xref: /openbmc/linux/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c (revision 09b06c2591fa8b024e2850de53137935e1ea0c47)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/page_pool/helpers.h>
43 #include <net/pkt_cls.h>
44 #include <net/xdp_sock_drv.h>
45 #include "stmmac_ptp.h"
46 #include "stmmac.h"
47 #include "stmmac_xdp.h"
48 #include <linux/reset.h>
49 #include <linux/of_mdio.h>
50 #include "dwmac1000.h"
51 #include "dwxgmac2.h"
52 #include "hwif.h"
53 
54 /* As long as the interface is active, we keep the timestamping counter enabled
55  * with fine resolution and binary rollover. This avoid non-monotonic behavior
56  * (clock jumps) when changing timestamping settings at runtime.
57  */
58 #define STMMAC_HWTS_ACTIVE	(PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
59 				 PTP_TCR_TSCTRLSSR)
60 
61 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
62 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
63 
64 /* Module parameters */
65 #define TX_TIMEO	5000
66 static int watchdog = TX_TIMEO;
67 module_param(watchdog, int, 0644);
68 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
69 
70 static int debug = -1;
71 module_param(debug, int, 0644);
72 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
73 
74 static int phyaddr = -1;
75 module_param(phyaddr, int, 0444);
76 MODULE_PARM_DESC(phyaddr, "Physical device address");
77 
78 #define STMMAC_TX_THRESH(x)	((x)->dma_conf.dma_tx_size / 4)
79 #define STMMAC_RX_THRESH(x)	((x)->dma_conf.dma_rx_size / 4)
80 
81 /* Limit to make sure XDP TX and slow path can coexist */
82 #define STMMAC_XSK_TX_BUDGET_MAX	256
83 #define STMMAC_TX_XSK_AVAIL		16
84 #define STMMAC_RX_FILL_BATCH		16
85 
86 #define STMMAC_XDP_PASS		0
87 #define STMMAC_XDP_CONSUMED	BIT(0)
88 #define STMMAC_XDP_TX		BIT(1)
89 #define STMMAC_XDP_REDIRECT	BIT(2)
90 
91 static int flow_ctrl = FLOW_AUTO;
92 module_param(flow_ctrl, int, 0644);
93 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
94 
95 static int pause = PAUSE_TIME;
96 module_param(pause, int, 0644);
97 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
98 
99 #define TC_DEFAULT 64
100 static int tc = TC_DEFAULT;
101 module_param(tc, int, 0644);
102 MODULE_PARM_DESC(tc, "DMA threshold control value");
103 
104 #define	DEFAULT_BUFSIZE	1536
105 static int buf_sz = DEFAULT_BUFSIZE;
106 module_param(buf_sz, int, 0644);
107 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
108 
109 #define	STMMAC_RX_COPYBREAK	256
110 
111 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
112 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
113 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
114 
115 #define STMMAC_DEFAULT_LPI_TIMER	1000
116 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
117 module_param(eee_timer, int, 0644);
118 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
119 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
120 
121 /* By default the driver will use the ring mode to manage tx and rx descriptors,
122  * but allow user to force to use the chain instead of the ring
123  */
124 static unsigned int chain_mode;
125 module_param(chain_mode, int, 0444);
126 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
127 
128 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
129 /* For MSI interrupts handling */
130 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
131 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
132 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
133 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
134 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue);
135 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue);
136 static void stmmac_reset_queues_param(struct stmmac_priv *priv);
137 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
138 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
139 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
140 					  u32 rxmode, u32 chan);
141 
142 #ifdef CONFIG_DEBUG_FS
143 static const struct net_device_ops stmmac_netdev_ops;
144 static void stmmac_init_fs(struct net_device *dev);
145 static void stmmac_exit_fs(struct net_device *dev);
146 #endif
147 
148 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
149 
150 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
151 {
152 	int ret = 0;
153 
154 	if (enabled) {
155 		ret = clk_prepare_enable(priv->plat->stmmac_clk);
156 		if (ret)
157 			return ret;
158 		ret = clk_prepare_enable(priv->plat->pclk);
159 		if (ret) {
160 			clk_disable_unprepare(priv->plat->stmmac_clk);
161 			return ret;
162 		}
163 		if (priv->plat->clks_config) {
164 			ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
165 			if (ret) {
166 				clk_disable_unprepare(priv->plat->stmmac_clk);
167 				clk_disable_unprepare(priv->plat->pclk);
168 				return ret;
169 			}
170 		}
171 	} else {
172 		clk_disable_unprepare(priv->plat->stmmac_clk);
173 		clk_disable_unprepare(priv->plat->pclk);
174 		if (priv->plat->clks_config)
175 			priv->plat->clks_config(priv->plat->bsp_priv, enabled);
176 	}
177 
178 	return ret;
179 }
180 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
181 
182 /**
183  * stmmac_verify_args - verify the driver parameters.
184  * Description: it checks the driver parameters and set a default in case of
185  * errors.
186  */
187 static void stmmac_verify_args(void)
188 {
189 	if (unlikely(watchdog < 0))
190 		watchdog = TX_TIMEO;
191 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
192 		buf_sz = DEFAULT_BUFSIZE;
193 	if (unlikely(flow_ctrl > 1))
194 		flow_ctrl = FLOW_AUTO;
195 	else if (likely(flow_ctrl < 0))
196 		flow_ctrl = FLOW_OFF;
197 	if (unlikely((pause < 0) || (pause > 0xffff)))
198 		pause = PAUSE_TIME;
199 	if (eee_timer < 0)
200 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
201 }
202 
203 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
204 {
205 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
206 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
207 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
208 	u32 queue;
209 
210 	for (queue = 0; queue < maxq; queue++) {
211 		struct stmmac_channel *ch = &priv->channel[queue];
212 
213 		if (stmmac_xdp_is_enabled(priv) &&
214 		    test_bit(queue, priv->af_xdp_zc_qps)) {
215 			napi_disable(&ch->rxtx_napi);
216 			continue;
217 		}
218 
219 		if (queue < rx_queues_cnt)
220 			napi_disable(&ch->rx_napi);
221 		if (queue < tx_queues_cnt)
222 			napi_disable(&ch->tx_napi);
223 	}
224 }
225 
226 /**
227  * stmmac_disable_all_queues - Disable all queues
228  * @priv: driver private structure
229  */
230 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
231 {
232 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
233 	struct stmmac_rx_queue *rx_q;
234 	u32 queue;
235 
236 	/* synchronize_rcu() needed for pending XDP buffers to drain */
237 	for (queue = 0; queue < rx_queues_cnt; queue++) {
238 		rx_q = &priv->dma_conf.rx_queue[queue];
239 		if (rx_q->xsk_pool) {
240 			synchronize_rcu();
241 			break;
242 		}
243 	}
244 
245 	__stmmac_disable_all_queues(priv);
246 }
247 
248 /**
249  * stmmac_enable_all_queues - Enable all queues
250  * @priv: driver private structure
251  */
252 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
253 {
254 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
255 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
256 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
257 	u32 queue;
258 
259 	for (queue = 0; queue < maxq; queue++) {
260 		struct stmmac_channel *ch = &priv->channel[queue];
261 
262 		if (stmmac_xdp_is_enabled(priv) &&
263 		    test_bit(queue, priv->af_xdp_zc_qps)) {
264 			napi_enable(&ch->rxtx_napi);
265 			continue;
266 		}
267 
268 		if (queue < rx_queues_cnt)
269 			napi_enable(&ch->rx_napi);
270 		if (queue < tx_queues_cnt)
271 			napi_enable(&ch->tx_napi);
272 	}
273 }
274 
275 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
276 {
277 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
278 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
279 		queue_work(priv->wq, &priv->service_task);
280 }
281 
282 static void stmmac_global_err(struct stmmac_priv *priv)
283 {
284 	netif_carrier_off(priv->dev);
285 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
286 	stmmac_service_event_schedule(priv);
287 }
288 
289 /**
290  * stmmac_clk_csr_set - dynamically set the MDC clock
291  * @priv: driver private structure
292  * Description: this is to dynamically set the MDC clock according to the csr
293  * clock input.
294  * Note:
295  *	If a specific clk_csr value is passed from the platform
296  *	this means that the CSR Clock Range selection cannot be
297  *	changed at run-time and it is fixed (as reported in the driver
298  *	documentation). Viceversa the driver will try to set the MDC
299  *	clock dynamically according to the actual clock input.
300  */
301 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
302 {
303 	u32 clk_rate;
304 
305 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
306 
307 	/* Platform provided default clk_csr would be assumed valid
308 	 * for all other cases except for the below mentioned ones.
309 	 * For values higher than the IEEE 802.3 specified frequency
310 	 * we can not estimate the proper divider as it is not known
311 	 * the frequency of clk_csr_i. So we do not change the default
312 	 * divider.
313 	 */
314 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
315 		if (clk_rate < CSR_F_35M)
316 			priv->clk_csr = STMMAC_CSR_20_35M;
317 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
318 			priv->clk_csr = STMMAC_CSR_35_60M;
319 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
320 			priv->clk_csr = STMMAC_CSR_60_100M;
321 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
322 			priv->clk_csr = STMMAC_CSR_100_150M;
323 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
324 			priv->clk_csr = STMMAC_CSR_150_250M;
325 		else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
326 			priv->clk_csr = STMMAC_CSR_250_300M;
327 	}
328 
329 	if (priv->plat->flags & STMMAC_FLAG_HAS_SUN8I) {
330 		if (clk_rate > 160000000)
331 			priv->clk_csr = 0x03;
332 		else if (clk_rate > 80000000)
333 			priv->clk_csr = 0x02;
334 		else if (clk_rate > 40000000)
335 			priv->clk_csr = 0x01;
336 		else
337 			priv->clk_csr = 0;
338 	}
339 
340 	if (priv->plat->has_xgmac) {
341 		if (clk_rate > 400000000)
342 			priv->clk_csr = 0x5;
343 		else if (clk_rate > 350000000)
344 			priv->clk_csr = 0x4;
345 		else if (clk_rate > 300000000)
346 			priv->clk_csr = 0x3;
347 		else if (clk_rate > 250000000)
348 			priv->clk_csr = 0x2;
349 		else if (clk_rate > 150000000)
350 			priv->clk_csr = 0x1;
351 		else
352 			priv->clk_csr = 0x0;
353 	}
354 }
355 
356 static void print_pkt(unsigned char *buf, int len)
357 {
358 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
359 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
360 }
361 
362 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
363 {
364 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
365 	u32 avail;
366 
367 	if (tx_q->dirty_tx > tx_q->cur_tx)
368 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
369 	else
370 		avail = priv->dma_conf.dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
371 
372 	return avail;
373 }
374 
375 /**
376  * stmmac_rx_dirty - Get RX queue dirty
377  * @priv: driver private structure
378  * @queue: RX queue index
379  */
380 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
381 {
382 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
383 	u32 dirty;
384 
385 	if (rx_q->dirty_rx <= rx_q->cur_rx)
386 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
387 	else
388 		dirty = priv->dma_conf.dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
389 
390 	return dirty;
391 }
392 
393 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
394 {
395 	int tx_lpi_timer;
396 
397 	/* Clear/set the SW EEE timer flag based on LPI ET enablement */
398 	priv->eee_sw_timer_en = en ? 0 : 1;
399 	tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
400 	stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
401 }
402 
403 /**
404  * stmmac_enable_eee_mode - check and enter in LPI mode
405  * @priv: driver private structure
406  * Description: this function is to verify and enter in LPI mode in case of
407  * EEE.
408  */
409 static int stmmac_enable_eee_mode(struct stmmac_priv *priv)
410 {
411 	u32 tx_cnt = priv->plat->tx_queues_to_use;
412 	u32 queue;
413 
414 	/* check if all TX queues have the work finished */
415 	for (queue = 0; queue < tx_cnt; queue++) {
416 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
417 
418 		if (tx_q->dirty_tx != tx_q->cur_tx)
419 			return -EBUSY; /* still unfinished work */
420 	}
421 
422 	/* Check and enter in LPI mode */
423 	if (!priv->tx_path_in_lpi_mode)
424 		stmmac_set_eee_mode(priv, priv->hw,
425 			priv->plat->flags & STMMAC_FLAG_EN_TX_LPI_CLOCKGATING);
426 	return 0;
427 }
428 
429 /**
430  * stmmac_disable_eee_mode - disable and exit from LPI mode
431  * @priv: driver private structure
432  * Description: this function is to exit and disable EEE in case of
433  * LPI state is true. This is called by the xmit.
434  */
435 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
436 {
437 	if (!priv->eee_sw_timer_en) {
438 		stmmac_lpi_entry_timer_config(priv, 0);
439 		return;
440 	}
441 
442 	stmmac_reset_eee_mode(priv, priv->hw);
443 	del_timer_sync(&priv->eee_ctrl_timer);
444 	priv->tx_path_in_lpi_mode = false;
445 }
446 
447 /**
448  * stmmac_eee_ctrl_timer - EEE TX SW timer.
449  * @t:  timer_list struct containing private info
450  * Description:
451  *  if there is no data transfer and if we are not in LPI state,
452  *  then MAC Transmitter can be moved to LPI state.
453  */
454 static void stmmac_eee_ctrl_timer(struct timer_list *t)
455 {
456 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
457 
458 	if (stmmac_enable_eee_mode(priv))
459 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
460 }
461 
462 /**
463  * stmmac_eee_init - init EEE
464  * @priv: driver private structure
465  * Description:
466  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
467  *  can also manage EEE, this function enable the LPI state and start related
468  *  timer.
469  */
470 bool stmmac_eee_init(struct stmmac_priv *priv)
471 {
472 	int eee_tw_timer = priv->eee_tw_timer;
473 
474 	/* Using PCS we cannot dial with the phy registers at this stage
475 	 * so we do not support extra feature like EEE.
476 	 */
477 	if (priv->hw->pcs == STMMAC_PCS_TBI ||
478 	    priv->hw->pcs == STMMAC_PCS_RTBI)
479 		return false;
480 
481 	/* Check if MAC core supports the EEE feature. */
482 	if (!priv->dma_cap.eee)
483 		return false;
484 
485 	mutex_lock(&priv->lock);
486 
487 	/* Check if it needs to be deactivated */
488 	if (!priv->eee_active) {
489 		if (priv->eee_enabled) {
490 			netdev_dbg(priv->dev, "disable EEE\n");
491 			stmmac_lpi_entry_timer_config(priv, 0);
492 			del_timer_sync(&priv->eee_ctrl_timer);
493 			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
494 			if (priv->hw->xpcs)
495 				xpcs_config_eee(priv->hw->xpcs,
496 						priv->plat->mult_fact_100ns,
497 						false);
498 		}
499 		mutex_unlock(&priv->lock);
500 		return false;
501 	}
502 
503 	if (priv->eee_active && !priv->eee_enabled) {
504 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
505 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
506 				     eee_tw_timer);
507 		if (priv->hw->xpcs)
508 			xpcs_config_eee(priv->hw->xpcs,
509 					priv->plat->mult_fact_100ns,
510 					true);
511 	}
512 
513 	if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
514 		del_timer_sync(&priv->eee_ctrl_timer);
515 		priv->tx_path_in_lpi_mode = false;
516 		stmmac_lpi_entry_timer_config(priv, 1);
517 	} else {
518 		stmmac_lpi_entry_timer_config(priv, 0);
519 		mod_timer(&priv->eee_ctrl_timer,
520 			  STMMAC_LPI_T(priv->tx_lpi_timer));
521 	}
522 
523 	mutex_unlock(&priv->lock);
524 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
525 	return true;
526 }
527 
528 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
529  * @priv: driver private structure
530  * @p : descriptor pointer
531  * @skb : the socket buffer
532  * Description :
533  * This function will read timestamp from the descriptor & pass it to stack.
534  * and also perform some sanity checks.
535  */
536 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
537 				   struct dma_desc *p, struct sk_buff *skb)
538 {
539 	struct skb_shared_hwtstamps shhwtstamp;
540 	bool found = false;
541 	u64 ns = 0;
542 
543 	if (!priv->hwts_tx_en)
544 		return;
545 
546 	/* exit if skb doesn't support hw tstamp */
547 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
548 		return;
549 
550 	/* check tx tstamp status */
551 	if (stmmac_get_tx_timestamp_status(priv, p)) {
552 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
553 		found = true;
554 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
555 		found = true;
556 	}
557 
558 	if (found) {
559 		ns -= priv->plat->cdc_error_adj;
560 
561 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
562 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
563 
564 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
565 		/* pass tstamp to stack */
566 		skb_tstamp_tx(skb, &shhwtstamp);
567 	}
568 }
569 
570 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
571  * @priv: driver private structure
572  * @p : descriptor pointer
573  * @np : next descriptor pointer
574  * @skb : the socket buffer
575  * Description :
576  * This function will read received packet's timestamp from the descriptor
577  * and pass it to stack. It also perform some sanity checks.
578  */
579 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
580 				   struct dma_desc *np, struct sk_buff *skb)
581 {
582 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
583 	struct dma_desc *desc = p;
584 	u64 ns = 0;
585 
586 	if (!priv->hwts_rx_en)
587 		return;
588 	/* For GMAC4, the valid timestamp is from CTX next desc. */
589 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
590 		desc = np;
591 
592 	/* Check if timestamp is available */
593 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
594 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
595 
596 		ns -= priv->plat->cdc_error_adj;
597 
598 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
599 		shhwtstamp = skb_hwtstamps(skb);
600 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
601 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
602 	} else  {
603 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
604 	}
605 }
606 
607 /**
608  *  stmmac_hwtstamp_set - control hardware timestamping.
609  *  @dev: device pointer.
610  *  @ifr: An IOCTL specific structure, that can contain a pointer to
611  *  a proprietary structure used to pass information to the driver.
612  *  Description:
613  *  This function configures the MAC to enable/disable both outgoing(TX)
614  *  and incoming(RX) packets time stamping based on user input.
615  *  Return Value:
616  *  0 on success and an appropriate -ve integer on failure.
617  */
618 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
619 {
620 	struct stmmac_priv *priv = netdev_priv(dev);
621 	struct hwtstamp_config config;
622 	u32 ptp_v2 = 0;
623 	u32 tstamp_all = 0;
624 	u32 ptp_over_ipv4_udp = 0;
625 	u32 ptp_over_ipv6_udp = 0;
626 	u32 ptp_over_ethernet = 0;
627 	u32 snap_type_sel = 0;
628 	u32 ts_master_en = 0;
629 	u32 ts_event_en = 0;
630 
631 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
632 		netdev_alert(priv->dev, "No support for HW time stamping\n");
633 		priv->hwts_tx_en = 0;
634 		priv->hwts_rx_en = 0;
635 
636 		return -EOPNOTSUPP;
637 	}
638 
639 	if (copy_from_user(&config, ifr->ifr_data,
640 			   sizeof(config)))
641 		return -EFAULT;
642 
643 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
644 		   __func__, config.flags, config.tx_type, config.rx_filter);
645 
646 	if (config.tx_type != HWTSTAMP_TX_OFF &&
647 	    config.tx_type != HWTSTAMP_TX_ON)
648 		return -ERANGE;
649 
650 	if (priv->adv_ts) {
651 		switch (config.rx_filter) {
652 		case HWTSTAMP_FILTER_NONE:
653 			/* time stamp no incoming packet at all */
654 			config.rx_filter = HWTSTAMP_FILTER_NONE;
655 			break;
656 
657 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
658 			/* PTP v1, UDP, any kind of event packet */
659 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
660 			/* 'xmac' hardware can support Sync, Pdelay_Req and
661 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
662 			 * This leaves Delay_Req timestamps out.
663 			 * Enable all events *and* general purpose message
664 			 * timestamping
665 			 */
666 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
667 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
668 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
669 			break;
670 
671 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
672 			/* PTP v1, UDP, Sync packet */
673 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
674 			/* take time stamp for SYNC messages only */
675 			ts_event_en = PTP_TCR_TSEVNTENA;
676 
677 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
678 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
679 			break;
680 
681 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
682 			/* PTP v1, UDP, Delay_req packet */
683 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
684 			/* take time stamp for Delay_Req messages only */
685 			ts_master_en = PTP_TCR_TSMSTRENA;
686 			ts_event_en = PTP_TCR_TSEVNTENA;
687 
688 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
689 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
690 			break;
691 
692 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
693 			/* PTP v2, UDP, any kind of event packet */
694 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
695 			ptp_v2 = PTP_TCR_TSVER2ENA;
696 			/* take time stamp for all event messages */
697 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
698 
699 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
700 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
701 			break;
702 
703 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
704 			/* PTP v2, UDP, Sync packet */
705 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
706 			ptp_v2 = PTP_TCR_TSVER2ENA;
707 			/* take time stamp for SYNC messages only */
708 			ts_event_en = PTP_TCR_TSEVNTENA;
709 
710 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
711 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
712 			break;
713 
714 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
715 			/* PTP v2, UDP, Delay_req packet */
716 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
717 			ptp_v2 = PTP_TCR_TSVER2ENA;
718 			/* take time stamp for Delay_Req messages only */
719 			ts_master_en = PTP_TCR_TSMSTRENA;
720 			ts_event_en = PTP_TCR_TSEVNTENA;
721 
722 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
723 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
724 			break;
725 
726 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
727 			/* PTP v2/802.AS1 any layer, any kind of event packet */
728 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
729 			ptp_v2 = PTP_TCR_TSVER2ENA;
730 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
731 			if (priv->synopsys_id < DWMAC_CORE_4_10)
732 				ts_event_en = PTP_TCR_TSEVNTENA;
733 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
734 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
735 			ptp_over_ethernet = PTP_TCR_TSIPENA;
736 			break;
737 
738 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
739 			/* PTP v2/802.AS1, any layer, Sync packet */
740 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
741 			ptp_v2 = PTP_TCR_TSVER2ENA;
742 			/* take time stamp for SYNC messages only */
743 			ts_event_en = PTP_TCR_TSEVNTENA;
744 
745 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
746 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
747 			ptp_over_ethernet = PTP_TCR_TSIPENA;
748 			break;
749 
750 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
751 			/* PTP v2/802.AS1, any layer, Delay_req packet */
752 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
753 			ptp_v2 = PTP_TCR_TSVER2ENA;
754 			/* take time stamp for Delay_Req messages only */
755 			ts_master_en = PTP_TCR_TSMSTRENA;
756 			ts_event_en = PTP_TCR_TSEVNTENA;
757 
758 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
759 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
760 			ptp_over_ethernet = PTP_TCR_TSIPENA;
761 			break;
762 
763 		case HWTSTAMP_FILTER_NTP_ALL:
764 		case HWTSTAMP_FILTER_ALL:
765 			/* time stamp any incoming packet */
766 			config.rx_filter = HWTSTAMP_FILTER_ALL;
767 			tstamp_all = PTP_TCR_TSENALL;
768 			break;
769 
770 		default:
771 			return -ERANGE;
772 		}
773 	} else {
774 		switch (config.rx_filter) {
775 		case HWTSTAMP_FILTER_NONE:
776 			config.rx_filter = HWTSTAMP_FILTER_NONE;
777 			break;
778 		default:
779 			/* PTP v1, UDP, any kind of event packet */
780 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
781 			break;
782 		}
783 	}
784 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
785 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
786 
787 	priv->systime_flags = STMMAC_HWTS_ACTIVE;
788 
789 	if (priv->hwts_tx_en || priv->hwts_rx_en) {
790 		priv->systime_flags |= tstamp_all | ptp_v2 |
791 				       ptp_over_ethernet | ptp_over_ipv6_udp |
792 				       ptp_over_ipv4_udp | ts_event_en |
793 				       ts_master_en | snap_type_sel;
794 	}
795 
796 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
797 
798 	memcpy(&priv->tstamp_config, &config, sizeof(config));
799 
800 	return copy_to_user(ifr->ifr_data, &config,
801 			    sizeof(config)) ? -EFAULT : 0;
802 }
803 
804 /**
805  *  stmmac_hwtstamp_get - read hardware timestamping.
806  *  @dev: device pointer.
807  *  @ifr: An IOCTL specific structure, that can contain a pointer to
808  *  a proprietary structure used to pass information to the driver.
809  *  Description:
810  *  This function obtain the current hardware timestamping settings
811  *  as requested.
812  */
813 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
814 {
815 	struct stmmac_priv *priv = netdev_priv(dev);
816 	struct hwtstamp_config *config = &priv->tstamp_config;
817 
818 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
819 		return -EOPNOTSUPP;
820 
821 	return copy_to_user(ifr->ifr_data, config,
822 			    sizeof(*config)) ? -EFAULT : 0;
823 }
824 
825 /**
826  * stmmac_init_tstamp_counter - init hardware timestamping counter
827  * @priv: driver private structure
828  * @systime_flags: timestamping flags
829  * Description:
830  * Initialize hardware counter for packet timestamping.
831  * This is valid as long as the interface is open and not suspended.
832  * Will be rerun after resuming from suspend, case in which the timestamping
833  * flags updated by stmmac_hwtstamp_set() also need to be restored.
834  */
835 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
836 {
837 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
838 	struct timespec64 now;
839 	u32 sec_inc = 0;
840 	u64 temp = 0;
841 
842 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
843 		return -EOPNOTSUPP;
844 
845 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
846 	priv->systime_flags = systime_flags;
847 
848 	/* program Sub Second Increment reg */
849 	stmmac_config_sub_second_increment(priv, priv->ptpaddr,
850 					   priv->plat->clk_ptp_rate,
851 					   xmac, &sec_inc);
852 	temp = div_u64(1000000000ULL, sec_inc);
853 
854 	/* Store sub second increment for later use */
855 	priv->sub_second_inc = sec_inc;
856 
857 	/* calculate default added value:
858 	 * formula is :
859 	 * addend = (2^32)/freq_div_ratio;
860 	 * where, freq_div_ratio = 1e9ns/sec_inc
861 	 */
862 	temp = (u64)(temp << 32);
863 	priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
864 	stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
865 
866 	/* initialize system time */
867 	ktime_get_real_ts64(&now);
868 
869 	/* lower 32 bits of tv_sec are safe until y2106 */
870 	stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
871 
872 	return 0;
873 }
874 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
875 
876 /**
877  * stmmac_init_ptp - init PTP
878  * @priv: driver private structure
879  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
880  * This is done by looking at the HW cap. register.
881  * This function also registers the ptp driver.
882  */
883 static int stmmac_init_ptp(struct stmmac_priv *priv)
884 {
885 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
886 	int ret;
887 
888 	if (priv->plat->ptp_clk_freq_config)
889 		priv->plat->ptp_clk_freq_config(priv);
890 
891 	ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
892 	if (ret)
893 		return ret;
894 
895 	priv->adv_ts = 0;
896 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
897 	if (xmac && priv->dma_cap.atime_stamp)
898 		priv->adv_ts = 1;
899 	/* Dwmac 3.x core with extend_desc can support adv_ts */
900 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
901 		priv->adv_ts = 1;
902 
903 	if (priv->dma_cap.time_stamp)
904 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
905 
906 	if (priv->adv_ts)
907 		netdev_info(priv->dev,
908 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
909 
910 	priv->hwts_tx_en = 0;
911 	priv->hwts_rx_en = 0;
912 
913 	if (priv->plat->flags & STMMAC_FLAG_HWTSTAMP_CORRECT_LATENCY)
914 		stmmac_hwtstamp_correct_latency(priv, priv);
915 
916 	return 0;
917 }
918 
919 static void stmmac_release_ptp(struct stmmac_priv *priv)
920 {
921 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
922 	stmmac_ptp_unregister(priv);
923 }
924 
925 /**
926  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
927  *  @priv: driver private structure
928  *  @duplex: duplex passed to the next function
929  *  Description: It is used for configuring the flow control in all queues
930  */
931 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
932 {
933 	u32 tx_cnt = priv->plat->tx_queues_to_use;
934 
935 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
936 			priv->pause, tx_cnt);
937 }
938 
939 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config,
940 						 phy_interface_t interface)
941 {
942 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
943 
944 	if (priv->hw->xpcs)
945 		return &priv->hw->xpcs->pcs;
946 
947 	if (priv->hw->lynx_pcs)
948 		return priv->hw->lynx_pcs;
949 
950 	return NULL;
951 }
952 
953 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
954 			      const struct phylink_link_state *state)
955 {
956 	/* Nothing to do, xpcs_config() handles everything */
957 }
958 
959 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
960 {
961 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
962 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
963 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
964 	bool *hs_enable = &fpe_cfg->hs_enable;
965 
966 	if (is_up && *hs_enable) {
967 		stmmac_fpe_send_mpacket(priv, priv->ioaddr, fpe_cfg,
968 					MPACKET_VERIFY);
969 	} else {
970 		*lo_state = FPE_STATE_OFF;
971 		*lp_state = FPE_STATE_OFF;
972 	}
973 }
974 
975 static void stmmac_mac_link_down(struct phylink_config *config,
976 				 unsigned int mode, phy_interface_t interface)
977 {
978 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
979 
980 	stmmac_mac_set(priv, priv->ioaddr, false);
981 	priv->eee_active = false;
982 	priv->tx_lpi_enabled = false;
983 	priv->eee_enabled = stmmac_eee_init(priv);
984 	stmmac_set_eee_pls(priv, priv->hw, false);
985 
986 	if (priv->dma_cap.fpesel)
987 		stmmac_fpe_link_state_handle(priv, false);
988 }
989 
990 static void stmmac_mac_link_up(struct phylink_config *config,
991 			       struct phy_device *phy,
992 			       unsigned int mode, phy_interface_t interface,
993 			       int speed, int duplex,
994 			       bool tx_pause, bool rx_pause)
995 {
996 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
997 	u32 old_ctrl, ctrl;
998 
999 	if ((priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) &&
1000 	    priv->plat->serdes_powerup)
1001 		priv->plat->serdes_powerup(priv->dev, priv->plat->bsp_priv);
1002 
1003 	old_ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
1004 	ctrl = old_ctrl & ~priv->hw->link.speed_mask;
1005 
1006 	if (interface == PHY_INTERFACE_MODE_USXGMII) {
1007 		switch (speed) {
1008 		case SPEED_10000:
1009 			ctrl |= priv->hw->link.xgmii.speed10000;
1010 			break;
1011 		case SPEED_5000:
1012 			ctrl |= priv->hw->link.xgmii.speed5000;
1013 			break;
1014 		case SPEED_2500:
1015 			ctrl |= priv->hw->link.xgmii.speed2500;
1016 			break;
1017 		default:
1018 			return;
1019 		}
1020 	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1021 		switch (speed) {
1022 		case SPEED_100000:
1023 			ctrl |= priv->hw->link.xlgmii.speed100000;
1024 			break;
1025 		case SPEED_50000:
1026 			ctrl |= priv->hw->link.xlgmii.speed50000;
1027 			break;
1028 		case SPEED_40000:
1029 			ctrl |= priv->hw->link.xlgmii.speed40000;
1030 			break;
1031 		case SPEED_25000:
1032 			ctrl |= priv->hw->link.xlgmii.speed25000;
1033 			break;
1034 		case SPEED_10000:
1035 			ctrl |= priv->hw->link.xgmii.speed10000;
1036 			break;
1037 		case SPEED_2500:
1038 			ctrl |= priv->hw->link.speed2500;
1039 			break;
1040 		case SPEED_1000:
1041 			ctrl |= priv->hw->link.speed1000;
1042 			break;
1043 		default:
1044 			return;
1045 		}
1046 	} else {
1047 		switch (speed) {
1048 		case SPEED_2500:
1049 			ctrl |= priv->hw->link.speed2500;
1050 			break;
1051 		case SPEED_1000:
1052 			ctrl |= priv->hw->link.speed1000;
1053 			break;
1054 		case SPEED_100:
1055 			ctrl |= priv->hw->link.speed100;
1056 			break;
1057 		case SPEED_10:
1058 			ctrl |= priv->hw->link.speed10;
1059 			break;
1060 		default:
1061 			return;
1062 		}
1063 	}
1064 
1065 	priv->speed = speed;
1066 
1067 	if (priv->plat->fix_mac_speed)
1068 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed, mode);
1069 
1070 	if (!duplex)
1071 		ctrl &= ~priv->hw->link.duplex;
1072 	else
1073 		ctrl |= priv->hw->link.duplex;
1074 
1075 	/* Flow Control operation */
1076 	if (rx_pause && tx_pause)
1077 		priv->flow_ctrl = FLOW_AUTO;
1078 	else if (rx_pause && !tx_pause)
1079 		priv->flow_ctrl = FLOW_RX;
1080 	else if (!rx_pause && tx_pause)
1081 		priv->flow_ctrl = FLOW_TX;
1082 	else
1083 		priv->flow_ctrl = FLOW_OFF;
1084 
1085 	stmmac_mac_flow_ctrl(priv, duplex);
1086 
1087 	if (ctrl != old_ctrl)
1088 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1089 
1090 	stmmac_mac_set(priv, priv->ioaddr, true);
1091 	if (phy && priv->dma_cap.eee) {
1092 		priv->eee_active =
1093 			phy_init_eee(phy, !(priv->plat->flags &
1094 				STMMAC_FLAG_RX_CLK_RUNS_IN_LPI)) >= 0;
1095 		priv->eee_enabled = stmmac_eee_init(priv);
1096 		priv->tx_lpi_enabled = priv->eee_enabled;
1097 		stmmac_set_eee_pls(priv, priv->hw, true);
1098 	}
1099 
1100 	if (priv->dma_cap.fpesel)
1101 		stmmac_fpe_link_state_handle(priv, true);
1102 
1103 	if (priv->plat->flags & STMMAC_FLAG_HWTSTAMP_CORRECT_LATENCY)
1104 		stmmac_hwtstamp_correct_latency(priv, priv);
1105 }
1106 
1107 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1108 	.mac_select_pcs = stmmac_mac_select_pcs,
1109 	.mac_config = stmmac_mac_config,
1110 	.mac_link_down = stmmac_mac_link_down,
1111 	.mac_link_up = stmmac_mac_link_up,
1112 };
1113 
1114 /**
1115  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1116  * @priv: driver private structure
1117  * Description: this is to verify if the HW supports the PCS.
