1 // SPDX-License-Identifier: GPL-2.0-only 2 /******************************************************************************* 3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. 4 ST Ethernet IPs are built around a Synopsys IP Core. 5 6 Copyright(C) 2007-2011 STMicroelectronics Ltd 7 8 9 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> 10 11 Documentation available at: 12 http://www.stlinux.com 13 Support available at: 14 https://bugzilla.stlinux.com/ 15 *******************************************************************************/ 16 17 #include <linux/clk.h> 18 #include <linux/kernel.h> 19 #include <linux/interrupt.h> 20 #include <linux/ip.h> 21 #include <linux/tcp.h> 22 #include <linux/skbuff.h> 23 #include <linux/ethtool.h> 24 #include <linux/if_ether.h> 25 #include <linux/crc32.h> 26 #include <linux/mii.h> 27 #include <linux/if.h> 28 #include <linux/if_vlan.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/slab.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/prefetch.h> 33 #include <linux/pinctrl/consumer.h> 34 #ifdef CONFIG_DEBUG_FS 35 #include <linux/debugfs.h> 36 #include <linux/seq_file.h> 37 #endif /* CONFIG_DEBUG_FS */ 38 #include <linux/net_tstamp.h> 39 #include <linux/phylink.h> 40 #include <linux/udp.h> 41 #include <linux/bpf_trace.h> 42 #include <net/page_pool/helpers.h> 43 #include <net/pkt_cls.h> 44 #include <net/xdp_sock_drv.h> 45 #include "stmmac_ptp.h" 46 #include "stmmac.h" 47 #include "stmmac_xdp.h" 48 #include <linux/reset.h> 49 #include <linux/of_mdio.h> 50 #include "dwmac1000.h" 51 #include "dwxgmac2.h" 52 #include "hwif.h" 53 54 /* As long as the interface is active, we keep the timestamping counter enabled 55 * with fine resolution and binary rollover. This avoid non-monotonic behavior 56 * (clock jumps) when changing timestamping settings at runtime. 57 */ 58 #define STMMAC_HWTS_ACTIVE (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \ 59 PTP_TCR_TSCTRLSSR) 60 61 #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16) 62 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1) 63 64 /* Module parameters */ 65 #define TX_TIMEO 5000 66 static int watchdog = TX_TIMEO; 67 module_param(watchdog, int, 0644); 68 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); 69 70 static int debug = -1; 71 module_param(debug, int, 0644); 72 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 73 74 static int phyaddr = -1; 75 module_param(phyaddr, int, 0444); 76 MODULE_PARM_DESC(phyaddr, "Physical device address"); 77 78 #define STMMAC_TX_THRESH(x) ((x)->dma_conf.dma_tx_size / 4) 79 #define STMMAC_RX_THRESH(x) ((x)->dma_conf.dma_rx_size / 4) 80 81 /* Limit to make sure XDP TX and slow path can coexist */ 82 #define STMMAC_XSK_TX_BUDGET_MAX 256 83 #define STMMAC_TX_XSK_AVAIL 16 84 #define STMMAC_RX_FILL_BATCH 16 85 86 #define STMMAC_XDP_PASS 0 87 #define STMMAC_XDP_CONSUMED BIT(0) 88 #define STMMAC_XDP_TX BIT(1) 89 #define STMMAC_XDP_REDIRECT BIT(2) 90 91 static int flow_ctrl = FLOW_AUTO; 92 module_param(flow_ctrl, int, 0644); 93 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); 94 95 static int pause = PAUSE_TIME; 96 module_param(pause, int, 0644); 97 MODULE_PARM_DESC(pause, "Flow Control Pause Time"); 98 99 #define TC_DEFAULT 64 100 static int tc = TC_DEFAULT; 101 module_param(tc, int, 0644); 102 MODULE_PARM_DESC(tc, "DMA threshold control value"); 103 104 #define DEFAULT_BUFSIZE 1536 105 static int buf_sz = DEFAULT_BUFSIZE; 106 module_param(buf_sz, int, 0644); 107 MODULE_PARM_DESC(buf_sz, "DMA buffer size"); 108 109 #define STMMAC_RX_COPYBREAK 256 110 111 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 112 NETIF_MSG_LINK | NETIF_MSG_IFUP | 113 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 114 115 #define STMMAC_DEFAULT_LPI_TIMER 1000 116 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; 117 module_param(eee_timer, int, 0644); 118 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); 119 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x)) 120 121 /* By default the driver will use the ring mode to manage tx and rx descriptors, 122 * but allow user to force to use the chain instead of the ring 123 */ 124 static unsigned int chain_mode; 125 module_param(chain_mode, int, 0444); 126 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); 127 128 static irqreturn_t stmmac_interrupt(int irq, void *dev_id); 129 /* For MSI interrupts handling */ 130 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id); 131 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id); 132 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data); 133 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data); 134 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue); 135 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue); 136 static void stmmac_reset_queues_param(struct stmmac_priv *priv); 137 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue); 138 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue); 139 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 140 u32 rxmode, u32 chan); 141 142 #ifdef CONFIG_DEBUG_FS 143 static const struct net_device_ops stmmac_netdev_ops; 144 static void stmmac_init_fs(struct net_device *dev); 145 static void stmmac_exit_fs(struct net_device *dev); 146 #endif 147 148 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC)) 149 150 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled) 151 { 152 int ret = 0; 153 154 if (enabled) { 155 ret = clk_prepare_enable(priv->plat->stmmac_clk); 156 if (ret) 157 return ret; 158 ret = clk_prepare_enable(priv->plat->pclk); 159 if (ret) { 160 clk_disable_unprepare(priv->plat->stmmac_clk); 161 return ret; 162 } 163 if (priv->plat->clks_config) { 164 ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled); 165 if (ret) { 166 clk_disable_unprepare(priv->plat->stmmac_clk); 167 clk_disable_unprepare(priv->plat->pclk); 168 return ret; 169 } 170 } 171 } else { 172 clk_disable_unprepare(priv->plat->stmmac_clk); 173 clk_disable_unprepare(priv->plat->pclk); 174 if (priv->plat->clks_config) 175 priv->plat->clks_config(priv->plat->bsp_priv, enabled); 176 } 177 178 return ret; 179 } 180 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config); 181 182 /** 183 * stmmac_verify_args - verify the driver parameters. 184 * Description: it checks the driver parameters and set a default in case of 185 * errors. 186 */ 187 static void stmmac_verify_args(void) 188 { 189 if (unlikely(watchdog < 0)) 190 watchdog = TX_TIMEO; 191 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) 192 buf_sz = DEFAULT_BUFSIZE; 193 if (unlikely(flow_ctrl > 1)) 194 flow_ctrl = FLOW_AUTO; 195 else if (likely(flow_ctrl < 0)) 196 flow_ctrl = FLOW_OFF; 197 if (unlikely((pause < 0) || (pause > 0xffff))) 198 pause = PAUSE_TIME; 199 if (eee_timer < 0) 200 eee_timer = STMMAC_DEFAULT_LPI_TIMER; 201 } 202 203 static void __stmmac_disable_all_queues(struct stmmac_priv *priv) 204 { 205 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 206 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 207 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 208 u32 queue; 209 210 for (queue = 0; queue < maxq; queue++) { 211 struct stmmac_channel *ch = &priv->channel[queue]; 212 213 if (stmmac_xdp_is_enabled(priv) && 214 test_bit(queue, priv->af_xdp_zc_qps)) { 215 napi_disable(&ch->rxtx_napi); 216 continue; 217 } 218 219 if (queue < rx_queues_cnt) 220 napi_disable(&ch->rx_napi); 221 if (queue < tx_queues_cnt) 222 napi_disable(&ch->tx_napi); 223 } 224 } 225 226 /** 227 * stmmac_disable_all_queues - Disable all queues 228 * @priv: driver private structure 229 */ 230 static void stmmac_disable_all_queues(struct stmmac_priv *priv) 231 { 232 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 233 struct stmmac_rx_queue *rx_q; 234 u32 queue; 235 236 /* synchronize_rcu() needed for pending XDP buffers to drain */ 237 for (queue = 0; queue < rx_queues_cnt; queue++) { 238 rx_q = &priv->dma_conf.rx_queue[queue]; 239 if (rx_q->xsk_pool) { 240 synchronize_rcu(); 241 break; 242 } 243 } 244 245 __stmmac_disable_all_queues(priv); 246 } 247 248 /** 249 * stmmac_enable_all_queues - Enable all queues 250 * @priv: driver private structure 251 */ 252 static void stmmac_enable_all_queues(struct stmmac_priv *priv) 253 { 254 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 255 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 256 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 257 u32 queue; 258 259 for (queue = 0; queue < maxq; queue++) { 260 struct stmmac_channel *ch = &priv->channel[queue]; 261 262 if (stmmac_xdp_is_enabled(priv) && 263 test_bit(queue, priv->af_xdp_zc_qps)) { 264 napi_enable(&ch->rxtx_napi); 265 continue; 266 } 267 268 if (queue < rx_queues_cnt) 269 napi_enable(&ch->rx_napi); 270 if (queue < tx_queues_cnt) 271 napi_enable(&ch->tx_napi); 272 } 273 } 274 275 static void stmmac_service_event_schedule(struct stmmac_priv *priv) 276 { 277 if (!test_bit(STMMAC_DOWN, &priv->state) && 278 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state)) 279 queue_work(priv->wq, &priv->service_task); 280 } 281 282 static void stmmac_global_err(struct stmmac_priv *priv) 283 { 284 netif_carrier_off(priv->dev); 285 set_bit(STMMAC_RESET_REQUESTED, &priv->state); 286 stmmac_service_event_schedule(priv); 287 } 288 289 /** 290 * stmmac_clk_csr_set - dynamically set the MDC clock 291 * @priv: driver private structure 292 * Description: this is to dynamically set the MDC clock according to the csr 293 * clock input. 294 * Note: 295 * If a specific clk_csr value is passed from the platform 296 * this means that the CSR Clock Range selection cannot be 297 * changed at run-time and it is fixed (as reported in the driver 298 * documentation). Viceversa the driver will try to set the MDC 299 * clock dynamically according to the actual clock input. 300 */ 301 static void stmmac_clk_csr_set(struct stmmac_priv *priv) 302 { 303 u32 clk_rate; 304 305 clk_rate = clk_get_rate(priv->plat->stmmac_clk); 306 307 /* Platform provided default clk_csr would be assumed valid 308 * for all other cases except for the below mentioned ones. 309 * For values higher than the IEEE 802.3 specified frequency 310 * we can not estimate the proper divider as it is not known 311 * the frequency of clk_csr_i. So we do not change the default 312 * divider. 313 */ 314 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { 315 if (clk_rate < CSR_F_35M) 316 priv->clk_csr = STMMAC_CSR_20_35M; 317 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) 318 priv->clk_csr = STMMAC_CSR_35_60M; 319 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) 320 priv->clk_csr = STMMAC_CSR_60_100M; 321 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) 322 priv->clk_csr = STMMAC_CSR_100_150M; 323 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) 324 priv->clk_csr = STMMAC_CSR_150_250M; 325 else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M)) 326 priv->clk_csr = STMMAC_CSR_250_300M; 327 } 328 329 if (priv->plat->flags & STMMAC_FLAG_HAS_SUN8I) { 330 if (clk_rate > 160000000) 331 priv->clk_csr = 0x03; 332 else if (clk_rate > 80000000) 333 priv->clk_csr = 0x02; 334 else if (clk_rate > 40000000) 335 priv->clk_csr = 0x01; 336 else 337 priv->clk_csr = 0; 338 } 339 340 if (priv->plat->has_xgmac) { 341 if (clk_rate > 400000000) 342 priv->clk_csr = 0x5; 343 else if (clk_rate > 350000000) 344 priv->clk_csr = 0x4; 345 else if (clk_rate > 300000000) 346 priv->clk_csr = 0x3; 347 else if (clk_rate > 250000000) 348 priv->clk_csr = 0x2; 349 else if (clk_rate > 150000000) 350 priv->clk_csr = 0x1; 351 else 352 priv->clk_csr = 0x0; 353 } 354 } 355 356 static void print_pkt(unsigned char *buf, int len) 357 { 358 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); 359 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); 360 } 361 362 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue) 363 { 364 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 365 u32 avail; 366 367 if (tx_q->dirty_tx > tx_q->cur_tx) 368 avail = tx_q->dirty_tx - tx_q->cur_tx - 1; 369 else 370 avail = priv->dma_conf.dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1; 371 372 return avail; 373 } 374 375 /** 376 * stmmac_rx_dirty - Get RX queue dirty 377 * @priv: driver private structure 378 * @queue: RX queue index 379 */ 380 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue) 381 { 382 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 383 u32 dirty; 384 385 if (rx_q->dirty_rx <= rx_q->cur_rx) 386 dirty = rx_q->cur_rx - rx_q->dirty_rx; 387 else 388 dirty = priv->dma_conf.dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx; 389 390 return dirty; 391 } 392 393 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en) 394 { 395 int tx_lpi_timer; 396 397 /* Clear/set the SW EEE timer flag based on LPI ET enablement */ 398 priv->eee_sw_timer_en = en ? 0 : 1; 399 tx_lpi_timer = en ? priv->tx_lpi_timer : 0; 400 stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer); 401 } 402 403 /** 404 * stmmac_enable_eee_mode - check and enter in LPI mode 405 * @priv: driver private structure 406 * Description: this function is to verify and enter in LPI mode in case of 407 * EEE. 408 */ 409 static int stmmac_enable_eee_mode(struct stmmac_priv *priv) 410 { 411 u32 tx_cnt = priv->plat->tx_queues_to_use; 412 u32 queue; 413 414 /* check if all TX queues have the work finished */ 415 for (queue = 0; queue < tx_cnt; queue++) { 416 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 417 418 if (tx_q->dirty_tx != tx_q->cur_tx) 419 return -EBUSY; /* still unfinished work */ 420 } 421 422 /* Check and enter in LPI mode */ 423 if (!priv->tx_path_in_lpi_mode) 424 stmmac_set_eee_mode(priv, priv->hw, 425 priv->plat->flags & STMMAC_FLAG_EN_TX_LPI_CLOCKGATING); 426 return 0; 427 } 428 429 /** 430 * stmmac_disable_eee_mode - disable and exit from LPI mode 431 * @priv: driver private structure 432 * Description: this function is to exit and disable EEE in case of 433 * LPI state is true. This is called by the xmit. 434 */ 435 void stmmac_disable_eee_mode(struct stmmac_priv *priv) 436 { 437 if (!priv->eee_sw_timer_en) { 438 stmmac_lpi_entry_timer_config(priv, 0); 439 return; 440 } 441 442 stmmac_reset_eee_mode(priv, priv->hw); 443 del_timer_sync(&priv->eee_ctrl_timer); 444 priv->tx_path_in_lpi_mode = false; 445 } 446 447 /** 448 * stmmac_eee_ctrl_timer - EEE TX SW timer. 449 * @t: timer_list struct containing private info 450 * Description: 451 * if there is no data transfer and if we are not in LPI state, 452 * then MAC Transmitter can be moved to LPI state. 453 */ 454 static void stmmac_eee_ctrl_timer(struct timer_list *t) 455 { 456 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer); 457 458 if (stmmac_enable_eee_mode(priv)) 459 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); 460 } 461 462 /** 463 * stmmac_eee_init - init EEE 464 * @priv: driver private structure 465 * Description: 466 * if the GMAC supports the EEE (from the HW cap reg) and the phy device 467 * can also manage EEE, this function enable the LPI state and start related 468 * timer. 469 */ 470 bool stmmac_eee_init(struct stmmac_priv *priv) 471 { 472 int eee_tw_timer = priv->eee_tw_timer; 473 474 /* Using PCS we cannot dial with the phy registers at this stage 475 * so we do not support extra feature like EEE. 476 */ 477 if (priv->hw->pcs == STMMAC_PCS_TBI || 478 priv->hw->pcs == STMMAC_PCS_RTBI) 479 return false; 480 481 /* Check if MAC core supports the EEE feature. */ 482 if (!priv->dma_cap.eee) 483 return false; 484 485 mutex_lock(&priv->lock); 486 487 /* Check if it needs to be deactivated */ 488 if (!priv->eee_active) { 489 if (priv->eee_enabled) { 490 netdev_dbg(priv->dev, "disable EEE\n"); 491 stmmac_lpi_entry_timer_config(priv, 0); 492 del_timer_sync(&priv->eee_ctrl_timer); 493 stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer); 494 if (priv->hw->xpcs) 495 xpcs_config_eee(priv->hw->xpcs, 496 priv->plat->mult_fact_100ns, 497 false); 498 } 499 mutex_unlock(&priv->lock); 500 return false; 501 } 502 503 if (priv->eee_active && !priv->eee_enabled) { 504 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0); 505 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS, 506 eee_tw_timer); 507 if (priv->hw->xpcs) 508 xpcs_config_eee(priv->hw->xpcs, 509 priv->plat->mult_fact_100ns, 510 true); 511 } 512 513 if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) { 514 del_timer_sync(&priv->eee_ctrl_timer); 515 priv->tx_path_in_lpi_mode = false; 516 stmmac_lpi_entry_timer_config(priv, 1); 517 } else { 518 stmmac_lpi_entry_timer_config(priv, 0); 519 mod_timer(&priv->eee_ctrl_timer, 520 STMMAC_LPI_T(priv->tx_lpi_timer)); 521 } 522 523 mutex_unlock(&priv->lock); 524 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n"); 525 return true; 526 } 527 528 /* stmmac_get_tx_hwtstamp - get HW TX timestamps 529 * @priv: driver private structure 530 * @p : descriptor pointer 531 * @skb : the socket buffer 532 * Description : 533 * This function will read timestamp from the descriptor & pass it to stack. 534 * and also perform some sanity checks. 535 */ 536 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, 537 struct dma_desc *p, struct sk_buff *skb) 538 { 539 struct skb_shared_hwtstamps shhwtstamp; 540 bool found = false; 541 u64 ns = 0; 542 543 if (!priv->hwts_tx_en) 544 return; 545 546 /* exit if skb doesn't support hw tstamp */ 547 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) 548 return; 549 550 /* check tx tstamp status */ 551 if (stmmac_get_tx_timestamp_status(priv, p)) { 552 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns); 553 found = true; 554 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) { 555 found = true; 556 } 557 558 if (found) { 559 ns -= priv->plat->cdc_error_adj; 560 561 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 562 shhwtstamp.hwtstamp = ns_to_ktime(ns); 563 564 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns); 565 /* pass tstamp to stack */ 566 skb_tstamp_tx(skb, &shhwtstamp); 567 } 568 } 569 570 /* stmmac_get_rx_hwtstamp - get HW RX timestamps 571 * @priv: driver private structure 572 * @p : descriptor pointer 573 * @np : next descriptor pointer 574 * @skb : the socket buffer 575 * Description : 576 * This function will read received packet's timestamp from the descriptor 577 * and pass it to stack. It also perform some sanity checks. 578 */ 579 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p, 580 struct dma_desc *np, struct sk_buff *skb) 581 { 582 struct skb_shared_hwtstamps *shhwtstamp = NULL; 583 struct dma_desc *desc = p; 584 u64 ns = 0; 585 586 if (!priv->hwts_rx_en) 587 return; 588 /* For GMAC4, the valid timestamp is from CTX next desc. */ 589 if (priv->plat->has_gmac4 || priv->plat->has_xgmac) 590 desc = np; 591 592 /* Check if timestamp is available */ 593 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) { 594 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns); 595 596 ns -= priv->plat->cdc_error_adj; 597 598 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns); 599 shhwtstamp = skb_hwtstamps(skb); 600 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 601 shhwtstamp->hwtstamp = ns_to_ktime(ns); 602 } else { 603 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n"); 604 } 605 } 606 607 /** 608 * stmmac_hwtstamp_set - control hardware timestamping. 609 * @dev: device pointer. 610 * @ifr: An IOCTL specific structure, that can contain a pointer to 611 * a proprietary structure used to pass information to the driver. 612 * Description: 613 * This function configures the MAC to enable/disable both outgoing(TX) 614 * and incoming(RX) packets time stamping based on user input. 615 * Return Value: 616 * 0 on success and an appropriate -ve integer on failure. 617 */ 618 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 619 { 620 struct stmmac_priv *priv = netdev_priv(dev); 621 struct hwtstamp_config config; 622 u32 ptp_v2 = 0; 623 u32 tstamp_all = 0; 624 u32 ptp_over_ipv4_udp = 0; 625 u32 ptp_over_ipv6_udp = 0; 626 u32 ptp_over_ethernet = 0; 627 u32 snap_type_sel = 0; 628 u32 ts_master_en = 0; 629 u32 ts_event_en = 0; 630 631 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { 632 netdev_alert(priv->dev, "No support for HW time stamping\n"); 633 priv->hwts_tx_en = 0; 634 priv->hwts_rx_en = 0; 635 636 return -EOPNOTSUPP; 637 } 638 639 if (copy_from_user(&config, ifr->ifr_data, 640 sizeof(config))) 641 return -EFAULT; 642 643 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", 644 __func__, config.flags, config.tx_type, config.rx_filter); 645 646 if (config.tx_type != HWTSTAMP_TX_OFF && 647 config.tx_type != HWTSTAMP_TX_ON) 648 return -ERANGE; 649 650 if (priv->adv_ts) { 651 switch (config.rx_filter) { 652 case HWTSTAMP_FILTER_NONE: 653 /* time stamp no incoming packet at all */ 654 config.rx_filter = HWTSTAMP_FILTER_NONE; 655 break; 656 657 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 658 /* PTP v1, UDP, any kind of event packet */ 659 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 660 /* 'xmac' hardware can support Sync, Pdelay_Req and 661 * Pdelay_resp by setting bit14 and bits17/16 to 01 662 * This leaves Delay_Req timestamps out. 663 * Enable all events *and* general purpose message 664 * timestamping 665 */ 666 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 667 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 668 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 669 break; 670 671 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 672 /* PTP v1, UDP, Sync packet */ 673 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; 674 /* take time stamp for SYNC messages only */ 675 ts_event_en = PTP_TCR_TSEVNTENA; 676 677 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 678 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 679 break; 680 681 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 682 /* PTP v1, UDP, Delay_req packet */ 683 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; 684 /* take time stamp for Delay_Req messages only */ 685 ts_master_en = PTP_TCR_TSMSTRENA; 686 ts_event_en = PTP_TCR_TSEVNTENA; 687 688 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 689 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 690 break; 691 692 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 693 /* PTP v2, UDP, any kind of event packet */ 694 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 695 ptp_v2 = PTP_TCR_TSVER2ENA; 696 /* take time stamp for all event messages */ 697 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 698 699 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 700 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 701 break; 702 703 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 704 /* PTP v2, UDP, Sync packet */ 705 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; 706 ptp_v2 = PTP_TCR_TSVER2ENA; 707 /* take time stamp for SYNC messages only */ 708 ts_event_en = PTP_TCR_TSEVNTENA; 709 710 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 711 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 712 break; 713 714 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 715 /* PTP v2, UDP, Delay_req packet */ 716 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; 717 ptp_v2 = PTP_TCR_TSVER2ENA; 718 /* take time stamp for Delay_Req messages only */ 719 ts_master_en = PTP_TCR_TSMSTRENA; 720 ts_event_en = PTP_TCR_TSEVNTENA; 721 722 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 723 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 724 break; 725 726 case HWTSTAMP_FILTER_PTP_V2_EVENT: 727 /* PTP v2/802.AS1 any layer, any kind of event packet */ 728 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 729 ptp_v2 = PTP_TCR_TSVER2ENA; 730 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 731 if (priv->synopsys_id < DWMAC_CORE_4_10) 732 ts_event_en = PTP_TCR_TSEVNTENA; 733 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 734 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 735 ptp_over_ethernet = PTP_TCR_TSIPENA; 736 break; 737 738 case HWTSTAMP_FILTER_PTP_V2_SYNC: 739 /* PTP v2/802.AS1, any layer, Sync packet */ 740 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; 741 ptp_v2 = PTP_TCR_TSVER2ENA; 742 /* take time stamp for SYNC messages only */ 743 ts_event_en = PTP_TCR_TSEVNTENA; 744 745 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 746 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 747 ptp_over_ethernet = PTP_TCR_TSIPENA; 748 break; 749 750 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 751 /* PTP v2/802.AS1, any layer, Delay_req packet */ 752 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; 753 ptp_v2 = PTP_TCR_TSVER2ENA; 754 /* take time stamp for Delay_Req messages only */ 755 ts_master_en = PTP_TCR_TSMSTRENA; 756 ts_event_en = PTP_TCR_TSEVNTENA; 757 758 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 759 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 760 ptp_over_ethernet = PTP_TCR_TSIPENA; 761 break; 762 763 case HWTSTAMP_FILTER_NTP_ALL: 764 case HWTSTAMP_FILTER_ALL: 765 /* time stamp any incoming packet */ 766 config.rx_filter = HWTSTAMP_FILTER_ALL; 767 tstamp_all = PTP_TCR_TSENALL; 768 break; 769 770 default: 771 return -ERANGE; 772 } 773 } else { 774 switch (config.rx_filter) { 775 case HWTSTAMP_FILTER_NONE: 776 config.rx_filter = HWTSTAMP_FILTER_NONE; 777 break; 778 default: 779 /* PTP v1, UDP, any kind of event packet */ 780 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 781 break; 782 } 783 } 784 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); 785 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; 786 787 priv->systime_flags = STMMAC_HWTS_ACTIVE; 788 789 if (priv->hwts_tx_en || priv->hwts_rx_en) { 790 priv->systime_flags |= tstamp_all | ptp_v2 | 791 ptp_over_ethernet | ptp_over_ipv6_udp | 792 ptp_over_ipv4_udp | ts_event_en | 793 ts_master_en | snap_type_sel; 794 } 795 796 stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags); 797 798 memcpy(&priv->tstamp_config, &config, sizeof(config)); 799 800 return copy_to_user(ifr->ifr_data, &config, 801 sizeof(config)) ? -EFAULT : 0; 802 } 803 804 /** 805 * stmmac_hwtstamp_get - read hardware timestamping. 806 * @dev: device pointer. 807 * @ifr: An IOCTL specific structure, that can contain a pointer to 808 * a proprietary structure used to pass information to the driver. 809 * Description: 810 * This function obtain the current hardware timestamping settings 811 * as requested. 812 */ 813 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 814 { 815 struct stmmac_priv *priv = netdev_priv(dev); 816 struct hwtstamp_config *config = &priv->tstamp_config; 817 818 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 819 return -EOPNOTSUPP; 820 821 return copy_to_user(ifr->ifr_data, config, 822 sizeof(*config)) ? -EFAULT : 0; 823 } 824 825 /** 826 * stmmac_init_tstamp_counter - init hardware timestamping counter 827 * @priv: driver private structure 828 * @systime_flags: timestamping flags 829 * Description: 830 * Initialize hardware counter for packet timestamping. 831 * This is valid as long as the interface is open and not suspended. 832 * Will be rerun after resuming from suspend, case in which the timestamping 833 * flags updated by stmmac_hwtstamp_set() also need to be restored. 834 */ 835 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags) 836 { 837 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 838 struct timespec64 now; 839 u32 sec_inc = 0; 840 u64 temp = 0; 841 842 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 843 return -EOPNOTSUPP; 844 845 stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags); 846 priv->systime_flags = systime_flags; 847 848 /* program Sub Second Increment reg */ 849 stmmac_config_sub_second_increment(priv, priv->ptpaddr, 850 priv->plat->clk_ptp_rate, 851 xmac, &sec_inc); 852 temp = div_u64(1000000000ULL, sec_inc); 853 854 /* Store sub second increment for later use */ 855 priv->sub_second_inc = sec_inc; 856 857 /* calculate default added value: 858 * formula is : 859 * addend = (2^32)/freq_div_ratio; 860 * where, freq_div_ratio = 1e9ns/sec_inc 861 */ 862 temp = (u64)(temp << 32); 863 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate); 864 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend); 865 866 /* initialize system time */ 867 ktime_get_real_ts64(&now); 868 869 /* lower 32 bits of tv_sec are safe until y2106 */ 870 stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec); 871 872 return 0; 873 } 874 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter); 875 876 /** 877 * stmmac_init_ptp - init PTP 878 * @priv: driver private structure 879 * Description: this is to verify if the HW supports the PTPv1 or PTPv2. 880 * This is done by looking at the HW cap. register. 881 * This function also registers the ptp driver. 