1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/page_pool/helpers.h>
43 #include <net/pkt_cls.h>
44 #include <net/xdp_sock_drv.h>
45 #include "stmmac_ptp.h"
46 #include "stmmac.h"
47 #include "stmmac_xdp.h"
48 #include <linux/reset.h>
49 #include <linux/of_mdio.h>
50 #include "dwmac1000.h"
51 #include "dwxgmac2.h"
52 #include "hwif.h"
53 
54 /* As long as the interface is active, we keep the timestamping counter enabled
55  * with fine resolution and binary rollover. This avoid non-monotonic behavior
56  * (clock jumps) when changing timestamping settings at runtime.
57  */
58 #define STMMAC_HWTS_ACTIVE	(PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
59 				 PTP_TCR_TSCTRLSSR)
60 
61 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
62 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
63 
64 /* Module parameters */
65 #define TX_TIMEO	5000
66 static int watchdog = TX_TIMEO;
67 module_param(watchdog, int, 0644);
68 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
69 
70 static int debug = -1;
71 module_param(debug, int, 0644);
72 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
73 
74 static int phyaddr = -1;
75 module_param(phyaddr, int, 0444);
76 MODULE_PARM_DESC(phyaddr, "Physical device address");
77 
78 #define STMMAC_TX_THRESH(x)	((x)->dma_conf.dma_tx_size / 4)
79 #define STMMAC_RX_THRESH(x)	((x)->dma_conf.dma_rx_size / 4)
80 
81 /* Limit to make sure XDP TX and slow path can coexist */
82 #define STMMAC_XSK_TX_BUDGET_MAX	256
83 #define STMMAC_TX_XSK_AVAIL		16
84 #define STMMAC_RX_FILL_BATCH		16
85 
86 #define STMMAC_XDP_PASS		0
87 #define STMMAC_XDP_CONSUMED	BIT(0)
88 #define STMMAC_XDP_TX		BIT(1)
89 #define STMMAC_XDP_REDIRECT	BIT(2)
90 
91 static int flow_ctrl = FLOW_AUTO;
92 module_param(flow_ctrl, int, 0644);
93 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
94 
95 static int pause = PAUSE_TIME;
96 module_param(pause, int, 0644);
97 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
98 
99 #define TC_DEFAULT 64
100 static int tc = TC_DEFAULT;
101 module_param(tc, int, 0644);
102 MODULE_PARM_DESC(tc, "DMA threshold control value");
103 
104 #define	DEFAULT_BUFSIZE	1536
105 static int buf_sz = DEFAULT_BUFSIZE;
106 module_param(buf_sz, int, 0644);
107 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
108 
109 #define	STMMAC_RX_COPYBREAK	256
110 
111 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
112 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
113 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
114 
115 #define STMMAC_DEFAULT_LPI_TIMER	1000
116 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
117 module_param(eee_timer, int, 0644);
118 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
119 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
120 
121 /* By default the driver will use the ring mode to manage tx and rx descriptors,
122  * but allow user to force to use the chain instead of the ring
123  */
124 static unsigned int chain_mode;
125 module_param(chain_mode, int, 0444);
126 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
127 
128 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
129 /* For MSI interrupts handling */
130 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
131 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
132 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
133 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
134 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue);
135 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue);
136 static void stmmac_reset_queues_param(struct stmmac_priv *priv);
137 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
138 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
139 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
140 					  u32 rxmode, u32 chan);
141 
142 #ifdef CONFIG_DEBUG_FS
143 static const struct net_device_ops stmmac_netdev_ops;
144 static void stmmac_init_fs(struct net_device *dev);
145 static void stmmac_exit_fs(struct net_device *dev);
146 #endif
147 
148 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
149 
150 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
151 {
152 	int ret = 0;
153 
154 	if (enabled) {
155 		ret = clk_prepare_enable(priv->plat->stmmac_clk);
156 		if (ret)
157 			return ret;
158 		ret = clk_prepare_enable(priv->plat->pclk);
159 		if (ret) {
160 			clk_disable_unprepare(priv->plat->stmmac_clk);
161 			return ret;
162 		}
163 		if (priv->plat->clks_config) {
164 			ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
165 			if (ret) {
166 				clk_disable_unprepare(priv->plat->stmmac_clk);
167 				clk_disable_unprepare(priv->plat->pclk);
168 				return ret;
169 			}
170 		}
171 	} else {
172 		clk_disable_unprepare(priv->plat->stmmac_clk);
173 		clk_disable_unprepare(priv->plat->pclk);
174 		if (priv->plat->clks_config)
175 			priv->plat->clks_config(priv->plat->bsp_priv, enabled);
176 	}
177 
178 	return ret;
179 }
180 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
181 
182 /**
183  * stmmac_verify_args - verify the driver parameters.
184  * Description: it checks the driver parameters and set a default in case of
185  * errors.
186  */
187 static void stmmac_verify_args(void)
188 {
189 	if (unlikely(watchdog < 0))
190 		watchdog = TX_TIMEO;
191 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
192 		buf_sz = DEFAULT_BUFSIZE;
193 	if (unlikely(flow_ctrl > 1))
194 		flow_ctrl = FLOW_AUTO;
195 	else if (likely(flow_ctrl < 0))
196 		flow_ctrl = FLOW_OFF;
197 	if (unlikely((pause < 0) || (pause > 0xffff)))
198 		pause = PAUSE_TIME;
199 	if (eee_timer < 0)
200 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
201 }
202 
203 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
204 {
205 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
206 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
207 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
208 	u32 queue;
209 
210 	for (queue = 0; queue < maxq; queue++) {
211 		struct stmmac_channel *ch = &priv->channel[queue];
212 
213 		if (stmmac_xdp_is_enabled(priv) &&
214 		    test_bit(queue, priv->af_xdp_zc_qps)) {
215 			napi_disable(&ch->rxtx_napi);
216 			continue;
217 		}
218 
219 		if (queue < rx_queues_cnt)
220 			napi_disable(&ch->rx_napi);
221 		if (queue < tx_queues_cnt)
222 			napi_disable(&ch->tx_napi);
223 	}
224 }
225 
226 /**
227  * stmmac_disable_all_queues - Disable all queues
228  * @priv: driver private structure
229  */
230 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
231 {
232 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
233 	struct stmmac_rx_queue *rx_q;
234 	u32 queue;
235 
236 	/* synchronize_rcu() needed for pending XDP buffers to drain */
237 	for (queue = 0; queue < rx_queues_cnt; queue++) {
238 		rx_q = &priv->dma_conf.rx_queue[queue];
239 		if (rx_q->xsk_pool) {
240 			synchronize_rcu();
241 			break;
242 		}
243 	}
244 
245 	__stmmac_disable_all_queues(priv);
246 }
247 
248 /**
249  * stmmac_enable_all_queues - Enable all queues
250  * @priv: driver private structure
251  */
252 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
253 {
254 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
255 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
256 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
257 	u32 queue;
258 
259 	for (queue = 0; queue < maxq; queue++) {
260 		struct stmmac_channel *ch = &priv->channel[queue];
261 
262 		if (stmmac_xdp_is_enabled(priv) &&
263 		    test_bit(queue, priv->af_xdp_zc_qps)) {
264 			napi_enable(&ch->rxtx_napi);
265 			continue;
266 		}
267 
268 		if (queue < rx_queues_cnt)
269 			napi_enable(&ch->rx_napi);
270 		if (queue < tx_queues_cnt)
271 			napi_enable(&ch->tx_napi);
272 	}
273 }
274 
275 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
276 {
277 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
278 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
279 		queue_work(priv->wq, &priv->service_task);
280 }
281 
282 static void stmmac_global_err(struct stmmac_priv *priv)
283 {
284 	netif_carrier_off(priv->dev);
285 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
286 	stmmac_service_event_schedule(priv);
287 }
288 
289 /**
290  * stmmac_clk_csr_set - dynamically set the MDC clock
291  * @priv: driver private structure
292  * Description: this is to dynamically set the MDC clock according to the csr
293  * clock input.
294  * Note:
295  *	If a specific clk_csr value is passed from the platform
296  *	this means that the CSR Clock Range selection cannot be
297  *	changed at run-time and it is fixed (as reported in the driver
298  *	documentation). Viceversa the driver will try to set the MDC
299  *	clock dynamically according to the actual clock input.
300  */
301 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
302 {
303 	u32 clk_rate;
304 
305 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
306 
307 	/* Platform provided default clk_csr would be assumed valid
308 	 * for all other cases except for the below mentioned ones.
309 	 * For values higher than the IEEE 802.3 specified frequency
310 	 * we can not estimate the proper divider as it is not known
311 	 * the frequency of clk_csr_i. So we do not change the default
312 	 * divider.
313 	 */
314 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
315 		if (clk_rate < CSR_F_35M)
316 			priv->clk_csr = STMMAC_CSR_20_35M;
317 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
318 			priv->clk_csr = STMMAC_CSR_35_60M;
319 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
320 			priv->clk_csr = STMMAC_CSR_60_100M;
321 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
322 			priv->clk_csr = STMMAC_CSR_100_150M;
323 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
324 			priv->clk_csr = STMMAC_CSR_150_250M;
325 		else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
326 			priv->clk_csr = STMMAC_CSR_250_300M;
327 	}
328 
329 	if (priv->plat->flags & STMMAC_FLAG_HAS_SUN8I) {
330 		if (clk_rate > 160000000)
331 			priv->clk_csr = 0x03;
332 		else if (clk_rate > 80000000)
333 			priv->clk_csr = 0x02;
334 		else if (clk_rate > 40000000)
335 			priv->clk_csr = 0x01;
336 		else
337 			priv->clk_csr = 0;
338 	}
339 
340 	if (priv->plat->has_xgmac) {
341 		if (clk_rate > 400000000)
342 			priv->clk_csr = 0x5;
343 		else if (clk_rate > 350000000)
344 			priv->clk_csr = 0x4;
345 		else if (clk_rate > 300000000)
346 			priv->clk_csr = 0x3;
347 		else if (clk_rate > 250000000)
348 			priv->clk_csr = 0x2;
349 		else if (clk_rate > 150000000)
350 			priv->clk_csr = 0x1;
351 		else
352 			priv->clk_csr = 0x0;
353 	}
354 }
355 
356 static void print_pkt(unsigned char *buf, int len)
357 {
358 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
359 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
360 }
361 
362 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
363 {
364 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
365 	u32 avail;
366 
367 	if (tx_q->dirty_tx > tx_q->cur_tx)
368 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
369 	else
370 		avail = priv->dma_conf.dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
371 
372 	return avail;
373 }
374 
375 /**
376  * stmmac_rx_dirty - Get RX queue dirty
377  * @priv: driver private structure
378  * @queue: RX queue index
379  */
380 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
381 {
382 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
383 	u32 dirty;
384 
385 	if (rx_q->dirty_rx <= rx_q->cur_rx)
386 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
387 	else
388 		dirty = priv->dma_conf.dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
389 
390 	return dirty;
391 }
392 
393 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
394 {
395 	int tx_lpi_timer;
396 
397 	/* Clear/set the SW EEE timer flag based on LPI ET enablement */
398 	priv->eee_sw_timer_en = en ? 0 : 1;
399 	tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
400 	stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
401 }
402 
403 /**
404  * stmmac_enable_eee_mode - check and enter in LPI mode
405  * @priv: driver private structure
406  * Description: this function is to verify and enter in LPI mode in case of
407  * EEE.
408  */
409 static int stmmac_enable_eee_mode(struct stmmac_priv *priv)
410 {
411 	u32 tx_cnt = priv->plat->tx_queues_to_use;
412 	u32 queue;
413 
414 	/* check if all TX queues have the work finished */
415 	for (queue = 0; queue < tx_cnt; queue++) {
416 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
417 
418 		if (tx_q->dirty_tx != tx_q->cur_tx)
419 			return -EBUSY; /* still unfinished work */
420 	}
421 
422 	/* Check and enter in LPI mode */
423 	if (!priv->tx_path_in_lpi_mode)
424 		stmmac_set_eee_mode(priv, priv->hw,
425 			priv->plat->flags & STMMAC_FLAG_EN_TX_LPI_CLOCKGATING);
426 	return 0;
427 }
428 
429 /**
430  * stmmac_disable_eee_mode - disable and exit from LPI mode
431  * @priv: driver private structure
432  * Description: this function is to exit and disable EEE in case of
433  * LPI state is true. This is called by the xmit.
434  */
435 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
436 {
437 	if (!priv->eee_sw_timer_en) {
438 		stmmac_lpi_entry_timer_config(priv, 0);
439 		return;
440 	}
441 
442 	stmmac_reset_eee_mode(priv, priv->hw);
443 	del_timer_sync(&priv->eee_ctrl_timer);
444 	priv->tx_path_in_lpi_mode = false;
445 }
446 
447 /**
448  * stmmac_eee_ctrl_timer - EEE TX SW timer.
449  * @t:  timer_list struct containing private info
450  * Description:
451  *  if there is no data transfer and if we are not in LPI state,
452  *  then MAC Transmitter can be moved to LPI state.
453  */
454 static void stmmac_eee_ctrl_timer(struct timer_list *t)
455 {
456 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
457 
458 	if (stmmac_enable_eee_mode(priv))
459 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
460 }
461 
462 /**
463  * stmmac_eee_init - init EEE
464  * @priv: driver private structure
465  * Description:
466  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
467  *  can also manage EEE, this function enable the LPI state and start related
468  *  timer.
469  */
470 bool stmmac_eee_init(struct stmmac_priv *priv)
471 {
472 	int eee_tw_timer = priv->eee_tw_timer;
473 
474 	/* Using PCS we cannot dial with the phy registers at this stage
475 	 * so we do not support extra feature like EEE.
476 	 */
477 	if (priv->hw->pcs == STMMAC_PCS_TBI ||
478 	    priv->hw->pcs == STMMAC_PCS_RTBI)
479 		return false;
480 
481 	/* Check if MAC core supports the EEE feature. */
482 	if (!priv->dma_cap.eee)
483 		return false;
484 
485 	mutex_lock(&priv->lock);
486 
487 	/* Check if it needs to be deactivated */
488 	if (!priv->eee_active) {
489 		if (priv->eee_enabled) {
490 			netdev_dbg(priv->dev, "disable EEE\n");
491 			stmmac_lpi_entry_timer_config(priv, 0);
492 			del_timer_sync(&priv->eee_ctrl_timer);
493 			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
494 			if (priv->hw->xpcs)
495 				xpcs_config_eee(priv->hw->xpcs,
496 						priv->plat->mult_fact_100ns,
497 						false);
498 		}
499 		mutex_unlock(&priv->lock);
500 		return false;
501 	}
502 
503 	if (priv->eee_active && !priv->eee_enabled) {
504 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
505 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
506 				     eee_tw_timer);
507 		if (priv->hw->xpcs)
508 			xpcs_config_eee(priv->hw->xpcs,
509 					priv->plat->mult_fact_100ns,
510 					true);
511 	}
512 
513 	if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
514 		del_timer_sync(&priv->eee_ctrl_timer);
515 		priv->tx_path_in_lpi_mode = false;
516 		stmmac_lpi_entry_timer_config(priv, 1);
517 	} else {
518 		stmmac_lpi_entry_timer_config(priv, 0);
519 		mod_timer(&priv->eee_ctrl_timer,
520 			  STMMAC_LPI_T(priv->tx_lpi_timer));
521 	}
522 
523 	mutex_unlock(&priv->lock);
524 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
525 	return true;
526 }
527 
528 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
529  * @priv: driver private structure
530  * @p : descriptor pointer
531  * @skb : the socket buffer
532  * Description :
533  * This function will read timestamp from the descriptor & pass it to stack.
534  * and also perform some sanity checks.
535  */
536 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
537 				   struct dma_desc *p, struct sk_buff *skb)
538 {
539 	struct skb_shared_hwtstamps shhwtstamp;
540 	bool found = false;
541 	u64 ns = 0;
542 
543 	if (!priv->hwts_tx_en)
544 		return;
545 
546 	/* exit if skb doesn't support hw tstamp */
547 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
548 		return;
549 
550 	/* check tx tstamp status */
551 	if (stmmac_get_tx_timestamp_status(priv, p)) {
552 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
553 		found = true;
554 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
555 		found = true;
556 	}
557 
558 	if (found) {
559 		ns -= priv->plat->cdc_error_adj;
560 
561 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
562 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
563 
564 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
565 		/* pass tstamp to stack */
566 		skb_tstamp_tx(skb, &shhwtstamp);
567 	}
568 }
569 
570 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
571  * @priv: driver private structure
572  * @p : descriptor pointer
573  * @np : next descriptor pointer
574  * @skb : the socket buffer
575  * Description :
576  * This function will read received packet's timestamp from the descriptor
577  * and pass it to stack. It also perform some sanity checks.
578  */
579 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
580 				   struct dma_desc *np, struct sk_buff *skb)
581 {
582 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
583 	struct dma_desc *desc = p;
584 	u64 ns = 0;
585 
586 	if (!priv->hwts_rx_en)
587 		return;
588 	/* For GMAC4, the valid timestamp is from CTX next desc. */
589 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
590 		desc = np;
591 
592 	/* Check if timestamp is available */
593 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
594 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
595 
596 		ns -= priv->plat->cdc_error_adj;
597 
598 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
599 		shhwtstamp = skb_hwtstamps(skb);
600 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
601 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
602 	} else  {
603 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
604 	}
605 }
606 
607 /**
608  *  stmmac_hwtstamp_set - control hardware timestamping.
609  *  @dev: device pointer.
610  *  @ifr: An IOCTL specific structure, that can contain a pointer to
611  *  a proprietary structure used to pass information to the driver.
612  *  Description:
613  *  This function configures the MAC to enable/disable both outgoing(TX)
614  *  and incoming(RX) packets time stamping based on user input.
615  *  Return Value:
616  *  0 on success and an appropriate -ve integer on failure.
617  */
618 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
619 {
620 	struct stmmac_priv *priv = netdev_priv(dev);
621 	struct hwtstamp_config config;
622 	u32 ptp_v2 = 0;
623 	u32 tstamp_all = 0;
624 	u32 ptp_over_ipv4_udp = 0;
625 	u32 ptp_over_ipv6_udp = 0;
626 	u32 ptp_over_ethernet = 0;
627 	u32 snap_type_sel = 0;
628 	u32 ts_master_en = 0;
629 	u32 ts_event_en = 0;
630 
631 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
632 		netdev_alert(priv->dev, "No support for HW time stamping\n");
633 		priv->hwts_tx_en = 0;
634 		priv->hwts_rx_en = 0;
635 
636 		return -EOPNOTSUPP;
637 	}
638 
639 	if (copy_from_user(&config, ifr->ifr_data,
640 			   sizeof(config)))
641 		return -EFAULT;
642 
643 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
644 		   __func__, config.flags, config.tx_type, config.rx_filter);
645 
646 	if (config.tx_type != HWTSTAMP_TX_OFF &&
647 	    config.tx_type != HWTSTAMP_TX_ON)
648 		return -ERANGE;
649 
650 	if (priv->adv_ts) {
651 		switch (config.rx_filter) {
652 		case HWTSTAMP_FILTER_NONE:
653 			/* time stamp no incoming packet at all */
654 			config.rx_filter = HWTSTAMP_FILTER_NONE;
655 			break;
656 
657 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
658 			/* PTP v1, UDP, any kind of event packet */
659 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
660 			/* 'xmac' hardware can support Sync, Pdelay_Req and
661 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
662 			 * This leaves Delay_Req timestamps out.
663 			 * Enable all events *and* general purpose message
664 			 * timestamping
665 			 */
666 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
667 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
668 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
669 			break;
670 
671 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
672 			/* PTP v1, UDP, Sync packet */
673 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
674 			/* take time stamp for SYNC messages only */
675 			ts_event_en = PTP_TCR_TSEVNTENA;
676 
677 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
678 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
679 			break;
680 
681 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
682 			/* PTP v1, UDP, Delay_req packet */
683 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
684 			/* take time stamp for Delay_Req messages only */
685 			ts_master_en = PTP_TCR_TSMSTRENA;
686 			ts_event_en = PTP_TCR_TSEVNTENA;
687 
688 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
689 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
690 			break;
691 
692 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
693 			/* PTP v2, UDP, any kind of event packet */
694 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
695 			ptp_v2 = PTP_TCR_TSVER2ENA;
696 			/* take time stamp for all event messages */
697 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
698 
699 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
700 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
701 			break;
702 
703 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
704 			/* PTP v2, UDP, Sync packet */
705 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
706 			ptp_v2 = PTP_TCR_TSVER2ENA;
707 			/* take time stamp for SYNC messages only */
708 			ts_event_en = PTP_TCR_TSEVNTENA;
709 
710 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
711 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
712 			break;
713 
714 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
715 			/* PTP v2, UDP, Delay_req packet */
716 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
717 			ptp_v2 = PTP_TCR_TSVER2ENA;
718 			/* take time stamp for Delay_Req messages only */
719 			ts_master_en = PTP_TCR_TSMSTRENA;
720 			ts_event_en = PTP_TCR_TSEVNTENA;
721 
722 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
723 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
724 			break;
725 
726 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
727 			/* PTP v2/802.AS1 any layer, any kind of event packet */
728 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
729 			ptp_v2 = PTP_TCR_TSVER2ENA;
730 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
731 			if (priv->synopsys_id < DWMAC_CORE_4_10)
732 				ts_event_en = PTP_TCR_TSEVNTENA;
733 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
734 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
735 			ptp_over_ethernet = PTP_TCR_TSIPENA;
736 			break;
737 
738 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
739 			/* PTP v2/802.AS1, any layer, Sync packet */
740 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
741 			ptp_v2 = PTP_TCR_TSVER2ENA;
742 			/* take time stamp for SYNC messages only */
743 			ts_event_en = PTP_TCR_TSEVNTENA;
744 
745 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
746 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
747 			ptp_over_ethernet = PTP_TCR_TSIPENA;
748 			break;
749 
750 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
751 			/* PTP v2/802.AS1, any layer, Delay_req packet */
752 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
753 			ptp_v2 = PTP_TCR_TSVER2ENA;
754 			/* take time stamp for Delay_Req messages only */
755 			ts_master_en = PTP_TCR_TSMSTRENA;
756 			ts_event_en = PTP_TCR_TSEVNTENA;
757 
758 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
759 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
760 			ptp_over_ethernet = PTP_TCR_TSIPENA;
761 			break;
762 
763 		case HWTSTAMP_FILTER_NTP_ALL:
764 		case HWTSTAMP_FILTER_ALL:
765 			/* time stamp any incoming packet */
766 			config.rx_filter = HWTSTAMP_FILTER_ALL;
767 			tstamp_all = PTP_TCR_TSENALL;
768 			break;
769 
770 		default:
771 			return -ERANGE;
772 		}
773 	} else {
774 		switch (config.rx_filter) {
775 		case HWTSTAMP_FILTER_NONE:
776 			config.rx_filter = HWTSTAMP_FILTER_NONE;
777 			break;
778 		default:
779 			/* PTP v1, UDP, any kind of event packet */
780 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
781 			break;
782 		}
783 	}
784 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
785 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
786 
787 	priv->systime_flags = STMMAC_HWTS_ACTIVE;
788 
789 	if (priv->hwts_tx_en || priv->hwts_rx_en) {
790 		priv->systime_flags |= tstamp_all | ptp_v2 |
791 				       ptp_over_ethernet | ptp_over_ipv6_udp |
792 				       ptp_over_ipv4_udp | ts_event_en |
793 				       ts_master_en | snap_type_sel;
794 	}
795 
796 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
797 
798 	memcpy(&priv->tstamp_config, &config, sizeof(config));
799 
800 	return copy_to_user(ifr->ifr_data, &config,
801 			    sizeof(config)) ? -EFAULT : 0;
802 }
803 
804 /**
805  *  stmmac_hwtstamp_get - read hardware timestamping.
806  *  @dev: device pointer.
807  *  @ifr: An IOCTL specific structure, that can contain a pointer to
808  *  a proprietary structure used to pass information to the driver.
809  *  Description:
810  *  This function obtain the current hardware timestamping settings
811  *  as requested.
812  */
813 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
814 {
815 	struct stmmac_priv *priv = netdev_priv(dev);
816 	struct hwtstamp_config *config = &priv->tstamp_config;
817 
818 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
819 		return -EOPNOTSUPP;
820 
821 	return copy_to_user(ifr->ifr_data, config,
822 			    sizeof(*config)) ? -EFAULT : 0;
823 }
824 
825 /**
826  * stmmac_init_tstamp_counter - init hardware timestamping counter
827  * @priv: driver private structure
828  * @systime_flags: timestamping flags
829  * Description:
830  * Initialize hardware counter for packet timestamping.
831  * This is valid as long as the interface is open and not suspended.
832  * Will be rerun after resuming from suspend, case in which the timestamping
833  * flags updated by stmmac_hwtstamp_set() also need to be restored.
834  */
835 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
836 {
837 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
838 	struct timespec64 now;
839 	u32 sec_inc = 0;
840 	u64 temp = 0;
841 
842 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
843 		return -EOPNOTSUPP;
844 
845 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
846 	priv->systime_flags = systime_flags;
847 
848 	/* program Sub Second Increment reg */
849 	stmmac_config_sub_second_increment(priv, priv->ptpaddr,
850 					   priv->plat->clk_ptp_rate,
851 					   xmac, &sec_inc);
852 	temp = div_u64(1000000000ULL, sec_inc);
853 
854 	/* Store sub second increment for later use */
855 	priv->sub_second_inc = sec_inc;
856 
857 	/* calculate default added value:
858 	 * formula is :
859 	 * addend = (2^32)/freq_div_ratio;
860 	 * where, freq_div_ratio = 1e9ns/sec_inc
861 	 */
862 	temp = (u64)(temp << 32);
863 	priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
864 	stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
865 
866 	/* initialize system time */
867 	ktime_get_real_ts64(&now);
868 
869 	/* lower 32 bits of tv_sec are safe until y2106 */
870 	stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
871 
872 	return 0;
873 }
874 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
875 
876 /**
877  * stmmac_init_ptp - init PTP
878  * @priv: driver private structure
879  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
880  * This is done by looking at the HW cap. register.
881  * This function also registers the ptp driver.
882  */
883 static int stmmac_init_ptp(struct stmmac_priv *priv)
884 {
885 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
886 	int ret;
887 
888 	if (priv->plat->ptp_clk_freq_config)
889 		priv->plat->ptp_clk_freq_config(priv);
890 
891 	ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
892 	if (ret)
893 		return ret;
894 
895 	priv->adv_ts = 0;
896 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
897 	if (xmac && priv->dma_cap.atime_stamp)
898 		priv->adv_ts = 1;
899 	/* Dwmac 3.x core with extend_desc can support adv_ts */
900 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
901 		priv->adv_ts = 1;
902 
903 	if (priv->dma_cap.time_stamp)
904 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
905 
906 	if (priv->adv_ts)
907 		netdev_info(priv->dev,
908 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
909 
910 	priv->hwts_tx_en = 0;
911 	priv->hwts_rx_en = 0;
912 
913 	if (priv->plat->flags & STMMAC_FLAG_HWTSTAMP_CORRECT_LATENCY)
914 		stmmac_hwtstamp_correct_latency(priv, priv);
915 
916 	return 0;
917 }
918 
919 static void stmmac_release_ptp(struct stmmac_priv *priv)
920 {
921 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
922 	stmmac_ptp_unregister(priv);
923 }
924 
925 /**
926  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
927  *  @priv: driver private structure
928  *  @duplex: duplex passed to the next function
929  *  Description: It is used for configuring the flow control in all queues
930  */
931 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
932 {
933 	u32 tx_cnt = priv->plat->tx_queues_to_use;
934 
935 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
936 			priv->pause, tx_cnt);
937 }
938 
939 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config,
940 						 phy_interface_t interface)
941 {
942 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
943 
944 	if (priv->hw->xpcs)
945 		return &priv->hw->xpcs->pcs;
946 
947 	if (priv->hw->lynx_pcs)
948 		return priv->hw->lynx_pcs;
949 
950 	return NULL;
951 }
952 
953 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
954 			      const struct phylink_link_state *state)
955 {
956 	/* Nothing to do, xpcs_config() handles everything */
957 }
958 
959 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
960 {
961 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
962 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
963 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
964 	bool *hs_enable = &fpe_cfg->hs_enable;
965 
966 	if (is_up && *hs_enable) {
967 		stmmac_fpe_send_mpacket(priv, priv->ioaddr, fpe_cfg,
968 					MPACKET_VERIFY);
969 	} else {
970 		*lo_state = FPE_STATE_OFF;
971 		*lp_state = FPE_STATE_OFF;
972 	}
973 }
974 
975 static void stmmac_mac_link_down(struct phylink_config *config,
976 				 unsigned int mode, phy_interface_t interface)
977 {
978 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
979 
980 	stmmac_mac_set(priv, priv->ioaddr, false);
981 	priv->eee_active = false;
982 	priv->tx_lpi_enabled = false;
983 	priv->eee_enabled = stmmac_eee_init(priv);
984 	stmmac_set_eee_pls(priv, priv->hw, false);
985 
986 	if (priv->dma_cap.fpesel)
987 		stmmac_fpe_link_state_handle(priv, false);
988 }
989 
990 static void stmmac_mac_link_up(struct phylink_config *config,
991 			       struct phy_device *phy,
992 			       unsigned int mode, phy_interface_t interface,
993 			       int speed, int duplex,
994 			       bool tx_pause, bool rx_pause)
995 {
996 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
997 	u32 old_ctrl, ctrl;
998 
999 	if ((priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) &&
1000 	    priv->plat->serdes_powerup)
1001 		priv->plat->serdes_powerup(priv->dev, priv->plat->bsp_priv);
1002 
1003 	old_ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
1004 	ctrl = old_ctrl & ~priv->hw->link.speed_mask;
1005 
1006 	if (interface == PHY_INTERFACE_MODE_USXGMII) {
1007 		switch (speed) {
1008 		case SPEED_10000:
1009 			ctrl |= priv->hw->link.xgmii.speed10000;
1010 			break;
1011 		case SPEED_5000:
1012 			ctrl |= priv->hw->link.xgmii.speed5000;
1013 			break;
1014 		case SPEED_2500:
1015 			ctrl |= priv->hw->link.xgmii.speed2500;
1016 			break;
1017 		default:
1018 			return;
1019 		}
1020 	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1021 		switch (speed) {
1022 		case SPEED_100000:
1023 			ctrl |= priv->hw->link.xlgmii.speed100000;
1024 			break;
1025 		case SPEED_50000:
1026 			ctrl |= priv->hw->link.xlgmii.speed50000;
1027 			break;
1028 		case SPEED_40000:
1029 			ctrl |= priv->hw->link.xlgmii.speed40000;
1030 			break;
1031 		case SPEED_25000:
1032 			ctrl |= priv->hw->link.xlgmii.speed25000;
1033 			break;
1034 		case SPEED_10000:
1035 			ctrl |= priv->hw->link.xgmii.speed10000;
1036 			break;
1037 		case SPEED_2500:
1038 			ctrl |= priv->hw->link.speed2500;
1039 			break;
1040 		case SPEED_1000:
1041 			ctrl |= priv->hw->link.speed1000;
1042 			break;
1043 		default:
1044 			return;
1045 		}
1046 	} else {
1047 		switch (speed) {
1048 		case SPEED_2500:
1049 			ctrl |= priv->hw->link.speed2500;
1050 			break;
1051 		case SPEED_1000:
1052 			ctrl |= priv->hw->link.speed1000;
1053 			break;
1054 		case SPEED_100:
1055 			ctrl |= priv->hw->link.speed100;
1056 			break;
1057 		case SPEED_10:
1058 			ctrl |= priv->hw->link.speed10;
1059 			break;
1060 		default:
1061 			return;
1062 		}
1063 	}
1064 
1065 	priv->speed = speed;
1066 
1067 	if (priv->plat->fix_mac_speed)
1068 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed, mode);
1069 
1070 	if (!duplex)
1071 		ctrl &= ~priv->hw->link.duplex;
1072 	else
1073 		ctrl |= priv->hw->link.duplex;
1074 
1075 	/* Flow Control operation */
1076 	if (rx_pause && tx_pause)
1077 		priv->flow_ctrl = FLOW_AUTO;
1078 	else if (rx_pause && !tx_pause)
1079 		priv->flow_ctrl = FLOW_RX;
1080 	else if (!rx_pause && tx_pause)
1081 		priv->flow_ctrl = FLOW_TX;
1082 	else
1083 		priv->flow_ctrl = FLOW_OFF;
1084 
1085 	stmmac_mac_flow_ctrl(priv, duplex);
1086 
1087 	if (ctrl != old_ctrl)
1088 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1089 
1090 	stmmac_mac_set(priv, priv->ioaddr, true);
1091 	if (phy && priv->dma_cap.eee) {
1092 		priv->eee_active =
1093 			phy_init_eee(phy, !(priv->plat->flags &
1094 				STMMAC_FLAG_RX_CLK_RUNS_IN_LPI)) >= 0;
1095 		priv->eee_enabled = stmmac_eee_init(priv);
1096 		priv->tx_lpi_enabled = priv->eee_enabled;
1097 		stmmac_set_eee_pls(priv, priv->hw, true);
1098 	}
1099 
1100 	if (priv->dma_cap.fpesel)
1101 		stmmac_fpe_link_state_handle(priv, true);
1102 
1103 	if (priv->plat->flags & STMMAC_FLAG_HWTSTAMP_CORRECT_LATENCY)
1104 		stmmac_hwtstamp_correct_latency(priv, priv);
1105 }
1106 
1107 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1108 	.mac_select_pcs = stmmac_mac_select_pcs,
1109 	.mac_config = stmmac_mac_config,
1110 	.mac_link_down = stmmac_mac_link_down,
1111 	.mac_link_up = stmmac_mac_link_up,
1112 };
1113 
1114 /**
1115  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1116  * @priv: driver private structure
1117  * Description: this is to verify if the HW supports the PCS.
