1 /******************************************************************************* 2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. 3 ST Ethernet IPs are built around a Synopsys IP Core. 4 5 Copyright(C) 2007-2011 STMicroelectronics Ltd 6 7 This program is free software; you can redistribute it and/or modify it 8 under the terms and conditions of the GNU General Public License, 9 version 2, as published by the Free Software Foundation. 10 11 This program is distributed in the hope it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 more details. 15 16 The full GNU General Public License is included in this distribution in 17 the file called "COPYING". 18 19 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> 20 21 Documentation available at: 22 http://www.stlinux.com 23 Support available at: 24 https://bugzilla.stlinux.com/ 25 *******************************************************************************/ 26 27 #include <linux/clk.h> 28 #include <linux/kernel.h> 29 #include <linux/interrupt.h> 30 #include <linux/ip.h> 31 #include <linux/tcp.h> 32 #include <linux/skbuff.h> 33 #include <linux/ethtool.h> 34 #include <linux/if_ether.h> 35 #include <linux/crc32.h> 36 #include <linux/mii.h> 37 #include <linux/if.h> 38 #include <linux/if_vlan.h> 39 #include <linux/dma-mapping.h> 40 #include <linux/slab.h> 41 #include <linux/prefetch.h> 42 #include <linux/pinctrl/consumer.h> 43 #ifdef CONFIG_DEBUG_FS 44 #include <linux/debugfs.h> 45 #include <linux/seq_file.h> 46 #endif /* CONFIG_DEBUG_FS */ 47 #include <linux/net_tstamp.h> 48 #include <net/pkt_cls.h> 49 #include "stmmac_ptp.h" 50 #include "stmmac.h" 51 #include <linux/reset.h> 52 #include <linux/of_mdio.h> 53 #include "dwmac1000.h" 54 #include "dwxgmac2.h" 55 #include "hwif.h" 56 57 #define STMMAC_ALIGN(x) __ALIGN_KERNEL(x, SMP_CACHE_BYTES) 58 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1) 59 60 /* Module parameters */ 61 #define TX_TIMEO 5000 62 static int watchdog = TX_TIMEO; 63 module_param(watchdog, int, 0644); 64 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); 65 66 static int debug = -1; 67 module_param(debug, int, 0644); 68 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 69 70 static int phyaddr = -1; 71 module_param(phyaddr, int, 0444); 72 MODULE_PARM_DESC(phyaddr, "Physical device address"); 73 74 #define STMMAC_TX_THRESH (DMA_TX_SIZE / 4) 75 #define STMMAC_RX_THRESH (DMA_RX_SIZE / 4) 76 77 static int flow_ctrl = FLOW_OFF; 78 module_param(flow_ctrl, int, 0644); 79 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); 80 81 static int pause = PAUSE_TIME; 82 module_param(pause, int, 0644); 83 MODULE_PARM_DESC(pause, "Flow Control Pause Time"); 84 85 #define TC_DEFAULT 64 86 static int tc = TC_DEFAULT; 87 module_param(tc, int, 0644); 88 MODULE_PARM_DESC(tc, "DMA threshold control value"); 89 90 #define DEFAULT_BUFSIZE 1536 91 static int buf_sz = DEFAULT_BUFSIZE; 92 module_param(buf_sz, int, 0644); 93 MODULE_PARM_DESC(buf_sz, "DMA buffer size"); 94 95 #define STMMAC_RX_COPYBREAK 256 96 97 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 98 NETIF_MSG_LINK | NETIF_MSG_IFUP | 99 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 100 101 #define STMMAC_DEFAULT_LPI_TIMER 1000 102 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; 103 module_param(eee_timer, int, 0644); 104 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); 105 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x)) 106 107 /* By default the driver will use the ring mode to manage tx and rx descriptors, 108 * but allow user to force to use the chain instead of the ring 109 */ 110 static unsigned int chain_mode; 111 module_param(chain_mode, int, 0444); 112 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); 113 114 static irqreturn_t stmmac_interrupt(int irq, void *dev_id); 115 116 #ifdef CONFIG_DEBUG_FS 117 static int stmmac_init_fs(struct net_device *dev); 118 static void stmmac_exit_fs(struct net_device *dev); 119 #endif 120 121 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x)) 122 123 /** 124 * stmmac_verify_args - verify the driver parameters. 