882 */ 883 static int stmmac_init_ptp(struct stmmac_priv *priv) 884 { 885 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 886 int ret; 887 888 if (priv->plat->ptp_clk_freq_config) 889 priv->plat->ptp_clk_freq_config(priv); 890 891 ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE); 892 if (ret) 893 return ret; 894 895 priv->adv_ts = 0; 896 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */ 897 if (xmac && priv->dma_cap.atime_stamp) 898 priv->adv_ts = 1; 899 /* Dwmac 3.x core with extend_desc can support adv_ts */ 900 else if (priv->extend_desc && priv->dma_cap.atime_stamp) 901 priv->adv_ts = 1; 902 903 if (priv->dma_cap.time_stamp) 904 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n"); 905 906 if (priv->adv_ts) 907 netdev_info(priv->dev, 908 "IEEE 1588-2008 Advanced Timestamp supported\n"); 909 910 priv->hwts_tx_en = 0; 911 priv->hwts_rx_en = 0; 912 913 if (priv->plat->flags & STMMAC_FLAG_HWTSTAMP_CORRECT_LATENCY) 914 stmmac_hwtstamp_correct_latency(priv, priv); 915 916 return 0; 917 } 918 919 static void stmmac_release_ptp(struct stmmac_priv *priv) 920 { 921 clk_disable_unprepare(priv->plat->clk_ptp_ref); 922 stmmac_ptp_unregister(priv); 923 } 924 925 /** 926 * stmmac_mac_flow_ctrl - Configure flow control in all queues 927 * @priv: driver private structure 928 * @duplex: duplex passed to the next function 929 * Description: It is used for configuring the flow control in all queues 930 */ 931 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex) 932 { 933 u32 tx_cnt = priv->plat->tx_queues_to_use; 934 935 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl, 936 priv->pause, tx_cnt); 937 } 938 939 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config, 940 phy_interface_t interface) 941 { 942 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 943 944 if (priv->hw->xpcs) 945 return &priv->hw->xpcs->pcs; 946 947 if (priv->hw->lynx_pcs) 948 return priv->hw->lynx_pcs; 949 950 return NULL; 951 } 952 953 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode, 954 const struct phylink_link_state *state) 955 { 956 /* Nothing to do, xpcs_config() handles everything */ 957 } 958 959 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up) 960 { 961 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 962 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 963 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 964 bool *hs_enable = &fpe_cfg->hs_enable; 965 966 if (is_up && *hs_enable) { 967 stmmac_fpe_send_mpacket(priv, priv->ioaddr, fpe_cfg, 968 MPACKET_VERIFY); 969 } else { 970 *lo_state = FPE_STATE_OFF; 971 *lp_state = FPE_STATE_OFF; 972 } 973 } 974 975 static void stmmac_mac_link_down(struct phylink_config *config, 976 unsigned int mode, phy_interface_t interface) 977 { 978 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 979 980 stmmac_mac_set(priv, priv->ioaddr, false); 981 priv->eee_active = false; 982 priv->tx_lpi_enabled = false; 983 priv->eee_enabled = stmmac_eee_init(priv); 984 stmmac_set_eee_pls(priv, priv->hw, false); 985 986 if (priv->dma_cap.fpesel) 987 stmmac_fpe_link_state_handle(priv, false); 988 } 989 990 static void stmmac_mac_link_up(struct phylink_config *config, 991 struct phy_device *phy, 992 unsigned int mode, phy_interface_t interface, 993 int speed, int duplex, 994 bool tx_pause, bool rx_pause) 995 { 996 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 997 u32 old_ctrl, ctrl; 998 999 if ((priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) && 1000 priv->plat->serdes_powerup) 1001 priv->plat->serdes_powerup(priv->dev, priv->plat->bsp_priv); 1002 1003 old_ctrl = readl(priv->ioaddr + MAC_CTRL_REG); 1004 ctrl = old_ctrl & ~priv->hw->link.speed_mask; 1005 1006 if (interface == PHY_INTERFACE_MODE_USXGMII) { 1007 switch (speed) { 1008 case SPEED_10000: 1009 ctrl |= priv->hw->link.xgmii.speed10000; 1010 break; 1011 case SPEED_5000: 1012 ctrl |= priv->hw->link.xgmii.speed5000; 1013 break; 1014 case SPEED_2500: 1015 ctrl |= priv->hw->link.xgmii.speed2500; 1016 break; 1017 default: 1018 return; 1019 } 1020 } else if (interface == PHY_INTERFACE_MODE_XLGMII) { 1021 switch (speed) { 1022 case SPEED_100000: 1023 ctrl |= priv->hw->link.xlgmii.speed100000; 1024 break; 1025 case SPEED_50000: 1026 ctrl |= priv->hw->link.xlgmii.speed50000; 1027 break; 1028 case SPEED_40000: 1029 ctrl |= priv->hw->link.xlgmii.speed40000; 1030 break; 1031 case SPEED_25000: 1032 ctrl |= priv->hw->link.xlgmii.speed25000; 1033 break; 1034 case SPEED_10000: 1035 ctrl |= priv->hw->link.xgmii.speed10000; 1036 break; 1037 case SPEED_2500: 1038 ctrl |= priv->hw->link.speed2500; 1039 break; 1040 case SPEED_1000: 1041 ctrl |= priv->hw->link.speed1000; 1042 break; 1043 default: 1044 return; 1045 } 1046 } else { 1047 switch (speed) { 1048 case SPEED_2500: 1049 ctrl |= priv->hw->link.speed2500; 1050 break; 1051 case SPEED_1000: 1052 ctrl |= priv->hw->link.speed1000; 1053 break; 1054 case SPEED_100: 1055 ctrl |= priv->hw->link.speed100; 1056 break; 1057 case SPEED_10: 1058 ctrl |= priv->hw->link.speed10; 1059 break; 1060 default: 1061 return; 1062 } 1063 } 1064 1065 priv->speed = speed; 1066 1067 if (priv->plat->fix_mac_speed) 1068 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed, mode); 1069 1070 if (!duplex) 1071 ctrl &= ~priv->hw->link.duplex; 1072 else 1073 ctrl |= priv->hw->link.duplex; 1074 1075 /* Flow Control operation */ 1076 if (rx_pause && tx_pause) 1077 priv->flow_ctrl = FLOW_AUTO; 1078 else if (rx_pause && !tx_pause) 1079 priv->flow_ctrl = FLOW_RX; 1080 else if (!rx_pause && tx_pause) 1081 priv->flow_ctrl = FLOW_TX; 1082 else 1083 priv->flow_ctrl = FLOW_OFF; 1084 1085 stmmac_mac_flow_ctrl(priv, duplex); 1086 1087 if (ctrl != old_ctrl) 1088 writel(ctrl, priv->ioaddr + MAC_CTRL_REG); 1089 1090 stmmac_mac_set(priv, priv->ioaddr, true); 1091 if (phy && priv->dma_cap.eee) { 1092 priv->eee_active = 1093 phy_init_eee(phy, !(priv->plat->flags & 1094 STMMAC_FLAG_RX_CLK_RUNS_IN_LPI)) >= 0; 1095 priv->eee_enabled = stmmac_eee_init(priv); 1096 priv->tx_lpi_enabled = priv->eee_enabled; 1097 stmmac_set_eee_pls(priv, priv->hw, true); 1098 } 1099 1100 if (priv->dma_cap.fpesel) 1101 stmmac_fpe_link_state_handle(priv, true); 1102 1103 if (priv->plat->flags & STMMAC_FLAG_HWTSTAMP_CORRECT_LATENCY) 1104 stmmac_hwtstamp_correct_latency(priv, priv); 1105 } 1106 1107 static const struct phylink_mac_ops stmmac_phylink_mac_ops = { 1108 .mac_select_pcs = stmmac_mac_select_pcs, 1109 .mac_config = stmmac_mac_config, 1110 .mac_link_down = stmmac_mac_link_down, 1111 .mac_link_up = stmmac_mac_link_up, 1112 }; 1113 1114 /** 1115 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported 1116 * @priv: driver private structure 1117 * Description: this is to verify if the HW supports the PCS. 1118 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is 1119 * configured for the TBI, RTBI, or SGMII PHY interface. 1120 */ 1121 static void stmmac_check_pcs_mode(struct stmmac_priv *priv) 1122 { 1123 int interface = priv->plat->mac_interface; 1124 1125 if (priv->dma_cap.pcs) { 1126 if ((interface == PHY_INTERFACE_MODE_RGMII) || 1127 (interface == PHY_INTERFACE_MODE_RGMII_ID) || 1128 (interface == PHY_INTERFACE_MODE_RGMII_RXID) || 1129 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) { 1130 netdev_dbg(priv->dev, "PCS RGMII support enabled\n"); 1131 priv->hw->pcs = STMMAC_PCS_RGMII; 1132 } else if (interface == PHY_INTERFACE_MODE_SGMII) { 1133 netdev_dbg(priv->dev, "PCS SGMII support enabled\n"); 1134 priv->hw->pcs = STMMAC_PCS_SGMII; 1135 } 1136 } 1137 } 1138 1139 /** 1140 * stmmac_init_phy - PHY initialization 1141 * @dev: net device structure 1142 * Description: it initializes the driver's PHY state, and attaches the PHY 1143 * to the mac driver. 1144 * Return value: 1145 * 0 on success 1146 */ 1147 static int stmmac_init_phy(struct net_device *dev) 1148 { 1149 struct stmmac_priv *priv = netdev_priv(dev); 1150 struct fwnode_handle *phy_fwnode; 1151 struct fwnode_handle *fwnode; 1152 int ret; 1153 1154 if (!phylink_expects_phy(priv->phylink)) 1155 return 0; 1156 1157 fwnode = priv->plat->port_node; 1158 if (!fwnode) 1159 fwnode = dev_fwnode(priv->device); 1160 1161 if (fwnode) 1162 phy_fwnode = fwnode_get_phy_node(fwnode); 1163 else 1164 phy_fwnode = NULL; 1165 1166 /* Some DT bindings do not set-up the PHY handle. Let's try to 1167 * manually parse it 1168 */ 1169 if (!phy_fwnode || IS_ERR(phy_fwnode)) { 1170 int addr = priv->plat->phy_addr; 1171 struct phy_device *phydev; 1172 1173 if (addr < 0) { 1174 netdev_err(priv->dev, "no phy found\n"); 1175 return -ENODEV; 1176 } 1177 1178 phydev = mdiobus_get_phy(priv->mii, addr); 1179 if (!phydev) { 1180 netdev_err(priv->dev, "no phy at addr %d\n", addr); 1181 return -ENODEV; 1182 } 1183 1184 ret = phylink_connect_phy(priv->phylink, phydev); 1185 } else { 1186 fwnode_handle_put(phy_fwnode); 1187 ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0); 1188 } 1189 1190 if (!priv->plat->pmt) { 1191 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1192 1193 phylink_ethtool_get_wol(priv->phylink, &wol); 1194 device_set_wakeup_capable(priv->device, !!wol.supported); 1195 device_set_wakeup_enable(priv->device, !!wol.wolopts); 1196 } 1197 1198 return ret; 1199 } 1200 1201 static int stmmac_phy_setup(struct stmmac_priv *priv) 1202 { 1203 struct stmmac_mdio_bus_data *mdio_bus_data; 1204 int mode = priv->plat->phy_interface; 1205 struct fwnode_handle *fwnode; 1206 struct phylink *phylink; 1207 int max_speed; 1208 1209 priv->phylink_config.dev = &priv->dev->dev; 1210 priv->phylink_config.type = PHYLINK_NETDEV; 1211 priv->phylink_config.mac_managed_pm = true; 1212 1213 mdio_bus_data = priv->plat->mdio_bus_data; 1214 if (mdio_bus_data) 1215 priv->phylink_config.ovr_an_inband = 1216 mdio_bus_data->xpcs_an_inband; 1217 1218 /* Set the platform/firmware specified interface mode. Note, phylink 1219 * deals with the PHY interface mode, not the MAC interface mode. 1220 */ 1221 __set_bit(mode, priv->phylink_config.supported_interfaces); 1222 1223 /* If we have an xpcs, it defines which PHY interfaces are supported. */ 1224 if (priv->hw->xpcs) 1225 xpcs_get_interfaces(priv->hw->xpcs, 1226 priv->phylink_config.supported_interfaces); 1227 1228 /* Get the MAC specific capabilities */ 1229 stmmac_mac_phylink_get_caps(priv); 1230 1231 priv->phylink_config.mac_capabilities = priv->hw->link.caps; 1232 1233 max_speed = priv->plat->max_speed; 1234 if (max_speed) 1235 phylink_limit_mac_speed(&priv->phylink_config, max_speed); 1236 1237 fwnode = priv->plat->port_node; 1238 if (!fwnode) 1239 fwnode = dev_fwnode(priv->device); 1240 1241 phylink = phylink_create(&priv->phylink_config, fwnode, 1242 mode, &stmmac_phylink_mac_ops); 1243 if (IS_ERR(phylink)) 1244 return PTR_ERR(phylink); 1245 1246 priv->phylink = phylink; 1247 return 0; 1248 } 1249 1250 static void stmmac_display_rx_rings(struct stmmac_priv *priv, 1251 struct stmmac_dma_conf *dma_conf) 1252 { 1253 u32 rx_cnt = priv->plat->rx_queues_to_use; 1254 unsigned int desc_size; 1255 void *head_rx; 1256 u32 queue; 1257 1258 /* Display RX rings */ 1259 for (queue = 0; queue < rx_cnt; queue++) { 1260 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1261 1262 pr_info("\tRX Queue %u rings\n", queue); 1263 1264 if (priv->extend_desc) { 1265 head_rx = (void *)rx_q->dma_erx; 1266 desc_size = sizeof(struct dma_extended_desc); 1267 } else { 1268 head_rx = (void *)rx_q->dma_rx; 1269 desc_size = sizeof(struct dma_desc); 1270 } 1271 1272 /* Display RX ring */ 1273 stmmac_display_ring(priv, head_rx, dma_conf->dma_rx_size, true, 1274 rx_q->dma_rx_phy, desc_size); 1275 } 1276 } 1277 1278 static void stmmac_display_tx_rings(struct stmmac_priv *priv, 1279 struct stmmac_dma_conf *dma_conf) 1280 { 1281 u32 tx_cnt = priv->plat->tx_queues_to_use; 1282 unsigned int desc_size; 1283 void *head_tx; 1284 u32 queue; 1285 1286 /* Display TX rings */ 1287 for (queue = 0; queue < tx_cnt; queue++) { 1288 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 1289 1290 pr_info("\tTX Queue %d rings\n", queue); 1291 1292 if (priv->extend_desc) { 1293 head_tx = (void *)tx_q->dma_etx; 1294 desc_size = sizeof(struct dma_extended_desc); 1295 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1296 head_tx = (void *)tx_q->dma_entx; 1297 desc_size = sizeof(struct dma_edesc); 1298 } else { 1299 head_tx = (void *)tx_q->dma_tx; 1300 desc_size = sizeof(struct dma_desc); 1301 } 1302 1303 stmmac_display_ring(priv, head_tx, dma_conf->dma_tx_size, false, 1304 tx_q->dma_tx_phy, desc_size); 1305 } 1306 } 1307 1308 static void stmmac_display_rings(struct stmmac_priv *priv, 1309 struct stmmac_dma_conf *dma_conf) 1310 { 1311 /* Display RX ring */ 1312 stmmac_display_rx_rings(priv, dma_conf); 1313 1314 /* Display TX ring */ 1315 stmmac_display_tx_rings(priv, dma_conf); 1316 } 1317 1318 static int stmmac_set_bfsize(int mtu, int bufsize) 1319 { 1320 int ret = bufsize; 1321 1322 if (mtu >= BUF_SIZE_8KiB) 1323 ret = BUF_SIZE_16KiB; 1324 else if (mtu >= BUF_SIZE_4KiB) 1325 ret = BUF_SIZE_8KiB; 1326 else if (mtu >= BUF_SIZE_2KiB) 1327 ret = BUF_SIZE_4KiB; 1328 else if (mtu > DEFAULT_BUFSIZE) 1329 ret = BUF_SIZE_2KiB; 1330 else 1331 ret = DEFAULT_BUFSIZE; 1332 1333 return ret; 1334 } 1335 1336 /** 1337 * stmmac_clear_rx_descriptors - clear RX descriptors 1338 * @priv: driver private structure 1339 * @dma_conf: structure to take the dma data 1340 * @queue: RX queue index 1341 * Description: this function is called to clear the RX descriptors 1342 * in case of both basic and extended descriptors are used. 1343 */ 1344 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, 1345 struct stmmac_dma_conf *dma_conf, 1346 u32 queue) 1347 { 1348 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1349 int i; 1350 1351 /* Clear the RX descriptors */ 1352 for (i = 0; i < dma_conf->dma_rx_size; i++) 1353 if (priv->extend_desc) 1354 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic, 1355 priv->use_riwt, priv->mode, 1356 (i == dma_conf->dma_rx_size - 1), 1357 dma_conf->dma_buf_sz); 1358 else 1359 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i], 1360 priv->use_riwt, priv->mode, 1361 (i == dma_conf->dma_rx_size - 1), 1362 dma_conf->dma_buf_sz); 1363 } 1364 1365 /** 1366 * stmmac_clear_tx_descriptors - clear tx descriptors 1367 * @priv: driver private structure 1368 * @dma_conf: structure to take the dma data 1369 * @queue: TX queue index. 1370 * Description: this function is called to clear the TX descriptors 1371 * in case of both basic and extended descriptors are used. 1372 */ 1373 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, 1374 struct stmmac_dma_conf *dma_conf, 1375 u32 queue) 1376 { 1377 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 1378 int i; 1379 1380 /* Clear the TX descriptors */ 1381 for (i = 0; i < dma_conf->dma_tx_size; i++) { 1382 int last = (i == (dma_conf->dma_tx_size - 1)); 1383 struct dma_desc *p; 1384 1385 if (priv->extend_desc) 1386 p = &tx_q->dma_etx[i].basic; 1387 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1388 p = &tx_q->dma_entx[i].basic; 1389 else 1390 p = &tx_q->dma_tx[i]; 1391 1392 stmmac_init_tx_desc(priv, p, priv->mode, last); 1393 } 1394 } 1395 1396 /** 1397 * stmmac_clear_descriptors - clear descriptors 1398 * @priv: driver private structure 1399 * @dma_conf: structure to take the dma data 1400 * Description: this function is called to clear the TX and RX descriptors 1401 * in case of both basic and extended descriptors are used. 1402 */ 1403 static void stmmac_clear_descriptors(struct stmmac_priv *priv, 1404 struct stmmac_dma_conf *dma_conf) 1405 { 1406 u32 rx_queue_cnt = priv->plat->rx_queues_to_use; 1407 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1408 u32 queue; 1409 1410 /* Clear the RX descriptors */ 1411 for (queue = 0; queue < rx_queue_cnt; queue++) 1412 stmmac_clear_rx_descriptors(priv, dma_conf, queue); 1413 1414 /* Clear the TX descriptors */ 1415 for (queue = 0; queue < tx_queue_cnt; queue++) 1416 stmmac_clear_tx_descriptors(priv, dma_conf, queue); 1417 } 1418 1419 /** 1420 * stmmac_init_rx_buffers - init the RX descriptor buffer. 1421 * @priv: driver private structure 1422 * @dma_conf: structure to take the dma data 1423 * @p: descriptor pointer 1424 * @i: descriptor index 1425 * @flags: gfp flag 1426 * @queue: RX queue index 1427 * Description: this function is called to allocate a receive buffer, perform 1428 * the DMA mapping and init the descriptor. 1429 */ 1430 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, 1431 struct stmmac_dma_conf *dma_conf, 1432 struct dma_desc *p, 1433 int i, gfp_t flags, u32 queue) 1434 { 1435 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1436 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1437 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 1438 1439 if (priv->dma_cap.host_dma_width <= 32) 1440 gfp |= GFP_DMA32; 1441 1442 if (!buf->page) { 1443 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp); 1444 if (!buf->page) 1445 return -ENOMEM; 1446 buf->page_offset = stmmac_rx_offset(priv); 1447 } 1448 1449 if (priv->sph && !buf->sec_page) { 1450 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp); 1451 if (!buf->sec_page) 1452 return -ENOMEM; 1453 1454 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 1455 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); 1456 } else { 1457 buf->sec_page = NULL; 1458 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); 1459 } 1460 1461 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; 1462 1463 stmmac_set_desc_addr(priv, p, buf->addr); 1464 if (dma_conf->dma_buf_sz == BUF_SIZE_16KiB) 1465 stmmac_init_desc3(priv, p); 1466 1467 return 0; 1468 } 1469 1470 /** 1471 * stmmac_free_rx_buffer - free RX dma buffers 1472 * @priv: private structure 1473 * @rx_q: RX queue 1474 * @i: buffer index. 1475 */ 1476 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, 1477 struct stmmac_rx_queue *rx_q, 1478 int i) 1479 { 1480 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1481 1482 if (buf->page) 1483 page_pool_put_full_page(rx_q->page_pool, buf->page, false); 1484 buf->page = NULL; 1485 1486 if (buf->sec_page) 1487 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false); 1488 buf->sec_page = NULL; 1489 } 1490 1491 /** 1492 * stmmac_free_tx_buffer - free RX dma buffers 1493 * @priv: private structure 1494 * @dma_conf: structure to take the dma data 1495 * @queue: RX queue index 1496 * @i: buffer index. 1497 */ 1498 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, 1499 struct stmmac_dma_conf *dma_conf, 1500 u32 queue, int i) 1501 { 1502 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 1503 1504 if (tx_q->tx_skbuff_dma[i].buf && 1505 tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) { 1506 if (tx_q->tx_skbuff_dma[i].map_as_page) 1507 dma_unmap_page(priv->device, 1508 tx_q->tx_skbuff_dma[i].buf, 1509 tx_q->tx_skbuff_dma[i].len, 1510 DMA_TO_DEVICE); 1511 else 1512 dma_unmap_single(priv->device, 1513 tx_q->tx_skbuff_dma[i].buf, 1514 tx_q->tx_skbuff_dma[i].len, 1515 DMA_TO_DEVICE); 1516 } 1517 1518 if (tx_q->xdpf[i] && 1519 (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX || 1520 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) { 1521 xdp_return_frame(tx_q->xdpf[i]); 1522 tx_q->xdpf[i] = NULL; 1523 } 1524 1525 if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX) 1526 tx_q->xsk_frames_done++; 1527 1528 if (tx_q->tx_skbuff[i] && 1529 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) { 1530 dev_kfree_skb_any(tx_q->tx_skbuff[i]); 1531 tx_q->tx_skbuff[i] = NULL; 1532 } 1533 1534 tx_q->tx_skbuff_dma[i].buf = 0; 1535 tx_q->tx_skbuff_dma[i].map_as_page = false; 1536 } 1537 1538 /** 1539 * dma_free_rx_skbufs - free RX dma buffers 1540 * @priv: private structure 1541 * @dma_conf: structure to take the dma data 1542 * @queue: RX queue index 1543 */ 1544 static void dma_free_rx_skbufs(struct stmmac_priv *priv, 1545 struct stmmac_dma_conf *dma_conf, 1546 u32 queue) 1547 { 1548 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1549 int i; 1550 1551 for (i = 0; i < dma_conf->dma_rx_size; i++) 1552 stmmac_free_rx_buffer(priv, rx_q, i); 1553 } 1554 1555 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, 1556 struct stmmac_dma_conf *dma_conf, 1557 u32 queue, gfp_t flags) 1558 { 1559 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1560 int i; 1561 1562 for (i = 0; i < dma_conf->dma_rx_size; i++) { 1563 struct dma_desc *p; 1564 int ret; 1565 1566 if (priv->extend_desc) 1567 p = &((rx_q->dma_erx + i)->basic); 1568 else 1569 p = rx_q->dma_rx + i; 1570 1571 ret = stmmac_init_rx_buffers(priv, dma_conf, p, i, flags, 1572 queue); 1573 if (ret) 1574 return ret; 1575 1576 rx_q->buf_alloc_num++; 1577 } 1578 1579 return 0; 1580 } 1581 1582 /** 1583 * dma_free_rx_xskbufs - free RX dma buffers from XSK pool 1584 * @priv: private structure 1585 * @dma_conf: structure to take the dma data 1586 * @queue: RX queue index 1587 */ 1588 static void dma_free_rx_xskbufs(struct stmmac_priv *priv, 1589 struct stmmac_dma_conf *dma_conf, 1590 u32 queue) 1591 { 1592 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1593 int i; 1594 1595 for (i = 0; i < dma_conf->dma_rx_size; i++) { 1596 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1597 1598 if (!buf->xdp) 1599 continue; 1600 1601 xsk_buff_free(buf->xdp); 1602 buf->xdp = NULL; 1603 } 1604 } 1605 1606 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, 1607 struct stmmac_dma_conf *dma_conf, 1608 u32 queue) 1609 { 1610 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1611 int i; 1612 1613 /* struct stmmac_xdp_buff is using cb field (maximum size of 24 bytes) 1614 * in struct xdp_buff_xsk to stash driver specific information. Thus, 1615 * use this macro to make sure no size violations. 1616 */ 1617 XSK_CHECK_PRIV_TYPE(struct stmmac_xdp_buff); 1618 1619 for (i = 0; i < dma_conf->dma_rx_size; i++) { 1620 struct stmmac_rx_buffer *buf; 1621 dma_addr_t dma_addr; 1622 struct dma_desc *p; 1623 1624 if (priv->extend_desc) 1625 p = (struct dma_desc *)(rx_q->dma_erx + i); 1626 else 1627 p = rx_q->dma_rx + i; 1628 1629 buf = &rx_q->buf_pool[i]; 1630 1631 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); 1632 if (!buf->xdp) 1633 return -ENOMEM; 1634 1635 dma_addr = xsk_buff_xdp_get_dma(buf->xdp); 1636 stmmac_set_desc_addr(priv, p, dma_addr); 1637 rx_q->buf_alloc_num++; 1638 } 1639 1640 return 0; 1641 } 1642 1643 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue) 1644 { 1645 if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps)) 1646 return NULL; 1647 1648 return xsk_get_pool_from_qid(priv->dev, queue); 1649 } 1650 1651 /** 1652 * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue) 1653 * @priv: driver private structure 1654 * @dma_conf: structure to take the dma data 1655 * @queue: RX queue index 1656 * @flags: gfp flag. 1657 * Description: this function initializes the DMA RX descriptors 1658 * and allocates the socket buffers. It supports the chained and ring 1659 * modes. 1660 */ 1661 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, 1662 struct stmmac_dma_conf *dma_conf, 1663 u32 queue, gfp_t flags) 1664 { 1665 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1666 int ret; 1667 1668 netif_dbg(priv, probe, priv->dev, 1669 "(%s) dma_rx_phy=0x%08x\n", __func__, 1670 (u32)rx_q->dma_rx_phy); 1671 1672 stmmac_clear_rx_descriptors(priv, dma_conf, queue); 1673 1674 xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq); 1675 1676 rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); 1677 1678 if (rx_q->xsk_pool) { 1679 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, 1680 MEM_TYPE_XSK_BUFF_POOL, 1681 NULL)); 1682 netdev_info(priv->dev, 1683 "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n", 1684 rx_q->queue_index); 1685 xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq); 1686 } else { 1687 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, 1688 MEM_TYPE_PAGE_POOL, 1689 rx_q->page_pool)); 1690 netdev_info(priv->dev, 1691 "Register MEM_TYPE_PAGE_POOL RxQ-%d\n", 1692 rx_q->queue_index); 1693 } 1694 1695 if (rx_q->xsk_pool) { 1696 /* RX XDP ZC buffer pool may not be populated, e.g. 1697 * xdpsock TX-only. 1698 */ 1699 stmmac_alloc_rx_buffers_zc(priv, dma_conf, queue); 1700 } else { 1701 ret = stmmac_alloc_rx_buffers(priv, dma_conf, queue, flags); 1702 if (ret < 0) 1703 return -ENOMEM; 1704 } 1705 1706 /* Setup the chained descriptor addresses */ 1707 if (priv->mode == STMMAC_CHAIN_MODE) { 1708 if (priv->extend_desc) 1709 stmmac_mode_init(priv, rx_q->dma_erx, 1710 rx_q->dma_rx_phy, 1711 dma_conf->dma_rx_size, 1); 1712 else 1713 stmmac_mode_init(priv, rx_q->dma_rx, 1714 rx_q->dma_rx_phy, 1715 dma_conf->dma_rx_size, 0); 1716 } 1717 1718 return 0; 1719 } 1720 1721 static int init_dma_rx_desc_rings(struct net_device *dev, 1722 struct stmmac_dma_conf *dma_conf, 1723 gfp_t flags) 1724 { 1725 struct stmmac_priv *priv = netdev_priv(dev); 1726 u32 rx_count = priv->plat->rx_queues_to_use; 1727 int queue; 1728 int ret; 1729 1730 /* RX INITIALIZATION */ 1731 netif_dbg(priv, probe, priv->dev, 1732 "SKB addresses:\nskb\t\tskb data\tdma data\n"); 1733 1734 for (queue = 0; queue < rx_count; queue++) { 1735 ret = __init_dma_rx_desc_rings(priv, dma_conf, queue, flags); 1736 if (ret) 1737 goto err_init_rx_buffers; 1738 } 1739 1740 return 0; 1741 1742 err_init_rx_buffers: 1743 while (queue >= 0) { 1744 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1745 1746 if (rx_q->xsk_pool) 1747 dma_free_rx_xskbufs(priv, dma_conf, queue); 1748 else 1749 dma_free_rx_skbufs(priv, dma_conf, queue); 1750 1751 rx_q->buf_alloc_num = 0; 1752 rx_q->xsk_pool = NULL; 1753 1754 queue--; 1755 } 1756 1757 return ret; 1758 } 1759 1760 /** 1761 * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue) 1762 * @priv: driver private structure 1763 * @dma_conf: structure to take the dma data 1764 * @queue: TX queue index 1765 * Description: this function initializes the DMA TX descriptors 1766 * and allocates the socket buffers. It supports the chained and ring 1767 * modes. 1768 */ 1769 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, 1770 struct stmmac_dma_conf *dma_conf, 1771 u32 queue) 1772 { 1773 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 1774 int i; 1775 1776 netif_dbg(priv, probe, priv->dev, 1777 "(%s) dma_tx_phy=0x%08x\n", __func__, 1778 (u32)tx_q->dma_tx_phy); 1779 1780 /* Setup the chained descriptor addresses */ 1781 if (priv->mode == STMMAC_CHAIN_MODE) { 1782 if (priv->extend_desc) 1783 stmmac_mode_init(priv, tx_q->dma_etx, 1784 tx_q->dma_tx_phy, 1785 dma_conf->dma_tx_size, 1); 1786 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) 1787 stmmac_mode_init(priv, tx_q->dma_tx, 1788 tx_q->dma_tx_phy, 1789 dma_conf->dma_tx_size, 0); 1790 } 1791 1792 tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); 1793 1794 for (i = 0; i < dma_conf->dma_tx_size; i++) { 1795 struct dma_desc *p; 1796 1797 if (priv->extend_desc) 1798 p = &((tx_q->dma_etx + i)->basic); 1799 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1800 p = &((tx_q->dma_entx + i)->basic); 1801 else 1802 p = tx_q->dma_tx + i; 1803 1804 stmmac_clear_desc(priv, p); 1805 1806 tx_q->tx_skbuff_dma[i].buf = 0; 1807 tx_q->tx_skbuff_dma[i].map_as_page = false; 1808 tx_q->tx_skbuff_dma[i].len = 0; 1809 tx_q->tx_skbuff_dma[i].last_segment = false; 1810 tx_q->tx_skbuff[i] = NULL; 1811 } 1812 1813 return 0; 1814 } 1815 1816 static int init_dma_tx_desc_rings(struct net_device *dev, 1817 struct stmmac_dma_conf *dma_conf) 1818 { 1819 struct stmmac_priv *priv = netdev_priv(dev); 1820 u32 tx_queue_cnt; 1821 u32 queue; 1822 1823 tx_queue_cnt = priv->plat->tx_queues_to_use; 1824 1825 for (queue = 0; queue < tx_queue_cnt; queue++) 1826 __init_dma_tx_desc_rings(priv, dma_conf, queue); 1827 1828 return 0; 1829 } 1830 1831 /** 1832 * init_dma_desc_rings - init the RX/TX descriptor rings 1833 * @dev: net device structure 1834 * @dma_conf: structure to take the dma data 1835 * @flags: gfp flag. 1836 * Description: this function initializes the DMA RX/TX descriptors 1837 * and allocates the socket buffers. It supports the chained and ring 1838 * modes. 1839 */ 1840 static int init_dma_desc_rings(struct net_device *dev, 1841 struct stmmac_dma_conf *dma_conf, 1842 gfp_t flags) 1843 { 1844 struct stmmac_priv *priv = netdev_priv(dev); 1845 int ret; 1846 1847 ret = init_dma_rx_desc_rings(dev, dma_conf, flags); 1848 if (ret) 1849 return ret; 1850 1851 ret = init_dma_tx_desc_rings(dev, dma_conf); 1852 1853 stmmac_clear_descriptors(priv, dma_conf); 1854 1855 if (netif_msg_hw(priv)) 1856 stmmac_display_rings(priv, dma_conf); 1857 1858 return ret; 1859 } 1860 1861 /** 1862 * dma_free_tx_skbufs - free TX dma buffers 1863 * @priv: private structure 1864 * @dma_conf: structure to take the dma data 1865 * @queue: TX queue index 1866 */ 1867 static void dma_free_tx_skbufs(struct stmmac_priv *priv, 1868 struct stmmac_dma_conf *dma_conf, 1869 u32 queue) 1870 { 1871 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 1872 int i; 1873 1874 tx_q->xsk_frames_done = 0; 1875 1876 for (i = 0; i < dma_conf->dma_tx_size; i++) 1877 stmmac_free_tx_buffer(priv, dma_conf, queue, i); 1878 1879 if (tx_q->xsk_pool && tx_q->xsk_frames_done) { 1880 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); 1881 tx_q->xsk_frames_done = 0; 1882 tx_q->xsk_pool = NULL; 1883 } 1884 } 1885 1886 /** 1887 * stmmac_free_tx_skbufs - free TX skb buffers 1888 * @priv: private structure 1889 */ 1890 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv) 1891 { 1892 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1893 u32 queue; 1894 1895 for (queue = 0; queue < tx_queue_cnt; queue++) 1896 dma_free_tx_skbufs(priv, &priv->dma_conf, queue); 1897 } 1898 1899 /** 1900 * __free_dma_rx_desc_resources - free RX dma desc resources (per queue) 1901 * @priv: private structure 1902 * @dma_conf: structure to take the dma data 1903 * @queue: RX queue index 1904 */ 1905 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, 1906 struct stmmac_dma_conf *dma_conf, 1907 u32 queue) 1908 { 1909 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1910 1911 /* Release the DMA RX socket buffers */ 1912 if (rx_q->xsk_pool) 1913 dma_free_rx_xskbufs(priv, dma_conf, queue); 1914 else 1915 dma_free_rx_skbufs(priv, dma_conf, queue); 1916 1917 rx_q->buf_alloc_num = 0; 1918 rx_q->xsk_pool = NULL; 1919 1920 /* Free DMA regions of consistent memory previously allocated */ 1921 if (!priv->extend_desc) 1922 dma_free_coherent(priv->device, dma_conf->dma_rx_size * 1923 sizeof(struct dma_desc), 1924 rx_q->dma_rx, rx_q->dma_rx_phy); 1925 else 1926 dma_free_coherent(priv->device, dma_conf->dma_rx_size * 1927 sizeof(struct dma_extended_desc), 1928 rx_q->dma_erx, rx_q->dma_rx_phy); 1929 1930 if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq)) 1931 xdp_rxq_info_unreg(&rx_q->xdp_rxq); 1932 1933 kfree(rx_q->buf_pool); 1934 if (rx_q->page_pool) 1935 page_pool_destroy(rx_q->page_pool); 1936 } 1937 1938 static void free_dma_rx_desc_resources(struct stmmac_priv *priv, 1939 struct stmmac_dma_conf *dma_conf) 1940 { 1941 u32 rx_count = priv->plat->rx_queues_to_use; 1942 u32 queue; 1943 1944 /* Free RX queue resources */ 1945 for (queue = 0; queue < rx_count; queue++) 1946 __free_dma_rx_desc_resources(priv, dma_conf, queue); 1947 } 1948 1949 /** 1950 * __free_dma_tx_desc_resources - free TX dma desc resources (per queue) 1951 * @priv: private structure 1952 * @dma_conf: structure to take the dma data 1953 * @queue: TX queue index 1954 */ 1955 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, 1956 struct stmmac_dma_conf *dma_conf, 1957 u32 queue) 1958 { 1959 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 1960 size_t size; 1961 void *addr; 1962 1963 /* Release the DMA TX socket buffers */ 1964 dma_free_tx_skbufs(priv, dma_conf, queue); 1965 1966 if (priv->extend_desc) { 1967 size = sizeof(struct dma_extended_desc); 1968 addr = tx_q->dma_etx; 1969 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1970 size = sizeof(struct dma_edesc); 1971 addr = tx_q->dma_entx; 1972 } else { 1973 size = sizeof(struct dma_desc); 1974 addr = tx_q->dma_tx; 1975 } 1976 1977 size *= dma_conf->dma_tx_size; 1978 1979 dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy); 1980 1981 kfree(tx_q->tx_skbuff_dma); 1982 kfree(tx_q->tx_skbuff); 1983 } 1984 1985 static void free_dma_tx_desc_resources(struct stmmac_priv *priv, 1986 struct stmmac_dma_conf *dma_conf) 1987 { 1988 u32 tx_count = priv->plat->tx_queues_to_use; 1989 u32 queue; 1990 1991 /* Free TX queue resources */ 1992 for (queue = 0; queue < tx_count; queue++) 1993 __free_dma_tx_desc_resources(priv, dma_conf, queue); 1994 } 1995 1996 /** 1997 * __alloc_dma_rx_desc_resources - alloc RX resources (per queue). 