1118  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1119  * configured for the TBI, RTBI, or SGMII PHY interface.
1120  */
1121 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1122 {
1123 	int interface = priv->plat->mac_interface;
1124 
1125 	if (priv->dma_cap.pcs) {
1126 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1127 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1128 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1129 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1130 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1131 			priv->hw->pcs = STMMAC_PCS_RGMII;
1132 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1133 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1134 			priv->hw->pcs = STMMAC_PCS_SGMII;
1135 		}
1136 	}
1137 }
1138 
1139 /**
1140  * stmmac_init_phy - PHY initialization
1141  * @dev: net device structure
1142  * Description: it initializes the driver's PHY state, and attaches the PHY
1143  * to the mac driver.
1144  *  Return value:
1145  *  0 on success
1146  */
1147 static int stmmac_init_phy(struct net_device *dev)
1148 {
1149 	struct stmmac_priv *priv = netdev_priv(dev);
1150 	struct fwnode_handle *phy_fwnode;
1151 	struct fwnode_handle *fwnode;
1152 	int ret;
1153 
1154 	if (!phylink_expects_phy(priv->phylink))
1155 		return 0;
1156 
1157 	fwnode = priv->plat->port_node;
1158 	if (!fwnode)
1159 		fwnode = dev_fwnode(priv->device);
1160 
1161 	if (fwnode)
1162 		phy_fwnode = fwnode_get_phy_node(fwnode);
1163 	else
1164 		phy_fwnode = NULL;
1165 
1166 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1167 	 * manually parse it
1168 	 */
1169 	if (!phy_fwnode || IS_ERR(phy_fwnode)) {
1170 		int addr = priv->plat->phy_addr;
1171 		struct phy_device *phydev;
1172 
1173 		if (addr < 0) {
1174 			netdev_err(priv->dev, "no phy found\n");
1175 			return -ENODEV;
1176 		}
1177 
1178 		phydev = mdiobus_get_phy(priv->mii, addr);
1179 		if (!phydev) {
1180 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1181 			return -ENODEV;
1182 		}
1183 
1184 		ret = phylink_connect_phy(priv->phylink, phydev);
1185 	} else {
1186 		fwnode_handle_put(phy_fwnode);
1187 		ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0);
1188 	}
1189 
1190 	if (!priv->plat->pmt) {
1191 		struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1192 
1193 		phylink_ethtool_get_wol(priv->phylink, &wol);
1194 		device_set_wakeup_capable(priv->device, !!wol.supported);
1195 		device_set_wakeup_enable(priv->device, !!wol.wolopts);
1196 	}
1197 
1198 	return ret;
1199 }
1200 
1201 static int stmmac_phy_setup(struct stmmac_priv *priv)
1202 {
1203 	struct stmmac_mdio_bus_data *mdio_bus_data;
1204 	int mode = priv->plat->phy_interface;
1205 	struct fwnode_handle *fwnode;
1206 	struct phylink *phylink;
1207 	int max_speed;
1208 
1209 	priv->phylink_config.dev = &priv->dev->dev;
1210 	priv->phylink_config.type = PHYLINK_NETDEV;
1211 	priv->phylink_config.mac_managed_pm = true;
1212 
1213 	mdio_bus_data = priv->plat->mdio_bus_data;
1214 	if (mdio_bus_data)
1215 		priv->phylink_config.ovr_an_inband =
1216 			mdio_bus_data->xpcs_an_inband;
1217 
1218 	/* Set the platform/firmware specified interface mode. Note, phylink
1219 	 * deals with the PHY interface mode, not the MAC interface mode.
1220 	 */
1221 	__set_bit(mode, priv->phylink_config.supported_interfaces);
1222 
1223 	/* If we have an xpcs, it defines which PHY interfaces are supported. */
1224 	if (priv->hw->xpcs)
1225 		xpcs_get_interfaces(priv->hw->xpcs,
1226 				    priv->phylink_config.supported_interfaces);
1227 
1228 	/* Get the MAC specific capabilities */
1229 	stmmac_mac_phylink_get_caps(priv);
1230 
1231 	priv->phylink_config.mac_capabilities = priv->hw->link.caps;
1232 
1233 	max_speed = priv->plat->max_speed;
1234 	if (max_speed)
1235 		phylink_limit_mac_speed(&priv->phylink_config, max_speed);
1236 
1237 	fwnode = priv->plat->port_node;
1238 	if (!fwnode)
1239 		fwnode = dev_fwnode(priv->device);
1240 
1241 	phylink = phylink_create(&priv->phylink_config, fwnode,
1242 				 mode, &stmmac_phylink_mac_ops);
1243 	if (IS_ERR(phylink))
1244 		return PTR_ERR(phylink);
1245 
1246 	priv->phylink = phylink;
1247 	return 0;
1248 }
1249 
1250 static void stmmac_display_rx_rings(struct stmmac_priv *priv,
1251 				    struct stmmac_dma_conf *dma_conf)
1252 {
1253 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1254 	unsigned int desc_size;
1255 	void *head_rx;
1256 	u32 queue;
1257 
1258 	/* Display RX rings */
1259 	for (queue = 0; queue < rx_cnt; queue++) {
1260 		struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1261 
1262 		pr_info("\tRX Queue %u rings\n", queue);
1263 
1264 		if (priv->extend_desc) {
1265 			head_rx = (void *)rx_q->dma_erx;
1266 			desc_size = sizeof(struct dma_extended_desc);
1267 		} else {
1268 			head_rx = (void *)rx_q->dma_rx;
1269 			desc_size = sizeof(struct dma_desc);
1270 		}
1271 
1272 		/* Display RX ring */
1273 		stmmac_display_ring(priv, head_rx, dma_conf->dma_rx_size, true,
1274 				    rx_q->dma_rx_phy, desc_size);
1275 	}
1276 }
1277 
1278 static void stmmac_display_tx_rings(struct stmmac_priv *priv,
1279 				    struct stmmac_dma_conf *dma_conf)
1280 {
1281 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1282 	unsigned int desc_size;
1283 	void *head_tx;
1284 	u32 queue;
1285 
1286 	/* Display TX rings */
1287 	for (queue = 0; queue < tx_cnt; queue++) {
1288 		struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1289 
1290 		pr_info("\tTX Queue %d rings\n", queue);
1291 
1292 		if (priv->extend_desc) {
1293 			head_tx = (void *)tx_q->dma_etx;
1294 			desc_size = sizeof(struct dma_extended_desc);
1295 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1296 			head_tx = (void *)tx_q->dma_entx;
1297 			desc_size = sizeof(struct dma_edesc);
1298 		} else {
1299 			head_tx = (void *)tx_q->dma_tx;
1300 			desc_size = sizeof(struct dma_desc);
1301 		}
1302 
1303 		stmmac_display_ring(priv, head_tx, dma_conf->dma_tx_size, false,
1304 				    tx_q->dma_tx_phy, desc_size);
1305 	}
1306 }
1307 
1308 static void stmmac_display_rings(struct stmmac_priv *priv,
1309 				 struct stmmac_dma_conf *dma_conf)
1310 {
1311 	/* Display RX ring */
1312 	stmmac_display_rx_rings(priv, dma_conf);
1313 
1314 	/* Display TX ring */
1315 	stmmac_display_tx_rings(priv, dma_conf);
1316 }
1317 
1318 static int stmmac_set_bfsize(int mtu, int bufsize)
1319 {
1320 	int ret = bufsize;
1321 
1322 	if (mtu >= BUF_SIZE_8KiB)
1323 		ret = BUF_SIZE_16KiB;
1324 	else if (mtu >= BUF_SIZE_4KiB)
1325 		ret = BUF_SIZE_8KiB;
1326 	else if (mtu >= BUF_SIZE_2KiB)
1327 		ret = BUF_SIZE_4KiB;
1328 	else if (mtu > DEFAULT_BUFSIZE)
1329 		ret = BUF_SIZE_2KiB;
1330 	else
1331 		ret = DEFAULT_BUFSIZE;
1332 
1333 	return ret;
1334 }
1335 
1336 /**
1337  * stmmac_clear_rx_descriptors - clear RX descriptors
1338  * @priv: driver private structure
1339  * @dma_conf: structure to take the dma data
1340  * @queue: RX queue index
1341  * Description: this function is called to clear the RX descriptors
1342  * in case of both basic and extended descriptors are used.
1343  */
1344 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv,
1345 					struct stmmac_dma_conf *dma_conf,
1346 					u32 queue)
1347 {
1348 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1349 	int i;
1350 
1351 	/* Clear the RX descriptors */
1352 	for (i = 0; i < dma_conf->dma_rx_size; i++)
1353 		if (priv->extend_desc)
1354 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1355 					priv->use_riwt, priv->mode,
1356 					(i == dma_conf->dma_rx_size - 1),
1357 					dma_conf->dma_buf_sz);
1358 		else
1359 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1360 					priv->use_riwt, priv->mode,
1361 					(i == dma_conf->dma_rx_size - 1),
1362 					dma_conf->dma_buf_sz);
1363 }
1364 
1365 /**
1366  * stmmac_clear_tx_descriptors - clear tx descriptors
1367  * @priv: driver private structure
1368  * @dma_conf: structure to take the dma data
1369  * @queue: TX queue index.
1370  * Description: this function is called to clear the TX descriptors
1371  * in case of both basic and extended descriptors are used.
1372  */
1373 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv,
1374 					struct stmmac_dma_conf *dma_conf,
1375 					u32 queue)
1376 {
1377 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1378 	int i;
1379 
1380 	/* Clear the TX descriptors */
1381 	for (i = 0; i < dma_conf->dma_tx_size; i++) {
1382 		int last = (i == (dma_conf->dma_tx_size - 1));
1383 		struct dma_desc *p;
1384 
1385 		if (priv->extend_desc)
1386 			p = &tx_q->dma_etx[i].basic;
1387 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1388 			p = &tx_q->dma_entx[i].basic;
1389 		else
1390 			p = &tx_q->dma_tx[i];
1391 
1392 		stmmac_init_tx_desc(priv, p, priv->mode, last);
1393 	}
1394 }
1395 
1396 /**
1397  * stmmac_clear_descriptors - clear descriptors
1398  * @priv: driver private structure
1399  * @dma_conf: structure to take the dma data
1400  * Description: this function is called to clear the TX and RX descriptors
1401  * in case of both basic and extended descriptors are used.
1402  */
1403 static void stmmac_clear_descriptors(struct stmmac_priv *priv,
1404 				     struct stmmac_dma_conf *dma_conf)
1405 {
1406 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1407 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1408 	u32 queue;
1409 
1410 	/* Clear the RX descriptors */
1411 	for (queue = 0; queue < rx_queue_cnt; queue++)
1412 		stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1413 
1414 	/* Clear the TX descriptors */
1415 	for (queue = 0; queue < tx_queue_cnt; queue++)
1416 		stmmac_clear_tx_descriptors(priv, dma_conf, queue);
1417 }
1418 
1419 /**
1420  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1421  * @priv: driver private structure
1422  * @dma_conf: structure to take the dma data
1423  * @p: descriptor pointer
1424  * @i: descriptor index
1425  * @flags: gfp flag
1426  * @queue: RX queue index
1427  * Description: this function is called to allocate a receive buffer, perform
1428  * the DMA mapping and init the descriptor.
1429  */
1430 static int stmmac_init_rx_buffers(struct stmmac_priv *priv,
1431 				  struct stmmac_dma_conf *dma_conf,
1432 				  struct dma_desc *p,
1433 				  int i, gfp_t flags, u32 queue)
1434 {
1435 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1436 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1437 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1438 
1439 	if (priv->dma_cap.host_dma_width <= 32)
1440 		gfp |= GFP_DMA32;
1441 
1442 	if (!buf->page) {
1443 		buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1444 		if (!buf->page)
1445 			return -ENOMEM;
1446 		buf->page_offset = stmmac_rx_offset(priv);
1447 	}
1448 
1449 	if (priv->sph && !buf->sec_page) {
1450 		buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1451 		if (!buf->sec_page)
1452 			return -ENOMEM;
1453 
1454 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1455 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1456 	} else {
1457 		buf->sec_page = NULL;
1458 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1459 	}
1460 
1461 	buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1462 
1463 	stmmac_set_desc_addr(priv, p, buf->addr);
1464 	if (dma_conf->dma_buf_sz == BUF_SIZE_16KiB)
1465 		stmmac_init_desc3(priv, p);
1466 
1467 	return 0;
1468 }
1469 
1470 /**
1471  * stmmac_free_rx_buffer - free RX dma buffers
1472  * @priv: private structure
1473  * @rx_q: RX queue
1474  * @i: buffer index.
1475  */
1476 static void stmmac_free_rx_buffer(struct stmmac_priv *priv,
1477 				  struct stmmac_rx_queue *rx_q,
1478 				  int i)
1479 {
1480 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1481 
1482 	if (buf->page)
1483 		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1484 	buf->page = NULL;
1485 
1486 	if (buf->sec_page)
1487 		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1488 	buf->sec_page = NULL;
1489 }
1490 
1491 /**
1492  * stmmac_free_tx_buffer - free RX dma buffers
1493  * @priv: private structure
1494  * @dma_conf: structure to take the dma data
1495  * @queue: RX queue index
1496  * @i: buffer index.
1497  */
1498 static void stmmac_free_tx_buffer(struct stmmac_priv *priv,
1499 				  struct stmmac_dma_conf *dma_conf,
1500 				  u32 queue, int i)
1501 {
1502 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1503 
1504 	if (tx_q->tx_skbuff_dma[i].buf &&
1505 	    tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1506 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1507 			dma_unmap_page(priv->device,
1508 				       tx_q->tx_skbuff_dma[i].buf,
1509 				       tx_q->tx_skbuff_dma[i].len,
1510 				       DMA_TO_DEVICE);
1511 		else
1512 			dma_unmap_single(priv->device,
1513 					 tx_q->tx_skbuff_dma[i].buf,
1514 					 tx_q->tx_skbuff_dma[i].len,
1515 					 DMA_TO_DEVICE);
1516 	}
1517 
1518 	if (tx_q->xdpf[i] &&
1519 	    (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1520 	     tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1521 		xdp_return_frame(tx_q->xdpf[i]);
1522 		tx_q->xdpf[i] = NULL;
1523 	}
1524 
1525 	if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1526 		tx_q->xsk_frames_done++;
1527 
1528 	if (tx_q->tx_skbuff[i] &&
1529 	    tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1530 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1531 		tx_q->tx_skbuff[i] = NULL;
1532 	}
1533 
1534 	tx_q->tx_skbuff_dma[i].buf = 0;
1535 	tx_q->tx_skbuff_dma[i].map_as_page = false;
1536 }
1537 
1538 /**
1539  * dma_free_rx_skbufs - free RX dma buffers
1540  * @priv: private structure
1541  * @dma_conf: structure to take the dma data
1542  * @queue: RX queue index
1543  */
1544 static void dma_free_rx_skbufs(struct stmmac_priv *priv,
1545 			       struct stmmac_dma_conf *dma_conf,
1546 			       u32 queue)
1547 {
1548 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1549 	int i;
1550 
1551 	for (i = 0; i < dma_conf->dma_rx_size; i++)
1552 		stmmac_free_rx_buffer(priv, rx_q, i);
1553 }
1554 
1555 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv,
1556 				   struct stmmac_dma_conf *dma_conf,
1557 				   u32 queue, gfp_t flags)
1558 {
1559 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1560 	int i;
1561 
1562 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1563 		struct dma_desc *p;
1564 		int ret;
1565 
1566 		if (priv->extend_desc)
1567 			p = &((rx_q->dma_erx + i)->basic);
1568 		else
1569 			p = rx_q->dma_rx + i;
1570 
1571 		ret = stmmac_init_rx_buffers(priv, dma_conf, p, i, flags,
1572 					     queue);
1573 		if (ret)
1574 			return ret;
1575 
1576 		rx_q->buf_alloc_num++;
1577 	}
1578 
1579 	return 0;
1580 }
1581 
1582 /**
1583  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1584  * @priv: private structure
1585  * @dma_conf: structure to take the dma data
1586  * @queue: RX queue index
1587  */
1588 static void dma_free_rx_xskbufs(struct stmmac_priv *priv,
1589 				struct stmmac_dma_conf *dma_conf,
1590 				u32 queue)
1591 {
1592 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1593 	int i;
1594 
1595 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1596 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1597 
1598 		if (!buf->xdp)
1599 			continue;
1600 
1601 		xsk_buff_free(buf->xdp);
1602 		buf->xdp = NULL;
1603 	}
1604 }
1605 
1606 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv,
1607 				      struct stmmac_dma_conf *dma_conf,
1608 				      u32 queue)
1609 {
1610 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1611 	int i;
1612 
1613 	/* struct stmmac_xdp_buff is using cb field (maximum size of 24 bytes)
1614 	 * in struct xdp_buff_xsk to stash driver specific information. Thus,
1615 	 * use this macro to make sure no size violations.
1616 	 */
1617 	XSK_CHECK_PRIV_TYPE(struct stmmac_xdp_buff);
1618 
1619 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1620 		struct stmmac_rx_buffer *buf;
1621 		dma_addr_t dma_addr;
1622 		struct dma_desc *p;
1623 
1624 		if (priv->extend_desc)
1625 			p = (struct dma_desc *)(rx_q->dma_erx + i);
1626 		else
1627 			p = rx_q->dma_rx + i;
1628 
1629 		buf = &rx_q->buf_pool[i];
1630 
1631 		buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1632 		if (!buf->xdp)
1633 			return -ENOMEM;
1634 
1635 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1636 		stmmac_set_desc_addr(priv, p, dma_addr);
1637 		rx_q->buf_alloc_num++;
1638 	}
1639 
1640 	return 0;
1641 }
1642 
1643 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1644 {
1645 	if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1646 		return NULL;
1647 
1648 	return xsk_get_pool_from_qid(priv->dev, queue);
1649 }
1650 
1651 /**
1652  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1653  * @priv: driver private structure
1654  * @dma_conf: structure to take the dma data
1655  * @queue: RX queue index
1656  * @flags: gfp flag.
1657  * Description: this function initializes the DMA RX descriptors
1658  * and allocates the socket buffers. It supports the chained and ring
1659  * modes.
1660  */
1661 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv,
1662 				    struct stmmac_dma_conf *dma_conf,
1663 				    u32 queue, gfp_t flags)
1664 {
1665 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1666 	int ret;
1667 
1668 	netif_dbg(priv, probe, priv->dev,
1669 		  "(%s) dma_rx_phy=0x%08x\n", __func__,
1670 		  (u32)rx_q->dma_rx_phy);
1671 
1672 	stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1673 
1674 	xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1675 
1676 	rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1677 
1678 	if (rx_q->xsk_pool) {
1679 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1680 						   MEM_TYPE_XSK_BUFF_POOL,
1681 						   NULL));
1682 		netdev_info(priv->dev,
1683 			    "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1684 			    rx_q->queue_index);
1685 		xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1686 	} else {
1687 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1688 						   MEM_TYPE_PAGE_POOL,
1689 						   rx_q->page_pool));
1690 		netdev_info(priv->dev,
1691 			    "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1692 			    rx_q->queue_index);
1693 	}
1694 
1695 	if (rx_q->xsk_pool) {
1696 		/* RX XDP ZC buffer pool may not be populated, e.g.
1697 		 * xdpsock TX-only.
1698 		 */
1699 		stmmac_alloc_rx_buffers_zc(priv, dma_conf, queue);
1700 	} else {
1701 		ret = stmmac_alloc_rx_buffers(priv, dma_conf, queue, flags);
1702 		if (ret < 0)
1703 			return -ENOMEM;
1704 	}
1705 
1706 	/* Setup the chained descriptor addresses */
1707 	if (priv->mode == STMMAC_CHAIN_MODE) {
1708 		if (priv->extend_desc)
1709 			stmmac_mode_init(priv, rx_q->dma_erx,
1710 					 rx_q->dma_rx_phy,
1711 					 dma_conf->dma_rx_size, 1);
1712 		else
1713 			stmmac_mode_init(priv, rx_q->dma_rx,
1714 					 rx_q->dma_rx_phy,
1715 					 dma_conf->dma_rx_size, 0);
1716 	}
1717 
1718 	return 0;
1719 }
1720 
1721 static int init_dma_rx_desc_rings(struct net_device *dev,
1722 				  struct stmmac_dma_conf *dma_conf,
1723 				  gfp_t flags)
1724 {
1725 	struct stmmac_priv *priv = netdev_priv(dev);
1726 	u32 rx_count = priv->plat->rx_queues_to_use;
1727 	int queue;
1728 	int ret;
1729 
1730 	/* RX INITIALIZATION */
1731 	netif_dbg(priv, probe, priv->dev,
1732 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1733 
1734 	for (queue = 0; queue < rx_count; queue++) {
1735 		ret = __init_dma_rx_desc_rings(priv, dma_conf, queue, flags);
1736 		if (ret)
1737 			goto err_init_rx_buffers;
1738 	}
1739 
1740 	return 0;
1741 
1742 err_init_rx_buffers:
1743 	while (queue >= 0) {
1744 		struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1745 
1746 		if (rx_q->xsk_pool)
1747 			dma_free_rx_xskbufs(priv, dma_conf, queue);
1748 		else
1749 			dma_free_rx_skbufs(priv, dma_conf, queue);
1750 
1751 		rx_q->buf_alloc_num = 0;
1752 		rx_q->xsk_pool = NULL;
1753 
1754 		queue--;
1755 	}
1756 
1757 	return ret;
1758 }
1759 
1760 /**
1761  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1762  * @priv: driver private structure
1763  * @dma_conf: structure to take the dma data
1764  * @queue: TX queue index
1765  * Description: this function initializes the DMA TX descriptors
1766  * and allocates the socket buffers. It supports the chained and ring
1767  * modes.
1768  */
1769 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv,
1770 				    struct stmmac_dma_conf *dma_conf,
1771 				    u32 queue)
1772 {
1773 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1774 	int i;
1775 
1776 	netif_dbg(priv, probe, priv->dev,
1777 		  "(%s) dma_tx_phy=0x%08x\n", __func__,
1778 		  (u32)tx_q->dma_tx_phy);
1779 
1780 	/* Setup the chained descriptor addresses */
1781 	if (priv->mode == STMMAC_CHAIN_MODE) {
1782 		if (priv->extend_desc)
1783 			stmmac_mode_init(priv, tx_q->dma_etx,
1784 					 tx_q->dma_tx_phy,
1785 					 dma_conf->dma_tx_size, 1);
1786 		else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1787 			stmmac_mode_init(priv, tx_q->dma_tx,
1788 					 tx_q->dma_tx_phy,
1789 					 dma_conf->dma_tx_size, 0);
1790 	}
1791 
1792 	tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1793 
1794 	for (i = 0; i < dma_conf->dma_tx_size; i++) {
1795 		struct dma_desc *p;
1796 
1797 		if (priv->extend_desc)
1798 			p = &((tx_q->dma_etx + i)->basic);
1799 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1800 			p = &((tx_q->dma_entx + i)->basic);
1801 		else
1802 			p = tx_q->dma_tx + i;
1803 
1804 		stmmac_clear_desc(priv, p);
1805 
1806 		tx_q->tx_skbuff_dma[i].buf = 0;
1807 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1808 		tx_q->tx_skbuff_dma[i].len = 0;
1809 		tx_q->tx_skbuff_dma[i].last_segment = false;
1810 		tx_q->tx_skbuff[i] = NULL;
1811 	}
1812 
1813 	return 0;
1814 }
1815 
1816 static int init_dma_tx_desc_rings(struct net_device *dev,
1817 				  struct stmmac_dma_conf *dma_conf)
1818 {
1819 	struct stmmac_priv *priv = netdev_priv(dev);
1820 	u32 tx_queue_cnt;
1821 	u32 queue;
1822 
1823 	tx_queue_cnt = priv->plat->tx_queues_to_use;
1824 
1825 	for (queue = 0; queue < tx_queue_cnt; queue++)
1826 		__init_dma_tx_desc_rings(priv, dma_conf, queue);
1827 
1828 	return 0;
1829 }
1830 
1831 /**
1832  * init_dma_desc_rings - init the RX/TX descriptor rings
1833  * @dev: net device structure
1834  * @dma_conf: structure to take the dma data
1835  * @flags: gfp flag.
1836  * Description: this function initializes the DMA RX/TX descriptors
1837  * and allocates the socket buffers. It supports the chained and ring
1838  * modes.
1839  */
1840 static int init_dma_desc_rings(struct net_device *dev,
1841 			       struct stmmac_dma_conf *dma_conf,
1842 			       gfp_t flags)
1843 {
1844 	struct stmmac_priv *priv = netdev_priv(dev);
1845 	int ret;
1846 
1847 	ret = init_dma_rx_desc_rings(dev, dma_conf, flags);
1848 	if (ret)
1849 		return ret;
1850 
1851 	ret = init_dma_tx_desc_rings(dev, dma_conf);
1852 
1853 	stmmac_clear_descriptors(priv, dma_conf);
1854 
1855 	if (netif_msg_hw(priv))
1856 		stmmac_display_rings(priv, dma_conf);
1857 
1858 	return ret;
1859 }
1860 
1861 /**
1862  * dma_free_tx_skbufs - free TX dma buffers
1863  * @priv: private structure
1864  * @dma_conf: structure to take the dma data
1865  * @queue: TX queue index
1866  */
1867 static void dma_free_tx_skbufs(struct stmmac_priv *priv,
1868 			       struct stmmac_dma_conf *dma_conf,
1869 			       u32 queue)
1870 {
1871 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1872 	int i;
1873 
1874 	tx_q->xsk_frames_done = 0;
1875 
1876 	for (i = 0; i < dma_conf->dma_tx_size; i++)
1877 		stmmac_free_tx_buffer(priv, dma_conf, queue, i);
1878 
1879 	if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1880 		xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1881 		tx_q->xsk_frames_done = 0;
1882 		tx_q->xsk_pool = NULL;
1883 	}
1884 }
1885 
1886 /**
1887  * stmmac_free_tx_skbufs - free TX skb buffers
1888  * @priv: private structure
1889  */
1890 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1891 {
1892 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1893 	u32 queue;
1894 
1895 	for (queue = 0; queue < tx_queue_cnt; queue++)
1896 		dma_free_tx_skbufs(priv, &priv->dma_conf, queue);
1897 }
1898 
1899 /**
1900  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1901  * @priv: private structure
1902  * @dma_conf: structure to take the dma data
1903  * @queue: RX queue index
1904  */
1905 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv,
1906 					 struct stmmac_dma_conf *dma_conf,
1907 					 u32 queue)
1908 {
1909 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1910 
1911 	/* Release the DMA RX socket buffers */
1912 	if (rx_q->xsk_pool)
1913 		dma_free_rx_xskbufs(priv, dma_conf, queue);
1914 	else
1915 		dma_free_rx_skbufs(priv, dma_conf, queue);
1916 
1917 	rx_q->buf_alloc_num = 0;
1918 	rx_q->xsk_pool = NULL;
1919 
1920 	/* Free DMA regions of consistent memory previously allocated */
1921 	if (!priv->extend_desc)
1922 		dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1923 				  sizeof(struct dma_desc),
1924 				  rx_q->dma_rx, rx_q->dma_rx_phy);
1925 	else
1926 		dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1927 				  sizeof(struct dma_extended_desc),
1928 				  rx_q->dma_erx, rx_q->dma_rx_phy);
1929 
1930 	if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1931 		xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1932 
1933 	kfree(rx_q->buf_pool);
1934 	if (rx_q->page_pool)
1935 		page_pool_destroy(rx_q->page_pool);
1936 }
1937 
1938 static void free_dma_rx_desc_resources(struct stmmac_priv *priv,
1939 				       struct stmmac_dma_conf *dma_conf)
1940 {
1941 	u32 rx_count = priv->plat->rx_queues_to_use;
1942 	u32 queue;
1943 
1944 	/* Free RX queue resources */
1945 	for (queue = 0; queue < rx_count; queue++)
1946 		__free_dma_rx_desc_resources(priv, dma_conf, queue);
1947 }
1948 
1949 /**
1950  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1951  * @priv: private structure
1952  * @dma_conf: structure to take the dma data
1953  * @queue: TX queue index
1954  */
1955 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv,
1956 					 struct stmmac_dma_conf *dma_conf,
1957 					 u32 queue)
1958 {
1959 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1960 	size_t size;
1961 	void *addr;
1962 
1963 	/* Release the DMA TX socket buffers */
1964 	dma_free_tx_skbufs(priv, dma_conf, queue);
1965 
1966 	if (priv->extend_desc) {
1967 		size = sizeof(struct dma_extended_desc);
1968 		addr = tx_q->dma_etx;
1969 	} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1970 		size = sizeof(struct dma_edesc);
1971 		addr = tx_q->dma_entx;
1972 	} else {
1973 		size = sizeof(struct dma_desc);
1974 		addr = tx_q->dma_tx;
1975 	}
1976 
1977 	size *= dma_conf->dma_tx_size;
1978 
1979 	dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1980 
1981 	kfree(tx_q->tx_skbuff_dma);
1982 	kfree(tx_q->tx_skbuff);
1983 }
1984 
1985 static void free_dma_tx_desc_resources(struct stmmac_priv *priv,
1986 				       struct stmmac_dma_conf *dma_conf)
1987 {
1988 	u32 tx_count = priv->plat->tx_queues_to_use;
1989 	u32 queue;
1990 
1991 	/* Free TX queue resources */
1992 	for (queue = 0; queue < tx_count; queue++)
1993 		__free_dma_tx_desc_resources(priv, dma_conf, queue);
1994 }
1995 
1996 /**
1997  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1998  * @priv: private structure
1999  * @dma_conf: structure to take the dma data
2000  * @queue: RX queue index
2001  * Description: according to which descriptor can be used (extend or basic)
2002  * this function allocates the resources for TX and RX paths. In case of
2003  * reception, for example, it pre-allocated the RX socket buffer in order to
2004  * allow zero-copy mechanism.
2005  */
2006 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
2007 					 struct stmmac_dma_conf *dma_conf,
2008 					 u32 queue)
2009 {
2010 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
2011 	struct stmmac_channel *ch = &priv->channel[queue];
2012 	bool xdp_prog = stmmac_xdp_is_enabled(priv);
2013 	struct page_pool_params pp_params = { 0 };
2014 	unsigned int num_pages;
2015 	unsigned int napi_id;
2016 	int ret;
2017 
2018 	rx_q->queue_index = queue;
2019 	rx_q->priv_data = priv;
2020 
2021 	pp_params.flags = PP_FLAG_DMA_MAP | (xdp_prog ? PP_FLAG_DMA_SYNC_DEV : 0);
2022 	pp_params.pool_size = dma_conf->dma_rx_size;
2023 	num_pages = DIV_ROUND_UP(dma_conf->dma_buf_sz, PAGE_SIZE);
2024 	pp_params.order = ilog2(num_pages);
2025 	pp_params.nid = dev_to_node(priv->device);
2026 	pp_params.dev = priv->device;
2027 	pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
2028 	pp_params.offset = stmmac_rx_offset(priv);
2029 	pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
2030 
2031 	rx_q->page_pool = page_pool_create(&pp_params);
2032 	if (IS_ERR(rx_q->page_pool)) {
2033 		ret = PTR_ERR(rx_q->page_pool);
2034 		rx_q->page_pool = NULL;
2035 		return ret;
2036 	}
2037 
2038 	rx_q->buf_pool = kcalloc(dma_conf->dma_rx_size,
2039 				 sizeof(*rx_q->buf_pool),
2040 				 GFP_KERNEL);
2041 	if (!rx_q->buf_pool)
2042 		return -ENOMEM;
2043 
2044 	if (priv->extend_desc) {
2045 		rx_q->dma_erx = dma_alloc_coherent(priv->device,
2046 						   dma_conf->dma_rx_size *
2047 						   sizeof(struct dma_extended_desc),
2048 						   &rx_q->dma_rx_phy,
2049 						   GFP_KERNEL);
2050 		if (!rx_q->dma_erx)
2051 			return -ENOMEM;
2052 
2053 	} else {
2054 		rx_q->dma_rx = dma_alloc_coherent(priv->device,
2055 						  dma_conf->dma_rx_size *
2056 						  sizeof(struct dma_desc),
2057 						  &rx_q->dma_rx_phy,
2058 						  GFP_KERNEL);
2059 		if (!rx_q->dma_rx)
2060 			return -ENOMEM;
2061 	}
2062 
2063 	if (stmmac_xdp_is_enabled(priv) &&
2064 	    test_bit(queue, priv->af_xdp_zc_qps))
2065 		napi_id = ch->rxtx_napi.napi_id;
2066 	else
2067 		napi_id = ch->rx_napi.napi_id;
2068 
2069 	ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2070 			       rx_q->queue_index,
2071 			       napi_id);
2072 	if (ret) {
2073 		netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2074 		return -EINVAL;
2075 	}
2076 
2077 	return 0;
2078 }
2079 
2080 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
2081 				       struct stmmac_dma_conf *dma_conf)
2082 {
2083 	u32 rx_count = priv->plat->rx_queues_to_use;
2084 	u32 queue;
2085 	int ret;
2086 
2087 	/* RX queues buffers and DMA */
2088 	for (queue = 0; queue < rx_count; queue++) {
2089 		ret = __alloc_dma_rx_desc_resources(priv, dma_conf, queue);
2090 		if (ret)
2091 			goto err_dma;
2092 	}
2093 
2094 	return 0;
2095 
2096 err_dma:
2097 	free_dma_rx_desc_resources(priv, dma_conf);
2098 
2099 	return ret;
2100 }
2101 
2102 /**
2103  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2104  * @priv: private structure
2105  * @dma_conf: structure to take the dma data
2106  * @queue: TX queue index
2107  * Description: according to which descriptor can be used (extend or basic)
2108  * this function allocates the resources for TX and RX paths. In case of
2109  * reception, for example, it pre-allocated the RX socket buffer in order to
2110  * allow zero-copy mechanism.