1118  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1119  * configured for the TBI, RTBI, or SGMII PHY interface.
1120  */
1121 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1122 {
1123 	int interface = priv->plat->mac_interface;
1124 
1125 	if (priv->dma_cap.pcs) {
1126 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1127 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1128 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1129 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1130 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1131 			priv->hw->pcs = STMMAC_PCS_RGMII;
1132 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1133 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1134 			priv->hw->pcs = STMMAC_PCS_SGMII;
1135 		}
1136 	}
1137 }
1138 
1139 /**
1140  * stmmac_init_phy - PHY initialization
1141  * @dev: net device structure
1142  * Description: it initializes the driver's PHY state, and attaches the PHY
1143  * to the mac driver.
1144  *  Return value:
1145  *  0 on success
1146  */
1147 static int stmmac_init_phy(struct net_device *dev)
1148 {
1149 	struct stmmac_priv *priv = netdev_priv(dev);
1150 	struct fwnode_handle *phy_fwnode;
1151 	struct fwnode_handle *fwnode;
1152 	int ret;
1153 
1154 	if (!phylink_expects_phy(priv->phylink))
1155 		return 0;
1156 
1157 	fwnode = priv->plat->port_node;
1158 	if (!fwnode)
1159 		fwnode = dev_fwnode(priv->device);
1160 
1161 	if (fwnode)
1162 		phy_fwnode = fwnode_get_phy_node(fwnode);
1163 	else
1164 		phy_fwnode = NULL;
1165 
1166 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1167 	 * manually parse it
1168 	 */
1169 	if (!phy_fwnode || IS_ERR(phy_fwnode)) {
1170 		int addr = priv->plat->phy_addr;
1171 		struct phy_device *phydev;
1172 
1173 		if (addr < 0) {
1174 			netdev_err(priv->dev, "no phy found\n");
1175 			return -ENODEV;
1176 		}
1177 
1178 		phydev = mdiobus_get_phy(priv->mii, addr);
1179 		if (!phydev) {
1180 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1181 			return -ENODEV;
1182 		}
1183 
1184 		ret = phylink_connect_phy(priv->phylink, phydev);
1185 	} else {
1186 		fwnode_handle_put(phy_fwnode);
1187 		ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0);
1188 	}
1189 
1190 	if (!priv->plat->pmt) {
1191 		struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1192 
1193 		phylink_ethtool_get_wol(priv->phylink, &wol);
1194 		device_set_wakeup_capable(priv->device, !!wol.supported);
1195 		device_set_wakeup_enable(priv->device, !!wol.wolopts);
1196 	}
1197 
1198 	return ret;
1199 }
1200 
1201 static void stmmac_set_half_duplex(struct stmmac_priv *priv)
1202 {
1203 	/* Half-Duplex can only work with single tx queue */
1204 	if (priv->plat->tx_queues_to_use > 1)
1205 		priv->phylink_config.mac_capabilities &=
1206 			~(MAC_10HD | MAC_100HD | MAC_1000HD);
1207 	else
1208 		priv->phylink_config.mac_capabilities |=
1209 			(MAC_10HD | MAC_100HD | MAC_1000HD);
1210 }
1211 
1212 static int stmmac_phy_setup(struct stmmac_priv *priv)
1213 {
1214 	struct stmmac_mdio_bus_data *mdio_bus_data;
1215 	int mode = priv->plat->phy_interface;
1216 	struct fwnode_handle *fwnode;
1217 	struct phylink *phylink;
1218 	int max_speed;
1219 
1220 	priv->phylink_config.dev = &priv->dev->dev;
1221 	priv->phylink_config.type = PHYLINK_NETDEV;
1222 	priv->phylink_config.mac_managed_pm = true;
1223 
1224 	mdio_bus_data = priv->plat->mdio_bus_data;
1225 	if (mdio_bus_data)
1226 		priv->phylink_config.ovr_an_inband =
1227 			mdio_bus_data->xpcs_an_inband;
1228 
1229 	/* Set the platform/firmware specified interface mode. Note, phylink
1230 	 * deals with the PHY interface mode, not the MAC interface mode.
1231 	 */
1232 	__set_bit(mode, priv->phylink_config.supported_interfaces);
1233 
1234 	/* If we have an xpcs, it defines which PHY interfaces are supported. */
1235 	if (priv->hw->xpcs)
1236 		xpcs_get_interfaces(priv->hw->xpcs,
1237 				    priv->phylink_config.supported_interfaces);
1238 
1239 	priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1240 						MAC_10FD | MAC_100FD |
1241 						MAC_1000FD;
1242 
1243 	stmmac_set_half_duplex(priv);
1244 
1245 	/* Get the MAC specific capabilities */
1246 	stmmac_mac_phylink_get_caps(priv);
1247 
1248 	max_speed = priv->plat->max_speed;
1249 	if (max_speed)
1250 		phylink_limit_mac_speed(&priv->phylink_config, max_speed);
1251 
1252 	fwnode = priv->plat->port_node;
1253 	if (!fwnode)
1254 		fwnode = dev_fwnode(priv->device);
1255 
1256 	phylink = phylink_create(&priv->phylink_config, fwnode,
1257 				 mode, &stmmac_phylink_mac_ops);
1258 	if (IS_ERR(phylink))
1259 		return PTR_ERR(phylink);
1260 
1261 	priv->phylink = phylink;
1262 	return 0;
1263 }
1264 
1265 static void stmmac_display_rx_rings(struct stmmac_priv *priv,
1266 				    struct stmmac_dma_conf *dma_conf)
1267 {
1268 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1269 	unsigned int desc_size;
1270 	void *head_rx;
1271 	u32 queue;
1272 
1273 	/* Display RX rings */
1274 	for (queue = 0; queue < rx_cnt; queue++) {
1275 		struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1276 
1277 		pr_info("\tRX Queue %u rings\n", queue);
1278 
1279 		if (priv->extend_desc) {
1280 			head_rx = (void *)rx_q->dma_erx;
1281 			desc_size = sizeof(struct dma_extended_desc);
1282 		} else {
1283 			head_rx = (void *)rx_q->dma_rx;
1284 			desc_size = sizeof(struct dma_desc);
1285 		}
1286 
1287 		/* Display RX ring */
1288 		stmmac_display_ring(priv, head_rx, dma_conf->dma_rx_size, true,
1289 				    rx_q->dma_rx_phy, desc_size);
1290 	}
1291 }
1292 
1293 static void stmmac_display_tx_rings(struct stmmac_priv *priv,
1294 				    struct stmmac_dma_conf *dma_conf)
1295 {
1296 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1297 	unsigned int desc_size;
1298 	void *head_tx;
1299 	u32 queue;
1300 
1301 	/* Display TX rings */
1302 	for (queue = 0; queue < tx_cnt; queue++) {
1303 		struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1304 
1305 		pr_info("\tTX Queue %d rings\n", queue);
1306 
1307 		if (priv->extend_desc) {
1308 			head_tx = (void *)tx_q->dma_etx;
1309 			desc_size = sizeof(struct dma_extended_desc);
1310 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1311 			head_tx = (void *)tx_q->dma_entx;
1312 			desc_size = sizeof(struct dma_edesc);
1313 		} else {
1314 			head_tx = (void *)tx_q->dma_tx;
1315 			desc_size = sizeof(struct dma_desc);
1316 		}
1317 
1318 		stmmac_display_ring(priv, head_tx, dma_conf->dma_tx_size, false,
1319 				    tx_q->dma_tx_phy, desc_size);
1320 	}
1321 }
1322 
1323 static void stmmac_display_rings(struct stmmac_priv *priv,
1324 				 struct stmmac_dma_conf *dma_conf)
1325 {
1326 	/* Display RX ring */
1327 	stmmac_display_rx_rings(priv, dma_conf);
1328 
1329 	/* Display TX ring */
1330 	stmmac_display_tx_rings(priv, dma_conf);
1331 }
1332 
1333 static int stmmac_set_bfsize(int mtu, int bufsize)
1334 {
1335 	int ret = bufsize;
1336 
1337 	if (mtu >= BUF_SIZE_8KiB)
1338 		ret = BUF_SIZE_16KiB;
1339 	else if (mtu >= BUF_SIZE_4KiB)
1340 		ret = BUF_SIZE_8KiB;
1341 	else if (mtu >= BUF_SIZE_2KiB)
1342 		ret = BUF_SIZE_4KiB;
1343 	else if (mtu > DEFAULT_BUFSIZE)
1344 		ret = BUF_SIZE_2KiB;
1345 	else
1346 		ret = DEFAULT_BUFSIZE;
1347 
1348 	return ret;
1349 }
1350 
1351 /**
1352  * stmmac_clear_rx_descriptors - clear RX descriptors
1353  * @priv: driver private structure
1354  * @dma_conf: structure to take the dma data
1355  * @queue: RX queue index
1356  * Description: this function is called to clear the RX descriptors
1357  * in case of both basic and extended descriptors are used.
1358  */
1359 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv,
1360 					struct stmmac_dma_conf *dma_conf,
1361 					u32 queue)
1362 {
1363 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1364 	int i;
1365 
1366 	/* Clear the RX descriptors */
1367 	for (i = 0; i < dma_conf->dma_rx_size; i++)
1368 		if (priv->extend_desc)
1369 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1370 					priv->use_riwt, priv->mode,
1371 					(i == dma_conf->dma_rx_size - 1),
1372 					dma_conf->dma_buf_sz);
1373 		else
1374 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1375 					priv->use_riwt, priv->mode,
1376 					(i == dma_conf->dma_rx_size - 1),
1377 					dma_conf->dma_buf_sz);
1378 }
1379 
1380 /**
1381  * stmmac_clear_tx_descriptors - clear tx descriptors
1382  * @priv: driver private structure
1383  * @dma_conf: structure to take the dma data
1384  * @queue: TX queue index.
1385  * Description: this function is called to clear the TX descriptors
1386  * in case of both basic and extended descriptors are used.
1387  */
1388 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv,
1389 					struct stmmac_dma_conf *dma_conf,
1390 					u32 queue)
1391 {
1392 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1393 	int i;
1394 
1395 	/* Clear the TX descriptors */
1396 	for (i = 0; i < dma_conf->dma_tx_size; i++) {
1397 		int last = (i == (dma_conf->dma_tx_size - 1));
1398 		struct dma_desc *p;
1399 
1400 		if (priv->extend_desc)
1401 			p = &tx_q->dma_etx[i].basic;
1402 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1403 			p = &tx_q->dma_entx[i].basic;
1404 		else
1405 			p = &tx_q->dma_tx[i];
1406 
1407 		stmmac_init_tx_desc(priv, p, priv->mode, last);
1408 	}
1409 }
1410 
1411 /**
1412  * stmmac_clear_descriptors - clear descriptors
1413  * @priv: driver private structure
1414  * @dma_conf: structure to take the dma data
1415  * Description: this function is called to clear the TX and RX descriptors
1416  * in case of both basic and extended descriptors are used.
1417  */
1418 static void stmmac_clear_descriptors(struct stmmac_priv *priv,
1419 				     struct stmmac_dma_conf *dma_conf)
1420 {
1421 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1422 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1423 	u32 queue;
1424 
1425 	/* Clear the RX descriptors */
1426 	for (queue = 0; queue < rx_queue_cnt; queue++)
1427 		stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1428 
1429 	/* Clear the TX descriptors */
1430 	for (queue = 0; queue < tx_queue_cnt; queue++)
1431 		stmmac_clear_tx_descriptors(priv, dma_conf, queue);
1432 }
1433 
1434 /**
1435  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1436  * @priv: driver private structure
1437  * @dma_conf: structure to take the dma data
1438  * @p: descriptor pointer
1439  * @i: descriptor index
1440  * @flags: gfp flag
1441  * @queue: RX queue index
1442  * Description: this function is called to allocate a receive buffer, perform
1443  * the DMA mapping and init the descriptor.
1444  */
1445 static int stmmac_init_rx_buffers(struct stmmac_priv *priv,
1446 				  struct stmmac_dma_conf *dma_conf,
1447 				  struct dma_desc *p,
1448 				  int i, gfp_t flags, u32 queue)
1449 {
1450 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1451 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1452 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1453 
1454 	if (priv->dma_cap.host_dma_width <= 32)
1455 		gfp |= GFP_DMA32;
1456 
1457 	if (!buf->page) {
1458 		buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1459 		if (!buf->page)
1460 			return -ENOMEM;
1461 		buf->page_offset = stmmac_rx_offset(priv);
1462 	}
1463 
1464 	if (priv->sph && !buf->sec_page) {
1465 		buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1466 		if (!buf->sec_page)
1467 			return -ENOMEM;
1468 
1469 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1470 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1471 	} else {
1472 		buf->sec_page = NULL;
1473 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1474 	}
1475 
1476 	buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1477 
1478 	stmmac_set_desc_addr(priv, p, buf->addr);
1479 	if (dma_conf->dma_buf_sz == BUF_SIZE_16KiB)
1480 		stmmac_init_desc3(priv, p);
1481 
1482 	return 0;
1483 }
1484 
1485 /**
1486  * stmmac_free_rx_buffer - free RX dma buffers
1487  * @priv: private structure
1488  * @rx_q: RX queue
1489  * @i: buffer index.
1490  */
1491 static void stmmac_free_rx_buffer(struct stmmac_priv *priv,
1492 				  struct stmmac_rx_queue *rx_q,
1493 				  int i)
1494 {
1495 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1496 
1497 	if (buf->page)
1498 		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1499 	buf->page = NULL;
1500 
1501 	if (buf->sec_page)
1502 		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1503 	buf->sec_page = NULL;
1504 }
1505 
1506 /**
1507  * stmmac_free_tx_buffer - free RX dma buffers
1508  * @priv: private structure
1509  * @dma_conf: structure to take the dma data
1510  * @queue: RX queue index
1511  * @i: buffer index.
1512  */
1513 static void stmmac_free_tx_buffer(struct stmmac_priv *priv,
1514 				  struct stmmac_dma_conf *dma_conf,
1515 				  u32 queue, int i)
1516 {
1517 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1518 
1519 	if (tx_q->tx_skbuff_dma[i].buf &&
1520 	    tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1521 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1522 			dma_unmap_page(priv->device,
1523 				       tx_q->tx_skbuff_dma[i].buf,
1524 				       tx_q->tx_skbuff_dma[i].len,
1525 				       DMA_TO_DEVICE);
1526 		else
1527 			dma_unmap_single(priv->device,
1528 					 tx_q->tx_skbuff_dma[i].buf,
1529 					 tx_q->tx_skbuff_dma[i].len,
1530 					 DMA_TO_DEVICE);
1531 	}
1532 
1533 	if (tx_q->xdpf[i] &&
1534 	    (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1535 	     tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1536 		xdp_return_frame(tx_q->xdpf[i]);
1537 		tx_q->xdpf[i] = NULL;
1538 	}
1539 
1540 	if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1541 		tx_q->xsk_frames_done++;
1542 
1543 	if (tx_q->tx_skbuff[i] &&
1544 	    tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1545 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1546 		tx_q->tx_skbuff[i] = NULL;
1547 	}
1548 
1549 	tx_q->tx_skbuff_dma[i].buf = 0;
1550 	tx_q->tx_skbuff_dma[i].map_as_page = false;
1551 }
1552 
1553 /**
1554  * dma_free_rx_skbufs - free RX dma buffers
1555  * @priv: private structure
1556  * @dma_conf: structure to take the dma data
1557  * @queue: RX queue index
1558  */
1559 static void dma_free_rx_skbufs(struct stmmac_priv *priv,
1560 			       struct stmmac_dma_conf *dma_conf,
1561 			       u32 queue)
1562 {
1563 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1564 	int i;
1565 
1566 	for (i = 0; i < dma_conf->dma_rx_size; i++)
1567 		stmmac_free_rx_buffer(priv, rx_q, i);
1568 }
1569 
1570 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv,
1571 				   struct stmmac_dma_conf *dma_conf,
1572 				   u32 queue, gfp_t flags)
1573 {
1574 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1575 	int i;
1576 
1577 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1578 		struct dma_desc *p;
1579 		int ret;
1580 
1581 		if (priv->extend_desc)
1582 			p = &((rx_q->dma_erx + i)->basic);
1583 		else
1584 			p = rx_q->dma_rx + i;
1585 
1586 		ret = stmmac_init_rx_buffers(priv, dma_conf, p, i, flags,
1587 					     queue);
1588 		if (ret)
1589 			return ret;
1590 
1591 		rx_q->buf_alloc_num++;
1592 	}
1593 
1594 	return 0;
1595 }
1596 
1597 /**
1598  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1599  * @priv: private structure
1600  * @dma_conf: structure to take the dma data
1601  * @queue: RX queue index
1602  */
1603 static void dma_free_rx_xskbufs(struct stmmac_priv *priv,
1604 				struct stmmac_dma_conf *dma_conf,
1605 				u32 queue)
1606 {
1607 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1608 	int i;
1609 
1610 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1611 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1612 
1613 		if (!buf->xdp)
1614 			continue;
1615 
1616 		xsk_buff_free(buf->xdp);
1617 		buf->xdp = NULL;
1618 	}
1619 }
1620 
1621 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv,
1622 				      struct stmmac_dma_conf *dma_conf,
1623 				      u32 queue)
1624 {
1625 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1626 	int i;
1627 
1628 	/* struct stmmac_xdp_buff is using cb field (maximum size of 24 bytes)
1629 	 * in struct xdp_buff_xsk to stash driver specific information. Thus,
1630 	 * use this macro to make sure no size violations.
1631 	 */
1632 	XSK_CHECK_PRIV_TYPE(struct stmmac_xdp_buff);
1633 
1634 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1635 		struct stmmac_rx_buffer *buf;
1636 		dma_addr_t dma_addr;
1637 		struct dma_desc *p;
1638 
1639 		if (priv->extend_desc)
1640 			p = (struct dma_desc *)(rx_q->dma_erx + i);
1641 		else
1642 			p = rx_q->dma_rx + i;
1643 
1644 		buf = &rx_q->buf_pool[i];
1645 
1646 		buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1647 		if (!buf->xdp)
1648 			return -ENOMEM;
1649 
1650 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1651 		stmmac_set_desc_addr(priv, p, dma_addr);
1652 		rx_q->buf_alloc_num++;
1653 	}
1654 
1655 	return 0;
1656 }
1657 
1658 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1659 {
1660 	if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1661 		return NULL;
1662 
1663 	return xsk_get_pool_from_qid(priv->dev, queue);
1664 }
1665 
1666 /**
1667  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1668  * @priv: driver private structure
1669  * @dma_conf: structure to take the dma data
1670  * @queue: RX queue index
1671  * @flags: gfp flag.
1672  * Description: this function initializes the DMA RX descriptors
1673  * and allocates the socket buffers. It supports the chained and ring
1674  * modes.
1675  */
1676 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv,
1677 				    struct stmmac_dma_conf *dma_conf,
1678 				    u32 queue, gfp_t flags)
1679 {
1680 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1681 	int ret;
1682 
1683 	netif_dbg(priv, probe, priv->dev,
1684 		  "(%s) dma_rx_phy=0x%08x\n", __func__,
1685 		  (u32)rx_q->dma_rx_phy);
1686 
1687 	stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1688 
1689 	xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1690 
1691 	rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1692 
1693 	if (rx_q->xsk_pool) {
1694 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1695 						   MEM_TYPE_XSK_BUFF_POOL,
1696 						   NULL));
1697 		netdev_info(priv->dev,
1698 			    "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1699 			    rx_q->queue_index);
1700 		xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1701 	} else {
1702 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1703 						   MEM_TYPE_PAGE_POOL,
1704 						   rx_q->page_pool));
1705 		netdev_info(priv->dev,
1706 			    "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1707 			    rx_q->queue_index);
1708 	}
1709 
1710 	if (rx_q->xsk_pool) {
1711 		/* RX XDP ZC buffer pool may not be populated, e.g.
1712 		 * xdpsock TX-only.
1713 		 */
1714 		stmmac_alloc_rx_buffers_zc(priv, dma_conf, queue);
1715 	} else {
1716 		ret = stmmac_alloc_rx_buffers(priv, dma_conf, queue, flags);
1717 		if (ret < 0)
1718 			return -ENOMEM;
1719 	}
1720 
1721 	/* Setup the chained descriptor addresses */
1722 	if (priv->mode == STMMAC_CHAIN_MODE) {
1723 		if (priv->extend_desc)
1724 			stmmac_mode_init(priv, rx_q->dma_erx,
1725 					 rx_q->dma_rx_phy,
1726 					 dma_conf->dma_rx_size, 1);
1727 		else
1728 			stmmac_mode_init(priv, rx_q->dma_rx,
1729 					 rx_q->dma_rx_phy,
1730 					 dma_conf->dma_rx_size, 0);
1731 	}
1732 
1733 	return 0;
1734 }
1735 
1736 static int init_dma_rx_desc_rings(struct net_device *dev,
1737 				  struct stmmac_dma_conf *dma_conf,
1738 				  gfp_t flags)
1739 {
1740 	struct stmmac_priv *priv = netdev_priv(dev);
1741 	u32 rx_count = priv->plat->rx_queues_to_use;
1742 	int queue;
1743 	int ret;
1744 
1745 	/* RX INITIALIZATION */
1746 	netif_dbg(priv, probe, priv->dev,
1747 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1748 
1749 	for (queue = 0; queue < rx_count; queue++) {
1750 		ret = __init_dma_rx_desc_rings(priv, dma_conf, queue, flags);
1751 		if (ret)
1752 			goto err_init_rx_buffers;
1753 	}
1754 
1755 	return 0;
1756 
1757 err_init_rx_buffers:
1758 	while (queue >= 0) {
1759 		struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1760 
1761 		if (rx_q->xsk_pool)
1762 			dma_free_rx_xskbufs(priv, dma_conf, queue);
1763 		else
1764 			dma_free_rx_skbufs(priv, dma_conf, queue);
1765 
1766 		rx_q->buf_alloc_num = 0;
1767 		rx_q->xsk_pool = NULL;
1768 
1769 		queue--;
1770 	}
1771 
1772 	return ret;
1773 }
1774 
1775 /**
1776  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1777  * @priv: driver private structure
1778  * @dma_conf: structure to take the dma data
1779  * @queue: TX queue index
1780  * Description: this function initializes the DMA TX descriptors
1781  * and allocates the socket buffers. It supports the chained and ring
1782  * modes.
1783  */
1784 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv,
1785 				    struct stmmac_dma_conf *dma_conf,
1786 				    u32 queue)
1787 {
1788 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1789 	int i;
1790 
1791 	netif_dbg(priv, probe, priv->dev,
1792 		  "(%s) dma_tx_phy=0x%08x\n", __func__,
1793 		  (u32)tx_q->dma_tx_phy);
1794 
1795 	/* Setup the chained descriptor addresses */
1796 	if (priv->mode == STMMAC_CHAIN_MODE) {
1797 		if (priv->extend_desc)
1798 			stmmac_mode_init(priv, tx_q->dma_etx,
1799 					 tx_q->dma_tx_phy,
1800 					 dma_conf->dma_tx_size, 1);
1801 		else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1802 			stmmac_mode_init(priv, tx_q->dma_tx,
1803 					 tx_q->dma_tx_phy,
1804 					 dma_conf->dma_tx_size, 0);
1805 	}
1806 
1807 	tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1808 
1809 	for (i = 0; i < dma_conf->dma_tx_size; i++) {
1810 		struct dma_desc *p;
1811 
1812 		if (priv->extend_desc)
1813 			p = &((tx_q->dma_etx + i)->basic);
1814 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1815 			p = &((tx_q->dma_entx + i)->basic);
1816 		else
1817 			p = tx_q->dma_tx + i;
1818 
1819 		stmmac_clear_desc(priv, p);
1820 
1821 		tx_q->tx_skbuff_dma[i].buf = 0;
1822 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1823 		tx_q->tx_skbuff_dma[i].len = 0;
1824 		tx_q->tx_skbuff_dma[i].last_segment = false;
1825 		tx_q->tx_skbuff[i] = NULL;
1826 	}
1827 
1828 	return 0;
1829 }
1830 
1831 static int init_dma_tx_desc_rings(struct net_device *dev,
1832 				  struct stmmac_dma_conf *dma_conf)
1833 {
1834 	struct stmmac_priv *priv = netdev_priv(dev);
1835 	u32 tx_queue_cnt;
1836 	u32 queue;
1837 
1838 	tx_queue_cnt = priv->plat->tx_queues_to_use;
1839 
1840 	for (queue = 0; queue < tx_queue_cnt; queue++)
1841 		__init_dma_tx_desc_rings(priv, dma_conf, queue);
1842 
1843 	return 0;
1844 }
1845 
1846 /**
1847  * init_dma_desc_rings - init the RX/TX descriptor rings
1848  * @dev: net device structure
1849  * @dma_conf: structure to take the dma data
1850  * @flags: gfp flag.
1851  * Description: this function initializes the DMA RX/TX descriptors
1852  * and allocates the socket buffers. It supports the chained and ring
1853  * modes.
1854  */
1855 static int init_dma_desc_rings(struct net_device *dev,
1856 			       struct stmmac_dma_conf *dma_conf,
1857 			       gfp_t flags)
1858 {
1859 	struct stmmac_priv *priv = netdev_priv(dev);
1860 	int ret;
1861 
1862 	ret = init_dma_rx_desc_rings(dev, dma_conf, flags);
1863 	if (ret)
1864 		return ret;
1865 
1866 	ret = init_dma_tx_desc_rings(dev, dma_conf);
1867 
1868 	stmmac_clear_descriptors(priv, dma_conf);
1869 
1870 	if (netif_msg_hw(priv))
1871 		stmmac_display_rings(priv, dma_conf);
1872 
1873 	return ret;
1874 }
1875 
1876 /**
1877  * dma_free_tx_skbufs - free TX dma buffers
1878  * @priv: private structure
1879  * @dma_conf: structure to take the dma data
1880  * @queue: TX queue index
1881  */
1882 static void dma_free_tx_skbufs(struct stmmac_priv *priv,
1883 			       struct stmmac_dma_conf *dma_conf,
1884 			       u32 queue)
1885 {
1886 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1887 	int i;
1888 
1889 	tx_q->xsk_frames_done = 0;
1890 
1891 	for (i = 0; i < dma_conf->dma_tx_size; i++)
1892 		stmmac_free_tx_buffer(priv, dma_conf, queue, i);
1893 
1894 	if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1895 		xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1896 		tx_q->xsk_frames_done = 0;
1897 		tx_q->xsk_pool = NULL;
1898 	}
1899 }
1900 
1901 /**
1902  * stmmac_free_tx_skbufs - free TX skb buffers
1903  * @priv: private structure
1904  */
1905 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1906 {
1907 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1908 	u32 queue;
1909 
1910 	for (queue = 0; queue < tx_queue_cnt; queue++)
1911 		dma_free_tx_skbufs(priv, &priv->dma_conf, queue);
1912 }
1913 
1914 /**
1915  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1916  * @priv: private structure
1917  * @dma_conf: structure to take the dma data
1918  * @queue: RX queue index
1919  */
1920 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv,
1921 					 struct stmmac_dma_conf *dma_conf,
1922 					 u32 queue)
1923 {
1924 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1925 
1926 	/* Release the DMA RX socket buffers */
1927 	if (rx_q->xsk_pool)
1928 		dma_free_rx_xskbufs(priv, dma_conf, queue);
1929 	else
1930 		dma_free_rx_skbufs(priv, dma_conf, queue);
1931 
1932 	rx_q->buf_alloc_num = 0;
1933 	rx_q->xsk_pool = NULL;
1934 
1935 	/* Free DMA regions of consistent memory previously allocated */
1936 	if (!priv->extend_desc)
1937 		dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1938 				  sizeof(struct dma_desc),
1939 				  rx_q->dma_rx, rx_q->dma_rx_phy);
1940 	else
1941 		dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1942 				  sizeof(struct dma_extended_desc),
1943 				  rx_q->dma_erx, rx_q->dma_rx_phy);
1944 
1945 	if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1946 		xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1947 
1948 	kfree(rx_q->buf_pool);
1949 	if (rx_q->page_pool)
1950 		page_pool_destroy(rx_q->page_pool);
1951 }
1952 
1953 static void free_dma_rx_desc_resources(struct stmmac_priv *priv,
1954 				       struct stmmac_dma_conf *dma_conf)
1955 {
1956 	u32 rx_count = priv->plat->rx_queues_to_use;
1957 	u32 queue;
1958 
1959 	/* Free RX queue resources */
1960 	for (queue = 0; queue < rx_count; queue++)
1961 		__free_dma_rx_desc_resources(priv, dma_conf, queue);
1962 }
1963 
1964 /**
1965  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1966  * @priv: private structure
1967  * @dma_conf: structure to take the dma data
1968  * @queue: TX queue index
1969  */
1970 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv,
1971 					 struct stmmac_dma_conf *dma_conf,
1972 					 u32 queue)
1973 {
1974 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1975 	size_t size;
1976 	void *addr;
1977 
1978 	/* Release the DMA TX socket buffers */
1979 	dma_free_tx_skbufs(priv, dma_conf, queue);
1980 
1981 	if (priv->extend_desc) {
1982 		size = sizeof(struct dma_extended_desc);
1983 		addr = tx_q->dma_etx;
1984 	} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1985 		size = sizeof(struct dma_edesc);
1986 		addr = tx_q->dma_entx;
1987 	} else {
1988 		size = sizeof(struct dma_desc);
1989 		addr = tx_q->dma_tx;
1990 	}
1991 
1992 	size *= dma_conf->dma_tx_size;
1993 
1994 	dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1995 
1996 	kfree(tx_q->tx_skbuff_dma);
1997 	kfree(tx_q->tx_skbuff);
1998 }
1999 
2000 static void free_dma_tx_desc_resources(struct stmmac_priv *priv,
2001 				       struct stmmac_dma_conf *dma_conf)
2002 {
2003 	u32 tx_count = priv->plat->tx_queues_to_use;
2004 	u32 queue;
2005 
2006 	/* Free TX queue resources */
2007 	for (queue = 0; queue < tx_count; queue++)
2008 		__free_dma_tx_desc_resources(priv, dma_conf, queue);
2009 }
2010 
2011 /**
2012  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
2013  * @priv: private structure
2014  * @dma_conf: structure to take the dma data
2015  * @queue: RX queue index
2016  * Description: according to which descriptor can be used (extend or basic)
2017  * this function allocates the resources for TX and RX paths. In case of
2018  * reception, for example, it pre-allocated the RX socket buffer in order to
2019  * allow zero-copy mechanism.