1998 * @priv: private structure 1999 * @dma_conf: structure to take the dma data 2000 * @queue: RX queue index 2001 * Description: according to which descriptor can be used (extend or basic) 2002 * this function allocates the resources for TX and RX paths. In case of 2003 * reception, for example, it pre-allocated the RX socket buffer in order to 2004 * allow zero-copy mechanism. 2005 */ 2006 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, 2007 struct stmmac_dma_conf *dma_conf, 2008 u32 queue) 2009 { 2010 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 2011 struct stmmac_channel *ch = &priv->channel[queue]; 2012 bool xdp_prog = stmmac_xdp_is_enabled(priv); 2013 struct page_pool_params pp_params = { 0 }; 2014 unsigned int num_pages; 2015 unsigned int napi_id; 2016 int ret; 2017 2018 rx_q->queue_index = queue; 2019 rx_q->priv_data = priv; 2020 2021 pp_params.flags = PP_FLAG_DMA_MAP | (xdp_prog ? PP_FLAG_DMA_SYNC_DEV : 0); 2022 pp_params.pool_size = dma_conf->dma_rx_size; 2023 num_pages = DIV_ROUND_UP(dma_conf->dma_buf_sz, PAGE_SIZE); 2024 pp_params.order = ilog2(num_pages); 2025 pp_params.nid = dev_to_node(priv->device); 2026 pp_params.dev = priv->device; 2027 pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 2028 pp_params.offset = stmmac_rx_offset(priv); 2029 pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages); 2030 2031 rx_q->page_pool = page_pool_create(&pp_params); 2032 if (IS_ERR(rx_q->page_pool)) { 2033 ret = PTR_ERR(rx_q->page_pool); 2034 rx_q->page_pool = NULL; 2035 return ret; 2036 } 2037 2038 rx_q->buf_pool = kcalloc(dma_conf->dma_rx_size, 2039 sizeof(*rx_q->buf_pool), 2040 GFP_KERNEL); 2041 if (!rx_q->buf_pool) 2042 return -ENOMEM; 2043 2044 if (priv->extend_desc) { 2045 rx_q->dma_erx = dma_alloc_coherent(priv->device, 2046 dma_conf->dma_rx_size * 2047 sizeof(struct dma_extended_desc), 2048 &rx_q->dma_rx_phy, 2049 GFP_KERNEL); 2050 if (!rx_q->dma_erx) 2051 return -ENOMEM; 2052 2053 } else { 2054 rx_q->dma_rx = dma_alloc_coherent(priv->device, 2055 dma_conf->dma_rx_size * 2056 sizeof(struct dma_desc), 2057 &rx_q->dma_rx_phy, 2058 GFP_KERNEL); 2059 if (!rx_q->dma_rx) 2060 return -ENOMEM; 2061 } 2062 2063 if (stmmac_xdp_is_enabled(priv) && 2064 test_bit(queue, priv->af_xdp_zc_qps)) 2065 napi_id = ch->rxtx_napi.napi_id; 2066 else 2067 napi_id = ch->rx_napi.napi_id; 2068 2069 ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev, 2070 rx_q->queue_index, 2071 napi_id); 2072 if (ret) { 2073 netdev_err(priv->dev, "Failed to register xdp rxq info\n"); 2074 return -EINVAL; 2075 } 2076 2077 return 0; 2078 } 2079 2080 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv, 2081 struct stmmac_dma_conf *dma_conf) 2082 { 2083 u32 rx_count = priv->plat->rx_queues_to_use; 2084 u32 queue; 2085 int ret; 2086 2087 /* RX queues buffers and DMA */ 2088 for (queue = 0; queue < rx_count; queue++) { 2089 ret = __alloc_dma_rx_desc_resources(priv, dma_conf, queue); 2090 if (ret) 2091 goto err_dma; 2092 } 2093 2094 return 0; 2095 2096 err_dma: 2097 free_dma_rx_desc_resources(priv, dma_conf); 2098 2099 return ret; 2100 } 2101 2102 /** 2103 * __alloc_dma_tx_desc_resources - alloc TX resources (per queue). 2104 * @priv: private structure 2105 * @dma_conf: structure to take the dma data 2106 * @queue: TX queue index 2107 * Description: according to which descriptor can be used (extend or basic) 2108 * this function allocates the resources for TX and RX paths. In case of 2109 * reception, for example, it pre-allocated the RX socket buffer in order to 2110 * allow zero-copy mechanism. 2111 */ 2112 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, 2113 struct stmmac_dma_conf *dma_conf, 2114 u32 queue) 2115 { 2116 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 2117 size_t size; 2118 void *addr; 2119 2120 tx_q->queue_index = queue; 2121 tx_q->priv_data = priv; 2122 2123 tx_q->tx_skbuff_dma = kcalloc(dma_conf->dma_tx_size, 2124 sizeof(*tx_q->tx_skbuff_dma), 2125 GFP_KERNEL); 2126 if (!tx_q->tx_skbuff_dma) 2127 return -ENOMEM; 2128 2129 tx_q->tx_skbuff = kcalloc(dma_conf->dma_tx_size, 2130 sizeof(struct sk_buff *), 2131 GFP_KERNEL); 2132 if (!tx_q->tx_skbuff) 2133 return -ENOMEM; 2134 2135 if (priv->extend_desc) 2136 size = sizeof(struct dma_extended_desc); 2137 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2138 size = sizeof(struct dma_edesc); 2139 else 2140 size = sizeof(struct dma_desc); 2141 2142 size *= dma_conf->dma_tx_size; 2143 2144 addr = dma_alloc_coherent(priv->device, size, 2145 &tx_q->dma_tx_phy, GFP_KERNEL); 2146 if (!addr) 2147 return -ENOMEM; 2148 2149 if (priv->extend_desc) 2150 tx_q->dma_etx = addr; 2151 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2152 tx_q->dma_entx = addr; 2153 else 2154 tx_q->dma_tx = addr; 2155 2156 return 0; 2157 } 2158 2159 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv, 2160 struct stmmac_dma_conf *dma_conf) 2161 { 2162 u32 tx_count = priv->plat->tx_queues_to_use; 2163 u32 queue; 2164 int ret; 2165 2166 /* TX queues buffers and DMA */ 2167 for (queue = 0; queue < tx_count; queue++) { 2168 ret = __alloc_dma_tx_desc_resources(priv, dma_conf, queue); 2169 if (ret) 2170 goto err_dma; 2171 } 2172 2173 return 0; 2174 2175 err_dma: 2176 free_dma_tx_desc_resources(priv, dma_conf); 2177 return ret; 2178 } 2179 2180 /** 2181 * alloc_dma_desc_resources - alloc TX/RX resources. 2182 * @priv: private structure 2183 * @dma_conf: structure to take the dma data 2184 * Description: according to which descriptor can be used (extend or basic) 2185 * this function allocates the resources for TX and RX paths. In case of 2186 * reception, for example, it pre-allocated the RX socket buffer in order to 2187 * allow zero-copy mechanism. 2188 */ 2189 static int alloc_dma_desc_resources(struct stmmac_priv *priv, 2190 struct stmmac_dma_conf *dma_conf) 2191 { 2192 /* RX Allocation */ 2193 int ret = alloc_dma_rx_desc_resources(priv, dma_conf); 2194 2195 if (ret) 2196 return ret; 2197 2198 ret = alloc_dma_tx_desc_resources(priv, dma_conf); 2199 2200 return ret; 2201 } 2202 2203 /** 2204 * free_dma_desc_resources - free dma desc resources 2205 * @priv: private structure 2206 * @dma_conf: structure to take the dma data 2207 */ 2208 static void free_dma_desc_resources(struct stmmac_priv *priv, 2209 struct stmmac_dma_conf *dma_conf) 2210 { 2211 /* Release the DMA TX socket buffers */ 2212 free_dma_tx_desc_resources(priv, dma_conf); 2213 2214 /* Release the DMA RX socket buffers later 2215 * to ensure all pending XDP_TX buffers are returned. 2216 */ 2217 free_dma_rx_desc_resources(priv, dma_conf); 2218 } 2219 2220 /** 2221 * stmmac_mac_enable_rx_queues - Enable MAC rx queues 2222 * @priv: driver private structure 2223 * Description: It is used for enabling the rx queues in the MAC 2224 */ 2225 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv) 2226 { 2227 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2228 int queue; 2229 u8 mode; 2230 2231 for (queue = 0; queue < rx_queues_count; queue++) { 2232 mode = priv->plat->rx_queues_cfg[queue].mode_to_use; 2233 stmmac_rx_queue_enable(priv, priv->hw, mode, queue); 2234 } 2235 } 2236 2237 /** 2238 * stmmac_start_rx_dma - start RX DMA channel 2239 * @priv: driver private structure 2240 * @chan: RX channel index 2241 * Description: 2242 * This starts a RX DMA channel 2243 */ 2244 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan) 2245 { 2246 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan); 2247 stmmac_start_rx(priv, priv->ioaddr, chan); 2248 } 2249 2250 /** 2251 * stmmac_start_tx_dma - start TX DMA channel 2252 * @priv: driver private structure 2253 * @chan: TX channel index 2254 * Description: 2255 * This starts a TX DMA channel 2256 */ 2257 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan) 2258 { 2259 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan); 2260 stmmac_start_tx(priv, priv->ioaddr, chan); 2261 } 2262 2263 /** 2264 * stmmac_stop_rx_dma - stop RX DMA channel 2265 * @priv: driver private structure 2266 * @chan: RX channel index 2267 * Description: 2268 * This stops a RX DMA channel 2269 */ 2270 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan) 2271 { 2272 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan); 2273 stmmac_stop_rx(priv, priv->ioaddr, chan); 2274 } 2275 2276 /** 2277 * stmmac_stop_tx_dma - stop TX DMA channel 2278 * @priv: driver private structure 2279 * @chan: TX channel index 2280 * Description: 2281 * This stops a TX DMA channel 2282 */ 2283 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan) 2284 { 2285 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan); 2286 stmmac_stop_tx(priv, priv->ioaddr, chan); 2287 } 2288 2289 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv) 2290 { 2291 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2292 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2293 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); 2294 u32 chan; 2295 2296 for (chan = 0; chan < dma_csr_ch; chan++) { 2297 struct stmmac_channel *ch = &priv->channel[chan]; 2298 unsigned long flags; 2299 2300 spin_lock_irqsave(&ch->lock, flags); 2301 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 2302 spin_unlock_irqrestore(&ch->lock, flags); 2303 } 2304 } 2305 2306 /** 2307 * stmmac_start_all_dma - start all RX and TX DMA channels 2308 * @priv: driver private structure 2309 * Description: 2310 * This starts all the RX and TX DMA channels 2311 */ 2312 static void stmmac_start_all_dma(struct stmmac_priv *priv) 2313 { 2314 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2315 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2316 u32 chan = 0; 2317 2318 for (chan = 0; chan < rx_channels_count; chan++) 2319 stmmac_start_rx_dma(priv, chan); 2320 2321 for (chan = 0; chan < tx_channels_count; chan++) 2322 stmmac_start_tx_dma(priv, chan); 2323 } 2324 2325 /** 2326 * stmmac_stop_all_dma - stop all RX and TX DMA channels 2327 * @priv: driver private structure 2328 * Description: 2329 * This stops the RX and TX DMA channels 2330 */ 2331 static void stmmac_stop_all_dma(struct stmmac_priv *priv) 2332 { 2333 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2334 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2335 u32 chan = 0; 2336 2337 for (chan = 0; chan < rx_channels_count; chan++) 2338 stmmac_stop_rx_dma(priv, chan); 2339 2340 for (chan = 0; chan < tx_channels_count; chan++) 2341 stmmac_stop_tx_dma(priv, chan); 2342 } 2343 2344 /** 2345 * stmmac_dma_operation_mode - HW DMA operation mode 2346 * @priv: driver private structure 2347 * Description: it is used for configuring the DMA operation mode register in 2348 * order to program the tx/rx DMA thresholds or Store-And-Forward mode. 2349 */ 2350 static void stmmac_dma_operation_mode(struct stmmac_priv *priv) 2351 { 2352 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2353 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2354 int rxfifosz = priv->plat->rx_fifo_size; 2355 int txfifosz = priv->plat->tx_fifo_size; 2356 u32 txmode = 0; 2357 u32 rxmode = 0; 2358 u32 chan = 0; 2359 u8 qmode = 0; 2360 2361 if (rxfifosz == 0) 2362 rxfifosz = priv->dma_cap.rx_fifo_size; 2363 if (txfifosz == 0) 2364 txfifosz = priv->dma_cap.tx_fifo_size; 2365 2366 /* Adjust for real per queue fifo size */ 2367 rxfifosz /= rx_channels_count; 2368 txfifosz /= tx_channels_count; 2369 2370 if (priv->plat->force_thresh_dma_mode) { 2371 txmode = tc; 2372 rxmode = tc; 2373 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { 2374 /* 2375 * In case of GMAC, SF mode can be enabled 2376 * to perform the TX COE in HW. This depends on: 2377 * 1) TX COE if actually supported 2378 * 2) There is no bugged Jumbo frame support 2379 * that needs to not insert csum in the TDES. 2380 */ 2381 txmode = SF_DMA_MODE; 2382 rxmode = SF_DMA_MODE; 2383 priv->xstats.threshold = SF_DMA_MODE; 2384 } else { 2385 txmode = tc; 2386 rxmode = SF_DMA_MODE; 2387 } 2388 2389 /* configure all channels */ 2390 for (chan = 0; chan < rx_channels_count; chan++) { 2391 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan]; 2392 u32 buf_size; 2393 2394 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2395 2396 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, 2397 rxfifosz, qmode); 2398 2399 if (rx_q->xsk_pool) { 2400 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 2401 stmmac_set_dma_bfsize(priv, priv->ioaddr, 2402 buf_size, 2403 chan); 2404 } else { 2405 stmmac_set_dma_bfsize(priv, priv->ioaddr, 2406 priv->dma_conf.dma_buf_sz, 2407 chan); 2408 } 2409 } 2410 2411 for (chan = 0; chan < tx_channels_count; chan++) { 2412 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2413 2414 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, 2415 txfifosz, qmode); 2416 } 2417 } 2418 2419 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget) 2420 { 2421 struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue); 2422 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 2423 struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[queue]; 2424 struct xsk_buff_pool *pool = tx_q->xsk_pool; 2425 unsigned int entry = tx_q->cur_tx; 2426 struct dma_desc *tx_desc = NULL; 2427 struct xdp_desc xdp_desc; 2428 bool work_done = true; 2429 u32 tx_set_ic_bit = 0; 2430 2431 /* Avoids TX time-out as we are sharing with slow path */ 2432 txq_trans_cond_update(nq); 2433 2434 budget = min(budget, stmmac_tx_avail(priv, queue)); 2435 2436 while (budget-- > 0) { 2437 dma_addr_t dma_addr; 2438 bool set_ic; 2439 2440 /* We are sharing with slow path and stop XSK TX desc submission when 2441 * available TX ring is less than threshold. 2442 */ 2443 if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) || 2444 !netif_carrier_ok(priv->dev)) { 2445 work_done = false; 2446 break; 2447 } 2448 2449 if (!xsk_tx_peek_desc(pool, &xdp_desc)) 2450 break; 2451 2452 if (likely(priv->extend_desc)) 2453 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); 2454 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2455 tx_desc = &tx_q->dma_entx[entry].basic; 2456 else 2457 tx_desc = tx_q->dma_tx + entry; 2458 2459 dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr); 2460 xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len); 2461 2462 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX; 2463 2464 /* To return XDP buffer to XSK pool, we simple call 2465 * xsk_tx_completed(), so we don't need to fill up 2466 * 'buf' and 'xdpf'. 2467 */ 2468 tx_q->tx_skbuff_dma[entry].buf = 0; 2469 tx_q->xdpf[entry] = NULL; 2470 2471 tx_q->tx_skbuff_dma[entry].map_as_page = false; 2472 tx_q->tx_skbuff_dma[entry].len = xdp_desc.len; 2473 tx_q->tx_skbuff_dma[entry].last_segment = true; 2474 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 2475 2476 stmmac_set_desc_addr(priv, tx_desc, dma_addr); 2477 2478 tx_q->tx_count_frames++; 2479 2480 if (!priv->tx_coal_frames[queue]) 2481 set_ic = false; 2482 else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) 2483 set_ic = true; 2484 else 2485 set_ic = false; 2486 2487 if (set_ic) { 2488 tx_q->tx_count_frames = 0; 2489 stmmac_set_tx_ic(priv, tx_desc); 2490 tx_set_ic_bit++; 2491 } 2492 2493 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len, 2494 true, priv->mode, true, true, 2495 xdp_desc.len); 2496 2497 stmmac_enable_dma_transmission(priv, priv->ioaddr); 2498 2499 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size); 2500 entry = tx_q->cur_tx; 2501 } 2502 u64_stats_update_begin(&txq_stats->napi_syncp); 2503 u64_stats_add(&txq_stats->napi.tx_set_ic_bit, tx_set_ic_bit); 2504 u64_stats_update_end(&txq_stats->napi_syncp); 2505 2506 if (tx_desc) { 2507 stmmac_flush_tx_descriptors(priv, queue); 2508 xsk_tx_release(pool); 2509 } 2510 2511 /* Return true if all of the 3 conditions are met 2512 * a) TX Budget is still available 2513 * b) work_done = true when XSK TX desc peek is empty (no more 2514 * pending XSK TX for transmission) 2515 */ 2516 return !!budget && work_done; 2517 } 2518 2519 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan) 2520 { 2521 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) { 2522 tc += 64; 2523 2524 if (priv->plat->force_thresh_dma_mode) 2525 stmmac_set_dma_operation_mode(priv, tc, tc, chan); 2526 else 2527 stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE, 2528 chan); 2529 2530 priv->xstats.threshold = tc; 2531 } 2532 } 2533 2534 /** 2535 * stmmac_tx_clean - to manage the transmission completion 2536 * @priv: driver private structure 2537 * @budget: napi budget limiting this functions packet handling 2538 * @queue: TX queue index 2539 * Description: it reclaims the transmit resources after transmission completes. 2540 */ 2541 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue) 2542 { 2543 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 2544 struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[queue]; 2545 unsigned int bytes_compl = 0, pkts_compl = 0; 2546 unsigned int entry, xmits = 0, count = 0; 2547 u32 tx_packets = 0, tx_errors = 0; 2548 2549 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue)); 2550 2551 tx_q->xsk_frames_done = 0; 2552 2553 entry = tx_q->dirty_tx; 2554 2555 /* Try to clean all TX complete frame in 1 shot */ 2556 while ((entry != tx_q->cur_tx) && count < priv->dma_conf.dma_tx_size) { 2557 struct xdp_frame *xdpf; 2558 struct sk_buff *skb; 2559 struct dma_desc *p; 2560 int status; 2561 2562 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX || 2563 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { 2564 xdpf = tx_q->xdpf[entry]; 2565 skb = NULL; 2566 } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { 2567 xdpf = NULL; 2568 skb = tx_q->tx_skbuff[entry]; 2569 } else { 2570 xdpf = NULL; 2571 skb = NULL; 2572 } 2573 2574 if (priv->extend_desc) 2575 p = (struct dma_desc *)(tx_q->dma_etx + entry); 2576 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2577 p = &tx_q->dma_entx[entry].basic; 2578 else 2579 p = tx_q->dma_tx + entry; 2580 2581 status = stmmac_tx_status(priv, &priv->xstats, p, priv->ioaddr); 2582 /* Check if the descriptor is owned by the DMA */ 2583 if (unlikely(status & tx_dma_own)) 2584 break; 2585 2586 count++; 2587 2588 /* Make sure descriptor fields are read after reading 2589 * the own bit. 2590 */ 2591 dma_rmb(); 2592 2593 /* Just consider the last segment and ...*/ 2594 if (likely(!(status & tx_not_ls))) { 2595 /* ... verify the status error condition */ 2596 if (unlikely(status & tx_err)) { 2597 tx_errors++; 2598 if (unlikely(status & tx_err_bump_tc)) 2599 stmmac_bump_dma_threshold(priv, queue); 2600 } else { 2601 tx_packets++; 2602 } 2603 if (skb) 2604 stmmac_get_tx_hwtstamp(priv, p, skb); 2605 } 2606 2607 if (likely(tx_q->tx_skbuff_dma[entry].buf && 2608 tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) { 2609 if (tx_q->tx_skbuff_dma[entry].map_as_page) 2610 dma_unmap_page(priv->device, 2611 tx_q->tx_skbuff_dma[entry].buf, 2612 tx_q->tx_skbuff_dma[entry].len, 2613 DMA_TO_DEVICE); 2614 else 2615 dma_unmap_single(priv->device, 2616 tx_q->tx_skbuff_dma[entry].buf, 2617 tx_q->tx_skbuff_dma[entry].len, 2618 DMA_TO_DEVICE); 2619 tx_q->tx_skbuff_dma[entry].buf = 0; 2620 tx_q->tx_skbuff_dma[entry].len = 0; 2621 tx_q->tx_skbuff_dma[entry].map_as_page = false; 2622 } 2623 2624 stmmac_clean_desc3(priv, tx_q, p); 2625 2626 tx_q->tx_skbuff_dma[entry].last_segment = false; 2627 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 2628 2629 if (xdpf && 2630 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) { 2631 xdp_return_frame_rx_napi(xdpf); 2632 tx_q->xdpf[entry] = NULL; 2633 } 2634 2635 if (xdpf && 2636 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { 2637 xdp_return_frame(xdpf); 2638 tx_q->xdpf[entry] = NULL; 2639 } 2640 2641 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX) 2642 tx_q->xsk_frames_done++; 2643 2644 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { 2645 if (likely(skb)) { 2646 pkts_compl++; 2647 bytes_compl += skb->len; 2648 dev_consume_skb_any(skb); 2649 tx_q->tx_skbuff[entry] = NULL; 2650 } 2651 } 2652 2653 stmmac_release_tx_desc(priv, p, priv->mode); 2654 2655 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size); 2656 } 2657 tx_q->dirty_tx = entry; 2658 2659 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue), 2660 pkts_compl, bytes_compl); 2661 2662 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev, 2663 queue))) && 2664 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) { 2665 2666 netif_dbg(priv, tx_done, priv->dev, 2667 "%s: restart transmit\n", __func__); 2668 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue)); 2669 } 2670 2671 if (tx_q->xsk_pool) { 2672 bool work_done; 2673 2674 if (tx_q->xsk_frames_done) 2675 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); 2676 2677 if (xsk_uses_need_wakeup(tx_q->xsk_pool)) 2678 xsk_set_tx_need_wakeup(tx_q->xsk_pool); 2679 2680 /* For XSK TX, we try to send as many as possible. 2681 * If XSK work done (XSK TX desc empty and budget still 2682 * available), return "budget - 1" to reenable TX IRQ. 2683 * Else, return "budget" to make NAPI continue polling. 2684 */ 2685 work_done = stmmac_xdp_xmit_zc(priv, queue, 2686 STMMAC_XSK_TX_BUDGET_MAX); 2687 if (work_done) 2688 xmits = budget - 1; 2689 else 2690 xmits = budget; 2691 } 2692 2693 if (priv->eee_enabled && !priv->tx_path_in_lpi_mode && 2694 priv->eee_sw_timer_en) { 2695 if (stmmac_enable_eee_mode(priv)) 2696 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); 2697 } 2698 2699 /* We still have pending packets, let's call for a new scheduling */ 2700 if (tx_q->dirty_tx != tx_q->cur_tx) 2701 stmmac_tx_timer_arm(priv, queue); 2702 2703 u64_stats_update_begin(&txq_stats->napi_syncp); 2704 u64_stats_add(&txq_stats->napi.tx_packets, tx_packets); 2705 u64_stats_add(&txq_stats->napi.tx_pkt_n, tx_packets); 2706 u64_stats_inc(&txq_stats->napi.tx_clean); 2707 u64_stats_update_end(&txq_stats->napi_syncp); 2708 2709 priv->xstats.tx_errors += tx_errors; 2710 2711 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue)); 2712 2713 /* Combine decisions from TX clean and XSK TX */ 2714 return max(count, xmits); 2715 } 2716 2717 /** 2718 * stmmac_tx_err - to manage the tx error 2719 * @priv: driver private structure 2720 * @chan: channel index 2721 * Description: it cleans the descriptors and restarts the transmission 2722 * in case of transmission errors. 2723 */ 2724 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan) 2725 { 2726 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; 2727 2728 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan)); 2729 2730 stmmac_stop_tx_dma(priv, chan); 2731 dma_free_tx_skbufs(priv, &priv->dma_conf, chan); 2732 stmmac_clear_tx_descriptors(priv, &priv->dma_conf, chan); 2733 stmmac_reset_tx_queue(priv, chan); 2734 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2735 tx_q->dma_tx_phy, chan); 2736 stmmac_start_tx_dma(priv, chan); 2737 2738 priv->xstats.tx_errors++; 2739 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan)); 2740 } 2741 2742 /** 2743 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel 2744 * @priv: driver private structure 2745 * @txmode: TX operating mode 2746 * @rxmode: RX operating mode 2747 * @chan: channel index 2748 * Description: it is used for configuring of the DMA operation mode in 2749 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward 2750 * mode. 2751 */ 2752 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 2753 u32 rxmode, u32 chan) 2754 { 2755 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2756 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2757 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2758 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2759 int rxfifosz = priv->plat->rx_fifo_size; 2760 int txfifosz = priv->plat->tx_fifo_size; 2761 2762 if (rxfifosz == 0) 2763 rxfifosz = priv->dma_cap.rx_fifo_size; 2764 if (txfifosz == 0) 2765 txfifosz = priv->dma_cap.tx_fifo_size; 2766 2767 /* Adjust for real per queue fifo size */ 2768 rxfifosz /= rx_channels_count; 2769 txfifosz /= tx_channels_count; 2770 2771 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode); 2772 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode); 2773 } 2774 2775 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv) 2776 { 2777 int ret; 2778 2779 ret = stmmac_safety_feat_irq_status(priv, priv->dev, 2780 priv->ioaddr, priv->dma_cap.asp, &priv->sstats); 2781 if (ret && (ret != -EINVAL)) { 2782 stmmac_global_err(priv); 2783 return true; 2784 } 2785 2786 return false; 2787 } 2788 2789 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir) 2790 { 2791 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr, 2792 &priv->xstats, chan, dir); 2793 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan]; 2794 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; 2795 struct stmmac_channel *ch = &priv->channel[chan]; 2796 struct napi_struct *rx_napi; 2797 struct napi_struct *tx_napi; 2798 unsigned long flags; 2799 2800 rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi; 2801 tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; 2802 2803 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) { 2804 if (napi_schedule_prep(rx_napi)) { 2805 spin_lock_irqsave(&ch->lock, flags); 2806 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 2807 spin_unlock_irqrestore(&ch->lock, flags); 2808 __napi_schedule(rx_napi); 2809 } 2810 } 2811 2812 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) { 2813 if (napi_schedule_prep(tx_napi)) { 2814 spin_lock_irqsave(&ch->lock, flags); 2815 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 2816 spin_unlock_irqrestore(&ch->lock, flags); 2817 __napi_schedule(tx_napi); 2818 } 2819 } 2820 2821 return status; 2822 } 2823 2824 /** 2825 * stmmac_dma_interrupt - DMA ISR 2826 * @priv: driver private structure 2827 * Description: this is the DMA ISR. It is called by the main ISR. 2828 * It calls the dwmac dma routine and schedule poll method in case of some 2829 * work can be done. 2830 */ 2831 static void stmmac_dma_interrupt(struct stmmac_priv *priv) 2832 { 2833 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2834 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2835 u32 channels_to_check = tx_channel_count > rx_channel_count ? 2836 tx_channel_count : rx_channel_count; 2837 u32 chan; 2838 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)]; 2839 2840 /* Make sure we never check beyond our status buffer. */ 2841 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status))) 2842 channels_to_check = ARRAY_SIZE(status); 2843 2844 for (chan = 0; chan < channels_to_check; chan++) 2845 status[chan] = stmmac_napi_check(priv, chan, 2846 DMA_DIR_RXTX); 2847 2848 for (chan = 0; chan < tx_channel_count; chan++) { 2849 if (unlikely(status[chan] & tx_hard_error_bump_tc)) { 2850 /* Try to bump up the dma threshold on this failure */ 2851 stmmac_bump_dma_threshold(priv, chan); 2852 } else if (unlikely(status[chan] == tx_hard_error)) { 2853 stmmac_tx_err(priv, chan); 2854 } 2855 } 2856 } 2857 2858 /** 2859 * stmmac_mmc_setup: setup the Mac Management Counters (MMC) 2860 * @priv: driver private structure 2861 * Description: this masks the MMC irq, in fact, the counters are managed in SW. 2862 */ 2863 static void stmmac_mmc_setup(struct stmmac_priv *priv) 2864 { 2865 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | 2866 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; 2867 2868 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr); 2869 2870 if (priv->dma_cap.rmon) { 2871 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode); 2872 memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); 2873 } else 2874 netdev_info(priv->dev, "No MAC Management Counters available\n"); 2875 } 2876 2877 /** 2878 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register. 2879 * @priv: driver private structure 2880 * Description: 2881 * new GMAC chip generations have a new register to indicate the 2882 * presence of the optional feature/functions. 2883 * This can be also used to override the value passed through the 2884 * platform and necessary for old MAC10/100 and GMAC chips. 2885 */ 2886 static int stmmac_get_hw_features(struct stmmac_priv *priv) 2887 { 2888 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0; 2889 } 2890 2891 /** 2892 * stmmac_check_ether_addr - check if the MAC addr is valid 2893 * @priv: driver private structure 2894 * Description: 2895 * it is to verify if the MAC address is valid, in case of failures it 2896 * generates a random MAC address 2897 */ 2898 static void stmmac_check_ether_addr(struct stmmac_priv *priv) 2899 { 2900 u8 addr[ETH_ALEN]; 2901 2902 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 2903 stmmac_get_umac_addr(priv, priv->hw, addr, 0); 2904 if (is_valid_ether_addr(addr)) 2905 eth_hw_addr_set(priv->dev, addr); 2906 else 2907 eth_hw_addr_random(priv->dev); 2908 dev_info(priv->device, "device MAC address %pM\n", 2909 priv->dev->dev_addr); 2910 } 2911 } 2912 2913 /** 2914 * stmmac_init_dma_engine - DMA init. 2915 * @priv: driver private structure 2916 * Description: 2917 * It inits the DMA invoking the specific MAC/GMAC callback. 2918 * Some DMA parameters can be passed from the platform; 2919 * in case of these are not passed a default is kept for the MAC or GMAC. 2920 */ 2921 static int stmmac_init_dma_engine(struct stmmac_priv *priv) 2922 { 2923 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2924 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2925 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); 2926 struct stmmac_rx_queue *rx_q; 2927 struct stmmac_tx_queue *tx_q; 2928 u32 chan = 0; 2929 int atds = 0; 2930 int ret = 0; 2931 2932 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) { 2933 dev_err(priv->device, "Invalid DMA configuration\n"); 2934 return -EINVAL; 2935 } 2936 2937 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) 2938 atds = 1; 2939 2940 ret = stmmac_reset(priv, priv->ioaddr); 2941 if (ret) { 2942 dev_err(priv->device, "Failed to reset the dma\n"); 2943 return ret; 2944 } 2945 2946 /* DMA Configuration */ 2947 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds); 2948 2949 if (priv->plat->axi) 2950 stmmac_axi(priv, priv->ioaddr, priv->plat->axi); 2951 2952 /* DMA CSR Channel configuration */ 2953 for (chan = 0; chan < dma_csr_ch; chan++) { 2954 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 2955 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 2956 } 2957 2958 /* DMA RX Channel Configuration */ 2959 for (chan = 0; chan < rx_channels_count; chan++) { 2960 rx_q = &priv->dma_conf.rx_queue[chan]; 2961 2962 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2963 rx_q->dma_rx_phy, chan); 2964 2965 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 2966 (rx_q->buf_alloc_num * 2967 sizeof(struct dma_desc)); 2968 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 2969 rx_q->rx_tail_addr, chan); 2970 } 2971 2972 /* DMA TX Channel Configuration */ 2973 for (chan = 0; chan < tx_channels_count; chan++) { 2974 tx_q = &priv->dma_conf.tx_queue[chan]; 2975 2976 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2977 tx_q->dma_tx_phy, chan); 2978 2979 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 2980 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 2981 tx_q->tx_tail_addr, chan); 2982 } 2983 2984 return ret; 2985 } 2986 2987 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue) 2988 { 2989 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 2990 u32 tx_coal_timer = priv->tx_coal_timer[queue]; 2991 2992 if (!tx_coal_timer) 2993 return; 2994 2995 hrtimer_start(&tx_q->txtimer, 2996 STMMAC_COAL_TIMER(tx_coal_timer), 2997 HRTIMER_MODE_REL); 2998 } 2999 3000 /** 3001 * stmmac_tx_timer - mitigation sw timer for tx. 3002 * @t: data pointer 3003 * Description: 3004 * This is the timer handler to directly invoke the stmmac_tx_clean. 