2111  */
2112 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2113 					 struct stmmac_dma_conf *dma_conf,
2114 					 u32 queue)
2115 {
2116 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
2117 	size_t size;
2118 	void *addr;
2119 
2120 	tx_q->queue_index = queue;
2121 	tx_q->priv_data = priv;
2122 
2123 	tx_q->tx_skbuff_dma = kcalloc(dma_conf->dma_tx_size,
2124 				      sizeof(*tx_q->tx_skbuff_dma),
2125 				      GFP_KERNEL);
2126 	if (!tx_q->tx_skbuff_dma)
2127 		return -ENOMEM;
2128 
2129 	tx_q->tx_skbuff = kcalloc(dma_conf->dma_tx_size,
2130 				  sizeof(struct sk_buff *),
2131 				  GFP_KERNEL);
2132 	if (!tx_q->tx_skbuff)
2133 		return -ENOMEM;
2134 
2135 	if (priv->extend_desc)
2136 		size = sizeof(struct dma_extended_desc);
2137 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2138 		size = sizeof(struct dma_edesc);
2139 	else
2140 		size = sizeof(struct dma_desc);
2141 
2142 	size *= dma_conf->dma_tx_size;
2143 
2144 	addr = dma_alloc_coherent(priv->device, size,
2145 				  &tx_q->dma_tx_phy, GFP_KERNEL);
2146 	if (!addr)
2147 		return -ENOMEM;
2148 
2149 	if (priv->extend_desc)
2150 		tx_q->dma_etx = addr;
2151 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2152 		tx_q->dma_entx = addr;
2153 	else
2154 		tx_q->dma_tx = addr;
2155 
2156 	return 0;
2157 }
2158 
2159 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2160 				       struct stmmac_dma_conf *dma_conf)
2161 {
2162 	u32 tx_count = priv->plat->tx_queues_to_use;
2163 	u32 queue;
2164 	int ret;
2165 
2166 	/* TX queues buffers and DMA */
2167 	for (queue = 0; queue < tx_count; queue++) {
2168 		ret = __alloc_dma_tx_desc_resources(priv, dma_conf, queue);
2169 		if (ret)
2170 			goto err_dma;
2171 	}
2172 
2173 	return 0;
2174 
2175 err_dma:
2176 	free_dma_tx_desc_resources(priv, dma_conf);
2177 	return ret;
2178 }
2179 
2180 /**
2181  * alloc_dma_desc_resources - alloc TX/RX resources.
2182  * @priv: private structure
2183  * @dma_conf: structure to take the dma data
2184  * Description: according to which descriptor can be used (extend or basic)
2185  * this function allocates the resources for TX and RX paths. In case of
2186  * reception, for example, it pre-allocated the RX socket buffer in order to
2187  * allow zero-copy mechanism.
2188  */
2189 static int alloc_dma_desc_resources(struct stmmac_priv *priv,
2190 				    struct stmmac_dma_conf *dma_conf)
2191 {
2192 	/* RX Allocation */
2193 	int ret = alloc_dma_rx_desc_resources(priv, dma_conf);
2194 
2195 	if (ret)
2196 		return ret;
2197 
2198 	ret = alloc_dma_tx_desc_resources(priv, dma_conf);
2199 
2200 	return ret;
2201 }
2202 
2203 /**
2204  * free_dma_desc_resources - free dma desc resources
2205  * @priv: private structure
2206  * @dma_conf: structure to take the dma data
2207  */
2208 static void free_dma_desc_resources(struct stmmac_priv *priv,
2209 				    struct stmmac_dma_conf *dma_conf)
2210 {
2211 	/* Release the DMA TX socket buffers */
2212 	free_dma_tx_desc_resources(priv, dma_conf);
2213 
2214 	/* Release the DMA RX socket buffers later
2215 	 * to ensure all pending XDP_TX buffers are returned.
2216 	 */
2217 	free_dma_rx_desc_resources(priv, dma_conf);
2218 }
2219 
2220 /**
2221  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2222  *  @priv: driver private structure
2223  *  Description: It is used for enabling the rx queues in the MAC
2224  */
2225 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2226 {
2227 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2228 	int queue;
2229 	u8 mode;
2230 
2231 	for (queue = 0; queue < rx_queues_count; queue++) {
2232 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2233 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2234 	}
2235 }
2236 
2237 /**
2238  * stmmac_start_rx_dma - start RX DMA channel
2239  * @priv: driver private structure
2240  * @chan: RX channel index
2241  * Description:
2242  * This starts a RX DMA channel
2243  */
2244 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2245 {
2246 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2247 	stmmac_start_rx(priv, priv->ioaddr, chan);
2248 }
2249 
2250 /**
2251  * stmmac_start_tx_dma - start TX DMA channel
2252  * @priv: driver private structure
2253  * @chan: TX channel index
2254  * Description:
2255  * This starts a TX DMA channel
2256  */
2257 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2258 {
2259 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2260 	stmmac_start_tx(priv, priv->ioaddr, chan);
2261 }
2262 
2263 /**
2264  * stmmac_stop_rx_dma - stop RX DMA channel
2265  * @priv: driver private structure
2266  * @chan: RX channel index
2267  * Description:
2268  * This stops a RX DMA channel
2269  */
2270 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2271 {
2272 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2273 	stmmac_stop_rx(priv, priv->ioaddr, chan);
2274 }
2275 
2276 /**
2277  * stmmac_stop_tx_dma - stop TX DMA channel
2278  * @priv: driver private structure
2279  * @chan: TX channel index
2280  * Description:
2281  * This stops a TX DMA channel
2282  */
2283 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2284 {
2285 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2286 	stmmac_stop_tx(priv, priv->ioaddr, chan);
2287 }
2288 
2289 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv)
2290 {
2291 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2292 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2293 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2294 	u32 chan;
2295 
2296 	for (chan = 0; chan < dma_csr_ch; chan++) {
2297 		struct stmmac_channel *ch = &priv->channel[chan];
2298 		unsigned long flags;
2299 
2300 		spin_lock_irqsave(&ch->lock, flags);
2301 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2302 		spin_unlock_irqrestore(&ch->lock, flags);
2303 	}
2304 }
2305 
2306 /**
2307  * stmmac_start_all_dma - start all RX and TX DMA channels
2308  * @priv: driver private structure
2309  * Description:
2310  * This starts all the RX and TX DMA channels
2311  */
2312 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2313 {
2314 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2315 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2316 	u32 chan = 0;
2317 
2318 	for (chan = 0; chan < rx_channels_count; chan++)
2319 		stmmac_start_rx_dma(priv, chan);
2320 
2321 	for (chan = 0; chan < tx_channels_count; chan++)
2322 		stmmac_start_tx_dma(priv, chan);
2323 }
2324 
2325 /**
2326  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2327  * @priv: driver private structure
2328  * Description:
2329  * This stops the RX and TX DMA channels
2330  */
2331 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2332 {
2333 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2334 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2335 	u32 chan = 0;
2336 
2337 	for (chan = 0; chan < rx_channels_count; chan++)
2338 		stmmac_stop_rx_dma(priv, chan);
2339 
2340 	for (chan = 0; chan < tx_channels_count; chan++)
2341 		stmmac_stop_tx_dma(priv, chan);
2342 }
2343 
2344 /**
2345  *  stmmac_dma_operation_mode - HW DMA operation mode
2346  *  @priv: driver private structure
2347  *  Description: it is used for configuring the DMA operation mode register in
2348  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2349  */
2350 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2351 {
2352 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2353 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2354 	int rxfifosz = priv->plat->rx_fifo_size;
2355 	int txfifosz = priv->plat->tx_fifo_size;
2356 	u32 txmode = 0;
2357 	u32 rxmode = 0;
2358 	u32 chan = 0;
2359 	u8 qmode = 0;
2360 
2361 	if (rxfifosz == 0)
2362 		rxfifosz = priv->dma_cap.rx_fifo_size;
2363 	if (txfifosz == 0)
2364 		txfifosz = priv->dma_cap.tx_fifo_size;
2365 
2366 	/* Adjust for real per queue fifo size */
2367 	rxfifosz /= rx_channels_count;
2368 	txfifosz /= tx_channels_count;
2369 
2370 	if (priv->plat->force_thresh_dma_mode) {
2371 		txmode = tc;
2372 		rxmode = tc;
2373 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2374 		/*
2375 		 * In case of GMAC, SF mode can be enabled
2376 		 * to perform the TX COE in HW. This depends on:
2377 		 * 1) TX COE if actually supported
2378 		 * 2) There is no bugged Jumbo frame support
2379 		 *    that needs to not insert csum in the TDES.
2380 		 */
2381 		txmode = SF_DMA_MODE;
2382 		rxmode = SF_DMA_MODE;
2383 		priv->xstats.threshold = SF_DMA_MODE;
2384 	} else {
2385 		txmode = tc;
2386 		rxmode = SF_DMA_MODE;
2387 	}
2388 
2389 	/* configure all channels */
2390 	for (chan = 0; chan < rx_channels_count; chan++) {
2391 		struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2392 		u32 buf_size;
2393 
2394 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2395 
2396 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2397 				rxfifosz, qmode);
2398 
2399 		if (rx_q->xsk_pool) {
2400 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2401 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2402 					      buf_size,
2403 					      chan);
2404 		} else {
2405 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2406 					      priv->dma_conf.dma_buf_sz,
2407 					      chan);
2408 		}
2409 	}
2410 
2411 	for (chan = 0; chan < tx_channels_count; chan++) {
2412 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2413 
2414 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2415 				txfifosz, qmode);
2416 	}
2417 }
2418 
2419 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2420 {
2421 	struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2422 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2423 	struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[queue];
2424 	struct xsk_buff_pool *pool = tx_q->xsk_pool;
2425 	unsigned int entry = tx_q->cur_tx;
2426 	struct dma_desc *tx_desc = NULL;
2427 	struct xdp_desc xdp_desc;
2428 	bool work_done = true;
2429 	u32 tx_set_ic_bit = 0;
2430 
2431 	/* Avoids TX time-out as we are sharing with slow path */
2432 	txq_trans_cond_update(nq);
2433 
2434 	budget = min(budget, stmmac_tx_avail(priv, queue));
2435 
2436 	while (budget-- > 0) {
2437 		dma_addr_t dma_addr;
2438 		bool set_ic;
2439 
2440 		/* We are sharing with slow path and stop XSK TX desc submission when
2441 		 * available TX ring is less than threshold.
2442 		 */
2443 		if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2444 		    !netif_carrier_ok(priv->dev)) {
2445 			work_done = false;
2446 			break;
2447 		}
2448 
2449 		if (!xsk_tx_peek_desc(pool, &xdp_desc))
2450 			break;
2451 
2452 		if (likely(priv->extend_desc))
2453 			tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2454 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2455 			tx_desc = &tx_q->dma_entx[entry].basic;
2456 		else
2457 			tx_desc = tx_q->dma_tx + entry;
2458 
2459 		dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2460 		xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2461 
2462 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2463 
2464 		/* To return XDP buffer to XSK pool, we simple call
2465 		 * xsk_tx_completed(), so we don't need to fill up
2466 		 * 'buf' and 'xdpf'.
2467 		 */
2468 		tx_q->tx_skbuff_dma[entry].buf = 0;
2469 		tx_q->xdpf[entry] = NULL;
2470 
2471 		tx_q->tx_skbuff_dma[entry].map_as_page = false;
2472 		tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2473 		tx_q->tx_skbuff_dma[entry].last_segment = true;
2474 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2475 
2476 		stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2477 
2478 		tx_q->tx_count_frames++;
2479 
2480 		if (!priv->tx_coal_frames[queue])
2481 			set_ic = false;
2482 		else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2483 			set_ic = true;
2484 		else
2485 			set_ic = false;
2486 
2487 		if (set_ic) {
2488 			tx_q->tx_count_frames = 0;
2489 			stmmac_set_tx_ic(priv, tx_desc);
2490 			tx_set_ic_bit++;
2491 		}
2492 
2493 		stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2494 				       true, priv->mode, true, true,
2495 				       xdp_desc.len);
2496 
2497 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
2498 
2499 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
2500 		entry = tx_q->cur_tx;
2501 	}
2502 	u64_stats_update_begin(&txq_stats->napi_syncp);
2503 	u64_stats_add(&txq_stats->napi.tx_set_ic_bit, tx_set_ic_bit);
2504 	u64_stats_update_end(&txq_stats->napi_syncp);
2505 
2506 	if (tx_desc) {
2507 		stmmac_flush_tx_descriptors(priv, queue);
2508 		xsk_tx_release(pool);
2509 	}
2510 
2511 	/* Return true if all of the 3 conditions are met
2512 	 *  a) TX Budget is still available
2513 	 *  b) work_done = true when XSK TX desc peek is empty (no more
2514 	 *     pending XSK TX for transmission)
2515 	 */
2516 	return !!budget && work_done;
2517 }
2518 
2519 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
2520 {
2521 	if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
2522 		tc += 64;
2523 
2524 		if (priv->plat->force_thresh_dma_mode)
2525 			stmmac_set_dma_operation_mode(priv, tc, tc, chan);
2526 		else
2527 			stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
2528 						      chan);
2529 
2530 		priv->xstats.threshold = tc;
2531 	}
2532 }
2533 
2534 /**
2535  * stmmac_tx_clean - to manage the transmission completion
2536  * @priv: driver private structure
2537  * @budget: napi budget limiting this functions packet handling
2538  * @queue: TX queue index
2539  * Description: it reclaims the transmit resources after transmission completes.
2540  */
2541 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2542 {
2543 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2544 	struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[queue];
2545 	unsigned int bytes_compl = 0, pkts_compl = 0;
2546 	unsigned int entry, xmits = 0, count = 0;
2547 	u32 tx_packets = 0, tx_errors = 0;
2548 
2549 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2550 
2551 	tx_q->xsk_frames_done = 0;
2552 
2553 	entry = tx_q->dirty_tx;
2554 
2555 	/* Try to clean all TX complete frame in 1 shot */
2556 	while ((entry != tx_q->cur_tx) && count < priv->dma_conf.dma_tx_size) {
2557 		struct xdp_frame *xdpf;
2558 		struct sk_buff *skb;
2559 		struct dma_desc *p;
2560 		int status;
2561 
2562 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2563 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2564 			xdpf = tx_q->xdpf[entry];
2565 			skb = NULL;
2566 		} else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2567 			xdpf = NULL;
2568 			skb = tx_q->tx_skbuff[entry];
2569 		} else {
2570 			xdpf = NULL;
2571 			skb = NULL;
2572 		}
2573 
2574 		if (priv->extend_desc)
2575 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
2576 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2577 			p = &tx_q->dma_entx[entry].basic;
2578 		else
2579 			p = tx_q->dma_tx + entry;
2580 
2581 		status = stmmac_tx_status(priv,	&priv->xstats, p, priv->ioaddr);
2582 		/* Check if the descriptor is owned by the DMA */
2583 		if (unlikely(status & tx_dma_own))
2584 			break;
2585 
2586 		count++;
2587 
2588 		/* Make sure descriptor fields are read after reading
2589 		 * the own bit.
2590 		 */
2591 		dma_rmb();
2592 
2593 		/* Just consider the last segment and ...*/
2594 		if (likely(!(status & tx_not_ls))) {
2595 			/* ... verify the status error condition */
2596 			if (unlikely(status & tx_err)) {
2597 				tx_errors++;
2598 				if (unlikely(status & tx_err_bump_tc))
2599 					stmmac_bump_dma_threshold(priv, queue);
2600 			} else {
2601 				tx_packets++;
2602 			}
2603 			if (skb)
2604 				stmmac_get_tx_hwtstamp(priv, p, skb);
2605 		}
2606 
2607 		if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2608 			   tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2609 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2610 				dma_unmap_page(priv->device,
2611 					       tx_q->tx_skbuff_dma[entry].buf,
2612 					       tx_q->tx_skbuff_dma[entry].len,
2613 					       DMA_TO_DEVICE);
2614 			else
2615 				dma_unmap_single(priv->device,
2616 						 tx_q->tx_skbuff_dma[entry].buf,
2617 						 tx_q->tx_skbuff_dma[entry].len,
2618 						 DMA_TO_DEVICE);
2619 			tx_q->tx_skbuff_dma[entry].buf = 0;
2620 			tx_q->tx_skbuff_dma[entry].len = 0;
2621 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2622 		}
2623 
2624 		stmmac_clean_desc3(priv, tx_q, p);
2625 
2626 		tx_q->tx_skbuff_dma[entry].last_segment = false;
2627 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2628 
2629 		if (xdpf &&
2630 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2631 			xdp_return_frame_rx_napi(xdpf);
2632 			tx_q->xdpf[entry] = NULL;
2633 		}
2634 
2635 		if (xdpf &&
2636 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2637 			xdp_return_frame(xdpf);
2638 			tx_q->xdpf[entry] = NULL;
2639 		}
2640 
2641 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2642 			tx_q->xsk_frames_done++;
2643 
2644 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2645 			if (likely(skb)) {
2646 				pkts_compl++;
2647 				bytes_compl += skb->len;
2648 				dev_consume_skb_any(skb);
2649 				tx_q->tx_skbuff[entry] = NULL;
2650 			}
2651 		}
2652 
2653 		stmmac_release_tx_desc(priv, p, priv->mode);
2654 
2655 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
2656 	}
2657 	tx_q->dirty_tx = entry;
2658 
2659 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2660 				  pkts_compl, bytes_compl);
2661 
2662 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2663 								queue))) &&
2664 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2665 
2666 		netif_dbg(priv, tx_done, priv->dev,
2667 			  "%s: restart transmit\n", __func__);
2668 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2669 	}
2670 
2671 	if (tx_q->xsk_pool) {
2672 		bool work_done;
2673 
2674 		if (tx_q->xsk_frames_done)
2675 			xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2676 
2677 		if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2678 			xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2679 
2680 		/* For XSK TX, we try to send as many as possible.
2681 		 * If XSK work done (XSK TX desc empty and budget still
2682 		 * available), return "budget - 1" to reenable TX IRQ.
2683 		 * Else, return "budget" to make NAPI continue polling.
2684 		 */
2685 		work_done = stmmac_xdp_xmit_zc(priv, queue,
2686 					       STMMAC_XSK_TX_BUDGET_MAX);
2687 		if (work_done)
2688 			xmits = budget - 1;
2689 		else
2690 			xmits = budget;
2691 	}
2692 
2693 	if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2694 	    priv->eee_sw_timer_en) {
2695 		if (stmmac_enable_eee_mode(priv))
2696 			mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2697 	}
2698 
2699 	/* We still have pending packets, let's call for a new scheduling */
2700 	if (tx_q->dirty_tx != tx_q->cur_tx)
2701 		stmmac_tx_timer_arm(priv, queue);
2702 
2703 	u64_stats_update_begin(&txq_stats->napi_syncp);
2704 	u64_stats_add(&txq_stats->napi.tx_packets, tx_packets);
2705 	u64_stats_add(&txq_stats->napi.tx_pkt_n, tx_packets);
2706 	u64_stats_inc(&txq_stats->napi.tx_clean);
2707 	u64_stats_update_end(&txq_stats->napi_syncp);
2708 
2709 	priv->xstats.tx_errors += tx_errors;
2710 
2711 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2712 
2713 	/* Combine decisions from TX clean and XSK TX */
2714 	return max(count, xmits);
2715 }
2716 
2717 /**
2718  * stmmac_tx_err - to manage the tx error
2719  * @priv: driver private structure
2720  * @chan: channel index
2721  * Description: it cleans the descriptors and restarts the transmission
2722  * in case of transmission errors.
2723  */
2724 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2725 {
2726 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2727 
2728 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2729 
2730 	stmmac_stop_tx_dma(priv, chan);
2731 	dma_free_tx_skbufs(priv, &priv->dma_conf, chan);
2732 	stmmac_clear_tx_descriptors(priv, &priv->dma_conf, chan);
2733 	stmmac_reset_tx_queue(priv, chan);
2734 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2735 			    tx_q->dma_tx_phy, chan);
2736 	stmmac_start_tx_dma(priv, chan);
2737 
2738 	priv->xstats.tx_errors++;
2739 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2740 }
2741 
2742 /**
2743  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2744  *  @priv: driver private structure
2745  *  @txmode: TX operating mode
2746  *  @rxmode: RX operating mode
2747  *  @chan: channel index
2748  *  Description: it is used for configuring of the DMA operation mode in
2749  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2750  *  mode.
2751  */
2752 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2753 					  u32 rxmode, u32 chan)
2754 {
2755 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2756 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2757 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2758 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2759 	int rxfifosz = priv->plat->rx_fifo_size;
2760 	int txfifosz = priv->plat->tx_fifo_size;
2761 
2762 	if (rxfifosz == 0)
2763 		rxfifosz = priv->dma_cap.rx_fifo_size;
2764 	if (txfifosz == 0)
2765 		txfifosz = priv->dma_cap.tx_fifo_size;
2766 
2767 	/* Adjust for real per queue fifo size */
2768 	rxfifosz /= rx_channels_count;
2769 	txfifosz /= tx_channels_count;
2770 
2771 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2772 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2773 }
2774 
2775 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2776 {
2777 	int ret;
2778 
2779 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2780 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2781 	if (ret && (ret != -EINVAL)) {
2782 		stmmac_global_err(priv);
2783 		return true;
2784 	}
2785 
2786 	return false;
2787 }
2788 
2789 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2790 {
2791 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2792 						 &priv->xstats, chan, dir);
2793 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2794 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2795 	struct stmmac_channel *ch = &priv->channel[chan];
2796 	struct napi_struct *rx_napi;
2797 	struct napi_struct *tx_napi;
2798 	unsigned long flags;
2799 
2800 	rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2801 	tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2802 
2803 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2804 		if (napi_schedule_prep(rx_napi)) {
2805 			spin_lock_irqsave(&ch->lock, flags);
2806 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2807 			spin_unlock_irqrestore(&ch->lock, flags);
2808 			__napi_schedule(rx_napi);
2809 		}
2810 	}
2811 
2812 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2813 		if (napi_schedule_prep(tx_napi)) {
2814 			spin_lock_irqsave(&ch->lock, flags);
2815 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2816 			spin_unlock_irqrestore(&ch->lock, flags);
2817 			__napi_schedule(tx_napi);
2818 		}
2819 	}
2820 
2821 	return status;
2822 }
2823 
2824 /**
2825  * stmmac_dma_interrupt - DMA ISR
2826  * @priv: driver private structure
2827  * Description: this is the DMA ISR. It is called by the main ISR.
2828  * It calls the dwmac dma routine and schedule poll method in case of some
2829  * work can be done.
2830  */
2831 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2832 {
2833 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2834 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2835 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2836 				tx_channel_count : rx_channel_count;
2837 	u32 chan;
2838 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2839 
2840 	/* Make sure we never check beyond our status buffer. */
2841 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2842 		channels_to_check = ARRAY_SIZE(status);
2843 
2844 	for (chan = 0; chan < channels_to_check; chan++)
2845 		status[chan] = stmmac_napi_check(priv, chan,
2846 						 DMA_DIR_RXTX);
2847 
2848 	for (chan = 0; chan < tx_channel_count; chan++) {
2849 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2850 			/* Try to bump up the dma threshold on this failure */
2851 			stmmac_bump_dma_threshold(priv, chan);
2852 		} else if (unlikely(status[chan] == tx_hard_error)) {
2853 			stmmac_tx_err(priv, chan);
2854 		}
2855 	}
2856 }
2857 
2858 /**
2859  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2860  * @priv: driver private structure
2861  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2862  */
2863 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2864 {
2865 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2866 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2867 
2868 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2869 
2870 	if (priv->dma_cap.rmon) {
2871 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2872 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2873 	} else
2874 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2875 }
2876 
2877 /**
2878  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2879  * @priv: driver private structure
2880  * Description:
2881  *  new GMAC chip generations have a new register to indicate the
2882  *  presence of the optional feature/functions.
2883  *  This can be also used to override the value passed through the
2884  *  platform and necessary for old MAC10/100 and GMAC chips.
2885  */
2886 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2887 {
2888 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2889 }
2890 
2891 /**
2892  * stmmac_check_ether_addr - check if the MAC addr is valid
2893  * @priv: driver private structure
2894  * Description:
2895  * it is to verify if the MAC address is valid, in case of failures it
2896  * generates a random MAC address
2897  */
2898 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2899 {
2900 	u8 addr[ETH_ALEN];
2901 
2902 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2903 		stmmac_get_umac_addr(priv, priv->hw, addr, 0);
2904 		if (is_valid_ether_addr(addr))
2905 			eth_hw_addr_set(priv->dev, addr);
2906 		else
2907 			eth_hw_addr_random(priv->dev);
2908 		dev_info(priv->device, "device MAC address %pM\n",
2909 			 priv->dev->dev_addr);
2910 	}
2911 }
2912 
2913 /**
2914  * stmmac_init_dma_engine - DMA init.
2915  * @priv: driver private structure
2916  * Description:
2917  * It inits the DMA invoking the specific MAC/GMAC callback.
2918  * Some DMA parameters can be passed from the platform;
2919  * in case of these are not passed a default is kept for the MAC or GMAC.
2920  */
2921 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2922 {
2923 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2924 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2925 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2926 	struct stmmac_rx_queue *rx_q;
2927 	struct stmmac_tx_queue *tx_q;
2928 	u32 chan = 0;
2929 	int atds = 0;
2930 	int ret = 0;
2931 
2932 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2933 		dev_err(priv->device, "Invalid DMA configuration\n");
2934 		return -EINVAL;
2935 	}
2936 
2937 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2938 		atds = 1;
2939 
2940 	ret = stmmac_reset(priv, priv->ioaddr);
2941 	if (ret) {
2942 		dev_err(priv->device, "Failed to reset the dma\n");
2943 		return ret;
2944 	}
2945 
2946 	/* DMA Configuration */
2947 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2948 
2949 	if (priv->plat->axi)
2950 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2951 
2952 	/* DMA CSR Channel configuration */
2953 	for (chan = 0; chan < dma_csr_ch; chan++) {
2954 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2955 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2956 	}
2957 
2958 	/* DMA RX Channel Configuration */
2959 	for (chan = 0; chan < rx_channels_count; chan++) {
2960 		rx_q = &priv->dma_conf.rx_queue[chan];
2961 
2962 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2963 				    rx_q->dma_rx_phy, chan);
2964 
2965 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2966 				     (rx_q->buf_alloc_num *
2967 				      sizeof(struct dma_desc));
2968 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2969 				       rx_q->rx_tail_addr, chan);
2970 	}
2971 
2972 	/* DMA TX Channel Configuration */
2973 	for (chan = 0; chan < tx_channels_count; chan++) {
2974 		tx_q = &priv->dma_conf.tx_queue[chan];
2975 
2976 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2977 				    tx_q->dma_tx_phy, chan);
2978 
2979 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2980 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2981 				       tx_q->tx_tail_addr, chan);
2982 	}
2983 
2984 	return ret;
2985 }
2986 
2987 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2988 {
2989 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2990 	u32 tx_coal_timer = priv->tx_coal_timer[queue];
2991 
2992 	if (!tx_coal_timer)
2993 		return;
2994 
2995 	hrtimer_start(&tx_q->txtimer,
2996 		      STMMAC_COAL_TIMER(tx_coal_timer),
2997 		      HRTIMER_MODE_REL);
2998 }
2999 
3000 /**
3001  * stmmac_tx_timer - mitigation sw timer for tx.
3002  * @t: data pointer
3003  * Description:
3004  * This is the timer handler to directly invoke the stmmac_tx_clean.
3005  */
3006 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
3007 {
3008 	struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
3009 	struct stmmac_priv *priv = tx_q->priv_data;
3010 	struct stmmac_channel *ch;
3011 	struct napi_struct *napi;
3012 
3013 	ch = &priv->channel[tx_q->queue_index];
3014 	napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
3015 
3016 	if (likely(napi_schedule_prep(napi))) {
3017 		unsigned long flags;
3018 
3019 		spin_lock_irqsave(&ch->lock, flags);
3020 		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
3021 		spin_unlock_irqrestore(&ch->lock, flags);
3022 		__napi_schedule(napi);
3023 	}
3024 
3025 	return HRTIMER_NORESTART;
3026 }
3027 
3028 /**
3029  * stmmac_init_coalesce - init mitigation options.
3030  * @priv: driver private structure
3031  * Description:
3032  * This inits the coalesce parameters: i.e. timer rate,
3033  * timer handler and default threshold used for enabling the
3034  * interrupt on completion bit.