2020  */
2021 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
2022 					 struct stmmac_dma_conf *dma_conf,
2023 					 u32 queue)
2024 {
2025 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
2026 	struct stmmac_channel *ch = &priv->channel[queue];
2027 	bool xdp_prog = stmmac_xdp_is_enabled(priv);
2028 	struct page_pool_params pp_params = { 0 };
2029 	unsigned int num_pages;
2030 	unsigned int napi_id;
2031 	int ret;
2032 
2033 	rx_q->queue_index = queue;
2034 	rx_q->priv_data = priv;
2035 
2036 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
2037 	pp_params.pool_size = dma_conf->dma_rx_size;
2038 	num_pages = DIV_ROUND_UP(dma_conf->dma_buf_sz, PAGE_SIZE);
2039 	pp_params.order = ilog2(num_pages);
2040 	pp_params.nid = dev_to_node(priv->device);
2041 	pp_params.dev = priv->device;
2042 	pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
2043 	pp_params.offset = stmmac_rx_offset(priv);
2044 	pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
2045 
2046 	rx_q->page_pool = page_pool_create(&pp_params);
2047 	if (IS_ERR(rx_q->page_pool)) {
2048 		ret = PTR_ERR(rx_q->page_pool);
2049 		rx_q->page_pool = NULL;
2050 		return ret;
2051 	}
2052 
2053 	rx_q->buf_pool = kcalloc(dma_conf->dma_rx_size,
2054 				 sizeof(*rx_q->buf_pool),
2055 				 GFP_KERNEL);
2056 	if (!rx_q->buf_pool)
2057 		return -ENOMEM;
2058 
2059 	if (priv->extend_desc) {
2060 		rx_q->dma_erx = dma_alloc_coherent(priv->device,
2061 						   dma_conf->dma_rx_size *
2062 						   sizeof(struct dma_extended_desc),
2063 						   &rx_q->dma_rx_phy,
2064 						   GFP_KERNEL);
2065 		if (!rx_q->dma_erx)
2066 			return -ENOMEM;
2067 
2068 	} else {
2069 		rx_q->dma_rx = dma_alloc_coherent(priv->device,
2070 						  dma_conf->dma_rx_size *
2071 						  sizeof(struct dma_desc),
2072 						  &rx_q->dma_rx_phy,
2073 						  GFP_KERNEL);
2074 		if (!rx_q->dma_rx)
2075 			return -ENOMEM;
2076 	}
2077 
2078 	if (stmmac_xdp_is_enabled(priv) &&
2079 	    test_bit(queue, priv->af_xdp_zc_qps))
2080 		napi_id = ch->rxtx_napi.napi_id;
2081 	else
2082 		napi_id = ch->rx_napi.napi_id;
2083 
2084 	ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2085 			       rx_q->queue_index,
2086 			       napi_id);
2087 	if (ret) {
2088 		netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2089 		return -EINVAL;
2090 	}
2091 
2092 	return 0;
2093 }
2094 
2095 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
2096 				       struct stmmac_dma_conf *dma_conf)
2097 {
2098 	u32 rx_count = priv->plat->rx_queues_to_use;
2099 	u32 queue;
2100 	int ret;
2101 
2102 	/* RX queues buffers and DMA */
2103 	for (queue = 0; queue < rx_count; queue++) {
2104 		ret = __alloc_dma_rx_desc_resources(priv, dma_conf, queue);
2105 		if (ret)
2106 			goto err_dma;
2107 	}
2108 
2109 	return 0;
2110 
2111 err_dma:
2112 	free_dma_rx_desc_resources(priv, dma_conf);
2113 
2114 	return ret;
2115 }
2116 
2117 /**
2118  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2119  * @priv: private structure
2120  * @dma_conf: structure to take the dma data
2121  * @queue: TX queue index
2122  * Description: according to which descriptor can be used (extend or basic)
2123  * this function allocates the resources for TX and RX paths. In case of
2124  * reception, for example, it pre-allocated the RX socket buffer in order to
2125  * allow zero-copy mechanism.
2126  */
2127 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2128 					 struct stmmac_dma_conf *dma_conf,
2129 					 u32 queue)
2130 {
2131 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
2132 	size_t size;
2133 	void *addr;
2134 
2135 	tx_q->queue_index = queue;
2136 	tx_q->priv_data = priv;
2137 
2138 	tx_q->tx_skbuff_dma = kcalloc(dma_conf->dma_tx_size,
2139 				      sizeof(*tx_q->tx_skbuff_dma),
2140 				      GFP_KERNEL);
2141 	if (!tx_q->tx_skbuff_dma)
2142 		return -ENOMEM;
2143 
2144 	tx_q->tx_skbuff = kcalloc(dma_conf->dma_tx_size,
2145 				  sizeof(struct sk_buff *),
2146 				  GFP_KERNEL);
2147 	if (!tx_q->tx_skbuff)
2148 		return -ENOMEM;
2149 
2150 	if (priv->extend_desc)
2151 		size = sizeof(struct dma_extended_desc);
2152 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2153 		size = sizeof(struct dma_edesc);
2154 	else
2155 		size = sizeof(struct dma_desc);
2156 
2157 	size *= dma_conf->dma_tx_size;
2158 
2159 	addr = dma_alloc_coherent(priv->device, size,
2160 				  &tx_q->dma_tx_phy, GFP_KERNEL);
2161 	if (!addr)
2162 		return -ENOMEM;
2163 
2164 	if (priv->extend_desc)
2165 		tx_q->dma_etx = addr;
2166 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2167 		tx_q->dma_entx = addr;
2168 	else
2169 		tx_q->dma_tx = addr;
2170 
2171 	return 0;
2172 }
2173 
2174 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2175 				       struct stmmac_dma_conf *dma_conf)
2176 {
2177 	u32 tx_count = priv->plat->tx_queues_to_use;
2178 	u32 queue;
2179 	int ret;
2180 
2181 	/* TX queues buffers and DMA */
2182 	for (queue = 0; queue < tx_count; queue++) {
2183 		ret = __alloc_dma_tx_desc_resources(priv, dma_conf, queue);
2184 		if (ret)
2185 			goto err_dma;
2186 	}
2187 
2188 	return 0;
2189 
2190 err_dma:
2191 	free_dma_tx_desc_resources(priv, dma_conf);
2192 	return ret;
2193 }
2194 
2195 /**
2196  * alloc_dma_desc_resources - alloc TX/RX resources.
2197  * @priv: private structure
2198  * @dma_conf: structure to take the dma data
2199  * Description: according to which descriptor can be used (extend or basic)
2200  * this function allocates the resources for TX and RX paths. In case of
2201  * reception, for example, it pre-allocated the RX socket buffer in order to
2202  * allow zero-copy mechanism.
2203  */
2204 static int alloc_dma_desc_resources(struct stmmac_priv *priv,
2205 				    struct stmmac_dma_conf *dma_conf)
2206 {
2207 	/* RX Allocation */
2208 	int ret = alloc_dma_rx_desc_resources(priv, dma_conf);
2209 
2210 	if (ret)
2211 		return ret;
2212 
2213 	ret = alloc_dma_tx_desc_resources(priv, dma_conf);
2214 
2215 	return ret;
2216 }
2217 
2218 /**
2219  * free_dma_desc_resources - free dma desc resources
2220  * @priv: private structure
2221  * @dma_conf: structure to take the dma data
2222  */
2223 static void free_dma_desc_resources(struct stmmac_priv *priv,
2224 				    struct stmmac_dma_conf *dma_conf)
2225 {
2226 	/* Release the DMA TX socket buffers */
2227 	free_dma_tx_desc_resources(priv, dma_conf);
2228 
2229 	/* Release the DMA RX socket buffers later
2230 	 * to ensure all pending XDP_TX buffers are returned.
2231 	 */
2232 	free_dma_rx_desc_resources(priv, dma_conf);
2233 }
2234 
2235 /**
2236  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2237  *  @priv: driver private structure
2238  *  Description: It is used for enabling the rx queues in the MAC
2239  */
2240 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2241 {
2242 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2243 	int queue;
2244 	u8 mode;
2245 
2246 	for (queue = 0; queue < rx_queues_count; queue++) {
2247 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2248 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2249 	}
2250 }
2251 
2252 /**
2253  * stmmac_start_rx_dma - start RX DMA channel
2254  * @priv: driver private structure
2255  * @chan: RX channel index
2256  * Description:
2257  * This starts a RX DMA channel
2258  */
2259 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2260 {
2261 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2262 	stmmac_start_rx(priv, priv->ioaddr, chan);
2263 }
2264 
2265 /**
2266  * stmmac_start_tx_dma - start TX DMA channel
2267  * @priv: driver private structure
2268  * @chan: TX channel index
2269  * Description:
2270  * This starts a TX DMA channel
2271  */
2272 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2273 {
2274 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2275 	stmmac_start_tx(priv, priv->ioaddr, chan);
2276 }
2277 
2278 /**
2279  * stmmac_stop_rx_dma - stop RX DMA channel
2280  * @priv: driver private structure
2281  * @chan: RX channel index
2282  * Description:
2283  * This stops a RX DMA channel
2284  */
2285 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2286 {
2287 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2288 	stmmac_stop_rx(priv, priv->ioaddr, chan);
2289 }
2290 
2291 /**
2292  * stmmac_stop_tx_dma - stop TX DMA channel
2293  * @priv: driver private structure
2294  * @chan: TX channel index
2295  * Description:
2296  * This stops a TX DMA channel
2297  */
2298 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2299 {
2300 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2301 	stmmac_stop_tx(priv, priv->ioaddr, chan);
2302 }
2303 
2304 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv)
2305 {
2306 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2307 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2308 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2309 	u32 chan;
2310 
2311 	for (chan = 0; chan < dma_csr_ch; chan++) {
2312 		struct stmmac_channel *ch = &priv->channel[chan];
2313 		unsigned long flags;
2314 
2315 		spin_lock_irqsave(&ch->lock, flags);
2316 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2317 		spin_unlock_irqrestore(&ch->lock, flags);
2318 	}
2319 }
2320 
2321 /**
2322  * stmmac_start_all_dma - start all RX and TX DMA channels
2323  * @priv: driver private structure
2324  * Description:
2325  * This starts all the RX and TX DMA channels
2326  */
2327 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2328 {
2329 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2330 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2331 	u32 chan = 0;
2332 
2333 	for (chan = 0; chan < rx_channels_count; chan++)
2334 		stmmac_start_rx_dma(priv, chan);
2335 
2336 	for (chan = 0; chan < tx_channels_count; chan++)
2337 		stmmac_start_tx_dma(priv, chan);
2338 }
2339 
2340 /**
2341  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2342  * @priv: driver private structure
2343  * Description:
2344  * This stops the RX and TX DMA channels
2345  */
2346 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2347 {
2348 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2349 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2350 	u32 chan = 0;
2351 
2352 	for (chan = 0; chan < rx_channels_count; chan++)
2353 		stmmac_stop_rx_dma(priv, chan);
2354 
2355 	for (chan = 0; chan < tx_channels_count; chan++)
2356 		stmmac_stop_tx_dma(priv, chan);
2357 }
2358 
2359 /**
2360  *  stmmac_dma_operation_mode - HW DMA operation mode
2361  *  @priv: driver private structure
2362  *  Description: it is used for configuring the DMA operation mode register in
2363  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2364  */
2365 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2366 {
2367 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2368 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2369 	int rxfifosz = priv->plat->rx_fifo_size;
2370 	int txfifosz = priv->plat->tx_fifo_size;
2371 	u32 txmode = 0;
2372 	u32 rxmode = 0;
2373 	u32 chan = 0;
2374 	u8 qmode = 0;
2375 
2376 	if (rxfifosz == 0)
2377 		rxfifosz = priv->dma_cap.rx_fifo_size;
2378 	if (txfifosz == 0)
2379 		txfifosz = priv->dma_cap.tx_fifo_size;
2380 
2381 	/* Adjust for real per queue fifo size */
2382 	rxfifosz /= rx_channels_count;
2383 	txfifosz /= tx_channels_count;
2384 
2385 	if (priv->plat->force_thresh_dma_mode) {
2386 		txmode = tc;
2387 		rxmode = tc;
2388 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2389 		/*
2390 		 * In case of GMAC, SF mode can be enabled
2391 		 * to perform the TX COE in HW. This depends on:
2392 		 * 1) TX COE if actually supported
2393 		 * 2) There is no bugged Jumbo frame support
2394 		 *    that needs to not insert csum in the TDES.
2395 		 */
2396 		txmode = SF_DMA_MODE;
2397 		rxmode = SF_DMA_MODE;
2398 		priv->xstats.threshold = SF_DMA_MODE;
2399 	} else {
2400 		txmode = tc;
2401 		rxmode = SF_DMA_MODE;
2402 	}
2403 
2404 	/* configure all channels */
2405 	for (chan = 0; chan < rx_channels_count; chan++) {
2406 		struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2407 		u32 buf_size;
2408 
2409 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2410 
2411 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2412 				rxfifosz, qmode);
2413 
2414 		if (rx_q->xsk_pool) {
2415 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2416 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2417 					      buf_size,
2418 					      chan);
2419 		} else {
2420 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2421 					      priv->dma_conf.dma_buf_sz,
2422 					      chan);
2423 		}
2424 	}
2425 
2426 	for (chan = 0; chan < tx_channels_count; chan++) {
2427 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2428 
2429 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2430 				txfifosz, qmode);
2431 	}
2432 }
2433 
2434 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2435 {
2436 	struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2437 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2438 	struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[queue];
2439 	struct xsk_buff_pool *pool = tx_q->xsk_pool;
2440 	unsigned int entry = tx_q->cur_tx;
2441 	struct dma_desc *tx_desc = NULL;
2442 	struct xdp_desc xdp_desc;
2443 	bool work_done = true;
2444 	u32 tx_set_ic_bit = 0;
2445 	unsigned long flags;
2446 
2447 	/* Avoids TX time-out as we are sharing with slow path */
2448 	txq_trans_cond_update(nq);
2449 
2450 	budget = min(budget, stmmac_tx_avail(priv, queue));
2451 
2452 	while (budget-- > 0) {
2453 		dma_addr_t dma_addr;
2454 		bool set_ic;
2455 
2456 		/* We are sharing with slow path and stop XSK TX desc submission when
2457 		 * available TX ring is less than threshold.
2458 		 */
2459 		if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2460 		    !netif_carrier_ok(priv->dev)) {
2461 			work_done = false;
2462 			break;
2463 		}
2464 
2465 		if (!xsk_tx_peek_desc(pool, &xdp_desc))
2466 			break;
2467 
2468 		if (likely(priv->extend_desc))
2469 			tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2470 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2471 			tx_desc = &tx_q->dma_entx[entry].basic;
2472 		else
2473 			tx_desc = tx_q->dma_tx + entry;
2474 
2475 		dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2476 		xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2477 
2478 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2479 
2480 		/* To return XDP buffer to XSK pool, we simple call
2481 		 * xsk_tx_completed(), so we don't need to fill up
2482 		 * 'buf' and 'xdpf'.
2483 		 */
2484 		tx_q->tx_skbuff_dma[entry].buf = 0;
2485 		tx_q->xdpf[entry] = NULL;
2486 
2487 		tx_q->tx_skbuff_dma[entry].map_as_page = false;
2488 		tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2489 		tx_q->tx_skbuff_dma[entry].last_segment = true;
2490 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2491 
2492 		stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2493 
2494 		tx_q->tx_count_frames++;
2495 
2496 		if (!priv->tx_coal_frames[queue])
2497 			set_ic = false;
2498 		else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2499 			set_ic = true;
2500 		else
2501 			set_ic = false;
2502 
2503 		if (set_ic) {
2504 			tx_q->tx_count_frames = 0;
2505 			stmmac_set_tx_ic(priv, tx_desc);
2506 			tx_set_ic_bit++;
2507 		}
2508 
2509 		stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2510 				       true, priv->mode, true, true,
2511 				       xdp_desc.len);
2512 
2513 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
2514 
2515 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
2516 		entry = tx_q->cur_tx;
2517 	}
2518 	flags = u64_stats_update_begin_irqsave(&txq_stats->syncp);
2519 	txq_stats->tx_set_ic_bit += tx_set_ic_bit;
2520 	u64_stats_update_end_irqrestore(&txq_stats->syncp, flags);
2521 
2522 	if (tx_desc) {
2523 		stmmac_flush_tx_descriptors(priv, queue);
2524 		xsk_tx_release(pool);
2525 	}
2526 
2527 	/* Return true if all of the 3 conditions are met
2528 	 *  a) TX Budget is still available
2529 	 *  b) work_done = true when XSK TX desc peek is empty (no more
2530 	 *     pending XSK TX for transmission)
2531 	 */
2532 	return !!budget && work_done;
2533 }
2534 
2535 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
2536 {
2537 	if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
2538 		tc += 64;
2539 
2540 		if (priv->plat->force_thresh_dma_mode)
2541 			stmmac_set_dma_operation_mode(priv, tc, tc, chan);
2542 		else
2543 			stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
2544 						      chan);
2545 
2546 		priv->xstats.threshold = tc;
2547 	}
2548 }
2549 
2550 /**
2551  * stmmac_tx_clean - to manage the transmission completion
2552  * @priv: driver private structure
2553  * @budget: napi budget limiting this functions packet handling
2554  * @queue: TX queue index
2555  * Description: it reclaims the transmit resources after transmission completes.
2556  */
2557 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2558 {
2559 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2560 	struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[queue];
2561 	unsigned int bytes_compl = 0, pkts_compl = 0;
2562 	unsigned int entry, xmits = 0, count = 0;
2563 	u32 tx_packets = 0, tx_errors = 0;
2564 	unsigned long flags;
2565 
2566 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2567 
2568 	tx_q->xsk_frames_done = 0;
2569 
2570 	entry = tx_q->dirty_tx;
2571 
2572 	/* Try to clean all TX complete frame in 1 shot */
2573 	while ((entry != tx_q->cur_tx) && count < priv->dma_conf.dma_tx_size) {
2574 		struct xdp_frame *xdpf;
2575 		struct sk_buff *skb;
2576 		struct dma_desc *p;
2577 		int status;
2578 
2579 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2580 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2581 			xdpf = tx_q->xdpf[entry];
2582 			skb = NULL;
2583 		} else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2584 			xdpf = NULL;
2585 			skb = tx_q->tx_skbuff[entry];
2586 		} else {
2587 			xdpf = NULL;
2588 			skb = NULL;
2589 		}
2590 
2591 		if (priv->extend_desc)
2592 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
2593 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2594 			p = &tx_q->dma_entx[entry].basic;
2595 		else
2596 			p = tx_q->dma_tx + entry;
2597 
2598 		status = stmmac_tx_status(priv,	&priv->xstats, p, priv->ioaddr);
2599 		/* Check if the descriptor is owned by the DMA */
2600 		if (unlikely(status & tx_dma_own))
2601 			break;
2602 
2603 		count++;
2604 
2605 		/* Make sure descriptor fields are read after reading
2606 		 * the own bit.
2607 		 */
2608 		dma_rmb();
2609 
2610 		/* Just consider the last segment and ...*/
2611 		if (likely(!(status & tx_not_ls))) {
2612 			/* ... verify the status error condition */
2613 			if (unlikely(status & tx_err)) {
2614 				tx_errors++;
2615 				if (unlikely(status & tx_err_bump_tc))
2616 					stmmac_bump_dma_threshold(priv, queue);
2617 			} else {
2618 				tx_packets++;
2619 			}
2620 			if (skb)
2621 				stmmac_get_tx_hwtstamp(priv, p, skb);
2622 		}
2623 
2624 		if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2625 			   tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2626 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2627 				dma_unmap_page(priv->device,
2628 					       tx_q->tx_skbuff_dma[entry].buf,
2629 					       tx_q->tx_skbuff_dma[entry].len,
2630 					       DMA_TO_DEVICE);
2631 			else
2632 				dma_unmap_single(priv->device,
2633 						 tx_q->tx_skbuff_dma[entry].buf,
2634 						 tx_q->tx_skbuff_dma[entry].len,
2635 						 DMA_TO_DEVICE);
2636 			tx_q->tx_skbuff_dma[entry].buf = 0;
2637 			tx_q->tx_skbuff_dma[entry].len = 0;
2638 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2639 		}
2640 
2641 		stmmac_clean_desc3(priv, tx_q, p);
2642 
2643 		tx_q->tx_skbuff_dma[entry].last_segment = false;
2644 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2645 
2646 		if (xdpf &&
2647 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2648 			xdp_return_frame_rx_napi(xdpf);
2649 			tx_q->xdpf[entry] = NULL;
2650 		}
2651 
2652 		if (xdpf &&
2653 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2654 			xdp_return_frame(xdpf);
2655 			tx_q->xdpf[entry] = NULL;
2656 		}
2657 
2658 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2659 			tx_q->xsk_frames_done++;
2660 
2661 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2662 			if (likely(skb)) {
2663 				pkts_compl++;
2664 				bytes_compl += skb->len;
2665 				dev_consume_skb_any(skb);
2666 				tx_q->tx_skbuff[entry] = NULL;
2667 			}
2668 		}
2669 
2670 		stmmac_release_tx_desc(priv, p, priv->mode);
2671 
2672 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
2673 	}
2674 	tx_q->dirty_tx = entry;
2675 
2676 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2677 				  pkts_compl, bytes_compl);
2678 
2679 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2680 								queue))) &&
2681 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2682 
2683 		netif_dbg(priv, tx_done, priv->dev,
2684 			  "%s: restart transmit\n", __func__);
2685 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2686 	}
2687 
2688 	if (tx_q->xsk_pool) {
2689 		bool work_done;
2690 
2691 		if (tx_q->xsk_frames_done)
2692 			xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2693 
2694 		if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2695 			xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2696 
2697 		/* For XSK TX, we try to send as many as possible.
2698 		 * If XSK work done (XSK TX desc empty and budget still
2699 		 * available), return "budget - 1" to reenable TX IRQ.
2700 		 * Else, return "budget" to make NAPI continue polling.
2701 		 */
2702 		work_done = stmmac_xdp_xmit_zc(priv, queue,
2703 					       STMMAC_XSK_TX_BUDGET_MAX);
2704 		if (work_done)
2705 			xmits = budget - 1;
2706 		else
2707 			xmits = budget;
2708 	}
2709 
2710 	if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2711 	    priv->eee_sw_timer_en) {
2712 		if (stmmac_enable_eee_mode(priv))
2713 			mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2714 	}
2715 
2716 	/* We still have pending packets, let's call for a new scheduling */
2717 	if (tx_q->dirty_tx != tx_q->cur_tx)
2718 		stmmac_tx_timer_arm(priv, queue);
2719 
2720 	flags = u64_stats_update_begin_irqsave(&txq_stats->syncp);
2721 	txq_stats->tx_packets += tx_packets;
2722 	txq_stats->tx_pkt_n += tx_packets;
2723 	txq_stats->tx_clean++;
2724 	u64_stats_update_end_irqrestore(&txq_stats->syncp, flags);
2725 
2726 	priv->xstats.tx_errors += tx_errors;
2727 
2728 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2729 
2730 	/* Combine decisions from TX clean and XSK TX */
2731 	return max(count, xmits);
2732 }
2733 
2734 /**
2735  * stmmac_tx_err - to manage the tx error
2736  * @priv: driver private structure
2737  * @chan: channel index
2738  * Description: it cleans the descriptors and restarts the transmission
2739  * in case of transmission errors.
2740  */
2741 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2742 {
2743 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2744 
2745 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2746 
2747 	stmmac_stop_tx_dma(priv, chan);
2748 	dma_free_tx_skbufs(priv, &priv->dma_conf, chan);
2749 	stmmac_clear_tx_descriptors(priv, &priv->dma_conf, chan);
2750 	stmmac_reset_tx_queue(priv, chan);
2751 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2752 			    tx_q->dma_tx_phy, chan);
2753 	stmmac_start_tx_dma(priv, chan);
2754 
2755 	priv->xstats.tx_errors++;
2756 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2757 }
2758 
2759 /**
2760  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2761  *  @priv: driver private structure
2762  *  @txmode: TX operating mode
2763  *  @rxmode: RX operating mode
2764  *  @chan: channel index
2765  *  Description: it is used for configuring of the DMA operation mode in
2766  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2767  *  mode.
2768  */
2769 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2770 					  u32 rxmode, u32 chan)
2771 {
2772 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2773 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2774 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2775 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2776 	int rxfifosz = priv->plat->rx_fifo_size;
2777 	int txfifosz = priv->plat->tx_fifo_size;
2778 
2779 	if (rxfifosz == 0)
2780 		rxfifosz = priv->dma_cap.rx_fifo_size;
2781 	if (txfifosz == 0)
2782 		txfifosz = priv->dma_cap.tx_fifo_size;
2783 
2784 	/* Adjust for real per queue fifo size */
2785 	rxfifosz /= rx_channels_count;
2786 	txfifosz /= tx_channels_count;
2787 
2788 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2789 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2790 }
2791 
2792 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2793 {
2794 	int ret;
2795 
2796 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2797 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2798 	if (ret && (ret != -EINVAL)) {
2799 		stmmac_global_err(priv);
2800 		return true;
2801 	}
2802 
2803 	return false;
2804 }
2805 
2806 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2807 {
2808 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2809 						 &priv->xstats, chan, dir);
2810 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2811 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2812 	struct stmmac_channel *ch = &priv->channel[chan];
2813 	struct napi_struct *rx_napi;
2814 	struct napi_struct *tx_napi;
2815 	unsigned long flags;
2816 
2817 	rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2818 	tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2819 
2820 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2821 		if (napi_schedule_prep(rx_napi)) {
2822 			spin_lock_irqsave(&ch->lock, flags);
2823 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2824 			spin_unlock_irqrestore(&ch->lock, flags);
2825 			__napi_schedule(rx_napi);
2826 		}
2827 	}
2828 
2829 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2830 		if (napi_schedule_prep(tx_napi)) {
2831 			spin_lock_irqsave(&ch->lock, flags);
2832 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2833 			spin_unlock_irqrestore(&ch->lock, flags);
2834 			__napi_schedule(tx_napi);
2835 		}
2836 	}
2837 
2838 	return status;
2839 }
2840 
2841 /**
2842  * stmmac_dma_interrupt - DMA ISR
2843  * @priv: driver private structure
2844  * Description: this is the DMA ISR. It is called by the main ISR.
2845  * It calls the dwmac dma routine and schedule poll method in case of some
2846  * work can be done.
2847  */
2848 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2849 {
2850 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2851 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2852 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2853 				tx_channel_count : rx_channel_count;
2854 	u32 chan;
2855 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2856 
2857 	/* Make sure we never check beyond our status buffer. */
2858 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2859 		channels_to_check = ARRAY_SIZE(status);
2860 
2861 	for (chan = 0; chan < channels_to_check; chan++)
2862 		status[chan] = stmmac_napi_check(priv, chan,
2863 						 DMA_DIR_RXTX);
2864 
2865 	for (chan = 0; chan < tx_channel_count; chan++) {
2866 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2867 			/* Try to bump up the dma threshold on this failure */
2868 			stmmac_bump_dma_threshold(priv, chan);
2869 		} else if (unlikely(status[chan] == tx_hard_error)) {
2870 			stmmac_tx_err(priv, chan);
2871 		}
2872 	}
2873 }
2874 
2875 /**
2876  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2877  * @priv: driver private structure
2878  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2879  */
2880 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2881 {
2882 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2883 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2884 
2885 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2886 
2887 	if (priv->dma_cap.rmon) {
2888 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2889 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2890 	} else
2891 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2892 }
2893 
2894 /**
2895  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2896  * @priv: driver private structure
2897  * Description:
2898  *  new GMAC chip generations have a new register to indicate the
2899  *  presence of the optional feature/functions.
2900  *  This can be also used to override the value passed through the
2901  *  platform and necessary for old MAC10/100 and GMAC chips.
2902  */
2903 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2904 {
2905 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2906 }
2907 
2908 /**
2909  * stmmac_check_ether_addr - check if the MAC addr is valid
2910  * @priv: driver private structure
2911  * Description:
2912  * it is to verify if the MAC address is valid, in case of failures it
2913  * generates a random MAC address
2914  */
2915 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2916 {
2917 	u8 addr[ETH_ALEN];
2918 
2919 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2920 		stmmac_get_umac_addr(priv, priv->hw, addr, 0);
2921 		if (is_valid_ether_addr(addr))
2922 			eth_hw_addr_set(priv->dev, addr);
2923 		else
2924 			eth_hw_addr_random(priv->dev);
2925 		dev_info(priv->device, "device MAC address %pM\n",
2926 			 priv->dev->dev_addr);
2927 	}
2928 }
2929 
2930 /**
2931  * stmmac_init_dma_engine - DMA init.
2932  * @priv: driver private structure
2933  * Description:
2934  * It inits the DMA invoking the specific MAC/GMAC callback.
2935  * Some DMA parameters can be passed from the platform;
2936  * in case of these are not passed a default is kept for the MAC or GMAC.
2937  */
2938 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2939 {
2940 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2941 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2942 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2943 	struct stmmac_rx_queue *rx_q;
2944 	struct stmmac_tx_queue *tx_q;
2945 	u32 chan = 0;
2946 	int atds = 0;
2947 	int ret = 0;
2948 
2949 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2950 		dev_err(priv->device, "Invalid DMA configuration\n");
2951 		return -EINVAL;
2952 	}
2953 
2954 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2955 		atds = 1;
2956 
2957 	ret = stmmac_reset(priv, priv->ioaddr);
2958 	if (ret) {
2959 		dev_err(priv->device, "Failed to reset the dma\n");
2960 		return ret;
2961 	}
2962 
2963 	/* DMA Configuration */
2964 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2965 
2966 	if (priv->plat->axi)
2967 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2968 
2969 	/* DMA CSR Channel configuration */
2970 	for (chan = 0; chan < dma_csr_ch; chan++) {
2971 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2972 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2973 	}
2974 
2975 	/* DMA RX Channel Configuration */
2976 	for (chan = 0; chan < rx_channels_count; chan++) {
2977 		rx_q = &priv->dma_conf.rx_queue[chan];
2978 
2979 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2980 				    rx_q->dma_rx_phy, chan);
2981 
2982 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2983 				     (rx_q->buf_alloc_num *
2984 				      sizeof(struct dma_desc));
2985 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2986 				       rx_q->rx_tail_addr, chan);
2987 	}
2988 
2989 	/* DMA TX Channel Configuration */
2990 	for (chan = 0; chan < tx_channels_count; chan++) {
2991 		tx_q = &priv->dma_conf.tx_queue[chan];
2992 
2993 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2994 				    tx_q->dma_tx_phy, chan);
2995 
2996 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2997 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2998 				       tx_q->tx_tail_addr, chan);
2999 	}
3000 
3001 	return ret;
3002 }
3003 
3004 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
3005 {
3006 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
3007 	u32 tx_coal_timer = priv->tx_coal_timer[queue];
3008 
3009 	if (!tx_coal_timer)
3010 		return;
3011 
3012 	hrtimer_start(&tx_q->txtimer,
3013 		      STMMAC_COAL_TIMER(tx_coal_timer),
3014 		      HRTIMER_MODE_REL);
3015 }
3016 
3017 /**
3018  * stmmac_tx_timer - mitigation sw timer for tx.
3019  * @t: data pointer
3020  * Description:
3021  * This is the timer handler to directly invoke the stmmac_tx_clean.
3022  */
3023 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
3024 {
3025 	struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
3026 	struct stmmac_priv *priv = tx_q->priv_data;
3027 	struct stmmac_channel *ch;
3028 	struct napi_struct *napi;
3029 
3030 	ch = &priv->channel[tx_q->queue_index];
3031 	napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
3032 
3033 	if (likely(napi_schedule_prep(napi))) {
3034 		unsigned long flags;
3035 
3036 		spin_lock_irqsave(&ch->lock, flags);
3037 		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
3038 		spin_unlock_irqrestore(&ch->lock, flags);
3039 		__napi_schedule(napi);
3040 	}
3041 
3042 	return HRTIMER_NORESTART;
3043 }
3044 
3045 /**
3046  * stmmac_init_coalesce - init mitigation options.
3047  * @priv: driver private structure
3048  * Description:
3049  * This inits the coalesce parameters: i.e. timer rate,
3050  * timer handler and default threshold used for enabling the
3051  * interrupt on completion bit.