3005 */ 3006 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t) 3007 { 3008 struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer); 3009 struct stmmac_priv *priv = tx_q->priv_data; 3010 struct stmmac_channel *ch; 3011 struct napi_struct *napi; 3012 3013 ch = &priv->channel[tx_q->queue_index]; 3014 napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; 3015 3016 if (likely(napi_schedule_prep(napi))) { 3017 unsigned long flags; 3018 3019 spin_lock_irqsave(&ch->lock, flags); 3020 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1); 3021 spin_unlock_irqrestore(&ch->lock, flags); 3022 __napi_schedule(napi); 3023 } 3024 3025 return HRTIMER_NORESTART; 3026 } 3027 3028 /** 3029 * stmmac_init_coalesce - init mitigation options. 3030 * @priv: driver private structure 3031 * Description: 3032 * This inits the coalesce parameters: i.e. timer rate, 3033 * timer handler and default threshold used for enabling the 3034 * interrupt on completion bit. 3035 */ 3036 static void stmmac_init_coalesce(struct stmmac_priv *priv) 3037 { 3038 u32 tx_channel_count = priv->plat->tx_queues_to_use; 3039 u32 rx_channel_count = priv->plat->rx_queues_to_use; 3040 u32 chan; 3041 3042 for (chan = 0; chan < tx_channel_count; chan++) { 3043 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; 3044 3045 priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES; 3046 priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER; 3047 3048 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3049 tx_q->txtimer.function = stmmac_tx_timer; 3050 } 3051 3052 for (chan = 0; chan < rx_channel_count; chan++) 3053 priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES; 3054 } 3055 3056 static void stmmac_set_rings_length(struct stmmac_priv *priv) 3057 { 3058 u32 rx_channels_count = priv->plat->rx_queues_to_use; 3059 u32 tx_channels_count = priv->plat->tx_queues_to_use; 3060 u32 chan; 3061 3062 /* set TX ring length */ 3063 for (chan = 0; chan < tx_channels_count; chan++) 3064 stmmac_set_tx_ring_len(priv, priv->ioaddr, 3065 (priv->dma_conf.dma_tx_size - 1), chan); 3066 3067 /* set RX ring length */ 3068 for (chan = 0; chan < rx_channels_count; chan++) 3069 stmmac_set_rx_ring_len(priv, priv->ioaddr, 3070 (priv->dma_conf.dma_rx_size - 1), chan); 3071 } 3072 3073 /** 3074 * stmmac_set_tx_queue_weight - Set TX queue weight 3075 * @priv: driver private structure 3076 * Description: It is used for setting TX queues weight 3077 */ 3078 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv) 3079 { 3080 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3081 u32 weight; 3082 u32 queue; 3083 3084 for (queue = 0; queue < tx_queues_count; queue++) { 3085 weight = priv->plat->tx_queues_cfg[queue].weight; 3086 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue); 3087 } 3088 } 3089 3090 /** 3091 * stmmac_configure_cbs - Configure CBS in TX queue 3092 * @priv: driver private structure 3093 * Description: It is used for configuring CBS in AVB TX queues 3094 */ 3095 static void stmmac_configure_cbs(struct stmmac_priv *priv) 3096 { 3097 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3098 u32 mode_to_use; 3099 u32 queue; 3100 3101 /* queue 0 is reserved for legacy traffic */ 3102 for (queue = 1; queue < tx_queues_count; queue++) { 3103 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use; 3104 if (mode_to_use == MTL_QUEUE_DCB) 3105 continue; 3106 3107 stmmac_config_cbs(priv, priv->hw, 3108 priv->plat->tx_queues_cfg[queue].send_slope, 3109 priv->plat->tx_queues_cfg[queue].idle_slope, 3110 priv->plat->tx_queues_cfg[queue].high_credit, 3111 priv->plat->tx_queues_cfg[queue].low_credit, 3112 queue); 3113 } 3114 } 3115 3116 /** 3117 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel 3118 * @priv: driver private structure 3119 * Description: It is used for mapping RX queues to RX dma channels 3120 */ 3121 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv) 3122 { 3123 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3124 u32 queue; 3125 u32 chan; 3126 3127 for (queue = 0; queue < rx_queues_count; queue++) { 3128 chan = priv->plat->rx_queues_cfg[queue].chan; 3129 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan); 3130 } 3131 } 3132 3133 /** 3134 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority 3135 * @priv: driver private structure 3136 * Description: It is used for configuring the RX Queue Priority 3137 */ 3138 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv) 3139 { 3140 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3141 u32 queue; 3142 u32 prio; 3143 3144 for (queue = 0; queue < rx_queues_count; queue++) { 3145 if (!priv->plat->rx_queues_cfg[queue].use_prio) 3146 continue; 3147 3148 prio = priv->plat->rx_queues_cfg[queue].prio; 3149 stmmac_rx_queue_prio(priv, priv->hw, prio, queue); 3150 } 3151 } 3152 3153 /** 3154 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority 3155 * @priv: driver private structure 3156 * Description: It is used for configuring the TX Queue Priority 3157 */ 3158 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv) 3159 { 3160 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3161 u32 queue; 3162 u32 prio; 3163 3164 for (queue = 0; queue < tx_queues_count; queue++) { 3165 if (!priv->plat->tx_queues_cfg[queue].use_prio) 3166 continue; 3167 3168 prio = priv->plat->tx_queues_cfg[queue].prio; 3169 stmmac_tx_queue_prio(priv, priv->hw, prio, queue); 3170 } 3171 } 3172 3173 /** 3174 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing 3175 * @priv: driver private structure 3176 * Description: It is used for configuring the RX queue routing 3177 */ 3178 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv) 3179 { 3180 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3181 u32 queue; 3182 u8 packet; 3183 3184 for (queue = 0; queue < rx_queues_count; queue++) { 3185 /* no specific packet type routing specified for the queue */ 3186 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0) 3187 continue; 3188 3189 packet = priv->plat->rx_queues_cfg[queue].pkt_route; 3190 stmmac_rx_queue_routing(priv, priv->hw, packet, queue); 3191 } 3192 } 3193 3194 static void stmmac_mac_config_rss(struct stmmac_priv *priv) 3195 { 3196 if (!priv->dma_cap.rssen || !priv->plat->rss_en) { 3197 priv->rss.enable = false; 3198 return; 3199 } 3200 3201 if (priv->dev->features & NETIF_F_RXHASH) 3202 priv->rss.enable = true; 3203 else 3204 priv->rss.enable = false; 3205 3206 stmmac_rss_configure(priv, priv->hw, &priv->rss, 3207 priv->plat->rx_queues_to_use); 3208 } 3209 3210 /** 3211 * stmmac_mtl_configuration - Configure MTL 3212 * @priv: driver private structure 3213 * Description: It is used for configurring MTL 3214 */ 3215 static void stmmac_mtl_configuration(struct stmmac_priv *priv) 3216 { 3217 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3218 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3219 3220 if (tx_queues_count > 1) 3221 stmmac_set_tx_queue_weight(priv); 3222 3223 /* Configure MTL RX algorithms */ 3224 if (rx_queues_count > 1) 3225 stmmac_prog_mtl_rx_algorithms(priv, priv->hw, 3226 priv->plat->rx_sched_algorithm); 3227 3228 /* Configure MTL TX algorithms */ 3229 if (tx_queues_count > 1) 3230 stmmac_prog_mtl_tx_algorithms(priv, priv->hw, 3231 priv->plat->tx_sched_algorithm); 3232 3233 /* Configure CBS in AVB TX queues */ 3234 if (tx_queues_count > 1) 3235 stmmac_configure_cbs(priv); 3236 3237 /* Map RX MTL to DMA channels */ 3238 stmmac_rx_queue_dma_chan_map(priv); 3239 3240 /* Enable MAC RX Queues */ 3241 stmmac_mac_enable_rx_queues(priv); 3242 3243 /* Set RX priorities */ 3244 if (rx_queues_count > 1) 3245 stmmac_mac_config_rx_queues_prio(priv); 3246 3247 /* Set TX priorities */ 3248 if (tx_queues_count > 1) 3249 stmmac_mac_config_tx_queues_prio(priv); 3250 3251 /* Set RX routing */ 3252 if (rx_queues_count > 1) 3253 stmmac_mac_config_rx_queues_routing(priv); 3254 3255 /* Receive Side Scaling */ 3256 if (rx_queues_count > 1) 3257 stmmac_mac_config_rss(priv); 3258 } 3259 3260 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv) 3261 { 3262 if (priv->dma_cap.asp) { 3263 netdev_info(priv->dev, "Enabling Safety Features\n"); 3264 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp, 3265 priv->plat->safety_feat_cfg); 3266 } else { 3267 netdev_info(priv->dev, "No Safety Features support found\n"); 3268 } 3269 } 3270 3271 static int stmmac_fpe_start_wq(struct stmmac_priv *priv) 3272 { 3273 char *name; 3274 3275 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); 3276 clear_bit(__FPE_REMOVING, &priv->fpe_task_state); 3277 3278 name = priv->wq_name; 3279 sprintf(name, "%s-fpe", priv->dev->name); 3280 3281 priv->fpe_wq = create_singlethread_workqueue(name); 3282 if (!priv->fpe_wq) { 3283 netdev_err(priv->dev, "%s: Failed to create workqueue\n", name); 3284 3285 return -ENOMEM; 3286 } 3287 netdev_info(priv->dev, "FPE workqueue start"); 3288 3289 return 0; 3290 } 3291 3292 /** 3293 * stmmac_hw_setup - setup mac in a usable state. 3294 * @dev : pointer to the device structure. 3295 * @ptp_register: register PTP if set 3296 * Description: 3297 * this is the main function to setup the HW in a usable state because the 3298 * dma engine is reset, the core registers are configured (e.g. AXI, 3299 * Checksum features, timers). The DMA is ready to start receiving and 3300 * transmitting. 3301 * Return value: 3302 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3303 * file on failure. 3304 */ 3305 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register) 3306 { 3307 struct stmmac_priv *priv = netdev_priv(dev); 3308 u32 rx_cnt = priv->plat->rx_queues_to_use; 3309 u32 tx_cnt = priv->plat->tx_queues_to_use; 3310 bool sph_en; 3311 u32 chan; 3312 int ret; 3313 3314 /* DMA initialization and SW reset */ 3315 ret = stmmac_init_dma_engine(priv); 3316 if (ret < 0) { 3317 netdev_err(priv->dev, "%s: DMA engine initialization failed\n", 3318 __func__); 3319 return ret; 3320 } 3321 3322 /* Copy the MAC addr into the HW */ 3323 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0); 3324 3325 /* PS and related bits will be programmed according to the speed */ 3326 if (priv->hw->pcs) { 3327 int speed = priv->plat->mac_port_sel_speed; 3328 3329 if ((speed == SPEED_10) || (speed == SPEED_100) || 3330 (speed == SPEED_1000)) { 3331 priv->hw->ps = speed; 3332 } else { 3333 dev_warn(priv->device, "invalid port speed\n"); 3334 priv->hw->ps = 0; 3335 } 3336 } 3337 3338 /* Initialize the MAC Core */ 3339 stmmac_core_init(priv, priv->hw, dev); 3340 3341 /* Initialize MTL*/ 3342 stmmac_mtl_configuration(priv); 3343 3344 /* Initialize Safety Features */ 3345 stmmac_safety_feat_configuration(priv); 3346 3347 ret = stmmac_rx_ipc(priv, priv->hw); 3348 if (!ret) { 3349 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n"); 3350 priv->plat->rx_coe = STMMAC_RX_COE_NONE; 3351 priv->hw->rx_csum = 0; 3352 } 3353 3354 /* Enable the MAC Rx/Tx */ 3355 stmmac_mac_set(priv, priv->ioaddr, true); 3356 3357 /* Set the HW DMA mode and the COE */ 3358 stmmac_dma_operation_mode(priv); 3359 3360 stmmac_mmc_setup(priv); 3361 3362 if (ptp_register) { 3363 ret = clk_prepare_enable(priv->plat->clk_ptp_ref); 3364 if (ret < 0) 3365 netdev_warn(priv->dev, 3366 "failed to enable PTP reference clock: %pe\n", 3367 ERR_PTR(ret)); 3368 } 3369 3370 ret = stmmac_init_ptp(priv); 3371 if (ret == -EOPNOTSUPP) 3372 netdev_info(priv->dev, "PTP not supported by HW\n"); 3373 else if (ret) 3374 netdev_warn(priv->dev, "PTP init failed\n"); 3375 else if (ptp_register) 3376 stmmac_ptp_register(priv); 3377 3378 priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS; 3379 3380 /* Convert the timer from msec to usec */ 3381 if (!priv->tx_lpi_timer) 3382 priv->tx_lpi_timer = eee_timer * 1000; 3383 3384 if (priv->use_riwt) { 3385 u32 queue; 3386 3387 for (queue = 0; queue < rx_cnt; queue++) { 3388 if (!priv->rx_riwt[queue]) 3389 priv->rx_riwt[queue] = DEF_DMA_RIWT; 3390 3391 stmmac_rx_watchdog(priv, priv->ioaddr, 3392 priv->rx_riwt[queue], queue); 3393 } 3394 } 3395 3396 if (priv->hw->pcs) 3397 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0); 3398 3399 /* set TX and RX rings length */ 3400 stmmac_set_rings_length(priv); 3401 3402 /* Enable TSO */ 3403 if (priv->tso) { 3404 for (chan = 0; chan < tx_cnt; chan++) { 3405 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; 3406 3407 /* TSO and TBS cannot co-exist */ 3408 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3409 continue; 3410 3411 stmmac_enable_tso(priv, priv->ioaddr, 1, chan); 3412 } 3413 } 3414 3415 /* Enable Split Header */ 3416 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 3417 for (chan = 0; chan < rx_cnt; chan++) 3418 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 3419 3420 3421 /* VLAN Tag Insertion */ 3422 if (priv->dma_cap.vlins) 3423 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT); 3424 3425 /* TBS */ 3426 for (chan = 0; chan < tx_cnt; chan++) { 3427 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; 3428 int enable = tx_q->tbs & STMMAC_TBS_AVAIL; 3429 3430 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan); 3431 } 3432 3433 /* Configure real RX and TX queues */ 3434 netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use); 3435 netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use); 3436 3437 /* Start the ball rolling... */ 3438 stmmac_start_all_dma(priv); 3439 3440 if (priv->dma_cap.fpesel) { 3441 stmmac_fpe_start_wq(priv); 3442 3443 if (priv->plat->fpe_cfg->enable) 3444 stmmac_fpe_handshake(priv, true); 3445 } 3446 3447 return 0; 3448 } 3449 3450 static void stmmac_hw_teardown(struct net_device *dev) 3451 { 3452 struct stmmac_priv *priv = netdev_priv(dev); 3453 3454 clk_disable_unprepare(priv->plat->clk_ptp_ref); 3455 } 3456 3457 static void stmmac_free_irq(struct net_device *dev, 3458 enum request_irq_err irq_err, int irq_idx) 3459 { 3460 struct stmmac_priv *priv = netdev_priv(dev); 3461 int j; 3462 3463 switch (irq_err) { 3464 case REQ_IRQ_ERR_ALL: 3465 irq_idx = priv->plat->tx_queues_to_use; 3466 fallthrough; 3467 case REQ_IRQ_ERR_TX: 3468 for (j = irq_idx - 1; j >= 0; j--) { 3469 if (priv->tx_irq[j] > 0) { 3470 irq_set_affinity_hint(priv->tx_irq[j], NULL); 3471 free_irq(priv->tx_irq[j], &priv->dma_conf.tx_queue[j]); 3472 } 3473 } 3474 irq_idx = priv->plat->rx_queues_to_use; 3475 fallthrough; 3476 case REQ_IRQ_ERR_RX: 3477 for (j = irq_idx - 1; j >= 0; j--) { 3478 if (priv->rx_irq[j] > 0) { 3479 irq_set_affinity_hint(priv->rx_irq[j], NULL); 3480 free_irq(priv->rx_irq[j], &priv->dma_conf.rx_queue[j]); 3481 } 3482 } 3483 3484 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) 3485 free_irq(priv->sfty_ue_irq, dev); 3486 fallthrough; 3487 case REQ_IRQ_ERR_SFTY_UE: 3488 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) 3489 free_irq(priv->sfty_ce_irq, dev); 3490 fallthrough; 3491 case REQ_IRQ_ERR_SFTY_CE: 3492 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) 3493 free_irq(priv->lpi_irq, dev); 3494 fallthrough; 3495 case REQ_IRQ_ERR_LPI: 3496 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) 3497 free_irq(priv->wol_irq, dev); 3498 fallthrough; 3499 case REQ_IRQ_ERR_WOL: 3500 free_irq(dev->irq, dev); 3501 fallthrough; 3502 case REQ_IRQ_ERR_MAC: 3503 case REQ_IRQ_ERR_NO: 3504 /* If MAC IRQ request error, no more IRQ to free */ 3505 break; 3506 } 3507 } 3508 3509 static int stmmac_request_irq_multi_msi(struct net_device *dev) 3510 { 3511 struct stmmac_priv *priv = netdev_priv(dev); 3512 enum request_irq_err irq_err; 3513 cpumask_t cpu_mask; 3514 int irq_idx = 0; 3515 char *int_name; 3516 int ret; 3517 int i; 3518 3519 /* For common interrupt */ 3520 int_name = priv->int_name_mac; 3521 sprintf(int_name, "%s:%s", dev->name, "mac"); 3522 ret = request_irq(dev->irq, stmmac_mac_interrupt, 3523 0, int_name, dev); 3524 if (unlikely(ret < 0)) { 3525 netdev_err(priv->dev, 3526 "%s: alloc mac MSI %d (error: %d)\n", 3527 __func__, dev->irq, ret); 3528 irq_err = REQ_IRQ_ERR_MAC; 3529 goto irq_error; 3530 } 3531 3532 /* Request the Wake IRQ in case of another line 3533 * is used for WoL 3534 */ 3535 priv->wol_irq_disabled = true; 3536 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { 3537 int_name = priv->int_name_wol; 3538 sprintf(int_name, "%s:%s", dev->name, "wol"); 3539 ret = request_irq(priv->wol_irq, 3540 stmmac_mac_interrupt, 3541 0, int_name, dev); 3542 if (unlikely(ret < 0)) { 3543 netdev_err(priv->dev, 3544 "%s: alloc wol MSI %d (error: %d)\n", 3545 __func__, priv->wol_irq, ret); 3546 irq_err = REQ_IRQ_ERR_WOL; 3547 goto irq_error; 3548 } 3549 } 3550 3551 /* Request the LPI IRQ in case of another line 3552 * is used for LPI 3553 */ 3554 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { 3555 int_name = priv->int_name_lpi; 3556 sprintf(int_name, "%s:%s", dev->name, "lpi"); 3557 ret = request_irq(priv->lpi_irq, 3558 stmmac_mac_interrupt, 3559 0, int_name, dev); 3560 if (unlikely(ret < 0)) { 3561 netdev_err(priv->dev, 3562 "%s: alloc lpi MSI %d (error: %d)\n", 3563 __func__, priv->lpi_irq, ret); 3564 irq_err = REQ_IRQ_ERR_LPI; 3565 goto irq_error; 3566 } 3567 } 3568 3569 /* Request the Safety Feature Correctible Error line in 3570 * case of another line is used 3571 */ 3572 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) { 3573 int_name = priv->int_name_sfty_ce; 3574 sprintf(int_name, "%s:%s", dev->name, "safety-ce"); 3575 ret = request_irq(priv->sfty_ce_irq, 3576 stmmac_safety_interrupt, 3577 0, int_name, dev); 3578 if (unlikely(ret < 0)) { 3579 netdev_err(priv->dev, 3580 "%s: alloc sfty ce MSI %d (error: %d)\n", 3581 __func__, priv->sfty_ce_irq, ret); 3582 irq_err = REQ_IRQ_ERR_SFTY_CE; 3583 goto irq_error; 3584 } 3585 } 3586 3587 /* Request the Safety Feature Uncorrectible Error line in 3588 * case of another line is used 3589 */ 3590 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) { 3591 int_name = priv->int_name_sfty_ue; 3592 sprintf(int_name, "%s:%s", dev->name, "safety-ue"); 3593 ret = request_irq(priv->sfty_ue_irq, 3594 stmmac_safety_interrupt, 3595 0, int_name, dev); 3596 if (unlikely(ret < 0)) { 3597 netdev_err(priv->dev, 3598 "%s: alloc sfty ue MSI %d (error: %d)\n", 3599 __func__, priv->sfty_ue_irq, ret); 3600 irq_err = REQ_IRQ_ERR_SFTY_UE; 3601 goto irq_error; 3602 } 3603 } 3604 3605 /* Request Rx MSI irq */ 3606 for (i = 0; i < priv->plat->rx_queues_to_use; i++) { 3607 if (i >= MTL_MAX_RX_QUEUES) 3608 break; 3609 if (priv->rx_irq[i] == 0) 3610 continue; 3611 3612 int_name = priv->int_name_rx_irq[i]; 3613 sprintf(int_name, "%s:%s-%d", dev->name, "rx", i); 3614 ret = request_irq(priv->rx_irq[i], 3615 stmmac_msi_intr_rx, 3616 0, int_name, &priv->dma_conf.rx_queue[i]); 3617 if (unlikely(ret < 0)) { 3618 netdev_err(priv->dev, 3619 "%s: alloc rx-%d MSI %d (error: %d)\n", 3620 __func__, i, priv->rx_irq[i], ret); 3621 irq_err = REQ_IRQ_ERR_RX; 3622 irq_idx = i; 3623 goto irq_error; 3624 } 3625 cpumask_clear(&cpu_mask); 3626 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); 3627 irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask); 3628 } 3629 3630 /* Request Tx MSI irq */ 3631 for (i = 0; i < priv->plat->tx_queues_to_use; i++) { 3632 if (i >= MTL_MAX_TX_QUEUES) 3633 break; 3634 if (priv->tx_irq[i] == 0) 3635 continue; 3636 3637 int_name = priv->int_name_tx_irq[i]; 3638 sprintf(int_name, "%s:%s-%d", dev->name, "tx", i); 3639 ret = request_irq(priv->tx_irq[i], 3640 stmmac_msi_intr_tx, 3641 0, int_name, &priv->dma_conf.tx_queue[i]); 3642 if (unlikely(ret < 0)) { 3643 netdev_err(priv->dev, 3644 "%s: alloc tx-%d MSI %d (error: %d)\n", 3645 __func__, i, priv->tx_irq[i], ret); 3646 irq_err = REQ_IRQ_ERR_TX; 3647 irq_idx = i; 3648 goto irq_error; 3649 } 3650 cpumask_clear(&cpu_mask); 3651 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); 3652 irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask); 3653 } 3654 3655 return 0; 3656 3657 irq_error: 3658 stmmac_free_irq(dev, irq_err, irq_idx); 3659 return ret; 3660 } 3661 3662 static int stmmac_request_irq_single(struct net_device *dev) 3663 { 3664 struct stmmac_priv *priv = netdev_priv(dev); 3665 enum request_irq_err irq_err; 3666 int ret; 3667 3668 ret = request_irq(dev->irq, stmmac_interrupt, 3669 IRQF_SHARED, dev->name, dev); 3670 if (unlikely(ret < 0)) { 3671 netdev_err(priv->dev, 3672 "%s: ERROR: allocating the IRQ %d (error: %d)\n", 3673 __func__, dev->irq, ret); 3674 irq_err = REQ_IRQ_ERR_MAC; 3675 goto irq_error; 3676 } 3677 3678 /* Request the Wake IRQ in case of another line 3679 * is used for WoL 3680 */ 3681 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { 3682 ret = request_irq(priv->wol_irq, stmmac_interrupt, 3683 IRQF_SHARED, dev->name, dev); 3684 if (unlikely(ret < 0)) { 3685 netdev_err(priv->dev, 3686 "%s: ERROR: allocating the WoL IRQ %d (%d)\n", 3687 __func__, priv->wol_irq, ret); 3688 irq_err = REQ_IRQ_ERR_WOL; 3689 goto irq_error; 3690 } 3691 } 3692 3693 /* Request the IRQ lines */ 3694 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { 3695 ret = request_irq(priv->lpi_irq, stmmac_interrupt, 3696 IRQF_SHARED, dev->name, dev); 3697 if (unlikely(ret < 0)) { 3698 netdev_err(priv->dev, 3699 "%s: ERROR: allocating the LPI IRQ %d (%d)\n", 3700 __func__, priv->lpi_irq, ret); 3701 irq_err = REQ_IRQ_ERR_LPI; 3702 goto irq_error; 3703 } 3704 } 3705 3706 return 0; 3707 3708 irq_error: 3709 stmmac_free_irq(dev, irq_err, 0); 3710 return ret; 3711 } 3712 3713 static int stmmac_request_irq(struct net_device *dev) 3714 { 3715 struct stmmac_priv *priv = netdev_priv(dev); 3716 int ret; 3717 3718 /* Request the IRQ lines */ 3719 if (priv->plat->flags & STMMAC_FLAG_MULTI_MSI_EN) 3720 ret = stmmac_request_irq_multi_msi(dev); 3721 else 3722 ret = stmmac_request_irq_single(dev); 3723 3724 return ret; 3725 } 3726 3727 /** 3728 * stmmac_setup_dma_desc - Generate a dma_conf and allocate DMA queue 3729 * @priv: driver private structure 3730 * @mtu: MTU to setup the dma queue and buf with 3731 * Description: Allocate and generate a dma_conf based on the provided MTU. 3732 * Allocate the Tx/Rx DMA queue and init them. 3733 * Return value: 3734 * the dma_conf allocated struct on success and an appropriate ERR_PTR on failure. 3735 */ 3736 static struct stmmac_dma_conf * 3737 stmmac_setup_dma_desc(struct stmmac_priv *priv, unsigned int mtu) 3738 { 3739 struct stmmac_dma_conf *dma_conf; 3740 int chan, bfsize, ret; 3741 3742 dma_conf = kzalloc(sizeof(*dma_conf), GFP_KERNEL); 3743 if (!dma_conf) { 3744 netdev_err(priv->dev, "%s: DMA conf allocation failed\n", 3745 __func__); 3746 return ERR_PTR(-ENOMEM); 3747 } 3748 3749 bfsize = stmmac_set_16kib_bfsize(priv, mtu); 3750 if (bfsize < 0) 3751 bfsize = 0; 3752 3753 if (bfsize < BUF_SIZE_16KiB) 3754 bfsize = stmmac_set_bfsize(mtu, 0); 3755 3756 dma_conf->dma_buf_sz = bfsize; 3757 /* Chose the tx/rx size from the already defined one in the 3758 * priv struct. (if defined) 3759 */ 3760 dma_conf->dma_tx_size = priv->dma_conf.dma_tx_size; 3761 dma_conf->dma_rx_size = priv->dma_conf.dma_rx_size; 3762 3763 if (!dma_conf->dma_tx_size) 3764 dma_conf->dma_tx_size = DMA_DEFAULT_TX_SIZE; 3765 if (!dma_conf->dma_rx_size) 3766 dma_conf->dma_rx_size = DMA_DEFAULT_RX_SIZE; 3767 3768 /* Earlier check for TBS */ 3769 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) { 3770 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[chan]; 3771 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en; 3772 3773 /* Setup per-TXQ tbs flag before TX descriptor alloc */ 3774 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0; 3775 } 3776 3777 ret = alloc_dma_desc_resources(priv, dma_conf); 3778 if (ret < 0) { 3779 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n", 3780 __func__); 3781 goto alloc_error; 3782 } 3783 3784 ret = init_dma_desc_rings(priv->dev, dma_conf, GFP_KERNEL); 3785 if (ret < 0) { 3786 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n", 3787 __func__); 3788 goto init_error; 3789 } 3790 3791 return dma_conf; 3792 3793 init_error: 3794 free_dma_desc_resources(priv, dma_conf); 3795 alloc_error: 3796 kfree(dma_conf); 3797 return ERR_PTR(ret); 3798 } 3799 3800 /** 3801 * __stmmac_open - open entry point of the driver 3802 * @dev : pointer to the device structure. 3803 * @dma_conf : structure to take the dma data 3804 * Description: 3805 * This function is the open entry point of the driver. 3806 * Return value: 3807 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3808 * file on failure. 3809 */ 3810 static int __stmmac_open(struct net_device *dev, 3811 struct stmmac_dma_conf *dma_conf) 3812 { 3813 struct stmmac_priv *priv = netdev_priv(dev); 3814 int mode = priv->plat->phy_interface; 3815 u32 chan; 3816 int ret; 3817 3818 ret = pm_runtime_resume_and_get(priv->device); 3819 if (ret < 0) 3820 return ret; 3821 3822 if (priv->hw->pcs != STMMAC_PCS_TBI && 3823 priv->hw->pcs != STMMAC_PCS_RTBI && 3824 (!priv->hw->xpcs || 3825 xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73) && 3826 !priv->hw->lynx_pcs) { 3827 ret = stmmac_init_phy(dev); 3828 if (ret) { 3829 netdev_err(priv->dev, 3830 "%s: Cannot attach to PHY (error: %d)\n", 3831 __func__, ret); 3832 goto init_phy_error; 3833 } 3834 } 3835 3836 priv->rx_copybreak = STMMAC_RX_COPYBREAK; 3837 3838 buf_sz = dma_conf->dma_buf_sz; 3839 for (int i = 0; i < MTL_MAX_TX_QUEUES; i++) 3840 if (priv->dma_conf.tx_queue[i].tbs & STMMAC_TBS_EN) 3841 dma_conf->tx_queue[i].tbs = priv->dma_conf.tx_queue[i].tbs; 3842 memcpy(&priv->dma_conf, dma_conf, sizeof(*dma_conf)); 3843 3844 stmmac_reset_queues_param(priv); 3845 3846 if (!(priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) && 3847 priv->plat->serdes_powerup) { 3848 ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv); 3849 if (ret < 0) { 3850 netdev_err(priv->dev, "%s: Serdes powerup failed\n", 3851 __func__); 3852 goto init_error; 3853 } 3854 } 3855 3856 ret = stmmac_hw_setup(dev, true); 3857 if (ret < 0) { 3858 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__); 3859 goto init_error; 3860 } 3861 3862 stmmac_init_coalesce(priv); 3863 3864 phylink_start(priv->phylink); 3865 /* We may have called phylink_speed_down before */ 3866 phylink_speed_up(priv->phylink); 3867 3868 ret = stmmac_request_irq(dev); 3869 if (ret) 3870 goto irq_error; 3871 3872 stmmac_enable_all_queues(priv); 3873 netif_tx_start_all_queues(priv->dev); 3874 stmmac_enable_all_dma_irq(priv); 3875 3876 return 0; 3877 3878 irq_error: 3879 phylink_stop(priv->phylink); 3880 3881 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 3882 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); 3883 3884 stmmac_hw_teardown(dev); 3885 init_error: 3886 phylink_disconnect_phy(priv->phylink); 3887 init_phy_error: 3888 pm_runtime_put(priv->device); 3889 return ret; 3890 } 3891 3892 static int stmmac_open(struct net_device *dev) 3893 { 3894 struct stmmac_priv *priv = netdev_priv(dev); 3895 struct stmmac_dma_conf *dma_conf; 3896 int ret; 3897 3898 dma_conf = stmmac_setup_dma_desc(priv, dev->mtu); 3899 if (IS_ERR(dma_conf)) 3900 return PTR_ERR(dma_conf); 3901 3902 ret = __stmmac_open(dev, dma_conf); 3903 if (ret) 3904 free_dma_desc_resources(priv, dma_conf); 3905 3906 kfree(dma_conf); 3907 return ret; 3908 } 3909 3910 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv) 3911 { 3912 set_bit(__FPE_REMOVING, &priv->fpe_task_state); 3913 3914 if (priv->fpe_wq) { 3915 destroy_workqueue(priv->fpe_wq); 3916 priv->fpe_wq = NULL; 3917 } 3918 3919 netdev_info(priv->dev, "FPE workqueue stop"); 3920 } 3921 3922 /** 3923 * stmmac_release - close entry point of the driver 3924 * @dev : device pointer. 3925 * Description: 3926 * This is the stop entry point of the driver. 