3035  */
3036 static void stmmac_init_coalesce(struct stmmac_priv *priv)
3037 {
3038 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
3039 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
3040 	u32 chan;
3041 
3042 	for (chan = 0; chan < tx_channel_count; chan++) {
3043 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3044 
3045 		priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
3046 		priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
3047 
3048 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3049 		tx_q->txtimer.function = stmmac_tx_timer;
3050 	}
3051 
3052 	for (chan = 0; chan < rx_channel_count; chan++)
3053 		priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
3054 }
3055 
3056 static void stmmac_set_rings_length(struct stmmac_priv *priv)
3057 {
3058 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
3059 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
3060 	u32 chan;
3061 
3062 	/* set TX ring length */
3063 	for (chan = 0; chan < tx_channels_count; chan++)
3064 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
3065 				       (priv->dma_conf.dma_tx_size - 1), chan);
3066 
3067 	/* set RX ring length */
3068 	for (chan = 0; chan < rx_channels_count; chan++)
3069 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
3070 				       (priv->dma_conf.dma_rx_size - 1), chan);
3071 }
3072 
3073 /**
3074  *  stmmac_set_tx_queue_weight - Set TX queue weight
3075  *  @priv: driver private structure
3076  *  Description: It is used for setting TX queues weight
3077  */
3078 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
3079 {
3080 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3081 	u32 weight;
3082 	u32 queue;
3083 
3084 	for (queue = 0; queue < tx_queues_count; queue++) {
3085 		weight = priv->plat->tx_queues_cfg[queue].weight;
3086 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
3087 	}
3088 }
3089 
3090 /**
3091  *  stmmac_configure_cbs - Configure CBS in TX queue
3092  *  @priv: driver private structure
3093  *  Description: It is used for configuring CBS in AVB TX queues
3094  */
3095 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3096 {
3097 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3098 	u32 mode_to_use;
3099 	u32 queue;
3100 
3101 	/* queue 0 is reserved for legacy traffic */
3102 	for (queue = 1; queue < tx_queues_count; queue++) {
3103 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3104 		if (mode_to_use == MTL_QUEUE_DCB)
3105 			continue;
3106 
3107 		stmmac_config_cbs(priv, priv->hw,
3108 				priv->plat->tx_queues_cfg[queue].send_slope,
3109 				priv->plat->tx_queues_cfg[queue].idle_slope,
3110 				priv->plat->tx_queues_cfg[queue].high_credit,
3111 				priv->plat->tx_queues_cfg[queue].low_credit,
3112 				queue);
3113 	}
3114 }
3115 
3116 /**
3117  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3118  *  @priv: driver private structure
3119  *  Description: It is used for mapping RX queues to RX dma channels
3120  */
3121 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3122 {
3123 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3124 	u32 queue;
3125 	u32 chan;
3126 
3127 	for (queue = 0; queue < rx_queues_count; queue++) {
3128 		chan = priv->plat->rx_queues_cfg[queue].chan;
3129 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3130 	}
3131 }
3132 
3133 /**
3134  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3135  *  @priv: driver private structure
3136  *  Description: It is used for configuring the RX Queue Priority
3137  */
3138 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3139 {
3140 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3141 	u32 queue;
3142 	u32 prio;
3143 
3144 	for (queue = 0; queue < rx_queues_count; queue++) {
3145 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
3146 			continue;
3147 
3148 		prio = priv->plat->rx_queues_cfg[queue].prio;
3149 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3150 	}
3151 }
3152 
3153 /**
3154  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3155  *  @priv: driver private structure
3156  *  Description: It is used for configuring the TX Queue Priority
3157  */
3158 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3159 {
3160 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3161 	u32 queue;
3162 	u32 prio;
3163 
3164 	for (queue = 0; queue < tx_queues_count; queue++) {
3165 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
3166 			continue;
3167 
3168 		prio = priv->plat->tx_queues_cfg[queue].prio;
3169 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3170 	}
3171 }
3172 
3173 /**
3174  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3175  *  @priv: driver private structure
3176  *  Description: It is used for configuring the RX queue routing
3177  */
3178 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3179 {
3180 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3181 	u32 queue;
3182 	u8 packet;
3183 
3184 	for (queue = 0; queue < rx_queues_count; queue++) {
3185 		/* no specific packet type routing specified for the queue */
3186 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3187 			continue;
3188 
3189 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3190 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3191 	}
3192 }
3193 
3194 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3195 {
3196 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3197 		priv->rss.enable = false;
3198 		return;
3199 	}
3200 
3201 	if (priv->dev->features & NETIF_F_RXHASH)
3202 		priv->rss.enable = true;
3203 	else
3204 		priv->rss.enable = false;
3205 
3206 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
3207 			     priv->plat->rx_queues_to_use);
3208 }
3209 
3210 /**
3211  *  stmmac_mtl_configuration - Configure MTL
3212  *  @priv: driver private structure
3213  *  Description: It is used for configurring MTL
3214  */
3215 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3216 {
3217 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3218 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3219 
3220 	if (tx_queues_count > 1)
3221 		stmmac_set_tx_queue_weight(priv);
3222 
3223 	/* Configure MTL RX algorithms */
3224 	if (rx_queues_count > 1)
3225 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3226 				priv->plat->rx_sched_algorithm);
3227 
3228 	/* Configure MTL TX algorithms */
3229 	if (tx_queues_count > 1)
3230 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3231 				priv->plat->tx_sched_algorithm);
3232 
3233 	/* Configure CBS in AVB TX queues */
3234 	if (tx_queues_count > 1)
3235 		stmmac_configure_cbs(priv);
3236 
3237 	/* Map RX MTL to DMA channels */
3238 	stmmac_rx_queue_dma_chan_map(priv);
3239 
3240 	/* Enable MAC RX Queues */
3241 	stmmac_mac_enable_rx_queues(priv);
3242 
3243 	/* Set RX priorities */
3244 	if (rx_queues_count > 1)
3245 		stmmac_mac_config_rx_queues_prio(priv);
3246 
3247 	/* Set TX priorities */
3248 	if (tx_queues_count > 1)
3249 		stmmac_mac_config_tx_queues_prio(priv);
3250 
3251 	/* Set RX routing */
3252 	if (rx_queues_count > 1)
3253 		stmmac_mac_config_rx_queues_routing(priv);
3254 
3255 	/* Receive Side Scaling */
3256 	if (rx_queues_count > 1)
3257 		stmmac_mac_config_rss(priv);
3258 }
3259 
3260 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3261 {
3262 	if (priv->dma_cap.asp) {
3263 		netdev_info(priv->dev, "Enabling Safety Features\n");
3264 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3265 					  priv->plat->safety_feat_cfg);
3266 	} else {
3267 		netdev_info(priv->dev, "No Safety Features support found\n");
3268 	}
3269 }
3270 
3271 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3272 {
3273 	char *name;
3274 
3275 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3276 	clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3277 
3278 	name = priv->wq_name;
3279 	sprintf(name, "%s-fpe", priv->dev->name);
3280 
3281 	priv->fpe_wq = create_singlethread_workqueue(name);
3282 	if (!priv->fpe_wq) {
3283 		netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3284 
3285 		return -ENOMEM;
3286 	}
3287 	netdev_info(priv->dev, "FPE workqueue start");
3288 
3289 	return 0;
3290 }
3291 
3292 /**
3293  * stmmac_hw_setup - setup mac in a usable state.
3294  *  @dev : pointer to the device structure.
3295  *  @ptp_register: register PTP if set
3296  *  Description:
3297  *  this is the main function to setup the HW in a usable state because the
3298  *  dma engine is reset, the core registers are configured (e.g. AXI,
3299  *  Checksum features, timers). The DMA is ready to start receiving and
3300  *  transmitting.
3301  *  Return value:
3302  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3303  *  file on failure.
3304  */
3305 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
3306 {
3307 	struct stmmac_priv *priv = netdev_priv(dev);
3308 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3309 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3310 	bool sph_en;
3311 	u32 chan;
3312 	int ret;
3313 
3314 	/* DMA initialization and SW reset */
3315 	ret = stmmac_init_dma_engine(priv);
3316 	if (ret < 0) {
3317 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3318 			   __func__);
3319 		return ret;
3320 	}
3321 
3322 	/* Copy the MAC addr into the HW  */
3323 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3324 
3325 	/* PS and related bits will be programmed according to the speed */
3326 	if (priv->hw->pcs) {
3327 		int speed = priv->plat->mac_port_sel_speed;
3328 
3329 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
3330 		    (speed == SPEED_1000)) {
3331 			priv->hw->ps = speed;
3332 		} else {
3333 			dev_warn(priv->device, "invalid port speed\n");
3334 			priv->hw->ps = 0;
3335 		}
3336 	}
3337 
3338 	/* Initialize the MAC Core */
3339 	stmmac_core_init(priv, priv->hw, dev);
3340 
3341 	/* Initialize MTL*/
3342 	stmmac_mtl_configuration(priv);
3343 
3344 	/* Initialize Safety Features */
3345 	stmmac_safety_feat_configuration(priv);
3346 
3347 	ret = stmmac_rx_ipc(priv, priv->hw);
3348 	if (!ret) {
3349 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3350 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3351 		priv->hw->rx_csum = 0;
3352 	}
3353 
3354 	/* Enable the MAC Rx/Tx */
3355 	stmmac_mac_set(priv, priv->ioaddr, true);
3356 
3357 	/* Set the HW DMA mode and the COE */
3358 	stmmac_dma_operation_mode(priv);
3359 
3360 	stmmac_mmc_setup(priv);
3361 
3362 	if (ptp_register) {
3363 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3364 		if (ret < 0)
3365 			netdev_warn(priv->dev,
3366 				    "failed to enable PTP reference clock: %pe\n",
3367 				    ERR_PTR(ret));
3368 	}
3369 
3370 	ret = stmmac_init_ptp(priv);
3371 	if (ret == -EOPNOTSUPP)
3372 		netdev_info(priv->dev, "PTP not supported by HW\n");
3373 	else if (ret)
3374 		netdev_warn(priv->dev, "PTP init failed\n");
3375 	else if (ptp_register)
3376 		stmmac_ptp_register(priv);
3377 
3378 	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3379 
3380 	/* Convert the timer from msec to usec */
3381 	if (!priv->tx_lpi_timer)
3382 		priv->tx_lpi_timer = eee_timer * 1000;
3383 
3384 	if (priv->use_riwt) {
3385 		u32 queue;
3386 
3387 		for (queue = 0; queue < rx_cnt; queue++) {
3388 			if (!priv->rx_riwt[queue])
3389 				priv->rx_riwt[queue] = DEF_DMA_RIWT;
3390 
3391 			stmmac_rx_watchdog(priv, priv->ioaddr,
3392 					   priv->rx_riwt[queue], queue);
3393 		}
3394 	}
3395 
3396 	if (priv->hw->pcs)
3397 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3398 
3399 	/* set TX and RX rings length */
3400 	stmmac_set_rings_length(priv);
3401 
3402 	/* Enable TSO */
3403 	if (priv->tso) {
3404 		for (chan = 0; chan < tx_cnt; chan++) {
3405 			struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3406 
3407 			/* TSO and TBS cannot co-exist */
3408 			if (tx_q->tbs & STMMAC_TBS_AVAIL)
3409 				continue;
3410 
3411 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3412 		}
3413 	}
3414 
3415 	/* Enable Split Header */
3416 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3417 	for (chan = 0; chan < rx_cnt; chan++)
3418 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3419 
3420 
3421 	/* VLAN Tag Insertion */
3422 	if (priv->dma_cap.vlins)
3423 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3424 
3425 	/* TBS */
3426 	for (chan = 0; chan < tx_cnt; chan++) {
3427 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3428 		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3429 
3430 		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3431 	}
3432 
3433 	/* Configure real RX and TX queues */
3434 	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3435 	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3436 
3437 	/* Start the ball rolling... */
3438 	stmmac_start_all_dma(priv);
3439 
3440 	if (priv->dma_cap.fpesel) {
3441 		stmmac_fpe_start_wq(priv);
3442 
3443 		if (priv->plat->fpe_cfg->enable)
3444 			stmmac_fpe_handshake(priv, true);
3445 	}
3446 
3447 	return 0;
3448 }
3449 
3450 static void stmmac_hw_teardown(struct net_device *dev)
3451 {
3452 	struct stmmac_priv *priv = netdev_priv(dev);
3453 
3454 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
3455 }
3456 
3457 static void stmmac_free_irq(struct net_device *dev,
3458 			    enum request_irq_err irq_err, int irq_idx)
3459 {
3460 	struct stmmac_priv *priv = netdev_priv(dev);
3461 	int j;
3462 
3463 	switch (irq_err) {
3464 	case REQ_IRQ_ERR_ALL:
3465 		irq_idx = priv->plat->tx_queues_to_use;
3466 		fallthrough;
3467 	case REQ_IRQ_ERR_TX:
3468 		for (j = irq_idx - 1; j >= 0; j--) {
3469 			if (priv->tx_irq[j] > 0) {
3470 				irq_set_affinity_hint(priv->tx_irq[j], NULL);
3471 				free_irq(priv->tx_irq[j], &priv->dma_conf.tx_queue[j]);
3472 			}
3473 		}
3474 		irq_idx = priv->plat->rx_queues_to_use;
3475 		fallthrough;
3476 	case REQ_IRQ_ERR_RX:
3477 		for (j = irq_idx - 1; j >= 0; j--) {
3478 			if (priv->rx_irq[j] > 0) {
3479 				irq_set_affinity_hint(priv->rx_irq[j], NULL);
3480 				free_irq(priv->rx_irq[j], &priv->dma_conf.rx_queue[j]);
3481 			}
3482 		}
3483 
3484 		if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3485 			free_irq(priv->sfty_ue_irq, dev);
3486 		fallthrough;
3487 	case REQ_IRQ_ERR_SFTY_UE:
3488 		if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3489 			free_irq(priv->sfty_ce_irq, dev);
3490 		fallthrough;
3491 	case REQ_IRQ_ERR_SFTY_CE:
3492 		if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3493 			free_irq(priv->lpi_irq, dev);
3494 		fallthrough;
3495 	case REQ_IRQ_ERR_LPI:
3496 		if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3497 			free_irq(priv->wol_irq, dev);
3498 		fallthrough;
3499 	case REQ_IRQ_ERR_WOL:
3500 		free_irq(dev->irq, dev);
3501 		fallthrough;
3502 	case REQ_IRQ_ERR_MAC:
3503 	case REQ_IRQ_ERR_NO:
3504 		/* If MAC IRQ request error, no more IRQ to free */
3505 		break;
3506 	}
3507 }
3508 
3509 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3510 {
3511 	struct stmmac_priv *priv = netdev_priv(dev);
3512 	enum request_irq_err irq_err;
3513 	cpumask_t cpu_mask;
3514 	int irq_idx = 0;
3515 	char *int_name;
3516 	int ret;
3517 	int i;
3518 
3519 	/* For common interrupt */
3520 	int_name = priv->int_name_mac;
3521 	sprintf(int_name, "%s:%s", dev->name, "mac");
3522 	ret = request_irq(dev->irq, stmmac_mac_interrupt,
3523 			  0, int_name, dev);
3524 	if (unlikely(ret < 0)) {
3525 		netdev_err(priv->dev,
3526 			   "%s: alloc mac MSI %d (error: %d)\n",
3527 			   __func__, dev->irq, ret);
3528 		irq_err = REQ_IRQ_ERR_MAC;
3529 		goto irq_error;
3530 	}
3531 
3532 	/* Request the Wake IRQ in case of another line
3533 	 * is used for WoL
3534 	 */
3535 	priv->wol_irq_disabled = true;
3536 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3537 		int_name = priv->int_name_wol;
3538 		sprintf(int_name, "%s:%s", dev->name, "wol");
3539 		ret = request_irq(priv->wol_irq,
3540 				  stmmac_mac_interrupt,
3541 				  0, int_name, dev);
3542 		if (unlikely(ret < 0)) {
3543 			netdev_err(priv->dev,
3544 				   "%s: alloc wol MSI %d (error: %d)\n",
3545 				   __func__, priv->wol_irq, ret);
3546 			irq_err = REQ_IRQ_ERR_WOL;
3547 			goto irq_error;
3548 		}
3549 	}
3550 
3551 	/* Request the LPI IRQ in case of another line
3552 	 * is used for LPI
3553 	 */
3554 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3555 		int_name = priv->int_name_lpi;
3556 		sprintf(int_name, "%s:%s", dev->name, "lpi");
3557 		ret = request_irq(priv->lpi_irq,
3558 				  stmmac_mac_interrupt,
3559 				  0, int_name, dev);
3560 		if (unlikely(ret < 0)) {
3561 			netdev_err(priv->dev,
3562 				   "%s: alloc lpi MSI %d (error: %d)\n",
3563 				   __func__, priv->lpi_irq, ret);
3564 			irq_err = REQ_IRQ_ERR_LPI;
3565 			goto irq_error;
3566 		}
3567 	}
3568 
3569 	/* Request the Safety Feature Correctible Error line in
3570 	 * case of another line is used
3571 	 */
3572 	if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3573 		int_name = priv->int_name_sfty_ce;
3574 		sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3575 		ret = request_irq(priv->sfty_ce_irq,
3576 				  stmmac_safety_interrupt,
3577 				  0, int_name, dev);
3578 		if (unlikely(ret < 0)) {
3579 			netdev_err(priv->dev,
3580 				   "%s: alloc sfty ce MSI %d (error: %d)\n",
3581 				   __func__, priv->sfty_ce_irq, ret);
3582 			irq_err = REQ_IRQ_ERR_SFTY_CE;
3583 			goto irq_error;
3584 		}
3585 	}
3586 
3587 	/* Request the Safety Feature Uncorrectible Error line in
3588 	 * case of another line is used
3589 	 */
3590 	if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3591 		int_name = priv->int_name_sfty_ue;
3592 		sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3593 		ret = request_irq(priv->sfty_ue_irq,
3594 				  stmmac_safety_interrupt,
3595 				  0, int_name, dev);
3596 		if (unlikely(ret < 0)) {
3597 			netdev_err(priv->dev,
3598 				   "%s: alloc sfty ue MSI %d (error: %d)\n",
3599 				   __func__, priv->sfty_ue_irq, ret);
3600 			irq_err = REQ_IRQ_ERR_SFTY_UE;
3601 			goto irq_error;
3602 		}
3603 	}
3604 
3605 	/* Request Rx MSI irq */
3606 	for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3607 		if (i >= MTL_MAX_RX_QUEUES)
3608 			break;
3609 		if (priv->rx_irq[i] == 0)
3610 			continue;
3611 
3612 		int_name = priv->int_name_rx_irq[i];
3613 		sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3614 		ret = request_irq(priv->rx_irq[i],
3615 				  stmmac_msi_intr_rx,
3616 				  0, int_name, &priv->dma_conf.rx_queue[i]);
3617 		if (unlikely(ret < 0)) {
3618 			netdev_err(priv->dev,
3619 				   "%s: alloc rx-%d  MSI %d (error: %d)\n",
3620 				   __func__, i, priv->rx_irq[i], ret);
3621 			irq_err = REQ_IRQ_ERR_RX;
3622 			irq_idx = i;
3623 			goto irq_error;
3624 		}
3625 		cpumask_clear(&cpu_mask);
3626 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3627 		irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3628 	}
3629 
3630 	/* Request Tx MSI irq */
3631 	for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3632 		if (i >= MTL_MAX_TX_QUEUES)
3633 			break;
3634 		if (priv->tx_irq[i] == 0)
3635 			continue;
3636 
3637 		int_name = priv->int_name_tx_irq[i];
3638 		sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3639 		ret = request_irq(priv->tx_irq[i],
3640 				  stmmac_msi_intr_tx,
3641 				  0, int_name, &priv->dma_conf.tx_queue[i]);
3642 		if (unlikely(ret < 0)) {
3643 			netdev_err(priv->dev,
3644 				   "%s: alloc tx-%d  MSI %d (error: %d)\n",
3645 				   __func__, i, priv->tx_irq[i], ret);
3646 			irq_err = REQ_IRQ_ERR_TX;
3647 			irq_idx = i;
3648 			goto irq_error;
3649 		}
3650 		cpumask_clear(&cpu_mask);
3651 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3652 		irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3653 	}
3654 
3655 	return 0;
3656 
3657 irq_error:
3658 	stmmac_free_irq(dev, irq_err, irq_idx);
3659 	return ret;
3660 }
3661 
3662 static int stmmac_request_irq_single(struct net_device *dev)
3663 {
3664 	struct stmmac_priv *priv = netdev_priv(dev);
3665 	enum request_irq_err irq_err;
3666 	int ret;
3667 
3668 	ret = request_irq(dev->irq, stmmac_interrupt,
3669 			  IRQF_SHARED, dev->name, dev);
3670 	if (unlikely(ret < 0)) {
3671 		netdev_err(priv->dev,
3672 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3673 			   __func__, dev->irq, ret);
3674 		irq_err = REQ_IRQ_ERR_MAC;
3675 		goto irq_error;
3676 	}
3677 
3678 	/* Request the Wake IRQ in case of another line
3679 	 * is used for WoL
3680 	 */
3681 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3682 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
3683 				  IRQF_SHARED, dev->name, dev);
3684 		if (unlikely(ret < 0)) {
3685 			netdev_err(priv->dev,
3686 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3687 				   __func__, priv->wol_irq, ret);
3688 			irq_err = REQ_IRQ_ERR_WOL;
3689 			goto irq_error;
3690 		}
3691 	}
3692 
3693 	/* Request the IRQ lines */
3694 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3695 		ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3696 				  IRQF_SHARED, dev->name, dev);
3697 		if (unlikely(ret < 0)) {
3698 			netdev_err(priv->dev,
3699 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3700 				   __func__, priv->lpi_irq, ret);
3701 			irq_err = REQ_IRQ_ERR_LPI;
3702 			goto irq_error;
3703 		}
3704 	}
3705 
3706 	return 0;
3707 
3708 irq_error:
3709 	stmmac_free_irq(dev, irq_err, 0);
3710 	return ret;
3711 }
3712 
3713 static int stmmac_request_irq(struct net_device *dev)
3714 {
3715 	struct stmmac_priv *priv = netdev_priv(dev);
3716 	int ret;
3717 
3718 	/* Request the IRQ lines */
3719 	if (priv->plat->flags & STMMAC_FLAG_MULTI_MSI_EN)
3720 		ret = stmmac_request_irq_multi_msi(dev);
3721 	else
3722 		ret = stmmac_request_irq_single(dev);
3723 
3724 	return ret;
3725 }
3726 
3727 /**
3728  *  stmmac_setup_dma_desc - Generate a dma_conf and allocate DMA queue
3729  *  @priv: driver private structure
3730  *  @mtu: MTU to setup the dma queue and buf with
3731  *  Description: Allocate and generate a dma_conf based on the provided MTU.
3732  *  Allocate the Tx/Rx DMA queue and init them.
3733  *  Return value:
3734  *  the dma_conf allocated struct on success and an appropriate ERR_PTR on failure.
3735  */
3736 static struct stmmac_dma_conf *
3737 stmmac_setup_dma_desc(struct stmmac_priv *priv, unsigned int mtu)
3738 {
3739 	struct stmmac_dma_conf *dma_conf;
3740 	int chan, bfsize, ret;
3741 
3742 	dma_conf = kzalloc(sizeof(*dma_conf), GFP_KERNEL);
3743 	if (!dma_conf) {
3744 		netdev_err(priv->dev, "%s: DMA conf allocation failed\n",
3745 			   __func__);
3746 		return ERR_PTR(-ENOMEM);
3747 	}
3748 
3749 	bfsize = stmmac_set_16kib_bfsize(priv, mtu);
3750 	if (bfsize < 0)
3751 		bfsize = 0;
3752 
3753 	if (bfsize < BUF_SIZE_16KiB)
3754 		bfsize = stmmac_set_bfsize(mtu, 0);
3755 
3756 	dma_conf->dma_buf_sz = bfsize;
3757 	/* Chose the tx/rx size from the already defined one in the
3758 	 * priv struct. (if defined)
3759 	 */
3760 	dma_conf->dma_tx_size = priv->dma_conf.dma_tx_size;
3761 	dma_conf->dma_rx_size = priv->dma_conf.dma_rx_size;
3762 
3763 	if (!dma_conf->dma_tx_size)
3764 		dma_conf->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3765 	if (!dma_conf->dma_rx_size)
3766 		dma_conf->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3767 
3768 	/* Earlier check for TBS */
3769 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3770 		struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[chan];
3771 		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3772 
3773 		/* Setup per-TXQ tbs flag before TX descriptor alloc */
3774 		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3775 	}
3776 
3777 	ret = alloc_dma_desc_resources(priv, dma_conf);
3778 	if (ret < 0) {
3779 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3780 			   __func__);
3781 		goto alloc_error;
3782 	}
3783 
3784 	ret = init_dma_desc_rings(priv->dev, dma_conf, GFP_KERNEL);
3785 	if (ret < 0) {
3786 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3787 			   __func__);
3788 		goto init_error;
3789 	}
3790 
3791 	return dma_conf;
3792 
3793 init_error:
3794 	free_dma_desc_resources(priv, dma_conf);
3795 alloc_error:
3796 	kfree(dma_conf);
3797 	return ERR_PTR(ret);
3798 }
3799 
3800 /**
3801  *  __stmmac_open - open entry point of the driver
3802  *  @dev : pointer to the device structure.
3803  *  @dma_conf :  structure to take the dma data
3804  *  Description:
3805  *  This function is the open entry point of the driver.
3806  *  Return value:
3807  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3808  *  file on failure.
3809  */
3810 static int __stmmac_open(struct net_device *dev,
3811 			 struct stmmac_dma_conf *dma_conf)
3812 {
3813 	struct stmmac_priv *priv = netdev_priv(dev);
3814 	int mode = priv->plat->phy_interface;
3815 	u32 chan;
3816 	int ret;
3817 
3818 	ret = pm_runtime_resume_and_get(priv->device);
3819 	if (ret < 0)
3820 		return ret;
3821 
3822 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
3823 	    priv->hw->pcs != STMMAC_PCS_RTBI &&
3824 	    (!priv->hw->xpcs ||
3825 	     xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73) &&
3826 	    !priv->hw->lynx_pcs) {
3827 		ret = stmmac_init_phy(dev);
3828 		if (ret) {
3829 			netdev_err(priv->dev,
3830 				   "%s: Cannot attach to PHY (error: %d)\n",
3831 				   __func__, ret);
3832 			goto init_phy_error;
3833 		}
3834 	}
3835 
3836 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3837 
3838 	buf_sz = dma_conf->dma_buf_sz;
3839 	for (int i = 0; i < MTL_MAX_TX_QUEUES; i++)
3840 		if (priv->dma_conf.tx_queue[i].tbs & STMMAC_TBS_EN)
3841 			dma_conf->tx_queue[i].tbs = priv->dma_conf.tx_queue[i].tbs;
3842 	memcpy(&priv->dma_conf, dma_conf, sizeof(*dma_conf));
3843 
3844 	stmmac_reset_queues_param(priv);
3845 
3846 	if (!(priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) &&
3847 	    priv->plat->serdes_powerup) {
3848 		ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv);
3849 		if (ret < 0) {
3850 			netdev_err(priv->dev, "%s: Serdes powerup failed\n",
3851 				   __func__);
3852 			goto init_error;
3853 		}
3854 	}
3855 
3856 	ret = stmmac_hw_setup(dev, true);
3857 	if (ret < 0) {
3858 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3859 		goto init_error;
3860 	}
3861 
3862 	stmmac_init_coalesce(priv);
3863 
3864 	phylink_start(priv->phylink);
3865 	/* We may have called phylink_speed_down before */
3866 	phylink_speed_up(priv->phylink);
3867 
3868 	ret = stmmac_request_irq(dev);
3869 	if (ret)
3870 		goto irq_error;
3871 
3872 	stmmac_enable_all_queues(priv);
3873 	netif_tx_start_all_queues(priv->dev);
3874 	stmmac_enable_all_dma_irq(priv);
3875 
3876 	return 0;
3877 
3878 irq_error:
3879 	phylink_stop(priv->phylink);
3880 
3881 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3882 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3883 
3884 	stmmac_hw_teardown(dev);
3885 init_error:
3886 	phylink_disconnect_phy(priv->phylink);
3887 init_phy_error:
3888 	pm_runtime_put(priv->device);
3889 	return ret;
3890 }
3891 
3892 static int stmmac_open(struct net_device *dev)
3893 {
3894 	struct stmmac_priv *priv = netdev_priv(dev);
3895 	struct stmmac_dma_conf *dma_conf;
3896 	int ret;
3897 
3898 	dma_conf = stmmac_setup_dma_desc(priv, dev->mtu);
3899 	if (IS_ERR(dma_conf))
3900 		return PTR_ERR(dma_conf);
3901 
3902 	ret = __stmmac_open(dev, dma_conf);
3903 	if (ret)
3904 		free_dma_desc_resources(priv, dma_conf);
3905 
3906 	kfree(dma_conf);
3907 	return ret;
3908 }
3909 
3910 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3911 {
3912 	set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3913 
3914 	if (priv->fpe_wq) {
3915 		destroy_workqueue(priv->fpe_wq);
3916 		priv->fpe_wq = NULL;
3917 	}
3918 
3919 	netdev_info(priv->dev, "FPE workqueue stop");
3920 }
3921 
3922 /**
3923  *  stmmac_release - close entry point of the driver
3924  *  @dev : device pointer.
3925  *  Description:
3926  *  This is the stop entry point of the driver.
3927  */
3928 static int stmmac_release(struct net_device *dev)
3929 {
3930 	struct stmmac_priv *priv = netdev_priv(dev);
3931 	u32 chan;
3932 
3933 	if (device_may_wakeup(priv->device))
3934 		phylink_speed_down(priv->phylink, false);
3935 	/* Stop and disconnect the PHY */
3936 	phylink_stop(priv->phylink);
3937 	phylink_disconnect_phy(priv->phylink);
3938 
3939 	stmmac_disable_all_queues(priv);
3940 
3941 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3942 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3943 
3944 	netif_tx_disable(dev);
3945 
3946 	/* Free the IRQ lines */
3947 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3948 
3949 	if (priv->eee_enabled) {
3950 		priv->tx_path_in_lpi_mode = false;
3951 		del_timer_sync(&priv->eee_ctrl_timer);
3952 	}
3953 
3954 	/* Stop TX/RX DMA and clear the descriptors */
3955 	stmmac_stop_all_dma(priv);
3956 
3957 	/* Release and free the Rx/Tx resources */
3958 	free_dma_desc_resources(priv, &priv->dma_conf);
3959 
3960 	/* Disable the MAC Rx/Tx */
3961 	stmmac_mac_set(priv, priv->ioaddr, false);
3962 
3963 	/* Powerdown Serdes if there is */
3964 	if (priv->plat->serdes_powerdown)
3965 		priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv);
3966 
3967 	netif_carrier_off(dev);
3968 
3969 	stmmac_release_ptp(priv);
3970 
3971 	pm_runtime_put(priv->device);
3972 
3973 	if (priv->dma_cap.fpesel)
3974 		stmmac_fpe_stop_wq(priv);
3975 
3976 	return 0;
3977 }
3978 
3979 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3980 			       struct stmmac_tx_queue *tx_q)
3981 {
3982 	u16 tag = 0x0, inner_tag = 0x0;
3983 	u32 inner_type = 0x0;
3984 	struct dma_desc *p;
3985 
3986 	if (!priv->dma_cap.vlins)
3987 		return false;
3988 	if (!skb_vlan_tag_present(skb))
3989 		return false;
3990 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3991 		inner_tag = skb_vlan_tag_get(skb);
3992 		inner_type = STMMAC_VLAN_INSERT;
3993 	}
3994 
3995 	tag = skb_vlan_tag_get(skb);
3996 
3997 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3998 		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3999 	else
4000 		p = &tx_q->dma_tx[tx_q->cur_tx];
4001 
4002 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
4003 		return false;
4004 
4005 	stmmac_set_tx_owner(priv, p);
4006 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
4007 	return true;
4008 }
4009 
4010 /**
4011  *  stmmac_tso_allocator - close entry point of the driver
4012  *  @priv: driver private structure
4013  *  @des: buffer start address
4014  *  @total_len: total length to fill in descriptors
4015  *  @last_segment: condition for the last descriptor
4016  *  @queue: TX queue index
4017  *  Description:
4018  *  This function fills descriptor and request new descriptors according to
4019  *  buffer length to fill
4020  */
4021 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
4022 				 int total_len, bool last_segment, u32 queue)
4023 {
4024 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4025 	struct dma_desc *desc;
4026 	u32 buff_size;
4027 	int tmp_len;
4028 
4029 	tmp_len = total_len;
4030 
4031 	while (tmp_len > 0) {
4032 		dma_addr_t curr_addr;
4033 
4034 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4035 						priv->dma_conf.dma_tx_size);
4036 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4037 
4038 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4039 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4040 		else
4041 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4042 
4043 		curr_addr = des + (total_len - tmp_len);
4044 		if (priv->dma_cap.addr64 <= 32)
4045 			desc->des0 = cpu_to_le32(curr_addr);
4046 		else
4047 			stmmac_set_desc_addr(priv, desc, curr_addr);
4048 
4049 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
4050 			    TSO_MAX_BUFF_SIZE : tmp_len;
4051 
4052 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
4053 				0, 1,
4054 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
4055 				0, 0);
4056 
4057 		tmp_len -= TSO_MAX_BUFF_SIZE;
4058 	}
4059 }
4060 
4061 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
4062 {
4063 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4064 	int desc_size;
4065 
4066 	if (likely(priv->extend_desc))
4067 		desc_size = sizeof(struct dma_extended_desc);
4068 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4069 		desc_size = sizeof(struct dma_edesc);
4070 	else
4071 		desc_size = sizeof(struct dma_desc);
4072 
4073 	/* The own bit must be the latest setting done when prepare the
4074 	 * descriptor and then barrier is needed to make sure that
4075 	 * all is coherent before granting the DMA engine.
4076 	 */
4077 	wmb();
4078 
4079 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
4080 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
4081 }
4082 
4083 /**
4084  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
4085  *  @skb : the socket buffer
4086  *  @dev : device pointer
4087  *  Description: this is the transmit function that is called on TSO frames
4088  *  (support available on GMAC4 and newer chips).
4089  *  Diagram below show the ring programming in case of TSO frames:
4090  *
4091  *  First Descriptor
4092  *   --------
4093  *   | DES0 |---> buffer1 = L2/L3/L4 header
4094  *   | DES1 |---> TCP Payload (can continue on next descr...)
4095  *   | DES2 |---> buffer 1 and 2 len
4096  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
4097  *   --------
4098  *	|
4099  *     ...