3052  */
3053 static void stmmac_init_coalesce(struct stmmac_priv *priv)
3054 {
3055 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
3056 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
3057 	u32 chan;
3058 
3059 	for (chan = 0; chan < tx_channel_count; chan++) {
3060 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3061 
3062 		priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
3063 		priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
3064 
3065 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3066 		tx_q->txtimer.function = stmmac_tx_timer;
3067 	}
3068 
3069 	for (chan = 0; chan < rx_channel_count; chan++)
3070 		priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
3071 }
3072 
3073 static void stmmac_set_rings_length(struct stmmac_priv *priv)
3074 {
3075 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
3076 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
3077 	u32 chan;
3078 
3079 	/* set TX ring length */
3080 	for (chan = 0; chan < tx_channels_count; chan++)
3081 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
3082 				       (priv->dma_conf.dma_tx_size - 1), chan);
3083 
3084 	/* set RX ring length */
3085 	for (chan = 0; chan < rx_channels_count; chan++)
3086 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
3087 				       (priv->dma_conf.dma_rx_size - 1), chan);
3088 }
3089 
3090 /**
3091  *  stmmac_set_tx_queue_weight - Set TX queue weight
3092  *  @priv: driver private structure
3093  *  Description: It is used for setting TX queues weight
3094  */
3095 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
3096 {
3097 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3098 	u32 weight;
3099 	u32 queue;
3100 
3101 	for (queue = 0; queue < tx_queues_count; queue++) {
3102 		weight = priv->plat->tx_queues_cfg[queue].weight;
3103 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
3104 	}
3105 }
3106 
3107 /**
3108  *  stmmac_configure_cbs - Configure CBS in TX queue
3109  *  @priv: driver private structure
3110  *  Description: It is used for configuring CBS in AVB TX queues
3111  */
3112 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3113 {
3114 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3115 	u32 mode_to_use;
3116 	u32 queue;
3117 
3118 	/* queue 0 is reserved for legacy traffic */
3119 	for (queue = 1; queue < tx_queues_count; queue++) {
3120 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3121 		if (mode_to_use == MTL_QUEUE_DCB)
3122 			continue;
3123 
3124 		stmmac_config_cbs(priv, priv->hw,
3125 				priv->plat->tx_queues_cfg[queue].send_slope,
3126 				priv->plat->tx_queues_cfg[queue].idle_slope,
3127 				priv->plat->tx_queues_cfg[queue].high_credit,
3128 				priv->plat->tx_queues_cfg[queue].low_credit,
3129 				queue);
3130 	}
3131 }
3132 
3133 /**
3134  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3135  *  @priv: driver private structure
3136  *  Description: It is used for mapping RX queues to RX dma channels
3137  */
3138 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3139 {
3140 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3141 	u32 queue;
3142 	u32 chan;
3143 
3144 	for (queue = 0; queue < rx_queues_count; queue++) {
3145 		chan = priv->plat->rx_queues_cfg[queue].chan;
3146 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3147 	}
3148 }
3149 
3150 /**
3151  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3152  *  @priv: driver private structure
3153  *  Description: It is used for configuring the RX Queue Priority
3154  */
3155 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3156 {
3157 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3158 	u32 queue;
3159 	u32 prio;
3160 
3161 	for (queue = 0; queue < rx_queues_count; queue++) {
3162 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
3163 			continue;
3164 
3165 		prio = priv->plat->rx_queues_cfg[queue].prio;
3166 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3167 	}
3168 }
3169 
3170 /**
3171  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3172  *  @priv: driver private structure
3173  *  Description: It is used for configuring the TX Queue Priority
3174  */
3175 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3176 {
3177 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3178 	u32 queue;
3179 	u32 prio;
3180 
3181 	for (queue = 0; queue < tx_queues_count; queue++) {
3182 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
3183 			continue;
3184 
3185 		prio = priv->plat->tx_queues_cfg[queue].prio;
3186 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3187 	}
3188 }
3189 
3190 /**
3191  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3192  *  @priv: driver private structure
3193  *  Description: It is used for configuring the RX queue routing
3194  */
3195 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3196 {
3197 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3198 	u32 queue;
3199 	u8 packet;
3200 
3201 	for (queue = 0; queue < rx_queues_count; queue++) {
3202 		/* no specific packet type routing specified for the queue */
3203 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3204 			continue;
3205 
3206 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3207 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3208 	}
3209 }
3210 
3211 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3212 {
3213 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3214 		priv->rss.enable = false;
3215 		return;
3216 	}
3217 
3218 	if (priv->dev->features & NETIF_F_RXHASH)
3219 		priv->rss.enable = true;
3220 	else
3221 		priv->rss.enable = false;
3222 
3223 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
3224 			     priv->plat->rx_queues_to_use);
3225 }
3226 
3227 /**
3228  *  stmmac_mtl_configuration - Configure MTL
3229  *  @priv: driver private structure
3230  *  Description: It is used for configurring MTL
3231  */
3232 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3233 {
3234 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3235 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3236 
3237 	if (tx_queues_count > 1)
3238 		stmmac_set_tx_queue_weight(priv);
3239 
3240 	/* Configure MTL RX algorithms */
3241 	if (rx_queues_count > 1)
3242 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3243 				priv->plat->rx_sched_algorithm);
3244 
3245 	/* Configure MTL TX algorithms */
3246 	if (tx_queues_count > 1)
3247 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3248 				priv->plat->tx_sched_algorithm);
3249 
3250 	/* Configure CBS in AVB TX queues */
3251 	if (tx_queues_count > 1)
3252 		stmmac_configure_cbs(priv);
3253 
3254 	/* Map RX MTL to DMA channels */
3255 	stmmac_rx_queue_dma_chan_map(priv);
3256 
3257 	/* Enable MAC RX Queues */
3258 	stmmac_mac_enable_rx_queues(priv);
3259 
3260 	/* Set RX priorities */
3261 	if (rx_queues_count > 1)
3262 		stmmac_mac_config_rx_queues_prio(priv);
3263 
3264 	/* Set TX priorities */
3265 	if (tx_queues_count > 1)
3266 		stmmac_mac_config_tx_queues_prio(priv);
3267 
3268 	/* Set RX routing */
3269 	if (rx_queues_count > 1)
3270 		stmmac_mac_config_rx_queues_routing(priv);
3271 
3272 	/* Receive Side Scaling */
3273 	if (rx_queues_count > 1)
3274 		stmmac_mac_config_rss(priv);
3275 }
3276 
3277 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3278 {
3279 	if (priv->dma_cap.asp) {
3280 		netdev_info(priv->dev, "Enabling Safety Features\n");
3281 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3282 					  priv->plat->safety_feat_cfg);
3283 	} else {
3284 		netdev_info(priv->dev, "No Safety Features support found\n");
3285 	}
3286 }
3287 
3288 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3289 {
3290 	char *name;
3291 
3292 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3293 	clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3294 
3295 	name = priv->wq_name;
3296 	sprintf(name, "%s-fpe", priv->dev->name);
3297 
3298 	priv->fpe_wq = create_singlethread_workqueue(name);
3299 	if (!priv->fpe_wq) {
3300 		netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3301 
3302 		return -ENOMEM;
3303 	}
3304 	netdev_info(priv->dev, "FPE workqueue start");
3305 
3306 	return 0;
3307 }
3308 
3309 /**
3310  * stmmac_hw_setup - setup mac in a usable state.
3311  *  @dev : pointer to the device structure.
3312  *  @ptp_register: register PTP if set
3313  *  Description:
3314  *  this is the main function to setup the HW in a usable state because the
3315  *  dma engine is reset, the core registers are configured (e.g. AXI,
3316  *  Checksum features, timers). The DMA is ready to start receiving and
3317  *  transmitting.
3318  *  Return value:
3319  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3320  *  file on failure.
3321  */
3322 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
3323 {
3324 	struct stmmac_priv *priv = netdev_priv(dev);
3325 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3326 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3327 	bool sph_en;
3328 	u32 chan;
3329 	int ret;
3330 
3331 	/* DMA initialization and SW reset */
3332 	ret = stmmac_init_dma_engine(priv);
3333 	if (ret < 0) {
3334 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3335 			   __func__);
3336 		return ret;
3337 	}
3338 
3339 	/* Copy the MAC addr into the HW  */
3340 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3341 
3342 	/* PS and related bits will be programmed according to the speed */
3343 	if (priv->hw->pcs) {
3344 		int speed = priv->plat->mac_port_sel_speed;
3345 
3346 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
3347 		    (speed == SPEED_1000)) {
3348 			priv->hw->ps = speed;
3349 		} else {
3350 			dev_warn(priv->device, "invalid port speed\n");
3351 			priv->hw->ps = 0;
3352 		}
3353 	}
3354 
3355 	/* Initialize the MAC Core */
3356 	stmmac_core_init(priv, priv->hw, dev);
3357 
3358 	/* Initialize MTL*/
3359 	stmmac_mtl_configuration(priv);
3360 
3361 	/* Initialize Safety Features */
3362 	stmmac_safety_feat_configuration(priv);
3363 
3364 	ret = stmmac_rx_ipc(priv, priv->hw);
3365 	if (!ret) {
3366 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3367 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3368 		priv->hw->rx_csum = 0;
3369 	}
3370 
3371 	/* Enable the MAC Rx/Tx */
3372 	stmmac_mac_set(priv, priv->ioaddr, true);
3373 
3374 	/* Set the HW DMA mode and the COE */
3375 	stmmac_dma_operation_mode(priv);
3376 
3377 	stmmac_mmc_setup(priv);
3378 
3379 	if (ptp_register) {
3380 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3381 		if (ret < 0)
3382 			netdev_warn(priv->dev,
3383 				    "failed to enable PTP reference clock: %pe\n",
3384 				    ERR_PTR(ret));
3385 	}
3386 
3387 	ret = stmmac_init_ptp(priv);
3388 	if (ret == -EOPNOTSUPP)
3389 		netdev_info(priv->dev, "PTP not supported by HW\n");
3390 	else if (ret)
3391 		netdev_warn(priv->dev, "PTP init failed\n");
3392 	else if (ptp_register)
3393 		stmmac_ptp_register(priv);
3394 
3395 	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3396 
3397 	/* Convert the timer from msec to usec */
3398 	if (!priv->tx_lpi_timer)
3399 		priv->tx_lpi_timer = eee_timer * 1000;
3400 
3401 	if (priv->use_riwt) {
3402 		u32 queue;
3403 
3404 		for (queue = 0; queue < rx_cnt; queue++) {
3405 			if (!priv->rx_riwt[queue])
3406 				priv->rx_riwt[queue] = DEF_DMA_RIWT;
3407 
3408 			stmmac_rx_watchdog(priv, priv->ioaddr,
3409 					   priv->rx_riwt[queue], queue);
3410 		}
3411 	}
3412 
3413 	if (priv->hw->pcs)
3414 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3415 
3416 	/* set TX and RX rings length */
3417 	stmmac_set_rings_length(priv);
3418 
3419 	/* Enable TSO */
3420 	if (priv->tso) {
3421 		for (chan = 0; chan < tx_cnt; chan++) {
3422 			struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3423 
3424 			/* TSO and TBS cannot co-exist */
3425 			if (tx_q->tbs & STMMAC_TBS_AVAIL)
3426 				continue;
3427 
3428 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3429 		}
3430 	}
3431 
3432 	/* Enable Split Header */
3433 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3434 	for (chan = 0; chan < rx_cnt; chan++)
3435 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3436 
3437 
3438 	/* VLAN Tag Insertion */
3439 	if (priv->dma_cap.vlins)
3440 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3441 
3442 	/* TBS */
3443 	for (chan = 0; chan < tx_cnt; chan++) {
3444 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3445 		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3446 
3447 		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3448 	}
3449 
3450 	/* Configure real RX and TX queues */
3451 	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3452 	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3453 
3454 	/* Start the ball rolling... */
3455 	stmmac_start_all_dma(priv);
3456 
3457 	if (priv->dma_cap.fpesel) {
3458 		stmmac_fpe_start_wq(priv);
3459 
3460 		if (priv->plat->fpe_cfg->enable)
3461 			stmmac_fpe_handshake(priv, true);
3462 	}
3463 
3464 	return 0;
3465 }
3466 
3467 static void stmmac_hw_teardown(struct net_device *dev)
3468 {
3469 	struct stmmac_priv *priv = netdev_priv(dev);
3470 
3471 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
3472 }
3473 
3474 static void stmmac_free_irq(struct net_device *dev,
3475 			    enum request_irq_err irq_err, int irq_idx)
3476 {
3477 	struct stmmac_priv *priv = netdev_priv(dev);
3478 	int j;
3479 
3480 	switch (irq_err) {
3481 	case REQ_IRQ_ERR_ALL:
3482 		irq_idx = priv->plat->tx_queues_to_use;
3483 		fallthrough;
3484 	case REQ_IRQ_ERR_TX:
3485 		for (j = irq_idx - 1; j >= 0; j--) {
3486 			if (priv->tx_irq[j] > 0) {
3487 				irq_set_affinity_hint(priv->tx_irq[j], NULL);
3488 				free_irq(priv->tx_irq[j], &priv->dma_conf.tx_queue[j]);
3489 			}
3490 		}
3491 		irq_idx = priv->plat->rx_queues_to_use;
3492 		fallthrough;
3493 	case REQ_IRQ_ERR_RX:
3494 		for (j = irq_idx - 1; j >= 0; j--) {
3495 			if (priv->rx_irq[j] > 0) {
3496 				irq_set_affinity_hint(priv->rx_irq[j], NULL);
3497 				free_irq(priv->rx_irq[j], &priv->dma_conf.rx_queue[j]);
3498 			}
3499 		}
3500 
3501 		if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3502 			free_irq(priv->sfty_ue_irq, dev);
3503 		fallthrough;
3504 	case REQ_IRQ_ERR_SFTY_UE:
3505 		if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3506 			free_irq(priv->sfty_ce_irq, dev);
3507 		fallthrough;
3508 	case REQ_IRQ_ERR_SFTY_CE:
3509 		if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3510 			free_irq(priv->lpi_irq, dev);
3511 		fallthrough;
3512 	case REQ_IRQ_ERR_LPI:
3513 		if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3514 			free_irq(priv->wol_irq, dev);
3515 		fallthrough;
3516 	case REQ_IRQ_ERR_WOL:
3517 		free_irq(dev->irq, dev);
3518 		fallthrough;
3519 	case REQ_IRQ_ERR_MAC:
3520 	case REQ_IRQ_ERR_NO:
3521 		/* If MAC IRQ request error, no more IRQ to free */
3522 		break;
3523 	}
3524 }
3525 
3526 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3527 {
3528 	struct stmmac_priv *priv = netdev_priv(dev);
3529 	enum request_irq_err irq_err;
3530 	cpumask_t cpu_mask;
3531 	int irq_idx = 0;
3532 	char *int_name;
3533 	int ret;
3534 	int i;
3535 
3536 	/* For common interrupt */
3537 	int_name = priv->int_name_mac;
3538 	sprintf(int_name, "%s:%s", dev->name, "mac");
3539 	ret = request_irq(dev->irq, stmmac_mac_interrupt,
3540 			  0, int_name, dev);
3541 	if (unlikely(ret < 0)) {
3542 		netdev_err(priv->dev,
3543 			   "%s: alloc mac MSI %d (error: %d)\n",
3544 			   __func__, dev->irq, ret);
3545 		irq_err = REQ_IRQ_ERR_MAC;
3546 		goto irq_error;
3547 	}
3548 
3549 	/* Request the Wake IRQ in case of another line
3550 	 * is used for WoL
3551 	 */
3552 	priv->wol_irq_disabled = true;
3553 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3554 		int_name = priv->int_name_wol;
3555 		sprintf(int_name, "%s:%s", dev->name, "wol");
3556 		ret = request_irq(priv->wol_irq,
3557 				  stmmac_mac_interrupt,
3558 				  0, int_name, dev);
3559 		if (unlikely(ret < 0)) {
3560 			netdev_err(priv->dev,
3561 				   "%s: alloc wol MSI %d (error: %d)\n",
3562 				   __func__, priv->wol_irq, ret);
3563 			irq_err = REQ_IRQ_ERR_WOL;
3564 			goto irq_error;
3565 		}
3566 	}
3567 
3568 	/* Request the LPI IRQ in case of another line
3569 	 * is used for LPI
3570 	 */
3571 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3572 		int_name = priv->int_name_lpi;
3573 		sprintf(int_name, "%s:%s", dev->name, "lpi");
3574 		ret = request_irq(priv->lpi_irq,
3575 				  stmmac_mac_interrupt,
3576 				  0, int_name, dev);
3577 		if (unlikely(ret < 0)) {
3578 			netdev_err(priv->dev,
3579 				   "%s: alloc lpi MSI %d (error: %d)\n",
3580 				   __func__, priv->lpi_irq, ret);
3581 			irq_err = REQ_IRQ_ERR_LPI;
3582 			goto irq_error;
3583 		}
3584 	}
3585 
3586 	/* Request the Safety Feature Correctible Error line in
3587 	 * case of another line is used
3588 	 */
3589 	if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3590 		int_name = priv->int_name_sfty_ce;
3591 		sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3592 		ret = request_irq(priv->sfty_ce_irq,
3593 				  stmmac_safety_interrupt,
3594 				  0, int_name, dev);
3595 		if (unlikely(ret < 0)) {
3596 			netdev_err(priv->dev,
3597 				   "%s: alloc sfty ce MSI %d (error: %d)\n",
3598 				   __func__, priv->sfty_ce_irq, ret);
3599 			irq_err = REQ_IRQ_ERR_SFTY_CE;
3600 			goto irq_error;
3601 		}
3602 	}
3603 
3604 	/* Request the Safety Feature Uncorrectible Error line in
3605 	 * case of another line is used
3606 	 */
3607 	if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3608 		int_name = priv->int_name_sfty_ue;
3609 		sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3610 		ret = request_irq(priv->sfty_ue_irq,
3611 				  stmmac_safety_interrupt,
3612 				  0, int_name, dev);
3613 		if (unlikely(ret < 0)) {
3614 			netdev_err(priv->dev,
3615 				   "%s: alloc sfty ue MSI %d (error: %d)\n",
3616 				   __func__, priv->sfty_ue_irq, ret);
3617 			irq_err = REQ_IRQ_ERR_SFTY_UE;
3618 			goto irq_error;
3619 		}
3620 	}
3621 
3622 	/* Request Rx MSI irq */
3623 	for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3624 		if (i >= MTL_MAX_RX_QUEUES)
3625 			break;
3626 		if (priv->rx_irq[i] == 0)
3627 			continue;
3628 
3629 		int_name = priv->int_name_rx_irq[i];
3630 		sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3631 		ret = request_irq(priv->rx_irq[i],
3632 				  stmmac_msi_intr_rx,
3633 				  0, int_name, &priv->dma_conf.rx_queue[i]);
3634 		if (unlikely(ret < 0)) {
3635 			netdev_err(priv->dev,
3636 				   "%s: alloc rx-%d  MSI %d (error: %d)\n",
3637 				   __func__, i, priv->rx_irq[i], ret);
3638 			irq_err = REQ_IRQ_ERR_RX;
3639 			irq_idx = i;
3640 			goto irq_error;
3641 		}
3642 		cpumask_clear(&cpu_mask);
3643 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3644 		irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3645 	}
3646 
3647 	/* Request Tx MSI irq */
3648 	for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3649 		if (i >= MTL_MAX_TX_QUEUES)
3650 			break;
3651 		if (priv->tx_irq[i] == 0)
3652 			continue;
3653 
3654 		int_name = priv->int_name_tx_irq[i];
3655 		sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3656 		ret = request_irq(priv->tx_irq[i],
3657 				  stmmac_msi_intr_tx,
3658 				  0, int_name, &priv->dma_conf.tx_queue[i]);
3659 		if (unlikely(ret < 0)) {
3660 			netdev_err(priv->dev,
3661 				   "%s: alloc tx-%d  MSI %d (error: %d)\n",
3662 				   __func__, i, priv->tx_irq[i], ret);
3663 			irq_err = REQ_IRQ_ERR_TX;
3664 			irq_idx = i;
3665 			goto irq_error;
3666 		}
3667 		cpumask_clear(&cpu_mask);
3668 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3669 		irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3670 	}
3671 
3672 	return 0;
3673 
3674 irq_error:
3675 	stmmac_free_irq(dev, irq_err, irq_idx);
3676 	return ret;
3677 }
3678 
3679 static int stmmac_request_irq_single(struct net_device *dev)
3680 {
3681 	struct stmmac_priv *priv = netdev_priv(dev);
3682 	enum request_irq_err irq_err;
3683 	int ret;
3684 
3685 	ret = request_irq(dev->irq, stmmac_interrupt,
3686 			  IRQF_SHARED, dev->name, dev);
3687 	if (unlikely(ret < 0)) {
3688 		netdev_err(priv->dev,
3689 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3690 			   __func__, dev->irq, ret);
3691 		irq_err = REQ_IRQ_ERR_MAC;
3692 		goto irq_error;
3693 	}
3694 
3695 	/* Request the Wake IRQ in case of another line
3696 	 * is used for WoL
3697 	 */
3698 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3699 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
3700 				  IRQF_SHARED, dev->name, dev);
3701 		if (unlikely(ret < 0)) {
3702 			netdev_err(priv->dev,
3703 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3704 				   __func__, priv->wol_irq, ret);
3705 			irq_err = REQ_IRQ_ERR_WOL;
3706 			goto irq_error;
3707 		}
3708 	}
3709 
3710 	/* Request the IRQ lines */
3711 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3712 		ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3713 				  IRQF_SHARED, dev->name, dev);
3714 		if (unlikely(ret < 0)) {
3715 			netdev_err(priv->dev,
3716 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3717 				   __func__, priv->lpi_irq, ret);
3718 			irq_err = REQ_IRQ_ERR_LPI;
3719 			goto irq_error;
3720 		}
3721 	}
3722 
3723 	return 0;
3724 
3725 irq_error:
3726 	stmmac_free_irq(dev, irq_err, 0);
3727 	return ret;
3728 }
3729 
3730 static int stmmac_request_irq(struct net_device *dev)
3731 {
3732 	struct stmmac_priv *priv = netdev_priv(dev);
3733 	int ret;
3734 
3735 	/* Request the IRQ lines */
3736 	if (priv->plat->flags & STMMAC_FLAG_MULTI_MSI_EN)
3737 		ret = stmmac_request_irq_multi_msi(dev);
3738 	else
3739 		ret = stmmac_request_irq_single(dev);
3740 
3741 	return ret;
3742 }
3743 
3744 /**
3745  *  stmmac_setup_dma_desc - Generate a dma_conf and allocate DMA queue
3746  *  @priv: driver private structure
3747  *  @mtu: MTU to setup the dma queue and buf with
3748  *  Description: Allocate and generate a dma_conf based on the provided MTU.
3749  *  Allocate the Tx/Rx DMA queue and init them.
3750  *  Return value:
3751  *  the dma_conf allocated struct on success and an appropriate ERR_PTR on failure.
3752  */
3753 static struct stmmac_dma_conf *
3754 stmmac_setup_dma_desc(struct stmmac_priv *priv, unsigned int mtu)
3755 {
3756 	struct stmmac_dma_conf *dma_conf;
3757 	int chan, bfsize, ret;
3758 
3759 	dma_conf = kzalloc(sizeof(*dma_conf), GFP_KERNEL);
3760 	if (!dma_conf) {
3761 		netdev_err(priv->dev, "%s: DMA conf allocation failed\n",
3762 			   __func__);
3763 		return ERR_PTR(-ENOMEM);
3764 	}
3765 
3766 	bfsize = stmmac_set_16kib_bfsize(priv, mtu);
3767 	if (bfsize < 0)
3768 		bfsize = 0;
3769 
3770 	if (bfsize < BUF_SIZE_16KiB)
3771 		bfsize = stmmac_set_bfsize(mtu, 0);
3772 
3773 	dma_conf->dma_buf_sz = bfsize;
3774 	/* Chose the tx/rx size from the already defined one in the
3775 	 * priv struct. (if defined)
3776 	 */
3777 	dma_conf->dma_tx_size = priv->dma_conf.dma_tx_size;
3778 	dma_conf->dma_rx_size = priv->dma_conf.dma_rx_size;
3779 
3780 	if (!dma_conf->dma_tx_size)
3781 		dma_conf->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3782 	if (!dma_conf->dma_rx_size)
3783 		dma_conf->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3784 
3785 	/* Earlier check for TBS */
3786 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3787 		struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[chan];
3788 		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3789 
3790 		/* Setup per-TXQ tbs flag before TX descriptor alloc */
3791 		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3792 	}
3793 
3794 	ret = alloc_dma_desc_resources(priv, dma_conf);
3795 	if (ret < 0) {
3796 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3797 			   __func__);
3798 		goto alloc_error;
3799 	}
3800 
3801 	ret = init_dma_desc_rings(priv->dev, dma_conf, GFP_KERNEL);
3802 	if (ret < 0) {
3803 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3804 			   __func__);
3805 		goto init_error;
3806 	}
3807 
3808 	return dma_conf;
3809 
3810 init_error:
3811 	free_dma_desc_resources(priv, dma_conf);
3812 alloc_error:
3813 	kfree(dma_conf);
3814 	return ERR_PTR(ret);
3815 }
3816 
3817 /**
3818  *  __stmmac_open - open entry point of the driver
3819  *  @dev : pointer to the device structure.
3820  *  @dma_conf :  structure to take the dma data
3821  *  Description:
3822  *  This function is the open entry point of the driver.
3823  *  Return value:
3824  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3825  *  file on failure.
3826  */
3827 static int __stmmac_open(struct net_device *dev,
3828 			 struct stmmac_dma_conf *dma_conf)
3829 {
3830 	struct stmmac_priv *priv = netdev_priv(dev);
3831 	int mode = priv->plat->phy_interface;
3832 	u32 chan;
3833 	int ret;
3834 
3835 	ret = pm_runtime_resume_and_get(priv->device);
3836 	if (ret < 0)
3837 		return ret;
3838 
3839 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
3840 	    priv->hw->pcs != STMMAC_PCS_RTBI &&
3841 	    (!priv->hw->xpcs ||
3842 	     xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73) &&
3843 	    !priv->hw->lynx_pcs) {
3844 		ret = stmmac_init_phy(dev);
3845 		if (ret) {
3846 			netdev_err(priv->dev,
3847 				   "%s: Cannot attach to PHY (error: %d)\n",
3848 				   __func__, ret);
3849 			goto init_phy_error;
3850 		}
3851 	}
3852 
3853 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3854 
3855 	buf_sz = dma_conf->dma_buf_sz;
3856 	memcpy(&priv->dma_conf, dma_conf, sizeof(*dma_conf));
3857 
3858 	stmmac_reset_queues_param(priv);
3859 
3860 	if (!(priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) &&
3861 	    priv->plat->serdes_powerup) {
3862 		ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv);
3863 		if (ret < 0) {
3864 			netdev_err(priv->dev, "%s: Serdes powerup failed\n",
3865 				   __func__);
3866 			goto init_error;
3867 		}
3868 	}
3869 
3870 	ret = stmmac_hw_setup(dev, true);
3871 	if (ret < 0) {
3872 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3873 		goto init_error;
3874 	}
3875 
3876 	stmmac_init_coalesce(priv);
3877 
3878 	phylink_start(priv->phylink);
3879 	/* We may have called phylink_speed_down before */
3880 	phylink_speed_up(priv->phylink);
3881 
3882 	ret = stmmac_request_irq(dev);
3883 	if (ret)
3884 		goto irq_error;
3885 
3886 	stmmac_enable_all_queues(priv);
3887 	netif_tx_start_all_queues(priv->dev);
3888 	stmmac_enable_all_dma_irq(priv);
3889 
3890 	return 0;
3891 
3892 irq_error:
3893 	phylink_stop(priv->phylink);
3894 
3895 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3896 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3897 
3898 	stmmac_hw_teardown(dev);
3899 init_error:
3900 	phylink_disconnect_phy(priv->phylink);
3901 init_phy_error:
3902 	pm_runtime_put(priv->device);
3903 	return ret;
3904 }
3905 
3906 static int stmmac_open(struct net_device *dev)
3907 {
3908 	struct stmmac_priv *priv = netdev_priv(dev);
3909 	struct stmmac_dma_conf *dma_conf;
3910 	int ret;
3911 
3912 	dma_conf = stmmac_setup_dma_desc(priv, dev->mtu);
3913 	if (IS_ERR(dma_conf))
3914 		return PTR_ERR(dma_conf);
3915 
3916 	ret = __stmmac_open(dev, dma_conf);
3917 	if (ret)
3918 		free_dma_desc_resources(priv, dma_conf);
3919 
3920 	kfree(dma_conf);
3921 	return ret;
3922 }
3923 
3924 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3925 {
3926 	set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3927 
3928 	if (priv->fpe_wq)
3929 		destroy_workqueue(priv->fpe_wq);
3930 
3931 	netdev_info(priv->dev, "FPE workqueue stop");
3932 }
3933 
3934 /**
3935  *  stmmac_release - close entry point of the driver
3936  *  @dev : device pointer.
3937  *  Description:
3938  *  This is the stop entry point of the driver.
3939  */
3940 static int stmmac_release(struct net_device *dev)
3941 {
3942 	struct stmmac_priv *priv = netdev_priv(dev);
3943 	u32 chan;
3944 
3945 	if (device_may_wakeup(priv->device))
3946 		phylink_speed_down(priv->phylink, false);
3947 	/* Stop and disconnect the PHY */
3948 	phylink_stop(priv->phylink);
3949 	phylink_disconnect_phy(priv->phylink);
3950 
3951 	stmmac_disable_all_queues(priv);
3952 
3953 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3954 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3955 
3956 	netif_tx_disable(dev);
3957 
3958 	/* Free the IRQ lines */
3959 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3960 
3961 	if (priv->eee_enabled) {
3962 		priv->tx_path_in_lpi_mode = false;
3963 		del_timer_sync(&priv->eee_ctrl_timer);
3964 	}
3965 
3966 	/* Stop TX/RX DMA and clear the descriptors */
3967 	stmmac_stop_all_dma(priv);
3968 
3969 	/* Release and free the Rx/Tx resources */
3970 	free_dma_desc_resources(priv, &priv->dma_conf);
3971 
3972 	/* Disable the MAC Rx/Tx */
3973 	stmmac_mac_set(priv, priv->ioaddr, false);
3974 
3975 	/* Powerdown Serdes if there is */
3976 	if (priv->plat->serdes_powerdown)
3977 		priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv);
3978 
3979 	netif_carrier_off(dev);
3980 
3981 	stmmac_release_ptp(priv);
3982 
3983 	pm_runtime_put(priv->device);
3984 
3985 	if (priv->dma_cap.fpesel)
3986 		stmmac_fpe_stop_wq(priv);
3987 
3988 	return 0;
3989 }
3990 
3991 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3992 			       struct stmmac_tx_queue *tx_q)
3993 {
3994 	u16 tag = 0x0, inner_tag = 0x0;
3995 	u32 inner_type = 0x0;
3996 	struct dma_desc *p;
3997 
3998 	if (!priv->dma_cap.vlins)
3999 		return false;
4000 	if (!skb_vlan_tag_present(skb))
4001 		return false;
4002 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
4003 		inner_tag = skb_vlan_tag_get(skb);
4004 		inner_type = STMMAC_VLAN_INSERT;
4005 	}
4006 
4007 	tag = skb_vlan_tag_get(skb);
4008 
4009 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
4010 		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
4011 	else
4012 		p = &tx_q->dma_tx[tx_q->cur_tx];
4013 
4014 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
4015 		return false;
4016 
4017 	stmmac_set_tx_owner(priv, p);
4018 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
4019 	return true;
4020 }
4021 
4022 /**
4023  *  stmmac_tso_allocator - close entry point of the driver
4024  *  @priv: driver private structure
4025  *  @des: buffer start address
4026  *  @total_len: total length to fill in descriptors
4027  *  @last_segment: condition for the last descriptor
4028  *  @queue: TX queue index
4029  *  Description:
4030  *  This function fills descriptor and request new descriptors according to
4031  *  buffer length to fill
4032  */
4033 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
4034 				 int total_len, bool last_segment, u32 queue)
4035 {
4036 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4037 	struct dma_desc *desc;
4038 	u32 buff_size;
4039 	int tmp_len;
4040 
4041 	tmp_len = total_len;
4042 
4043 	while (tmp_len > 0) {
4044 		dma_addr_t curr_addr;
4045 
4046 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4047 						priv->dma_conf.dma_tx_size);
4048 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4049 
4050 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4051 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4052 		else
4053 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4054 
4055 		curr_addr = des + (total_len - tmp_len);
4056 		if (priv->dma_cap.addr64 <= 32)
4057 			desc->des0 = cpu_to_le32(curr_addr);
4058 		else
4059 			stmmac_set_desc_addr(priv, desc, curr_addr);
4060 
4061 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
4062 			    TSO_MAX_BUFF_SIZE : tmp_len;
4063 
4064 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
4065 				0, 1,
4066 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
4067 				0, 0);
4068 
4069 		tmp_len -= TSO_MAX_BUFF_SIZE;
4070 	}
4071 }
4072 
4073 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
4074 {
4075 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4076 	int desc_size;
4077 
4078 	if (likely(priv->extend_desc))
4079 		desc_size = sizeof(struct dma_extended_desc);
4080 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4081 		desc_size = sizeof(struct dma_edesc);
4082 	else
4083 		desc_size = sizeof(struct dma_desc);
4084 
4085 	/* The own bit must be the latest setting done when prepare the
4086 	 * descriptor and then barrier is needed to make sure that
4087 	 * all is coherent before granting the DMA engine.
4088 	 */
4089 	wmb();
4090 
4091 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
4092 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
4093 }
4094 
4095 /**
4096  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
4097  *  @skb : the socket buffer
4098  *  @dev : device pointer
4099  *  Description: this is the transmit function that is called on TSO frames
4100  *  (support available on GMAC4 and newer chips).
4101  *  Diagram below show the ring programming in case of TSO frames:
4102  *
4103  *  First Descriptor
4104  *   --------
4105  *   | DES0 |---> buffer1 = L2/L3/L4 header
4106  *   | DES1 |---> TCP Payload (can continue on next descr...)
4107  *   | DES2 |---> buffer 1 and 2 len
4108  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
4109  *   --------
4110  *	|
4111  *     ...