3927 */ 3928 static int stmmac_release(struct net_device *dev) 3929 { 3930 struct stmmac_priv *priv = netdev_priv(dev); 3931 u32 chan; 3932 3933 if (device_may_wakeup(priv->device)) 3934 phylink_speed_down(priv->phylink, false); 3935 /* Stop and disconnect the PHY */ 3936 phylink_stop(priv->phylink); 3937 phylink_disconnect_phy(priv->phylink); 3938 3939 stmmac_disable_all_queues(priv); 3940 3941 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 3942 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); 3943 3944 netif_tx_disable(dev); 3945 3946 /* Free the IRQ lines */ 3947 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0); 3948 3949 if (priv->eee_enabled) { 3950 priv->tx_path_in_lpi_mode = false; 3951 del_timer_sync(&priv->eee_ctrl_timer); 3952 } 3953 3954 /* Stop TX/RX DMA and clear the descriptors */ 3955 stmmac_stop_all_dma(priv); 3956 3957 /* Release and free the Rx/Tx resources */ 3958 free_dma_desc_resources(priv, &priv->dma_conf); 3959 3960 /* Disable the MAC Rx/Tx */ 3961 stmmac_mac_set(priv, priv->ioaddr, false); 3962 3963 /* Powerdown Serdes if there is */ 3964 if (priv->plat->serdes_powerdown) 3965 priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv); 3966 3967 netif_carrier_off(dev); 3968 3969 stmmac_release_ptp(priv); 3970 3971 pm_runtime_put(priv->device); 3972 3973 if (priv->dma_cap.fpesel) 3974 stmmac_fpe_stop_wq(priv); 3975 3976 return 0; 3977 } 3978 3979 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb, 3980 struct stmmac_tx_queue *tx_q) 3981 { 3982 u16 tag = 0x0, inner_tag = 0x0; 3983 u32 inner_type = 0x0; 3984 struct dma_desc *p; 3985 3986 if (!priv->dma_cap.vlins) 3987 return false; 3988 if (!skb_vlan_tag_present(skb)) 3989 return false; 3990 if (skb->vlan_proto == htons(ETH_P_8021AD)) { 3991 inner_tag = skb_vlan_tag_get(skb); 3992 inner_type = STMMAC_VLAN_INSERT; 3993 } 3994 3995 tag = skb_vlan_tag_get(skb); 3996 3997 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3998 p = &tx_q->dma_entx[tx_q->cur_tx].basic; 3999 else 4000 p = &tx_q->dma_tx[tx_q->cur_tx]; 4001 4002 if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type)) 4003 return false; 4004 4005 stmmac_set_tx_owner(priv, p); 4006 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size); 4007 return true; 4008 } 4009 4010 /** 4011 * stmmac_tso_allocator - close entry point of the driver 4012 * @priv: driver private structure 4013 * @des: buffer start address 4014 * @total_len: total length to fill in descriptors 4015 * @last_segment: condition for the last descriptor 4016 * @queue: TX queue index 4017 * Description: 4018 * This function fills descriptor and request new descriptors according to 4019 * buffer length to fill 4020 */ 4021 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des, 4022 int total_len, bool last_segment, u32 queue) 4023 { 4024 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 4025 struct dma_desc *desc; 4026 u32 buff_size; 4027 int tmp_len; 4028 4029 tmp_len = total_len; 4030 4031 while (tmp_len > 0) { 4032 dma_addr_t curr_addr; 4033 4034 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 4035 priv->dma_conf.dma_tx_size); 4036 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 4037 4038 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4039 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 4040 else 4041 desc = &tx_q->dma_tx[tx_q->cur_tx]; 4042 4043 curr_addr = des + (total_len - tmp_len); 4044 if (priv->dma_cap.addr64 <= 32) 4045 desc->des0 = cpu_to_le32(curr_addr); 4046 else 4047 stmmac_set_desc_addr(priv, desc, curr_addr); 4048 4049 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ? 4050 TSO_MAX_BUFF_SIZE : tmp_len; 4051 4052 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size, 4053 0, 1, 4054 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE), 4055 0, 0); 4056 4057 tmp_len -= TSO_MAX_BUFF_SIZE; 4058 } 4059 } 4060 4061 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue) 4062 { 4063 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 4064 int desc_size; 4065 4066 if (likely(priv->extend_desc)) 4067 desc_size = sizeof(struct dma_extended_desc); 4068 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4069 desc_size = sizeof(struct dma_edesc); 4070 else 4071 desc_size = sizeof(struct dma_desc); 4072 4073 /* The own bit must be the latest setting done when prepare the 4074 * descriptor and then barrier is needed to make sure that 4075 * all is coherent before granting the DMA engine. 4076 */ 4077 wmb(); 4078 4079 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size); 4080 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); 4081 } 4082 4083 /** 4084 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO) 4085 * @skb : the socket buffer 4086 * @dev : device pointer 4087 * Description: this is the transmit function that is called on TSO frames 4088 * (support available on GMAC4 and newer chips). 4089 * Diagram below show the ring programming in case of TSO frames: 4090 * 4091 * First Descriptor 4092 * -------- 4093 * | DES0 |---> buffer1 = L2/L3/L4 header 4094 * | DES1 |---> TCP Payload (can continue on next descr...) 4095 * | DES2 |---> buffer 1 and 2 len 4096 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0] 4097 * -------- 4098 * | 4099 * ... 4100 * | 4101 * -------- 4102 * | DES0 | --| Split TCP Payload on Buffers 1 and 2 4103 * | DES1 | --| 4104 * | DES2 | --> buffer 1 and 2 len 4105 * | DES3 | 4106 * -------- 4107 * 4108 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field. 4109 */ 4110 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) 4111 { 4112 struct dma_desc *desc, *first, *mss_desc = NULL; 4113 struct stmmac_priv *priv = netdev_priv(dev); 4114 int nfrags = skb_shinfo(skb)->nr_frags; 4115 u32 queue = skb_get_queue_mapping(skb); 4116 unsigned int first_entry, tx_packets; 4117 struct stmmac_txq_stats *txq_stats; 4118 int tmp_pay_len = 0, first_tx; 4119 struct stmmac_tx_queue *tx_q; 4120 bool has_vlan, set_ic; 4121 u8 proto_hdr_len, hdr; 4122 u32 pay_len, mss; 4123 dma_addr_t des; 4124 int i; 4125 4126 tx_q = &priv->dma_conf.tx_queue[queue]; 4127 txq_stats = &priv->xstats.txq_stats[queue]; 4128 first_tx = tx_q->cur_tx; 4129 4130 /* Compute header lengths */ 4131 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 4132 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr); 4133 hdr = sizeof(struct udphdr); 4134 } else { 4135 proto_hdr_len = skb_tcp_all_headers(skb); 4136 hdr = tcp_hdrlen(skb); 4137 } 4138 4139 /* Desc availability based on threshold should be enough safe */ 4140 if (unlikely(stmmac_tx_avail(priv, queue) < 4141 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) { 4142 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 4143 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 4144 queue)); 4145 /* This is a hard error, log it. */ 4146 netdev_err(priv->dev, 4147 "%s: Tx Ring full when queue awake\n", 4148 __func__); 4149 } 4150 return NETDEV_TX_BUSY; 4151 } 4152 4153 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */ 4154 4155 mss = skb_shinfo(skb)->gso_size; 4156 4157 /* set new MSS value if needed */ 4158 if (mss != tx_q->mss) { 4159 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4160 mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 4161 else 4162 mss_desc = &tx_q->dma_tx[tx_q->cur_tx]; 4163 4164 stmmac_set_mss(priv, mss_desc, mss); 4165 tx_q->mss = mss; 4166 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 4167 priv->dma_conf.dma_tx_size); 4168 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 4169 } 4170 4171 if (netif_msg_tx_queued(priv)) { 4172 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n", 4173 __func__, hdr, proto_hdr_len, pay_len, mss); 4174 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len, 4175 skb->data_len); 4176 } 4177 4178 /* Check if VLAN can be inserted by HW */ 4179 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 4180 4181 first_entry = tx_q->cur_tx; 4182 WARN_ON(tx_q->tx_skbuff[first_entry]); 4183 4184 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4185 desc = &tx_q->dma_entx[first_entry].basic; 4186 else 4187 desc = &tx_q->dma_tx[first_entry]; 4188 first = desc; 4189 4190 if (has_vlan) 4191 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 4192 4193 /* first descriptor: fill Headers on Buf1 */ 4194 des = dma_map_single(priv->device, skb->data, skb_headlen(skb), 4195 DMA_TO_DEVICE); 4196 if (dma_mapping_error(priv->device, des)) 4197 goto dma_map_err; 4198 4199 tx_q->tx_skbuff_dma[first_entry].buf = des; 4200 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb); 4201 tx_q->tx_skbuff_dma[first_entry].map_as_page = false; 4202 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; 4203 4204 if (priv->dma_cap.addr64 <= 32) { 4205 first->des0 = cpu_to_le32(des); 4206 4207 /* Fill start of payload in buff2 of first descriptor */ 4208 if (pay_len) 4209 first->des1 = cpu_to_le32(des + proto_hdr_len); 4210 4211 /* If needed take extra descriptors to fill the remaining payload */ 4212 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE; 4213 } else { 4214 stmmac_set_desc_addr(priv, first, des); 4215 tmp_pay_len = pay_len; 4216 des += proto_hdr_len; 4217 pay_len = 0; 4218 } 4219 4220 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue); 4221 4222 /* Prepare fragments */ 4223 for (i = 0; i < nfrags; i++) { 4224 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4225 4226 des = skb_frag_dma_map(priv->device, frag, 0, 4227 skb_frag_size(frag), 4228 DMA_TO_DEVICE); 4229 if (dma_mapping_error(priv->device, des)) 4230 goto dma_map_err; 4231 4232 stmmac_tso_allocator(priv, des, skb_frag_size(frag), 4233 (i == nfrags - 1), queue); 4234 4235 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des; 4236 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag); 4237 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true; 4238 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; 4239 } 4240 4241 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true; 4242 4243 /* Only the last descriptor gets to point to the skb. */ 4244 tx_q->tx_skbuff[tx_q->cur_tx] = skb; 4245 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; 4246 4247 /* Manage tx mitigation */ 4248 tx_packets = (tx_q->cur_tx + 1) - first_tx; 4249 tx_q->tx_count_frames += tx_packets; 4250 4251 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 4252 set_ic = true; 4253 else if (!priv->tx_coal_frames[queue]) 4254 set_ic = false; 4255 else if (tx_packets > priv->tx_coal_frames[queue]) 4256 set_ic = true; 4257 else if ((tx_q->tx_count_frames % 4258 priv->tx_coal_frames[queue]) < tx_packets) 4259 set_ic = true; 4260 else 4261 set_ic = false; 4262 4263 if (set_ic) { 4264 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4265 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 4266 else 4267 desc = &tx_q->dma_tx[tx_q->cur_tx]; 4268 4269 tx_q->tx_count_frames = 0; 4270 stmmac_set_tx_ic(priv, desc); 4271 } 4272 4273 /* We've used all descriptors we need for this skb, however, 4274 * advance cur_tx so that it references a fresh descriptor. 4275 * ndo_start_xmit will fill this descriptor the next time it's 4276 * called and stmmac_tx_clean may clean up to this descriptor. 4277 */ 4278 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size); 4279 4280 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 4281 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 4282 __func__); 4283 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 4284 } 4285 4286 u64_stats_update_begin(&txq_stats->q_syncp); 4287 u64_stats_add(&txq_stats->q.tx_bytes, skb->len); 4288 u64_stats_inc(&txq_stats->q.tx_tso_frames); 4289 u64_stats_add(&txq_stats->q.tx_tso_nfrags, nfrags); 4290 if (set_ic) 4291 u64_stats_inc(&txq_stats->q.tx_set_ic_bit); 4292 u64_stats_update_end(&txq_stats->q_syncp); 4293 4294 if (priv->sarc_type) 4295 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 4296 4297 skb_tx_timestamp(skb); 4298 4299 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 4300 priv->hwts_tx_en)) { 4301 /* declare that device is doing timestamping */ 4302 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4303 stmmac_enable_tx_timestamp(priv, first); 4304 } 4305 4306 /* Complete the first descriptor before granting the DMA */ 4307 stmmac_prepare_tso_tx_desc(priv, first, 1, 4308 proto_hdr_len, 4309 pay_len, 4310 1, tx_q->tx_skbuff_dma[first_entry].last_segment, 4311 hdr / 4, (skb->len - proto_hdr_len)); 4312 4313 /* If context desc is used to change MSS */ 4314 if (mss_desc) { 4315 /* Make sure that first descriptor has been completely 4316 * written, including its own bit. This is because MSS is 4317 * actually before first descriptor, so we need to make 4318 * sure that MSS's own bit is the last thing written. 4319 */ 4320 dma_wmb(); 4321 stmmac_set_tx_owner(priv, mss_desc); 4322 } 4323 4324 if (netif_msg_pktdata(priv)) { 4325 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n", 4326 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 4327 tx_q->cur_tx, first, nfrags); 4328 pr_info(">>> frame to be transmitted: "); 4329 print_pkt(skb->data, skb_headlen(skb)); 4330 } 4331 4332 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 4333 4334 stmmac_flush_tx_descriptors(priv, queue); 4335 stmmac_tx_timer_arm(priv, queue); 4336 4337 return NETDEV_TX_OK; 4338 4339 dma_map_err: 4340 dev_err(priv->device, "Tx dma map failed\n"); 4341 dev_kfree_skb(skb); 4342 priv->xstats.tx_dropped++; 4343 return NETDEV_TX_OK; 4344 } 4345 4346 /** 4347 * stmmac_has_ip_ethertype() - Check if packet has IP ethertype 4348 * @skb: socket buffer to check 4349 * 4350 * Check if a packet has an ethertype that will trigger the IP header checks 4351 * and IP/TCP checksum engine of the stmmac core. 4352 * 4353 * Return: true if the ethertype can trigger the checksum engine, false 4354 * otherwise 4355 */ 4356 static bool stmmac_has_ip_ethertype(struct sk_buff *skb) 4357 { 4358 int depth = 0; 4359 __be16 proto; 4360 4361 proto = __vlan_get_protocol(skb, eth_header_parse_protocol(skb), 4362 &depth); 4363 4364 return (depth <= ETH_HLEN) && 4365 (proto == htons(ETH_P_IP) || proto == htons(ETH_P_IPV6)); 4366 } 4367 4368 /** 4369 * stmmac_xmit - Tx entry point of the driver 4370 * @skb : the socket buffer 4371 * @dev : device pointer 4372 * Description : this is the tx entry point of the driver. 4373 * It programs the chain or the ring and supports oversized frames 4374 * and SG feature. 4375 */ 4376 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) 4377 { 4378 unsigned int first_entry, tx_packets, enh_desc; 4379 struct stmmac_priv *priv = netdev_priv(dev); 4380 unsigned int nopaged_len = skb_headlen(skb); 4381 int i, csum_insertion = 0, is_jumbo = 0; 4382 u32 queue = skb_get_queue_mapping(skb); 4383 int nfrags = skb_shinfo(skb)->nr_frags; 4384 int gso = skb_shinfo(skb)->gso_type; 4385 struct stmmac_txq_stats *txq_stats; 4386 struct dma_edesc *tbs_desc = NULL; 4387 struct dma_desc *desc, *first; 4388 struct stmmac_tx_queue *tx_q; 4389 bool has_vlan, set_ic; 4390 int entry, first_tx; 4391 dma_addr_t des; 4392 4393 tx_q = &priv->dma_conf.tx_queue[queue]; 4394 txq_stats = &priv->xstats.txq_stats[queue]; 4395 first_tx = tx_q->cur_tx; 4396 4397 if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en) 4398 stmmac_disable_eee_mode(priv); 4399 4400 /* Manage oversized TCP frames for GMAC4 device */ 4401 if (skb_is_gso(skb) && priv->tso) { 4402 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) 4403 return stmmac_tso_xmit(skb, dev); 4404 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4)) 4405 return stmmac_tso_xmit(skb, dev); 4406 } 4407 4408 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) { 4409 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 4410 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 4411 queue)); 4412 /* This is a hard error, log it. */ 4413 netdev_err(priv->dev, 4414 "%s: Tx Ring full when queue awake\n", 4415 __func__); 4416 } 4417 return NETDEV_TX_BUSY; 4418 } 4419 4420 /* Check if VLAN can be inserted by HW */ 4421 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 4422 4423 entry = tx_q->cur_tx; 4424 first_entry = entry; 4425 WARN_ON(tx_q->tx_skbuff[first_entry]); 4426 4427 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); 4428 /* DWMAC IPs can be synthesized to support tx coe only for a few tx 4429 * queues. In that case, checksum offloading for those queues that don't 4430 * support tx coe needs to fallback to software checksum calculation. 4431 * 4432 * Packets that won't trigger the COE e.g. most DSA-tagged packets will 4433 * also have to be checksummed in software. 4434 */ 4435 if (csum_insertion && 4436 (priv->plat->tx_queues_cfg[queue].coe_unsupported || 4437 !stmmac_has_ip_ethertype(skb))) { 4438 if (unlikely(skb_checksum_help(skb))) 4439 goto dma_map_err; 4440 csum_insertion = !csum_insertion; 4441 } 4442 4443 if (likely(priv->extend_desc)) 4444 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4445 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4446 desc = &tx_q->dma_entx[entry].basic; 4447 else 4448 desc = tx_q->dma_tx + entry; 4449 4450 first = desc; 4451 4452 if (has_vlan) 4453 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 4454 4455 enh_desc = priv->plat->enh_desc; 4456 /* To program the descriptors according to the size of the frame */ 4457 if (enh_desc) 4458 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc); 4459 4460 if (unlikely(is_jumbo)) { 4461 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion); 4462 if (unlikely(entry < 0) && (entry != -EINVAL)) 4463 goto dma_map_err; 4464 } 4465 4466 for (i = 0; i < nfrags; i++) { 4467 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4468 int len = skb_frag_size(frag); 4469 bool last_segment = (i == (nfrags - 1)); 4470 4471 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size); 4472 WARN_ON(tx_q->tx_skbuff[entry]); 4473 4474 if (likely(priv->extend_desc)) 4475 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4476 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4477 desc = &tx_q->dma_entx[entry].basic; 4478 else 4479 desc = tx_q->dma_tx + entry; 4480 4481 des = skb_frag_dma_map(priv->device, frag, 0, len, 4482 DMA_TO_DEVICE); 4483 if (dma_mapping_error(priv->device, des)) 4484 goto dma_map_err; /* should reuse desc w/o issues */ 4485 4486 tx_q->tx_skbuff_dma[entry].buf = des; 4487 4488 stmmac_set_desc_addr(priv, desc, des); 4489 4490 tx_q->tx_skbuff_dma[entry].map_as_page = true; 4491 tx_q->tx_skbuff_dma[entry].len = len; 4492 tx_q->tx_skbuff_dma[entry].last_segment = last_segment; 4493 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; 4494 4495 /* Prepare the descriptor and set the own bit too */ 4496 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion, 4497 priv->mode, 1, last_segment, skb->len); 4498 } 4499 4500 /* Only the last descriptor gets to point to the skb. */ 4501 tx_q->tx_skbuff[entry] = skb; 4502 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; 4503 4504 /* According to the coalesce parameter the IC bit for the latest 4505 * segment is reset and the timer re-started to clean the tx status. 4506 * This approach takes care about the fragments: desc is the first 4507 * element in case of no SG. 4508 */ 4509 tx_packets = (entry + 1) - first_tx; 4510 tx_q->tx_count_frames += tx_packets; 4511 4512 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 4513 set_ic = true; 4514 else if (!priv->tx_coal_frames[queue]) 4515 set_ic = false; 4516 else if (tx_packets > priv->tx_coal_frames[queue]) 4517 set_ic = true; 4518 else if ((tx_q->tx_count_frames % 4519 priv->tx_coal_frames[queue]) < tx_packets) 4520 set_ic = true; 4521 else 4522 set_ic = false; 4523 4524 if (set_ic) { 4525 if (likely(priv->extend_desc)) 4526 desc = &tx_q->dma_etx[entry].basic; 4527 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4528 desc = &tx_q->dma_entx[entry].basic; 4529 else 4530 desc = &tx_q->dma_tx[entry]; 4531 4532 tx_q->tx_count_frames = 0; 4533 stmmac_set_tx_ic(priv, desc); 4534 } 4535 4536 /* We've used all descriptors we need for this skb, however, 4537 * advance cur_tx so that it references a fresh descriptor. 4538 * ndo_start_xmit will fill this descriptor the next time it's 4539 * called and stmmac_tx_clean may clean up to this descriptor. 4540 */ 4541 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size); 4542 tx_q->cur_tx = entry; 4543 4544 if (netif_msg_pktdata(priv)) { 4545 netdev_dbg(priv->dev, 4546 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d", 4547 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 4548 entry, first, nfrags); 4549 4550 netdev_dbg(priv->dev, ">>> frame to be transmitted: "); 4551 print_pkt(skb->data, skb->len); 4552 } 4553 4554 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 4555 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 4556 __func__); 4557 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 4558 } 4559 4560 u64_stats_update_begin(&txq_stats->q_syncp); 4561 u64_stats_add(&txq_stats->q.tx_bytes, skb->len); 4562 if (set_ic) 4563 u64_stats_inc(&txq_stats->q.tx_set_ic_bit); 4564 u64_stats_update_end(&txq_stats->q_syncp); 4565 4566 if (priv->sarc_type) 4567 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 4568 4569 skb_tx_timestamp(skb); 4570 4571 /* Ready to fill the first descriptor and set the OWN bit w/o any 4572 * problems because all the descriptors are actually ready to be 4573 * passed to the DMA engine. 4574 */ 4575 if (likely(!is_jumbo)) { 4576 bool last_segment = (nfrags == 0); 4577 4578 des = dma_map_single(priv->device, skb->data, 4579 nopaged_len, DMA_TO_DEVICE); 4580 if (dma_mapping_error(priv->device, des)) 4581 goto dma_map_err; 4582 4583 tx_q->tx_skbuff_dma[first_entry].buf = des; 4584 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; 4585 tx_q->tx_skbuff_dma[first_entry].map_as_page = false; 4586 4587 stmmac_set_desc_addr(priv, first, des); 4588 4589 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len; 4590 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment; 4591 4592 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 4593 priv->hwts_tx_en)) { 4594 /* declare that device is doing timestamping */ 4595 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4596 stmmac_enable_tx_timestamp(priv, first); 4597 } 4598 4599 /* Prepare the first descriptor setting the OWN bit too */ 4600 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len, 4601 csum_insertion, priv->mode, 0, last_segment, 4602 skb->len); 4603 } 4604 4605 if (tx_q->tbs & STMMAC_TBS_EN) { 4606 struct timespec64 ts = ns_to_timespec64(skb->tstamp); 4607 4608 tbs_desc = &tx_q->dma_entx[first_entry]; 4609 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec); 4610 } 4611 4612 stmmac_set_tx_owner(priv, first); 4613 4614 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 4615 4616 stmmac_enable_dma_transmission(priv, priv->ioaddr); 4617 4618 stmmac_flush_tx_descriptors(priv, queue); 4619 stmmac_tx_timer_arm(priv, queue); 4620 4621 return NETDEV_TX_OK; 4622 4623 dma_map_err: 4624 netdev_err(priv->dev, "Tx DMA map failed\n"); 4625 dev_kfree_skb(skb); 4626 priv->xstats.tx_dropped++; 4627 return NETDEV_TX_OK; 4628 } 4629 4630 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) 4631 { 4632 struct vlan_ethhdr *veth = skb_vlan_eth_hdr(skb); 4633 __be16 vlan_proto = veth->h_vlan_proto; 4634 u16 vlanid; 4635 4636 if ((vlan_proto == htons(ETH_P_8021Q) && 4637 dev->features & NETIF_F_HW_VLAN_CTAG_RX) || 4638 (vlan_proto == htons(ETH_P_8021AD) && 4639 dev->features & NETIF_F_HW_VLAN_STAG_RX)) { 4640 /* pop the vlan tag */ 4641 vlanid = ntohs(veth->h_vlan_TCI); 4642 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2); 4643 skb_pull(skb, VLAN_HLEN); 4644 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid); 4645 } 4646 } 4647 4648 /** 4649 * stmmac_rx_refill - refill used skb preallocated buffers 4650 * @priv: driver private structure 4651 * @queue: RX queue index 4652 * Description : this is to reallocate the skb for the reception process 4653 * that is based on zero-copy. 4654 */ 4655 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue) 4656 { 4657 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 4658 int dirty = stmmac_rx_dirty(priv, queue); 4659 unsigned int entry = rx_q->dirty_rx; 4660 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 4661 4662 if (priv->dma_cap.host_dma_width <= 32) 4663 gfp |= GFP_DMA32; 4664 4665 while (dirty-- > 0) { 4666 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 4667 struct dma_desc *p; 4668 bool use_rx_wd; 4669 4670 if (priv->extend_desc) 4671 p = (struct dma_desc *)(rx_q->dma_erx + entry); 4672 else 4673 p = rx_q->dma_rx + entry; 4674 4675 if (!buf->page) { 4676 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp); 4677 if (!buf->page) 4678 break; 4679 } 4680 4681 if (priv->sph && !buf->sec_page) { 4682 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp); 4683 if (!buf->sec_page) 4684 break; 4685 4686 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 4687 } 4688 4689 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; 4690 4691 stmmac_set_desc_addr(priv, p, buf->addr); 4692 if (priv->sph) 4693 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); 4694 else 4695 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); 4696 stmmac_refill_desc3(priv, rx_q, p); 4697 4698 rx_q->rx_count_frames++; 4699 rx_q->rx_count_frames += priv->rx_coal_frames[queue]; 4700 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) 4701 rx_q->rx_count_frames = 0; 4702 4703 use_rx_wd = !priv->rx_coal_frames[queue]; 4704 use_rx_wd |= rx_q->rx_count_frames > 0; 4705 if (!priv->use_riwt) 4706 use_rx_wd = false; 4707 4708 dma_wmb(); 4709 stmmac_set_rx_owner(priv, p, use_rx_wd); 4710 4711 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size); 4712 } 4713 rx_q->dirty_rx = entry; 4714 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 4715 (rx_q->dirty_rx * sizeof(struct dma_desc)); 4716 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 4717 } 4718 4719 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv, 4720 struct dma_desc *p, 4721 int status, unsigned int len) 4722 { 4723 unsigned int plen = 0, hlen = 0; 4724 int coe = priv->hw->rx_csum; 4725 4726 /* Not first descriptor, buffer is always zero */ 4727 if (priv->sph && len) 4728 return 0; 4729 4730 /* First descriptor, get split header length */ 4731 stmmac_get_rx_header_len(priv, p, &hlen); 4732 if (priv->sph && hlen) { 4733 priv->xstats.rx_split_hdr_pkt_n++; 4734 return hlen; 4735 } 4736 4737 /* First descriptor, not last descriptor and not split header */ 4738 if (status & rx_not_ls) 4739 return priv->dma_conf.dma_buf_sz; 4740 4741 plen = stmmac_get_rx_frame_len(priv, p, coe); 4742 4743 /* First descriptor and last descriptor and not split header */ 4744 return min_t(unsigned int, priv->dma_conf.dma_buf_sz, plen); 4745 } 4746 4747 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv, 4748 struct dma_desc *p, 4749 int status, unsigned int len) 4750 { 4751 int coe = priv->hw->rx_csum; 4752 unsigned int plen = 0; 4753 4754 /* Not split header, buffer is not available */ 4755 if (!priv->sph) 4756 return 0; 4757 4758 /* Not last descriptor */ 4759 if (status & rx_not_ls) 4760 return priv->dma_conf.dma_buf_sz; 4761 4762 plen = stmmac_get_rx_frame_len(priv, p, coe); 4763 4764 /* Last descriptor */ 4765 return plen - len; 4766 } 4767 4768 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue, 4769 struct xdp_frame *xdpf, bool dma_map) 4770 { 4771 struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[queue]; 4772 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 4773 unsigned int entry = tx_q->cur_tx; 4774 struct dma_desc *tx_desc; 4775 dma_addr_t dma_addr; 4776 bool set_ic; 4777 4778 if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv)) 4779 return STMMAC_XDP_CONSUMED; 4780 4781 if (likely(priv->extend_desc)) 4782 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4783 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4784 tx_desc = &tx_q->dma_entx[entry].basic; 4785 else 4786 tx_desc = tx_q->dma_tx + entry; 4787 4788 if (dma_map) { 4789 dma_addr = dma_map_single(priv->device, xdpf->data, 4790 xdpf->len, DMA_TO_DEVICE); 4791 if (dma_mapping_error(priv->device, dma_addr)) 4792 return STMMAC_XDP_CONSUMED; 4793 4794 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO; 4795 } else { 4796 struct page *page = virt_to_page(xdpf->data); 4797 4798 dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) + 4799 xdpf->headroom; 4800 dma_sync_single_for_device(priv->device, dma_addr, 4801 xdpf->len, DMA_BIDIRECTIONAL); 4802 4803 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX; 4804 } 4805 4806 tx_q->tx_skbuff_dma[entry].buf = dma_addr; 4807 tx_q->tx_skbuff_dma[entry].map_as_page = false; 4808 tx_q->tx_skbuff_dma[entry].len = xdpf->len; 4809 tx_q->tx_skbuff_dma[entry].last_segment = true; 4810 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 4811 4812 tx_q->xdpf[entry] = xdpf; 4813 4814 stmmac_set_desc_addr(priv, tx_desc, dma_addr); 4815 4816 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len, 4817 true, priv->mode, true, true, 4818 xdpf->len); 4819 4820 tx_q->tx_count_frames++; 4821 4822 if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) 4823 set_ic = true; 4824 else 4825 set_ic = false; 4826 4827 if (set_ic) { 4828 tx_q->tx_count_frames = 0; 4829 stmmac_set_tx_ic(priv, tx_desc); 4830 u64_stats_update_begin(&txq_stats->q_syncp); 4831 u64_stats_inc(&txq_stats->q.tx_set_ic_bit); 4832 u64_stats_update_end(&txq_stats->q_syncp); 4833 } 4834 4835 stmmac_enable_dma_transmission(priv, priv->ioaddr); 4836 4837 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size); 4838 tx_q->cur_tx = entry; 4839 4840 return STMMAC_XDP_TX; 4841 } 4842 4843 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv, 4844 int cpu) 4845 { 4846 int index = cpu; 4847 4848 if (unlikely(index < 0)) 4849 index = 0; 4850 4851 while (index >= priv->plat->tx_queues_to_use) 4852 index -= priv->plat->tx_queues_to_use; 4853 4854 return index; 4855 } 4856 4857 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv, 4858 struct xdp_buff *xdp) 4859 { 4860 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 4861 int cpu = smp_processor_id(); 4862 struct netdev_queue *nq; 4863 int queue; 4864 int res; 4865 4866 if (unlikely(!xdpf)) 4867 return STMMAC_XDP_CONSUMED; 4868 4869 queue = stmmac_xdp_get_tx_queue(priv, cpu); 4870 nq = netdev_get_tx_queue(priv->dev, queue); 4871 4872 __netif_tx_lock(nq, cpu); 4873 /* Avoids TX time-out as we are sharing with slow path */ 4874 txq_trans_cond_update(nq); 4875 4876 res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false); 4877 if (res == STMMAC_XDP_TX) 4878 stmmac_flush_tx_descriptors(priv, queue); 4879 4880 __netif_tx_unlock(nq); 4881 4882 return res; 4883 } 4884 4885 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv, 4886 struct bpf_prog *prog, 4887 struct xdp_buff *xdp) 4888 { 4889 u32 act; 4890 int res; 4891 4892 act = bpf_prog_run_xdp(prog, xdp); 4893 switch (act) { 4894 case XDP_PASS: 4895 res = STMMAC_XDP_PASS; 4896 break; 4897 case XDP_TX: 4898 res = stmmac_xdp_xmit_back(priv, xdp); 4899 break; 4900 case XDP_REDIRECT: 4901 if (xdp_do_redirect(priv->dev, xdp, prog) < 0) 4902 res = STMMAC_XDP_CONSUMED; 4903 else 4904 res = STMMAC_XDP_REDIRECT; 4905 break; 4906 default: 4907 bpf_warn_invalid_xdp_action(priv->dev, prog, act); 4908 fallthrough; 4909 case XDP_ABORTED: 4910 trace_xdp_exception(priv->dev, prog, act); 4911 fallthrough; 4912 case XDP_DROP: 4913 res = STMMAC_XDP_CONSUMED; 4914 break; 4915 } 4916 4917 return res; 4918 } 4919 4920 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv, 4921 struct xdp_buff *xdp) 4922 { 4923 struct bpf_prog *prog; 4924 int res; 4925 4926 prog = READ_ONCE(priv->xdp_prog); 4927 if (!prog) { 4928 res = STMMAC_XDP_PASS; 4929 goto out; 4930 } 4931 4932 res = __stmmac_xdp_run_prog(priv, prog, xdp); 4933 out: 4934 return ERR_PTR(-res); 4935 } 4936 4937 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv, 4938 int xdp_status) 4939 { 4940 int cpu = smp_processor_id(); 4941 int queue; 4942 4943 queue = stmmac_xdp_get_tx_queue(priv, cpu); 4944 4945 if (xdp_status & STMMAC_XDP_TX) 4946 stmmac_tx_timer_arm(priv, queue); 4947 4948 if (xdp_status & STMMAC_XDP_REDIRECT) 4949 xdp_do_flush(); 4950 } 4951 4952 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch, 4953 struct xdp_buff *xdp) 4954 { 4955 unsigned int metasize = xdp->data - xdp->data_meta; 4956 unsigned int datasize = xdp->data_end - xdp->data; 4957 struct sk_buff *skb; 4958 4959 skb = __napi_alloc_skb(&ch->rxtx_napi, 4960 xdp->data_end - xdp->data_hard_start, 4961 GFP_ATOMIC | __GFP_NOWARN); 4962 if (unlikely(!skb)) 4963 return NULL; 4964 4965 skb_reserve(skb, xdp->data - xdp->data_hard_start); 4966 memcpy(__skb_put(skb, datasize), xdp->data, datasize); 4967 if (metasize) 4968 skb_metadata_set(skb, metasize); 4969 4970 return skb; 4971 } 4972 4973 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue, 4974 struct dma_desc *p, struct dma_desc *np, 4975 struct xdp_buff *xdp) 4976 { 4977 struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[queue]; 4978 struct stmmac_channel *ch = &priv->channel[queue]; 4979 unsigned int len = xdp->data_end - xdp->data; 4980 enum pkt_hash_types hash_type; 4981 int coe = priv->hw->rx_csum; 4982 struct sk_buff *skb; 4983 u32 hash; 4984 4985 skb = stmmac_construct_skb_zc(ch, xdp); 4986 if (!skb) { 4987 priv->xstats.rx_dropped++; 4988 return; 4989 } 4990 4991 stmmac_get_rx_hwtstamp(priv, p, np, skb); 4992 stmmac_rx_vlan(priv->dev, skb); 4993 skb->protocol = eth_type_trans(skb, priv->dev); 4994 4995 if (unlikely(!coe) || !stmmac_has_ip_ethertype(skb)) 4996 skb_checksum_none_assert(skb); 4997 else 4998 skb->ip_summed = CHECKSUM_UNNECESSARY; 4999 5000 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 5001 skb_set_hash(skb, hash, hash_type); 5002 5003 skb_record_rx_queue(skb, queue); 5004 napi_gro_receive(&ch->rxtx_napi, skb); 5005 5006 u64_stats_update_begin(&rxq_stats->napi_syncp); 5007 u64_stats_inc(&rxq_stats->napi.rx_pkt_n); 5008 u64_stats_add(&rxq_stats->napi.rx_bytes, len); 5009 u64_stats_update_end(&rxq_stats->napi_syncp); 5010 } 5011 5012 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget) 5013 { 5014 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 5015 unsigned int entry = rx_q->dirty_rx; 5016 struct dma_desc *rx_desc = NULL; 5017 bool ret = true; 5018 5019 budget = min(budget, stmmac_rx_dirty(priv, queue)); 5020 5021 while (budget-- > 0 && entry != rx_q->cur_rx) { 5022 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 5023 dma_addr_t dma_addr; 5024 bool use_rx_wd; 5025 5026 if (!buf->xdp) { 5027 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); 5028 if (!buf->xdp) { 5029 ret = false; 5030 break; 5031 } 5032 } 5033 5034 if (priv->extend_desc) 5035 rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry); 5036 else 5037 rx_desc = rx_q->dma_rx + entry; 5038 5039 dma_addr = xsk_buff_xdp_get_dma(buf->xdp); 5040 stmmac_set_desc_addr(priv, rx_desc, dma_addr); 5041 stmmac_set_desc_sec_addr(priv, rx_desc, 0, false); 5042 stmmac_refill_desc3(priv, rx_q, rx_desc); 5043 5044 rx_q->rx_count_frames++; 5045 rx_q->rx_count_frames += priv->rx_coal_frames[queue]; 5046 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) 5047 rx_q->rx_count_frames = 0; 5048 5049 use_rx_wd = !priv->rx_coal_frames[queue]; 5050 use_rx_wd |= rx_q->rx_count_frames > 0; 5051 if (!priv->use_riwt) 5052 use_rx_wd = false; 5053 5054 dma_wmb(); 5055 stmmac_set_rx_owner(priv, rx_desc, use_rx_wd); 5056 5057 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size); 5058 } 5059 5060 if (rx_desc) { 5061 rx_q->dirty_rx = entry; 5062 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 5063 (rx_q->dirty_rx * sizeof(struct dma_desc)); 5064 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 5065 } 5066 5067 return ret; 5068 } 5069 5070 static struct stmmac_xdp_buff *xsk_buff_to_stmmac_ctx(struct xdp_buff *xdp) 5071 { 5072 /* In XDP zero copy data path, xdp field in struct xdp_buff_xsk is used 5073 * to represent incoming packet, whereas cb field in the same structure 5074 * is used to store driver specific info. Thus, struct stmmac_xdp_buff 5075 * is laid on top of xdp and cb fields of struct xdp_buff_xsk. 5076 */ 5077 return (struct stmmac_xdp_buff *)xdp; 5078 } 5079 5080 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue) 5081 { 5082 struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[queue]; 5083 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 5084 unsigned int count = 0, error = 0, len = 0; 5085 int dirty = stmmac_rx_dirty(priv, queue); 5086 unsigned int next_entry = rx_q->cur_rx; 5087 u32 rx_errors = 0, rx_dropped = 0; 5088 unsigned int desc_size; 5089 struct bpf_prog *prog; 5090 bool failure = false; 5091 int xdp_status = 0; 5092 int status = 0; 5093 5094 if (netif_msg_rx_status(priv)) { 5095 void *rx_head; 5096 5097 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 5098 if (priv->extend_desc) { 5099 rx_head = (void *)rx_q->dma_erx; 5100 desc_size = sizeof(struct dma_extended_desc); 5101 } else { 5102 rx_head = (void *)rx_q->dma_rx; 5103 desc_size = sizeof(struct dma_desc); 5104 } 5105 5106 stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true, 5107 rx_q->dma_rx_phy, desc_size); 5108 } 5109 while (count < limit) { 5110 struct stmmac_rx_buffer *buf; 5111 struct stmmac_xdp_buff *ctx; 5112 unsigned int buf1_len = 0; 5113 struct dma_desc *np, *p; 5114 int entry; 5115 int res; 5116 5117 if (!count && rx_q->state_saved) { 5118 error = rx_q->state.error; 5119 len = rx_q->state.len; 5120 } else { 5121 rx_q->state_saved = false; 5122 error = 0; 5123 len = 0; 5124 } 5125 5126 if (count >= limit) 5127 break; 5128 5129 read_again: 5130 buf1_len = 0; 5131 entry = next_entry; 5132 buf = &rx_q->buf_pool[entry]; 5133 5134 if (dirty >= STMMAC_RX_FILL_BATCH) { 5135 failure = failure || 5136 !stmmac_rx_refill_zc(priv, queue, dirty); 5137 dirty = 0; 5138 } 5139 5140 if (priv->extend_desc) 5141 p = (struct dma_desc *)(rx_q->dma_erx + entry); 5142 else 5143 p = rx_q->dma_rx + entry; 5144 5145 /* read the status of the incoming frame */ 5146 status = stmmac_rx_status(priv, &priv->xstats, p); 5147 /* check if managed by the DMA otherwise go ahead */ 5148 if (unlikely(status & dma_own)) 5149 break; 5150 5151 /* Prefetch the next RX descriptor */ 5152 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, 5153 priv->dma_conf.dma_rx_size); 5154 next_entry = rx_q->cur_rx; 5155 5156 if (priv->extend_desc) 5157 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 5158 else 5159 np = rx_q->dma_rx + next_entry; 5160 5161 prefetch(np); 5162 5163 /* Ensure a valid XSK buffer before proceed */ 5164 if (!buf->xdp) 5165 break; 5166 5167 if (priv->extend_desc) 5168 stmmac_rx_extended_status(priv, &priv->xstats, 5169 rx_q->dma_erx + entry); 5170 if (unlikely(status == discard_frame)) { 5171 xsk_buff_free(buf->xdp); 5172 buf->xdp = NULL; 5173 dirty++; 5174 error = 1; 5175 if (!priv->hwts_rx_en) 5176 rx_errors++; 5177 } 5178 5179 if (unlikely(error && (status & rx_not_ls))) 5180 goto read_again; 5181 if (unlikely(error)) { 5182 count++; 5183 continue; 5184 } 5185 5186 /* XSK pool expects RX frame 1:1 mapped to XSK buffer */ 5187 if (likely(status & rx_not_ls)) { 5188 xsk_buff_free(buf->xdp); 5189 buf->xdp = NULL; 5190 dirty++; 5191 count++; 5192 goto read_again; 5193 } 5194 5195 ctx = xsk_buff_to_stmmac_ctx(buf->xdp); 5196 ctx->priv = priv; 5197 ctx->desc = p; 5198 ctx->ndesc = np; 5199 5200 /* XDP ZC Frame only support primary buffers for now */ 5201 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 5202 len += buf1_len; 5203 5204 /* ACS is disabled; strip manually. */ 5205 if (likely(!(status & rx_not_ls))) { 5206 buf1_len -= ETH_FCS_LEN; 5207 len -= ETH_FCS_LEN; 5208 } 5209 5210 /* RX buffer is good and fit into a XSK pool buffer */ 5211 buf->xdp->data_end = buf->xdp->data + buf1_len; 5212 xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool); 5213 5214 prog = READ_ONCE(priv->xdp_prog); 5215 res = __stmmac_xdp_run_prog(priv, prog, buf->xdp); 5216 5217 switch (res) { 5218 case STMMAC_XDP_PASS: 5219 stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp); 5220 xsk_buff_free(buf->xdp); 5221 break; 5222 case STMMAC_XDP_CONSUMED: 5223 xsk_buff_free(buf->xdp); 5224 rx_dropped++; 5225 break; 5226 case STMMAC_XDP_TX: 5227 case STMMAC_XDP_REDIRECT: 5228 xdp_status |= res; 5229 break; 5230 } 5231 5232 buf->xdp = NULL; 5233 dirty++; 5234 count++; 5235 } 5236 5237 if (status & rx_not_ls) { 5238 rx_q->state_saved = true; 5239 rx_q->state.error = error; 5240 rx_q->state.len = len; 5241 } 5242 5243 stmmac_finalize_xdp_rx(priv, xdp_status); 5244 5245 u64_stats_update_begin(&rxq_stats->napi_syncp); 5246 u64_stats_add(&rxq_stats->napi.rx_pkt_n, count); 5247 u64_stats_update_end(&rxq_stats->napi_syncp); 5248 5249 priv->xstats.rx_dropped += rx_dropped; 5250 priv->xstats.rx_errors += rx_errors; 5251 5252 if (xsk_uses_need_wakeup(rx_q->xsk_pool)) { 5253 if (failure || stmmac_rx_dirty(priv, queue) > 0) 5254 xsk_set_rx_need_wakeup(rx_q->xsk_pool); 5255 else 5256 xsk_clear_rx_need_wakeup(rx_q->xsk_pool); 5257 5258 return (int)count; 5259 } 5260 5261 return failure ? limit : (int)count; 5262 } 5263 5264 /** 5265 * stmmac_rx - manage the receive process 5266 * @priv: driver private structure 5267 * @limit: napi bugget 5268 * @queue: RX queue index. 5269 * Description : this the function called by the napi poll method. 5270 * It gets all the frames inside the ring. 5271 */ 5272 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue) 5273 { 5274 u32 rx_errors = 0, rx_dropped = 0, rx_bytes = 0, rx_packets = 0; 5275 struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[queue]; 5276 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 5277 struct stmmac_channel *ch = &priv->channel[queue]; 5278 unsigned int count = 0, error = 0, len = 0; 5279 int status = 0, coe = priv->hw->rx_csum; 5280 unsigned int next_entry = rx_q->cur_rx; 5281 enum dma_data_direction dma_dir; 5282 unsigned int desc_size; 5283 struct sk_buff *skb = NULL; 5284 struct stmmac_xdp_buff ctx; 5285 int xdp_status = 0; 5286 int buf_sz; 5287 5288 dma_dir = page_pool_get_dma_dir(rx_q->page_pool); 5289 buf_sz = DIV_ROUND_UP(priv->dma_conf.dma_buf_sz, PAGE_SIZE) * PAGE_SIZE; 5290 limit = min(priv->dma_conf.dma_rx_size - 1, (unsigned int)limit); 5291 5292 if (netif_msg_rx_status(priv)) { 5293 void *rx_head; 5294 5295 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 5296 if (priv->extend_desc) { 5297 rx_head = (void *)rx_q->dma_erx; 5298 desc_size = sizeof(struct dma_extended_desc); 5299 } else { 5300 rx_head = (void *)rx_q->dma_rx; 5301 desc_size = sizeof(struct dma_desc); 5302 } 5303 5304 stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true, 5305 rx_q->dma_rx_phy, desc_size); 5306 } 5307 while (count < limit) { 5308 unsigned int buf1_len = 0, buf2_len = 0; 5309 enum pkt_hash_types hash_type; 5310 struct stmmac_rx_buffer *buf; 5311 struct dma_desc *np, *p; 5312 int entry; 5313 u32 hash; 5314 5315 if (!count && rx_q->state_saved) { 5316 skb = rx_q->state.skb; 5317 error = rx_q->state.error; 5318 len = rx_q->state.len; 5319 } else { 5320 rx_q->state_saved = false; 5321 skb = NULL; 5322 error = 0; 5323 len = 0; 5324 } 5325 5326 read_again: 5327 if (count >= limit) 5328 break; 5329 5330 buf1_len = 0; 5331 buf2_len = 0; 5332 entry = next_entry; 5333 buf = &rx_q->buf_pool[entry]; 5334 5335 if (priv->extend_desc) 5336 p = (struct dma_desc *)(rx_q->dma_erx + entry); 5337 else 5338 p = rx_q->dma_rx + entry; 5339 5340 /* read the status of the incoming frame */ 5341 status = stmmac_rx_status(priv, &priv->xstats, p); 5342 /* check if managed by the DMA otherwise go ahead */ 5343 if (unlikely(status & dma_own)) 5344 break; 5345 5346 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, 5347 priv->dma_conf.dma_rx_size); 5348 next_entry = rx_q->cur_rx; 5349 5350 if (priv->extend_desc) 5351 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 5352 else 5353 np = rx_q->dma_rx + next_entry; 5354 5355 prefetch(np); 5356 5357 if (priv->extend_desc) 5358 stmmac_rx_extended_status(priv, &priv->xstats, rx_q->dma_erx + entry); 5359 if (unlikely(status == discard_frame)) { 5360 page_pool_recycle_direct(rx_q->page_pool, buf->page); 5361 buf->page = NULL; 5362 error = 1; 5363 if (!priv->hwts_rx_en) 5364 rx_errors++; 5365 } 5366 5367 if (unlikely(error && (status & rx_not_ls))) 5368 goto read_again; 5369 if (unlikely(error)) { 5370 dev_kfree_skb(skb); 5371 skb = NULL; 5372 count++; 5373 continue; 5374 } 5375 5376 /* Buffer is good. Go on. */ 5377 5378 prefetch(page_address(buf->page) + buf->page_offset); 5379 if (buf->sec_page) 5380 prefetch(page_address(buf->sec_page)); 5381 5382 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 5383 len += buf1_len; 5384 buf2_len = stmmac_rx_buf2_len(priv, p, status, len); 5385 len += buf2_len; 5386 5387 /* ACS is disabled; strip manually. */ 5388 if (likely(!(status & rx_not_ls))) { 5389 if (buf2_len) { 5390 buf2_len -= ETH_FCS_LEN; 5391 len -= ETH_FCS_LEN; 5392 } else if (buf1_len) { 5393 buf1_len -= ETH_FCS_LEN; 5394 len -= ETH_FCS_LEN; 5395 } 5396 } 5397 5398 if (!skb) { 5399 unsigned int pre_len, sync_len; 5400 5401 dma_sync_single_for_cpu(priv->device, buf->addr, 5402 buf1_len, dma_dir); 5403 5404 xdp_init_buff(&ctx.xdp, buf_sz, &rx_q->xdp_rxq); 5405 xdp_prepare_buff(&ctx.xdp, page_address(buf->page), 5406 buf->page_offset, buf1_len, true); 5407 5408 pre_len = ctx.xdp.data_end - ctx.xdp.data_hard_start - 5409 buf->page_offset; 5410 5411 ctx.priv = priv; 5412 ctx.desc = p; 5413 ctx.ndesc = np; 5414 5415 skb = stmmac_xdp_run_prog(priv, &ctx.xdp); 5416 /* Due xdp_adjust_tail: DMA sync for_device 5417 * cover max len CPU touch 5418 */ 5419 sync_len = ctx.xdp.data_end - ctx.xdp.data_hard_start - 5420 buf->page_offset; 5421 sync_len = max(sync_len, pre_len); 5422 5423 /* For Not XDP_PASS verdict */ 5424 if (IS_ERR(skb)) { 5425 unsigned int xdp_res = -PTR_ERR(skb); 5426 5427 if (xdp_res & STMMAC_XDP_CONSUMED) { 5428 page_pool_put_page(rx_q->page_pool, 5429 virt_to_head_page(ctx.xdp.data), 5430 sync_len, true); 5431 buf->page = NULL; 5432 rx_dropped++; 5433 5434 /* Clear skb as it was set as 5435 * status by XDP program. 5436 */ 5437 skb = NULL; 5438 5439 if (unlikely((status & rx_not_ls))) 5440 goto read_again; 5441 5442 count++; 5443 continue; 5444 } else if (xdp_res & (STMMAC_XDP_TX | 5445 STMMAC_XDP_REDIRECT)) { 5446 xdp_status |= xdp_res; 5447 buf->page = NULL; 5448 skb = NULL; 5449 count++; 5450 continue; 5451 } 5452 } 5453 } 5454 5455 if (!skb) { 5456 /* XDP program may expand or reduce tail */ 5457 buf1_len = ctx.xdp.data_end - ctx.xdp.data; 5458 5459 skb = napi_alloc_skb(&ch->rx_napi, buf1_len); 5460 if (!skb) { 5461 rx_dropped++; 5462 count++; 5463 goto drain_data; 5464 } 5465 5466 /* XDP program may adjust header */ 5467 skb_copy_to_linear_data(skb, ctx.xdp.data, buf1_len); 5468 skb_put(skb, buf1_len); 5469 5470 /* Data payload copied into SKB, page ready for recycle */ 5471 page_pool_recycle_direct(rx_q->page_pool, buf->page); 5472 buf->page = NULL; 5473 } else if (buf1_len) { 5474 dma_sync_single_for_cpu(priv->device, buf->addr, 5475 buf1_len, dma_dir); 5476 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 5477 buf->page, buf->page_offset, buf1_len, 5478 priv->dma_conf.dma_buf_sz); 5479 5480 /* Data payload appended into SKB */ 5481 skb_mark_for_recycle(skb); 5482 buf->page = NULL; 5483 } 5484 5485 if (buf2_len) { 5486 dma_sync_single_for_cpu(priv->device, buf->sec_addr, 5487 buf2_len, dma_dir); 5488 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 5489 buf->sec_page, 0, buf2_len, 5490 priv->dma_conf.dma_buf_sz); 5491 5492 /* Data payload appended into SKB */ 5493 skb_mark_for_recycle(skb); 5494 buf->sec_page = NULL; 5495 } 5496 5497 drain_data: 5498 if (likely(status & rx_not_ls)) 5499 goto read_again; 5500 if (!skb) 5501 continue; 5502 5503 /* Got entire packet into SKB. Finish it. */ 5504 5505 stmmac_get_rx_hwtstamp(priv, p, np, skb); 5506 stmmac_rx_vlan(priv->dev, skb); 5507 skb->protocol = eth_type_trans(skb, priv->dev); 5508 5509 if (unlikely(!coe) || !stmmac_has_ip_ethertype(skb)) 5510 skb_checksum_none_assert(skb); 5511 else 5512 skb->ip_summed = CHECKSUM_UNNECESSARY; 5513 5514 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 5515 skb_set_hash(skb, hash, hash_type); 5516 5517 skb_record_rx_queue(skb, queue); 5518 napi_gro_receive(&ch->rx_napi, skb); 5519 skb = NULL; 5520 5521 rx_packets++; 5522 rx_bytes += len; 5523 count++; 5524 } 5525 5526 if (status & rx_not_ls || skb) { 5527 rx_q->state_saved = true; 5528 rx_q->state.skb = skb; 5529 rx_q->state.error = error; 5530 rx_q->state.len = len; 5531 } 5532 5533 stmmac_finalize_xdp_rx(priv, xdp_status); 5534 5535 stmmac_rx_refill(priv, queue); 5536 5537 u64_stats_update_begin(&rxq_stats->napi_syncp); 5538 u64_stats_add(&rxq_stats->napi.rx_packets, rx_packets); 5539 u64_stats_add(&rxq_stats->napi.rx_bytes, rx_bytes); 5540 u64_stats_add(&rxq_stats->napi.rx_pkt_n, count); 5541 u64_stats_update_end(&rxq_stats->napi_syncp); 5542 5543 priv->xstats.rx_dropped += rx_dropped; 5544 priv->xstats.rx_errors += rx_errors; 5545 5546 return count; 5547 } 5548 5549 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget) 5550 { 5551 struct stmmac_channel *ch = 5552 container_of(napi, struct stmmac_channel, rx_napi); 5553 struct stmmac_priv *priv = ch->priv_data; 5554 struct stmmac_rxq_stats *rxq_stats; 5555 u32 chan = ch->index; 5556 int work_done; 5557 5558 rxq_stats = &priv->xstats.rxq_stats[chan]; 5559 u64_stats_update_begin(&rxq_stats->napi_syncp); 5560 u64_stats_inc(&rxq_stats->napi.poll); 5561 u64_stats_update_end(&rxq_stats->napi_syncp); 5562 5563 work_done = stmmac_rx(priv, budget, chan); 5564 if (work_done < budget && napi_complete_done(napi, work_done)) { 5565 unsigned long flags; 5566 5567 spin_lock_irqsave(&ch->lock, flags); 5568 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 5569 spin_unlock_irqrestore(&ch->lock, flags); 5570 } 5571 5572 return work_done; 5573 } 5574 5575 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget) 5576 { 5577 struct stmmac_channel *ch = 5578 container_of(napi, struct stmmac_channel, tx_napi); 5579 struct stmmac_priv *priv = ch->priv_data; 5580 struct stmmac_txq_stats *txq_stats; 5581 u32 chan = ch->index; 5582 int work_done; 5583 5584 txq_stats = &priv->xstats.txq_stats[chan]; 5585 u64_stats_update_begin(&txq_stats->napi_syncp); 5586 u64_stats_inc(&txq_stats->napi.poll); 5587 u64_stats_update_end(&txq_stats->napi_syncp); 5588 5589 work_done = stmmac_tx_clean(priv, budget, chan); 5590 work_done = min(work_done, budget); 5591 5592 if (work_done < budget && napi_complete_done(napi, work_done)) { 5593 unsigned long flags; 5594 5595 spin_lock_irqsave(&ch->lock, flags); 5596 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 5597 spin_unlock_irqrestore(&ch->lock, flags); 5598 } 5599 5600 return work_done; 5601 } 5602 5603 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget) 5604 { 5605 struct stmmac_channel *ch = 5606 container_of(napi, struct stmmac_channel, rxtx_napi); 5607 struct stmmac_priv *priv = ch->priv_data; 5608 int rx_done, tx_done, rxtx_done; 5609 struct stmmac_rxq_stats *rxq_stats; 5610 struct stmmac_txq_stats *txq_stats; 5611 u32 chan = ch->index; 5612 5613 rxq_stats = &priv->xstats.rxq_stats[chan]; 5614 u64_stats_update_begin(&rxq_stats->napi_syncp); 5615 u64_stats_inc(&rxq_stats->napi.poll); 5616 u64_stats_update_end(&rxq_stats->napi_syncp); 5617 5618 txq_stats = &priv->xstats.txq_stats[chan]; 5619 u64_stats_update_begin(&txq_stats->napi_syncp); 5620 u64_stats_inc(&txq_stats->napi.poll); 5621 u64_stats_update_end(&txq_stats->napi_syncp); 5622 5623 tx_done = stmmac_tx_clean(priv, budget, chan); 5624 tx_done = min(tx_done, budget); 5625 5626 rx_done = stmmac_rx_zc(priv, budget, chan); 5627 5628 rxtx_done = max(tx_done, rx_done); 5629 5630 /* If either TX or RX work is not complete, return budget 5631 * and keep pooling 5632 */ 5633 if (rxtx_done >= budget) 5634 return budget; 5635 5636 /* all work done, exit the polling mode */ 5637 if (napi_complete_done(napi, rxtx_done)) { 5638 unsigned long flags; 5639 5640 spin_lock_irqsave(&ch->lock, flags); 5641 /* Both RX and TX work done are compelte, 5642 * so enable both RX & TX IRQs. 5643 */ 5644 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 5645 spin_unlock_irqrestore(&ch->lock, flags); 5646 } 5647 5648 return min(rxtx_done, budget - 1); 5649 } 5650 5651 /** 5652 * stmmac_tx_timeout 5653 * @dev : Pointer to net device structure 5654 * @txqueue: the index of the hanging transmit queue 5655 * Description: this function is called when a packet transmission fails to 5656 * complete within a reasonable time. The driver will mark the error in the 5657 * netdev structure and arrange for the device to be reset to a sane state 5658 * in order to transmit a new packet. 5659 */ 5660 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue) 5661 { 5662 struct stmmac_priv *priv = netdev_priv(dev); 5663 5664 stmmac_global_err(priv); 5665 } 5666 5667 /** 5668 * stmmac_set_rx_mode - entry point for multicast addressing 5669 * @dev : pointer to the device structure 5670 * Description: 5671 * This function is a driver entry point which gets called by the kernel 5672 * whenever multicast addresses must be enabled/disabled. 5673 * Return value: 5674 * void. 5675 */ 5676 static void stmmac_set_rx_mode(struct net_device *dev) 5677 { 5678 struct stmmac_priv *priv = netdev_priv(dev); 5679 5680 stmmac_set_filter(priv, priv->hw, dev); 5681 } 5682 5683 /** 5684 * stmmac_change_mtu - entry point to change MTU size for the device. 5685 * @dev : device pointer. 5686 * @new_mtu : the new MTU size for the device. 5687 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 5688 * to drive packet transmission. Ethernet has an MTU of 1500 octets 5689 * (ETH_DATA_LEN). This value can be changed with ifconfig. 5690 * Return value: 5691 * 0 on success and an appropriate (-)ve integer as defined in errno.h 5692 * file on failure. 5693 */ 5694 static int stmmac_change_mtu(struct net_device *dev, int new_mtu) 5695 { 5696 struct stmmac_priv *priv = netdev_priv(dev); 5697 int txfifosz = priv->plat->tx_fifo_size; 5698 struct stmmac_dma_conf *dma_conf; 5699 const int mtu = new_mtu; 5700 int ret; 5701 5702 if (txfifosz == 0) 5703 txfifosz = priv->dma_cap.tx_fifo_size; 5704 5705 txfifosz /= priv->plat->tx_queues_to_use; 5706 5707 if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) { 5708 netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n"); 5709 return -EINVAL; 5710 } 5711 5712 new_mtu = STMMAC_ALIGN(new_mtu); 5713 5714 /* If condition true, FIFO is too small or MTU too large */ 5715 if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB)) 5716 return -EINVAL; 5717 5718 if (netif_running(dev)) { 5719 netdev_dbg(priv->dev, "restarting interface to change its MTU\n"); 5720 /* Try to allocate the new DMA conf with the new mtu */ 5721 dma_conf = stmmac_setup_dma_desc(priv, mtu); 5722 if (IS_ERR(dma_conf)) { 5723 netdev_err(priv->dev, "failed allocating new dma conf for new MTU %d\n", 5724 mtu); 5725 return PTR_ERR(dma_conf); 5726 } 5727 5728 stmmac_release(dev); 5729 5730 ret = __stmmac_open(dev, dma_conf); 5731 if (ret) { 5732 free_dma_desc_resources(priv, dma_conf); 5733 kfree(dma_conf); 5734 netdev_err(priv->dev, "failed reopening the interface after MTU change\n"); 5735 return ret; 5736 } 5737 5738 kfree(dma_conf); 5739 5740 stmmac_set_rx_mode(dev); 5741 } 5742 5743 dev->mtu = mtu; 5744 netdev_update_features(dev); 5745 5746 return 0; 5747 } 5748 5749 static netdev_features_t stmmac_fix_features(struct net_device *dev, 5750 netdev_features_t features) 5751 { 5752 struct stmmac_priv *priv = netdev_priv(dev); 5753 5754 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) 5755 features &= ~NETIF_F_RXCSUM; 5756 5757 if (!priv->plat->tx_coe) 5758 features &= ~NETIF_F_CSUM_MASK; 5759 5760 /* Some GMAC devices have a bugged Jumbo frame support that 5761 * needs to have the Tx COE disabled for oversized frames 5762 * (due to limited buffer sizes). In this case we disable 5763 * the TX csum insertion in the TDES and not use SF. 5764 */ 5765 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) 5766 features &= ~NETIF_F_CSUM_MASK; 5767 5768 /* Disable tso if asked by ethtool */ 5769 if ((priv->plat->flags & STMMAC_FLAG_TSO_EN) && (priv->dma_cap.tsoen)) { 5770 if (features & NETIF_F_TSO) 5771 priv->tso = true; 5772 else 5773 priv->tso = false; 5774 } 5775 5776 return features; 5777 } 5778 5779 static int stmmac_set_features(struct net_device *netdev, 5780 netdev_features_t features) 5781 { 5782 struct stmmac_priv *priv = netdev_priv(netdev); 5783 5784 /* Keep the COE Type in case of csum is supporting */ 5785 if (features & NETIF_F_RXCSUM) 5786 priv->hw->rx_csum = priv->plat->rx_coe; 5787 else 5788 priv->hw->rx_csum = 0; 5789 /* No check needed because rx_coe has been set before and it will be 5790 * fixed in case of issue. 5791 */ 5792 stmmac_rx_ipc(priv, priv->hw); 5793 5794 if (priv->sph_cap) { 5795 bool sph_en = (priv->hw->rx_csum > 0) && priv->sph; 5796 u32 chan; 5797 5798 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++) 5799 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 5800 } 5801 5802 return 0; 5803 } 5804 5805 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status) 5806 { 5807 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 5808 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 5809 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 5810 bool *hs_enable = &fpe_cfg->hs_enable; 5811 5812 if (status == FPE_EVENT_UNKNOWN || !*hs_enable) 5813 return; 5814 5815 /* If LP has sent verify mPacket, LP is FPE capable */ 5816 if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) { 5817 if (*lp_state < FPE_STATE_CAPABLE) 5818 *lp_state = FPE_STATE_CAPABLE; 5819 5820 /* If user has requested FPE enable, quickly response */ 5821 if (*hs_enable) 5822 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 5823 fpe_cfg, 5824 MPACKET_RESPONSE); 5825 } 5826 5827 /* If Local has sent verify mPacket, Local is FPE capable */ 5828 if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) { 5829 if (*lo_state < FPE_STATE_CAPABLE) 5830 *lo_state = FPE_STATE_CAPABLE; 5831 } 5832 5833 /* If LP has sent response mPacket, LP is entering FPE ON */ 5834 if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP) 5835 *lp_state = FPE_STATE_ENTERING_ON; 5836 5837 /* If Local has sent response mPacket, Local is entering FPE ON */ 5838 if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP) 5839 *lo_state = FPE_STATE_ENTERING_ON; 5840 5841 if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) && 5842 !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) && 5843 priv->fpe_wq) { 5844 queue_work(priv->fpe_wq, &priv->fpe_task); 5845 } 5846 } 5847 5848 static void stmmac_common_interrupt(struct stmmac_priv *priv) 5849 { 5850 u32 rx_cnt = priv->plat->rx_queues_to_use; 5851 u32 tx_cnt = priv->plat->tx_queues_to_use; 5852 u32 queues_count; 5853 u32 queue; 5854 bool xmac; 5855 5856 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 5857 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt; 5858 5859 if (priv->irq_wake) 5860 pm_wakeup_event(priv->device, 0); 5861 5862 if (priv->dma_cap.estsel) 5863 stmmac_est_irq_status(priv, priv->ioaddr, priv->dev, 5864 &priv->xstats, tx_cnt); 5865 5866 if (priv->dma_cap.fpesel) { 5867 int status = stmmac_fpe_irq_status(priv, priv->ioaddr, 5868 priv->dev); 5869 5870 stmmac_fpe_event_status(priv, status); 5871 } 5872 5873 /* To handle GMAC own interrupts */ 5874 if ((priv->plat->has_gmac) || xmac) { 5875 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats); 5876 5877 if (unlikely(status)) { 5878 /* For LPI we need to save the tx status */ 5879 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) 5880 priv->tx_path_in_lpi_mode = true; 5881 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) 5882 priv->tx_path_in_lpi_mode = false; 5883 } 5884 5885 for (queue = 0; queue < queues_count; queue++) { 5886 status = stmmac_host_mtl_irq_status(priv, priv->hw, 5887 queue); 5888 } 5889 5890 /* PCS link status */ 5891 if (priv->hw->pcs && 5892 !(priv->plat->flags & STMMAC_FLAG_HAS_INTEGRATED_PCS)) { 5893 if (priv->xstats.pcs_link) 5894 netif_carrier_on(priv->dev); 5895 else 5896 netif_carrier_off(priv->dev); 5897 } 5898 5899 stmmac_timestamp_interrupt(priv, priv); 5900 } 5901 } 5902 5903 /** 5904 * stmmac_interrupt - main ISR 5905 * @irq: interrupt number. 5906 * @dev_id: to pass the net device pointer. 5907 * Description: this is the main driver interrupt service routine. 5908 * It can call: 5909 * o DMA service routine (to manage incoming frame reception and transmission 5910 * status) 5911 * o Core interrupts to manage: remote wake-up, management counter, LPI 5912 * interrupts. 5913 */ 5914 static irqreturn_t stmmac_interrupt(int irq, void *dev_id) 5915 { 5916 struct net_device *dev = (struct net_device *)dev_id; 5917 struct stmmac_priv *priv = netdev_priv(dev); 5918 5919 /* Check if adapter is up */ 5920 if (test_bit(STMMAC_DOWN, &priv->state)) 5921 return IRQ_HANDLED; 5922 5923 /* Check if a fatal error happened */ 5924 if (stmmac_safety_feat_interrupt(priv)) 5925 return IRQ_HANDLED; 5926 5927 /* To handle Common interrupts */ 5928 stmmac_common_interrupt(priv); 5929 5930 /* To handle DMA interrupts */ 5931 stmmac_dma_interrupt(priv); 5932 5933 return IRQ_HANDLED; 5934 } 5935 5936 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id) 5937 { 5938 struct net_device *dev = (struct net_device *)dev_id; 5939 struct stmmac_priv *priv = netdev_priv(dev); 5940 5941 /* Check if adapter is up */ 5942 if (test_bit(STMMAC_DOWN, &priv->state)) 5943 return IRQ_HANDLED; 5944 5945 /* To handle Common interrupts */ 5946 stmmac_common_interrupt(priv); 5947 5948 return IRQ_HANDLED; 5949 } 5950 5951 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id) 5952 { 5953 struct net_device *dev = (struct net_device *)dev_id; 5954 struct stmmac_priv *priv = netdev_priv(dev); 5955 5956 /* Check if adapter is up */ 5957 if (test_bit(STMMAC_DOWN, &priv->state)) 5958 return IRQ_HANDLED; 5959 5960 /* Check if a fatal error happened */ 5961 stmmac_safety_feat_interrupt(priv); 5962 5963 return IRQ_HANDLED; 5964 } 5965 5966 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data) 5967 { 5968 struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data; 5969 struct stmmac_dma_conf *dma_conf; 5970 int chan = tx_q->queue_index; 5971 struct stmmac_priv *priv; 5972 int status; 5973 5974 dma_conf = container_of(tx_q, struct stmmac_dma_conf, tx_queue[chan]); 5975 priv = container_of(dma_conf, struct stmmac_priv, dma_conf); 5976 5977 /* Check if adapter is up */ 5978 if (test_bit(STMMAC_DOWN, &priv->state)) 5979 return IRQ_HANDLED; 5980 5981 status = stmmac_napi_check(priv, chan, DMA_DIR_TX); 5982 5983 if (unlikely(status & tx_hard_error_bump_tc)) { 5984 /* Try to bump up the dma threshold on this failure */ 5985 stmmac_bump_dma_threshold(priv, chan); 5986 } else if (unlikely(status == tx_hard_error)) { 5987 stmmac_tx_err(priv, chan); 5988 } 5989 5990 return IRQ_HANDLED; 5991 } 5992 5993 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data) 5994 { 5995 struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data; 5996 struct stmmac_dma_conf *dma_conf; 5997 int chan = rx_q->queue_index; 5998 struct stmmac_priv *priv; 5999 6000 dma_conf = container_of(rx_q, struct stmmac_dma_conf, rx_queue[chan]); 6001 priv = container_of(dma_conf, struct stmmac_priv, dma_conf); 6002 6003 /* Check if adapter is up */ 6004 if (test_bit(STMMAC_DOWN, &priv->state)) 6005 return IRQ_HANDLED; 6006 6007 stmmac_napi_check(priv, chan, DMA_DIR_RX); 6008 6009 return IRQ_HANDLED; 6010 } 6011 6012 /** 6013 * stmmac_ioctl - Entry point for the Ioctl 6014 * @dev: Device pointer. 