4100  *	|
4101  *   --------
4102  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
4103  *   | DES1 | --|
4104  *   | DES2 | --> buffer 1 and 2 len
4105  *   | DES3 |
4106  *   --------
4107  *
4108  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
4109  */
4110 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
4111 {
4112 	struct dma_desc *desc, *first, *mss_desc = NULL;
4113 	struct stmmac_priv *priv = netdev_priv(dev);
4114 	int nfrags = skb_shinfo(skb)->nr_frags;
4115 	u32 queue = skb_get_queue_mapping(skb);
4116 	unsigned int first_entry, tx_packets;
4117 	struct stmmac_txq_stats *txq_stats;
4118 	int tmp_pay_len = 0, first_tx;
4119 	struct stmmac_tx_queue *tx_q;
4120 	bool has_vlan, set_ic;
4121 	u8 proto_hdr_len, hdr;
4122 	u32 pay_len, mss;
4123 	dma_addr_t des;
4124 	int i;
4125 
4126 	tx_q = &priv->dma_conf.tx_queue[queue];
4127 	txq_stats = &priv->xstats.txq_stats[queue];
4128 	first_tx = tx_q->cur_tx;
4129 
4130 	/* Compute header lengths */
4131 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
4132 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
4133 		hdr = sizeof(struct udphdr);
4134 	} else {
4135 		proto_hdr_len = skb_tcp_all_headers(skb);
4136 		hdr = tcp_hdrlen(skb);
4137 	}
4138 
4139 	/* Desc availability based on threshold should be enough safe */
4140 	if (unlikely(stmmac_tx_avail(priv, queue) <
4141 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
4142 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4143 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4144 								queue));
4145 			/* This is a hard error, log it. */
4146 			netdev_err(priv->dev,
4147 				   "%s: Tx Ring full when queue awake\n",
4148 				   __func__);
4149 		}
4150 		return NETDEV_TX_BUSY;
4151 	}
4152 
4153 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
4154 
4155 	mss = skb_shinfo(skb)->gso_size;
4156 
4157 	/* set new MSS value if needed */
4158 	if (mss != tx_q->mss) {
4159 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4160 			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4161 		else
4162 			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
4163 
4164 		stmmac_set_mss(priv, mss_desc, mss);
4165 		tx_q->mss = mss;
4166 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4167 						priv->dma_conf.dma_tx_size);
4168 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4169 	}
4170 
4171 	if (netif_msg_tx_queued(priv)) {
4172 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
4173 			__func__, hdr, proto_hdr_len, pay_len, mss);
4174 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4175 			skb->data_len);
4176 	}
4177 
4178 	/* Check if VLAN can be inserted by HW */
4179 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4180 
4181 	first_entry = tx_q->cur_tx;
4182 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4183 
4184 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
4185 		desc = &tx_q->dma_entx[first_entry].basic;
4186 	else
4187 		desc = &tx_q->dma_tx[first_entry];
4188 	first = desc;
4189 
4190 	if (has_vlan)
4191 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4192 
4193 	/* first descriptor: fill Headers on Buf1 */
4194 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4195 			     DMA_TO_DEVICE);
4196 	if (dma_mapping_error(priv->device, des))
4197 		goto dma_map_err;
4198 
4199 	tx_q->tx_skbuff_dma[first_entry].buf = des;
4200 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4201 	tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4202 	tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4203 
4204 	if (priv->dma_cap.addr64 <= 32) {
4205 		first->des0 = cpu_to_le32(des);
4206 
4207 		/* Fill start of payload in buff2 of first descriptor */
4208 		if (pay_len)
4209 			first->des1 = cpu_to_le32(des + proto_hdr_len);
4210 
4211 		/* If needed take extra descriptors to fill the remaining payload */
4212 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4213 	} else {
4214 		stmmac_set_desc_addr(priv, first, des);
4215 		tmp_pay_len = pay_len;
4216 		des += proto_hdr_len;
4217 		pay_len = 0;
4218 	}
4219 
4220 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4221 
4222 	/* Prepare fragments */
4223 	for (i = 0; i < nfrags; i++) {
4224 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4225 
4226 		des = skb_frag_dma_map(priv->device, frag, 0,
4227 				       skb_frag_size(frag),
4228 				       DMA_TO_DEVICE);
4229 		if (dma_mapping_error(priv->device, des))
4230 			goto dma_map_err;
4231 
4232 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4233 				     (i == nfrags - 1), queue);
4234 
4235 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4236 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4237 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4238 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4239 	}
4240 
4241 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4242 
4243 	/* Only the last descriptor gets to point to the skb. */
4244 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4245 	tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4246 
4247 	/* Manage tx mitigation */
4248 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
4249 	tx_q->tx_count_frames += tx_packets;
4250 
4251 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4252 		set_ic = true;
4253 	else if (!priv->tx_coal_frames[queue])
4254 		set_ic = false;
4255 	else if (tx_packets > priv->tx_coal_frames[queue])
4256 		set_ic = true;
4257 	else if ((tx_q->tx_count_frames %
4258 		  priv->tx_coal_frames[queue]) < tx_packets)
4259 		set_ic = true;
4260 	else
4261 		set_ic = false;
4262 
4263 	if (set_ic) {
4264 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4265 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4266 		else
4267 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4268 
4269 		tx_q->tx_count_frames = 0;
4270 		stmmac_set_tx_ic(priv, desc);
4271 	}
4272 
4273 	/* We've used all descriptors we need for this skb, however,
4274 	 * advance cur_tx so that it references a fresh descriptor.
4275 	 * ndo_start_xmit will fill this descriptor the next time it's
4276 	 * called and stmmac_tx_clean may clean up to this descriptor.
4277 	 */
4278 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
4279 
4280 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4281 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4282 			  __func__);
4283 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4284 	}
4285 
4286 	u64_stats_update_begin(&txq_stats->q_syncp);
4287 	u64_stats_add(&txq_stats->q.tx_bytes, skb->len);
4288 	u64_stats_inc(&txq_stats->q.tx_tso_frames);
4289 	u64_stats_add(&txq_stats->q.tx_tso_nfrags, nfrags);
4290 	if (set_ic)
4291 		u64_stats_inc(&txq_stats->q.tx_set_ic_bit);
4292 	u64_stats_update_end(&txq_stats->q_syncp);
4293 
4294 	if (priv->sarc_type)
4295 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4296 
4297 	skb_tx_timestamp(skb);
4298 
4299 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4300 		     priv->hwts_tx_en)) {
4301 		/* declare that device is doing timestamping */
4302 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4303 		stmmac_enable_tx_timestamp(priv, first);
4304 	}
4305 
4306 	/* Complete the first descriptor before granting the DMA */
4307 	stmmac_prepare_tso_tx_desc(priv, first, 1,
4308 			proto_hdr_len,
4309 			pay_len,
4310 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4311 			hdr / 4, (skb->len - proto_hdr_len));
4312 
4313 	/* If context desc is used to change MSS */
4314 	if (mss_desc) {
4315 		/* Make sure that first descriptor has been completely
4316 		 * written, including its own bit. This is because MSS is
4317 		 * actually before first descriptor, so we need to make
4318 		 * sure that MSS's own bit is the last thing written.
4319 		 */
4320 		dma_wmb();
4321 		stmmac_set_tx_owner(priv, mss_desc);
4322 	}
4323 
4324 	if (netif_msg_pktdata(priv)) {
4325 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4326 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4327 			tx_q->cur_tx, first, nfrags);
4328 		pr_info(">>> frame to be transmitted: ");
4329 		print_pkt(skb->data, skb_headlen(skb));
4330 	}
4331 
4332 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4333 
4334 	stmmac_flush_tx_descriptors(priv, queue);
4335 	stmmac_tx_timer_arm(priv, queue);
4336 
4337 	return NETDEV_TX_OK;
4338 
4339 dma_map_err:
4340 	dev_err(priv->device, "Tx dma map failed\n");
4341 	dev_kfree_skb(skb);
4342 	priv->xstats.tx_dropped++;
4343 	return NETDEV_TX_OK;
4344 }
4345 
4346 /**
4347  * stmmac_has_ip_ethertype() - Check if packet has IP ethertype
4348  * @skb: socket buffer to check
4349  *
4350  * Check if a packet has an ethertype that will trigger the IP header checks
4351  * and IP/TCP checksum engine of the stmmac core.
4352  *
4353  * Return: true if the ethertype can trigger the checksum engine, false
4354  * otherwise
4355  */
4356 static bool stmmac_has_ip_ethertype(struct sk_buff *skb)
4357 {
4358 	int depth = 0;
4359 	__be16 proto;
4360 
4361 	proto = __vlan_get_protocol(skb, eth_header_parse_protocol(skb),
4362 				    &depth);
4363 
4364 	return (depth <= ETH_HLEN) &&
4365 		(proto == htons(ETH_P_IP) || proto == htons(ETH_P_IPV6));
4366 }
4367 
4368 /**
4369  *  stmmac_xmit - Tx entry point of the driver
4370  *  @skb : the socket buffer
4371  *  @dev : device pointer
4372  *  Description : this is the tx entry point of the driver.
4373  *  It programs the chain or the ring and supports oversized frames
4374  *  and SG feature.
4375  */
4376 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4377 {
4378 	unsigned int first_entry, tx_packets, enh_desc;
4379 	struct stmmac_priv *priv = netdev_priv(dev);
4380 	unsigned int nopaged_len = skb_headlen(skb);
4381 	int i, csum_insertion = 0, is_jumbo = 0;
4382 	u32 queue = skb_get_queue_mapping(skb);
4383 	int nfrags = skb_shinfo(skb)->nr_frags;
4384 	int gso = skb_shinfo(skb)->gso_type;
4385 	struct stmmac_txq_stats *txq_stats;
4386 	struct dma_edesc *tbs_desc = NULL;
4387 	struct dma_desc *desc, *first;
4388 	struct stmmac_tx_queue *tx_q;
4389 	bool has_vlan, set_ic;
4390 	int entry, first_tx;
4391 	dma_addr_t des;
4392 
4393 	tx_q = &priv->dma_conf.tx_queue[queue];
4394 	txq_stats = &priv->xstats.txq_stats[queue];
4395 	first_tx = tx_q->cur_tx;
4396 
4397 	if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4398 		stmmac_disable_eee_mode(priv);
4399 
4400 	/* Manage oversized TCP frames for GMAC4 device */
4401 	if (skb_is_gso(skb) && priv->tso) {
4402 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4403 			return stmmac_tso_xmit(skb, dev);
4404 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4405 			return stmmac_tso_xmit(skb, dev);
4406 	}
4407 
4408 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4409 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4410 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4411 								queue));
4412 			/* This is a hard error, log it. */
4413 			netdev_err(priv->dev,
4414 				   "%s: Tx Ring full when queue awake\n",
4415 				   __func__);
4416 		}
4417 		return NETDEV_TX_BUSY;
4418 	}
4419 
4420 	/* Check if VLAN can be inserted by HW */
4421 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4422 
4423 	entry = tx_q->cur_tx;
4424 	first_entry = entry;
4425 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4426 
4427 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4428 	/* DWMAC IPs can be synthesized to support tx coe only for a few tx
4429 	 * queues. In that case, checksum offloading for those queues that don't
4430 	 * support tx coe needs to fallback to software checksum calculation.
4431 	 *
4432 	 * Packets that won't trigger the COE e.g. most DSA-tagged packets will
4433 	 * also have to be checksummed in software.
4434 	 */
4435 	if (csum_insertion &&
4436 	    (priv->plat->tx_queues_cfg[queue].coe_unsupported ||
4437 	     !stmmac_has_ip_ethertype(skb))) {
4438 		if (unlikely(skb_checksum_help(skb)))
4439 			goto dma_map_err;
4440 		csum_insertion = !csum_insertion;
4441 	}
4442 
4443 	if (likely(priv->extend_desc))
4444 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4445 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4446 		desc = &tx_q->dma_entx[entry].basic;
4447 	else
4448 		desc = tx_q->dma_tx + entry;
4449 
4450 	first = desc;
4451 
4452 	if (has_vlan)
4453 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4454 
4455 	enh_desc = priv->plat->enh_desc;
4456 	/* To program the descriptors according to the size of the frame */
4457 	if (enh_desc)
4458 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4459 
4460 	if (unlikely(is_jumbo)) {
4461 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4462 		if (unlikely(entry < 0) && (entry != -EINVAL))
4463 			goto dma_map_err;
4464 	}
4465 
4466 	for (i = 0; i < nfrags; i++) {
4467 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4468 		int len = skb_frag_size(frag);
4469 		bool last_segment = (i == (nfrags - 1));
4470 
4471 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4472 		WARN_ON(tx_q->tx_skbuff[entry]);
4473 
4474 		if (likely(priv->extend_desc))
4475 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4476 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4477 			desc = &tx_q->dma_entx[entry].basic;
4478 		else
4479 			desc = tx_q->dma_tx + entry;
4480 
4481 		des = skb_frag_dma_map(priv->device, frag, 0, len,
4482 				       DMA_TO_DEVICE);
4483 		if (dma_mapping_error(priv->device, des))
4484 			goto dma_map_err; /* should reuse desc w/o issues */
4485 
4486 		tx_q->tx_skbuff_dma[entry].buf = des;
4487 
4488 		stmmac_set_desc_addr(priv, desc, des);
4489 
4490 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
4491 		tx_q->tx_skbuff_dma[entry].len = len;
4492 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4493 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4494 
4495 		/* Prepare the descriptor and set the own bit too */
4496 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4497 				priv->mode, 1, last_segment, skb->len);
4498 	}
4499 
4500 	/* Only the last descriptor gets to point to the skb. */
4501 	tx_q->tx_skbuff[entry] = skb;
4502 	tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4503 
4504 	/* According to the coalesce parameter the IC bit for the latest
4505 	 * segment is reset and the timer re-started to clean the tx status.
4506 	 * This approach takes care about the fragments: desc is the first
4507 	 * element in case of no SG.
4508 	 */
4509 	tx_packets = (entry + 1) - first_tx;
4510 	tx_q->tx_count_frames += tx_packets;
4511 
4512 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4513 		set_ic = true;
4514 	else if (!priv->tx_coal_frames[queue])
4515 		set_ic = false;
4516 	else if (tx_packets > priv->tx_coal_frames[queue])
4517 		set_ic = true;
4518 	else if ((tx_q->tx_count_frames %
4519 		  priv->tx_coal_frames[queue]) < tx_packets)
4520 		set_ic = true;
4521 	else
4522 		set_ic = false;
4523 
4524 	if (set_ic) {
4525 		if (likely(priv->extend_desc))
4526 			desc = &tx_q->dma_etx[entry].basic;
4527 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4528 			desc = &tx_q->dma_entx[entry].basic;
4529 		else
4530 			desc = &tx_q->dma_tx[entry];
4531 
4532 		tx_q->tx_count_frames = 0;
4533 		stmmac_set_tx_ic(priv, desc);
4534 	}
4535 
4536 	/* We've used all descriptors we need for this skb, however,
4537 	 * advance cur_tx so that it references a fresh descriptor.
4538 	 * ndo_start_xmit will fill this descriptor the next time it's
4539 	 * called and stmmac_tx_clean may clean up to this descriptor.
4540 	 */
4541 	entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4542 	tx_q->cur_tx = entry;
4543 
4544 	if (netif_msg_pktdata(priv)) {
4545 		netdev_dbg(priv->dev,
4546 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4547 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4548 			   entry, first, nfrags);
4549 
4550 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4551 		print_pkt(skb->data, skb->len);
4552 	}
4553 
4554 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4555 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4556 			  __func__);
4557 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4558 	}
4559 
4560 	u64_stats_update_begin(&txq_stats->q_syncp);
4561 	u64_stats_add(&txq_stats->q.tx_bytes, skb->len);
4562 	if (set_ic)
4563 		u64_stats_inc(&txq_stats->q.tx_set_ic_bit);
4564 	u64_stats_update_end(&txq_stats->q_syncp);
4565 
4566 	if (priv->sarc_type)
4567 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4568 
4569 	skb_tx_timestamp(skb);
4570 
4571 	/* Ready to fill the first descriptor and set the OWN bit w/o any
4572 	 * problems because all the descriptors are actually ready to be
4573 	 * passed to the DMA engine.
4574 	 */
4575 	if (likely(!is_jumbo)) {
4576 		bool last_segment = (nfrags == 0);
4577 
4578 		des = dma_map_single(priv->device, skb->data,
4579 				     nopaged_len, DMA_TO_DEVICE);
4580 		if (dma_mapping_error(priv->device, des))
4581 			goto dma_map_err;
4582 
4583 		tx_q->tx_skbuff_dma[first_entry].buf = des;
4584 		tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4585 		tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4586 
4587 		stmmac_set_desc_addr(priv, first, des);
4588 
4589 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4590 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4591 
4592 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4593 			     priv->hwts_tx_en)) {
4594 			/* declare that device is doing timestamping */
4595 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4596 			stmmac_enable_tx_timestamp(priv, first);
4597 		}
4598 
4599 		/* Prepare the first descriptor setting the OWN bit too */
4600 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4601 				csum_insertion, priv->mode, 0, last_segment,
4602 				skb->len);
4603 	}
4604 
4605 	if (tx_q->tbs & STMMAC_TBS_EN) {
4606 		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4607 
4608 		tbs_desc = &tx_q->dma_entx[first_entry];
4609 		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4610 	}
4611 
4612 	stmmac_set_tx_owner(priv, first);
4613 
4614 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4615 
4616 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4617 
4618 	stmmac_flush_tx_descriptors(priv, queue);
4619 	stmmac_tx_timer_arm(priv, queue);
4620 
4621 	return NETDEV_TX_OK;
4622 
4623 dma_map_err:
4624 	netdev_err(priv->dev, "Tx DMA map failed\n");
4625 	dev_kfree_skb(skb);
4626 	priv->xstats.tx_dropped++;
4627 	return NETDEV_TX_OK;
4628 }
4629 
4630 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4631 {
4632 	struct vlan_ethhdr *veth = skb_vlan_eth_hdr(skb);
4633 	__be16 vlan_proto = veth->h_vlan_proto;
4634 	u16 vlanid;
4635 
4636 	if ((vlan_proto == htons(ETH_P_8021Q) &&
4637 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4638 	    (vlan_proto == htons(ETH_P_8021AD) &&
4639 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4640 		/* pop the vlan tag */
4641 		vlanid = ntohs(veth->h_vlan_TCI);
4642 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4643 		skb_pull(skb, VLAN_HLEN);
4644 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4645 	}
4646 }
4647 
4648 /**
4649  * stmmac_rx_refill - refill used skb preallocated buffers
4650  * @priv: driver private structure
4651  * @queue: RX queue index
4652  * Description : this is to reallocate the skb for the reception process
4653  * that is based on zero-copy.
4654  */
4655 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4656 {
4657 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4658 	int dirty = stmmac_rx_dirty(priv, queue);
4659 	unsigned int entry = rx_q->dirty_rx;
4660 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
4661 
4662 	if (priv->dma_cap.host_dma_width <= 32)
4663 		gfp |= GFP_DMA32;
4664 
4665 	while (dirty-- > 0) {
4666 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4667 		struct dma_desc *p;
4668 		bool use_rx_wd;
4669 
4670 		if (priv->extend_desc)
4671 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4672 		else
4673 			p = rx_q->dma_rx + entry;
4674 
4675 		if (!buf->page) {
4676 			buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4677 			if (!buf->page)
4678 				break;
4679 		}
4680 
4681 		if (priv->sph && !buf->sec_page) {
4682 			buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4683 			if (!buf->sec_page)
4684 				break;
4685 
4686 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4687 		}
4688 
4689 		buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4690 
4691 		stmmac_set_desc_addr(priv, p, buf->addr);
4692 		if (priv->sph)
4693 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4694 		else
4695 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4696 		stmmac_refill_desc3(priv, rx_q, p);
4697 
4698 		rx_q->rx_count_frames++;
4699 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4700 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4701 			rx_q->rx_count_frames = 0;
4702 
4703 		use_rx_wd = !priv->rx_coal_frames[queue];
4704 		use_rx_wd |= rx_q->rx_count_frames > 0;
4705 		if (!priv->use_riwt)
4706 			use_rx_wd = false;
4707 
4708 		dma_wmb();
4709 		stmmac_set_rx_owner(priv, p, use_rx_wd);
4710 
4711 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4712 	}
4713 	rx_q->dirty_rx = entry;
4714 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4715 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
4716 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4717 }
4718 
4719 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4720 				       struct dma_desc *p,
4721 				       int status, unsigned int len)
4722 {
4723 	unsigned int plen = 0, hlen = 0;
4724 	int coe = priv->hw->rx_csum;
4725 
4726 	/* Not first descriptor, buffer is always zero */
4727 	if (priv->sph && len)
4728 		return 0;
4729 
4730 	/* First descriptor, get split header length */
4731 	stmmac_get_rx_header_len(priv, p, &hlen);
4732 	if (priv->sph && hlen) {
4733 		priv->xstats.rx_split_hdr_pkt_n++;
4734 		return hlen;
4735 	}
4736 
4737 	/* First descriptor, not last descriptor and not split header */
4738 	if (status & rx_not_ls)
4739 		return priv->dma_conf.dma_buf_sz;
4740 
4741 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4742 
4743 	/* First descriptor and last descriptor and not split header */
4744 	return min_t(unsigned int, priv->dma_conf.dma_buf_sz, plen);
4745 }
4746 
4747 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4748 				       struct dma_desc *p,
4749 				       int status, unsigned int len)
4750 {
4751 	int coe = priv->hw->rx_csum;
4752 	unsigned int plen = 0;
4753 
4754 	/* Not split header, buffer is not available */
4755 	if (!priv->sph)
4756 		return 0;
4757 
4758 	/* Not last descriptor */
4759 	if (status & rx_not_ls)
4760 		return priv->dma_conf.dma_buf_sz;
4761 
4762 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4763 
4764 	/* Last descriptor */
4765 	return plen - len;
4766 }
4767 
4768 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4769 				struct xdp_frame *xdpf, bool dma_map)
4770 {
4771 	struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[queue];
4772 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4773 	unsigned int entry = tx_q->cur_tx;
4774 	struct dma_desc *tx_desc;
4775 	dma_addr_t dma_addr;
4776 	bool set_ic;
4777 
4778 	if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4779 		return STMMAC_XDP_CONSUMED;
4780 
4781 	if (likely(priv->extend_desc))
4782 		tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4783 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4784 		tx_desc = &tx_q->dma_entx[entry].basic;
4785 	else
4786 		tx_desc = tx_q->dma_tx + entry;
4787 
4788 	if (dma_map) {
4789 		dma_addr = dma_map_single(priv->device, xdpf->data,
4790 					  xdpf->len, DMA_TO_DEVICE);
4791 		if (dma_mapping_error(priv->device, dma_addr))
4792 			return STMMAC_XDP_CONSUMED;
4793 
4794 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4795 	} else {
4796 		struct page *page = virt_to_page(xdpf->data);
4797 
4798 		dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4799 			   xdpf->headroom;
4800 		dma_sync_single_for_device(priv->device, dma_addr,
4801 					   xdpf->len, DMA_BIDIRECTIONAL);
4802 
4803 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4804 	}
4805 
4806 	tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4807 	tx_q->tx_skbuff_dma[entry].map_as_page = false;
4808 	tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4809 	tx_q->tx_skbuff_dma[entry].last_segment = true;
4810 	tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4811 
4812 	tx_q->xdpf[entry] = xdpf;
4813 
4814 	stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4815 
4816 	stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4817 			       true, priv->mode, true, true,
4818 			       xdpf->len);
4819 
4820 	tx_q->tx_count_frames++;
4821 
4822 	if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4823 		set_ic = true;
4824 	else
4825 		set_ic = false;
4826 
4827 	if (set_ic) {
4828 		tx_q->tx_count_frames = 0;
4829 		stmmac_set_tx_ic(priv, tx_desc);
4830 		u64_stats_update_begin(&txq_stats->q_syncp);
4831 		u64_stats_inc(&txq_stats->q.tx_set_ic_bit);
4832 		u64_stats_update_end(&txq_stats->q_syncp);
4833 	}
4834 
4835 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4836 
4837 	entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4838 	tx_q->cur_tx = entry;
4839 
4840 	return STMMAC_XDP_TX;
4841 }
4842 
4843 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4844 				   int cpu)
4845 {
4846 	int index = cpu;
4847 
4848 	if (unlikely(index < 0))
4849 		index = 0;
4850 
4851 	while (index >= priv->plat->tx_queues_to_use)
4852 		index -= priv->plat->tx_queues_to_use;
4853 
4854 	return index;
4855 }
4856 
4857 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4858 				struct xdp_buff *xdp)
4859 {
4860 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4861 	int cpu = smp_processor_id();
4862 	struct netdev_queue *nq;
4863 	int queue;
4864 	int res;
4865 
4866 	if (unlikely(!xdpf))
4867 		return STMMAC_XDP_CONSUMED;
4868 
4869 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4870 	nq = netdev_get_tx_queue(priv->dev, queue);
4871 
4872 	__netif_tx_lock(nq, cpu);
4873 	/* Avoids TX time-out as we are sharing with slow path */
4874 	txq_trans_cond_update(nq);
4875 
4876 	res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4877 	if (res == STMMAC_XDP_TX)
4878 		stmmac_flush_tx_descriptors(priv, queue);
4879 
4880 	__netif_tx_unlock(nq);
4881 
4882 	return res;
4883 }
4884 
4885 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4886 				 struct bpf_prog *prog,
4887 				 struct xdp_buff *xdp)
4888 {
4889 	u32 act;
4890 	int res;
4891 
4892 	act = bpf_prog_run_xdp(prog, xdp);
4893 	switch (act) {
4894 	case XDP_PASS:
4895 		res = STMMAC_XDP_PASS;
4896 		break;
4897 	case XDP_TX:
4898 		res = stmmac_xdp_xmit_back(priv, xdp);
4899 		break;
4900 	case XDP_REDIRECT:
4901 		if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4902 			res = STMMAC_XDP_CONSUMED;
4903 		else
4904 			res = STMMAC_XDP_REDIRECT;
4905 		break;
4906 	default:
4907 		bpf_warn_invalid_xdp_action(priv->dev, prog, act);
4908 		fallthrough;
4909 	case XDP_ABORTED:
4910 		trace_xdp_exception(priv->dev, prog, act);
4911 		fallthrough;
4912 	case XDP_DROP:
4913 		res = STMMAC_XDP_CONSUMED;
4914 		break;
4915 	}
4916 
4917 	return res;
4918 }
4919 
4920 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4921 					   struct xdp_buff *xdp)
4922 {
4923 	struct bpf_prog *prog;
4924 	int res;
4925 
4926 	prog = READ_ONCE(priv->xdp_prog);
4927 	if (!prog) {
4928 		res = STMMAC_XDP_PASS;
4929 		goto out;
4930 	}
4931 
4932 	res = __stmmac_xdp_run_prog(priv, prog, xdp);
4933 out:
4934 	return ERR_PTR(-res);
4935 }
4936 
4937 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4938 				   int xdp_status)
4939 {
4940 	int cpu = smp_processor_id();
4941 	int queue;
4942 
4943 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4944 
4945 	if (xdp_status & STMMAC_XDP_TX)
4946 		stmmac_tx_timer_arm(priv, queue);
4947 
4948 	if (xdp_status & STMMAC_XDP_REDIRECT)
4949 		xdp_do_flush();
4950 }
4951 
4952 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4953 					       struct xdp_buff *xdp)
4954 {
4955 	unsigned int metasize = xdp->data - xdp->data_meta;
4956 	unsigned int datasize = xdp->data_end - xdp->data;
4957 	struct sk_buff *skb;
4958 
4959 	skb = __napi_alloc_skb(&ch->rxtx_napi,
4960 			       xdp->data_end - xdp->data_hard_start,
4961 			       GFP_ATOMIC | __GFP_NOWARN);
4962 	if (unlikely(!skb))
4963 		return NULL;
4964 
4965 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
4966 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4967 	if (metasize)
4968 		skb_metadata_set(skb, metasize);
4969 
4970 	return skb;
4971 }
4972 
4973 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4974 				   struct dma_desc *p, struct dma_desc *np,
4975 				   struct xdp_buff *xdp)
4976 {
4977 	struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[queue];
4978 	struct stmmac_channel *ch = &priv->channel[queue];
4979 	unsigned int len = xdp->data_end - xdp->data;
4980 	enum pkt_hash_types hash_type;
4981 	int coe = priv->hw->rx_csum;
4982 	struct sk_buff *skb;
4983 	u32 hash;
4984 
4985 	skb = stmmac_construct_skb_zc(ch, xdp);
4986 	if (!skb) {
4987 		priv->xstats.rx_dropped++;
4988 		return;
4989 	}
4990 
4991 	stmmac_get_rx_hwtstamp(priv, p, np, skb);
4992 	stmmac_rx_vlan(priv->dev, skb);
4993 	skb->protocol = eth_type_trans(skb, priv->dev);
4994 
4995 	if (unlikely(!coe) || !stmmac_has_ip_ethertype(skb))
4996 		skb_checksum_none_assert(skb);
4997 	else
4998 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4999 
5000 	if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5001 		skb_set_hash(skb, hash, hash_type);
5002 
5003 	skb_record_rx_queue(skb, queue);
5004 	napi_gro_receive(&ch->rxtx_napi, skb);
5005 
5006 	u64_stats_update_begin(&rxq_stats->napi_syncp);
5007 	u64_stats_inc(&rxq_stats->napi.rx_pkt_n);
5008 	u64_stats_add(&rxq_stats->napi.rx_bytes, len);
5009 	u64_stats_update_end(&rxq_stats->napi_syncp);
5010 }
5011 
5012 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
5013 {
5014 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5015 	unsigned int entry = rx_q->dirty_rx;
5016 	struct dma_desc *rx_desc = NULL;
5017 	bool ret = true;
5018 
5019 	budget = min(budget, stmmac_rx_dirty(priv, queue));
5020 
5021 	while (budget-- > 0 && entry != rx_q->cur_rx) {
5022 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
5023 		dma_addr_t dma_addr;
5024 		bool use_rx_wd;
5025 
5026 		if (!buf->xdp) {
5027 			buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
5028 			if (!buf->xdp) {
5029 				ret = false;
5030 				break;
5031 			}
5032 		}
5033 
5034 		if (priv->extend_desc)
5035 			rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
5036 		else
5037 			rx_desc = rx_q->dma_rx + entry;
5038 
5039 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
5040 		stmmac_set_desc_addr(priv, rx_desc, dma_addr);
5041 		stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
5042 		stmmac_refill_desc3(priv, rx_q, rx_desc);
5043 
5044 		rx_q->rx_count_frames++;
5045 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
5046 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
5047 			rx_q->rx_count_frames = 0;
5048 
5049 		use_rx_wd = !priv->rx_coal_frames[queue];
5050 		use_rx_wd |= rx_q->rx_count_frames > 0;
5051 		if (!priv->use_riwt)
5052 			use_rx_wd = false;
5053 
5054 		dma_wmb();
5055 		stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
5056 
5057 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
5058 	}
5059 
5060 	if (rx_desc) {
5061 		rx_q->dirty_rx = entry;
5062 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
5063 				     (rx_q->dirty_rx * sizeof(struct dma_desc));
5064 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
5065 	}
5066 
5067 	return ret;
5068 }
5069 
5070 static struct stmmac_xdp_buff *xsk_buff_to_stmmac_ctx(struct xdp_buff *xdp)
5071 {
5072 	/* In XDP zero copy data path, xdp field in struct xdp_buff_xsk is used
5073 	 * to represent incoming packet, whereas cb field in the same structure
5074 	 * is used to store driver specific info. Thus, struct stmmac_xdp_buff
5075 	 * is laid on top of xdp and cb fields of struct xdp_buff_xsk.