4112  *	|
4113  *   --------
4114  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
4115  *   | DES1 | --|
4116  *   | DES2 | --> buffer 1 and 2 len
4117  *   | DES3 |
4118  *   --------
4119  *
4120  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
4121  */
4122 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
4123 {
4124 	struct dma_desc *desc, *first, *mss_desc = NULL;
4125 	struct stmmac_priv *priv = netdev_priv(dev);
4126 	int nfrags = skb_shinfo(skb)->nr_frags;
4127 	u32 queue = skb_get_queue_mapping(skb);
4128 	unsigned int first_entry, tx_packets;
4129 	struct stmmac_txq_stats *txq_stats;
4130 	int tmp_pay_len = 0, first_tx;
4131 	struct stmmac_tx_queue *tx_q;
4132 	bool has_vlan, set_ic;
4133 	u8 proto_hdr_len, hdr;
4134 	unsigned long flags;
4135 	u32 pay_len, mss;
4136 	dma_addr_t des;
4137 	int i;
4138 
4139 	tx_q = &priv->dma_conf.tx_queue[queue];
4140 	txq_stats = &priv->xstats.txq_stats[queue];
4141 	first_tx = tx_q->cur_tx;
4142 
4143 	/* Compute header lengths */
4144 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
4145 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
4146 		hdr = sizeof(struct udphdr);
4147 	} else {
4148 		proto_hdr_len = skb_tcp_all_headers(skb);
4149 		hdr = tcp_hdrlen(skb);
4150 	}
4151 
4152 	/* Desc availability based on threshold should be enough safe */
4153 	if (unlikely(stmmac_tx_avail(priv, queue) <
4154 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
4155 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4156 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4157 								queue));
4158 			/* This is a hard error, log it. */
4159 			netdev_err(priv->dev,
4160 				   "%s: Tx Ring full when queue awake\n",
4161 				   __func__);
4162 		}
4163 		return NETDEV_TX_BUSY;
4164 	}
4165 
4166 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
4167 
4168 	mss = skb_shinfo(skb)->gso_size;
4169 
4170 	/* set new MSS value if needed */
4171 	if (mss != tx_q->mss) {
4172 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4173 			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4174 		else
4175 			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
4176 
4177 		stmmac_set_mss(priv, mss_desc, mss);
4178 		tx_q->mss = mss;
4179 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4180 						priv->dma_conf.dma_tx_size);
4181 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4182 	}
4183 
4184 	if (netif_msg_tx_queued(priv)) {
4185 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
4186 			__func__, hdr, proto_hdr_len, pay_len, mss);
4187 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4188 			skb->data_len);
4189 	}
4190 
4191 	/* Check if VLAN can be inserted by HW */
4192 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4193 
4194 	first_entry = tx_q->cur_tx;
4195 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4196 
4197 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
4198 		desc = &tx_q->dma_entx[first_entry].basic;
4199 	else
4200 		desc = &tx_q->dma_tx[first_entry];
4201 	first = desc;
4202 
4203 	if (has_vlan)
4204 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4205 
4206 	/* first descriptor: fill Headers on Buf1 */
4207 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4208 			     DMA_TO_DEVICE);
4209 	if (dma_mapping_error(priv->device, des))
4210 		goto dma_map_err;
4211 
4212 	tx_q->tx_skbuff_dma[first_entry].buf = des;
4213 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4214 	tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4215 	tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4216 
4217 	if (priv->dma_cap.addr64 <= 32) {
4218 		first->des0 = cpu_to_le32(des);
4219 
4220 		/* Fill start of payload in buff2 of first descriptor */
4221 		if (pay_len)
4222 			first->des1 = cpu_to_le32(des + proto_hdr_len);
4223 
4224 		/* If needed take extra descriptors to fill the remaining payload */
4225 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4226 	} else {
4227 		stmmac_set_desc_addr(priv, first, des);
4228 		tmp_pay_len = pay_len;
4229 		des += proto_hdr_len;
4230 		pay_len = 0;
4231 	}
4232 
4233 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4234 
4235 	/* Prepare fragments */
4236 	for (i = 0; i < nfrags; i++) {
4237 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4238 
4239 		des = skb_frag_dma_map(priv->device, frag, 0,
4240 				       skb_frag_size(frag),
4241 				       DMA_TO_DEVICE);
4242 		if (dma_mapping_error(priv->device, des))
4243 			goto dma_map_err;
4244 
4245 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4246 				     (i == nfrags - 1), queue);
4247 
4248 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4249 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4250 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4251 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4252 	}
4253 
4254 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4255 
4256 	/* Only the last descriptor gets to point to the skb. */
4257 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4258 	tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4259 
4260 	/* Manage tx mitigation */
4261 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
4262 	tx_q->tx_count_frames += tx_packets;
4263 
4264 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4265 		set_ic = true;
4266 	else if (!priv->tx_coal_frames[queue])
4267 		set_ic = false;
4268 	else if (tx_packets > priv->tx_coal_frames[queue])
4269 		set_ic = true;
4270 	else if ((tx_q->tx_count_frames %
4271 		  priv->tx_coal_frames[queue]) < tx_packets)
4272 		set_ic = true;
4273 	else
4274 		set_ic = false;
4275 
4276 	if (set_ic) {
4277 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4278 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4279 		else
4280 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4281 
4282 		tx_q->tx_count_frames = 0;
4283 		stmmac_set_tx_ic(priv, desc);
4284 	}
4285 
4286 	/* We've used all descriptors we need for this skb, however,
4287 	 * advance cur_tx so that it references a fresh descriptor.
4288 	 * ndo_start_xmit will fill this descriptor the next time it's
4289 	 * called and stmmac_tx_clean may clean up to this descriptor.
4290 	 */
4291 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
4292 
4293 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4294 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4295 			  __func__);
4296 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4297 	}
4298 
4299 	flags = u64_stats_update_begin_irqsave(&txq_stats->syncp);
4300 	txq_stats->tx_bytes += skb->len;
4301 	txq_stats->tx_tso_frames++;
4302 	txq_stats->tx_tso_nfrags += nfrags;
4303 	if (set_ic)
4304 		txq_stats->tx_set_ic_bit++;
4305 	u64_stats_update_end_irqrestore(&txq_stats->syncp, flags);
4306 
4307 	if (priv->sarc_type)
4308 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4309 
4310 	skb_tx_timestamp(skb);
4311 
4312 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4313 		     priv->hwts_tx_en)) {
4314 		/* declare that device is doing timestamping */
4315 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4316 		stmmac_enable_tx_timestamp(priv, first);
4317 	}
4318 
4319 	/* Complete the first descriptor before granting the DMA */
4320 	stmmac_prepare_tso_tx_desc(priv, first, 1,
4321 			proto_hdr_len,
4322 			pay_len,
4323 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4324 			hdr / 4, (skb->len - proto_hdr_len));
4325 
4326 	/* If context desc is used to change MSS */
4327 	if (mss_desc) {
4328 		/* Make sure that first descriptor has been completely
4329 		 * written, including its own bit. This is because MSS is
4330 		 * actually before first descriptor, so we need to make
4331 		 * sure that MSS's own bit is the last thing written.
4332 		 */
4333 		dma_wmb();
4334 		stmmac_set_tx_owner(priv, mss_desc);
4335 	}
4336 
4337 	if (netif_msg_pktdata(priv)) {
4338 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4339 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4340 			tx_q->cur_tx, first, nfrags);
4341 		pr_info(">>> frame to be transmitted: ");
4342 		print_pkt(skb->data, skb_headlen(skb));
4343 	}
4344 
4345 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4346 
4347 	stmmac_flush_tx_descriptors(priv, queue);
4348 	stmmac_tx_timer_arm(priv, queue);
4349 
4350 	return NETDEV_TX_OK;
4351 
4352 dma_map_err:
4353 	dev_err(priv->device, "Tx dma map failed\n");
4354 	dev_kfree_skb(skb);
4355 	priv->xstats.tx_dropped++;
4356 	return NETDEV_TX_OK;
4357 }
4358 
4359 /**
4360  * stmmac_has_ip_ethertype() - Check if packet has IP ethertype
4361  * @skb: socket buffer to check
4362  *
4363  * Check if a packet has an ethertype that will trigger the IP header checks
4364  * and IP/TCP checksum engine of the stmmac core.
4365  *
4366  * Return: true if the ethertype can trigger the checksum engine, false
4367  * otherwise
4368  */
4369 static bool stmmac_has_ip_ethertype(struct sk_buff *skb)
4370 {
4371 	int depth = 0;
4372 	__be16 proto;
4373 
4374 	proto = __vlan_get_protocol(skb, eth_header_parse_protocol(skb),
4375 				    &depth);
4376 
4377 	return (depth <= ETH_HLEN) &&
4378 		(proto == htons(ETH_P_IP) || proto == htons(ETH_P_IPV6));
4379 }
4380 
4381 /**
4382  *  stmmac_xmit - Tx entry point of the driver
4383  *  @skb : the socket buffer
4384  *  @dev : device pointer
4385  *  Description : this is the tx entry point of the driver.
4386  *  It programs the chain or the ring and supports oversized frames
4387  *  and SG feature.
4388  */
4389 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4390 {
4391 	unsigned int first_entry, tx_packets, enh_desc;
4392 	struct stmmac_priv *priv = netdev_priv(dev);
4393 	unsigned int nopaged_len = skb_headlen(skb);
4394 	int i, csum_insertion = 0, is_jumbo = 0;
4395 	u32 queue = skb_get_queue_mapping(skb);
4396 	int nfrags = skb_shinfo(skb)->nr_frags;
4397 	int gso = skb_shinfo(skb)->gso_type;
4398 	struct stmmac_txq_stats *txq_stats;
4399 	struct dma_edesc *tbs_desc = NULL;
4400 	struct dma_desc *desc, *first;
4401 	struct stmmac_tx_queue *tx_q;
4402 	bool has_vlan, set_ic;
4403 	int entry, first_tx;
4404 	unsigned long flags;
4405 	dma_addr_t des;
4406 
4407 	tx_q = &priv->dma_conf.tx_queue[queue];
4408 	txq_stats = &priv->xstats.txq_stats[queue];
4409 	first_tx = tx_q->cur_tx;
4410 
4411 	if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4412 		stmmac_disable_eee_mode(priv);
4413 
4414 	/* Manage oversized TCP frames for GMAC4 device */
4415 	if (skb_is_gso(skb) && priv->tso) {
4416 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4417 			return stmmac_tso_xmit(skb, dev);
4418 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4419 			return stmmac_tso_xmit(skb, dev);
4420 	}
4421 
4422 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4423 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4424 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4425 								queue));
4426 			/* This is a hard error, log it. */
4427 			netdev_err(priv->dev,
4428 				   "%s: Tx Ring full when queue awake\n",
4429 				   __func__);
4430 		}
4431 		return NETDEV_TX_BUSY;
4432 	}
4433 
4434 	/* Check if VLAN can be inserted by HW */
4435 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4436 
4437 	entry = tx_q->cur_tx;
4438 	first_entry = entry;
4439 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4440 
4441 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4442 	/* DWMAC IPs can be synthesized to support tx coe only for a few tx
4443 	 * queues. In that case, checksum offloading for those queues that don't
4444 	 * support tx coe needs to fallback to software checksum calculation.
4445 	 *
4446 	 * Packets that won't trigger the COE e.g. most DSA-tagged packets will
4447 	 * also have to be checksummed in software.
4448 	 */
4449 	if (csum_insertion &&
4450 	    (priv->plat->tx_queues_cfg[queue].coe_unsupported ||
4451 	     !stmmac_has_ip_ethertype(skb))) {
4452 		if (unlikely(skb_checksum_help(skb)))
4453 			goto dma_map_err;
4454 		csum_insertion = !csum_insertion;
4455 	}
4456 
4457 	if (likely(priv->extend_desc))
4458 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4459 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4460 		desc = &tx_q->dma_entx[entry].basic;
4461 	else
4462 		desc = tx_q->dma_tx + entry;
4463 
4464 	first = desc;
4465 
4466 	if (has_vlan)
4467 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4468 
4469 	enh_desc = priv->plat->enh_desc;
4470 	/* To program the descriptors according to the size of the frame */
4471 	if (enh_desc)
4472 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4473 
4474 	if (unlikely(is_jumbo)) {
4475 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4476 		if (unlikely(entry < 0) && (entry != -EINVAL))
4477 			goto dma_map_err;
4478 	}
4479 
4480 	for (i = 0; i < nfrags; i++) {
4481 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4482 		int len = skb_frag_size(frag);
4483 		bool last_segment = (i == (nfrags - 1));
4484 
4485 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4486 		WARN_ON(tx_q->tx_skbuff[entry]);
4487 
4488 		if (likely(priv->extend_desc))
4489 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4490 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4491 			desc = &tx_q->dma_entx[entry].basic;
4492 		else
4493 			desc = tx_q->dma_tx + entry;
4494 
4495 		des = skb_frag_dma_map(priv->device, frag, 0, len,
4496 				       DMA_TO_DEVICE);
4497 		if (dma_mapping_error(priv->device, des))
4498 			goto dma_map_err; /* should reuse desc w/o issues */
4499 
4500 		tx_q->tx_skbuff_dma[entry].buf = des;
4501 
4502 		stmmac_set_desc_addr(priv, desc, des);
4503 
4504 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
4505 		tx_q->tx_skbuff_dma[entry].len = len;
4506 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4507 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4508 
4509 		/* Prepare the descriptor and set the own bit too */
4510 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4511 				priv->mode, 1, last_segment, skb->len);
4512 	}
4513 
4514 	/* Only the last descriptor gets to point to the skb. */
4515 	tx_q->tx_skbuff[entry] = skb;
4516 	tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4517 
4518 	/* According to the coalesce parameter the IC bit for the latest
4519 	 * segment is reset and the timer re-started to clean the tx status.
4520 	 * This approach takes care about the fragments: desc is the first
4521 	 * element in case of no SG.
4522 	 */
4523 	tx_packets = (entry + 1) - first_tx;
4524 	tx_q->tx_count_frames += tx_packets;
4525 
4526 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4527 		set_ic = true;
4528 	else if (!priv->tx_coal_frames[queue])
4529 		set_ic = false;
4530 	else if (tx_packets > priv->tx_coal_frames[queue])
4531 		set_ic = true;
4532 	else if ((tx_q->tx_count_frames %
4533 		  priv->tx_coal_frames[queue]) < tx_packets)
4534 		set_ic = true;
4535 	else
4536 		set_ic = false;
4537 
4538 	if (set_ic) {
4539 		if (likely(priv->extend_desc))
4540 			desc = &tx_q->dma_etx[entry].basic;
4541 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4542 			desc = &tx_q->dma_entx[entry].basic;
4543 		else
4544 			desc = &tx_q->dma_tx[entry];
4545 
4546 		tx_q->tx_count_frames = 0;
4547 		stmmac_set_tx_ic(priv, desc);
4548 	}
4549 
4550 	/* We've used all descriptors we need for this skb, however,
4551 	 * advance cur_tx so that it references a fresh descriptor.
4552 	 * ndo_start_xmit will fill this descriptor the next time it's
4553 	 * called and stmmac_tx_clean may clean up to this descriptor.
4554 	 */
4555 	entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4556 	tx_q->cur_tx = entry;
4557 
4558 	if (netif_msg_pktdata(priv)) {
4559 		netdev_dbg(priv->dev,
4560 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4561 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4562 			   entry, first, nfrags);
4563 
4564 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4565 		print_pkt(skb->data, skb->len);
4566 	}
4567 
4568 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4569 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4570 			  __func__);
4571 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4572 	}
4573 
4574 	flags = u64_stats_update_begin_irqsave(&txq_stats->syncp);
4575 	txq_stats->tx_bytes += skb->len;
4576 	if (set_ic)
4577 		txq_stats->tx_set_ic_bit++;
4578 	u64_stats_update_end_irqrestore(&txq_stats->syncp, flags);
4579 
4580 	if (priv->sarc_type)
4581 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4582 
4583 	skb_tx_timestamp(skb);
4584 
4585 	/* Ready to fill the first descriptor and set the OWN bit w/o any
4586 	 * problems because all the descriptors are actually ready to be
4587 	 * passed to the DMA engine.
4588 	 */
4589 	if (likely(!is_jumbo)) {
4590 		bool last_segment = (nfrags == 0);
4591 
4592 		des = dma_map_single(priv->device, skb->data,
4593 				     nopaged_len, DMA_TO_DEVICE);
4594 		if (dma_mapping_error(priv->device, des))
4595 			goto dma_map_err;
4596 
4597 		tx_q->tx_skbuff_dma[first_entry].buf = des;
4598 		tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4599 		tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4600 
4601 		stmmac_set_desc_addr(priv, first, des);
4602 
4603 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4604 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4605 
4606 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4607 			     priv->hwts_tx_en)) {
4608 			/* declare that device is doing timestamping */
4609 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4610 			stmmac_enable_tx_timestamp(priv, first);
4611 		}
4612 
4613 		/* Prepare the first descriptor setting the OWN bit too */
4614 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4615 				csum_insertion, priv->mode, 0, last_segment,
4616 				skb->len);
4617 	}
4618 
4619 	if (tx_q->tbs & STMMAC_TBS_EN) {
4620 		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4621 
4622 		tbs_desc = &tx_q->dma_entx[first_entry];
4623 		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4624 	}
4625 
4626 	stmmac_set_tx_owner(priv, first);
4627 
4628 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4629 
4630 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4631 
4632 	stmmac_flush_tx_descriptors(priv, queue);
4633 	stmmac_tx_timer_arm(priv, queue);
4634 
4635 	return NETDEV_TX_OK;
4636 
4637 dma_map_err:
4638 	netdev_err(priv->dev, "Tx DMA map failed\n");
4639 	dev_kfree_skb(skb);
4640 	priv->xstats.tx_dropped++;
4641 	return NETDEV_TX_OK;
4642 }
4643 
4644 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4645 {
4646 	struct vlan_ethhdr *veth = skb_vlan_eth_hdr(skb);
4647 	__be16 vlan_proto = veth->h_vlan_proto;
4648 	u16 vlanid;
4649 
4650 	if ((vlan_proto == htons(ETH_P_8021Q) &&
4651 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4652 	    (vlan_proto == htons(ETH_P_8021AD) &&
4653 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4654 		/* pop the vlan tag */
4655 		vlanid = ntohs(veth->h_vlan_TCI);
4656 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4657 		skb_pull(skb, VLAN_HLEN);
4658 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4659 	}
4660 }
4661 
4662 /**
4663  * stmmac_rx_refill - refill used skb preallocated buffers
4664  * @priv: driver private structure
4665  * @queue: RX queue index
4666  * Description : this is to reallocate the skb for the reception process
4667  * that is based on zero-copy.
4668  */
4669 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4670 {
4671 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4672 	int dirty = stmmac_rx_dirty(priv, queue);
4673 	unsigned int entry = rx_q->dirty_rx;
4674 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
4675 
4676 	if (priv->dma_cap.host_dma_width <= 32)
4677 		gfp |= GFP_DMA32;
4678 
4679 	while (dirty-- > 0) {
4680 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4681 		struct dma_desc *p;
4682 		bool use_rx_wd;
4683 
4684 		if (priv->extend_desc)
4685 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4686 		else
4687 			p = rx_q->dma_rx + entry;
4688 
4689 		if (!buf->page) {
4690 			buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4691 			if (!buf->page)
4692 				break;
4693 		}
4694 
4695 		if (priv->sph && !buf->sec_page) {
4696 			buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4697 			if (!buf->sec_page)
4698 				break;
4699 
4700 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4701 		}
4702 
4703 		buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4704 
4705 		stmmac_set_desc_addr(priv, p, buf->addr);
4706 		if (priv->sph)
4707 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4708 		else
4709 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4710 		stmmac_refill_desc3(priv, rx_q, p);
4711 
4712 		rx_q->rx_count_frames++;
4713 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4714 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4715 			rx_q->rx_count_frames = 0;
4716 
4717 		use_rx_wd = !priv->rx_coal_frames[queue];
4718 		use_rx_wd |= rx_q->rx_count_frames > 0;
4719 		if (!priv->use_riwt)
4720 			use_rx_wd = false;
4721 
4722 		dma_wmb();
4723 		stmmac_set_rx_owner(priv, p, use_rx_wd);
4724 
4725 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4726 	}
4727 	rx_q->dirty_rx = entry;
4728 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4729 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
4730 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4731 }
4732 
4733 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4734 				       struct dma_desc *p,
4735 				       int status, unsigned int len)
4736 {
4737 	unsigned int plen = 0, hlen = 0;
4738 	int coe = priv->hw->rx_csum;
4739 
4740 	/* Not first descriptor, buffer is always zero */
4741 	if (priv->sph && len)
4742 		return 0;
4743 
4744 	/* First descriptor, get split header length */
4745 	stmmac_get_rx_header_len(priv, p, &hlen);
4746 	if (priv->sph && hlen) {
4747 		priv->xstats.rx_split_hdr_pkt_n++;
4748 		return hlen;
4749 	}
4750 
4751 	/* First descriptor, not last descriptor and not split header */
4752 	if (status & rx_not_ls)
4753 		return priv->dma_conf.dma_buf_sz;
4754 
4755 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4756 
4757 	/* First descriptor and last descriptor and not split header */
4758 	return min_t(unsigned int, priv->dma_conf.dma_buf_sz, plen);
4759 }
4760 
4761 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4762 				       struct dma_desc *p,
4763 				       int status, unsigned int len)
4764 {
4765 	int coe = priv->hw->rx_csum;
4766 	unsigned int plen = 0;
4767 
4768 	/* Not split header, buffer is not available */
4769 	if (!priv->sph)
4770 		return 0;
4771 
4772 	/* Not last descriptor */
4773 	if (status & rx_not_ls)
4774 		return priv->dma_conf.dma_buf_sz;
4775 
4776 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4777 
4778 	/* Last descriptor */
4779 	return plen - len;
4780 }
4781 
4782 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4783 				struct xdp_frame *xdpf, bool dma_map)
4784 {
4785 	struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[queue];
4786 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4787 	unsigned int entry = tx_q->cur_tx;
4788 	struct dma_desc *tx_desc;
4789 	dma_addr_t dma_addr;
4790 	bool set_ic;
4791 
4792 	if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4793 		return STMMAC_XDP_CONSUMED;
4794 
4795 	if (likely(priv->extend_desc))
4796 		tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4797 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4798 		tx_desc = &tx_q->dma_entx[entry].basic;
4799 	else
4800 		tx_desc = tx_q->dma_tx + entry;
4801 
4802 	if (dma_map) {
4803 		dma_addr = dma_map_single(priv->device, xdpf->data,
4804 					  xdpf->len, DMA_TO_DEVICE);
4805 		if (dma_mapping_error(priv->device, dma_addr))
4806 			return STMMAC_XDP_CONSUMED;
4807 
4808 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4809 	} else {
4810 		struct page *page = virt_to_page(xdpf->data);
4811 
4812 		dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4813 			   xdpf->headroom;
4814 		dma_sync_single_for_device(priv->device, dma_addr,
4815 					   xdpf->len, DMA_BIDIRECTIONAL);
4816 
4817 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4818 	}
4819 
4820 	tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4821 	tx_q->tx_skbuff_dma[entry].map_as_page = false;
4822 	tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4823 	tx_q->tx_skbuff_dma[entry].last_segment = true;
4824 	tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4825 
4826 	tx_q->xdpf[entry] = xdpf;
4827 
4828 	stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4829 
4830 	stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4831 			       true, priv->mode, true, true,
4832 			       xdpf->len);
4833 
4834 	tx_q->tx_count_frames++;
4835 
4836 	if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4837 		set_ic = true;
4838 	else
4839 		set_ic = false;
4840 
4841 	if (set_ic) {
4842 		unsigned long flags;
4843 		tx_q->tx_count_frames = 0;
4844 		stmmac_set_tx_ic(priv, tx_desc);
4845 		flags = u64_stats_update_begin_irqsave(&txq_stats->syncp);
4846 		txq_stats->tx_set_ic_bit++;
4847 		u64_stats_update_end_irqrestore(&txq_stats->syncp, flags);
4848 	}
4849 
4850 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4851 
4852 	entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4853 	tx_q->cur_tx = entry;
4854 
4855 	return STMMAC_XDP_TX;
4856 }
4857 
4858 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4859 				   int cpu)
4860 {
4861 	int index = cpu;
4862 
4863 	if (unlikely(index < 0))
4864 		index = 0;
4865 
4866 	while (index >= priv->plat->tx_queues_to_use)
4867 		index -= priv->plat->tx_queues_to_use;
4868 
4869 	return index;
4870 }
4871 
4872 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4873 				struct xdp_buff *xdp)
4874 {
4875 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4876 	int cpu = smp_processor_id();
4877 	struct netdev_queue *nq;
4878 	int queue;
4879 	int res;
4880 
4881 	if (unlikely(!xdpf))
4882 		return STMMAC_XDP_CONSUMED;
4883 
4884 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4885 	nq = netdev_get_tx_queue(priv->dev, queue);
4886 
4887 	__netif_tx_lock(nq, cpu);
4888 	/* Avoids TX time-out as we are sharing with slow path */
4889 	txq_trans_cond_update(nq);
4890 
4891 	res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4892 	if (res == STMMAC_XDP_TX)
4893 		stmmac_flush_tx_descriptors(priv, queue);
4894 
4895 	__netif_tx_unlock(nq);
4896 
4897 	return res;
4898 }
4899 
4900 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4901 				 struct bpf_prog *prog,
4902 				 struct xdp_buff *xdp)
4903 {
4904 	u32 act;
4905 	int res;
4906 
4907 	act = bpf_prog_run_xdp(prog, xdp);
4908 	switch (act) {
4909 	case XDP_PASS:
4910 		res = STMMAC_XDP_PASS;
4911 		break;
4912 	case XDP_TX:
4913 		res = stmmac_xdp_xmit_back(priv, xdp);
4914 		break;
4915 	case XDP_REDIRECT:
4916 		if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4917 			res = STMMAC_XDP_CONSUMED;
4918 		else
4919 			res = STMMAC_XDP_REDIRECT;
4920 		break;
4921 	default:
4922 		bpf_warn_invalid_xdp_action(priv->dev, prog, act);
4923 		fallthrough;
4924 	case XDP_ABORTED:
4925 		trace_xdp_exception(priv->dev, prog, act);
4926 		fallthrough;
4927 	case XDP_DROP:
4928 		res = STMMAC_XDP_CONSUMED;
4929 		break;
4930 	}
4931 
4932 	return res;
4933 }
4934 
4935 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4936 					   struct xdp_buff *xdp)
4937 {
4938 	struct bpf_prog *prog;
4939 	int res;
4940 
4941 	prog = READ_ONCE(priv->xdp_prog);
4942 	if (!prog) {
4943 		res = STMMAC_XDP_PASS;
4944 		goto out;
4945 	}
4946 
4947 	res = __stmmac_xdp_run_prog(priv, prog, xdp);
4948 out:
4949 	return ERR_PTR(-res);
4950 }
4951 
4952 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4953 				   int xdp_status)
4954 {
4955 	int cpu = smp_processor_id();
4956 	int queue;
4957 
4958 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4959 
4960 	if (xdp_status & STMMAC_XDP_TX)
4961 		stmmac_tx_timer_arm(priv, queue);
4962 
4963 	if (xdp_status & STMMAC_XDP_REDIRECT)
4964 		xdp_do_flush();
4965 }
4966 
4967 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4968 					       struct xdp_buff *xdp)
4969 {
4970 	unsigned int metasize = xdp->data - xdp->data_meta;
4971 	unsigned int datasize = xdp->data_end - xdp->data;
4972 	struct sk_buff *skb;
4973 
4974 	skb = __napi_alloc_skb(&ch->rxtx_napi,
4975 			       xdp->data_end - xdp->data_hard_start,
4976 			       GFP_ATOMIC | __GFP_NOWARN);
4977 	if (unlikely(!skb))
4978 		return NULL;
4979 
4980 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
4981 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4982 	if (metasize)
4983 		skb_metadata_set(skb, metasize);
4984 
4985 	return skb;
4986 }
4987 
4988 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4989 				   struct dma_desc *p, struct dma_desc *np,
4990 				   struct xdp_buff *xdp)
4991 {
4992 	struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[queue];
4993 	struct stmmac_channel *ch = &priv->channel[queue];
4994 	unsigned int len = xdp->data_end - xdp->data;
4995 	enum pkt_hash_types hash_type;
4996 	int coe = priv->hw->rx_csum;
4997 	unsigned long flags;
4998 	struct sk_buff *skb;
4999 	u32 hash;
5000 
5001 	skb = stmmac_construct_skb_zc(ch, xdp);
5002 	if (!skb) {
5003 		priv->xstats.rx_dropped++;
5004 		return;
5005 	}
5006 
5007 	stmmac_get_rx_hwtstamp(priv, p, np, skb);
5008 	stmmac_rx_vlan(priv->dev, skb);
5009 	skb->protocol = eth_type_trans(skb, priv->dev);
5010 
5011 	if (unlikely(!coe) || !stmmac_has_ip_ethertype(skb))
5012 		skb_checksum_none_assert(skb);
5013 	else
5014 		skb->ip_summed = CHECKSUM_UNNECESSARY;
5015 
5016 	if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5017 		skb_set_hash(skb, hash, hash_type);
5018 
5019 	skb_record_rx_queue(skb, queue);
5020 	napi_gro_receive(&ch->rxtx_napi, skb);
5021 
5022 	flags = u64_stats_update_begin_irqsave(&rxq_stats->syncp);
5023 	rxq_stats->rx_pkt_n++;
5024 	rxq_stats->rx_bytes += len;
5025 	u64_stats_update_end_irqrestore(&rxq_stats->syncp, flags);
5026 }
5027 
5028 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
5029 {
5030 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5031 	unsigned int entry = rx_q->dirty_rx;
5032 	struct dma_desc *rx_desc = NULL;
5033 	bool ret = true;
5034 
5035 	budget = min(budget, stmmac_rx_dirty(priv, queue));
5036 
5037 	while (budget-- > 0 && entry != rx_q->cur_rx) {
5038 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
5039 		dma_addr_t dma_addr;
5040 		bool use_rx_wd;
5041 
5042 		if (!buf->xdp) {
5043 			buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
5044 			if (!buf->xdp) {
5045 				ret = false;
5046 				break;
5047 			}
5048 		}
5049 
5050 		if (priv->extend_desc)
5051 			rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
5052 		else
5053 			rx_desc = rx_q->dma_rx + entry;
5054 
5055 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
5056 		stmmac_set_desc_addr(priv, rx_desc, dma_addr);
5057 		stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
5058 		stmmac_refill_desc3(priv, rx_q, rx_desc);
5059 
5060 		rx_q->rx_count_frames++;
5061 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
5062 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
5063 			rx_q->rx_count_frames = 0;
5064 
5065 		use_rx_wd = !priv->rx_coal_frames[queue];
5066 		use_rx_wd |= rx_q->rx_count_frames > 0;
5067 		if (!priv->use_riwt)
5068 			use_rx_wd = false;
5069 
5070 		dma_wmb();
5071 		stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
5072 
5073 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
5074 	}
5075 
5076 	if (rx_desc) {
5077 		rx_q->dirty_rx = entry;
5078 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
5079 				     (rx_q->dirty_rx * sizeof(struct dma_desc));
5080 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
5081 	}
5082 
5083 	return ret;
5084 }
5085 
5086 static struct stmmac_xdp_buff *xsk_buff_to_stmmac_ctx(struct xdp_buff *xdp)
5087 {
5088 	/* In XDP zero copy data path, xdp field in struct xdp_buff_xsk is used
5089 	 * to represent incoming packet, whereas cb field in the same structure
5090 	 * is used to store driver specific info. Thus, struct stmmac_xdp_buff
5091 	 * is laid on top of xdp and cb fields of struct xdp_buff_xsk.