125 * Description: it checks the driver parameters and set a default in case of 126 * errors. 127 */ 128 static void stmmac_verify_args(void) 129 { 130 if (unlikely(watchdog < 0)) 131 watchdog = TX_TIMEO; 132 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) 133 buf_sz = DEFAULT_BUFSIZE; 134 if (unlikely(flow_ctrl > 1)) 135 flow_ctrl = FLOW_AUTO; 136 else if (likely(flow_ctrl < 0)) 137 flow_ctrl = FLOW_OFF; 138 if (unlikely((pause < 0) || (pause > 0xffff))) 139 pause = PAUSE_TIME; 140 if (eee_timer < 0) 141 eee_timer = STMMAC_DEFAULT_LPI_TIMER; 142 } 143 144 /** 145 * stmmac_disable_all_queues - Disable all queues 146 * @priv: driver private structure 147 */ 148 static void stmmac_disable_all_queues(struct stmmac_priv *priv) 149 { 150 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 151 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 152 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 153 u32 queue; 154 155 for (queue = 0; queue < maxq; queue++) { 156 struct stmmac_channel *ch = &priv->channel[queue]; 157 158 if (queue < rx_queues_cnt) 159 napi_disable(&ch->rx_napi); 160 if (queue < tx_queues_cnt) 161 napi_disable(&ch->tx_napi); 162 } 163 } 164 165 /** 166 * stmmac_enable_all_queues - Enable all queues 167 * @priv: driver private structure 168 */ 169 static void stmmac_enable_all_queues(struct stmmac_priv *priv) 170 { 171 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 172 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 173 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 174 u32 queue; 175 176 for (queue = 0; queue < maxq; queue++) { 177 struct stmmac_channel *ch = &priv->channel[queue]; 178 179 if (queue < rx_queues_cnt) 180 napi_enable(&ch->rx_napi); 181 if (queue < tx_queues_cnt) 182 napi_enable(&ch->tx_napi); 183 } 184 } 185 186 /** 187 * stmmac_stop_all_queues - Stop all queues 188 * @priv: driver private structure 189 */ 190 static void stmmac_stop_all_queues(struct stmmac_priv *priv) 191 { 192 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 193 u32 queue; 194 195 for (queue = 0; queue < tx_queues_cnt; queue++) 196 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 197 } 198 199 /** 200 * stmmac_start_all_queues - Start all queues 201 * @priv: driver private structure 202 */ 203 static void stmmac_start_all_queues(struct stmmac_priv *priv) 204 { 205 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 206 u32 queue; 207 208 for (queue = 0; queue < tx_queues_cnt; queue++) 209 netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue)); 210 } 211 212 static void stmmac_service_event_schedule(struct stmmac_priv *priv) 213 { 214 if (!test_bit(STMMAC_DOWN, &priv->state) && 215 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state)) 216 queue_work(priv->wq, &priv->service_task); 217 } 218 219 static void stmmac_global_err(struct stmmac_priv *priv) 220 { 221 netif_carrier_off(priv->dev); 222 set_bit(STMMAC_RESET_REQUESTED, &priv->state); 223 stmmac_service_event_schedule(priv); 224 } 225 226 /** 227 * stmmac_clk_csr_set - dynamically set the MDC clock 228 * @priv: driver private structure 229 * Description: this is to dynamically set the MDC clock according to the csr 230 * clock input. 231 * Note: 232 * If a specific clk_csr value is passed from the platform 233 * this means that the CSR Clock Range selection cannot be 234 * changed at run-time and it is fixed (as reported in the driver 235 * documentation). Viceversa the driver will try to set the MDC 236 * clock dynamically according to the actual clock input. 