6015 * @rq: An IOCTL specefic structure, that can contain a pointer to 6016 * a proprietary structure used to pass information to the driver. 6017 * @cmd: IOCTL command 6018 * Description: 6019 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 6020 */ 6021 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 6022 { 6023 struct stmmac_priv *priv = netdev_priv (dev); 6024 int ret = -EOPNOTSUPP; 6025 6026 if (!netif_running(dev)) 6027 return -EINVAL; 6028 6029 switch (cmd) { 6030 case SIOCGMIIPHY: 6031 case SIOCGMIIREG: 6032 case SIOCSMIIREG: 6033 ret = phylink_mii_ioctl(priv->phylink, rq, cmd); 6034 break; 6035 case SIOCSHWTSTAMP: 6036 ret = stmmac_hwtstamp_set(dev, rq); 6037 break; 6038 case SIOCGHWTSTAMP: 6039 ret = stmmac_hwtstamp_get(dev, rq); 6040 break; 6041 default: 6042 break; 6043 } 6044 6045 return ret; 6046 } 6047 6048 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 6049 void *cb_priv) 6050 { 6051 struct stmmac_priv *priv = cb_priv; 6052 int ret = -EOPNOTSUPP; 6053 6054 if (!tc_cls_can_offload_and_chain0(priv->dev, type_data)) 6055 return ret; 6056 6057 __stmmac_disable_all_queues(priv); 6058 6059 switch (type) { 6060 case TC_SETUP_CLSU32: 6061 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data); 6062 break; 6063 case TC_SETUP_CLSFLOWER: 6064 ret = stmmac_tc_setup_cls(priv, priv, type_data); 6065 break; 6066 default: 6067 break; 6068 } 6069 6070 stmmac_enable_all_queues(priv); 6071 return ret; 6072 } 6073 6074 static LIST_HEAD(stmmac_block_cb_list); 6075 6076 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type, 6077 void *type_data) 6078 { 6079 struct stmmac_priv *priv = netdev_priv(ndev); 6080 6081 switch (type) { 6082 case TC_QUERY_CAPS: 6083 return stmmac_tc_query_caps(priv, priv, type_data); 6084 case TC_SETUP_BLOCK: 6085 return flow_block_cb_setup_simple(type_data, 6086 &stmmac_block_cb_list, 6087 stmmac_setup_tc_block_cb, 6088 priv, priv, true); 6089 case TC_SETUP_QDISC_CBS: 6090 return stmmac_tc_setup_cbs(priv, priv, type_data); 6091 case TC_SETUP_QDISC_TAPRIO: 6092 return stmmac_tc_setup_taprio(priv, priv, type_data); 6093 case TC_SETUP_QDISC_ETF: 6094 return stmmac_tc_setup_etf(priv, priv, type_data); 6095 default: 6096 return -EOPNOTSUPP; 6097 } 6098 } 6099 6100 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb, 6101 struct net_device *sb_dev) 6102 { 6103 int gso = skb_shinfo(skb)->gso_type; 6104 6105 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) { 6106 /* 6107 * There is no way to determine the number of TSO/USO 6108 * capable Queues. Let's use always the Queue 0 6109 * because if TSO/USO is supported then at least this 6110 * one will be capable. 6111 */ 6112 return 0; 6113 } 6114 6115 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; 6116 } 6117 6118 static int stmmac_set_mac_address(struct net_device *ndev, void *addr) 6119 { 6120 struct stmmac_priv *priv = netdev_priv(ndev); 6121 int ret = 0; 6122 6123 ret = pm_runtime_resume_and_get(priv->device); 6124 if (ret < 0) 6125 return ret; 6126 6127 ret = eth_mac_addr(ndev, addr); 6128 if (ret) 6129 goto set_mac_error; 6130 6131 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0); 6132 6133 set_mac_error: 6134 pm_runtime_put(priv->device); 6135 6136 return ret; 6137 } 6138 6139 #ifdef CONFIG_DEBUG_FS 6140 static struct dentry *stmmac_fs_dir; 6141 6142 static void sysfs_display_ring(void *head, int size, int extend_desc, 6143 struct seq_file *seq, dma_addr_t dma_phy_addr) 6144 { 6145 int i; 6146 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 6147 struct dma_desc *p = (struct dma_desc *)head; 6148 dma_addr_t dma_addr; 6149 6150 for (i = 0; i < size; i++) { 6151 if (extend_desc) { 6152 dma_addr = dma_phy_addr + i * sizeof(*ep); 6153 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", 6154 i, &dma_addr, 6155 le32_to_cpu(ep->basic.des0), 6156 le32_to_cpu(ep->basic.des1), 6157 le32_to_cpu(ep->basic.des2), 6158 le32_to_cpu(ep->basic.des3)); 6159 ep++; 6160 } else { 6161 dma_addr = dma_phy_addr + i * sizeof(*p); 6162 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", 6163 i, &dma_addr, 6164 le32_to_cpu(p->des0), le32_to_cpu(p->des1), 6165 le32_to_cpu(p->des2), le32_to_cpu(p->des3)); 6166 p++; 6167 } 6168 seq_printf(seq, "\n"); 6169 } 6170 } 6171 6172 static int stmmac_rings_status_show(struct seq_file *seq, void *v) 6173 { 6174 struct net_device *dev = seq->private; 6175 struct stmmac_priv *priv = netdev_priv(dev); 6176 u32 rx_count = priv->plat->rx_queues_to_use; 6177 u32 tx_count = priv->plat->tx_queues_to_use; 6178 u32 queue; 6179 6180 if ((dev->flags & IFF_UP) == 0) 6181 return 0; 6182 6183 for (queue = 0; queue < rx_count; queue++) { 6184 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 6185 6186 seq_printf(seq, "RX Queue %d:\n", queue); 6187 6188 if (priv->extend_desc) { 6189 seq_printf(seq, "Extended descriptor ring:\n"); 6190 sysfs_display_ring((void *)rx_q->dma_erx, 6191 priv->dma_conf.dma_rx_size, 1, seq, rx_q->dma_rx_phy); 6192 } else { 6193 seq_printf(seq, "Descriptor ring:\n"); 6194 sysfs_display_ring((void *)rx_q->dma_rx, 6195 priv->dma_conf.dma_rx_size, 0, seq, rx_q->dma_rx_phy); 6196 } 6197 } 6198 6199 for (queue = 0; queue < tx_count; queue++) { 6200 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 6201 6202 seq_printf(seq, "TX Queue %d:\n", queue); 6203 6204 if (priv->extend_desc) { 6205 seq_printf(seq, "Extended descriptor ring:\n"); 6206 sysfs_display_ring((void *)tx_q->dma_etx, 6207 priv->dma_conf.dma_tx_size, 1, seq, tx_q->dma_tx_phy); 6208 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) { 6209 seq_printf(seq, "Descriptor ring:\n"); 6210 sysfs_display_ring((void *)tx_q->dma_tx, 6211 priv->dma_conf.dma_tx_size, 0, seq, tx_q->dma_tx_phy); 6212 } 6213 } 6214 6215 return 0; 6216 } 6217 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status); 6218 6219 static int stmmac_dma_cap_show(struct seq_file *seq, void *v) 6220 { 6221 static const char * const dwxgmac_timestamp_source[] = { 6222 "None", 6223 "Internal", 6224 "External", 6225 "Both", 6226 }; 6227 static const char * const dwxgmac_safety_feature_desc[] = { 6228 "No", 6229 "All Safety Features with ECC and Parity", 6230 "All Safety Features without ECC or Parity", 6231 "All Safety Features with Parity Only", 6232 "ECC Only", 6233 "UNDEFINED", 6234 "UNDEFINED", 6235 "UNDEFINED", 6236 }; 6237 struct net_device *dev = seq->private; 6238 struct stmmac_priv *priv = netdev_priv(dev); 6239 6240 if (!priv->hw_cap_support) { 6241 seq_printf(seq, "DMA HW features not supported\n"); 6242 return 0; 6243 } 6244 6245 seq_printf(seq, "==============================\n"); 6246 seq_printf(seq, "\tDMA HW features\n"); 6247 seq_printf(seq, "==============================\n"); 6248 6249 seq_printf(seq, "\t10/100 Mbps: %s\n", 6250 (priv->dma_cap.mbps_10_100) ? "Y" : "N"); 6251 seq_printf(seq, "\t1000 Mbps: %s\n", 6252 (priv->dma_cap.mbps_1000) ? "Y" : "N"); 6253 seq_printf(seq, "\tHalf duplex: %s\n", 6254 (priv->dma_cap.half_duplex) ? "Y" : "N"); 6255 if (priv->plat->has_xgmac) { 6256 seq_printf(seq, 6257 "\tNumber of Additional MAC address registers: %d\n", 6258 priv->dma_cap.multi_addr); 6259 } else { 6260 seq_printf(seq, "\tHash Filter: %s\n", 6261 (priv->dma_cap.hash_filter) ? "Y" : "N"); 6262 seq_printf(seq, "\tMultiple MAC address registers: %s\n", 6263 (priv->dma_cap.multi_addr) ? "Y" : "N"); 6264 } 6265 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n", 6266 (priv->dma_cap.pcs) ? "Y" : "N"); 6267 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", 6268 (priv->dma_cap.sma_mdio) ? "Y" : "N"); 6269 seq_printf(seq, "\tPMT Remote wake up: %s\n", 6270 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); 6271 seq_printf(seq, "\tPMT Magic Frame: %s\n", 6272 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); 6273 seq_printf(seq, "\tRMON module: %s\n", 6274 (priv->dma_cap.rmon) ? "Y" : "N"); 6275 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", 6276 (priv->dma_cap.time_stamp) ? "Y" : "N"); 6277 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n", 6278 (priv->dma_cap.atime_stamp) ? "Y" : "N"); 6279 if (priv->plat->has_xgmac) 6280 seq_printf(seq, "\tTimestamp System Time Source: %s\n", 6281 dwxgmac_timestamp_source[priv->dma_cap.tssrc]); 6282 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n", 6283 (priv->dma_cap.eee) ? "Y" : "N"); 6284 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); 6285 seq_printf(seq, "\tChecksum Offload in TX: %s\n", 6286 (priv->dma_cap.tx_coe) ? "Y" : "N"); 6287 if (priv->synopsys_id >= DWMAC_CORE_4_00 || 6288 priv->plat->has_xgmac) { 6289 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n", 6290 (priv->dma_cap.rx_coe) ? "Y" : "N"); 6291 } else { 6292 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", 6293 (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); 6294 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", 6295 (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); 6296 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", 6297 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); 6298 } 6299 seq_printf(seq, "\tNumber of Additional RX channel: %d\n", 6300 priv->dma_cap.number_rx_channel); 6301 seq_printf(seq, "\tNumber of Additional TX channel: %d\n", 6302 priv->dma_cap.number_tx_channel); 6303 seq_printf(seq, "\tNumber of Additional RX queues: %d\n", 6304 priv->dma_cap.number_rx_queues); 6305 seq_printf(seq, "\tNumber of Additional TX queues: %d\n", 6306 priv->dma_cap.number_tx_queues); 6307 seq_printf(seq, "\tEnhanced descriptors: %s\n", 6308 (priv->dma_cap.enh_desc) ? "Y" : "N"); 6309 seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size); 6310 seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size); 6311 seq_printf(seq, "\tHash Table Size: %lu\n", priv->dma_cap.hash_tb_sz ? 6312 (BIT(priv->dma_cap.hash_tb_sz) << 5) : 0); 6313 seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N"); 6314 seq_printf(seq, "\tNumber of PPS Outputs: %d\n", 6315 priv->dma_cap.pps_out_num); 6316 seq_printf(seq, "\tSafety Features: %s\n", 6317 dwxgmac_safety_feature_desc[priv->dma_cap.asp]); 6318 seq_printf(seq, "\tFlexible RX Parser: %s\n", 6319 priv->dma_cap.frpsel ? "Y" : "N"); 6320 seq_printf(seq, "\tEnhanced Addressing: %d\n", 6321 priv->dma_cap.host_dma_width); 6322 seq_printf(seq, "\tReceive Side Scaling: %s\n", 6323 priv->dma_cap.rssen ? "Y" : "N"); 6324 seq_printf(seq, "\tVLAN Hash Filtering: %s\n", 6325 priv->dma_cap.vlhash ? "Y" : "N"); 6326 seq_printf(seq, "\tSplit Header: %s\n", 6327 priv->dma_cap.sphen ? "Y" : "N"); 6328 seq_printf(seq, "\tVLAN TX Insertion: %s\n", 6329 priv->dma_cap.vlins ? "Y" : "N"); 6330 seq_printf(seq, "\tDouble VLAN: %s\n", 6331 priv->dma_cap.dvlan ? "Y" : "N"); 6332 seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n", 6333 priv->dma_cap.l3l4fnum); 6334 seq_printf(seq, "\tARP Offloading: %s\n", 6335 priv->dma_cap.arpoffsel ? "Y" : "N"); 6336 seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n", 6337 priv->dma_cap.estsel ? "Y" : "N"); 6338 seq_printf(seq, "\tFrame Preemption (FPE): %s\n", 6339 priv->dma_cap.fpesel ? "Y" : "N"); 6340 seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n", 6341 priv->dma_cap.tbssel ? "Y" : "N"); 6342 seq_printf(seq, "\tNumber of DMA Channels Enabled for TBS: %d\n", 6343 priv->dma_cap.tbs_ch_num); 6344 seq_printf(seq, "\tPer-Stream Filtering: %s\n", 6345 priv->dma_cap.sgfsel ? "Y" : "N"); 6346 seq_printf(seq, "\tTX Timestamp FIFO Depth: %lu\n", 6347 BIT(priv->dma_cap.ttsfd) >> 1); 6348 seq_printf(seq, "\tNumber of Traffic Classes: %d\n", 6349 priv->dma_cap.numtc); 6350 seq_printf(seq, "\tDCB Feature: %s\n", 6351 priv->dma_cap.dcben ? "Y" : "N"); 6352 seq_printf(seq, "\tIEEE 1588 High Word Register: %s\n", 6353 priv->dma_cap.advthword ? "Y" : "N"); 6354 seq_printf(seq, "\tPTP Offload: %s\n", 6355 priv->dma_cap.ptoen ? "Y" : "N"); 6356 seq_printf(seq, "\tOne-Step Timestamping: %s\n", 6357 priv->dma_cap.osten ? "Y" : "N"); 6358 seq_printf(seq, "\tPriority-Based Flow Control: %s\n", 6359 priv->dma_cap.pfcen ? "Y" : "N"); 6360 seq_printf(seq, "\tNumber of Flexible RX Parser Instructions: %lu\n", 6361 BIT(priv->dma_cap.frpes) << 6); 6362 seq_printf(seq, "\tNumber of Flexible RX Parser Parsable Bytes: %lu\n", 6363 BIT(priv->dma_cap.frpbs) << 6); 6364 seq_printf(seq, "\tParallel Instruction Processor Engines: %d\n", 6365 priv->dma_cap.frppipe_num); 6366 seq_printf(seq, "\tNumber of Extended VLAN Tag Filters: %lu\n", 6367 priv->dma_cap.nrvf_num ? 6368 (BIT(priv->dma_cap.nrvf_num) << 1) : 0); 6369 seq_printf(seq, "\tWidth of the Time Interval Field in GCL: %d\n", 6370 priv->dma_cap.estwid ? 4 * priv->dma_cap.estwid + 12 : 0); 6371 seq_printf(seq, "\tDepth of GCL: %lu\n", 6372 priv->dma_cap.estdep ? (BIT(priv->dma_cap.estdep) << 5) : 0); 6373 seq_printf(seq, "\tQueue/Channel-Based VLAN Tag Insertion on TX: %s\n", 6374 priv->dma_cap.cbtisel ? "Y" : "N"); 6375 seq_printf(seq, "\tNumber of Auxiliary Snapshot Inputs: %d\n", 6376 priv->dma_cap.aux_snapshot_n); 6377 seq_printf(seq, "\tOne-Step Timestamping for PTP over UDP/IP: %s\n", 6378 priv->dma_cap.pou_ost_en ? "Y" : "N"); 6379 seq_printf(seq, "\tEnhanced DMA: %s\n", 6380 priv->dma_cap.edma ? "Y" : "N"); 6381 seq_printf(seq, "\tDifferent Descriptor Cache: %s\n", 6382 priv->dma_cap.ediffc ? "Y" : "N"); 6383 seq_printf(seq, "\tVxLAN/NVGRE: %s\n", 6384 priv->dma_cap.vxn ? "Y" : "N"); 6385 seq_printf(seq, "\tDebug Memory Interface: %s\n", 6386 priv->dma_cap.dbgmem ? "Y" : "N"); 6387 seq_printf(seq, "\tNumber of Policing Counters: %lu\n", 6388 priv->dma_cap.pcsel ? BIT(priv->dma_cap.pcsel + 3) : 0); 6389 return 0; 6390 } 6391 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap); 6392 6393 /* Use network device events to rename debugfs file entries. 6394 */ 6395 static int stmmac_device_event(struct notifier_block *unused, 6396 unsigned long event, void *ptr) 6397 { 6398 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 6399 struct stmmac_priv *priv = netdev_priv(dev); 6400 6401 if (dev->netdev_ops != &stmmac_netdev_ops) 6402 goto done; 6403 6404 switch (event) { 6405 case NETDEV_CHANGENAME: 6406 if (priv->dbgfs_dir) 6407 priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir, 6408 priv->dbgfs_dir, 6409 stmmac_fs_dir, 6410 dev->name); 6411 break; 6412 } 6413 done: 6414 return NOTIFY_DONE; 6415 } 6416 6417 static struct notifier_block stmmac_notifier = { 6418 .notifier_call = stmmac_device_event, 6419 }; 6420 6421 static void stmmac_init_fs(struct net_device *dev) 6422 { 6423 struct stmmac_priv *priv = netdev_priv(dev); 6424 6425 rtnl_lock(); 6426 6427 /* Create per netdev entries */ 6428 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir); 6429 6430 /* Entry to report DMA RX/TX rings */ 6431 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev, 6432 &stmmac_rings_status_fops); 6433 6434 /* Entry to report the DMA HW features */ 6435 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev, 6436 &stmmac_dma_cap_fops); 6437 6438 rtnl_unlock(); 6439 } 6440 6441 static void stmmac_exit_fs(struct net_device *dev) 6442 { 6443 struct stmmac_priv *priv = netdev_priv(dev); 6444 6445 debugfs_remove_recursive(priv->dbgfs_dir); 6446 } 6447 #endif /* CONFIG_DEBUG_FS */ 6448 6449 static u32 stmmac_vid_crc32_le(__le16 vid_le) 6450 { 6451 unsigned char *data = (unsigned char *)&vid_le; 6452 unsigned char data_byte = 0; 6453 u32 crc = ~0x0; 6454 u32 temp = 0; 6455 int i, bits; 6456 6457 bits = get_bitmask_order(VLAN_VID_MASK); 6458 for (i = 0; i < bits; i++) { 6459 if ((i % 8) == 0) 6460 data_byte = data[i / 8]; 6461 6462 temp = ((crc & 1) ^ data_byte) & 1; 6463 crc >>= 1; 6464 data_byte >>= 1; 6465 6466 if (temp) 6467 crc ^= 0xedb88320; 6468 } 6469 6470 return crc; 6471 } 6472 6473 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double) 6474 { 6475 u32 crc, hash = 0; 6476 u16 pmatch = 0; 6477 int count = 0; 6478 u16 vid = 0; 6479 6480 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) { 6481 __le16 vid_le = cpu_to_le16(vid); 6482 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28; 6483 hash |= (1 << crc); 6484 count++; 6485 } 6486 6487 if (!priv->dma_cap.vlhash) { 6488 if (count > 2) /* VID = 0 always passes filter */ 6489 return -EOPNOTSUPP; 6490 6491 pmatch = vid; 6492 hash = 0; 6493 } 6494 6495 return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double); 6496 } 6497 6498 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) 6499 { 6500 struct stmmac_priv *priv = netdev_priv(ndev); 6501 bool is_double = false; 6502 int ret; 6503 6504 ret = pm_runtime_resume_and_get(priv->device); 6505 if (ret < 0) 6506 return ret; 6507 6508 if (be16_to_cpu(proto) == ETH_P_8021AD) 6509 is_double = true; 6510 6511 set_bit(vid, priv->active_vlans); 6512 ret = stmmac_vlan_update(priv, is_double); 6513 if (ret) { 6514 clear_bit(vid, priv->active_vlans); 6515 goto err_pm_put; 6516 } 6517 6518 if (priv->hw->num_vlan) { 6519 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 6520 if (ret) 6521 goto err_pm_put; 6522 } 6523 err_pm_put: 6524 pm_runtime_put(priv->device); 6525 6526 return ret; 6527 } 6528 6529 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) 6530 { 6531 struct stmmac_priv *priv = netdev_priv(ndev); 6532 bool is_double = false; 6533 int ret; 6534 6535 ret = pm_runtime_resume_and_get(priv->device); 6536 if (ret < 0) 6537 return ret; 6538 6539 if (be16_to_cpu(proto) == ETH_P_8021AD) 6540 is_double = true; 6541 6542 clear_bit(vid, priv->active_vlans); 6543 6544 if (priv->hw->num_vlan) { 6545 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 6546 if (ret) 6547 goto del_vlan_error; 6548 } 6549 6550 ret = stmmac_vlan_update(priv, is_double); 6551 6552 del_vlan_error: 6553 pm_runtime_put(priv->device); 6554 6555 return ret; 6556 } 6557 6558 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf) 6559 { 6560 struct stmmac_priv *priv = netdev_priv(dev); 6561 6562 switch (bpf->command) { 6563 case XDP_SETUP_PROG: 6564 return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack); 6565 case XDP_SETUP_XSK_POOL: 6566 return stmmac_xdp_setup_pool(priv, bpf->xsk.pool, 6567 bpf->xsk.queue_id); 6568 default: 6569 return -EOPNOTSUPP; 6570 } 6571 } 6572 6573 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames, 6574 struct xdp_frame **frames, u32 flags) 6575 { 6576 struct stmmac_priv *priv = netdev_priv(dev); 6577 int cpu = smp_processor_id(); 6578 struct netdev_queue *nq; 6579 int i, nxmit = 0; 6580 int queue; 6581 6582 if (unlikely(test_bit(STMMAC_DOWN, &priv->state))) 6583 return -ENETDOWN; 6584 6585 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 6586 return -EINVAL; 6587 6588 queue = stmmac_xdp_get_tx_queue(priv, cpu); 6589 nq = netdev_get_tx_queue(priv->dev, queue); 6590 6591 __netif_tx_lock(nq, cpu); 6592 /* Avoids TX time-out as we are sharing with slow path */ 6593 txq_trans_cond_update(nq); 6594 6595 for (i = 0; i < num_frames; i++) { 6596 int res; 6597 6598 res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true); 6599 if (res == STMMAC_XDP_CONSUMED) 6600 break; 6601 6602 nxmit++; 6603 } 6604 6605 if (flags & XDP_XMIT_FLUSH) { 6606 stmmac_flush_tx_descriptors(priv, queue); 6607 stmmac_tx_timer_arm(priv, queue); 6608 } 6609 6610 __netif_tx_unlock(nq); 6611 6612 return nxmit; 6613 } 6614 6615 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue) 6616 { 6617 struct stmmac_channel *ch = &priv->channel[queue]; 6618 unsigned long flags; 6619 6620 spin_lock_irqsave(&ch->lock, flags); 6621 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0); 6622 spin_unlock_irqrestore(&ch->lock, flags); 6623 6624 stmmac_stop_rx_dma(priv, queue); 6625 __free_dma_rx_desc_resources(priv, &priv->dma_conf, queue); 6626 } 6627 6628 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue) 6629 { 6630 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 6631 struct stmmac_channel *ch = &priv->channel[queue]; 6632 unsigned long flags; 6633 u32 buf_size; 6634 int ret; 6635 6636 ret = __alloc_dma_rx_desc_resources(priv, &priv->dma_conf, queue); 6637 if (ret) { 6638 netdev_err(priv->dev, "Failed to alloc RX desc.\n"); 6639 return; 6640 } 6641 6642 ret = __init_dma_rx_desc_rings(priv, &priv->dma_conf, queue, GFP_KERNEL); 6643 if (ret) { 6644 __free_dma_rx_desc_resources(priv, &priv->dma_conf, queue); 6645 netdev_err(priv->dev, "Failed to init RX desc.\n"); 6646 return; 6647 } 6648 6649 stmmac_reset_rx_queue(priv, queue); 6650 stmmac_clear_rx_descriptors(priv, &priv->dma_conf, queue); 6651 6652 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6653 rx_q->dma_rx_phy, rx_q->queue_index); 6654 6655 rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num * 6656 sizeof(struct dma_desc)); 6657 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 6658 rx_q->rx_tail_addr, rx_q->queue_index); 6659 6660 if (rx_q->xsk_pool && rx_q->buf_alloc_num) { 6661 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 6662 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6663 buf_size, 6664 rx_q->queue_index); 6665 } else { 6666 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6667 priv->dma_conf.dma_buf_sz, 6668 rx_q->queue_index); 6669 } 6670 6671 stmmac_start_rx_dma(priv, queue); 6672 6673 spin_lock_irqsave(&ch->lock, flags); 6674 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0); 6675 spin_unlock_irqrestore(&ch->lock, flags); 6676 } 6677 6678 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue) 6679 { 6680 struct stmmac_channel *ch = &priv->channel[queue]; 6681 unsigned long flags; 6682 6683 spin_lock_irqsave(&ch->lock, flags); 6684 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1); 6685 spin_unlock_irqrestore(&ch->lock, flags); 6686 6687 stmmac_stop_tx_dma(priv, queue); 6688 __free_dma_tx_desc_resources(priv, &priv->dma_conf, queue); 6689 } 6690 6691 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue) 6692 { 6693 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 6694 struct stmmac_channel *ch = &priv->channel[queue]; 6695 unsigned long flags; 6696 int ret; 6697 6698 ret = __alloc_dma_tx_desc_resources(priv, &priv->dma_conf, queue); 6699 if (ret) { 6700 netdev_err(priv->dev, "Failed to alloc TX desc.\n"); 6701 return; 6702 } 6703 6704 ret = __init_dma_tx_desc_rings(priv, &priv->dma_conf, queue); 6705 if (ret) { 6706 __free_dma_tx_desc_resources(priv, &priv->dma_conf, queue); 6707 netdev_err(priv->dev, "Failed to init TX desc.\n"); 6708 return; 6709 } 6710 6711 stmmac_reset_tx_queue(priv, queue); 6712 stmmac_clear_tx_descriptors(priv, &priv->dma_conf, queue); 6713 6714 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6715 tx_q->dma_tx_phy, tx_q->queue_index); 6716 6717 if (tx_q->tbs & STMMAC_TBS_AVAIL) 6718 stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index); 6719 6720 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 6721 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 6722 tx_q->tx_tail_addr, tx_q->queue_index); 6723 6724 stmmac_start_tx_dma(priv, queue); 6725 6726 spin_lock_irqsave(&ch->lock, flags); 6727 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1); 6728 spin_unlock_irqrestore(&ch->lock, flags); 6729 } 6730 6731 void stmmac_xdp_release(struct net_device *dev) 6732 { 6733 struct stmmac_priv *priv = netdev_priv(dev); 6734 u32 chan; 6735 6736 /* Ensure tx function is not running */ 6737 netif_tx_disable(dev); 6738 6739 /* Disable NAPI process */ 6740 stmmac_disable_all_queues(priv); 6741 6742 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 6743 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); 6744 6745 /* Free the IRQ lines */ 6746 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0); 6747 6748 /* Stop TX/RX DMA channels */ 6749 stmmac_stop_all_dma(priv); 6750 6751 /* Release and free the Rx/Tx resources */ 6752 free_dma_desc_resources(priv, &priv->dma_conf); 6753 6754 /* Disable the MAC Rx/Tx */ 6755 stmmac_mac_set(priv, priv->ioaddr, false); 6756 6757 /* set trans_start so we don't get spurious 6758 * watchdogs during reset 6759 */ 6760 netif_trans_update(dev); 6761 netif_carrier_off(dev); 6762 } 6763 6764 int stmmac_xdp_open(struct net_device *dev) 6765 { 6766 struct stmmac_priv *priv = netdev_priv(dev); 6767 u32 rx_cnt = priv->plat->rx_queues_to_use; 6768 u32 tx_cnt = priv->plat->tx_queues_to_use; 6769 u32 dma_csr_ch = max(rx_cnt, tx_cnt); 6770 struct stmmac_rx_queue *rx_q; 6771 struct stmmac_tx_queue *tx_q; 6772 u32 buf_size; 6773 bool sph_en; 6774 u32 chan; 6775 int ret; 6776 6777 ret = alloc_dma_desc_resources(priv, &priv->dma_conf); 6778 if (ret < 0) { 6779 netdev_err(dev, "%s: DMA descriptors allocation failed\n", 6780 __func__); 6781 goto dma_desc_error; 6782 } 6783 6784 ret = init_dma_desc_rings(dev, &priv->dma_conf, GFP_KERNEL); 6785 if (ret < 0) { 6786 netdev_err(dev, "%s: DMA descriptors initialization failed\n", 6787 __func__); 6788 goto init_error; 6789 } 6790 6791 stmmac_reset_queues_param(priv); 6792 6793 /* DMA CSR Channel configuration */ 6794 for (chan = 0; chan < dma_csr_ch; chan++) { 6795 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 6796 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 6797 } 6798 6799 /* Adjust Split header */ 6800 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 6801 6802 /* DMA RX Channel Configuration */ 6803 for (chan = 0; chan < rx_cnt; chan++) { 6804 rx_q = &priv->dma_conf.rx_queue[chan]; 6805 6806 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6807 rx_q->dma_rx_phy, chan); 6808 6809 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 6810 (rx_q->buf_alloc_num * 6811 sizeof(struct dma_desc)); 6812 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 6813 rx_q->rx_tail_addr, chan); 6814 6815 if (rx_q->xsk_pool && rx_q->buf_alloc_num) { 6816 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 6817 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6818 buf_size, 6819 rx_q->queue_index); 6820 } else { 6821 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6822 priv->dma_conf.dma_buf_sz, 6823 rx_q->queue_index); 6824 } 6825 6826 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 6827 } 6828 6829 /* DMA TX Channel Configuration */ 6830 for (chan = 0; chan < tx_cnt; chan++) { 6831 tx_q = &priv->dma_conf.tx_queue[chan]; 6832 6833 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6834 tx_q->dma_tx_phy, chan); 6835 6836 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 6837 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 6838 tx_q->tx_tail_addr, chan); 6839 6840 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6841 tx_q->txtimer.function = stmmac_tx_timer; 6842 } 6843 6844 /* Enable the MAC Rx/Tx */ 6845 stmmac_mac_set(priv, priv->ioaddr, true); 6846 6847 /* Start Rx & Tx DMA Channels */ 6848 stmmac_start_all_dma(priv); 6849 6850 ret = stmmac_request_irq(dev); 6851 if (ret) 6852 goto irq_error; 6853 6854 /* Enable NAPI process*/ 6855 stmmac_enable_all_queues(priv); 6856 netif_carrier_on(dev); 6857 netif_tx_start_all_queues(dev); 6858 stmmac_enable_all_dma_irq(priv); 6859 6860 return 0; 6861 6862 irq_error: 6863 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 6864 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); 6865 6866 stmmac_hw_teardown(dev); 6867 init_error: 6868 free_dma_desc_resources(priv, &priv->dma_conf); 6869 dma_desc_error: 6870 return ret; 6871 } 6872 6873 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags) 6874 { 6875 struct stmmac_priv *priv = netdev_priv(dev); 6876 struct stmmac_rx_queue *rx_q; 6877 struct stmmac_tx_queue *tx_q; 6878 struct stmmac_channel *ch; 6879 6880 if (test_bit(STMMAC_DOWN, &priv->state) || 6881 !netif_carrier_ok(priv->dev)) 6882 return -ENETDOWN; 6883 6884 if (!stmmac_xdp_is_enabled(priv)) 6885 return -EINVAL; 6886 6887 if (queue >= priv->plat->rx_queues_to_use || 6888 queue >= priv->plat->tx_queues_to_use) 6889 return -EINVAL; 6890 6891 rx_q = &priv->dma_conf.rx_queue[queue]; 6892 tx_q = &priv->dma_conf.tx_queue[queue]; 6893 ch = &priv->channel[queue]; 6894 6895 if (!rx_q->xsk_pool && !tx_q->xsk_pool) 6896 return -EINVAL; 6897 6898 if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) { 6899 /* EQoS does not have per-DMA channel SW interrupt, 6900 * so we schedule RX Napi straight-away. 6901 */ 6902 if (likely(napi_schedule_prep(&ch->rxtx_napi))) 6903 __napi_schedule(&ch->rxtx_napi); 6904 } 6905 6906 return 0; 6907 } 6908 6909 static void stmmac_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 6910 { 6911 struct stmmac_priv *priv = netdev_priv(dev); 6912 u32 tx_cnt = priv->plat->tx_queues_to_use; 6913 u32 rx_cnt = priv->plat->rx_queues_to_use; 6914 unsigned int start; 6915 int q; 6916 6917 for (q = 0; q < tx_cnt; q++) { 6918 struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[q]; 6919 u64 tx_packets; 6920 u64 tx_bytes; 6921 6922 do { 6923 start = u64_stats_fetch_begin(&txq_stats->q_syncp); 6924 tx_bytes = u64_stats_read(&txq_stats->q.tx_bytes); 6925 } while (u64_stats_fetch_retry(&txq_stats->q_syncp, start)); 6926 do { 6927 start = u64_stats_fetch_begin(&txq_stats->napi_syncp); 6928 tx_packets = u64_stats_read(&txq_stats->napi.tx_packets); 6929 } while (u64_stats_fetch_retry(&txq_stats->napi_syncp, start)); 6930 6931 stats->tx_packets += tx_packets; 6932 stats->tx_bytes += tx_bytes; 6933 } 6934 6935 for (q = 0; q < rx_cnt; q++) { 6936 struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[q]; 6937 u64 rx_packets; 6938 u64 rx_bytes; 6939 6940 do { 6941 start = u64_stats_fetch_begin(&rxq_stats->napi_syncp); 6942 rx_packets = u64_stats_read(&rxq_stats->napi.rx_packets); 6943 rx_bytes = u64_stats_read(&rxq_stats->napi.rx_bytes); 6944 } while (u64_stats_fetch_retry(&rxq_stats->napi_syncp, start)); 6945 6946 stats->rx_packets += rx_packets; 6947 stats->rx_bytes += rx_bytes; 6948 } 6949 6950 stats->rx_dropped = priv->xstats.rx_dropped; 6951 stats->rx_errors = priv->xstats.rx_errors; 6952 stats->tx_dropped = priv->xstats.tx_dropped; 6953 stats->tx_errors = priv->xstats.tx_errors; 6954 stats->tx_carrier_errors = priv->xstats.tx_losscarrier + priv->xstats.tx_carrier; 6955 stats->collisions = priv->xstats.tx_collision + priv->xstats.rx_collision; 6956 stats->rx_length_errors = priv->xstats.rx_length; 6957 stats->rx_crc_errors = priv->xstats.rx_crc_errors; 6958 stats->rx_over_errors = priv->xstats.rx_overflow_cntr; 6959 stats->rx_missed_errors = priv->xstats.rx_missed_cntr; 6960 } 6961 6962 static const struct net_device_ops stmmac_netdev_ops = { 6963 .ndo_open = stmmac_open, 6964 .ndo_start_xmit = stmmac_xmit, 6965 .ndo_stop = stmmac_release, 6966 .ndo_change_mtu = stmmac_change_mtu, 6967 .ndo_fix_features = stmmac_fix_features, 6968 .ndo_set_features = stmmac_set_features, 6969 .ndo_set_rx_mode = stmmac_set_rx_mode, 6970 .ndo_tx_timeout = stmmac_tx_timeout, 6971 .ndo_eth_ioctl = stmmac_ioctl, 6972 .ndo_get_stats64 = stmmac_get_stats64, 6973 .ndo_setup_tc = stmmac_setup_tc, 6974 .ndo_select_queue = stmmac_select_queue, 6975 .ndo_set_mac_address = stmmac_set_mac_address, 6976 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid, 6977 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid, 6978 .ndo_bpf = stmmac_bpf, 6979 .ndo_xdp_xmit = stmmac_xdp_xmit, 6980 .ndo_xsk_wakeup = stmmac_xsk_wakeup, 6981 }; 6982 6983 static void stmmac_reset_subtask(struct stmmac_priv *priv) 6984 { 6985 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state)) 6986 return; 6987 if (test_bit(STMMAC_DOWN, &priv->state)) 6988 return; 6989 6990 netdev_err(priv->dev, "Reset adapter.