5092 	 */
5093 	return (struct stmmac_xdp_buff *)xdp;
5094 }
5095 
5096 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
5097 {
5098 	struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[queue];
5099 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5100 	unsigned int count = 0, error = 0, len = 0;
5101 	int dirty = stmmac_rx_dirty(priv, queue);
5102 	unsigned int next_entry = rx_q->cur_rx;
5103 	u32 rx_errors = 0, rx_dropped = 0;
5104 	unsigned int desc_size;
5105 	struct bpf_prog *prog;
5106 	bool failure = false;
5107 	unsigned long flags;
5108 	int xdp_status = 0;
5109 	int status = 0;
5110 
5111 	if (netif_msg_rx_status(priv)) {
5112 		void *rx_head;
5113 
5114 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5115 		if (priv->extend_desc) {
5116 			rx_head = (void *)rx_q->dma_erx;
5117 			desc_size = sizeof(struct dma_extended_desc);
5118 		} else {
5119 			rx_head = (void *)rx_q->dma_rx;
5120 			desc_size = sizeof(struct dma_desc);
5121 		}
5122 
5123 		stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5124 				    rx_q->dma_rx_phy, desc_size);
5125 	}
5126 	while (count < limit) {
5127 		struct stmmac_rx_buffer *buf;
5128 		struct stmmac_xdp_buff *ctx;
5129 		unsigned int buf1_len = 0;
5130 		struct dma_desc *np, *p;
5131 		int entry;
5132 		int res;
5133 
5134 		if (!count && rx_q->state_saved) {
5135 			error = rx_q->state.error;
5136 			len = rx_q->state.len;
5137 		} else {
5138 			rx_q->state_saved = false;
5139 			error = 0;
5140 			len = 0;
5141 		}
5142 
5143 		if (count >= limit)
5144 			break;
5145 
5146 read_again:
5147 		buf1_len = 0;
5148 		entry = next_entry;
5149 		buf = &rx_q->buf_pool[entry];
5150 
5151 		if (dirty >= STMMAC_RX_FILL_BATCH) {
5152 			failure = failure ||
5153 				  !stmmac_rx_refill_zc(priv, queue, dirty);
5154 			dirty = 0;
5155 		}
5156 
5157 		if (priv->extend_desc)
5158 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5159 		else
5160 			p = rx_q->dma_rx + entry;
5161 
5162 		/* read the status of the incoming frame */
5163 		status = stmmac_rx_status(priv, &priv->xstats, p);
5164 		/* check if managed by the DMA otherwise go ahead */
5165 		if (unlikely(status & dma_own))
5166 			break;
5167 
5168 		/* Prefetch the next RX descriptor */
5169 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5170 						priv->dma_conf.dma_rx_size);
5171 		next_entry = rx_q->cur_rx;
5172 
5173 		if (priv->extend_desc)
5174 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5175 		else
5176 			np = rx_q->dma_rx + next_entry;
5177 
5178 		prefetch(np);
5179 
5180 		/* Ensure a valid XSK buffer before proceed */
5181 		if (!buf->xdp)
5182 			break;
5183 
5184 		if (priv->extend_desc)
5185 			stmmac_rx_extended_status(priv, &priv->xstats,
5186 						  rx_q->dma_erx + entry);
5187 		if (unlikely(status == discard_frame)) {
5188 			xsk_buff_free(buf->xdp);
5189 			buf->xdp = NULL;
5190 			dirty++;
5191 			error = 1;
5192 			if (!priv->hwts_rx_en)
5193 				rx_errors++;
5194 		}
5195 
5196 		if (unlikely(error && (status & rx_not_ls)))
5197 			goto read_again;
5198 		if (unlikely(error)) {
5199 			count++;
5200 			continue;
5201 		}
5202 
5203 		/* XSK pool expects RX frame 1:1 mapped to XSK buffer */
5204 		if (likely(status & rx_not_ls)) {
5205 			xsk_buff_free(buf->xdp);
5206 			buf->xdp = NULL;
5207 			dirty++;
5208 			count++;
5209 			goto read_again;
5210 		}
5211 
5212 		ctx = xsk_buff_to_stmmac_ctx(buf->xdp);
5213 		ctx->priv = priv;
5214 		ctx->desc = p;
5215 		ctx->ndesc = np;
5216 
5217 		/* XDP ZC Frame only support primary buffers for now */
5218 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5219 		len += buf1_len;
5220 
5221 		/* ACS is disabled; strip manually. */
5222 		if (likely(!(status & rx_not_ls))) {
5223 			buf1_len -= ETH_FCS_LEN;
5224 			len -= ETH_FCS_LEN;
5225 		}
5226 
5227 		/* RX buffer is good and fit into a XSK pool buffer */
5228 		buf->xdp->data_end = buf->xdp->data + buf1_len;
5229 		xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
5230 
5231 		prog = READ_ONCE(priv->xdp_prog);
5232 		res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
5233 
5234 		switch (res) {
5235 		case STMMAC_XDP_PASS:
5236 			stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
5237 			xsk_buff_free(buf->xdp);
5238 			break;
5239 		case STMMAC_XDP_CONSUMED:
5240 			xsk_buff_free(buf->xdp);
5241 			rx_dropped++;
5242 			break;
5243 		case STMMAC_XDP_TX:
5244 		case STMMAC_XDP_REDIRECT:
5245 			xdp_status |= res;
5246 			break;
5247 		}
5248 
5249 		buf->xdp = NULL;
5250 		dirty++;
5251 		count++;
5252 	}
5253 
5254 	if (status & rx_not_ls) {
5255 		rx_q->state_saved = true;
5256 		rx_q->state.error = error;
5257 		rx_q->state.len = len;
5258 	}
5259 
5260 	stmmac_finalize_xdp_rx(priv, xdp_status);
5261 
5262 	flags = u64_stats_update_begin_irqsave(&rxq_stats->syncp);
5263 	rxq_stats->rx_pkt_n += count;
5264 	u64_stats_update_end_irqrestore(&rxq_stats->syncp, flags);
5265 
5266 	priv->xstats.rx_dropped += rx_dropped;
5267 	priv->xstats.rx_errors += rx_errors;
5268 
5269 	if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5270 		if (failure || stmmac_rx_dirty(priv, queue) > 0)
5271 			xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5272 		else
5273 			xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5274 
5275 		return (int)count;
5276 	}
5277 
5278 	return failure ? limit : (int)count;
5279 }
5280 
5281 /**
5282  * stmmac_rx - manage the receive process
5283  * @priv: driver private structure
5284  * @limit: napi bugget
5285  * @queue: RX queue index.
5286  * Description :  this the function called by the napi poll method.
5287  * It gets all the frames inside the ring.
5288  */
5289 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5290 {
5291 	u32 rx_errors = 0, rx_dropped = 0, rx_bytes = 0, rx_packets = 0;
5292 	struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[queue];
5293 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5294 	struct stmmac_channel *ch = &priv->channel[queue];
5295 	unsigned int count = 0, error = 0, len = 0;
5296 	int status = 0, coe = priv->hw->rx_csum;
5297 	unsigned int next_entry = rx_q->cur_rx;
5298 	enum dma_data_direction dma_dir;
5299 	unsigned int desc_size;
5300 	struct sk_buff *skb = NULL;
5301 	struct stmmac_xdp_buff ctx;
5302 	unsigned long flags;
5303 	int xdp_status = 0;
5304 	int buf_sz;
5305 
5306 	dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5307 	buf_sz = DIV_ROUND_UP(priv->dma_conf.dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5308 	limit = min(priv->dma_conf.dma_rx_size - 1, (unsigned int)limit);
5309 
5310 	if (netif_msg_rx_status(priv)) {
5311 		void *rx_head;
5312 
5313 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5314 		if (priv->extend_desc) {
5315 			rx_head = (void *)rx_q->dma_erx;
5316 			desc_size = sizeof(struct dma_extended_desc);
5317 		} else {
5318 			rx_head = (void *)rx_q->dma_rx;
5319 			desc_size = sizeof(struct dma_desc);
5320 		}
5321 
5322 		stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5323 				    rx_q->dma_rx_phy, desc_size);
5324 	}
5325 	while (count < limit) {
5326 		unsigned int buf1_len = 0, buf2_len = 0;
5327 		enum pkt_hash_types hash_type;
5328 		struct stmmac_rx_buffer *buf;
5329 		struct dma_desc *np, *p;
5330 		int entry;
5331 		u32 hash;
5332 
5333 		if (!count && rx_q->state_saved) {
5334 			skb = rx_q->state.skb;
5335 			error = rx_q->state.error;
5336 			len = rx_q->state.len;
5337 		} else {
5338 			rx_q->state_saved = false;
5339 			skb = NULL;
5340 			error = 0;
5341 			len = 0;
5342 		}
5343 
5344 read_again:
5345 		if (count >= limit)
5346 			break;
5347 
5348 		buf1_len = 0;
5349 		buf2_len = 0;
5350 		entry = next_entry;
5351 		buf = &rx_q->buf_pool[entry];
5352 
5353 		if (priv->extend_desc)
5354 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5355 		else
5356 			p = rx_q->dma_rx + entry;
5357 
5358 		/* read the status of the incoming frame */
5359 		status = stmmac_rx_status(priv, &priv->xstats, p);
5360 		/* check if managed by the DMA otherwise go ahead */
5361 		if (unlikely(status & dma_own))
5362 			break;
5363 
5364 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5365 						priv->dma_conf.dma_rx_size);
5366 		next_entry = rx_q->cur_rx;
5367 
5368 		if (priv->extend_desc)
5369 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5370 		else
5371 			np = rx_q->dma_rx + next_entry;
5372 
5373 		prefetch(np);
5374 
5375 		if (priv->extend_desc)
5376 			stmmac_rx_extended_status(priv, &priv->xstats, rx_q->dma_erx + entry);
5377 		if (unlikely(status == discard_frame)) {
5378 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5379 			buf->page = NULL;
5380 			error = 1;
5381 			if (!priv->hwts_rx_en)
5382 				rx_errors++;
5383 		}
5384 
5385 		if (unlikely(error && (status & rx_not_ls)))
5386 			goto read_again;
5387 		if (unlikely(error)) {
5388 			dev_kfree_skb(skb);
5389 			skb = NULL;
5390 			count++;
5391 			continue;
5392 		}
5393 
5394 		/* Buffer is good. Go on. */
5395 
5396 		prefetch(page_address(buf->page) + buf->page_offset);
5397 		if (buf->sec_page)
5398 			prefetch(page_address(buf->sec_page));
5399 
5400 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5401 		len += buf1_len;
5402 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5403 		len += buf2_len;
5404 
5405 		/* ACS is disabled; strip manually. */
5406 		if (likely(!(status & rx_not_ls))) {
5407 			if (buf2_len) {
5408 				buf2_len -= ETH_FCS_LEN;
5409 				len -= ETH_FCS_LEN;
5410 			} else if (buf1_len) {
5411 				buf1_len -= ETH_FCS_LEN;
5412 				len -= ETH_FCS_LEN;
5413 			}
5414 		}
5415 
5416 		if (!skb) {
5417 			unsigned int pre_len, sync_len;
5418 
5419 			dma_sync_single_for_cpu(priv->device, buf->addr,
5420 						buf1_len, dma_dir);
5421 
5422 			xdp_init_buff(&ctx.xdp, buf_sz, &rx_q->xdp_rxq);
5423 			xdp_prepare_buff(&ctx.xdp, page_address(buf->page),
5424 					 buf->page_offset, buf1_len, true);
5425 
5426 			pre_len = ctx.xdp.data_end - ctx.xdp.data_hard_start -
5427 				  buf->page_offset;
5428 
5429 			ctx.priv = priv;
5430 			ctx.desc = p;
5431 			ctx.ndesc = np;
5432 
5433 			skb = stmmac_xdp_run_prog(priv, &ctx.xdp);
5434 			/* Due xdp_adjust_tail: DMA sync for_device
5435 			 * cover max len CPU touch
5436 			 */
5437 			sync_len = ctx.xdp.data_end - ctx.xdp.data_hard_start -
5438 				   buf->page_offset;
5439 			sync_len = max(sync_len, pre_len);
5440 
5441 			/* For Not XDP_PASS verdict */
5442 			if (IS_ERR(skb)) {
5443 				unsigned int xdp_res = -PTR_ERR(skb);
5444 
5445 				if (xdp_res & STMMAC_XDP_CONSUMED) {
5446 					page_pool_put_page(rx_q->page_pool,
5447 							   virt_to_head_page(ctx.xdp.data),
5448 							   sync_len, true);
5449 					buf->page = NULL;
5450 					rx_dropped++;
5451 
5452 					/* Clear skb as it was set as
5453 					 * status by XDP program.
5454 					 */
5455 					skb = NULL;
5456 
5457 					if (unlikely((status & rx_not_ls)))
5458 						goto read_again;
5459 
5460 					count++;
5461 					continue;
5462 				} else if (xdp_res & (STMMAC_XDP_TX |
5463 						      STMMAC_XDP_REDIRECT)) {
5464 					xdp_status |= xdp_res;
5465 					buf->page = NULL;
5466 					skb = NULL;
5467 					count++;
5468 					continue;
5469 				}
5470 			}
5471 		}
5472 
5473 		if (!skb) {
5474 			/* XDP program may expand or reduce tail */
5475 			buf1_len = ctx.xdp.data_end - ctx.xdp.data;
5476 
5477 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5478 			if (!skb) {
5479 				rx_dropped++;
5480 				count++;
5481 				goto drain_data;
5482 			}
5483 
5484 			/* XDP program may adjust header */
5485 			skb_copy_to_linear_data(skb, ctx.xdp.data, buf1_len);
5486 			skb_put(skb, buf1_len);
5487 
5488 			/* Data payload copied into SKB, page ready for recycle */
5489 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5490 			buf->page = NULL;
5491 		} else if (buf1_len) {
5492 			dma_sync_single_for_cpu(priv->device, buf->addr,
5493 						buf1_len, dma_dir);
5494 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5495 					buf->page, buf->page_offset, buf1_len,
5496 					priv->dma_conf.dma_buf_sz);
5497 
5498 			/* Data payload appended into SKB */
5499 			skb_mark_for_recycle(skb);
5500 			buf->page = NULL;
5501 		}
5502 
5503 		if (buf2_len) {
5504 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5505 						buf2_len, dma_dir);
5506 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5507 					buf->sec_page, 0, buf2_len,
5508 					priv->dma_conf.dma_buf_sz);
5509 
5510 			/* Data payload appended into SKB */
5511 			skb_mark_for_recycle(skb);
5512 			buf->sec_page = NULL;
5513 		}
5514 
5515 drain_data:
5516 		if (likely(status & rx_not_ls))
5517 			goto read_again;
5518 		if (!skb)
5519 			continue;
5520 
5521 		/* Got entire packet into SKB. Finish it. */
5522 
5523 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
5524 		stmmac_rx_vlan(priv->dev, skb);
5525 		skb->protocol = eth_type_trans(skb, priv->dev);
5526 
5527 		if (unlikely(!coe) || !stmmac_has_ip_ethertype(skb))
5528 			skb_checksum_none_assert(skb);
5529 		else
5530 			skb->ip_summed = CHECKSUM_UNNECESSARY;
5531 
5532 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5533 			skb_set_hash(skb, hash, hash_type);
5534 
5535 		skb_record_rx_queue(skb, queue);
5536 		napi_gro_receive(&ch->rx_napi, skb);
5537 		skb = NULL;
5538 
5539 		rx_packets++;
5540 		rx_bytes += len;
5541 		count++;
5542 	}
5543 
5544 	if (status & rx_not_ls || skb) {
5545 		rx_q->state_saved = true;
5546 		rx_q->state.skb = skb;
5547 		rx_q->state.error = error;
5548 		rx_q->state.len = len;
5549 	}
5550 
5551 	stmmac_finalize_xdp_rx(priv, xdp_status);
5552 
5553 	stmmac_rx_refill(priv, queue);
5554 
5555 	flags = u64_stats_update_begin_irqsave(&rxq_stats->syncp);
5556 	rxq_stats->rx_packets += rx_packets;
5557 	rxq_stats->rx_bytes += rx_bytes;
5558 	rxq_stats->rx_pkt_n += count;
5559 	u64_stats_update_end_irqrestore(&rxq_stats->syncp, flags);
5560 
5561 	priv->xstats.rx_dropped += rx_dropped;
5562 	priv->xstats.rx_errors += rx_errors;
5563 
5564 	return count;
5565 }
5566 
5567 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5568 {
5569 	struct stmmac_channel *ch =
5570 		container_of(napi, struct stmmac_channel, rx_napi);
5571 	struct stmmac_priv *priv = ch->priv_data;
5572 	struct stmmac_rxq_stats *rxq_stats;
5573 	u32 chan = ch->index;
5574 	unsigned long flags;
5575 	int work_done;
5576 
5577 	rxq_stats = &priv->xstats.rxq_stats[chan];
5578 	flags = u64_stats_update_begin_irqsave(&rxq_stats->syncp);
5579 	rxq_stats->napi_poll++;
5580 	u64_stats_update_end_irqrestore(&rxq_stats->syncp, flags);
5581 
5582 	work_done = stmmac_rx(priv, budget, chan);
5583 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5584 		unsigned long flags;
5585 
5586 		spin_lock_irqsave(&ch->lock, flags);
5587 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5588 		spin_unlock_irqrestore(&ch->lock, flags);
5589 	}
5590 
5591 	return work_done;
5592 }
5593 
5594 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5595 {
5596 	struct stmmac_channel *ch =
5597 		container_of(napi, struct stmmac_channel, tx_napi);
5598 	struct stmmac_priv *priv = ch->priv_data;
5599 	struct stmmac_txq_stats *txq_stats;
5600 	u32 chan = ch->index;
5601 	unsigned long flags;
5602 	int work_done;
5603 
5604 	txq_stats = &priv->xstats.txq_stats[chan];
5605 	flags = u64_stats_update_begin_irqsave(&txq_stats->syncp);
5606 	txq_stats->napi_poll++;
5607 	u64_stats_update_end_irqrestore(&txq_stats->syncp, flags);
5608 
5609 	work_done = stmmac_tx_clean(priv, budget, chan);
5610 	work_done = min(work_done, budget);
5611 
5612 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5613 		unsigned long flags;
5614 
5615 		spin_lock_irqsave(&ch->lock, flags);
5616 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5617 		spin_unlock_irqrestore(&ch->lock, flags);
5618 	}
5619 
5620 	return work_done;
5621 }
5622 
5623 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5624 {
5625 	struct stmmac_channel *ch =
5626 		container_of(napi, struct stmmac_channel, rxtx_napi);
5627 	struct stmmac_priv *priv = ch->priv_data;
5628 	int rx_done, tx_done, rxtx_done;
5629 	struct stmmac_rxq_stats *rxq_stats;
5630 	struct stmmac_txq_stats *txq_stats;
5631 	u32 chan = ch->index;
5632 	unsigned long flags;
5633 
5634 	rxq_stats = &priv->xstats.rxq_stats[chan];
5635 	flags = u64_stats_update_begin_irqsave(&rxq_stats->syncp);
5636 	rxq_stats->napi_poll++;
5637 	u64_stats_update_end_irqrestore(&rxq_stats->syncp, flags);
5638 
5639 	txq_stats = &priv->xstats.txq_stats[chan];
5640 	flags = u64_stats_update_begin_irqsave(&txq_stats->syncp);
5641 	txq_stats->napi_poll++;
5642 	u64_stats_update_end_irqrestore(&txq_stats->syncp, flags);
5643 
5644 	tx_done = stmmac_tx_clean(priv, budget, chan);
5645 	tx_done = min(tx_done, budget);
5646 
5647 	rx_done = stmmac_rx_zc(priv, budget, chan);
5648 
5649 	rxtx_done = max(tx_done, rx_done);
5650 
5651 	/* If either TX or RX work is not complete, return budget
5652 	 * and keep pooling
5653 	 */
5654 	if (rxtx_done >= budget)
5655 		return budget;
5656 
5657 	/* all work done, exit the polling mode */
5658 	if (napi_complete_done(napi, rxtx_done)) {
5659 		unsigned long flags;
5660 
5661 		spin_lock_irqsave(&ch->lock, flags);
5662 		/* Both RX and TX work done are compelte,
5663 		 * so enable both RX & TX IRQs.
5664 		 */
5665 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5666 		spin_unlock_irqrestore(&ch->lock, flags);
5667 	}
5668 
5669 	return min(rxtx_done, budget - 1);
5670 }
5671 
5672 /**
5673  *  stmmac_tx_timeout
5674  *  @dev : Pointer to net device structure
5675  *  @txqueue: the index of the hanging transmit queue
5676  *  Description: this function is called when a packet transmission fails to
5677  *   complete within a reasonable time. The driver will mark the error in the
5678  *   netdev structure and arrange for the device to be reset to a sane state
5679  *   in order to transmit a new packet.
5680  */
5681 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5682 {
5683 	struct stmmac_priv *priv = netdev_priv(dev);
5684 
5685 	stmmac_global_err(priv);
5686 }
5687 
5688 /**
5689  *  stmmac_set_rx_mode - entry point for multicast addressing
5690  *  @dev : pointer to the device structure
5691  *  Description:
5692  *  This function is a driver entry point which gets called by the kernel
5693  *  whenever multicast addresses must be enabled/disabled.
5694  *  Return value:
5695  *  void.
5696  */
5697 static void stmmac_set_rx_mode(struct net_device *dev)
5698 {
5699 	struct stmmac_priv *priv = netdev_priv(dev);
5700 
5701 	stmmac_set_filter(priv, priv->hw, dev);
5702 }
5703 
5704 /**
5705  *  stmmac_change_mtu - entry point to change MTU size for the device.
5706  *  @dev : device pointer.
5707  *  @new_mtu : the new MTU size for the device.
5708  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5709  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5710  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5711  *  Return value:
5712  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5713  *  file on failure.
5714  */
5715 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5716 {
5717 	struct stmmac_priv *priv = netdev_priv(dev);
5718 	int txfifosz = priv->plat->tx_fifo_size;
5719 	struct stmmac_dma_conf *dma_conf;
5720 	const int mtu = new_mtu;
5721 	int ret;
5722 
5723 	if (txfifosz == 0)
5724 		txfifosz = priv->dma_cap.tx_fifo_size;
5725 
5726 	txfifosz /= priv->plat->tx_queues_to_use;
5727 
5728 	if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5729 		netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5730 		return -EINVAL;
5731 	}
5732 
5733 	new_mtu = STMMAC_ALIGN(new_mtu);
5734 
5735 	/* If condition true, FIFO is too small or MTU too large */
5736 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5737 		return -EINVAL;
5738 
5739 	if (netif_running(dev)) {
5740 		netdev_dbg(priv->dev, "restarting interface to change its MTU\n");
5741 		/* Try to allocate the new DMA conf with the new mtu */
5742 		dma_conf = stmmac_setup_dma_desc(priv, mtu);
5743 		if (IS_ERR(dma_conf)) {
5744 			netdev_err(priv->dev, "failed allocating new dma conf for new MTU %d\n",
5745 				   mtu);
5746 			return PTR_ERR(dma_conf);
5747 		}
5748 
5749 		stmmac_release(dev);
5750 
5751 		ret = __stmmac_open(dev, dma_conf);
5752 		if (ret) {
5753 			free_dma_desc_resources(priv, dma_conf);
5754 			kfree(dma_conf);
5755 			netdev_err(priv->dev, "failed reopening the interface after MTU change\n");
5756 			return ret;
5757 		}
5758 
5759 		kfree(dma_conf);
5760 
5761 		stmmac_set_rx_mode(dev);
5762 	}
5763 
5764 	dev->mtu = mtu;
5765 	netdev_update_features(dev);
5766 
5767 	return 0;
5768 }
5769 
5770 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5771 					     netdev_features_t features)
5772 {
5773 	struct stmmac_priv *priv = netdev_priv(dev);
5774 
5775 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5776 		features &= ~NETIF_F_RXCSUM;
5777 
5778 	if (!priv->plat->tx_coe)
5779 		features &= ~NETIF_F_CSUM_MASK;
5780 
5781 	/* Some GMAC devices have a bugged Jumbo frame support that
5782 	 * needs to have the Tx COE disabled for oversized frames
5783 	 * (due to limited buffer sizes). In this case we disable
5784 	 * the TX csum insertion in the TDES and not use SF.
5785 	 */
5786 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5787 		features &= ~NETIF_F_CSUM_MASK;
5788 
5789 	/* Disable tso if asked by ethtool */
5790 	if ((priv->plat->flags & STMMAC_FLAG_TSO_EN) && (priv->dma_cap.tsoen)) {
5791 		if (features & NETIF_F_TSO)
5792 			priv->tso = true;
5793 		else
5794 			priv->tso = false;
5795 	}
5796 
5797 	return features;
5798 }
5799 
5800 static int stmmac_set_features(struct net_device *netdev,
5801 			       netdev_features_t features)
5802 {
5803 	struct stmmac_priv *priv = netdev_priv(netdev);
5804 
5805 	/* Keep the COE Type in case of csum is supporting */
5806 	if (features & NETIF_F_RXCSUM)
5807 		priv->hw->rx_csum = priv->plat->rx_coe;
5808 	else
5809 		priv->hw->rx_csum = 0;
5810 	/* No check needed because rx_coe has been set before and it will be
5811 	 * fixed in case of issue.
5812 	 */
5813 	stmmac_rx_ipc(priv, priv->hw);
5814 
5815 	if (priv->sph_cap) {
5816 		bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5817 		u32 chan;
5818 
5819 		for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5820 			stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5821 	}
5822 
5823 	return 0;
5824 }
5825 
5826 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5827 {
5828 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5829 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5830 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5831 	bool *hs_enable = &fpe_cfg->hs_enable;
5832 
5833 	if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5834 		return;
5835 
5836 	/* If LP has sent verify mPacket, LP is FPE capable */
5837 	if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5838 		if (*lp_state < FPE_STATE_CAPABLE)
5839 			*lp_state = FPE_STATE_CAPABLE;
5840 
5841 		/* If user has requested FPE enable, quickly response */
5842 		if (*hs_enable)
5843 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5844 						fpe_cfg,
5845 						MPACKET_RESPONSE);
5846 	}
5847 
5848 	/* If Local has sent verify mPacket, Local is FPE capable */
5849 	if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5850 		if (*lo_state < FPE_STATE_CAPABLE)
5851 			*lo_state = FPE_STATE_CAPABLE;
5852 	}
5853 
5854 	/* If LP has sent response mPacket, LP is entering FPE ON */
5855 	if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5856 		*lp_state = FPE_STATE_ENTERING_ON;
5857 
5858 	/* If Local has sent response mPacket, Local is entering FPE ON */
5859 	if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5860 		*lo_state = FPE_STATE_ENTERING_ON;
5861 
5862 	if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5863 	    !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5864 	    priv->fpe_wq) {
5865 		queue_work(priv->fpe_wq, &priv->fpe_task);
5866 	}
5867 }
5868 
5869 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5870 {
5871 	u32 rx_cnt = priv->plat->rx_queues_to_use;
5872 	u32 tx_cnt = priv->plat->tx_queues_to_use;
5873 	u32 queues_count;
5874 	u32 queue;
5875 	bool xmac;
5876 
5877 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5878 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5879 
5880 	if (priv->irq_wake)
5881 		pm_wakeup_event(priv->device, 0);
5882 
5883 	if (priv->dma_cap.estsel)
5884 		stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5885 				      &priv->xstats, tx_cnt);
5886 
5887 	if (priv->dma_cap.fpesel) {
5888 		int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5889 						   priv->dev);
5890 
5891 		stmmac_fpe_event_status(priv, status);
5892 	}
5893 
5894 	/* To handle GMAC own interrupts */
5895 	if ((priv->plat->has_gmac) || xmac) {
5896 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5897 
5898 		if (unlikely(status)) {
5899 			/* For LPI we need to save the tx status */
5900 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5901 				priv->tx_path_in_lpi_mode = true;
5902 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5903 				priv->tx_path_in_lpi_mode = false;
5904 		}
5905 
5906 		for (queue = 0; queue < queues_count; queue++) {
5907 			status = stmmac_host_mtl_irq_status(priv, priv->hw,
5908 							    queue);
5909 		}
5910 
5911 		/* PCS link status */
5912 		if (priv->hw->pcs &&
5913 		    !(priv->plat->flags & STMMAC_FLAG_HAS_INTEGRATED_PCS)) {
5914 			if (priv->xstats.pcs_link)
5915 				netif_carrier_on(priv->dev);
5916 			else
5917 				netif_carrier_off(priv->dev);
5918 		}
5919 
5920 		stmmac_timestamp_interrupt(priv, priv);
5921 	}
5922 }
5923 
5924 /**
5925  *  stmmac_interrupt - main ISR
5926  *  @irq: interrupt number.
5927  *  @dev_id: to pass the net device pointer.
5928  *  Description: this is the main driver interrupt service routine.
5929  *  It can call:
5930  *  o DMA service routine (to manage incoming frame reception and transmission
5931  *    status)
5932  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5933  *    interrupts.
5934  */
5935 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5936 {
5937 	struct net_device *dev = (struct net_device *)dev_id;
5938 	struct stmmac_priv *priv = netdev_priv(dev);
5939 
5940 	/* Check if adapter is up */
5941 	if (test_bit(STMMAC_DOWN, &priv->state))
5942 		return IRQ_HANDLED;
5943 
5944 	/* Check if a fatal error happened */
5945 	if (stmmac_safety_feat_interrupt(priv))
5946 		return IRQ_HANDLED;
5947 
5948 	/* To handle Common interrupts */
5949 	stmmac_common_interrupt(priv);
5950 
5951 	/* To handle DMA interrupts */
5952 	stmmac_dma_interrupt(priv);
5953 
5954 	return IRQ_HANDLED;
5955 }
5956 
5957 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5958 {
5959 	struct net_device *dev = (struct net_device *)dev_id;
5960 	struct stmmac_priv *priv = netdev_priv(dev);
5961 
5962 	if (unlikely(!dev)) {
5963 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5964 		return IRQ_NONE;
5965 	}
5966 
5967 	/* Check if adapter is up */
5968 	if (test_bit(STMMAC_DOWN, &priv->state))
5969 		return IRQ_HANDLED;
5970 
5971 	/* To handle Common interrupts */
5972 	stmmac_common_interrupt(priv);
5973 
5974 	return IRQ_HANDLED;
5975 }
5976 
5977 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5978 {
5979 	struct net_device *dev = (struct net_device *)dev_id;
5980 	struct stmmac_priv *priv = netdev_priv(dev);
5981 
5982 	if (unlikely(!dev)) {
5983 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5984 		return IRQ_NONE;
5985 	}
5986 
5987 	/* Check if adapter is up */
5988 	if (test_bit(STMMAC_DOWN, &priv->state))
5989 		return IRQ_HANDLED;
5990 
5991 	/* Check if a fatal error happened */
5992 	stmmac_safety_feat_interrupt(priv);
5993 
5994 	return IRQ_HANDLED;
5995 }
5996 
5997 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5998 {
5999 	struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
6000 	struct stmmac_dma_conf *dma_conf;
6001 	int chan = tx_q->queue_index;
6002 	struct stmmac_priv *priv;
6003 	int status;
6004 
6005 	dma_conf = container_of(tx_q, struct stmmac_dma_conf, tx_queue[chan]);
6006 	priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
6007 
6008 	if (unlikely(!data)) {
6009 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
6010 		return IRQ_NONE;
6011 	}
6012 
6013 	/* Check if adapter is up */
6014 	if (test_bit(STMMAC_DOWN, &priv->state))
6015 		return IRQ_HANDLED;
6016 
6017 	status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
6018 
6019 	if (unlikely(status & tx_hard_error_bump_tc)) {
6020 		/* Try to bump up the dma threshold on this failure */
6021 		stmmac_bump_dma_threshold(priv, chan);
6022 	} else if (unlikely(status == tx_hard_error)) {
6023 		stmmac_tx_err(priv, chan);
6024 	}
6025 
6026 	return IRQ_HANDLED;
6027 }
6028 
6029 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
6030 {
6031 	struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
6032 	struct stmmac_dma_conf *dma_conf;
6033 	int chan = rx_q->queue_index;
6034 	struct stmmac_priv *priv;
6035 
6036 	dma_conf = container_of(rx_q, struct stmmac_dma_conf, rx_queue[chan]);
6037 	priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
6038 
6039 	if (unlikely(!data)) {
6040 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
6041 		return IRQ_NONE;
6042 	}
6043 
6044 	/* Check if adapter is up */
6045 	if (test_bit(STMMAC_DOWN, &priv->state))
6046 		return IRQ_HANDLED;
6047 
6048 	stmmac_napi_check(priv, chan, DMA_DIR_RX);
6049 
6050 	return IRQ_HANDLED;
6051 }
6052 
6053 /**
6054  *  stmmac_ioctl - Entry point for the Ioctl
6055  *  @dev: Device pointer.
6056  *  @rq: An IOCTL specefic structure, that can contain a pointer to
6057  *  a proprietary structure used to pass information to the driver.
6058  *  @cmd: IOCTL command
6059  *  Description:
6060  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
6061  */
6062 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6063 {
6064 	struct stmmac_priv *priv = netdev_priv (dev);
6065 	int ret = -EOPNOTSUPP;
6066 
6067 	if (!netif_running(dev))
6068 		return -EINVAL;
6069 
6070 	switch (cmd) {
6071 	case SIOCGMIIPHY:
6072 	case SIOCGMIIREG:
6073 	case SIOCSMIIREG:
6074 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
6075 		break;
6076 	case SIOCSHWTSTAMP:
6077 		ret = stmmac_hwtstamp_set(dev, rq);
6078 		break;
6079 	case SIOCGHWTSTAMP:
6080 		ret = stmmac_hwtstamp_get(dev, rq);
6081 		break;
6082 	default:
6083 		break;
6084 	}
6085 
6086 	return ret;
6087 }
6088 
6089 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
6090 				    void *cb_priv)
6091 {
6092 	struct stmmac_priv *priv = cb_priv;
6093 	int ret = -EOPNOTSUPP;
6094 
6095 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
6096 		return ret;
6097 
6098 	__stmmac_disable_all_queues(priv);
6099 
6100 	switch (type) {
6101 	case TC_SETUP_CLSU32:
6102 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
6103 		break;
6104 	case TC_SETUP_CLSFLOWER:
6105 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
6106 		break;
6107 	default:
6108 		break;
6109 	}
6110 
6111 	stmmac_enable_all_queues(priv);
6112 	return ret;
6113 }
6114 
6115 static LIST_HEAD(stmmac_block_cb_list);
6116 
6117 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
6118 			   void *type_data)
6119 {
6120 	struct stmmac_priv *priv = netdev_priv(ndev);
6121 
6122 	switch (type) {
6123 	case TC_QUERY_CAPS:
6124 		return stmmac_tc_query_caps(priv, priv, type_data);
6125 	case TC_SETUP_BLOCK:
6126 		return flow_block_cb_setup_simple(type_data,
6127 						  &stmmac_block_cb_list,
6128 						  stmmac_setup_tc_block_cb,
6129 						  priv, priv, true);
6130 	case TC_SETUP_QDISC_CBS:
6131 		return stmmac_tc_setup_cbs(priv, priv, type_data);
6132 	case TC_SETUP_QDISC_TAPRIO:
6133 		return stmmac_tc_setup_taprio(priv, priv, type_data);
6134 	case TC_SETUP_QDISC_ETF:
6135 		return stmmac_tc_setup_etf(priv, priv, type_data);
6136 	default:
6137 		return -EOPNOTSUPP;
6138 	}
6139 }
6140 
6141 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
6142 			       struct net_device *sb_dev)
6143 {
6144 	int gso = skb_shinfo(skb)->gso_type;
6145 
6146 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
6147 		/*
6148 		 * There is no way to determine the number of TSO/USO
6149 		 * capable Queues. Let's use always the Queue 0
6150 		 * because if TSO/USO is supported then at least this
6151 		 * one will be capable.