237 */ 238 static void stmmac_clk_csr_set(struct stmmac_priv *priv) 239 { 240 u32 clk_rate; 241 242 clk_rate = clk_get_rate(priv->plat->stmmac_clk); 243 244 /* Platform provided default clk_csr would be assumed valid 245 * for all other cases except for the below mentioned ones. 246 * For values higher than the IEEE 802.3 specified frequency 247 * we can not estimate the proper divider as it is not known 248 * the frequency of clk_csr_i. So we do not change the default 249 * divider. 250 */ 251 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { 252 if (clk_rate < CSR_F_35M) 253 priv->clk_csr = STMMAC_CSR_20_35M; 254 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) 255 priv->clk_csr = STMMAC_CSR_35_60M; 256 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) 257 priv->clk_csr = STMMAC_CSR_60_100M; 258 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) 259 priv->clk_csr = STMMAC_CSR_100_150M; 260 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) 261 priv->clk_csr = STMMAC_CSR_150_250M; 262 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M)) 263 priv->clk_csr = STMMAC_CSR_250_300M; 264 } 265 266 if (priv->plat->has_sun8i) { 267 if (clk_rate > 160000000) 268 priv->clk_csr = 0x03; 269 else if (clk_rate > 80000000) 270 priv->clk_csr = 0x02; 271 else if (clk_rate > 40000000) 272 priv->clk_csr = 0x01; 273 else 274 priv->clk_csr = 0; 275 } 276 277 if (priv->plat->has_xgmac) { 278 if (clk_rate > 400000000) 279 priv->clk_csr = 0x5; 280 else if (clk_rate > 350000000) 281 priv->clk_csr = 0x4; 282 else if (clk_rate > 300000000) 283 priv->clk_csr = 0x3; 284 else if (clk_rate > 250000000) 285 priv->clk_csr = 0x2; 286 else if (clk_rate > 150000000) 287 priv->clk_csr = 0x1; 288 else 289 priv->clk_csr = 0x0; 290 } 291 } 292 293 static void print_pkt(unsigned char *buf, int len) 294 { 295 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); 296 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); 297 } 298 299 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue) 300 { 301 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 302 u32 avail; 303 304 if (tx_q->dirty_tx > tx_q->cur_tx) 305 avail = tx_q->dirty_tx - tx_q->cur_tx - 1; 306 else 307 avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1; 308 309 return avail; 310 } 311 312 /** 313 * stmmac_rx_dirty - Get RX queue dirty 314 * @priv: driver private structure 315 * @queue: RX queue index 316 */ 317 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue) 318 { 319 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 320 u32 dirty; 321 322 if (rx_q->dirty_rx <= rx_q->cur_rx) 323 dirty = rx_q->cur_rx - rx_q->dirty_rx; 324 else 325 dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx; 326 327 return dirty; 328 } 329 330 /** 331 * stmmac_hw_fix_mac_speed - callback for speed selection 332 * @priv: driver private structure 333 * Description: on some platforms (e.g. ST), some HW system configuration 334 * registers have to be set according to the link speed negotiated. 335 */ 336 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv) 337 { 338 struct net_device *ndev = priv->dev; 339 struct phy_device *phydev = ndev->phydev; 340 341 if (likely(priv->plat->fix_mac_speed)) 342 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed); 343 } 344 345 /** 346 * stmmac_enable_eee_mode - check and enter in LPI mode 347 * @priv: driver private structure 348 * Description: this function is to verify and enter in LPI mode in case of 349 * EEE. 350 */ 351 static void stmmac_enable_eee_mode(struct stmmac_priv *priv) 352 { 353 u32 tx_cnt = priv->plat->tx_queues_to_use; 354 u32 queue; 355 356 /* check if all TX queues have the work finished */ 357 for (queue = 0; queue < tx_cnt; queue++) { 358 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 359 360 if (tx_q->dirty_tx != tx_q->cur_tx) 361 return; /* still unfinished work */ 362 } 363 364 /* Check and enter in LPI mode */ 365 if (!priv->tx_path_in_lpi_mode) 366 stmmac_set_eee_mode(priv, priv->hw, 367 priv->plat->en_tx_lpi_clockgating); 368 } 369 370 /** 371 * stmmac_disable_eee_mode - disable and exit from LPI mode 372 * @priv: driver private structure 373 * Description: this function is to exit and disable EEE in case of 374 * LPI state is true. This is called by the xmit. 375 */ 376 void stmmac_disable_eee_mode(struct stmmac_priv *priv) 377 { 378 stmmac_reset_eee_mode(priv, priv->hw); 379 del_timer_sync(&priv->eee_ctrl_timer); 380 priv->tx_path_in_lpi_mode = false; 381 } 382 383 /** 384 * stmmac_eee_ctrl_timer - EEE TX SW timer. 