	clk_disable_unprepare(priv->plat->stmmac_clk);
4796 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4797 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4798 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4799 		stmmac_mdio_unregister(ndev);
4800 	destroy_workqueue(priv->wq);
4801 	mutex_destroy(&priv->lock);
4802 
4803 	return 0;
4804 }
4805 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4806 
4807 /**
4808  * stmmac_suspend - suspend callback
4809  * @dev: device pointer
4810  * Description: this is the function to suspend the device and it is called
4811  * by the platform driver to stop the network queue, release the resources,
4812  * program the PMT register (for WoL), clean and release driver resources.
4813  */
4814 int stmmac_suspend(struct device *dev)
4815 {
4816 	struct net_device *ndev = dev_get_drvdata(dev);
4817 	struct stmmac_priv *priv = netdev_priv(ndev);
4818 
4819 	if (!ndev || !netif_running(ndev))
4820 		return 0;
4821 
4822 	phylink_mac_change(priv->phylink, false);
4823 
4824 	mutex_lock(&priv->lock);
4825 
4826 	netif_device_detach(ndev);
4827 	stmmac_stop_all_queues(priv);
4828 
4829 	stmmac_disable_all_queues(priv);
4830 
4831 	/* Stop TX/RX DMA */
4832 	stmmac_stop_all_dma(priv);
4833 
4834 	/* Enable Power down mode by programming the PMT regs */
4835 	if (device_may_wakeup(priv->device)) {
4836 		stmmac_pmt(priv, priv->hw, priv->wolopts);
4837 		priv->irq_wake = 1;
4838 	} else {
4839 		mutex_unlock(&priv->lock);
4840 		rtnl_lock();
4841 		phylink_stop(priv->phylink);
4842 		rtnl_unlock();
4843 		mutex_lock(&priv->lock);
4844 
4845 		stmmac_mac_set(priv, priv->ioaddr, false);
4846 		pinctrl_pm_select_sleep_state(priv->device);
4847 		/* Disable clock in case of PWM is off */
4848 		if (priv->plat->clk_ptp_ref)
4849 			clk_disable_unprepare(priv->plat->clk_ptp_ref);
4850 		clk_disable_unprepare(priv->plat->pclk);
4851 		clk_disable_unprepare(priv->plat->stmmac_clk);
4852 	}
4853 	mutex_unlock(&priv->lock);
4854 
4855 	priv->speed = SPEED_UNKNOWN;
4856 	return 0;
4857 }
4858 EXPORT_SYMBOL_GPL(stmmac_suspend);
4859 
4860 /**
4861  * stmmac_reset_queues_param - reset queue parameters
4862  * @dev: device pointer
4863  */
4864 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
4865 {
4866 	u32 rx_cnt = priv->plat->rx_queues_to_use;
4867 	u32 tx_cnt = priv->plat->tx_queues_to_use;
4868 	u32 queue;
4869 
4870 	for (queue = 0; queue < rx_cnt; queue++) {
4871 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4872 
4873 		rx_q->cur_rx = 0;
4874 		rx_q->dirty_rx = 0;
4875 	}
4876 
4877 	for (queue = 0; queue < tx_cnt; queue++) {
4878 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4879 
4880 		tx_q->cur_tx = 0;
4881 		tx_q->dirty_tx = 0;
4882 		tx_q->mss = 0;
4883 	}
4884 }
4885 
4886 /**
4887  * stmmac_resume - resume callback
4888  * @dev: device pointer
4889  * Description: when resume this function is invoked to setup the DMA and CORE
4890  * in a usable state.
4891  */
4892 int stmmac_resume(struct device *dev)
4893 {
4894 	struct net_device *ndev = dev_get_drvdata(dev);
4895 	struct stmmac_priv *priv = netdev_priv(ndev);
4896 
4897 	if (!netif_running(ndev))
4898 		return 0;
4899 
4900 	/* Power Down bit, into the PM register, is cleared
4901 	 * automatically as soon as a magic packet or a Wake-up frame
4902 	 * is received. Anyway, it's better to manually clear
4903 	 * this bit because it can generate problems while resuming
4904 	 * from another devices (e.g. serial console).