6152 		 */
6153 		return 0;
6154 	}
6155 
6156 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
6157 }
6158 
6159 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
6160 {
6161 	struct stmmac_priv *priv = netdev_priv(ndev);
6162 	int ret = 0;
6163 
6164 	ret = pm_runtime_resume_and_get(priv->device);
6165 	if (ret < 0)
6166 		return ret;
6167 
6168 	ret = eth_mac_addr(ndev, addr);
6169 	if (ret)
6170 		goto set_mac_error;
6171 
6172 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
6173 
6174 set_mac_error:
6175 	pm_runtime_put(priv->device);
6176 
6177 	return ret;
6178 }
6179 
6180 #ifdef CONFIG_DEBUG_FS
6181 static struct dentry *stmmac_fs_dir;
6182 
6183 static void sysfs_display_ring(void *head, int size, int extend_desc,
6184 			       struct seq_file *seq, dma_addr_t dma_phy_addr)
6185 {
6186 	int i;
6187 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
6188 	struct dma_desc *p = (struct dma_desc *)head;
6189 	dma_addr_t dma_addr;
6190 
6191 	for (i = 0; i < size; i++) {
6192 		if (extend_desc) {
6193 			dma_addr = dma_phy_addr + i * sizeof(*ep);
6194 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6195 				   i, &dma_addr,
6196 				   le32_to_cpu(ep->basic.des0),
6197 				   le32_to_cpu(ep->basic.des1),
6198 				   le32_to_cpu(ep->basic.des2),
6199 				   le32_to_cpu(ep->basic.des3));
6200 			ep++;
6201 		} else {
6202 			dma_addr = dma_phy_addr + i * sizeof(*p);
6203 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6204 				   i, &dma_addr,
6205 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
6206 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
6207 			p++;
6208 		}
6209 		seq_printf(seq, "\n");
6210 	}
6211 }
6212 
6213 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
6214 {
6215 	struct net_device *dev = seq->private;
6216 	struct stmmac_priv *priv = netdev_priv(dev);
6217 	u32 rx_count = priv->plat->rx_queues_to_use;
6218 	u32 tx_count = priv->plat->tx_queues_to_use;
6219 	u32 queue;
6220 
6221 	if ((dev->flags & IFF_UP) == 0)
6222 		return 0;
6223 
6224 	for (queue = 0; queue < rx_count; queue++) {
6225 		struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6226 
6227 		seq_printf(seq, "RX Queue %d:\n", queue);
6228 
6229 		if (priv->extend_desc) {
6230 			seq_printf(seq, "Extended descriptor ring:\n");
6231 			sysfs_display_ring((void *)rx_q->dma_erx,
6232 					   priv->dma_conf.dma_rx_size, 1, seq, rx_q->dma_rx_phy);
6233 		} else {
6234 			seq_printf(seq, "Descriptor ring:\n");
6235 			sysfs_display_ring((void *)rx_q->dma_rx,
6236 					   priv->dma_conf.dma_rx_size, 0, seq, rx_q->dma_rx_phy);
6237 		}
6238 	}
6239 
6240 	for (queue = 0; queue < tx_count; queue++) {
6241 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6242 
6243 		seq_printf(seq, "TX Queue %d:\n", queue);
6244 
6245 		if (priv->extend_desc) {
6246 			seq_printf(seq, "Extended descriptor ring:\n");
6247 			sysfs_display_ring((void *)tx_q->dma_etx,
6248 					   priv->dma_conf.dma_tx_size, 1, seq, tx_q->dma_tx_phy);
6249 		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
6250 			seq_printf(seq, "Descriptor ring:\n");
6251 			sysfs_display_ring((void *)tx_q->dma_tx,
6252 					   priv->dma_conf.dma_tx_size, 0, seq, tx_q->dma_tx_phy);
6253 		}
6254 	}
6255 
6256 	return 0;
6257 }
6258 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
6259 
6260 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
6261 {
6262 	static const char * const dwxgmac_timestamp_source[] = {
6263 		"None",
6264 		"Internal",
6265 		"External",
6266 		"Both",
6267 	};
6268 	static const char * const dwxgmac_safety_feature_desc[] = {
6269 		"No",
6270 		"All Safety Features with ECC and Parity",
6271 		"All Safety Features without ECC or Parity",
6272 		"All Safety Features with Parity Only",
6273 		"ECC Only",
6274 		"UNDEFINED",
6275 		"UNDEFINED",
6276 		"UNDEFINED",
6277 	};
6278 	struct net_device *dev = seq->private;
6279 	struct stmmac_priv *priv = netdev_priv(dev);
6280 
6281 	if (!priv->hw_cap_support) {
6282 		seq_printf(seq, "DMA HW features not supported\n");
6283 		return 0;
6284 	}
6285 
6286 	seq_printf(seq, "==============================\n");
6287 	seq_printf(seq, "\tDMA HW features\n");
6288 	seq_printf(seq, "==============================\n");
6289 
6290 	seq_printf(seq, "\t10/100 Mbps: %s\n",
6291 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6292 	seq_printf(seq, "\t1000 Mbps: %s\n",
6293 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
6294 	seq_printf(seq, "\tHalf duplex: %s\n",
6295 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
6296 	if (priv->plat->has_xgmac) {
6297 		seq_printf(seq,
6298 			   "\tNumber of Additional MAC address registers: %d\n",
6299 			   priv->dma_cap.multi_addr);
6300 	} else {
6301 		seq_printf(seq, "\tHash Filter: %s\n",
6302 			   (priv->dma_cap.hash_filter) ? "Y" : "N");
6303 		seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6304 			   (priv->dma_cap.multi_addr) ? "Y" : "N");
6305 	}
6306 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6307 		   (priv->dma_cap.pcs) ? "Y" : "N");
6308 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6309 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
6310 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
6311 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6312 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
6313 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6314 	seq_printf(seq, "\tRMON module: %s\n",
6315 		   (priv->dma_cap.rmon) ? "Y" : "N");
6316 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6317 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
6318 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6319 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
6320 	if (priv->plat->has_xgmac)
6321 		seq_printf(seq, "\tTimestamp System Time Source: %s\n",
6322 			   dwxgmac_timestamp_source[priv->dma_cap.tssrc]);
6323 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6324 		   (priv->dma_cap.eee) ? "Y" : "N");
6325 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6326 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6327 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
6328 	if (priv->synopsys_id >= DWMAC_CORE_4_00 ||
6329 	    priv->plat->has_xgmac) {
6330 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6331 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
6332 	} else {
6333 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6334 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6335 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6336 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6337 		seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6338 			   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6339 	}
6340 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6341 		   priv->dma_cap.number_rx_channel);
6342 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6343 		   priv->dma_cap.number_tx_channel);
6344 	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6345 		   priv->dma_cap.number_rx_queues);
6346 	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6347 		   priv->dma_cap.number_tx_queues);
6348 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
6349 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
6350 	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6351 	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6352 	seq_printf(seq, "\tHash Table Size: %lu\n", priv->dma_cap.hash_tb_sz ?
6353 		   (BIT(priv->dma_cap.hash_tb_sz) << 5) : 0);
6354 	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6355 	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6356 		   priv->dma_cap.pps_out_num);
6357 	seq_printf(seq, "\tSafety Features: %s\n",
6358 		   dwxgmac_safety_feature_desc[priv->dma_cap.asp]);
6359 	seq_printf(seq, "\tFlexible RX Parser: %s\n",
6360 		   priv->dma_cap.frpsel ? "Y" : "N");
6361 	seq_printf(seq, "\tEnhanced Addressing: %d\n",
6362 		   priv->dma_cap.host_dma_width);
6363 	seq_printf(seq, "\tReceive Side Scaling: %s\n",
6364 		   priv->dma_cap.rssen ? "Y" : "N");
6365 	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6366 		   priv->dma_cap.vlhash ? "Y" : "N");
6367 	seq_printf(seq, "\tSplit Header: %s\n",
6368 		   priv->dma_cap.sphen ? "Y" : "N");
6369 	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6370 		   priv->dma_cap.vlins ? "Y" : "N");
6371 	seq_printf(seq, "\tDouble VLAN: %s\n",
6372 		   priv->dma_cap.dvlan ? "Y" : "N");
6373 	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6374 		   priv->dma_cap.l3l4fnum);
6375 	seq_printf(seq, "\tARP Offloading: %s\n",
6376 		   priv->dma_cap.arpoffsel ? "Y" : "N");
6377 	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6378 		   priv->dma_cap.estsel ? "Y" : "N");
6379 	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6380 		   priv->dma_cap.fpesel ? "Y" : "N");
6381 	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6382 		   priv->dma_cap.tbssel ? "Y" : "N");
6383 	seq_printf(seq, "\tNumber of DMA Channels Enabled for TBS: %d\n",
6384 		   priv->dma_cap.tbs_ch_num);
6385 	seq_printf(seq, "\tPer-Stream Filtering: %s\n",
6386 		   priv->dma_cap.sgfsel ? "Y" : "N");
6387 	seq_printf(seq, "\tTX Timestamp FIFO Depth: %lu\n",
6388 		   BIT(priv->dma_cap.ttsfd) >> 1);
6389 	seq_printf(seq, "\tNumber of Traffic Classes: %d\n",
6390 		   priv->dma_cap.numtc);
6391 	seq_printf(seq, "\tDCB Feature: %s\n",
6392 		   priv->dma_cap.dcben ? "Y" : "N");
6393 	seq_printf(seq, "\tIEEE 1588 High Word Register: %s\n",
6394 		   priv->dma_cap.advthword ? "Y" : "N");
6395 	seq_printf(seq, "\tPTP Offload: %s\n",
6396 		   priv->dma_cap.ptoen ? "Y" : "N");
6397 	seq_printf(seq, "\tOne-Step Timestamping: %s\n",
6398 		   priv->dma_cap.osten ? "Y" : "N");
6399 	seq_printf(seq, "\tPriority-Based Flow Control: %s\n",
6400 		   priv->dma_cap.pfcen ? "Y" : "N");
6401 	seq_printf(seq, "\tNumber of Flexible RX Parser Instructions: %lu\n",
6402 		   BIT(priv->dma_cap.frpes) << 6);
6403 	seq_printf(seq, "\tNumber of Flexible RX Parser Parsable Bytes: %lu\n",
6404 		   BIT(priv->dma_cap.frpbs) << 6);
6405 	seq_printf(seq, "\tParallel Instruction Processor Engines: %d\n",
6406 		   priv->dma_cap.frppipe_num);
6407 	seq_printf(seq, "\tNumber of Extended VLAN Tag Filters: %lu\n",
6408 		   priv->dma_cap.nrvf_num ?
6409 		   (BIT(priv->dma_cap.nrvf_num) << 1) : 0);
6410 	seq_printf(seq, "\tWidth of the Time Interval Field in GCL: %d\n",
6411 		   priv->dma_cap.estwid ? 4 * priv->dma_cap.estwid + 12 : 0);
6412 	seq_printf(seq, "\tDepth of GCL: %lu\n",
6413 		   priv->dma_cap.estdep ? (BIT(priv->dma_cap.estdep) << 5) : 0);
6414 	seq_printf(seq, "\tQueue/Channel-Based VLAN Tag Insertion on TX: %s\n",
6415 		   priv->dma_cap.cbtisel ? "Y" : "N");
6416 	seq_printf(seq, "\tNumber of Auxiliary Snapshot Inputs: %d\n",
6417 		   priv->dma_cap.aux_snapshot_n);
6418 	seq_printf(seq, "\tOne-Step Timestamping for PTP over UDP/IP: %s\n",
6419 		   priv->dma_cap.pou_ost_en ? "Y" : "N");
6420 	seq_printf(seq, "\tEnhanced DMA: %s\n",
6421 		   priv->dma_cap.edma ? "Y" : "N");
6422 	seq_printf(seq, "\tDifferent Descriptor Cache: %s\n",
6423 		   priv->dma_cap.ediffc ? "Y" : "N");
6424 	seq_printf(seq, "\tVxLAN/NVGRE: %s\n",
6425 		   priv->dma_cap.vxn ? "Y" : "N");
6426 	seq_printf(seq, "\tDebug Memory Interface: %s\n",
6427 		   priv->dma_cap.dbgmem ? "Y" : "N");
6428 	seq_printf(seq, "\tNumber of Policing Counters: %lu\n",
6429 		   priv->dma_cap.pcsel ? BIT(priv->dma_cap.pcsel + 3) : 0);
6430 	return 0;
6431 }
6432 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6433 
6434 /* Use network device events to rename debugfs file entries.
6435  */
6436 static int stmmac_device_event(struct notifier_block *unused,
6437 			       unsigned long event, void *ptr)
6438 {
6439 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6440 	struct stmmac_priv *priv = netdev_priv(dev);
6441 
6442 	if (dev->netdev_ops != &stmmac_netdev_ops)
6443 		goto done;
6444 
6445 	switch (event) {
6446 	case NETDEV_CHANGENAME:
6447 		if (priv->dbgfs_dir)
6448 			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6449 							 priv->dbgfs_dir,
6450 							 stmmac_fs_dir,
6451 							 dev->name);
6452 		break;
6453 	}
6454 done:
6455 	return NOTIFY_DONE;
6456 }
6457 
6458 static struct notifier_block stmmac_notifier = {
6459 	.notifier_call = stmmac_device_event,
6460 };
6461 
6462 static void stmmac_init_fs(struct net_device *dev)
6463 {
6464 	struct stmmac_priv *priv = netdev_priv(dev);
6465 
6466 	rtnl_lock();
6467 
6468 	/* Create per netdev entries */
6469 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6470 
6471 	/* Entry to report DMA RX/TX rings */
6472 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6473 			    &stmmac_rings_status_fops);
6474 
6475 	/* Entry to report the DMA HW features */
6476 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6477 			    &stmmac_dma_cap_fops);
6478 
6479 	rtnl_unlock();
6480 }
6481 
6482 static void stmmac_exit_fs(struct net_device *dev)
6483 {
6484 	struct stmmac_priv *priv = netdev_priv(dev);
6485 
6486 	debugfs_remove_recursive(priv->dbgfs_dir);
6487 }
6488 #endif /* CONFIG_DEBUG_FS */
6489 
6490 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6491 {
6492 	unsigned char *data = (unsigned char *)&vid_le;
6493 	unsigned char data_byte = 0;
6494 	u32 crc = ~0x0;
6495 	u32 temp = 0;
6496 	int i, bits;
6497 
6498 	bits = get_bitmask_order(VLAN_VID_MASK);
6499 	for (i = 0; i < bits; i++) {
6500 		if ((i % 8) == 0)
6501 			data_byte = data[i / 8];
6502 
6503 		temp = ((crc & 1) ^ data_byte) & 1;
6504 		crc >>= 1;
6505 		data_byte >>= 1;
6506 
6507 		if (temp)
6508 			crc ^= 0xedb88320;
6509 	}
6510 
6511 	return crc;
6512 }
6513 
6514 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6515 {
6516 	u32 crc, hash = 0;
6517 	__le16 pmatch = 0;
6518 	int count = 0;
6519 	u16 vid = 0;
6520 
6521 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6522 		__le16 vid_le = cpu_to_le16(vid);
6523 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6524 		hash |= (1 << crc);
6525 		count++;
6526 	}
6527 
6528 	if (!priv->dma_cap.vlhash) {
6529 		if (count > 2) /* VID = 0 always passes filter */
6530 			return -EOPNOTSUPP;
6531 
6532 		pmatch = cpu_to_le16(vid);
6533 		hash = 0;
6534 	}
6535 
6536 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6537 }
6538 
6539 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6540 {
6541 	struct stmmac_priv *priv = netdev_priv(ndev);
6542 	bool is_double = false;
6543 	int ret;
6544 
6545 	ret = pm_runtime_resume_and_get(priv->device);
6546 	if (ret < 0)
6547 		return ret;
6548 
6549 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6550 		is_double = true;
6551 
6552 	set_bit(vid, priv->active_vlans);
6553 	ret = stmmac_vlan_update(priv, is_double);
6554 	if (ret) {
6555 		clear_bit(vid, priv->active_vlans);
6556 		goto err_pm_put;
6557 	}
6558 
6559 	if (priv->hw->num_vlan) {
6560 		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6561 		if (ret)
6562 			goto err_pm_put;
6563 	}
6564 err_pm_put:
6565 	pm_runtime_put(priv->device);
6566 
6567 	return ret;
6568 }
6569 
6570 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6571 {
6572 	struct stmmac_priv *priv = netdev_priv(ndev);
6573 	bool is_double = false;
6574 	int ret;
6575 
6576 	ret = pm_runtime_resume_and_get(priv->device);
6577 	if (ret < 0)
6578 		return ret;
6579 
6580 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6581 		is_double = true;
6582 
6583 	clear_bit(vid, priv->active_vlans);
6584 
6585 	if (priv->hw->num_vlan) {
6586 		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6587 		if (ret)
6588 			goto del_vlan_error;
6589 	}
6590 
6591 	ret = stmmac_vlan_update(priv, is_double);
6592 
6593 del_vlan_error:
6594 	pm_runtime_put(priv->device);
6595 
6596 	return ret;
6597 }
6598 
6599 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6600 {
6601 	struct stmmac_priv *priv = netdev_priv(dev);
6602 
6603 	switch (bpf->command) {
6604 	case XDP_SETUP_PROG:
6605 		return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6606 	case XDP_SETUP_XSK_POOL:
6607 		return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6608 					     bpf->xsk.queue_id);
6609 	default:
6610 		return -EOPNOTSUPP;
6611 	}
6612 }
6613 
6614 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6615 			   struct xdp_frame **frames, u32 flags)
6616 {
6617 	struct stmmac_priv *priv = netdev_priv(dev);
6618 	int cpu = smp_processor_id();
6619 	struct netdev_queue *nq;
6620 	int i, nxmit = 0;
6621 	int queue;
6622 
6623 	if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6624 		return -ENETDOWN;
6625 
6626 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6627 		return -EINVAL;
6628 
6629 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
6630 	nq = netdev_get_tx_queue(priv->dev, queue);
6631 
6632 	__netif_tx_lock(nq, cpu);
6633 	/* Avoids TX time-out as we are sharing with slow path */
6634 	txq_trans_cond_update(nq);
6635 
6636 	for (i = 0; i < num_frames; i++) {
6637 		int res;
6638 
6639 		res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6640 		if (res == STMMAC_XDP_CONSUMED)
6641 			break;
6642 
6643 		nxmit++;
6644 	}
6645 
6646 	if (flags & XDP_XMIT_FLUSH) {
6647 		stmmac_flush_tx_descriptors(priv, queue);
6648 		stmmac_tx_timer_arm(priv, queue);
6649 	}
6650 
6651 	__netif_tx_unlock(nq);
6652 
6653 	return nxmit;
6654 }
6655 
6656 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6657 {
6658 	struct stmmac_channel *ch = &priv->channel[queue];
6659 	unsigned long flags;
6660 
6661 	spin_lock_irqsave(&ch->lock, flags);
6662 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6663 	spin_unlock_irqrestore(&ch->lock, flags);
6664 
6665 	stmmac_stop_rx_dma(priv, queue);
6666 	__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6667 }
6668 
6669 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6670 {
6671 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6672 	struct stmmac_channel *ch = &priv->channel[queue];
6673 	unsigned long flags;
6674 	u32 buf_size;
6675 	int ret;
6676 
6677 	ret = __alloc_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6678 	if (ret) {
6679 		netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6680 		return;
6681 	}
6682 
6683 	ret = __init_dma_rx_desc_rings(priv, &priv->dma_conf, queue, GFP_KERNEL);
6684 	if (ret) {
6685 		__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6686 		netdev_err(priv->dev, "Failed to init RX desc.\n");
6687 		return;
6688 	}
6689 
6690 	stmmac_reset_rx_queue(priv, queue);
6691 	stmmac_clear_rx_descriptors(priv, &priv->dma_conf, queue);
6692 
6693 	stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6694 			    rx_q->dma_rx_phy, rx_q->queue_index);
6695 
6696 	rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6697 			     sizeof(struct dma_desc));
6698 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6699 			       rx_q->rx_tail_addr, rx_q->queue_index);
6700 
6701 	if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6702 		buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6703 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6704 				      buf_size,
6705 				      rx_q->queue_index);
6706 	} else {
6707 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6708 				      priv->dma_conf.dma_buf_sz,
6709 				      rx_q->queue_index);
6710 	}
6711 
6712 	stmmac_start_rx_dma(priv, queue);
6713 
6714 	spin_lock_irqsave(&ch->lock, flags);
6715 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6716 	spin_unlock_irqrestore(&ch->lock, flags);
6717 }
6718 
6719 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6720 {
6721 	struct stmmac_channel *ch = &priv->channel[queue];
6722 	unsigned long flags;
6723 
6724 	spin_lock_irqsave(&ch->lock, flags);
6725 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6726 	spin_unlock_irqrestore(&ch->lock, flags);
6727 
6728 	stmmac_stop_tx_dma(priv, queue);
6729 	__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6730 }
6731 
6732 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6733 {
6734 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6735 	struct stmmac_channel *ch = &priv->channel[queue];
6736 	unsigned long flags;
6737 	int ret;
6738 
6739 	ret = __alloc_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6740 	if (ret) {
6741 		netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6742 		return;
6743 	}
6744 
6745 	ret = __init_dma_tx_desc_rings(priv,  &priv->dma_conf, queue);
6746 	if (ret) {
6747 		__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6748 		netdev_err(priv->dev, "Failed to init TX desc.\n");
6749 		return;
6750 	}
6751 
6752 	stmmac_reset_tx_queue(priv, queue);
6753 	stmmac_clear_tx_descriptors(priv, &priv->dma_conf, queue);
6754 
6755 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6756 			    tx_q->dma_tx_phy, tx_q->queue_index);
6757 
6758 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
6759 		stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6760 
6761 	tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6762 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6763 			       tx_q->tx_tail_addr, tx_q->queue_index);
6764 
6765 	stmmac_start_tx_dma(priv, queue);
6766 
6767 	spin_lock_irqsave(&ch->lock, flags);
6768 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6769 	spin_unlock_irqrestore(&ch->lock, flags);
6770 }
6771 
6772 void stmmac_xdp_release(struct net_device *dev)
6773 {
6774 	struct stmmac_priv *priv = netdev_priv(dev);
6775 	u32 chan;
6776 
6777 	/* Ensure tx function is not running */
6778 	netif_tx_disable(dev);
6779 
6780 	/* Disable NAPI process */
6781 	stmmac_disable_all_queues(priv);
6782 
6783 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6784 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6785 
6786 	/* Free the IRQ lines */
6787 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
6788 
6789 	/* Stop TX/RX DMA channels */
6790 	stmmac_stop_all_dma(priv);
6791 
6792 	/* Release and free the Rx/Tx resources */
6793 	free_dma_desc_resources(priv, &priv->dma_conf);
6794 
6795 	/* Disable the MAC Rx/Tx */
6796 	stmmac_mac_set(priv, priv->ioaddr, false);
6797 
6798 	/* set trans_start so we don't get spurious
6799 	 * watchdogs during reset
6800 	 */
6801 	netif_trans_update(dev);
6802 	netif_carrier_off(dev);
6803 }
6804 
6805 int stmmac_xdp_open(struct net_device *dev)
6806 {
6807 	struct stmmac_priv *priv = netdev_priv(dev);
6808 	u32 rx_cnt = priv->plat->rx_queues_to_use;
6809 	u32 tx_cnt = priv->plat->tx_queues_to_use;
6810 	u32 dma_csr_ch = max(rx_cnt, tx_cnt);
6811 	struct stmmac_rx_queue *rx_q;
6812 	struct stmmac_tx_queue *tx_q;
6813 	u32 buf_size;
6814 	bool sph_en;
6815 	u32 chan;
6816 	int ret;
6817 
6818 	ret = alloc_dma_desc_resources(priv, &priv->dma_conf);
6819 	if (ret < 0) {
6820 		netdev_err(dev, "%s: DMA descriptors allocation failed\n",
6821 			   __func__);
6822 		goto dma_desc_error;
6823 	}
6824 
6825 	ret = init_dma_desc_rings(dev, &priv->dma_conf, GFP_KERNEL);
6826 	if (ret < 0) {
6827 		netdev_err(dev, "%s: DMA descriptors initialization failed\n",
6828 			   __func__);
6829 		goto init_error;
6830 	}
6831 
6832 	stmmac_reset_queues_param(priv);
6833 
6834 	/* DMA CSR Channel configuration */
6835 	for (chan = 0; chan < dma_csr_ch; chan++) {
6836 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
6837 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
6838 	}
6839 
6840 	/* Adjust Split header */
6841 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
6842 
6843 	/* DMA RX Channel Configuration */
6844 	for (chan = 0; chan < rx_cnt; chan++) {
6845 		rx_q = &priv->dma_conf.rx_queue[chan];
6846 
6847 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6848 				    rx_q->dma_rx_phy, chan);
6849 
6850 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
6851 				     (rx_q->buf_alloc_num *
6852 				      sizeof(struct dma_desc));
6853 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6854 				       rx_q->rx_tail_addr, chan);
6855 
6856 		if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6857 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6858 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6859 					      buf_size,
6860 					      rx_q->queue_index);
6861 		} else {
6862 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6863 					      priv->dma_conf.dma_buf_sz,
6864 					      rx_q->queue_index);
6865 		}
6866 
6867 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
6868 	}
6869 
6870 	/* DMA TX Channel Configuration */
6871 	for (chan = 0; chan < tx_cnt; chan++) {
6872 		tx_q = &priv->dma_conf.tx_queue[chan];
6873 
6874 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6875 				    tx_q->dma_tx_phy, chan);
6876 
6877 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6878 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6879 				       tx_q->tx_tail_addr, chan);
6880 
6881 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6882 		tx_q->txtimer.function = stmmac_tx_timer;
6883 	}
6884 
6885 	/* Enable the MAC Rx/Tx */
6886 	stmmac_mac_set(priv, priv->ioaddr, true);
6887 
6888 	/* Start Rx & Tx DMA Channels */
6889 	stmmac_start_all_dma(priv);
6890 
6891 	ret = stmmac_request_irq(dev);
6892 	if (ret)
6893 		goto irq_error;
6894 
6895 	/* Enable NAPI process*/
6896 	stmmac_enable_all_queues(priv);
6897 	netif_carrier_on(dev);
6898 	netif_tx_start_all_queues(dev);
6899 	stmmac_enable_all_dma_irq(priv);
6900 
6901 	return 0;
6902 
6903 irq_error:
6904 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6905 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6906 
6907 	stmmac_hw_teardown(dev);
6908 init_error:
6909 	free_dma_desc_resources(priv, &priv->dma_conf);
6910 dma_desc_error:
6911 	return ret;
6912 }
6913 
6914 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6915 {
6916 	struct stmmac_priv *priv = netdev_priv(dev);
6917 	struct stmmac_rx_queue *rx_q;
6918 	struct stmmac_tx_queue *tx_q;
6919 	struct stmmac_channel *ch;
6920 
6921 	if (test_bit(STMMAC_DOWN, &priv->state) ||
6922 	    !netif_carrier_ok(priv->dev))
6923 		return -ENETDOWN;
6924 
6925 	if (!stmmac_xdp_is_enabled(priv))
6926 		return -EINVAL;
6927 
6928 	if (queue >= priv->plat->rx_queues_to_use ||
6929 	    queue >= priv->plat->tx_queues_to_use)
6930 		return -EINVAL;
6931 
6932 	rx_q = &priv->dma_conf.rx_queue[queue];
6933 	tx_q = &priv->dma_conf.tx_queue[queue];
6934 	ch = &priv->channel[queue];
6935 
6936 	if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6937 		return -EINVAL;
6938 
6939 	if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6940 		/* EQoS does not have per-DMA channel SW interrupt,
6941 		 * so we schedule RX Napi straight-away.
6942 		 */
6943 		if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6944 			__napi_schedule(&ch->rxtx_napi);
6945 	}
6946 
6947 	return 0;
6948 }
6949 
6950 static void stmmac_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
6951 {
6952 	struct stmmac_priv *priv = netdev_priv(dev);
6953 	u32 tx_cnt = priv->plat->tx_queues_to_use;
6954 	u32 rx_cnt = priv->plat->rx_queues_to_use;
6955 	unsigned int start;
6956 	int q;
6957 
6958 	for (q = 0; q < tx_cnt; q++) {
6959 		struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[q];
6960 		u64 tx_packets;
6961 		u64 tx_bytes;
6962 
6963 		do {
6964 			start = u64_stats_fetch_begin(&txq_stats->syncp);
6965 			tx_packets = txq_stats->tx_packets;
6966 			tx_bytes   = txq_stats->tx_bytes;
6967 		} while (u64_stats_fetch_retry(&txq_stats->syncp, start));
6968 
6969 		stats->tx_packets += tx_packets;
6970 		stats->tx_bytes += tx_bytes;
6971 	}
6972 
6973 	for (q = 0; q < rx_cnt; q++) {
6974 		struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[q];
6975 		u64 rx_packets;
6976 		u64 rx_bytes;
6977 
6978 		do {
6979 			start = u64_stats_fetch_begin(&rxq_stats->syncp);
6980 			rx_packets = rxq_stats->rx_packets;
6981 			rx_bytes   = rxq_stats->rx_bytes;
6982 		} while (u64_stats_fetch_retry(&rxq_stats->syncp, start));
6983 
6984 		stats->rx_packets += rx_packets;
6985 		stats->rx_bytes += rx_bytes;
6986 	}
6987 
6988 	stats->rx_dropped = priv->xstats.rx_dropped;
6989 	stats->rx_errors = priv->xstats.rx_errors;
6990 	stats->tx_dropped = priv->xstats.tx_dropped;
6991 	stats->tx_errors = priv->xstats.tx_errors;
6992 	stats->tx_carrier_errors = priv->xstats.tx_losscarrier + priv->xstats.tx_carrier;
6993 	stats->collisions = priv->xstats.tx_collision + priv->xstats.rx_collision;
6994 	stats->rx_length_errors = priv->xstats.rx_length;
6995 	stats->rx_crc_errors = priv->xstats.rx_crc_errors;
6996 	stats->rx_over_errors = priv->xstats.rx_overflow_cntr;
6997 	stats->rx_missed_errors = priv->xstats.rx_missed_cntr;
6998 }
6999 
7000 static const struct net_device_ops stmmac_netdev_ops = {
7001 	.ndo_open = stmmac_open,
7002 	.ndo_start_xmit = stmmac_xmit,
7003 	.ndo_stop = stmmac_release,
7004 	.ndo_change_mtu = stmmac_change_mtu,
7005 	.ndo_fix_features = stmmac_fix_features,
7006 	.ndo_set_features = stmmac_set_features,
7007 	.ndo_set_rx_mode = stmmac_set_rx_mode,
7008 	.ndo_tx_timeout = stmmac_tx_timeout,
7009 	.ndo_eth_ioctl = stmmac_ioctl,
7010 	.ndo_get_stats64 = stmmac_get_stats64,
7011 	.ndo_setup_tc = stmmac_setup_tc,
7012 	.ndo_select_queue = stmmac_select_queue,
7013 	.ndo_set_mac_address = stmmac_set_mac_address,
7014 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
7015 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
7016 	.ndo_bpf = stmmac_bpf,
7017 	.ndo_xdp_xmit = stmmac_xdp_xmit,
7018 	.ndo_xsk_wakeup = stmmac_xsk_wakeup,
7019 };
7020 
7021 static void stmmac_reset_subtask(struct stmmac_priv *priv)
7022 {
7023 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
7024 		return;
7025 	if (test_bit(STMMAC_DOWN, &priv->state))
7026 		return;
7027 
7028 	netdev_err(priv->dev, "Reset adapter.\n");
7029 
7030 	rtnl_lock();
7031 	netif_trans_update(priv->dev);
7032 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
7033 		usleep_range(1000, 2000);
7034 
7035 	set_bit(STMMAC_DOWN, &priv->state);
7036 	dev_close(priv->dev);
7037 	dev_open(priv->dev, NULL);
7038 	clear_bit(STMMAC_DOWN, &priv->state);
7039 	clear_bit(STMMAC_RESETING, &priv->state);
7040 	rtnl_unlock();
7041 }
7042 
7043 static void stmmac_service_task(struct work_struct *work)
7044 {
7045 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
7046 			service_task);
7047 
7048 	stmmac_reset_subtask(priv);
7049 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
7050 }
7051 
7052 /**
7053  *  stmmac_hw_init - Init the MAC device
7054  *  @priv: driver private structure
7055  *  Description: this function is to configure the MAC device according to
7056  *  some platform parameters or the HW capability register. It prepares the
7057  *  driver to use either ring or chain modes and to setup either enhanced or
7058  *  normal descriptors.