5076 	 */
5077 	return (struct stmmac_xdp_buff *)xdp;
5078 }
5079 
5080 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
5081 {
5082 	struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[queue];
5083 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5084 	unsigned int count = 0, error = 0, len = 0;
5085 	int dirty = stmmac_rx_dirty(priv, queue);
5086 	unsigned int next_entry = rx_q->cur_rx;
5087 	u32 rx_errors = 0, rx_dropped = 0;
5088 	unsigned int desc_size;
5089 	struct bpf_prog *prog;
5090 	bool failure = false;
5091 	int xdp_status = 0;
5092 	int status = 0;
5093 
5094 	if (netif_msg_rx_status(priv)) {
5095 		void *rx_head;
5096 
5097 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5098 		if (priv->extend_desc) {
5099 			rx_head = (void *)rx_q->dma_erx;
5100 			desc_size = sizeof(struct dma_extended_desc);
5101 		} else {
5102 			rx_head = (void *)rx_q->dma_rx;
5103 			desc_size = sizeof(struct dma_desc);
5104 		}
5105 
5106 		stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5107 				    rx_q->dma_rx_phy, desc_size);
5108 	}
5109 	while (count < limit) {
5110 		struct stmmac_rx_buffer *buf;
5111 		struct stmmac_xdp_buff *ctx;
5112 		unsigned int buf1_len = 0;
5113 		struct dma_desc *np, *p;
5114 		int entry;
5115 		int res;
5116 
5117 		if (!count && rx_q->state_saved) {
5118 			error = rx_q->state.error;
5119 			len = rx_q->state.len;
5120 		} else {
5121 			rx_q->state_saved = false;
5122 			error = 0;
5123 			len = 0;
5124 		}
5125 
5126 		if (count >= limit)
5127 			break;
5128 
5129 read_again:
5130 		buf1_len = 0;
5131 		entry = next_entry;
5132 		buf = &rx_q->buf_pool[entry];
5133 
5134 		if (dirty >= STMMAC_RX_FILL_BATCH) {
5135 			failure = failure ||
5136 				  !stmmac_rx_refill_zc(priv, queue, dirty);
5137 			dirty = 0;
5138 		}
5139 
5140 		if (priv->extend_desc)
5141 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5142 		else
5143 			p = rx_q->dma_rx + entry;
5144 
5145 		/* read the status of the incoming frame */
5146 		status = stmmac_rx_status(priv, &priv->xstats, p);
5147 		/* check if managed by the DMA otherwise go ahead */
5148 		if (unlikely(status & dma_own))
5149 			break;
5150 
5151 		/* Prefetch the next RX descriptor */
5152 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5153 						priv->dma_conf.dma_rx_size);
5154 		next_entry = rx_q->cur_rx;
5155 
5156 		if (priv->extend_desc)
5157 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5158 		else
5159 			np = rx_q->dma_rx + next_entry;
5160 
5161 		prefetch(np);
5162 
5163 		/* Ensure a valid XSK buffer before proceed */
5164 		if (!buf->xdp)
5165 			break;
5166 
5167 		if (priv->extend_desc)
5168 			stmmac_rx_extended_status(priv, &priv->xstats,
5169 						  rx_q->dma_erx + entry);
5170 		if (unlikely(status == discard_frame)) {
5171 			xsk_buff_free(buf->xdp);
5172 			buf->xdp = NULL;
5173 			dirty++;
5174 			error = 1;
5175 			if (!priv->hwts_rx_en)
5176 				rx_errors++;
5177 		}
5178 
5179 		if (unlikely(error && (status & rx_not_ls)))
5180 			goto read_again;
5181 		if (unlikely(error)) {
5182 			count++;
5183 			continue;
5184 		}
5185 
5186 		/* XSK pool expects RX frame 1:1 mapped to XSK buffer */
5187 		if (likely(status & rx_not_ls)) {
5188 			xsk_buff_free(buf->xdp);
5189 			buf->xdp = NULL;
5190 			dirty++;
5191 			count++;
5192 			goto read_again;
5193 		}
5194 
5195 		ctx = xsk_buff_to_stmmac_ctx(buf->xdp);
5196 		ctx->priv = priv;
5197 		ctx->desc = p;
5198 		ctx->ndesc = np;
5199 
5200 		/* XDP ZC Frame only support primary buffers for now */
5201 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5202 		len += buf1_len;
5203 
5204 		/* ACS is disabled; strip manually. */
5205 		if (likely(!(status & rx_not_ls))) {
5206 			buf1_len -= ETH_FCS_LEN;
5207 			len -= ETH_FCS_LEN;
5208 		}
5209 
5210 		/* RX buffer is good and fit into a XSK pool buffer */
5211 		buf->xdp->data_end = buf->xdp->data + buf1_len;
5212 		xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
5213 
5214 		prog = READ_ONCE(priv->xdp_prog);
5215 		res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
5216 
5217 		switch (res) {
5218 		case STMMAC_XDP_PASS:
5219 			stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
5220 			xsk_buff_free(buf->xdp);
5221 			break;
5222 		case STMMAC_XDP_CONSUMED:
5223 			xsk_buff_free(buf->xdp);
5224 			rx_dropped++;
5225 			break;
5226 		case STMMAC_XDP_TX:
5227 		case STMMAC_XDP_REDIRECT:
5228 			xdp_status |= res;
5229 			break;
5230 		}
5231 
5232 		buf->xdp = NULL;
5233 		dirty++;
5234 		count++;
5235 	}
5236 
5237 	if (status & rx_not_ls) {
5238 		rx_q->state_saved = true;
5239 		rx_q->state.error = error;
5240 		rx_q->state.len = len;
5241 	}
5242 
5243 	stmmac_finalize_xdp_rx(priv, xdp_status);
5244 
5245 	u64_stats_update_begin(&rxq_stats->napi_syncp);
5246 	u64_stats_add(&rxq_stats->napi.rx_pkt_n, count);
5247 	u64_stats_update_end(&rxq_stats->napi_syncp);
5248 
5249 	priv->xstats.rx_dropped += rx_dropped;
5250 	priv->xstats.rx_errors += rx_errors;
5251 
5252 	if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5253 		if (failure || stmmac_rx_dirty(priv, queue) > 0)
5254 			xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5255 		else
5256 			xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5257 
5258 		return (int)count;
5259 	}
5260 
5261 	return failure ? limit : (int)count;
5262 }
5263 
5264 /**
5265  * stmmac_rx - manage the receive process
5266  * @priv: driver private structure
5267  * @limit: napi bugget
5268  * @queue: RX queue index.
5269  * Description :  this the function called by the napi poll method.
5270  * It gets all the frames inside the ring.
5271  */
5272 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5273 {
5274 	u32 rx_errors = 0, rx_dropped = 0, rx_bytes = 0, rx_packets = 0;
5275 	struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[queue];
5276 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5277 	struct stmmac_channel *ch = &priv->channel[queue];
5278 	unsigned int count = 0, error = 0, len = 0;
5279 	int status = 0, coe = priv->hw->rx_csum;
5280 	unsigned int next_entry = rx_q->cur_rx;
5281 	enum dma_data_direction dma_dir;
5282 	unsigned int desc_size;
5283 	struct sk_buff *skb = NULL;
5284 	struct stmmac_xdp_buff ctx;
5285 	int xdp_status = 0;
5286 	int buf_sz;
5287 
5288 	dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5289 	buf_sz = DIV_ROUND_UP(priv->dma_conf.dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5290 	limit = min(priv->dma_conf.dma_rx_size - 1, (unsigned int)limit);
5291 
5292 	if (netif_msg_rx_status(priv)) {
5293 		void *rx_head;
5294 
5295 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5296 		if (priv->extend_desc) {
5297 			rx_head = (void *)rx_q->dma_erx;
5298 			desc_size = sizeof(struct dma_extended_desc);
5299 		} else {
5300 			rx_head = (void *)rx_q->dma_rx;
5301 			desc_size = sizeof(struct dma_desc);
5302 		}
5303 
5304 		stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5305 				    rx_q->dma_rx_phy, desc_size);
5306 	}
5307 	while (count < limit) {
5308 		unsigned int buf1_len = 0, buf2_len = 0;
5309 		enum pkt_hash_types hash_type;
5310 		struct stmmac_rx_buffer *buf;
5311 		struct dma_desc *np, *p;
5312 		int entry;
5313 		u32 hash;
5314 
5315 		if (!count && rx_q->state_saved) {
5316 			skb = rx_q->state.skb;
5317 			error = rx_q->state.error;
5318 			len = rx_q->state.len;
5319 		} else {
5320 			rx_q->state_saved = false;
5321 			skb = NULL;
5322 			error = 0;
5323 			len = 0;
5324 		}
5325 
5326 read_again:
5327 		if (count >= limit)
5328 			break;
5329 
5330 		buf1_len = 0;
5331 		buf2_len = 0;
5332 		entry = next_entry;
5333 		buf = &rx_q->buf_pool[entry];
5334 
5335 		if (priv->extend_desc)
5336 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5337 		else
5338 			p = rx_q->dma_rx + entry;
5339 
5340 		/* read the status of the incoming frame */
5341 		status = stmmac_rx_status(priv, &priv->xstats, p);
5342 		/* check if managed by the DMA otherwise go ahead */
5343 		if (unlikely(status & dma_own))
5344 			break;
5345 
5346 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5347 						priv->dma_conf.dma_rx_size);
5348 		next_entry = rx_q->cur_rx;
5349 
5350 		if (priv->extend_desc)
5351 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5352 		else
5353 			np = rx_q->dma_rx + next_entry;
5354 
5355 		prefetch(np);
5356 
5357 		if (priv->extend_desc)
5358 			stmmac_rx_extended_status(priv, &priv->xstats, rx_q->dma_erx + entry);
5359 		if (unlikely(status == discard_frame)) {
5360 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5361 			buf->page = NULL;
5362 			error = 1;
5363 			if (!priv->hwts_rx_en)
5364 				rx_errors++;
5365 		}
5366 
5367 		if (unlikely(error && (status & rx_not_ls)))
5368 			goto read_again;
5369 		if (unlikely(error)) {
5370 			dev_kfree_skb(skb);
5371 			skb = NULL;
5372 			count++;
5373 			continue;
5374 		}
5375 
5376 		/* Buffer is good. Go on. */
5377 
5378 		prefetch(page_address(buf->page) + buf->page_offset);
5379 		if (buf->sec_page)
5380 			prefetch(page_address(buf->sec_page));
5381 
5382 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5383 		len += buf1_len;
5384 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5385 		len += buf2_len;
5386 
5387 		/* ACS is disabled; strip manually. */
5388 		if (likely(!(status & rx_not_ls))) {
5389 			if (buf2_len) {
5390 				buf2_len -= ETH_FCS_LEN;
5391 				len -= ETH_FCS_LEN;
5392 			} else if (buf1_len) {
5393 				buf1_len -= ETH_FCS_LEN;
5394 				len -= ETH_FCS_LEN;
5395 			}
5396 		}
5397 
5398 		if (!skb) {
5399 			unsigned int pre_len, sync_len;
5400 
5401 			dma_sync_single_for_cpu(priv->device, buf->addr,
5402 						buf1_len, dma_dir);
5403 
5404 			xdp_init_buff(&ctx.xdp, buf_sz, &rx_q->xdp_rxq);
5405 			xdp_prepare_buff(&ctx.xdp, page_address(buf->page),
5406 					 buf->page_offset, buf1_len, true);
5407 
5408 			pre_len = ctx.xdp.data_end - ctx.xdp.data_hard_start -
5409 				  buf->page_offset;
5410 
5411 			ctx.priv = priv;
5412 			ctx.desc = p;
5413 			ctx.ndesc = np;
5414 
5415 			skb = stmmac_xdp_run_prog(priv, &ctx.xdp);
5416 			/* Due xdp_adjust_tail: DMA sync for_device
5417 			 * cover max len CPU touch
5418 			 */
5419 			sync_len = ctx.xdp.data_end - ctx.xdp.data_hard_start -
5420 				   buf->page_offset;
5421 			sync_len = max(sync_len, pre_len);
5422 
5423 			/* For Not XDP_PASS verdict */
5424 			if (IS_ERR(skb)) {
5425 				unsigned int xdp_res = -PTR_ERR(skb);
5426 
5427 				if (xdp_res & STMMAC_XDP_CONSUMED) {
5428 					page_pool_put_page(rx_q->page_pool,
5429 							   virt_to_head_page(ctx.xdp.data),
5430 							   sync_len, true);
5431 					buf->page = NULL;
5432 					rx_dropped++;
5433 
5434 					/* Clear skb as it was set as
5435 					 * status by XDP program.
5436 					 */
5437 					skb = NULL;
5438 
5439 					if (unlikely((status & rx_not_ls)))
5440 						goto read_again;
5441 
5442 					count++;
5443 					continue;
5444 				} else if (xdp_res & (STMMAC_XDP_TX |
5445 						      STMMAC_XDP_REDIRECT)) {
5446 					xdp_status |= xdp_res;
5447 					buf->page = NULL;
5448 					skb = NULL;
5449 					count++;
5450 					continue;
5451 				}
5452 			}
5453 		}
5454 
5455 		if (!skb) {
5456 			/* XDP program may expand or reduce tail */
5457 			buf1_len = ctx.xdp.data_end - ctx.xdp.data;
5458 
5459 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5460 			if (!skb) {
5461 				rx_dropped++;
5462 				count++;
5463 				goto drain_data;
5464 			}
5465 
5466 			/* XDP program may adjust header */
5467 			skb_copy_to_linear_data(skb, ctx.xdp.data, buf1_len);
5468 			skb_put(skb, buf1_len);
5469 
5470 			/* Data payload copied into SKB, page ready for recycle */
5471 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5472 			buf->page = NULL;
5473 		} else if (buf1_len) {
5474 			dma_sync_single_for_cpu(priv->device, buf->addr,
5475 						buf1_len, dma_dir);
5476 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5477 					buf->page, buf->page_offset, buf1_len,
5478 					priv->dma_conf.dma_buf_sz);
5479 
5480 			/* Data payload appended into SKB */
5481 			skb_mark_for_recycle(skb);
5482 			buf->page = NULL;
5483 		}
5484 
5485 		if (buf2_len) {
5486 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5487 						buf2_len, dma_dir);
5488 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5489 					buf->sec_page, 0, buf2_len,
5490 					priv->dma_conf.dma_buf_sz);
5491 
5492 			/* Data payload appended into SKB */
5493 			skb_mark_for_recycle(skb);
5494 			buf->sec_page = NULL;
5495 		}
5496 
5497 drain_data:
5498 		if (likely(status & rx_not_ls))
5499 			goto read_again;
5500 		if (!skb)
5501 			continue;
5502 
5503 		/* Got entire packet into SKB. Finish it. */
5504 
5505 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
5506 		stmmac_rx_vlan(priv->dev, skb);
5507 		skb->protocol = eth_type_trans(skb, priv->dev);
5508 
5509 		if (unlikely(!coe) || !stmmac_has_ip_ethertype(skb))
5510 			skb_checksum_none_assert(skb);
5511 		else
5512 			skb->ip_summed = CHECKSUM_UNNECESSARY;
5513 
5514 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5515 			skb_set_hash(skb, hash, hash_type);
5516 
5517 		skb_record_rx_queue(skb, queue);
5518 		napi_gro_receive(&ch->rx_napi, skb);
5519 		skb = NULL;
5520 
5521 		rx_packets++;
5522 		rx_bytes += len;
5523 		count++;
5524 	}
5525 
5526 	if (status & rx_not_ls || skb) {
5527 		rx_q->state_saved = true;
5528 		rx_q->state.skb = skb;
5529 		rx_q->state.error = error;
5530 		rx_q->state.len = len;
5531 	}
5532 
5533 	stmmac_finalize_xdp_rx(priv, xdp_status);
5534 
5535 	stmmac_rx_refill(priv, queue);
5536 
5537 	u64_stats_update_begin(&rxq_stats->napi_syncp);
5538 	u64_stats_add(&rxq_stats->napi.rx_packets, rx_packets);
5539 	u64_stats_add(&rxq_stats->napi.rx_bytes, rx_bytes);
5540 	u64_stats_add(&rxq_stats->napi.rx_pkt_n, count);
5541 	u64_stats_update_end(&rxq_stats->napi_syncp);
5542 
5543 	priv->xstats.rx_dropped += rx_dropped;
5544 	priv->xstats.rx_errors += rx_errors;
5545 
5546 	return count;
5547 }
5548 
5549 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5550 {
5551 	struct stmmac_channel *ch =
5552 		container_of(napi, struct stmmac_channel, rx_napi);
5553 	struct stmmac_priv *priv = ch->priv_data;
5554 	struct stmmac_rxq_stats *rxq_stats;
5555 	u32 chan = ch->index;
5556 	int work_done;
5557 
5558 	rxq_stats = &priv->xstats.rxq_stats[chan];
5559 	u64_stats_update_begin(&rxq_stats->napi_syncp);
5560 	u64_stats_inc(&rxq_stats->napi.poll);
5561 	u64_stats_update_end(&rxq_stats->napi_syncp);
5562 
5563 	work_done = stmmac_rx(priv, budget, chan);
5564 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5565 		unsigned long flags;
5566 
5567 		spin_lock_irqsave(&ch->lock, flags);
5568 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5569 		spin_unlock_irqrestore(&ch->lock, flags);
5570 	}
5571 
5572 	return work_done;
5573 }
5574 
5575 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5576 {
5577 	struct stmmac_channel *ch =
5578 		container_of(napi, struct stmmac_channel, tx_napi);
5579 	struct stmmac_priv *priv = ch->priv_data;
5580 	struct stmmac_txq_stats *txq_stats;
5581 	u32 chan = ch->index;
5582 	int work_done;
5583 
5584 	txq_stats = &priv->xstats.txq_stats[chan];
5585 	u64_stats_update_begin(&txq_stats->napi_syncp);
5586 	u64_stats_inc(&txq_stats->napi.poll);
5587 	u64_stats_update_end(&txq_stats->napi_syncp);
5588 
5589 	work_done = stmmac_tx_clean(priv, budget, chan);
5590 	work_done = min(work_done, budget);
5591 
5592 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5593 		unsigned long flags;
5594 
5595 		spin_lock_irqsave(&ch->lock, flags);
5596 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5597 		spin_unlock_irqrestore(&ch->lock, flags);
5598 	}
5599 
5600 	return work_done;
5601 }
5602 
5603 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5604 {
5605 	struct stmmac_channel *ch =
5606 		container_of(napi, struct stmmac_channel, rxtx_napi);
5607 	struct stmmac_priv *priv = ch->priv_data;
5608 	int rx_done, tx_done, rxtx_done;
5609 	struct stmmac_rxq_stats *rxq_stats;
5610 	struct stmmac_txq_stats *txq_stats;
5611 	u32 chan = ch->index;
5612 
5613 	rxq_stats = &priv->xstats.rxq_stats[chan];
5614 	u64_stats_update_begin(&rxq_stats->napi_syncp);
5615 	u64_stats_inc(&rxq_stats->napi.poll);
5616 	u64_stats_update_end(&rxq_stats->napi_syncp);
5617 
5618 	txq_stats = &priv->xstats.txq_stats[chan];
5619 	u64_stats_update_begin(&txq_stats->napi_syncp);
5620 	u64_stats_inc(&txq_stats->napi.poll);
5621 	u64_stats_update_end(&txq_stats->napi_syncp);
5622 
5623 	tx_done = stmmac_tx_clean(priv, budget, chan);
5624 	tx_done = min(tx_done, budget);
5625 
5626 	rx_done = stmmac_rx_zc(priv, budget, chan);
5627 
5628 	rxtx_done = max(tx_done, rx_done);
5629 
5630 	/* If either TX or RX work is not complete, return budget
5631 	 * and keep pooling
5632 	 */
5633 	if (rxtx_done >= budget)
5634 		return budget;
5635 
5636 	/* all work done, exit the polling mode */
5637 	if (napi_complete_done(napi, rxtx_done)) {
5638 		unsigned long flags;
5639 
5640 		spin_lock_irqsave(&ch->lock, flags);
5641 		/* Both RX and TX work done are compelte,
5642 		 * so enable both RX & TX IRQs.
5643 		 */
5644 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5645 		spin_unlock_irqrestore(&ch->lock, flags);
5646 	}
5647 
5648 	return min(rxtx_done, budget - 1);
5649 }
5650 
5651 /**
5652  *  stmmac_tx_timeout
5653  *  @dev : Pointer to net device structure
5654  *  @txqueue: the index of the hanging transmit queue
5655  *  Description: this function is called when a packet transmission fails to
5656  *   complete within a reasonable time. The driver will mark the error in the
5657  *   netdev structure and arrange for the device to be reset to a sane state
5658  *   in order to transmit a new packet.
5659  */
5660 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5661 {
5662 	struct stmmac_priv *priv = netdev_priv(dev);
5663 
5664 	stmmac_global_err(priv);
5665 }
5666 
5667 /**
5668  *  stmmac_set_rx_mode - entry point for multicast addressing
5669  *  @dev : pointer to the device structure
5670  *  Description:
5671  *  This function is a driver entry point which gets called by the kernel
5672  *  whenever multicast addresses must be enabled/disabled.
5673  *  Return value:
5674  *  void.
5675  */
5676 static void stmmac_set_rx_mode(struct net_device *dev)
5677 {
5678 	struct stmmac_priv *priv = netdev_priv(dev);
5679 
5680 	stmmac_set_filter(priv, priv->hw, dev);
5681 }
5682 
5683 /**
5684  *  stmmac_change_mtu - entry point to change MTU size for the device.
5685  *  @dev : device pointer.
5686  *  @new_mtu : the new MTU size for the device.
5687  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5688  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5689  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5690  *  Return value:
5691  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5692  *  file on failure.
5693  */
5694 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5695 {
5696 	struct stmmac_priv *priv = netdev_priv(dev);
5697 	int txfifosz = priv->plat->tx_fifo_size;
5698 	struct stmmac_dma_conf *dma_conf;
5699 	const int mtu = new_mtu;
5700 	int ret;
5701 
5702 	if (txfifosz == 0)
5703 		txfifosz = priv->dma_cap.tx_fifo_size;
5704 
5705 	txfifosz /= priv->plat->tx_queues_to_use;
5706 
5707 	if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5708 		netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5709 		return -EINVAL;
5710 	}
5711 
5712 	new_mtu = STMMAC_ALIGN(new_mtu);
5713 
5714 	/* If condition true, FIFO is too small or MTU too large */
5715 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5716 		return -EINVAL;
5717 
5718 	if (netif_running(dev)) {
5719 		netdev_dbg(priv->dev, "restarting interface to change its MTU\n");
5720 		/* Try to allocate the new DMA conf with the new mtu */
5721 		dma_conf = stmmac_setup_dma_desc(priv, mtu);
5722 		if (IS_ERR(dma_conf)) {
5723 			netdev_err(priv->dev, "failed allocating new dma conf for new MTU %d\n",
5724 				   mtu);
5725 			return PTR_ERR(dma_conf);
5726 		}
5727 
5728 		stmmac_release(dev);
5729 
5730 		ret = __stmmac_open(dev, dma_conf);
5731 		if (ret) {
5732 			free_dma_desc_resources(priv, dma_conf);
5733 			kfree(dma_conf);
5734 			netdev_err(priv->dev, "failed reopening the interface after MTU change\n");
5735 			return ret;
5736 		}
5737 
5738 		kfree(dma_conf);
5739 
5740 		stmmac_set_rx_mode(dev);
5741 	}
5742 
5743 	dev->mtu = mtu;
5744 	netdev_update_features(dev);
5745 
5746 	return 0;
5747 }
5748 
5749 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5750 					     netdev_features_t features)
5751 {
5752 	struct stmmac_priv *priv = netdev_priv(dev);
5753 
5754 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5755 		features &= ~NETIF_F_RXCSUM;
5756 
5757 	if (!priv->plat->tx_coe)
5758 		features &= ~NETIF_F_CSUM_MASK;
5759 
5760 	/* Some GMAC devices have a bugged Jumbo frame support that
5761 	 * needs to have the Tx COE disabled for oversized frames
5762 	 * (due to limited buffer sizes). In this case we disable
5763 	 * the TX csum insertion in the TDES and not use SF.
5764 	 */
5765 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5766 		features &= ~NETIF_F_CSUM_MASK;
5767 
5768 	/* Disable tso if asked by ethtool */
5769 	if ((priv->plat->flags & STMMAC_FLAG_TSO_EN) && (priv->dma_cap.tsoen)) {
5770 		if (features & NETIF_F_TSO)
5771 			priv->tso = true;
5772 		else
5773 			priv->tso = false;
5774 	}
5775 
5776 	return features;
5777 }
5778 
5779 static int stmmac_set_features(struct net_device *netdev,
5780 			       netdev_features_t features)
5781 {
5782 	struct stmmac_priv *priv = netdev_priv(netdev);
5783 
5784 	/* Keep the COE Type in case of csum is supporting */
5785 	if (features & NETIF_F_RXCSUM)
5786 		priv->hw->rx_csum = priv->plat->rx_coe;
5787 	else
5788 		priv->hw->rx_csum = 0;
5789 	/* No check needed because rx_coe has been set before and it will be
5790 	 * fixed in case of issue.
5791 	 */
5792 	stmmac_rx_ipc(priv, priv->hw);
5793 
5794 	if (priv->sph_cap) {
5795 		bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5796 		u32 chan;
5797 
5798 		for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5799 			stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5800 	}
5801 
5802 	return 0;
5803 }
5804 
5805 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5806 {
5807 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5808 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5809 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5810 	bool *hs_enable = &fpe_cfg->hs_enable;
5811 
5812 	if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5813 		return;
5814 
5815 	/* If LP has sent verify mPacket, LP is FPE capable */
5816 	if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5817 		if (*lp_state < FPE_STATE_CAPABLE)
5818 			*lp_state = FPE_STATE_CAPABLE;
5819 
5820 		/* If user has requested FPE enable, quickly response */
5821 		if (*hs_enable)
5822 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5823 						fpe_cfg,
5824 						MPACKET_RESPONSE);
5825 	}
5826 
5827 	/* If Local has sent verify mPacket, Local is FPE capable */
5828 	if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5829 		if (*lo_state < FPE_STATE_CAPABLE)
5830 			*lo_state = FPE_STATE_CAPABLE;
5831 	}
5832 
5833 	/* If LP has sent response mPacket, LP is entering FPE ON */
5834 	if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5835 		*lp_state = FPE_STATE_ENTERING_ON;
5836 
5837 	/* If Local has sent response mPacket, Local is entering FPE ON */
5838 	if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5839 		*lo_state = FPE_STATE_ENTERING_ON;
5840 
5841 	if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5842 	    !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5843 	    priv->fpe_wq) {
5844 		queue_work(priv->fpe_wq, &priv->fpe_task);
5845 	}
5846 }
5847 
5848 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5849 {
5850 	u32 rx_cnt = priv->plat->rx_queues_to_use;
5851 	u32 tx_cnt = priv->plat->tx_queues_to_use;
5852 	u32 queues_count;
5853 	u32 queue;
5854 	bool xmac;
5855 
5856 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5857 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5858 
5859 	if (priv->irq_wake)
5860 		pm_wakeup_event(priv->device, 0);
5861 
5862 	if (priv->dma_cap.estsel)
5863 		stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5864 				      &priv->xstats, tx_cnt);
5865 
5866 	if (priv->dma_cap.fpesel) {
5867 		int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5868 						   priv->dev);
5869 
5870 		stmmac_fpe_event_status(priv, status);
5871 	}
5872 
5873 	/* To handle GMAC own interrupts */
5874 	if ((priv->plat->has_gmac) || xmac) {
5875 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5876 
5877 		if (unlikely(status)) {
5878 			/* For LPI we need to save the tx status */
5879 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5880 				priv->tx_path_in_lpi_mode = true;
5881 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5882 				priv->tx_path_in_lpi_mode = false;
5883 		}
5884 
5885 		for (queue = 0; queue < queues_count; queue++) {
5886 			status = stmmac_host_mtl_irq_status(priv, priv->hw,
5887 							    queue);
5888 		}
5889 
5890 		/* PCS link status */
5891 		if (priv->hw->pcs &&
5892 		    !(priv->plat->flags & STMMAC_FLAG_HAS_INTEGRATED_PCS)) {
5893 			if (priv->xstats.pcs_link)
5894 				netif_carrier_on(priv->dev);
5895 			else
5896 				netif_carrier_off(priv->dev);
5897 		}
5898 
5899 		stmmac_timestamp_interrupt(priv, priv);
5900 	}
5901 }
5902 
5903 /**
5904  *  stmmac_interrupt - main ISR
5905  *  @irq: interrupt number.
5906  *  @dev_id: to pass the net device pointer.
5907  *  Description: this is the main driver interrupt service routine.
5908  *  It can call:
5909  *  o DMA service routine (to manage incoming frame reception and transmission
5910  *    status)
5911  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5912  *    interrupts.
5913  */
5914 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5915 {
5916 	struct net_device *dev = (struct net_device *)dev_id;
5917 	struct stmmac_priv *priv = netdev_priv(dev);
5918 
5919 	/* Check if adapter is up */
5920 	if (test_bit(STMMAC_DOWN, &priv->state))
5921 		return IRQ_HANDLED;
5922 
5923 	/* Check if a fatal error happened */
5924 	if (stmmac_safety_feat_interrupt(priv))
5925 		return IRQ_HANDLED;
5926 
5927 	/* To handle Common interrupts */
5928 	stmmac_common_interrupt(priv);
5929 
5930 	/* To handle DMA interrupts */
5931 	stmmac_dma_interrupt(priv);
5932 
5933 	return IRQ_HANDLED;
5934 }
5935 
5936 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5937 {
5938 	struct net_device *dev = (struct net_device *)dev_id;
5939 	struct stmmac_priv *priv = netdev_priv(dev);
5940 
5941 	/* Check if adapter is up */
5942 	if (test_bit(STMMAC_DOWN, &priv->state))
5943 		return IRQ_HANDLED;
5944 
5945 	/* To handle Common interrupts */
5946 	stmmac_common_interrupt(priv);
5947 
5948 	return IRQ_HANDLED;
5949 }
5950 
5951 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5952 {
5953 	struct net_device *dev = (struct net_device *)dev_id;
5954 	struct stmmac_priv *priv = netdev_priv(dev);
5955 
5956 	/* Check if adapter is up */
5957 	if (test_bit(STMMAC_DOWN, &priv->state))
5958 		return IRQ_HANDLED;
5959 
5960 	/* Check if a fatal error happened */
5961 	stmmac_safety_feat_interrupt(priv);
5962 
5963 	return IRQ_HANDLED;
5964 }
5965 
5966 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5967 {
5968 	struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5969 	struct stmmac_dma_conf *dma_conf;
5970 	int chan = tx_q->queue_index;
5971 	struct stmmac_priv *priv;
5972 	int status;
5973 
5974 	dma_conf = container_of(tx_q, struct stmmac_dma_conf, tx_queue[chan]);
5975 	priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5976 
5977 	/* Check if adapter is up */
5978 	if (test_bit(STMMAC_DOWN, &priv->state))
5979 		return IRQ_HANDLED;
5980 
5981 	status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5982 
5983 	if (unlikely(status & tx_hard_error_bump_tc)) {
5984 		/* Try to bump up the dma threshold on this failure */
5985 		stmmac_bump_dma_threshold(priv, chan);
5986 	} else if (unlikely(status == tx_hard_error)) {
5987 		stmmac_tx_err(priv, chan);
5988 	}
5989 
5990 	return IRQ_HANDLED;
5991 }
5992 
5993 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5994 {
5995 	struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5996 	struct stmmac_dma_conf *dma_conf;
5997 	int chan = rx_q->queue_index;
5998 	struct stmmac_priv *priv;
5999 
6000 	dma_conf = container_of(rx_q, struct stmmac_dma_conf, rx_queue[chan]);
6001 	priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
6002 
6003 	/* Check if adapter is up */
6004 	if (test_bit(STMMAC_DOWN, &priv->state))
6005 		return IRQ_HANDLED;
6006 
6007 	stmmac_napi_check(priv, chan, DMA_DIR_RX);
6008 
6009 	return IRQ_HANDLED;
6010 }
6011 
6012 /**
6013  *  stmmac_ioctl - Entry point for the Ioctl
6014  *  @dev: Device pointer.
6015  *  @rq: An IOCTL specefic structure, that can contain a pointer to
6016  *  a proprietary structure used to pass information to the driver.
6017  *  @cmd: IOCTL command
6018  *  Description:
6019  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
6020  */
6021 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6022 {
6023 	struct stmmac_priv *priv = netdev_priv (dev);
6024 	int ret = -EOPNOTSUPP;
6025 
6026 	if (!netif_running(dev))
6027 		return -EINVAL;
6028 
6029 	switch (cmd) {
6030 	case SIOCGMIIPHY:
6031 	case SIOCGMIIREG:
6032 	case SIOCSMIIREG:
6033 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
6034 		break;
6035 	case SIOCSHWTSTAMP:
6036 		ret = stmmac_hwtstamp_set(dev, rq);
6037 		break;
6038 	case SIOCGHWTSTAMP:
6039 		ret = stmmac_hwtstamp_get(dev, rq);
6040 		break;
6041 	default:
6042 		break;
6043 	}
6044 
6045 	return ret;
6046 }
6047 
6048 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
6049 				    void *cb_priv)
6050 {
6051 	struct stmmac_priv *priv = cb_priv;
6052 	int ret = -EOPNOTSUPP;
6053 
6054 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
6055 		return ret;
6056 
6057 	__stmmac_disable_all_queues(priv);
6058 
6059 	switch (type) {
6060 	case TC_SETUP_CLSU32:
6061 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
6062 		break;
6063 	case TC_SETUP_CLSFLOWER:
6064 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
6065 		break;
6066 	default:
6067 		break;
6068 	}
6069 
6070 	stmmac_enable_all_queues(priv);
6071 	return ret;
6072 }
6073 
6074 static LIST_HEAD(stmmac_block_cb_list);
6075 
6076 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
6077 			   void *type_data)
6078 {
6079 	struct stmmac_priv *priv = netdev_priv(ndev);
6080 
6081 	switch (type) {
6082 	case TC_QUERY_CAPS:
6083 		return stmmac_tc_query_caps(priv, priv, type_data);
6084 	case TC_SETUP_BLOCK:
6085 		return flow_block_cb_setup_simple(type_data,
6086 						  &stmmac_block_cb_list,
6087 						  stmmac_setup_tc_block_cb,
6088 						  priv, priv, true);
6089 	case TC_SETUP_QDISC_CBS:
6090 		return stmmac_tc_setup_cbs(priv, priv, type_data);
6091 	case TC_SETUP_QDISC_TAPRIO:
6092 		return stmmac_tc_setup_taprio(priv, priv, type_data);
6093 	case TC_SETUP_QDISC_ETF:
6094 		return stmmac_tc_setup_etf(priv, priv, type_data);
6095 	default:
6096 		return -EOPNOTSUPP;
6097 	}
6098 }
6099 
6100 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
6101 			       struct net_device *sb_dev)
6102 {
6103 	int gso = skb_shinfo(skb)->gso_type;
6104 
6105 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
6106 		/*
6107 		 * There is no way to determine the number of TSO/USO
6108 		 * capable Queues. Let's use always the Queue 0
6109 		 * because if TSO/USO is supported then at least this
6110 		 * one will be capable.