385 * @arg : data hook 386 * Description: 387 * if there is no data transfer and if we are not in LPI state, 388 * then MAC Transmitter can be moved to LPI state. 389 */ 390 static void stmmac_eee_ctrl_timer(struct timer_list *t) 391 { 392 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer); 393 394 stmmac_enable_eee_mode(priv); 395 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); 396 } 397 398 /** 399 * stmmac_eee_init - init EEE 400 * @priv: driver private structure 401 * Description: 402 * if the GMAC supports the EEE (from the HW cap reg) and the phy device 403 * can also manage EEE, this function enable the LPI state and start related 404 * timer. 405 */ 406 bool stmmac_eee_init(struct stmmac_priv *priv) 407 { 408 struct net_device *ndev = priv->dev; 409 int interface = priv->plat->interface; 410 bool ret = false; 411 412 if ((interface != PHY_INTERFACE_MODE_MII) && 413 (interface != PHY_INTERFACE_MODE_GMII) && 414 !phy_interface_mode_is_rgmii(interface)) 415 goto out; 416 417 /* Using PCS we cannot dial with the phy registers at this stage 418 * so we do not support extra feature like EEE. 419 */ 420 if ((priv->hw->pcs == STMMAC_PCS_RGMII) || 421 (priv->hw->pcs == STMMAC_PCS_TBI) || 422 (priv->hw->pcs == STMMAC_PCS_RTBI)) 423 goto out; 424 425 /* MAC core supports the EEE feature. */ 426 if (priv->dma_cap.eee) { 427 int tx_lpi_timer = priv->tx_lpi_timer; 428 429 /* Check if the PHY supports EEE */ 430 if (phy_init_eee(ndev->phydev, 1)) { 431 /* To manage at run-time if the EEE cannot be supported 432 * anymore (for example because the lp caps have been 433 * changed). 434 * In that case the driver disable own timers. 435 */ 436 mutex_lock(&priv->lock); 437 if (priv->eee_active) { 438 netdev_dbg(priv->dev, "disable EEE\n"); 439 del_timer_sync(&priv->eee_ctrl_timer); 440 stmmac_set_eee_timer(priv, priv->hw, 0, 441 tx_lpi_timer); 442 } 443 priv->eee_active = 0; 444 mutex_unlock(&priv->lock); 445 goto out; 446 } 447 /* Activate the EEE and start timers */ 448 mutex_lock(&priv->lock); 449 if (!priv->eee_active) { 450 priv->eee_active = 1; 451 timer_setup(&priv->eee_ctrl_timer, 452 stmmac_eee_ctrl_timer, 0); 453 mod_timer(&priv->eee_ctrl_timer, 454 STMMAC_LPI_T(eee_timer)); 455 456 stmmac_set_eee_timer(priv, priv->hw, 457 STMMAC_DEFAULT_LIT_LS, tx_lpi_timer); 458 } 459 /* Set HW EEE according to the speed */ 460 stmmac_set_eee_pls(priv, priv->hw, ndev->phydev->link); 461 462 ret = true; 463 mutex_unlock(&priv->lock); 464 465 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n"); 466 } 467 out: 468 return ret; 469 } 470 471 /* stmmac_get_tx_hwtstamp - get HW TX timestamps 472 * @priv: driver private structure 473 * @p : descriptor pointer 474 * @skb : the socket buffer 475 * Description : 476 * This function will read timestamp from the descriptor & pass it to stack. 477 * and also perform some sanity checks. 478 */ 479 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, 480 struct dma_desc *p, struct sk_buff *skb) 481 { 482 struct skb_shared_hwtstamps shhwtstamp; 483 u64 ns = 0; 484 485 if (!priv->hwts_tx_en) 486 return; 487 488 /* exit if skb doesn't support hw tstamp */ 489 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) 490 return; 491 492 /* check tx tstamp status */ 493 if (stmmac_get_tx_timestamp_status(priv, p)) { 494 /* get the valid tstamp */ 495 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns); 496 497 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 498 shhwtstamp.hwtstamp = ns_to_ktime(ns); 499 500 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns); 501 /* pass tstamp to stack */ 502 skb_tstamp_tx(skb, &shhwtstamp); 503 } 504 505 return; 506 } 507 508 /* stmmac_get_rx_hwtstamp - get HW RX timestamps 509 * @priv: driver private structure 510 * @p : descriptor pointer 511 * @np : next descriptor pointer 512 * @skb : the socket buffer 513 * Description : 514 * This function will read received packet's timestamp from the descriptor 515 * and pass it to stack. It also perform some sanity checks. 