7059  */
7060 static int stmmac_hw_init(struct stmmac_priv *priv)
7061 {
7062 	int ret;
7063 
7064 	/* dwmac-sun8i only work in chain mode */
7065 	if (priv->plat->flags & STMMAC_FLAG_HAS_SUN8I)
7066 		chain_mode = 1;
7067 	priv->chain_mode = chain_mode;
7068 
7069 	/* Initialize HW Interface */
7070 	ret = stmmac_hwif_init(priv);
7071 	if (ret)
7072 		return ret;
7073 
7074 	/* Get the HW capability (new GMAC newer than 3.50a) */
7075 	priv->hw_cap_support = stmmac_get_hw_features(priv);
7076 	if (priv->hw_cap_support) {
7077 		dev_info(priv->device, "DMA HW capability register supported\n");
7078 
7079 		/* We can override some gmac/dma configuration fields: e.g.
7080 		 * enh_desc, tx_coe (e.g. that are passed through the
7081 		 * platform) with the values from the HW capability
7082 		 * register (if supported).
7083 		 */
7084 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
7085 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
7086 				!(priv->plat->flags & STMMAC_FLAG_USE_PHY_WOL);
7087 		priv->hw->pmt = priv->plat->pmt;
7088 		if (priv->dma_cap.hash_tb_sz) {
7089 			priv->hw->multicast_filter_bins =
7090 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
7091 			priv->hw->mcast_bits_log2 =
7092 					ilog2(priv->hw->multicast_filter_bins);
7093 		}
7094 
7095 		/* TXCOE doesn't work in thresh DMA mode */
7096 		if (priv->plat->force_thresh_dma_mode)
7097 			priv->plat->tx_coe = 0;
7098 		else
7099 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
7100 
7101 		/* In case of GMAC4 rx_coe is from HW cap register. */
7102 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
7103 
7104 		if (priv->dma_cap.rx_coe_type2)
7105 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
7106 		else if (priv->dma_cap.rx_coe_type1)
7107 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
7108 
7109 	} else {
7110 		dev_info(priv->device, "No HW DMA feature register supported\n");
7111 	}
7112 
7113 	if (priv->plat->rx_coe) {
7114 		priv->hw->rx_csum = priv->plat->rx_coe;
7115 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
7116 		if (priv->synopsys_id < DWMAC_CORE_4_00)
7117 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
7118 	}
7119 	if (priv->plat->tx_coe)
7120 		dev_info(priv->device, "TX Checksum insertion supported\n");
7121 
7122 	if (priv->plat->pmt) {
7123 		dev_info(priv->device, "Wake-Up On Lan supported\n");
7124 		device_set_wakeup_capable(priv->device, 1);
7125 	}
7126 
7127 	if (priv->dma_cap.tsoen)
7128 		dev_info(priv->device, "TSO supported\n");
7129 
7130 	priv->hw->vlan_fail_q_en =
7131 		(priv->plat->flags & STMMAC_FLAG_VLAN_FAIL_Q_EN);
7132 	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
7133 
7134 	/* Run HW quirks, if any */
7135 	if (priv->hwif_quirks) {
7136 		ret = priv->hwif_quirks(priv);
7137 		if (ret)
7138 			return ret;
7139 	}
7140 
7141 	/* Rx Watchdog is available in the COREs newer than the 3.40.
7142 	 * In some case, for example on bugged HW this feature
7143 	 * has to be disable and this can be done by passing the
7144 	 * riwt_off field from the platform.
7145 	 */
7146 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
7147 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
7148 		priv->use_riwt = 1;
7149 		dev_info(priv->device,
7150 			 "Enable RX Mitigation via HW Watchdog Timer\n");
7151 	}
7152 
7153 	return 0;
7154 }
7155 
7156 static void stmmac_napi_add(struct net_device *dev)
7157 {
7158 	struct stmmac_priv *priv = netdev_priv(dev);
7159 	u32 queue, maxq;
7160 
7161 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
7162 
7163 	for (queue = 0; queue < maxq; queue++) {
7164 		struct stmmac_channel *ch = &priv->channel[queue];
7165 
7166 		ch->priv_data = priv;
7167 		ch->index = queue;
7168 		spin_lock_init(&ch->lock);
7169 
7170 		if (queue < priv->plat->rx_queues_to_use) {
7171 			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx);
7172 		}
7173 		if (queue < priv->plat->tx_queues_to_use) {
7174 			netif_napi_add_tx(dev, &ch->tx_napi,
7175 					  stmmac_napi_poll_tx);
7176 		}
7177 		if (queue < priv->plat->rx_queues_to_use &&
7178 		    queue < priv->plat->tx_queues_to_use) {
7179 			netif_napi_add(dev, &ch->rxtx_napi,
7180 				       stmmac_napi_poll_rxtx);
7181 		}
7182 	}
7183 }
7184 
7185 static void stmmac_napi_del(struct net_device *dev)
7186 {
7187 	struct stmmac_priv *priv = netdev_priv(dev);
7188 	u32 queue, maxq;
7189 
7190 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
7191 
7192 	for (queue = 0; queue < maxq; queue++) {
7193 		struct stmmac_channel *ch = &priv->channel[queue];
7194 
7195 		if (queue < priv->plat->rx_queues_to_use)
7196 			netif_napi_del(&ch->rx_napi);
7197 		if (queue < priv->plat->tx_queues_to_use)
7198 			netif_napi_del(&ch->tx_napi);
7199 		if (queue < priv->plat->rx_queues_to_use &&
7200 		    queue < priv->plat->tx_queues_to_use) {
7201 			netif_napi_del(&ch->rxtx_napi);
7202 		}
7203 	}
7204 }
7205 
7206 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
7207 {
7208 	struct stmmac_priv *priv = netdev_priv(dev);
7209 	int ret = 0, i;
7210 
7211 	if (netif_running(dev))
7212 		stmmac_release(dev);
7213 
7214 	stmmac_napi_del(dev);
7215 
7216 	priv->plat->rx_queues_to_use = rx_cnt;
7217 	priv->plat->tx_queues_to_use = tx_cnt;
7218 	if (!netif_is_rxfh_configured(dev))
7219 		for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7220 			priv->rss.table[i] = ethtool_rxfh_indir_default(i,
7221 									rx_cnt);
7222 
7223 	stmmac_set_half_duplex(priv);
7224 	stmmac_napi_add(dev);
7225 
7226 	if (netif_running(dev))
7227 		ret = stmmac_open(dev);
7228 
7229 	return ret;
7230 }
7231 
7232 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
7233 {
7234 	struct stmmac_priv *priv = netdev_priv(dev);
7235 	int ret = 0;
7236 
7237 	if (netif_running(dev))
7238 		stmmac_release(dev);
7239 
7240 	priv->dma_conf.dma_rx_size = rx_size;
7241 	priv->dma_conf.dma_tx_size = tx_size;
7242 
7243 	if (netif_running(dev))
7244 		ret = stmmac_open(dev);
7245 
7246 	return ret;
7247 }
7248 
7249 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
7250 static void stmmac_fpe_lp_task(struct work_struct *work)
7251 {
7252 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
7253 						fpe_task);
7254 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
7255 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
7256 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
7257 	bool *hs_enable = &fpe_cfg->hs_enable;
7258 	bool *enable = &fpe_cfg->enable;
7259 	int retries = 20;
7260 
7261 	while (retries-- > 0) {
7262 		/* Bail out immediately if FPE handshake is OFF */
7263 		if (*lo_state == FPE_STATE_OFF || !*hs_enable)
7264 			break;
7265 
7266 		if (*lo_state == FPE_STATE_ENTERING_ON &&
7267 		    *lp_state == FPE_STATE_ENTERING_ON) {
7268 			stmmac_fpe_configure(priv, priv->ioaddr,
7269 					     fpe_cfg,
7270 					     priv->plat->tx_queues_to_use,
7271 					     priv->plat->rx_queues_to_use,
7272 					     *enable);
7273 
7274 			netdev_info(priv->dev, "configured FPE\n");
7275 
7276 			*lo_state = FPE_STATE_ON;
7277 			*lp_state = FPE_STATE_ON;
7278 			netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
7279 			break;
7280 		}
7281 
7282 		if ((*lo_state == FPE_STATE_CAPABLE ||
7283 		     *lo_state == FPE_STATE_ENTERING_ON) &&
7284 		     *lp_state != FPE_STATE_ON) {
7285 			netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
7286 				    *lo_state, *lp_state);
7287 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7288 						fpe_cfg,
7289 						MPACKET_VERIFY);
7290 		}
7291 		/* Sleep then retry */
7292 		msleep(500);
7293 	}
7294 
7295 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
7296 }
7297 
7298 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
7299 {
7300 	if (priv->plat->fpe_cfg->hs_enable != enable) {
7301 		if (enable) {
7302 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7303 						priv->plat->fpe_cfg,
7304 						MPACKET_VERIFY);
7305 		} else {
7306 			priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
7307 			priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
7308 		}
7309 
7310 		priv->plat->fpe_cfg->hs_enable = enable;
7311 	}
7312 }
7313 
7314 static int stmmac_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
7315 {
7316 	const struct stmmac_xdp_buff *ctx = (void *)_ctx;
7317 	struct dma_desc *desc_contains_ts = ctx->desc;
7318 	struct stmmac_priv *priv = ctx->priv;
7319 	struct dma_desc *ndesc = ctx->ndesc;
7320 	struct dma_desc *desc = ctx->desc;
7321 	u64 ns = 0;
7322 
7323 	if (!priv->hwts_rx_en)
7324 		return -ENODATA;
7325 
7326 	/* For GMAC4, the valid timestamp is from CTX next desc. */
7327 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
7328 		desc_contains_ts = ndesc;
7329 
7330 	/* Check if timestamp is available */
7331 	if (stmmac_get_rx_timestamp_status(priv, desc, ndesc, priv->adv_ts)) {
7332 		stmmac_get_timestamp(priv, desc_contains_ts, priv->adv_ts, &ns);
7333 		ns -= priv->plat->cdc_error_adj;
7334 		*timestamp = ns_to_ktime(ns);
7335 		return 0;
7336 	}
7337 
7338 	return -ENODATA;
7339 }
7340 
7341 static const struct xdp_metadata_ops stmmac_xdp_metadata_ops = {
7342 	.xmo_rx_timestamp		= stmmac_xdp_rx_timestamp,
7343 };
7344 
7345 /**
7346  * stmmac_dvr_probe
7347  * @device: device pointer
7348  * @plat_dat: platform data pointer
7349  * @res: stmmac resource pointer
7350  * Description: this is the main probe function used to
7351  * call the alloc_etherdev, allocate the priv structure.
7352  * Return:
7353  * returns 0 on success, otherwise errno.
7354  */
7355 int stmmac_dvr_probe(struct device *device,
7356 		     struct plat_stmmacenet_data *plat_dat,
7357 		     struct stmmac_resources *res)
7358 {
7359 	struct net_device *ndev = NULL;
7360 	struct stmmac_priv *priv;
7361 	u32 rxq;
7362 	int i, ret = 0;
7363 
7364 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
7365 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
7366 	if (!ndev)
7367 		return -ENOMEM;
7368 
7369 	SET_NETDEV_DEV(ndev, device);
7370 
7371 	priv = netdev_priv(ndev);
7372 	priv->device = device;
7373 	priv->dev = ndev;
7374 
7375 	for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
7376 		u64_stats_init(&priv->xstats.rxq_stats[i].syncp);
7377 	for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
7378 		u64_stats_init(&priv->xstats.txq_stats[i].syncp);
7379 
7380 	stmmac_set_ethtool_ops(ndev);
7381 	priv->pause = pause;
7382 	priv->plat = plat_dat;
7383 	priv->ioaddr = res->addr;
7384 	priv->dev->base_addr = (unsigned long)res->addr;
7385 	priv->plat->dma_cfg->multi_msi_en =
7386 		(priv->plat->flags & STMMAC_FLAG_MULTI_MSI_EN);
7387 
7388 	priv->dev->irq = res->irq;
7389 	priv->wol_irq = res->wol_irq;
7390 	priv->lpi_irq = res->lpi_irq;
7391 	priv->sfty_ce_irq = res->sfty_ce_irq;
7392 	priv->sfty_ue_irq = res->sfty_ue_irq;
7393 	for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
7394 		priv->rx_irq[i] = res->rx_irq[i];
7395 	for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
7396 		priv->tx_irq[i] = res->tx_irq[i];
7397 
7398 	if (!is_zero_ether_addr(res->mac))
7399 		eth_hw_addr_set(priv->dev, res->mac);
7400 
7401 	dev_set_drvdata(device, priv->dev);
7402 
7403 	/* Verify driver arguments */
7404 	stmmac_verify_args();
7405 
7406 	priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
7407 	if (!priv->af_xdp_zc_qps)
7408 		return -ENOMEM;
7409 
7410 	/* Allocate workqueue */
7411 	priv->wq = create_singlethread_workqueue("stmmac_wq");
7412 	if (!priv->wq) {
7413 		dev_err(priv->device, "failed to create workqueue\n");
7414 		ret = -ENOMEM;
7415 		goto error_wq_init;
7416 	}
7417 
7418 	INIT_WORK(&priv->service_task, stmmac_service_task);
7419 
7420 	/* Initialize Link Partner FPE workqueue */
7421 	INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
7422 
7423 	/* Override with kernel parameters if supplied XXX CRS XXX
7424 	 * this needs to have multiple instances
7425 	 */
7426 	if ((phyaddr >= 0) && (phyaddr <= 31))
7427 		priv->plat->phy_addr = phyaddr;
7428 
7429 	if (priv->plat->stmmac_rst) {
7430 		ret = reset_control_assert(priv->plat->stmmac_rst);
7431 		reset_control_deassert(priv->plat->stmmac_rst);
7432 		/* Some reset controllers have only reset callback instead of
7433 		 * assert + deassert callbacks pair.
7434 		 */
7435 		if (ret == -ENOTSUPP)
7436 			reset_control_reset(priv->plat->stmmac_rst);
7437 	}
7438 
7439 	ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
7440 	if (ret == -ENOTSUPP)
7441 		dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
7442 			ERR_PTR(ret));
7443 
7444 	/* Wait a bit for the reset to take effect */
7445 	udelay(10);
7446 
7447 	/* Init MAC and get the capabilities */
7448 	ret = stmmac_hw_init(priv);
7449 	if (ret)
7450 		goto error_hw_init;
7451 
7452 	/* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
7453 	 */
7454 	if (priv->synopsys_id < DWMAC_CORE_5_20)
7455 		priv->plat->dma_cfg->dche = false;
7456 
7457 	stmmac_check_ether_addr(priv);
7458 
7459 	ndev->netdev_ops = &stmmac_netdev_ops;
7460 
7461 	ndev->xdp_metadata_ops = &stmmac_xdp_metadata_ops;
7462 
7463 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
7464 			    NETIF_F_RXCSUM;
7465 	ndev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
7466 			     NETDEV_XDP_ACT_XSK_ZEROCOPY;
7467 
7468 	ret = stmmac_tc_init(priv, priv);
7469 	if (!ret) {
7470 		ndev->hw_features |= NETIF_F_HW_TC;
7471 	}
7472 
7473 	if ((priv->plat->flags & STMMAC_FLAG_TSO_EN) && (priv->dma_cap.tsoen)) {
7474 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
7475 		if (priv->plat->has_gmac4)
7476 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
7477 		priv->tso = true;
7478 		dev_info(priv->device, "TSO feature enabled\n");
7479 	}
7480 
7481 	if (priv->dma_cap.sphen &&
7482 	    !(priv->plat->flags & STMMAC_FLAG_SPH_DISABLE)) {
7483 		ndev->hw_features |= NETIF_F_GRO;
7484 		priv->sph_cap = true;
7485 		priv->sph = priv->sph_cap;
7486 		dev_info(priv->device, "SPH feature enabled\n");
7487 	}
7488 
7489 	/* Ideally our host DMA address width is the same as for the
7490 	 * device. However, it may differ and then we have to use our
7491 	 * host DMA width for allocation and the device DMA width for
7492 	 * register handling.
7493 	 */
7494 	if (priv->plat->host_dma_width)
7495 		priv->dma_cap.host_dma_width = priv->plat->host_dma_width;
7496 	else
7497 		priv->dma_cap.host_dma_width = priv->dma_cap.addr64;
7498 
7499 	if (priv->dma_cap.host_dma_width) {
7500 		ret = dma_set_mask_and_coherent(device,
7501 				DMA_BIT_MASK(priv->dma_cap.host_dma_width));
7502 		if (!ret) {
7503 			dev_info(priv->device, "Using %d/%d bits DMA host/device width\n",
7504 				 priv->dma_cap.host_dma_width, priv->dma_cap.addr64);
7505 
7506 			/*
7507 			 * If more than 32 bits can be addressed, make sure to
7508 			 * enable enhanced addressing mode.
7509 			 */
7510 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
7511 				priv->plat->dma_cfg->eame = true;
7512 		} else {
7513 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
7514 			if (ret) {
7515 				dev_err(priv->device, "Failed to set DMA Mask\n");
7516 				goto error_hw_init;
7517 			}
7518 
7519 			priv->dma_cap.host_dma_width = 32;
7520 		}
7521 	}
7522 
7523 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
7524 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
7525 #ifdef STMMAC_VLAN_TAG_USED
7526 	/* Both mac100 and gmac support receive VLAN tag detection */
7527 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
7528 	if (priv->dma_cap.vlhash) {
7529 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7530 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
7531 	}
7532 	if (priv->dma_cap.vlins) {
7533 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
7534 		if (priv->dma_cap.dvlan)
7535 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
7536 	}
7537 #endif
7538 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
7539 
7540 	priv->xstats.threshold = tc;
7541 
7542 	/* Initialize RSS */
7543 	rxq = priv->plat->rx_queues_to_use;
7544 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
7545 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7546 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
7547 
7548 	if (priv->dma_cap.rssen && priv->plat->rss_en)
7549 		ndev->features |= NETIF_F_RXHASH;
7550 
7551 	ndev->vlan_features |= ndev->features;
7552 	/* TSO doesn't work on VLANs yet */
7553 	ndev->vlan_features &= ~NETIF_F_TSO;
7554 
7555 	/* MTU range: 46 - hw-specific max */
7556 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
7557 	if (priv->plat->has_xgmac)
7558 		ndev->max_mtu = XGMAC_JUMBO_LEN;
7559 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
7560 		ndev->max_mtu = JUMBO_LEN;
7561 	else
7562 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
7563 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
7564 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
7565 	 */
7566 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
7567 	    (priv->plat->maxmtu >= ndev->min_mtu))
7568 		ndev->max_mtu = priv->plat->maxmtu;
7569 	else if (priv->plat->maxmtu < ndev->min_mtu)
7570 		dev_warn(priv->device,
7571 			 "%s: warning: maxmtu having invalid value (%d)\n",
7572 			 __func__, priv->plat->maxmtu);
7573 
7574 	if (flow_ctrl)
7575 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
7576 
7577 	ndev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
7578 
7579 	/* Setup channels NAPI */
7580 	stmmac_napi_add(ndev);
7581 
7582 	mutex_init(&priv->lock);
7583 
7584 	/* If a specific clk_csr value is passed from the platform
7585 	 * this means that the CSR Clock Range selection cannot be
7586 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
7587 	 * set the MDC clock dynamically according to the csr actual
7588 	 * clock input.
7589 	 */
7590 	if (priv->plat->clk_csr >= 0)
7591 		priv->clk_csr = priv->plat->clk_csr;
7592 	else
7593 		stmmac_clk_csr_set(priv);
7594 
7595 	stmmac_check_pcs_mode(priv);
7596 
7597 	pm_runtime_get_noresume(device);
7598 	pm_runtime_set_active(device);
7599 	if (!pm_runtime_enabled(device))
7600 		pm_runtime_enable(device);
7601 
7602 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7603 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
7604 		/* MDIO bus Registration */
7605 		ret = stmmac_mdio_register(ndev);
7606 		if (ret < 0) {
7607 			dev_err_probe(priv->device, ret,
7608 				      "%s: MDIO bus (id: %d) registration failed\n",
7609 				      __func__, priv->plat->bus_id);
7610 			goto error_mdio_register;
7611 		}
7612 	}
7613 
7614 	if (priv->plat->speed_mode_2500)
7615 		priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7616 
7617 	if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7618 		ret = stmmac_xpcs_setup(priv->mii);
7619 		if (ret)
7620 			goto error_xpcs_setup;
7621 	}
7622 
7623 	ret = stmmac_phy_setup(priv);
7624 	if (ret) {
7625 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7626 		goto error_phy_setup;
7627 	}
7628 
7629 	ret = register_netdev(ndev);
7630 	if (ret) {
7631 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
7632 			__func__, ret);
7633 		goto error_netdev_register;
7634 	}
7635 
7636 #ifdef CONFIG_DEBUG_FS
7637 	stmmac_init_fs(ndev);
7638 #endif
7639 
7640 	if (priv->plat->dump_debug_regs)
7641 		priv->plat->dump_debug_regs(priv->plat->bsp_priv);
7642 
7643 	/* Let pm_runtime_put() disable the clocks.
7644 	 * If CONFIG_PM is not enabled, the clocks will stay powered.
7645 	 */
7646 	pm_runtime_put(device);
7647 
7648 	return ret;
7649 
7650 error_netdev_register:
7651 	phylink_destroy(priv->phylink);
7652 error_xpcs_setup:
7653 error_phy_setup:
7654 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7655 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7656 		stmmac_mdio_unregister(ndev);
7657 error_mdio_register:
7658 	stmmac_napi_del(ndev);
7659 error_hw_init:
7660 	destroy_workqueue(priv->wq);
7661 error_wq_init:
7662 	bitmap_free(priv->af_xdp_zc_qps);
7663 
7664 	return ret;
7665 }
7666 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7667 
7668 /**
7669  * stmmac_dvr_remove
7670  * @dev: device pointer
7671  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7672  * changes the link status, releases the DMA descriptor rings.
7673  */
7674 void stmmac_dvr_remove(struct device *dev)
7675 {
7676 	struct net_device *ndev = dev_get_drvdata(dev);
7677 	struct stmmac_priv *priv = netdev_priv(ndev);
7678 
7679 	netdev_info(priv->dev, "%s: removing driver", __func__);
7680 
7681 	pm_runtime_get_sync(dev);
7682 
7683 	stmmac_stop_all_dma(priv);
7684 	stmmac_mac_set(priv, priv->ioaddr, false);
7685 	netif_carrier_off(ndev);
7686 	unregister_netdev(ndev);
7687 
7688 #ifdef CONFIG_DEBUG_FS
7689 	stmmac_exit_fs(ndev);
7690 #endif
7691 	phylink_destroy(priv->phylink);
7692 	if (priv->plat->stmmac_rst)
7693 		reset_control_assert(priv->plat->stmmac_rst);
7694 	reset_control_assert(priv->plat->stmmac_ahb_rst);
7695 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7696 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7697 		stmmac_mdio_unregister(ndev);
7698 	destroy_workqueue(priv->wq);
7699 	mutex_destroy(&priv->lock);
7700 	bitmap_free(priv->af_xdp_zc_qps);
7701 
7702 	pm_runtime_disable(dev);
7703 	pm_runtime_put_noidle(dev);
7704 }
7705 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7706 
7707 /**
7708  * stmmac_suspend - suspend callback
7709  * @dev: device pointer
7710  * Description: this is the function to suspend the device and it is called
7711  * by the platform driver to stop the network queue, release the resources,
7712  * program the PMT register (for WoL), clean and release driver resources.
7713  */
7714 int stmmac_suspend(struct device *dev)
7715 {
7716 	struct net_device *ndev = dev_get_drvdata(dev);
7717 	struct stmmac_priv *priv = netdev_priv(ndev);
7718 	u32 chan;
7719 
7720 	if (!ndev || !netif_running(ndev))
7721 		return 0;
7722 
7723 	mutex_lock(&priv->lock);
7724 
7725 	netif_device_detach(ndev);
7726 
7727 	stmmac_disable_all_queues(priv);
7728 
7729 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7730 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
7731 
7732 	if (priv->eee_enabled) {
7733 		priv->tx_path_in_lpi_mode = false;
7734 		del_timer_sync(&priv->eee_ctrl_timer);
7735 	}
7736 
7737 	/* Stop TX/RX DMA */
7738 	stmmac_stop_all_dma(priv);
7739 
7740 	if (priv->plat->serdes_powerdown)
7741 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7742 
7743 	/* Enable Power down mode by programming the PMT regs */
7744 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7745 		stmmac_pmt(priv, priv->hw, priv->wolopts);
7746 		priv->irq_wake = 1;
7747 	} else {
7748 		stmmac_mac_set(priv, priv->ioaddr, false);
7749 		pinctrl_pm_select_sleep_state(priv->device);
7750 	}
7751 
7752 	mutex_unlock(&priv->lock);
7753 
7754 	rtnl_lock();
7755 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7756 		phylink_suspend(priv->phylink, true);
7757 	} else {
7758 		if (device_may_wakeup(priv->device))
7759 			phylink_speed_down(priv->phylink, false);
7760 		phylink_suspend(priv->phylink, false);
7761 	}
7762 	rtnl_unlock();
7763 
7764 	if (priv->dma_cap.fpesel) {
7765 		/* Disable FPE */
7766 		stmmac_fpe_configure(priv, priv->ioaddr,
7767 				     priv->plat->fpe_cfg,
7768 				     priv->plat->tx_queues_to_use,
7769 				     priv->plat->rx_queues_to_use, false);
7770 
7771 		stmmac_fpe_handshake(priv, false);
7772 		stmmac_fpe_stop_wq(priv);
7773 	}
7774 
7775 	priv->speed = SPEED_UNKNOWN;
7776 	return 0;
7777 }
7778 EXPORT_SYMBOL_GPL(stmmac_suspend);
7779 
7780 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue)
7781 {
7782 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
7783 
7784 	rx_q->cur_rx = 0;
7785 	rx_q->dirty_rx = 0;
7786 }
7787 
7788 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue)
7789 {
7790 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
7791 
7792 	tx_q->cur_tx = 0;
7793 	tx_q->dirty_tx = 0;
7794 	tx_q->mss = 0;
7795 
7796 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7797 }
7798 
7799 /**
7800  * stmmac_reset_queues_param - reset queue parameters
7801  * @priv: device pointer
7802  */
7803 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7804 {
7805 	u32 rx_cnt = priv->plat->rx_queues_to_use;
7806 	u32 tx_cnt = priv->plat->tx_queues_to_use;
7807 	u32 queue;
7808 
7809 	for (queue = 0; queue < rx_cnt; queue++)
7810 		stmmac_reset_rx_queue(priv, queue);
7811 
7812 	for (queue = 0; queue < tx_cnt; queue++)
7813 		stmmac_reset_tx_queue(priv, queue);
7814 }
7815 
7816 /**
7817  * stmmac_resume - resume callback
7818  * @dev: device pointer
7819  * Description: when resume this function is invoked to setup the DMA and CORE
7820  * in a usable state.
7821  */
7822 int stmmac_resume(struct device *dev)
7823 {
7824 	struct net_device *ndev = dev_get_drvdata(dev);
7825 	struct stmmac_priv *priv = netdev_priv(ndev);
7826 	int ret;
7827 
7828 	if (!netif_running(ndev))
7829 		return 0;
7830 
7831 	/* Power Down bit, into the PM register, is cleared
7832 	 * automatically as soon as a magic packet or a Wake-up frame
7833 	 * is received. Anyway, it's better to manually clear
7834 	 * this bit because it can generate problems while resuming
7835 	 * from another devices (e.g. serial console).
7836 	 */
7837 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7838 		mutex_lock(&priv->lock);
7839 		stmmac_pmt(priv, priv->hw, 0);
7840 		mutex_unlock(&priv->lock);
7841 		priv->irq_wake = 0;
7842 	} else {
7843 		pinctrl_pm_select_default_state(priv->device);
7844 		/* reset the phy so that it's ready */
7845 		if (priv->mii)
7846 			stmmac_mdio_reset(priv->mii);
7847 	}
7848 
7849 	if (!(priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) &&
7850 	    priv->plat->serdes_powerup) {
7851 		ret = priv->plat->serdes_powerup(ndev,
7852 						 priv->plat->bsp_priv);
7853 
7854 		if (ret < 0)
7855 			return ret;
7856 	}
7857 
7858 	rtnl_lock();
7859 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7860 		phylink_resume(priv->phylink);
7861 	} else {
7862 		phylink_resume(priv->phylink);
7863 		if (device_may_wakeup(priv->device))
7864 			phylink_speed_up(priv->phylink);
7865 	}
7866 	rtnl_unlock();
7867 
7868 	rtnl_lock();
7869 	mutex_lock(&priv->lock);
7870 
7871 	stmmac_reset_queues_param(priv);
7872 
7873 	stmmac_free_tx_skbufs(priv);
7874 	stmmac_clear_descriptors(priv, &priv->dma_conf);
7875 
7876 	stmmac_hw_setup(ndev, false);
7877 	stmmac_init_coalesce(priv);
7878 	stmmac_set_rx_mode(ndev);
7879 
7880 	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7881 
7882 	stmmac_enable_all_queues(priv);
7883 	stmmac_enable_all_dma_irq(priv);
7884 
7885 	mutex_unlock(&priv->lock);
7886 	rtnl_unlock();
7887 
7888 	netif_device_attach(ndev);
7889 
7890 	return 0;
7891 }
7892 EXPORT_SYMBOL_GPL(stmmac_resume);
7893 
7894 #ifndef MODULE
7895 static int __init stmmac_cmdline_opt(char *str)
7896 {
7897 	char *opt;
7898 
7899 	if (!str || !*str)
7900 		return 1;
7901 	while ((opt = strsep(&str, ",")) != NULL) {
7902 		if (!strncmp(opt, "debug:", 6)) {
7903 			if (kstrtoint(opt + 6, 0, &debug))
7904 				goto err;
7905 		} else if (!strncmp(opt, "phyaddr:", 8)) {
7906 			if (kstrtoint(opt + 8, 0, &phyaddr))
7907 				goto err;
7908 		} else if (!strncmp(opt, "buf_sz:", 7)) {
7909 			if (kstrtoint(opt + 7, 0, &buf_sz))
7910 				goto err;
7911 		} else if (!strncmp(opt, "tc:", 3)) {
7912 			if (kstrtoint(opt + 3, 0, &tc))
7913 				goto err;
7914 		} else if (!strncmp(opt, "watchdog:", 9)) {
7915 			if (kstrtoint(opt + 9, 0, &watchdog))
7916 				goto err;
7917 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
7918 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
7919 				goto err;
7920 		} else if (!strncmp(opt, "pause:", 6)) {
7921 			if (kstrtoint(opt + 6, 0, &pause))
7922 				goto err;
7923 		} else if (!strncmp(opt, "eee_timer:", 10)) {
7924 			if (kstrtoint(opt + 10, 0, &eee_timer))
7925 				goto err;
7926 		} else if (!strncmp(opt, "chain_mode:", 11)) {
7927 			if (kstrtoint(opt + 11, 0, &chain_mode))
7928 				goto err;
7929 		}
7930 	}
7931 	return 1;
7932 
7933 err:
7934 	pr_err("%s: ERROR broken module parameter conversion", __func__);
7935 	return 1;
7936 }
7937 
7938 __setup("stmmaceth=", stmmac_cmdline_opt);
7939 #endif /* MODULE */
7940 
7941 static int __init stmmac_init(void)
7942 {
7943 #ifdef CONFIG_DEBUG_FS
7944 	/* Create debugfs main directory if it doesn't exist yet */
7945 	if (!stmmac_fs_dir)
7946 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7947 	register_netdevice_notifier(&stmmac_notifier);
7948 #endif
7949 
7950 	return 0;
7951 }
7952 
7953 static void __exit stmmac_exit(void)
7954 {
7955 #ifdef CONFIG_DEBUG_FS
7956 	unregister_netdevice_notifier(&stmmac_notifier);
7957 	debugfs_remove_recursive(stmmac_fs_dir);
7958 #endif
7959 }
7960 
7961 module_init(stmmac_init)
7962 module_exit(stmmac_exit)
7963 
7964 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7965 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7966 MODULE_LICENSE("GPL");
7967