6111 		 */
6112 		return 0;
6113 	}
6114 
6115 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
6116 }
6117 
6118 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
6119 {
6120 	struct stmmac_priv *priv = netdev_priv(ndev);
6121 	int ret = 0;
6122 
6123 	ret = pm_runtime_resume_and_get(priv->device);
6124 	if (ret < 0)
6125 		return ret;
6126 
6127 	ret = eth_mac_addr(ndev, addr);
6128 	if (ret)
6129 		goto set_mac_error;
6130 
6131 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
6132 
6133 set_mac_error:
6134 	pm_runtime_put(priv->device);
6135 
6136 	return ret;
6137 }
6138 
6139 #ifdef CONFIG_DEBUG_FS
6140 static struct dentry *stmmac_fs_dir;
6141 
6142 static void sysfs_display_ring(void *head, int size, int extend_desc,
6143 			       struct seq_file *seq, dma_addr_t dma_phy_addr)
6144 {
6145 	int i;
6146 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
6147 	struct dma_desc *p = (struct dma_desc *)head;
6148 	dma_addr_t dma_addr;
6149 
6150 	for (i = 0; i < size; i++) {
6151 		if (extend_desc) {
6152 			dma_addr = dma_phy_addr + i * sizeof(*ep);
6153 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6154 				   i, &dma_addr,
6155 				   le32_to_cpu(ep->basic.des0),
6156 				   le32_to_cpu(ep->basic.des1),
6157 				   le32_to_cpu(ep->basic.des2),
6158 				   le32_to_cpu(ep->basic.des3));
6159 			ep++;
6160 		} else {
6161 			dma_addr = dma_phy_addr + i * sizeof(*p);
6162 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6163 				   i, &dma_addr,
6164 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
6165 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
6166 			p++;
6167 		}
6168 		seq_printf(seq, "\n");
6169 	}
6170 }
6171 
6172 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
6173 {
6174 	struct net_device *dev = seq->private;
6175 	struct stmmac_priv *priv = netdev_priv(dev);
6176 	u32 rx_count = priv->plat->rx_queues_to_use;
6177 	u32 tx_count = priv->plat->tx_queues_to_use;
6178 	u32 queue;
6179 
6180 	if ((dev->flags & IFF_UP) == 0)
6181 		return 0;
6182 
6183 	for (queue = 0; queue < rx_count; queue++) {
6184 		struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6185 
6186 		seq_printf(seq, "RX Queue %d:\n", queue);
6187 
6188 		if (priv->extend_desc) {
6189 			seq_printf(seq, "Extended descriptor ring:\n");
6190 			sysfs_display_ring((void *)rx_q->dma_erx,
6191 					   priv->dma_conf.dma_rx_size, 1, seq, rx_q->dma_rx_phy);
6192 		} else {
6193 			seq_printf(seq, "Descriptor ring:\n");
6194 			sysfs_display_ring((void *)rx_q->dma_rx,
6195 					   priv->dma_conf.dma_rx_size, 0, seq, rx_q->dma_rx_phy);
6196 		}
6197 	}
6198 
6199 	for (queue = 0; queue < tx_count; queue++) {
6200 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6201 
6202 		seq_printf(seq, "TX Queue %d:\n", queue);
6203 
6204 		if (priv->extend_desc) {
6205 			seq_printf(seq, "Extended descriptor ring:\n");
6206 			sysfs_display_ring((void *)tx_q->dma_etx,
6207 					   priv->dma_conf.dma_tx_size, 1, seq, tx_q->dma_tx_phy);
6208 		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
6209 			seq_printf(seq, "Descriptor ring:\n");
6210 			sysfs_display_ring((void *)tx_q->dma_tx,
6211 					   priv->dma_conf.dma_tx_size, 0, seq, tx_q->dma_tx_phy);
6212 		}
6213 	}
6214 
6215 	return 0;
6216 }
6217 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
6218 
6219 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
6220 {
6221 	static const char * const dwxgmac_timestamp_source[] = {
6222 		"None",
6223 		"Internal",
6224 		"External",
6225 		"Both",
6226 	};
6227 	static const char * const dwxgmac_safety_feature_desc[] = {
6228 		"No",
6229 		"All Safety Features with ECC and Parity",
6230 		"All Safety Features without ECC or Parity",
6231 		"All Safety Features with Parity Only",
6232 		"ECC Only",
6233 		"UNDEFINED",
6234 		"UNDEFINED",
6235 		"UNDEFINED",
6236 	};
6237 	struct net_device *dev = seq->private;
6238 	struct stmmac_priv *priv = netdev_priv(dev);
6239 
6240 	if (!priv->hw_cap_support) {
6241 		seq_printf(seq, "DMA HW features not supported\n");
6242 		return 0;
6243 	}
6244 
6245 	seq_printf(seq, "==============================\n");
6246 	seq_printf(seq, "\tDMA HW features\n");
6247 	seq_printf(seq, "==============================\n");
6248 
6249 	seq_printf(seq, "\t10/100 Mbps: %s\n",
6250 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6251 	seq_printf(seq, "\t1000 Mbps: %s\n",
6252 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
6253 	seq_printf(seq, "\tHalf duplex: %s\n",
6254 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
6255 	if (priv->plat->has_xgmac) {
6256 		seq_printf(seq,
6257 			   "\tNumber of Additional MAC address registers: %d\n",
6258 			   priv->dma_cap.multi_addr);
6259 	} else {
6260 		seq_printf(seq, "\tHash Filter: %s\n",
6261 			   (priv->dma_cap.hash_filter) ? "Y" : "N");
6262 		seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6263 			   (priv->dma_cap.multi_addr) ? "Y" : "N");
6264 	}
6265 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6266 		   (priv->dma_cap.pcs) ? "Y" : "N");
6267 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6268 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
6269 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
6270 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6271 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
6272 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6273 	seq_printf(seq, "\tRMON module: %s\n",
6274 		   (priv->dma_cap.rmon) ? "Y" : "N");
6275 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6276 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
6277 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6278 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
6279 	if (priv->plat->has_xgmac)
6280 		seq_printf(seq, "\tTimestamp System Time Source: %s\n",
6281 			   dwxgmac_timestamp_source[priv->dma_cap.tssrc]);
6282 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6283 		   (priv->dma_cap.eee) ? "Y" : "N");
6284 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6285 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6286 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
6287 	if (priv->synopsys_id >= DWMAC_CORE_4_00 ||
6288 	    priv->plat->has_xgmac) {
6289 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6290 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
6291 	} else {
6292 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6293 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6294 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6295 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6296 		seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6297 			   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6298 	}
6299 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6300 		   priv->dma_cap.number_rx_channel);
6301 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6302 		   priv->dma_cap.number_tx_channel);
6303 	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6304 		   priv->dma_cap.number_rx_queues);
6305 	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6306 		   priv->dma_cap.number_tx_queues);
6307 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
6308 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
6309 	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6310 	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6311 	seq_printf(seq, "\tHash Table Size: %lu\n", priv->dma_cap.hash_tb_sz ?
6312 		   (BIT(priv->dma_cap.hash_tb_sz) << 5) : 0);
6313 	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6314 	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6315 		   priv->dma_cap.pps_out_num);
6316 	seq_printf(seq, "\tSafety Features: %s\n",
6317 		   dwxgmac_safety_feature_desc[priv->dma_cap.asp]);
6318 	seq_printf(seq, "\tFlexible RX Parser: %s\n",
6319 		   priv->dma_cap.frpsel ? "Y" : "N");
6320 	seq_printf(seq, "\tEnhanced Addressing: %d\n",
6321 		   priv->dma_cap.host_dma_width);
6322 	seq_printf(seq, "\tReceive Side Scaling: %s\n",
6323 		   priv->dma_cap.rssen ? "Y" : "N");
6324 	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6325 		   priv->dma_cap.vlhash ? "Y" : "N");
6326 	seq_printf(seq, "\tSplit Header: %s\n",
6327 		   priv->dma_cap.sphen ? "Y" : "N");
6328 	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6329 		   priv->dma_cap.vlins ? "Y" : "N");
6330 	seq_printf(seq, "\tDouble VLAN: %s\n",
6331 		   priv->dma_cap.dvlan ? "Y" : "N");
6332 	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6333 		   priv->dma_cap.l3l4fnum);
6334 	seq_printf(seq, "\tARP Offloading: %s\n",
6335 		   priv->dma_cap.arpoffsel ? "Y" : "N");
6336 	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6337 		   priv->dma_cap.estsel ? "Y" : "N");
6338 	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6339 		   priv->dma_cap.fpesel ? "Y" : "N");
6340 	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6341 		   priv->dma_cap.tbssel ? "Y" : "N");
6342 	seq_printf(seq, "\tNumber of DMA Channels Enabled for TBS: %d\n",
6343 		   priv->dma_cap.tbs_ch_num);
6344 	seq_printf(seq, "\tPer-Stream Filtering: %s\n",
6345 		   priv->dma_cap.sgfsel ? "Y" : "N");
6346 	seq_printf(seq, "\tTX Timestamp FIFO Depth: %lu\n",
6347 		   BIT(priv->dma_cap.ttsfd) >> 1);
6348 	seq_printf(seq, "\tNumber of Traffic Classes: %d\n",
6349 		   priv->dma_cap.numtc);
6350 	seq_printf(seq, "\tDCB Feature: %s\n",
6351 		   priv->dma_cap.dcben ? "Y" : "N");
6352 	seq_printf(seq, "\tIEEE 1588 High Word Register: %s\n",
6353 		   priv->dma_cap.advthword ? "Y" : "N");
6354 	seq_printf(seq, "\tPTP Offload: %s\n",
6355 		   priv->dma_cap.ptoen ? "Y" : "N");
6356 	seq_printf(seq, "\tOne-Step Timestamping: %s\n",
6357 		   priv->dma_cap.osten ? "Y" : "N");
6358 	seq_printf(seq, "\tPriority-Based Flow Control: %s\n",
6359 		   priv->dma_cap.pfcen ? "Y" : "N");
6360 	seq_printf(seq, "\tNumber of Flexible RX Parser Instructions: %lu\n",
6361 		   BIT(priv->dma_cap.frpes) << 6);
6362 	seq_printf(seq, "\tNumber of Flexible RX Parser Parsable Bytes: %lu\n",
6363 		   BIT(priv->dma_cap.frpbs) << 6);
6364 	seq_printf(seq, "\tParallel Instruction Processor Engines: %d\n",
6365 		   priv->dma_cap.frppipe_num);
6366 	seq_printf(seq, "\tNumber of Extended VLAN Tag Filters: %lu\n",
6367 		   priv->dma_cap.nrvf_num ?
6368 		   (BIT(priv->dma_cap.nrvf_num) << 1) : 0);
6369 	seq_printf(seq, "\tWidth of the Time Interval Field in GCL: %d\n",
6370 		   priv->dma_cap.estwid ? 4 * priv->dma_cap.estwid + 12 : 0);
6371 	seq_printf(seq, "\tDepth of GCL: %lu\n",
6372 		   priv->dma_cap.estdep ? (BIT(priv->dma_cap.estdep) << 5) : 0);
6373 	seq_printf(seq, "\tQueue/Channel-Based VLAN Tag Insertion on TX: %s\n",
6374 		   priv->dma_cap.cbtisel ? "Y" : "N");
6375 	seq_printf(seq, "\tNumber of Auxiliary Snapshot Inputs: %d\n",
6376 		   priv->dma_cap.aux_snapshot_n);
6377 	seq_printf(seq, "\tOne-Step Timestamping for PTP over UDP/IP: %s\n",
6378 		   priv->dma_cap.pou_ost_en ? "Y" : "N");
6379 	seq_printf(seq, "\tEnhanced DMA: %s\n",
6380 		   priv->dma_cap.edma ? "Y" : "N");
6381 	seq_printf(seq, "\tDifferent Descriptor Cache: %s\n",
6382 		   priv->dma_cap.ediffc ? "Y" : "N");
6383 	seq_printf(seq, "\tVxLAN/NVGRE: %s\n",
6384 		   priv->dma_cap.vxn ? "Y" : "N");
6385 	seq_printf(seq, "\tDebug Memory Interface: %s\n",
6386 		   priv->dma_cap.dbgmem ? "Y" : "N");
6387 	seq_printf(seq, "\tNumber of Policing Counters: %lu\n",
6388 		   priv->dma_cap.pcsel ? BIT(priv->dma_cap.pcsel + 3) : 0);
6389 	return 0;
6390 }
6391 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6392 
6393 /* Use network device events to rename debugfs file entries.
6394  */
6395 static int stmmac_device_event(struct notifier_block *unused,
6396 			       unsigned long event, void *ptr)
6397 {
6398 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6399 	struct stmmac_priv *priv = netdev_priv(dev);
6400 
6401 	if (dev->netdev_ops != &stmmac_netdev_ops)
6402 		goto done;
6403 
6404 	switch (event) {
6405 	case NETDEV_CHANGENAME:
6406 		if (priv->dbgfs_dir)
6407 			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6408 							 priv->dbgfs_dir,
6409 							 stmmac_fs_dir,
6410 							 dev->name);
6411 		break;
6412 	}
6413 done:
6414 	return NOTIFY_DONE;
6415 }
6416 
6417 static struct notifier_block stmmac_notifier = {
6418 	.notifier_call = stmmac_device_event,
6419 };
6420 
6421 static void stmmac_init_fs(struct net_device *dev)
6422 {
6423 	struct stmmac_priv *priv = netdev_priv(dev);
6424 
6425 	rtnl_lock();
6426 
6427 	/* Create per netdev entries */
6428 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6429 
6430 	/* Entry to report DMA RX/TX rings */
6431 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6432 			    &stmmac_rings_status_fops);
6433 
6434 	/* Entry to report the DMA HW features */
6435 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6436 			    &stmmac_dma_cap_fops);
6437 
6438 	rtnl_unlock();
6439 }
6440 
6441 static void stmmac_exit_fs(struct net_device *dev)
6442 {
6443 	struct stmmac_priv *priv = netdev_priv(dev);
6444 
6445 	debugfs_remove_recursive(priv->dbgfs_dir);
6446 }
6447 #endif /* CONFIG_DEBUG_FS */
6448 
6449 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6450 {
6451 	unsigned char *data = (unsigned char *)&vid_le;
6452 	unsigned char data_byte = 0;
6453 	u32 crc = ~0x0;
6454 	u32 temp = 0;
6455 	int i, bits;
6456 
6457 	bits = get_bitmask_order(VLAN_VID_MASK);
6458 	for (i = 0; i < bits; i++) {
6459 		if ((i % 8) == 0)
6460 			data_byte = data[i / 8];
6461 
6462 		temp = ((crc & 1) ^ data_byte) & 1;
6463 		crc >>= 1;
6464 		data_byte >>= 1;
6465 
6466 		if (temp)
6467 			crc ^= 0xedb88320;
6468 	}
6469 
6470 	return crc;
6471 }
6472 
6473 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6474 {
6475 	u32 crc, hash = 0;
6476 	u16 pmatch = 0;
6477 	int count = 0;
6478 	u16 vid = 0;
6479 
6480 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6481 		__le16 vid_le = cpu_to_le16(vid);
6482 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6483 		hash |= (1 << crc);
6484 		count++;
6485 	}
6486 
6487 	if (!priv->dma_cap.vlhash) {
6488 		if (count > 2) /* VID = 0 always passes filter */
6489 			return -EOPNOTSUPP;
6490 
6491 		pmatch = vid;
6492 		hash = 0;
6493 	}
6494 
6495 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6496 }
6497 
6498 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6499 {
6500 	struct stmmac_priv *priv = netdev_priv(ndev);
6501 	bool is_double = false;
6502 	int ret;
6503 
6504 	ret = pm_runtime_resume_and_get(priv->device);
6505 	if (ret < 0)
6506 		return ret;
6507 
6508 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6509 		is_double = true;
6510 
6511 	set_bit(vid, priv->active_vlans);
6512 	ret = stmmac_vlan_update(priv, is_double);
6513 	if (ret) {
6514 		clear_bit(vid, priv->active_vlans);
6515 		goto err_pm_put;
6516 	}
6517 
6518 	if (priv->hw->num_vlan) {
6519 		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6520 		if (ret)
6521 			goto err_pm_put;
6522 	}
6523 err_pm_put:
6524 	pm_runtime_put(priv->device);
6525 
6526 	return ret;
6527 }
6528 
6529 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6530 {
6531 	struct stmmac_priv *priv = netdev_priv(ndev);
6532 	bool is_double = false;
6533 	int ret;
6534 
6535 	ret = pm_runtime_resume_and_get(priv->device);
6536 	if (ret < 0)
6537 		return ret;
6538 
6539 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6540 		is_double = true;
6541 
6542 	clear_bit(vid, priv->active_vlans);
6543 
6544 	if (priv->hw->num_vlan) {
6545 		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6546 		if (ret)
6547 			goto del_vlan_error;
6548 	}
6549 
6550 	ret = stmmac_vlan_update(priv, is_double);
6551 
6552 del_vlan_error:
6553 	pm_runtime_put(priv->device);
6554 
6555 	return ret;
6556 }
6557 
6558 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6559 {
6560 	struct stmmac_priv *priv = netdev_priv(dev);
6561 
6562 	switch (bpf->command) {
6563 	case XDP_SETUP_PROG:
6564 		return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6565 	case XDP_SETUP_XSK_POOL:
6566 		return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6567 					     bpf->xsk.queue_id);
6568 	default:
6569 		return -EOPNOTSUPP;
6570 	}
6571 }
6572 
6573 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6574 			   struct xdp_frame **frames, u32 flags)
6575 {
6576 	struct stmmac_priv *priv = netdev_priv(dev);
6577 	int cpu = smp_processor_id();
6578 	struct netdev_queue *nq;
6579 	int i, nxmit = 0;
6580 	int queue;
6581 
6582 	if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6583 		return -ENETDOWN;
6584 
6585 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6586 		return -EINVAL;
6587 
6588 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
6589 	nq = netdev_get_tx_queue(priv->dev, queue);
6590 
6591 	__netif_tx_lock(nq, cpu);
6592 	/* Avoids TX time-out as we are sharing with slow path */
6593 	txq_trans_cond_update(nq);
6594 
6595 	for (i = 0; i < num_frames; i++) {
6596 		int res;
6597 
6598 		res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6599 		if (res == STMMAC_XDP_CONSUMED)
6600 			break;
6601 
6602 		nxmit++;
6603 	}
6604 
6605 	if (flags & XDP_XMIT_FLUSH) {
6606 		stmmac_flush_tx_descriptors(priv, queue);
6607 		stmmac_tx_timer_arm(priv, queue);
6608 	}
6609 
6610 	__netif_tx_unlock(nq);
6611 
6612 	return nxmit;
6613 }
6614 
6615 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6616 {
6617 	struct stmmac_channel *ch = &priv->channel[queue];
6618 	unsigned long flags;
6619 
6620 	spin_lock_irqsave(&ch->lock, flags);
6621 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6622 	spin_unlock_irqrestore(&ch->lock, flags);
6623 
6624 	stmmac_stop_rx_dma(priv, queue);
6625 	__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6626 }
6627 
6628 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6629 {
6630 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6631 	struct stmmac_channel *ch = &priv->channel[queue];
6632 	unsigned long flags;
6633 	u32 buf_size;
6634 	int ret;
6635 
6636 	ret = __alloc_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6637 	if (ret) {
6638 		netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6639 		return;
6640 	}
6641 
6642 	ret = __init_dma_rx_desc_rings(priv, &priv->dma_conf, queue, GFP_KERNEL);
6643 	if (ret) {
6644 		__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6645 		netdev_err(priv->dev, "Failed to init RX desc.\n");
6646 		return;
6647 	}
6648 
6649 	stmmac_reset_rx_queue(priv, queue);
6650 	stmmac_clear_rx_descriptors(priv, &priv->dma_conf, queue);
6651 
6652 	stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6653 			    rx_q->dma_rx_phy, rx_q->queue_index);
6654 
6655 	rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6656 			     sizeof(struct dma_desc));
6657 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6658 			       rx_q->rx_tail_addr, rx_q->queue_index);
6659 
6660 	if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6661 		buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6662 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6663 				      buf_size,
6664 				      rx_q->queue_index);
6665 	} else {
6666 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6667 				      priv->dma_conf.dma_buf_sz,
6668 				      rx_q->queue_index);
6669 	}
6670 
6671 	stmmac_start_rx_dma(priv, queue);
6672 
6673 	spin_lock_irqsave(&ch->lock, flags);
6674 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6675 	spin_unlock_irqrestore(&ch->lock, flags);
6676 }
6677 
6678 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6679 {
6680 	struct stmmac_channel *ch = &priv->channel[queue];
6681 	unsigned long flags;
6682 
6683 	spin_lock_irqsave(&ch->lock, flags);
6684 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6685 	spin_unlock_irqrestore(&ch->lock, flags);
6686 
6687 	stmmac_stop_tx_dma(priv, queue);
6688 	__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6689 }
6690 
6691 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6692 {
6693 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6694 	struct stmmac_channel *ch = &priv->channel[queue];
6695 	unsigned long flags;
6696 	int ret;
6697 
6698 	ret = __alloc_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6699 	if (ret) {
6700 		netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6701 		return;
6702 	}
6703 
6704 	ret = __init_dma_tx_desc_rings(priv,  &priv->dma_conf, queue);
6705 	if (ret) {
6706 		__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6707 		netdev_err(priv->dev, "Failed to init TX desc.\n");
6708 		return;
6709 	}
6710 
6711 	stmmac_reset_tx_queue(priv, queue);
6712 	stmmac_clear_tx_descriptors(priv, &priv->dma_conf, queue);
6713 
6714 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6715 			    tx_q->dma_tx_phy, tx_q->queue_index);
6716 
6717 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
6718 		stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6719 
6720 	tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6721 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6722 			       tx_q->tx_tail_addr, tx_q->queue_index);
6723 
6724 	stmmac_start_tx_dma(priv, queue);
6725 
6726 	spin_lock_irqsave(&ch->lock, flags);
6727 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6728 	spin_unlock_irqrestore(&ch->lock, flags);
6729 }
6730 
6731 void stmmac_xdp_release(struct net_device *dev)
6732 {
6733 	struct stmmac_priv *priv = netdev_priv(dev);
6734 	u32 chan;
6735 
6736 	/* Ensure tx function is not running */
6737 	netif_tx_disable(dev);
6738 
6739 	/* Disable NAPI process */
6740 	stmmac_disable_all_queues(priv);
6741 
6742 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6743 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6744 
6745 	/* Free the IRQ lines */
6746 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
6747 
6748 	/* Stop TX/RX DMA channels */
6749 	stmmac_stop_all_dma(priv);
6750 
6751 	/* Release and free the Rx/Tx resources */
6752 	free_dma_desc_resources(priv, &priv->dma_conf);
6753 
6754 	/* Disable the MAC Rx/Tx */
6755 	stmmac_mac_set(priv, priv->ioaddr, false);
6756 
6757 	/* set trans_start so we don't get spurious
6758 	 * watchdogs during reset
6759 	 */
6760 	netif_trans_update(dev);
6761 	netif_carrier_off(dev);
6762 }
6763 
6764 int stmmac_xdp_open(struct net_device *dev)
6765 {
6766 	struct stmmac_priv *priv = netdev_priv(dev);
6767 	u32 rx_cnt = priv->plat->rx_queues_to_use;
6768 	u32 tx_cnt = priv->plat->tx_queues_to_use;
6769 	u32 dma_csr_ch = max(rx_cnt, tx_cnt);
6770 	struct stmmac_rx_queue *rx_q;
6771 	struct stmmac_tx_queue *tx_q;
6772 	u32 buf_size;
6773 	bool sph_en;
6774 	u32 chan;
6775 	int ret;
6776 
6777 	ret = alloc_dma_desc_resources(priv, &priv->dma_conf);
6778 	if (ret < 0) {
6779 		netdev_err(dev, "%s: DMA descriptors allocation failed\n",
6780 			   __func__);
6781 		goto dma_desc_error;
6782 	}
6783 
6784 	ret = init_dma_desc_rings(dev, &priv->dma_conf, GFP_KERNEL);
6785 	if (ret < 0) {
6786 		netdev_err(dev, "%s: DMA descriptors initialization failed\n",
6787 			   __func__);
6788 		goto init_error;
6789 	}
6790 
6791 	stmmac_reset_queues_param(priv);
6792 
6793 	/* DMA CSR Channel configuration */
6794 	for (chan = 0; chan < dma_csr_ch; chan++) {
6795 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
6796 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
6797 	}
6798 
6799 	/* Adjust Split header */
6800 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
6801 
6802 	/* DMA RX Channel Configuration */
6803 	for (chan = 0; chan < rx_cnt; chan++) {
6804 		rx_q = &priv->dma_conf.rx_queue[chan];
6805 
6806 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6807 				    rx_q->dma_rx_phy, chan);
6808 
6809 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
6810 				     (rx_q->buf_alloc_num *
6811 				      sizeof(struct dma_desc));
6812 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6813 				       rx_q->rx_tail_addr, chan);
6814 
6815 		if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6816 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6817 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6818 					      buf_size,
6819 					      rx_q->queue_index);
6820 		} else {
6821 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6822 					      priv->dma_conf.dma_buf_sz,
6823 					      rx_q->queue_index);
6824 		}
6825 
6826 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
6827 	}
6828 
6829 	/* DMA TX Channel Configuration */
6830 	for (chan = 0; chan < tx_cnt; chan++) {
6831 		tx_q = &priv->dma_conf.tx_queue[chan];
6832 
6833 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6834 				    tx_q->dma_tx_phy, chan);
6835 
6836 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6837 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6838 				       tx_q->tx_tail_addr, chan);
6839 
6840 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6841 		tx_q->txtimer.function = stmmac_tx_timer;
6842 	}
6843 
6844 	/* Enable the MAC Rx/Tx */
6845 	stmmac_mac_set(priv, priv->ioaddr, true);
6846 
6847 	/* Start Rx & Tx DMA Channels */
6848 	stmmac_start_all_dma(priv);
6849 
6850 	ret = stmmac_request_irq(dev);
6851 	if (ret)
6852 		goto irq_error;
6853 
6854 	/* Enable NAPI process*/
6855 	stmmac_enable_all_queues(priv);
6856 	netif_carrier_on(dev);
6857 	netif_tx_start_all_queues(dev);
6858 	stmmac_enable_all_dma_irq(priv);
6859 
6860 	return 0;
6861 
6862 irq_error:
6863 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6864 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6865 
6866 	stmmac_hw_teardown(dev);
6867 init_error:
6868 	free_dma_desc_resources(priv, &priv->dma_conf);
6869 dma_desc_error:
6870 	return ret;
6871 }
6872 
6873 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6874 {
6875 	struct stmmac_priv *priv = netdev_priv(dev);
6876 	struct stmmac_rx_queue *rx_q;
6877 	struct stmmac_tx_queue *tx_q;
6878 	struct stmmac_channel *ch;
6879 
6880 	if (test_bit(STMMAC_DOWN, &priv->state) ||
6881 	    !netif_carrier_ok(priv->dev))
6882 		return -ENETDOWN;
6883 
6884 	if (!stmmac_xdp_is_enabled(priv))
6885 		return -EINVAL;
6886 
6887 	if (queue >= priv->plat->rx_queues_to_use ||
6888 	    queue >= priv->plat->tx_queues_to_use)
6889 		return -EINVAL;
6890 
6891 	rx_q = &priv->dma_conf.rx_queue[queue];
6892 	tx_q = &priv->dma_conf.tx_queue[queue];
6893 	ch = &priv->channel[queue];
6894 
6895 	if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6896 		return -EINVAL;
6897 
6898 	if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6899 		/* EQoS does not have per-DMA channel SW interrupt,
6900 		 * so we schedule RX Napi straight-away.
6901 		 */
6902 		if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6903 			__napi_schedule(&ch->rxtx_napi);
6904 	}
6905 
6906 	return 0;
6907 }
6908 
6909 static void stmmac_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
6910 {
6911 	struct stmmac_priv *priv = netdev_priv(dev);
6912 	u32 tx_cnt = priv->plat->tx_queues_to_use;
6913 	u32 rx_cnt = priv->plat->rx_queues_to_use;
6914 	unsigned int start;
6915 	int q;
6916 
6917 	for (q = 0; q < tx_cnt; q++) {
6918 		struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[q];
6919 		u64 tx_packets;
6920 		u64 tx_bytes;
6921 
6922 		do {
6923 			start = u64_stats_fetch_begin(&txq_stats->q_syncp);
6924 			tx_bytes   = u64_stats_read(&txq_stats->q.tx_bytes);
6925 		} while (u64_stats_fetch_retry(&txq_stats->q_syncp, start));
6926 		do {
6927 			start = u64_stats_fetch_begin(&txq_stats->napi_syncp);
6928 			tx_packets = u64_stats_read(&txq_stats->napi.tx_packets);
6929 		} while (u64_stats_fetch_retry(&txq_stats->napi_syncp, start));
6930 
6931 		stats->tx_packets += tx_packets;
6932 		stats->tx_bytes += tx_bytes;
6933 	}
6934 
6935 	for (q = 0; q < rx_cnt; q++) {
6936 		struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[q];
6937 		u64 rx_packets;
6938 		u64 rx_bytes;
6939 
6940 		do {
6941 			start = u64_stats_fetch_begin(&rxq_stats->napi_syncp);
6942 			rx_packets = u64_stats_read(&rxq_stats->napi.rx_packets);
6943 			rx_bytes   = u64_stats_read(&rxq_stats->napi.rx_bytes);
6944 		} while (u64_stats_fetch_retry(&rxq_stats->napi_syncp, start));
6945 
6946 		stats->rx_packets += rx_packets;
6947 		stats->rx_bytes += rx_bytes;
6948 	}
6949 
6950 	stats->rx_dropped = priv->xstats.rx_dropped;
6951 	stats->rx_errors = priv->xstats.rx_errors;
6952 	stats->tx_dropped = priv->xstats.tx_dropped;
6953 	stats->tx_errors = priv->xstats.tx_errors;
6954 	stats->tx_carrier_errors = priv->xstats.tx_losscarrier + priv->xstats.tx_carrier;
6955 	stats->collisions = priv->xstats.tx_collision + priv->xstats.rx_collision;
6956 	stats->rx_length_errors = priv->xstats.rx_length;
6957 	stats->rx_crc_errors = priv->xstats.rx_crc_errors;
6958 	stats->rx_over_errors = priv->xstats.rx_overflow_cntr;
6959 	stats->rx_missed_errors = priv->xstats.rx_missed_cntr;
6960 }
6961 
6962 static const struct net_device_ops stmmac_netdev_ops = {
6963 	.ndo_open = stmmac_open,
6964 	.ndo_start_xmit = stmmac_xmit,
6965 	.ndo_stop = stmmac_release,
6966 	.ndo_change_mtu = stmmac_change_mtu,
6967 	.ndo_fix_features = stmmac_fix_features,
6968 	.ndo_set_features = stmmac_set_features,
6969 	.ndo_set_rx_mode = stmmac_set_rx_mode,
6970 	.ndo_tx_timeout = stmmac_tx_timeout,
6971 	.ndo_eth_ioctl = stmmac_ioctl,
6972 	.ndo_get_stats64 = stmmac_get_stats64,
6973 	.ndo_setup_tc = stmmac_setup_tc,
6974 	.ndo_select_queue = stmmac_select_queue,
6975 	.ndo_set_mac_address = stmmac_set_mac_address,
6976 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6977 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6978 	.ndo_bpf = stmmac_bpf,
6979 	.ndo_xdp_xmit = stmmac_xdp_xmit,
6980 	.ndo_xsk_wakeup = stmmac_xsk_wakeup,
6981 };
6982 
6983 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6984 {
6985 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6986 		return;
6987 	if (test_bit(STMMAC_DOWN, &priv->state))
6988 		return;
6989 
6990 	netdev_err(priv->dev, "Reset adapter.\n");
6991 
6992 	rtnl_lock();
6993 	netif_trans_update(priv->dev);
6994 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6995 		usleep_range(1000, 2000);
6996 
6997 	set_bit(STMMAC_DOWN, &priv->state);
6998 	dev_close(priv->dev);
6999 	dev_open(priv->dev, NULL);
7000 	clear_bit(STMMAC_DOWN, &priv->state);
7001 	clear_bit(STMMAC_RESETING, &priv->state);
7002 	rtnl_unlock();
7003 }
7004 
7005 static void stmmac_service_task(struct work_struct *work)
7006 {
7007 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
7008 			service_task);
7009 
7010 	stmmac_reset_subtask(priv);
7011 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
7012 }
7013 
7014 /**
7015  *  stmmac_hw_init - Init the MAC device
7016  *  @priv: driver private structure
7017  *  Description: this function is to configure the MAC device according to
7018  *  some platform parameters or the HW capability register. It prepares the
7019  *  driver to use either ring or chain modes and to setup either enhanced or
7020  *  normal descriptors.