\n"); 6991 6992 rtnl_lock(); 6993 netif_trans_update(priv->dev); 6994 while (test_and_set_bit(STMMAC_RESETING, &priv->state)) 6995 usleep_range(1000, 2000); 6996 6997 set_bit(STMMAC_DOWN, &priv->state); 6998 dev_close(priv->dev); 6999 dev_open(priv->dev, NULL); 7000 clear_bit(STMMAC_DOWN, &priv->state); 7001 clear_bit(STMMAC_RESETING, &priv->state); 7002 rtnl_unlock(); 7003 } 7004 7005 static void stmmac_service_task(struct work_struct *work) 7006 { 7007 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 7008 service_task); 7009 7010 stmmac_reset_subtask(priv); 7011 clear_bit(STMMAC_SERVICE_SCHED, &priv->state); 7012 } 7013 7014 /** 7015 * stmmac_hw_init - Init the MAC device 7016 * @priv: driver private structure 7017 * Description: this function is to configure the MAC device according to 7018 * some platform parameters or the HW capability register. It prepares the 7019 * driver to use either ring or chain modes and to setup either enhanced or 7020 * normal descriptors. 7021 */ 7022 static int stmmac_hw_init(struct stmmac_priv *priv) 7023 { 7024 int ret; 7025 7026 /* dwmac-sun8i only work in chain mode */ 7027 if (priv->plat->flags & STMMAC_FLAG_HAS_SUN8I) 7028 chain_mode = 1; 7029 priv->chain_mode = chain_mode; 7030 7031 /* Initialize HW Interface */ 7032 ret = stmmac_hwif_init(priv); 7033 if (ret) 7034 return ret; 7035 7036 /* Get the HW capability (new GMAC newer than 3.50a) */ 7037 priv->hw_cap_support = stmmac_get_hw_features(priv); 7038 if (priv->hw_cap_support) { 7039 dev_info(priv->device, "DMA HW capability register supported\n"); 7040 7041 /* We can override some gmac/dma configuration fields: e.g. 7042 * enh_desc, tx_coe (e.g. that are passed through the 7043 * platform) with the values from the HW capability 7044 * register (if supported). 7045 */ 7046 priv->plat->enh_desc = priv->dma_cap.enh_desc; 7047 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up && 7048 !(priv->plat->flags & STMMAC_FLAG_USE_PHY_WOL); 7049 priv->hw->pmt = priv->plat->pmt; 7050 if (priv->dma_cap.hash_tb_sz) { 7051 priv->hw->multicast_filter_bins = 7052 (BIT(priv->dma_cap.hash_tb_sz) << 5); 7053 priv->hw->mcast_bits_log2 = 7054 ilog2(priv->hw->multicast_filter_bins); 7055 } 7056 7057 /* TXCOE doesn't work in thresh DMA mode */ 7058 if (priv->plat->force_thresh_dma_mode) 7059 priv->plat->tx_coe = 0; 7060 else 7061 priv->plat->tx_coe = priv->dma_cap.tx_coe; 7062 7063 /* In case of GMAC4 rx_coe is from HW cap register. */ 7064 priv->plat->rx_coe = priv->dma_cap.rx_coe; 7065 7066 if (priv->dma_cap.rx_coe_type2) 7067 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; 7068 else if (priv->dma_cap.rx_coe_type1) 7069 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; 7070 7071 } else { 7072 dev_info(priv->device, "No HW DMA feature register supported\n"); 7073 } 7074 7075 if (priv->plat->rx_coe) { 7076 priv->hw->rx_csum = priv->plat->rx_coe; 7077 dev_info(priv->device, "RX Checksum Offload Engine supported\n"); 7078 if (priv->synopsys_id < DWMAC_CORE_4_00) 7079 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum); 7080 } 7081 if (priv->plat->tx_coe) 7082 dev_info(priv->device, "TX Checksum insertion supported\n"); 7083 7084 if (priv->plat->pmt) { 7085 dev_info(priv->device, "Wake-Up On Lan supported\n"); 7086 device_set_wakeup_capable(priv->device, 1); 7087 } 7088 7089 if (priv->dma_cap.tsoen) 7090 dev_info(priv->device, "TSO supported\n"); 7091 7092 priv->hw->vlan_fail_q_en = 7093 (priv->plat->flags & STMMAC_FLAG_VLAN_FAIL_Q_EN); 7094 priv->hw->vlan_fail_q = priv->plat->vlan_fail_q; 7095 7096 /* Run HW quirks, if any */ 7097 if (priv->hwif_quirks) { 7098 ret = priv->hwif_quirks(priv); 7099 if (ret) 7100 return ret; 7101 } 7102 7103 /* Rx Watchdog is available in the COREs newer than the 3.40. 7104 * In some case, for example on bugged HW this feature 7105 * has to be disable and this can be done by passing the 7106 * riwt_off field from the platform. 7107 */ 7108 if (((priv->synopsys_id >= DWMAC_CORE_3_50) || 7109 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) { 7110 priv->use_riwt = 1; 7111 dev_info(priv->device, 7112 "Enable RX Mitigation via HW Watchdog Timer\n"); 7113 } 7114 7115 return 0; 7116 } 7117 7118 static void stmmac_napi_add(struct net_device *dev) 7119 { 7120 struct stmmac_priv *priv = netdev_priv(dev); 7121 u32 queue, maxq; 7122 7123 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 7124 7125 for (queue = 0; queue < maxq; queue++) { 7126 struct stmmac_channel *ch = &priv->channel[queue]; 7127 7128 ch->priv_data = priv; 7129 ch->index = queue; 7130 spin_lock_init(&ch->lock); 7131 7132 if (queue < priv->plat->rx_queues_to_use) { 7133 netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx); 7134 } 7135 if (queue < priv->plat->tx_queues_to_use) { 7136 netif_napi_add_tx(dev, &ch->tx_napi, 7137 stmmac_napi_poll_tx); 7138 } 7139 if (queue < priv->plat->rx_queues_to_use && 7140 queue < priv->plat->tx_queues_to_use) { 7141 netif_napi_add(dev, &ch->rxtx_napi, 7142 stmmac_napi_poll_rxtx); 7143 } 7144 } 7145 } 7146 7147 static void stmmac_napi_del(struct net_device *dev) 7148 { 7149 struct stmmac_priv *priv = netdev_priv(dev); 7150 u32 queue, maxq; 7151 7152 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 7153 7154 for (queue = 0; queue < maxq; queue++) { 7155 struct stmmac_channel *ch = &priv->channel[queue]; 7156 7157 if (queue < priv->plat->rx_queues_to_use) 7158 netif_napi_del(&ch->rx_napi); 7159 if (queue < priv->plat->tx_queues_to_use) 7160 netif_napi_del(&ch->tx_napi); 7161 if (queue < priv->plat->rx_queues_to_use && 7162 queue < priv->plat->tx_queues_to_use) { 7163 netif_napi_del(&ch->rxtx_napi); 7164 } 7165 } 7166 } 7167 7168 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt) 7169 { 7170 struct stmmac_priv *priv = netdev_priv(dev); 7171 int ret = 0, i; 7172 int max_speed; 7173 7174 if (netif_running(dev)) 7175 stmmac_release(dev); 7176 7177 stmmac_napi_del(dev); 7178 7179 priv->plat->rx_queues_to_use = rx_cnt; 7180 priv->plat->tx_queues_to_use = tx_cnt; 7181 if (!netif_is_rxfh_configured(dev)) 7182 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++) 7183 priv->rss.table[i] = ethtool_rxfh_indir_default(i, 7184 rx_cnt); 7185 7186 stmmac_mac_phylink_get_caps(priv); 7187 7188 priv->phylink_config.mac_capabilities = priv->hw->link.caps; 7189 7190 max_speed = priv->plat->max_speed; 7191 if (max_speed) 7192 phylink_limit_mac_speed(&priv->phylink_config, max_speed); 7193 7194 stmmac_napi_add(dev); 7195 7196 if (netif_running(dev)) 7197 ret = stmmac_open(dev); 7198 7199 return ret; 7200 } 7201 7202 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size) 7203 { 7204 struct stmmac_priv *priv = netdev_priv(dev); 7205 int ret = 0; 7206 7207 if (netif_running(dev)) 7208 stmmac_release(dev); 7209 7210 priv->dma_conf.dma_rx_size = rx_size; 7211 priv->dma_conf.dma_tx_size = tx_size; 7212 7213 if (netif_running(dev)) 7214 ret = stmmac_open(dev); 7215 7216 return ret; 7217 } 7218 7219 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n" 7220 static void stmmac_fpe_lp_task(struct work_struct *work) 7221 { 7222 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 7223 fpe_task); 7224 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 7225 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 7226 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 7227 bool *hs_enable = &fpe_cfg->hs_enable; 7228 bool *enable = &fpe_cfg->enable; 7229 int retries = 20; 7230 7231 while (retries-- > 0) { 7232 /* Bail out immediately if FPE handshake is OFF */ 7233 if (*lo_state == FPE_STATE_OFF || !*hs_enable) 7234 break; 7235 7236 if (*lo_state == FPE_STATE_ENTERING_ON && 7237 *lp_state == FPE_STATE_ENTERING_ON) { 7238 stmmac_fpe_configure(priv, priv->ioaddr, 7239 fpe_cfg, 7240 priv->plat->tx_queues_to_use, 7241 priv->plat->rx_queues_to_use, 7242 *enable); 7243 7244 netdev_info(priv->dev, "configured FPE\n"); 7245 7246 *lo_state = FPE_STATE_ON; 7247 *lp_state = FPE_STATE_ON; 7248 netdev_info(priv->dev, "!!! BOTH FPE stations ON\n"); 7249 break; 7250 } 7251 7252 if ((*lo_state == FPE_STATE_CAPABLE || 7253 *lo_state == FPE_STATE_ENTERING_ON) && 7254 *lp_state != FPE_STATE_ON) { 7255 netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT, 7256 *lo_state, *lp_state); 7257 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 7258 fpe_cfg, 7259 MPACKET_VERIFY); 7260 } 7261 /* Sleep then retry */ 7262 msleep(500); 7263 } 7264 7265 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); 7266 } 7267 7268 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable) 7269 { 7270 if (priv->plat->fpe_cfg->hs_enable != enable) { 7271 if (enable) { 7272 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 7273 priv->plat->fpe_cfg, 7274 MPACKET_VERIFY); 7275 } else { 7276 priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF; 7277 priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF; 7278 } 7279 7280 priv->plat->fpe_cfg->hs_enable = enable; 7281 } 7282 } 7283 7284 static int stmmac_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp) 7285 { 7286 const struct stmmac_xdp_buff *ctx = (void *)_ctx; 7287 struct dma_desc *desc_contains_ts = ctx->desc; 7288 struct stmmac_priv *priv = ctx->priv; 7289 struct dma_desc *ndesc = ctx->ndesc; 7290 struct dma_desc *desc = ctx->desc; 7291 u64 ns = 0; 7292 7293 if (!priv->hwts_rx_en) 7294 return -ENODATA; 7295 7296 /* For GMAC4, the valid timestamp is from CTX next desc. */ 7297 if (priv->plat->has_gmac4 || priv->plat->has_xgmac) 7298 desc_contains_ts = ndesc; 7299 7300 /* Check if timestamp is available */ 7301 if (stmmac_get_rx_timestamp_status(priv, desc, ndesc, priv->adv_ts)) { 7302 stmmac_get_timestamp(priv, desc_contains_ts, priv->adv_ts, &ns); 7303 ns -= priv->plat->cdc_error_adj; 7304 *timestamp = ns_to_ktime(ns); 7305 return 0; 7306 } 7307 7308 return -ENODATA; 7309 } 7310 7311 static const struct xdp_metadata_ops stmmac_xdp_metadata_ops = { 7312 .xmo_rx_timestamp = stmmac_xdp_rx_timestamp, 7313 }; 7314 7315 /** 7316 * stmmac_dvr_probe 7317 * @device: device pointer 7318 * @plat_dat: platform data pointer 7319 * @res: stmmac resource pointer 7320 * Description: this is the main probe function used to 7321 * call the alloc_etherdev, allocate the priv structure. 7322 * Return: 7323 * returns 0 on success, otherwise errno. 7324 */ 7325 int stmmac_dvr_probe(struct device *device, 7326 struct plat_stmmacenet_data *plat_dat, 7327 struct stmmac_resources *res) 7328 { 7329 struct net_device *ndev = NULL; 7330 struct stmmac_priv *priv; 7331 u32 rxq; 7332 int i, ret = 0; 7333 7334 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv), 7335 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES); 7336 if (!ndev) 7337 return -ENOMEM; 7338 7339 SET_NETDEV_DEV(ndev, device); 7340 7341 priv = netdev_priv(ndev); 7342 priv->device = device; 7343 priv->dev = ndev; 7344 7345 for (i = 0; i < MTL_MAX_RX_QUEUES; i++) 7346 u64_stats_init(&priv->xstats.rxq_stats[i].napi_syncp); 7347 for (i = 0; i < MTL_MAX_TX_QUEUES; i++) { 7348 u64_stats_init(&priv->xstats.txq_stats[i].q_syncp); 7349 u64_stats_init(&priv->xstats.txq_stats[i].napi_syncp); 7350 } 7351 7352 priv->xstats.pcpu_stats = 7353 devm_netdev_alloc_pcpu_stats(device, struct stmmac_pcpu_stats); 7354 if (!priv->xstats.pcpu_stats) 7355 return -ENOMEM; 7356 7357 stmmac_set_ethtool_ops(ndev); 7358 priv->pause = pause; 7359 priv->plat = plat_dat; 7360 priv->ioaddr = res->addr; 7361 priv->dev->base_addr = (unsigned long)res->addr; 7362 priv->plat->dma_cfg->multi_msi_en = 7363 (priv->plat->flags & STMMAC_FLAG_MULTI_MSI_EN); 7364 7365 priv->dev->irq = res->irq; 7366 priv->wol_irq = res->wol_irq; 7367 priv->lpi_irq = res->lpi_irq; 7368 priv->sfty_ce_irq = res->sfty_ce_irq; 7369 priv->sfty_ue_irq = res->sfty_ue_irq; 7370 for (i = 0; i < MTL_MAX_RX_QUEUES; i++) 7371 priv->rx_irq[i] = res->rx_irq[i]; 7372 for (i = 0; i < MTL_MAX_TX_QUEUES; i++) 7373 priv->tx_irq[i] = res->tx_irq[i]; 7374 7375 if (!is_zero_ether_addr(res->mac)) 7376 eth_hw_addr_set(priv->dev, res->mac); 7377 7378 dev_set_drvdata(device, priv->dev); 7379 7380 /* Verify driver arguments */ 7381 stmmac_verify_args(); 7382 7383 priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL); 7384 if (!priv->af_xdp_zc_qps) 7385 return -ENOMEM; 7386 7387 /* Allocate workqueue */ 7388 priv->wq = create_singlethread_workqueue("stmmac_wq"); 7389 if (!priv->wq) { 7390 dev_err(priv->device, "failed to create workqueue\n"); 7391 ret = -ENOMEM; 7392 goto error_wq_init; 7393 } 7394 7395 INIT_WORK(&priv->service_task, stmmac_service_task); 7396 7397 /* Initialize Link Partner FPE workqueue */ 7398 INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task); 7399 7400 /* Override with kernel parameters if supplied XXX CRS XXX 7401 * this needs to have multiple instances 7402 */ 7403 if ((phyaddr >= 0) && (phyaddr <= 31)) 7404 priv->plat->phy_addr = phyaddr; 7405 7406 if (priv->plat->stmmac_rst) { 7407 ret = reset_control_assert(priv->plat->stmmac_rst); 7408 reset_control_deassert(priv->plat->stmmac_rst); 7409 /* Some reset controllers have only reset callback instead of 7410 * assert + deassert callbacks pair. 7411 */ 7412 if (ret == -ENOTSUPP) 7413 reset_control_reset(priv->plat->stmmac_rst); 7414 } 7415 7416 ret = reset_control_deassert(priv->plat->stmmac_ahb_rst); 7417 if (ret == -ENOTSUPP) 7418 dev_err(priv->device, "unable to bring out of ahb reset: %pe\n", 7419 ERR_PTR(ret)); 7420 7421 /* Wait a bit for the reset to take effect */ 7422 udelay(10); 7423 7424 /* Init MAC and get the capabilities */ 7425 ret = stmmac_hw_init(priv); 7426 if (ret) 7427 goto error_hw_init; 7428 7429 /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch. 7430 */ 7431 if (priv->synopsys_id < DWMAC_CORE_5_20) 7432 priv->plat->dma_cfg->dche = false; 7433 7434 stmmac_check_ether_addr(priv); 7435 7436 ndev->netdev_ops = &stmmac_netdev_ops; 7437 7438 ndev->xdp_metadata_ops = &stmmac_xdp_metadata_ops; 7439 7440 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 7441 NETIF_F_RXCSUM; 7442 ndev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 7443 NETDEV_XDP_ACT_XSK_ZEROCOPY; 7444 7445 ret = stmmac_tc_init(priv, priv); 7446 if (!ret) { 7447 ndev->hw_features |= NETIF_F_HW_TC; 7448 } 7449 7450 if ((priv->plat->flags & STMMAC_FLAG_TSO_EN) && (priv->dma_cap.tsoen)) { 7451 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 7452 if (priv->plat->has_gmac4) 7453 ndev->hw_features |= NETIF_F_GSO_UDP_L4; 7454 priv->tso = true; 7455 dev_info(priv->device, "TSO feature enabled\n"); 7456 } 7457 7458 if (priv->dma_cap.sphen && 7459 !(priv->plat->flags & STMMAC_FLAG_SPH_DISABLE)) { 7460 ndev->hw_features |= NETIF_F_GRO; 7461 priv->sph_cap = true; 7462 priv->sph = priv->sph_cap; 7463 dev_info(priv->device, "SPH feature enabled\n"); 7464 } 7465 7466 /* Ideally our host DMA address width is the same as for the 7467 * device. However, it may differ and then we have to use our 7468 * host DMA width for allocation and the device DMA width for 7469 * register handling. 7470 */ 7471 if (priv->plat->host_dma_width) 7472 priv->dma_cap.host_dma_width = priv->plat->host_dma_width; 7473 else 7474 priv->dma_cap.host_dma_width = priv->dma_cap.addr64; 7475 7476 if (priv->dma_cap.host_dma_width) { 7477 ret = dma_set_mask_and_coherent(device, 7478 DMA_BIT_MASK(priv->dma_cap.host_dma_width)); 7479 if (!ret) { 7480 dev_info(priv->device, "Using %d/%d bits DMA host/device width\n", 7481 priv->dma_cap.host_dma_width, priv->dma_cap.addr64); 7482 7483 /* 7484 * If more than 32 bits can be addressed, make sure to 7485 * enable enhanced addressing mode. 7486 */ 7487 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT)) 7488 priv->plat->dma_cfg->eame = true; 7489 } else { 7490 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32)); 7491 if (ret) { 7492 dev_err(priv->device, "Failed to set DMA Mask\n"); 7493 goto error_hw_init; 7494 } 7495 7496 priv->dma_cap.host_dma_width = 32; 7497 } 7498 } 7499 7500 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 7501 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 7502 #ifdef STMMAC_VLAN_TAG_USED 7503 /* Both mac100 and gmac support receive VLAN tag detection */ 7504 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX; 7505 if (priv->dma_cap.vlhash) { 7506 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 7507 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER; 7508 } 7509 if (priv->dma_cap.vlins) { 7510 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX; 7511 if (priv->dma_cap.dvlan) 7512 ndev->features |= NETIF_F_HW_VLAN_STAG_TX; 7513 } 7514 #endif 7515 priv->msg_enable = netif_msg_init(debug, default_msg_level); 7516 7517 priv->xstats.threshold = tc; 7518 7519 /* Initialize RSS */ 7520 rxq = priv->plat->rx_queues_to_use; 7521 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key)); 7522 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++) 7523 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq); 7524 7525 if (priv->dma_cap.rssen && priv->plat->rss_en) 7526 ndev->features |= NETIF_F_RXHASH; 7527 7528 ndev->vlan_features |= ndev->features; 7529 /* TSO doesn't work on VLANs yet */ 7530 ndev->vlan_features &= ~NETIF_F_TSO; 7531 7532 /* MTU range: 46 - hw-specific max */ 7533 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 7534 if (priv->plat->has_xgmac) 7535 ndev->max_mtu = XGMAC_JUMBO_LEN; 7536 else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00)) 7537 ndev->max_mtu = JUMBO_LEN; 7538 else 7539 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); 7540 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu 7541 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range. 7542 */ 7543 if ((priv->plat->maxmtu < ndev->max_mtu) && 7544 (priv->plat->maxmtu >= ndev->min_mtu)) 7545 ndev->max_mtu = priv->plat->maxmtu; 7546 else if (priv->plat->maxmtu < ndev->min_mtu) 7547 dev_warn(priv->device, 7548 "%s: warning: maxmtu having invalid value (%d)\n", 7549 __func__, priv->plat->maxmtu); 7550 7551 if (flow_ctrl) 7552 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ 7553 7554 ndev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 7555 7556 /* Setup channels NAPI */ 7557 stmmac_napi_add(ndev); 7558 7559 mutex_init(&priv->lock); 7560 7561 /* If a specific clk_csr value is passed from the platform 7562 * this means that the CSR Clock Range selection cannot be 7563 * changed at run-time and it is fixed. Viceversa the driver'll try to 7564 * set the MDC clock dynamically according to the csr actual 7565 * clock input. 7566 */ 7567 if (priv->plat->clk_csr >= 0) 7568 priv->clk_csr = priv->plat->clk_csr; 7569 else 7570 stmmac_clk_csr_set(priv); 7571 7572 stmmac_check_pcs_mode(priv); 7573 7574 pm_runtime_get_noresume(device); 7575 pm_runtime_set_active(device); 7576 if (!pm_runtime_enabled(device)) 7577 pm_runtime_enable(device); 7578 7579 if (priv->hw->pcs != STMMAC_PCS_TBI && 7580 priv->hw->pcs != STMMAC_PCS_RTBI) { 7581 /* MDIO bus Registration */ 7582 ret = stmmac_mdio_register(ndev); 7583 if (ret < 0) { 7584 dev_err_probe(priv->device, ret, 7585 "%s: MDIO bus (id: %d) registration failed\n", 7586 __func__, priv->plat->bus_id); 7587 goto error_mdio_register; 7588 } 7589 } 7590 7591 if (priv->plat->speed_mode_2500) 7592 priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv); 7593 7594 if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) { 7595 ret = stmmac_xpcs_setup(priv->mii); 7596 if (ret) 7597 goto error_xpcs_setup; 7598 } 7599 7600 ret = stmmac_phy_setup(priv); 7601 if (ret) { 7602 netdev_err(ndev, "failed to setup phy (%d)\n", ret); 7603 goto error_phy_setup; 7604 } 7605 7606 ret = register_netdev(ndev); 7607 if (ret) { 7608 dev_err(priv->device, "%s: ERROR %i registering the device\n", 7609 __func__, ret); 7610 goto error_netdev_register; 7611 } 7612 7613 #ifdef CONFIG_DEBUG_FS 7614 stmmac_init_fs(ndev); 7615 #endif 7616 7617 if (priv->plat->dump_debug_regs) 7618 priv->plat->dump_debug_regs(priv->plat->bsp_priv); 7619 7620 /* Let pm_runtime_put() disable the clocks. 7621 * If CONFIG_PM is not enabled, the clocks will stay powered. 7622 */ 7623 pm_runtime_put(device); 7624 7625 return ret; 7626 7627 error_netdev_register: 7628 phylink_destroy(priv->phylink); 7629 error_xpcs_setup: 7630 error_phy_setup: 7631 if (priv->hw->pcs != STMMAC_PCS_TBI && 7632 priv->hw->pcs != STMMAC_PCS_RTBI) 7633 stmmac_mdio_unregister(ndev); 7634 error_mdio_register: 7635 stmmac_napi_del(ndev); 7636 error_hw_init: 7637 destroy_workqueue(priv->wq); 7638 error_wq_init: 7639 bitmap_free(priv->af_xdp_zc_qps); 7640 7641 return ret; 7642 } 7643 EXPORT_SYMBOL_GPL(stmmac_dvr_probe); 7644 7645 /** 7646 * stmmac_dvr_remove 7647 * @dev: device pointer 7648 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 7649 * changes the link status, releases the DMA descriptor rings. 7650 */ 7651 void stmmac_dvr_remove(struct device *dev) 7652 { 7653 struct net_device *ndev = dev_get_drvdata(dev); 7654 struct stmmac_priv *priv = netdev_priv(ndev); 7655 7656 netdev_info(priv->dev, "%s: removing driver", __func__); 7657 7658 pm_runtime_get_sync(dev); 7659 7660 stmmac_stop_all_dma(priv); 7661 stmmac_mac_set(priv, priv->ioaddr, false); 7662 netif_carrier_off(ndev); 7663 unregister_netdev(ndev); 7664 7665 #ifdef CONFIG_DEBUG_FS 7666 stmmac_exit_fs(ndev); 7667 #endif 7668 phylink_destroy(priv->phylink); 7669 if (priv->plat->stmmac_rst) 7670 reset_control_assert(priv->plat->stmmac_rst); 7671 reset_control_assert(priv->plat->stmmac_ahb_rst); 7672 if (priv->hw->pcs != STMMAC_PCS_TBI && 7673 priv->hw->pcs != STMMAC_PCS_RTBI) 7674 stmmac_mdio_unregister(ndev); 7675 destroy_workqueue(priv->wq); 7676 mutex_destroy(&priv->lock); 7677 bitmap_free(priv->af_xdp_zc_qps); 7678 7679 pm_runtime_disable(dev); 7680 pm_runtime_put_noidle(dev); 7681 } 7682 EXPORT_SYMBOL_GPL(stmmac_dvr_remove); 7683 7684 /** 7685 * stmmac_suspend - suspend callback 7686 * @dev: device pointer 7687 * Description: this is the function to suspend the device and it is called 7688 * by the platform driver to stop the network queue, release the resources, 7689 * program the PMT register (for WoL), clean and release driver resources. 7690 */ 7691 int stmmac_suspend(struct device *dev) 7692 { 7693 struct net_device *ndev = dev_get_drvdata(dev); 7694 struct stmmac_priv *priv = netdev_priv(ndev); 7695 u32 chan; 7696 7697 if (!ndev || !netif_running(ndev)) 7698 return 0; 7699 7700 mutex_lock(&priv->lock); 7701 7702 netif_device_detach(ndev); 7703 7704 stmmac_disable_all_queues(priv); 7705 7706 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 7707 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); 7708 7709 if (priv->eee_enabled) { 7710 priv->tx_path_in_lpi_mode = false; 7711 del_timer_sync(&priv->eee_ctrl_timer); 7712 } 7713 7714 /* Stop TX/RX DMA */ 7715 stmmac_stop_all_dma(priv); 7716 7717 if (priv->plat->serdes_powerdown) 7718 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); 7719 7720 /* Enable Power down mode by programming the PMT regs */ 7721 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7722 stmmac_pmt(priv, priv->hw, priv->wolopts); 7723 priv->irq_wake = 1; 7724 } else { 7725 stmmac_mac_set(priv, priv->ioaddr, false); 7726 pinctrl_pm_select_sleep_state(priv->device); 7727 } 7728 7729 mutex_unlock(&priv->lock); 7730 7731 rtnl_lock(); 7732 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7733 phylink_suspend(priv->phylink, true); 7734 } else { 7735 if (device_may_wakeup(priv->device)) 7736 phylink_speed_down(priv->phylink, false); 7737 phylink_suspend(priv->phylink, false); 7738 } 7739 rtnl_unlock(); 7740 7741 if (priv->dma_cap.fpesel) { 7742 /* Disable FPE */ 7743 stmmac_fpe_configure(priv, priv->ioaddr, 7744 priv->plat->fpe_cfg, 7745 priv->plat->tx_queues_to_use, 7746 priv->plat->rx_queues_to_use, false); 7747 7748 stmmac_fpe_handshake(priv, false); 7749 stmmac_fpe_stop_wq(priv); 7750 } 7751 7752 priv->speed = SPEED_UNKNOWN; 7753 return 0; 7754 } 7755 EXPORT_SYMBOL_GPL(stmmac_suspend); 7756 7757 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue) 7758 { 7759 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 7760 7761 rx_q->cur_rx = 0; 7762 rx_q->dirty_rx = 0; 7763 } 7764 7765 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue) 7766 { 7767 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 7768 7769 tx_q->cur_tx = 0; 7770 tx_q->dirty_tx = 0; 7771 tx_q->mss = 0; 7772 7773 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 7774 } 7775 7776 /** 7777 * stmmac_reset_queues_param - reset queue parameters 7778 * @priv: device pointer 7779 */ 7780 static void stmmac_reset_queues_param(struct stmmac_priv *priv) 7781 { 7782 u32 rx_cnt = priv->plat->rx_queues_to_use; 7783 u32 tx_cnt = priv->plat->tx_queues_to_use; 7784 u32 queue; 7785 7786 for (queue = 0; queue < rx_cnt; queue++) 7787 stmmac_reset_rx_queue(priv, queue); 7788 7789 for (queue = 0; queue < tx_cnt; queue++) 7790 stmmac_reset_tx_queue(priv, queue); 7791 } 7792 7793 /** 7794 * stmmac_resume - resume callback 7795 * @dev: device pointer 7796 * Description: when resume this function is invoked to setup the DMA and CORE 7797 * in a usable state. 7798 */ 7799 int stmmac_resume(struct device *dev) 7800 { 7801 struct net_device *ndev = dev_get_drvdata(dev); 7802 struct stmmac_priv *priv = netdev_priv(ndev); 7803 int ret; 7804 7805 if (!netif_running(ndev)) 7806 return 0; 7807 7808 /* Power Down bit, into the PM register, is cleared 7809 * automatically as soon as a magic packet or a Wake-up frame 7810 * is received. Anyway, it's better to manually clear 7811 * this bit because it can generate problems while resuming 7812 * from another devices (e.g. serial console). 7813 */ 7814 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7815 mutex_lock(&priv->lock); 7816 stmmac_pmt(priv, priv->hw, 0); 7817 mutex_unlock(&priv->lock); 7818 priv->irq_wake = 0; 7819 } else { 7820 pinctrl_pm_select_default_state(priv->device); 7821 /* reset the phy so that it's ready */ 7822 if (priv->mii) 7823 stmmac_mdio_reset(priv->mii); 7824 } 7825 7826 if (!(priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) && 7827 priv->plat->serdes_powerup) { 7828 ret = priv->plat->serdes_powerup(ndev, 7829 priv->plat->bsp_priv); 7830 7831 if (ret < 0) 7832 return ret; 7833 } 7834 7835 rtnl_lock(); 7836 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7837 phylink_resume(priv->phylink); 7838 } else { 7839 phylink_resume(priv->phylink); 7840 if (device_may_wakeup(priv->device)) 7841 phylink_speed_up(priv->phylink); 7842 } 7843 rtnl_unlock(); 7844 7845 rtnl_lock(); 7846 mutex_lock(&priv->lock); 7847 7848 stmmac_reset_queues_param(priv); 7849 7850 stmmac_free_tx_skbufs(priv); 7851 stmmac_clear_descriptors(priv, &priv->dma_conf); 7852 7853 stmmac_hw_setup(ndev, false); 7854 stmmac_init_coalesce(priv); 7855 stmmac_set_rx_mode(ndev); 7856 7857 stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw); 7858 7859 stmmac_enable_all_queues(priv); 7860 stmmac_enable_all_dma_irq(priv); 7861 7862 mutex_unlock(&priv->lock); 7863 rtnl_unlock(); 7864 7865 netif_device_attach(ndev); 7866 7867 return 0; 7868 } 7869 EXPORT_SYMBOL_GPL(stmmac_resume); 7870 7871 #ifndef MODULE 7872 static int __init stmmac_cmdline_opt(char *str) 7873 { 7874 char *opt; 7875 7876 if (!str || !*str) 7877 return 1; 7878 while ((opt = strsep(&str, ",")) != NULL) { 7879 if (!strncmp(opt, "debug:", 6)) { 7880 if (kstrtoint(opt + 6, 0, &debug)) 7881 goto err; 7882 } else if (!strncmp(opt, "phyaddr:", 8)) { 7883 if (kstrtoint(opt + 8, 0, &phyaddr)) 7884 goto err; 7885 } else if (!strncmp(opt, "buf_sz:", 7)) { 7886 if (kstrtoint(opt + 7, 0, &buf_sz)) 7887 goto err; 7888 } else if (!strncmp(opt, "tc:", 3)) { 7889 if (kstrtoint(opt + 3, 0, &tc)) 7890 goto err; 7891 } else if (!strncmp(opt, "watchdog:", 9)) { 7892 if (kstrtoint(opt + 9, 0, &watchdog)) 7893 goto err; 7894 } else if (!strncmp(opt, "flow_ctrl:", 10)) { 7895 if (kstrtoint(opt + 10, 0, &flow_ctrl)) 7896 goto err; 7897 } else if (!strncmp(opt, "pause:", 6)) { 7898 if (kstrtoint(opt + 6, 0, &pause)) 7899 goto err; 7900 } else if (!strncmp(opt, "eee_timer:", 10)) { 7901 if (kstrtoint(opt + 10, 0, &eee_timer)) 7902 goto err; 7903 } else if (!strncmp(opt, "chain_mode:", 11)) { 7904 if (kstrtoint(opt + 11, 0, &chain_mode)) 7905 goto err; 7906 } 7907 } 7908 return 1; 7909 7910 err: 7911 pr_err("%s: ERROR broken module parameter conversion", __func__); 7912 return 1; 7913 } 7914 7915 __setup("stmmaceth=", stmmac_cmdline_opt); 7916 #endif /* MODULE */ 7917 7918 static int __init stmmac_init(void) 7919 { 7920 #ifdef CONFIG_DEBUG_FS 7921 /* Create debugfs main directory if it doesn't exist yet */ 7922 if (!stmmac_fs_dir) 7923 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); 7924 register_netdevice_notifier(&stmmac_notifier); 7925 #endif 7926 7927 return 0; 7928 } 7929 7930 static void __exit stmmac_exit(void) 7931 { 7932 #ifdef CONFIG_DEBUG_FS 7933 unregister_netdevice_notifier(&stmmac_notifier); 7934 debugfs_remove_recursive(stmmac_fs_dir); 7935 #endif 7936 } 7937 7938 module_init(stmmac_init) 7939 module_exit(stmmac_exit) 7940 7941 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); 7942 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); 7943 MODULE_LICENSE("GPL"); 7944