4905 	 */
4906 	if (device_may_wakeup(priv->device)) {
4907 		mutex_lock(&priv->lock);
4908 		stmmac_pmt(priv, priv->hw, 0);
4909 		mutex_unlock(&priv->lock);
4910 		priv->irq_wake = 0;
4911 	} else {
4912 		pinctrl_pm_select_default_state(priv->device);
4913 		/* enable the clk previously disabled */
4914 		clk_prepare_enable(priv->plat->stmmac_clk);
4915 		clk_prepare_enable(priv->plat->pclk);
4916 		if (priv->plat->clk_ptp_ref)
4917 			clk_prepare_enable(priv->plat->clk_ptp_ref);
4918 		/* reset the phy so that it's ready */
4919 		if (priv->mii)
4920 			stmmac_mdio_reset(priv->mii);
4921 	}
4922 
4923 	netif_device_attach(ndev);
4924 
4925 	mutex_lock(&priv->lock);
4926 
4927 	stmmac_reset_queues_param(priv);
4928 
4929 	stmmac_clear_descriptors(priv);
4930 
4931 	stmmac_hw_setup(ndev, false);
4932 	stmmac_init_coalesce(priv);
4933 	stmmac_set_rx_mode(ndev);
4934 
4935 	stmmac_enable_all_queues(priv);
4936 
4937 	stmmac_start_all_queues(priv);
4938 
4939 	mutex_unlock(&priv->lock);
4940 
4941 	if (!device_may_wakeup(priv->device)) {
4942 		rtnl_lock();
4943 		phylink_start(priv->phylink);
4944 		rtnl_unlock();
4945 	}
4946 
4947 	phylink_mac_change(priv->phylink, true);
4948 
4949 	return 0;
4950 }
4951 EXPORT_SYMBOL_GPL(stmmac_resume);
4952 
4953 #ifndef MODULE
4954 static int __init stmmac_cmdline_opt(char *str)
4955 {
4956 	char *opt;
4957 
4958 	if (!str || !*str)
4959 		return -EINVAL;
4960 	while ((opt = strsep(&str, ",")) != NULL) {
4961 		if (!strncmp(opt, "debug:", 6)) {
4962 			if (kstrtoint(opt + 6, 0, &debug))
4963 				goto err;
4964 		} else if (!strncmp(opt, "phyaddr:", 8)) {
4965 			if (kstrtoint(opt + 8, 0, &phyaddr))
4966 				goto err;
4967 		} else if (!strncmp(opt, "buf_sz:", 7)) {
4968 			if (kstrtoint(opt + 7, 0, &buf_sz))
4969 				goto err;
4970 		} else if (!strncmp(opt, "tc:", 3)) {
4971 			if (kstrtoint(opt + 3, 0, &tc))
4972 				goto err;
4973 		} else if (!strncmp(opt, "watchdog:", 9)) {
4974 			if (kstrtoint(opt + 9, 0, &watchdog))
4975 				goto err;
4976 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
4977 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
4978 				goto err;
4979 		} else if (!strncmp(opt, "pause:", 6)) {
4980 			if (kstrtoint(opt + 6, 0, &pause))
4981 				goto err;
4982 		} else if (!strncmp(opt, "eee_timer:", 10)) {
4983 			if (kstrtoint(opt + 10, 0, &eee_timer))
4984 				goto err;
4985 		} else if (!strncmp(opt, "chain_mode:", 11)) {
4986 			if (kstrtoint(opt + 11, 0, &chain_mode))
4987 				goto err;
4988 		}
4989 	}
4990 	return 0;
4991 
4992 err:
4993 	pr_err("%s: ERROR broken module parameter conversion", __func__);
4994 	return -EINVAL;
4995 }
4996 
4997 __setup("stmmaceth=", stmmac_cmdline_opt);
4998 #endif /* MODULE */
4999 
5000 static int __init stmmac_init(void)
5001 {
5002 #ifdef CONFIG_DEBUG_FS
5003 	/* Create debugfs main directory if it doesn't exist yet */
5004 	if (!stmmac_fs_dir)
5005 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
5006 #endif
5007 
5008 	return 0;
5009 }
5010 
5011 static void __exit stmmac_exit(void)
5012 {
5013 #ifdef CONFIG_DEBUG_FS
5014 	debugfs_remove_recursive(stmmac_fs_dir);
5015 #endif
5016 }
5017 
5018 module_init(stmmac_init)
5019 module_exit(stmmac_exit)
5020 
5021 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
5022 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
5023 MODULE_LICENSE("GPL");
5024