7021  */
7022 static int stmmac_hw_init(struct stmmac_priv *priv)
7023 {
7024 	int ret;
7025 
7026 	/* dwmac-sun8i only work in chain mode */
7027 	if (priv->plat->flags & STMMAC_FLAG_HAS_SUN8I)
7028 		chain_mode = 1;
7029 	priv->chain_mode = chain_mode;
7030 
7031 	/* Initialize HW Interface */
7032 	ret = stmmac_hwif_init(priv);
7033 	if (ret)
7034 		return ret;
7035 
7036 	/* Get the HW capability (new GMAC newer than 3.50a) */
7037 	priv->hw_cap_support = stmmac_get_hw_features(priv);
7038 	if (priv->hw_cap_support) {
7039 		dev_info(priv->device, "DMA HW capability register supported\n");
7040 
7041 		/* We can override some gmac/dma configuration fields: e.g.
7042 		 * enh_desc, tx_coe (e.g. that are passed through the
7043 		 * platform) with the values from the HW capability
7044 		 * register (if supported).
7045 		 */
7046 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
7047 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
7048 				!(priv->plat->flags & STMMAC_FLAG_USE_PHY_WOL);
7049 		priv->hw->pmt = priv->plat->pmt;
7050 		if (priv->dma_cap.hash_tb_sz) {
7051 			priv->hw->multicast_filter_bins =
7052 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
7053 			priv->hw->mcast_bits_log2 =
7054 					ilog2(priv->hw->multicast_filter_bins);
7055 		}
7056 
7057 		/* TXCOE doesn't work in thresh DMA mode */
7058 		if (priv->plat->force_thresh_dma_mode)
7059 			priv->plat->tx_coe = 0;
7060 		else
7061 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
7062 
7063 		/* In case of GMAC4 rx_coe is from HW cap register. */
7064 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
7065 
7066 		if (priv->dma_cap.rx_coe_type2)
7067 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
7068 		else if (priv->dma_cap.rx_coe_type1)
7069 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
7070 
7071 	} else {
7072 		dev_info(priv->device, "No HW DMA feature register supported\n");
7073 	}
7074 
7075 	if (priv->plat->rx_coe) {
7076 		priv->hw->rx_csum = priv->plat->rx_coe;
7077 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
7078 		if (priv->synopsys_id < DWMAC_CORE_4_00)
7079 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
7080 	}
7081 	if (priv->plat->tx_coe)
7082 		dev_info(priv->device, "TX Checksum insertion supported\n");
7083 
7084 	if (priv->plat->pmt) {
7085 		dev_info(priv->device, "Wake-Up On Lan supported\n");
7086 		device_set_wakeup_capable(priv->device, 1);
7087 	}
7088 
7089 	if (priv->dma_cap.tsoen)
7090 		dev_info(priv->device, "TSO supported\n");
7091 
7092 	priv->hw->vlan_fail_q_en =
7093 		(priv->plat->flags & STMMAC_FLAG_VLAN_FAIL_Q_EN);
7094 	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
7095 
7096 	/* Run HW quirks, if any */
7097 	if (priv->hwif_quirks) {
7098 		ret = priv->hwif_quirks(priv);
7099 		if (ret)
7100 			return ret;
7101 	}
7102 
7103 	/* Rx Watchdog is available in the COREs newer than the 3.40.
7104 	 * In some case, for example on bugged HW this feature
7105 	 * has to be disable and this can be done by passing the
7106 	 * riwt_off field from the platform.
7107 	 */
7108 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
7109 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
7110 		priv->use_riwt = 1;
7111 		dev_info(priv->device,
7112 			 "Enable RX Mitigation via HW Watchdog Timer\n");
7113 	}
7114 
7115 	return 0;
7116 }
7117 
7118 static void stmmac_napi_add(struct net_device *dev)
7119 {
7120 	struct stmmac_priv *priv = netdev_priv(dev);
7121 	u32 queue, maxq;
7122 
7123 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
7124 
7125 	for (queue = 0; queue < maxq; queue++) {
7126 		struct stmmac_channel *ch = &priv->channel[queue];
7127 
7128 		ch->priv_data = priv;
7129 		ch->index = queue;
7130 		spin_lock_init(&ch->lock);
7131 
7132 		if (queue < priv->plat->rx_queues_to_use) {
7133 			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx);
7134 		}
7135 		if (queue < priv->plat->tx_queues_to_use) {
7136 			netif_napi_add_tx(dev, &ch->tx_napi,
7137 					  stmmac_napi_poll_tx);
7138 		}
7139 		if (queue < priv->plat->rx_queues_to_use &&
7140 		    queue < priv->plat->tx_queues_to_use) {
7141 			netif_napi_add(dev, &ch->rxtx_napi,
7142 				       stmmac_napi_poll_rxtx);
7143 		}
7144 	}
7145 }
7146 
7147 static void stmmac_napi_del(struct net_device *dev)
7148 {
7149 	struct stmmac_priv *priv = netdev_priv(dev);
7150 	u32 queue, maxq;
7151 
7152 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
7153 
7154 	for (queue = 0; queue < maxq; queue++) {
7155 		struct stmmac_channel *ch = &priv->channel[queue];
7156 
7157 		if (queue < priv->plat->rx_queues_to_use)
7158 			netif_napi_del(&ch->rx_napi);
7159 		if (queue < priv->plat->tx_queues_to_use)
7160 			netif_napi_del(&ch->tx_napi);
7161 		if (queue < priv->plat->rx_queues_to_use &&
7162 		    queue < priv->plat->tx_queues_to_use) {
7163 			netif_napi_del(&ch->rxtx_napi);
7164 		}
7165 	}
7166 }
7167 
7168 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
7169 {
7170 	struct stmmac_priv *priv = netdev_priv(dev);
7171 	int ret = 0, i;
7172 	int max_speed;
7173 
7174 	if (netif_running(dev))
7175 		stmmac_release(dev);
7176 
7177 	stmmac_napi_del(dev);
7178 
7179 	priv->plat->rx_queues_to_use = rx_cnt;
7180 	priv->plat->tx_queues_to_use = tx_cnt;
7181 	if (!netif_is_rxfh_configured(dev))
7182 		for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7183 			priv->rss.table[i] = ethtool_rxfh_indir_default(i,
7184 									rx_cnt);
7185 
7186 	stmmac_mac_phylink_get_caps(priv);
7187 
7188 	priv->phylink_config.mac_capabilities = priv->hw->link.caps;
7189 
7190 	max_speed = priv->plat->max_speed;
7191 	if (max_speed)
7192 		phylink_limit_mac_speed(&priv->phylink_config, max_speed);
7193 
7194 	stmmac_napi_add(dev);
7195 
7196 	if (netif_running(dev))
7197 		ret = stmmac_open(dev);
7198 
7199 	return ret;
7200 }
7201 
7202 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
7203 {
7204 	struct stmmac_priv *priv = netdev_priv(dev);
7205 	int ret = 0;
7206 
7207 	if (netif_running(dev))
7208 		stmmac_release(dev);
7209 
7210 	priv->dma_conf.dma_rx_size = rx_size;
7211 	priv->dma_conf.dma_tx_size = tx_size;
7212 
7213 	if (netif_running(dev))
7214 		ret = stmmac_open(dev);
7215 
7216 	return ret;
7217 }
7218 
7219 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
7220 static void stmmac_fpe_lp_task(struct work_struct *work)
7221 {
7222 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
7223 						fpe_task);
7224 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
7225 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
7226 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
7227 	bool *hs_enable = &fpe_cfg->hs_enable;
7228 	bool *enable = &fpe_cfg->enable;
7229 	int retries = 20;
7230 
7231 	while (retries-- > 0) {
7232 		/* Bail out immediately if FPE handshake is OFF */
7233 		if (*lo_state == FPE_STATE_OFF || !*hs_enable)
7234 			break;
7235 
7236 		if (*lo_state == FPE_STATE_ENTERING_ON &&
7237 		    *lp_state == FPE_STATE_ENTERING_ON) {
7238 			stmmac_fpe_configure(priv, priv->ioaddr,
7239 					     fpe_cfg,
7240 					     priv->plat->tx_queues_to_use,
7241 					     priv->plat->rx_queues_to_use,
7242 					     *enable);
7243 
7244 			netdev_info(priv->dev, "configured FPE\n");
7245 
7246 			*lo_state = FPE_STATE_ON;
7247 			*lp_state = FPE_STATE_ON;
7248 			netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
7249 			break;
7250 		}
7251 
7252 		if ((*lo_state == FPE_STATE_CAPABLE ||
7253 		     *lo_state == FPE_STATE_ENTERING_ON) &&
7254 		     *lp_state != FPE_STATE_ON) {
7255 			netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
7256 				    *lo_state, *lp_state);
7257 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7258 						fpe_cfg,
7259 						MPACKET_VERIFY);
7260 		}
7261 		/* Sleep then retry */
7262 		msleep(500);
7263 	}
7264 
7265 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
7266 }
7267 
7268 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
7269 {
7270 	if (priv->plat->fpe_cfg->hs_enable != enable) {
7271 		if (enable) {
7272 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7273 						priv->plat->fpe_cfg,
7274 						MPACKET_VERIFY);
7275 		} else {
7276 			priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
7277 			priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
7278 		}
7279 
7280 		priv->plat->fpe_cfg->hs_enable = enable;
7281 	}
7282 }
7283 
7284 static int stmmac_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
7285 {
7286 	const struct stmmac_xdp_buff *ctx = (void *)_ctx;
7287 	struct dma_desc *desc_contains_ts = ctx->desc;
7288 	struct stmmac_priv *priv = ctx->priv;
7289 	struct dma_desc *ndesc = ctx->ndesc;
7290 	struct dma_desc *desc = ctx->desc;
7291 	u64 ns = 0;
7292 
7293 	if (!priv->hwts_rx_en)
7294 		return -ENODATA;
7295 
7296 	/* For GMAC4, the valid timestamp is from CTX next desc. */
7297 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
7298 		desc_contains_ts = ndesc;
7299 
7300 	/* Check if timestamp is available */
7301 	if (stmmac_get_rx_timestamp_status(priv, desc, ndesc, priv->adv_ts)) {
7302 		stmmac_get_timestamp(priv, desc_contains_ts, priv->adv_ts, &ns);
7303 		ns -= priv->plat->cdc_error_adj;
7304 		*timestamp = ns_to_ktime(ns);
7305 		return 0;
7306 	}
7307 
7308 	return -ENODATA;
7309 }
7310 
7311 static const struct xdp_metadata_ops stmmac_xdp_metadata_ops = {
7312 	.xmo_rx_timestamp		= stmmac_xdp_rx_timestamp,
7313 };
7314 
7315 /**
7316  * stmmac_dvr_probe
7317  * @device: device pointer
7318  * @plat_dat: platform data pointer
7319  * @res: stmmac resource pointer
7320  * Description: this is the main probe function used to
7321  * call the alloc_etherdev, allocate the priv structure.
7322  * Return:
7323  * returns 0 on success, otherwise errno.
7324  */
7325 int stmmac_dvr_probe(struct device *device,
7326 		     struct plat_stmmacenet_data *plat_dat,
7327 		     struct stmmac_resources *res)
7328 {
7329 	struct net_device *ndev = NULL;
7330 	struct stmmac_priv *priv;
7331 	u32 rxq;
7332 	int i, ret = 0;
7333 
7334 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
7335 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
7336 	if (!ndev)
7337 		return -ENOMEM;
7338 
7339 	SET_NETDEV_DEV(ndev, device);
7340 
7341 	priv = netdev_priv(ndev);
7342 	priv->device = device;
7343 	priv->dev = ndev;
7344 
7345 	for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
7346 		u64_stats_init(&priv->xstats.rxq_stats[i].napi_syncp);
7347 	for (i = 0; i < MTL_MAX_TX_QUEUES; i++) {
7348 		u64_stats_init(&priv->xstats.txq_stats[i].q_syncp);
7349 		u64_stats_init(&priv->xstats.txq_stats[i].napi_syncp);
7350 	}
7351 
7352 	priv->xstats.pcpu_stats =
7353 		devm_netdev_alloc_pcpu_stats(device, struct stmmac_pcpu_stats);
7354 	if (!priv->xstats.pcpu_stats)
7355 		return -ENOMEM;
7356 
7357 	stmmac_set_ethtool_ops(ndev);
7358 	priv->pause = pause;
7359 	priv->plat = plat_dat;
7360 	priv->ioaddr = res->addr;
7361 	priv->dev->base_addr = (unsigned long)res->addr;
7362 	priv->plat->dma_cfg->multi_msi_en =
7363 		(priv->plat->flags & STMMAC_FLAG_MULTI_MSI_EN);
7364 
7365 	priv->dev->irq = res->irq;
7366 	priv->wol_irq = res->wol_irq;
7367 	priv->lpi_irq = res->lpi_irq;
7368 	priv->sfty_ce_irq = res->sfty_ce_irq;
7369 	priv->sfty_ue_irq = res->sfty_ue_irq;
7370 	for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
7371 		priv->rx_irq[i] = res->rx_irq[i];
7372 	for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
7373 		priv->tx_irq[i] = res->tx_irq[i];
7374 
7375 	if (!is_zero_ether_addr(res->mac))
7376 		eth_hw_addr_set(priv->dev, res->mac);
7377 
7378 	dev_set_drvdata(device, priv->dev);
7379 
7380 	/* Verify driver arguments */
7381 	stmmac_verify_args();
7382 
7383 	priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
7384 	if (!priv->af_xdp_zc_qps)
7385 		return -ENOMEM;
7386 
7387 	/* Allocate workqueue */
7388 	priv->wq = create_singlethread_workqueue("stmmac_wq");
7389 	if (!priv->wq) {
7390 		dev_err(priv->device, "failed to create workqueue\n");
7391 		ret = -ENOMEM;
7392 		goto error_wq_init;
7393 	}
7394 
7395 	INIT_WORK(&priv->service_task, stmmac_service_task);
7396 
7397 	/* Initialize Link Partner FPE workqueue */
7398 	INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
7399 
7400 	/* Override with kernel parameters if supplied XXX CRS XXX
7401 	 * this needs to have multiple instances
7402 	 */
7403 	if ((phyaddr >= 0) && (phyaddr <= 31))
7404 		priv->plat->phy_addr = phyaddr;
7405 
7406 	if (priv->plat->stmmac_rst) {
7407 		ret = reset_control_assert(priv->plat->stmmac_rst);
7408 		reset_control_deassert(priv->plat->stmmac_rst);
7409 		/* Some reset controllers have only reset callback instead of
7410 		 * assert + deassert callbacks pair.
7411 		 */
7412 		if (ret == -ENOTSUPP)
7413 			reset_control_reset(priv->plat->stmmac_rst);
7414 	}
7415 
7416 	ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
7417 	if (ret == -ENOTSUPP)
7418 		dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
7419 			ERR_PTR(ret));
7420 
7421 	/* Wait a bit for the reset to take effect */
7422 	udelay(10);
7423 
7424 	/* Init MAC and get the capabilities */
7425 	ret = stmmac_hw_init(priv);
7426 	if (ret)
7427 		goto error_hw_init;
7428 
7429 	/* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
7430 	 */
7431 	if (priv->synopsys_id < DWMAC_CORE_5_20)
7432 		priv->plat->dma_cfg->dche = false;
7433 
7434 	stmmac_check_ether_addr(priv);
7435 
7436 	ndev->netdev_ops = &stmmac_netdev_ops;
7437 
7438 	ndev->xdp_metadata_ops = &stmmac_xdp_metadata_ops;
7439 
7440 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
7441 			    NETIF_F_RXCSUM;
7442 	ndev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
7443 			     NETDEV_XDP_ACT_XSK_ZEROCOPY;
7444 
7445 	ret = stmmac_tc_init(priv, priv);
7446 	if (!ret) {
7447 		ndev->hw_features |= NETIF_F_HW_TC;
7448 	}
7449 
7450 	if ((priv->plat->flags & STMMAC_FLAG_TSO_EN) && (priv->dma_cap.tsoen)) {
7451 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
7452 		if (priv->plat->has_gmac4)
7453 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
7454 		priv->tso = true;
7455 		dev_info(priv->device, "TSO feature enabled\n");
7456 	}
7457 
7458 	if (priv->dma_cap.sphen &&
7459 	    !(priv->plat->flags & STMMAC_FLAG_SPH_DISABLE)) {
7460 		ndev->hw_features |= NETIF_F_GRO;
7461 		priv->sph_cap = true;
7462 		priv->sph = priv->sph_cap;
7463 		dev_info(priv->device, "SPH feature enabled\n");
7464 	}
7465 
7466 	/* Ideally our host DMA address width is the same as for the
7467 	 * device. However, it may differ and then we have to use our
7468 	 * host DMA width for allocation and the device DMA width for
7469 	 * register handling.
7470 	 */
7471 	if (priv->plat->host_dma_width)
7472 		priv->dma_cap.host_dma_width = priv->plat->host_dma_width;
7473 	else
7474 		priv->dma_cap.host_dma_width = priv->dma_cap.addr64;
7475 
7476 	if (priv->dma_cap.host_dma_width) {
7477 		ret = dma_set_mask_and_coherent(device,
7478 				DMA_BIT_MASK(priv->dma_cap.host_dma_width));
7479 		if (!ret) {
7480 			dev_info(priv->device, "Using %d/%d bits DMA host/device width\n",
7481 				 priv->dma_cap.host_dma_width, priv->dma_cap.addr64);
7482 
7483 			/*
7484 			 * If more than 32 bits can be addressed, make sure to
7485 			 * enable enhanced addressing mode.
7486 			 */
7487 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
7488 				priv->plat->dma_cfg->eame = true;
7489 		} else {
7490 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
7491 			if (ret) {
7492 				dev_err(priv->device, "Failed to set DMA Mask\n");
7493 				goto error_hw_init;
7494 			}
7495 
7496 			priv->dma_cap.host_dma_width = 32;
7497 		}
7498 	}
7499 
7500 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
7501 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
7502 #ifdef STMMAC_VLAN_TAG_USED
7503 	/* Both mac100 and gmac support receive VLAN tag detection */
7504 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
7505 	if (priv->dma_cap.vlhash) {
7506 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7507 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
7508 	}
7509 	if (priv->dma_cap.vlins) {
7510 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
7511 		if (priv->dma_cap.dvlan)
7512 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
7513 	}
7514 #endif
7515 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
7516 
7517 	priv->xstats.threshold = tc;
7518 
7519 	/* Initialize RSS */
7520 	rxq = priv->plat->rx_queues_to_use;
7521 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
7522 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7523 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
7524 
7525 	if (priv->dma_cap.rssen && priv->plat->rss_en)
7526 		ndev->features |= NETIF_F_RXHASH;
7527 
7528 	ndev->vlan_features |= ndev->features;
7529 	/* TSO doesn't work on VLANs yet */
7530 	ndev->vlan_features &= ~NETIF_F_TSO;
7531 
7532 	/* MTU range: 46 - hw-specific max */
7533 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
7534 	if (priv->plat->has_xgmac)
7535 		ndev->max_mtu = XGMAC_JUMBO_LEN;
7536 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
7537 		ndev->max_mtu = JUMBO_LEN;
7538 	else
7539 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
7540 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
7541 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
7542 	 */
7543 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
7544 	    (priv->plat->maxmtu >= ndev->min_mtu))
7545 		ndev->max_mtu = priv->plat->maxmtu;
7546 	else if (priv->plat->maxmtu < ndev->min_mtu)
7547 		dev_warn(priv->device,
7548 			 "%s: warning: maxmtu having invalid value (%d)\n",
7549 			 __func__, priv->plat->maxmtu);
7550 
7551 	if (flow_ctrl)
7552 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
7553 
7554 	ndev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
7555 
7556 	/* Setup channels NAPI */
7557 	stmmac_napi_add(ndev);
7558 
7559 	mutex_init(&priv->lock);
7560 
7561 	/* If a specific clk_csr value is passed from the platform
7562 	 * this means that the CSR Clock Range selection cannot be
7563 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
7564 	 * set the MDC clock dynamically according to the csr actual
7565 	 * clock input.
7566 	 */
7567 	if (priv->plat->clk_csr >= 0)
7568 		priv->clk_csr = priv->plat->clk_csr;
7569 	else
7570 		stmmac_clk_csr_set(priv);
7571 
7572 	stmmac_check_pcs_mode(priv);
7573 
7574 	pm_runtime_get_noresume(device);
7575 	pm_runtime_set_active(device);
7576 	if (!pm_runtime_enabled(device))
7577 		pm_runtime_enable(device);
7578 
7579 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7580 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
7581 		/* MDIO bus Registration */
7582 		ret = stmmac_mdio_register(ndev);
7583 		if (ret < 0) {
7584 			dev_err_probe(priv->device, ret,
7585 				      "%s: MDIO bus (id: %d) registration failed\n",
7586 				      __func__, priv->plat->bus_id);
7587 			goto error_mdio_register;
7588 		}
7589 	}
7590 
7591 	if (priv->plat->speed_mode_2500)
7592 		priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7593 
7594 	if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7595 		ret = stmmac_xpcs_setup(priv->mii);
7596 		if (ret)
7597 			goto error_xpcs_setup;
7598 	}
7599 
7600 	ret = stmmac_phy_setup(priv);
7601 	if (ret) {
7602 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7603 		goto error_phy_setup;
7604 	}
7605 
7606 	ret = register_netdev(ndev);
7607 	if (ret) {
7608 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
7609 			__func__, ret);
7610 		goto error_netdev_register;
7611 	}
7612 
7613 #ifdef CONFIG_DEBUG_FS
7614 	stmmac_init_fs(ndev);
7615 #endif
7616 
7617 	if (priv->plat->dump_debug_regs)
7618 		priv->plat->dump_debug_regs(priv->plat->bsp_priv);
7619 
7620 	/* Let pm_runtime_put() disable the clocks.
7621 	 * If CONFIG_PM is not enabled, the clocks will stay powered.
7622 	 */
7623 	pm_runtime_put(device);
7624 
7625 	return ret;
7626 
7627 error_netdev_register:
7628 	phylink_destroy(priv->phylink);
7629 error_xpcs_setup:
7630 error_phy_setup:
7631 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7632 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7633 		stmmac_mdio_unregister(ndev);
7634 error_mdio_register:
7635 	stmmac_napi_del(ndev);
7636 error_hw_init:
7637 	destroy_workqueue(priv->wq);
7638 error_wq_init:
7639 	bitmap_free(priv->af_xdp_zc_qps);
7640 
7641 	return ret;
7642 }
7643 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7644 
7645 /**
7646  * stmmac_dvr_remove
7647  * @dev: device pointer
7648  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7649  * changes the link status, releases the DMA descriptor rings.
7650  */
7651 void stmmac_dvr_remove(struct device *dev)
7652 {
7653 	struct net_device *ndev = dev_get_drvdata(dev);
7654 	struct stmmac_priv *priv = netdev_priv(ndev);
7655 
7656 	netdev_info(priv->dev, "%s: removing driver", __func__);
7657 
7658 	pm_runtime_get_sync(dev);
7659 
7660 	stmmac_stop_all_dma(priv);
7661 	stmmac_mac_set(priv, priv->ioaddr, false);
7662 	netif_carrier_off(ndev);
7663 	unregister_netdev(ndev);
7664 
7665 #ifdef CONFIG_DEBUG_FS
7666 	stmmac_exit_fs(ndev);
7667 #endif
7668 	phylink_destroy(priv->phylink);
7669 	if (priv->plat->stmmac_rst)
7670 		reset_control_assert(priv->plat->stmmac_rst);
7671 	reset_control_assert(priv->plat->stmmac_ahb_rst);
7672 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7673 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7674 		stmmac_mdio_unregister(ndev);
7675 	destroy_workqueue(priv->wq);
7676 	mutex_destroy(&priv->lock);
7677 	bitmap_free(priv->af_xdp_zc_qps);
7678 
7679 	pm_runtime_disable(dev);
7680 	pm_runtime_put_noidle(dev);
7681 }
7682 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7683 
7684 /**
7685  * stmmac_suspend - suspend callback
7686  * @dev: device pointer
7687  * Description: this is the function to suspend the device and it is called
7688  * by the platform driver to stop the network queue, release the resources,
7689  * program the PMT register (for WoL), clean and release driver resources.
7690  */
7691 int stmmac_suspend(struct device *dev)
7692 {
7693 	struct net_device *ndev = dev_get_drvdata(dev);
7694 	struct stmmac_priv *priv = netdev_priv(ndev);
7695 	u32 chan;
7696 
7697 	if (!ndev || !netif_running(ndev))
7698 		return 0;
7699 
7700 	mutex_lock(&priv->lock);
7701 
7702 	netif_device_detach(ndev);
7703 
7704 	stmmac_disable_all_queues(priv);
7705 
7706 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7707 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
7708 
7709 	if (priv->eee_enabled) {
7710 		priv->tx_path_in_lpi_mode = false;
7711 		del_timer_sync(&priv->eee_ctrl_timer);
7712 	}
7713 
7714 	/* Stop TX/RX DMA */
7715 	stmmac_stop_all_dma(priv);
7716 
7717 	if (priv->plat->serdes_powerdown)
7718 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7719 
7720 	/* Enable Power down mode by programming the PMT regs */
7721 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7722 		stmmac_pmt(priv, priv->hw, priv->wolopts);
7723 		priv->irq_wake = 1;
7724 	} else {
7725 		stmmac_mac_set(priv, priv->ioaddr, false);
7726 		pinctrl_pm_select_sleep_state(priv->device);
7727 	}
7728 
7729 	mutex_unlock(&priv->lock);
7730 
7731 	rtnl_lock();
7732 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7733 		phylink_suspend(priv->phylink, true);
7734 	} else {
7735 		if (device_may_wakeup(priv->device))
7736 			phylink_speed_down(priv->phylink, false);
7737 		phylink_suspend(priv->phylink, false);
7738 	}
7739 	rtnl_unlock();
7740 
7741 	if (priv->dma_cap.fpesel) {
7742 		/* Disable FPE */
7743 		stmmac_fpe_configure(priv, priv->ioaddr,
7744 				     priv->plat->fpe_cfg,
7745 				     priv->plat->tx_queues_to_use,
7746 				     priv->plat->rx_queues_to_use, false);
7747 
7748 		stmmac_fpe_handshake(priv, false);
7749 		stmmac_fpe_stop_wq(priv);
7750 	}
7751 
7752 	priv->speed = SPEED_UNKNOWN;
7753 	return 0;
7754 }
7755 EXPORT_SYMBOL_GPL(stmmac_suspend);
7756 
7757 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue)
7758 {
7759 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
7760 
7761 	rx_q->cur_rx = 0;
7762 	rx_q->dirty_rx = 0;
7763 }
7764 
7765 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue)
7766 {
7767 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
7768 
7769 	tx_q->cur_tx = 0;
7770 	tx_q->dirty_tx = 0;
7771 	tx_q->mss = 0;
7772 
7773 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7774 }
7775 
7776 /**
7777  * stmmac_reset_queues_param - reset queue parameters
7778  * @priv: device pointer
7779  */
7780 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7781 {
7782 	u32 rx_cnt = priv->plat->rx_queues_to_use;
7783 	u32 tx_cnt = priv->plat->tx_queues_to_use;
7784 	u32 queue;
7785 
7786 	for (queue = 0; queue < rx_cnt; queue++)
7787 		stmmac_reset_rx_queue(priv, queue);
7788 
7789 	for (queue = 0; queue < tx_cnt; queue++)
7790 		stmmac_reset_tx_queue(priv, queue);
7791 }
7792 
7793 /**
7794  * stmmac_resume - resume callback
7795  * @dev: device pointer
7796  * Description: when resume this function is invoked to setup the DMA and CORE
7797  * in a usable state.
7798  */
7799 int stmmac_resume(struct device *dev)
7800 {
7801 	struct net_device *ndev = dev_get_drvdata(dev);
7802 	struct stmmac_priv *priv = netdev_priv(ndev);
7803 	int ret;
7804 
7805 	if (!netif_running(ndev))
7806 		return 0;
7807 
7808 	/* Power Down bit, into the PM register, is cleared
7809 	 * automatically as soon as a magic packet or a Wake-up frame
7810 	 * is received. Anyway, it's better to manually clear
7811 	 * this bit because it can generate problems while resuming
7812 	 * from another devices (e.g. serial console).
7813 	 */
7814 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7815 		mutex_lock(&priv->lock);
7816 		stmmac_pmt(priv, priv->hw, 0);
7817 		mutex_unlock(&priv->lock);
7818 		priv->irq_wake = 0;
7819 	} else {
7820 		pinctrl_pm_select_default_state(priv->device);
7821 		/* reset the phy so that it's ready */
7822 		if (priv->mii)
7823 			stmmac_mdio_reset(priv->mii);
7824 	}
7825 
7826 	if (!(priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) &&
7827 	    priv->plat->serdes_powerup) {
7828 		ret = priv->plat->serdes_powerup(ndev,
7829 						 priv->plat->bsp_priv);
7830 
7831 		if (ret < 0)
7832 			return ret;
7833 	}
7834 
7835 	rtnl_lock();
7836 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7837 		phylink_resume(priv->phylink);
7838 	} else {
7839 		phylink_resume(priv->phylink);
7840 		if (device_may_wakeup(priv->device))
7841 			phylink_speed_up(priv->phylink);
7842 	}
7843 	rtnl_unlock();
7844 
7845 	rtnl_lock();
7846 	mutex_lock(&priv->lock);
7847 
7848 	stmmac_reset_queues_param(priv);
7849 
7850 	stmmac_free_tx_skbufs(priv);
7851 	stmmac_clear_descriptors(priv, &priv->dma_conf);
7852 
7853 	stmmac_hw_setup(ndev, false);
7854 	stmmac_init_coalesce(priv);
7855 	stmmac_set_rx_mode(ndev);
7856 
7857 	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7858 
7859 	stmmac_enable_all_queues(priv);
7860 	stmmac_enable_all_dma_irq(priv);
7861 
7862 	mutex_unlock(&priv->lock);
7863 	rtnl_unlock();
7864 
7865 	netif_device_attach(ndev);
7866 
7867 	return 0;
7868 }
7869 EXPORT_SYMBOL_GPL(stmmac_resume);
7870 
7871 #ifndef MODULE
7872 static int __init stmmac_cmdline_opt(char *str)
7873 {
7874 	char *opt;
7875 
7876 	if (!str || !*str)
7877 		return 1;
7878 	while ((opt = strsep(&str, ",")) != NULL) {
7879 		if (!strncmp(opt, "debug:", 6)) {
7880 			if (kstrtoint(opt + 6, 0, &debug))
7881 				goto err;
7882 		} else if (!strncmp(opt, "phyaddr:", 8)) {
7883 			if (kstrtoint(opt + 8, 0, &phyaddr))
7884 				goto err;
7885 		} else if (!strncmp(opt, "buf_sz:", 7)) {
7886 			if (kstrtoint(opt + 7, 0, &buf_sz))
7887 				goto err;
7888 		} else if (!strncmp(opt, "tc:", 3)) {
7889 			if (kstrtoint(opt + 3, 0, &tc))
7890 				goto err;
7891 		} else if (!strncmp(opt, "watchdog:", 9)) {
7892 			if (kstrtoint(opt + 9, 0, &watchdog))
7893 				goto err;
7894 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
7895 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
7896 				goto err;
7897 		} else if (!strncmp(opt, "pause:", 6)) {
7898 			if (kstrtoint(opt + 6, 0, &pause))
7899 				goto err;
7900 		} else if (!strncmp(opt, "eee_timer:", 10)) {
7901 			if (kstrtoint(opt + 10, 0, &eee_timer))
7902 				goto err;
7903 		} else if (!strncmp(opt, "chain_mode:", 11)) {
7904 			if (kstrtoint(opt + 11, 0, &chain_mode))
7905 				goto err;
7906 		}
7907 	}
7908 	return 1;
7909 
7910 err:
7911 	pr_err("%s: ERROR broken module parameter conversion", __func__);
7912 	return 1;
7913 }
7914 
7915 __setup("stmmaceth=", stmmac_cmdline_opt);
7916 #endif /* MODULE */
7917 
7918 static int __init stmmac_init(void)
7919 {
7920 #ifdef CONFIG_DEBUG_FS
7921 	/* Create debugfs main directory if it doesn't exist yet */
7922 	if (!stmmac_fs_dir)
7923 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7924 	register_netdevice_notifier(&stmmac_notifier);
7925 #endif
7926 
7927 	return 0;
7928 }
7929 
7930 static void __exit stmmac_exit(void)
7931 {
7932 #ifdef CONFIG_DEBUG_FS
7933 	unregister_netdevice_notifier(&stmmac_notifier);
7934 	debugfs_remove_recursive(stmmac_fs_dir);
7935 #endif
7936 }
7937 
7938 module_init(stmmac_init)
7939 module_exit(stmmac_exit)
7940 
7941 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7942 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7943 MODULE_LICENSE("GPL");
7944