516 */ 517 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p, 518 struct dma_desc *np, struct sk_buff *skb) 519 { 520 struct skb_shared_hwtstamps *shhwtstamp = NULL; 521 struct dma_desc *desc = p; 522 u64 ns = 0; 523 524 if (!priv->hwts_rx_en) 525 return; 526 /* For GMAC4, the valid timestamp is from CTX next desc. */ 527 if (priv->plat->has_gmac4 || priv->plat->has_xgmac) 528 desc = np; 529 530 /* Check if timestamp is available */ 531 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) { 532 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns); 533 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns); 534 shhwtstamp = skb_hwtstamps(skb); 535 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 536 shhwtstamp->hwtstamp = ns_to_ktime(ns); 537 } else { 538 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n"); 539 } 540 } 541 542 /** 543 * stmmac_hwtstamp_set - control hardware timestamping. 544 * @dev: device pointer. 545 * @ifr: An IOCTL specific structure, that can contain a pointer to 546 * a proprietary structure used to pass information to the driver. 547 * Description: 548 * This function configures the MAC to enable/disable both outgoing(TX) 549 * and incoming(RX) packets time stamping based on user input. 550 * Return Value: 551 * 0 on success and an appropriate -ve integer on failure. 552 */ 553 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 554 { 555 struct stmmac_priv *priv = netdev_priv(dev); 556 struct hwtstamp_config config; 557 struct timespec64 now; 558 u64 temp = 0; 559 u32 ptp_v2 = 0; 560 u32 tstamp_all = 0; 561 u32 ptp_over_ipv4_udp = 0; 562 u32 ptp_over_ipv6_udp = 0; 563 u32 ptp_over_ethernet = 0; 564 u32 snap_type_sel = 0; 565 u32 ts_master_en = 0; 566 u32 ts_event_en = 0; 567 u32 sec_inc = 0; 568 u32 value = 0; 569 bool xmac; 570 571 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 572 573 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { 574 netdev_alert(priv->dev, "No support for HW time stamping\n"); 575 priv->hwts_tx_en = 0; 576 priv->hwts_rx_en = 0; 577 578 return -EOPNOTSUPP; 579 } 580 581 if (copy_from_user(&config, ifr->ifr_data, 582 sizeof(config))) 583 return -EFAULT; 584 585 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", 586 __func__, config.flags, config.tx_type, config.rx_filter); 587 588 /* reserved for future extensions */ 589 if (config.flags) 590 return -EINVAL; 591 592 if (config.tx_type != HWTSTAMP_TX_OFF && 593 config.tx_type != HWTSTAMP_TX_ON) 594 return -ERANGE; 595 596 if (priv->adv_ts) { 597 switch (config.rx_filter) { 598 case HWTSTAMP_FILTER_NONE: 599 /* time stamp no incoming packet at all */ 600 config.rx_filter = HWTSTAMP_FILTER_NONE; 601 break; 602 603 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 604 /* PTP v1, UDP, any kind of event packet */ 605 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 606 /* 'xmac' hardware can support Sync, Pdelay_Req and 607 * Pdelay_resp by setting bit14 and bits17/16 to 01 608 * This leaves Delay_Req timestamps out. 609 * Enable all events *and* general purpose message 610 * timestamping 611 */ 612 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 613 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 614 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 615 break; 616 617 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 618 /* PTP v1, UDP, Sync packet */ 619 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; 620 /* take time stamp for SYNC messages only */ 621 ts_event_en = PTP_TCR_TSEVNTENA; 622 623 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 624 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 625 break; 626 627 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 628 /* PTP v1, UDP, Delay_req packet */ 629 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; 630 /* take time stamp for Delay_Req messages only */ 631 ts_master_en = PTP_TCR_TSMSTRENA; 632 ts_event_en = PTP_TCR_TSEVNTENA; 633 634 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 635 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 636 break; 637 638 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 639 /* PTP v2, UDP, any kind of event packet */ 640 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 641 ptp_v2 = PTP_TCR_TSVER2ENA; 642 /* take time stamp for all event messages */ 643 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 644 645 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 646 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 647 break; 648 649 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 650 /* PTP v2, UDP, Sync packet */ 651 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; 652 ptp_v2 = PTP_TCR_TSVER2ENA; 653 /* take time stamp for SYNC messages only */ 654 ts_event_en = PTP_TCR_TSEVNTENA; 655 656 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 657 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 658 break; 659 660 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 661 /* PTP v2, UDP, Delay_req packet */ 662 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; 663 ptp_v2 = PTP_TCR_TSVER2ENA; 664 /* take time stamp for Delay_Req messages only */ 665 ts_master_en = PTP_TCR_TSMSTRENA; 666 ts_event_en = PTP_TCR_TSEVNTENA; 667 668 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 669 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 670 break; 671 672 case HWTSTAMP_FILTER_PTP_V2_EVENT: 673 /* PTP v2/802.AS1 any layer, any kind of event packet */ 674 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 675 ptp_v2 = PTP_TCR_TSVER2ENA; 676 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 677 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 678 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 679 ptp_over_ethernet = PTP_TCR_TSIPENA; 680 break; 681 682 case HWTSTAMP_FILTER_PTP_V2_SYNC: 683 /* PTP v2/802.AS1, any layer, Sync packet */ 684 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; 685 ptp_v2 = PTP_TCR_TSVER2ENA; 686 /* take time stamp for SYNC messages only */ 687 ts_event_en = PTP_TCR_TSEVNTENA; 688 689 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 690 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 691 ptp_over_ethernet = PTP_TCR_TSIPENA; 692 break; 693 694 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 695 /* PTP v2/802.AS1, any layer, Delay_req packet */ 696 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; 697 ptp_v2 = PTP_TCR_TSVER2ENA; 698 /* take time stamp for Delay_Req messages only */ 699 ts_master_en = PTP_TCR_TSMSTRENA; 700 ts_event_en = PTP_TCR_TSEVNTENA; 701 702 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 703 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 704 ptp_over_ethernet = PTP_TCR_TSIPENA; 705 break; 706 707 case HWTSTAMP_FILTER_NTP_ALL: 708 case HWTSTAMP_FILTER_ALL: 709 /* time stamp any incoming packet */ 710 config.rx_filter = HWTSTAMP_FILTER_ALL; 711 tstamp_all = PTP_TCR_TSENALL; 712 break; 713 714 default: 715 return -ERANGE; 716 } 717 } else { 718 switch (config.rx_filter) { 719 case HWTSTAMP_FILTER_NONE: 720 config.rx_filter = HWTSTAMP_FILTER_NONE; 721 break; 722 default: 723 /* PTP v1, UDP, any kind of event packet */ 724 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 725 break; 726 } 727 } 728 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); 729 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; 730 731 if (!priv->hwts_tx_en && !priv->hwts_rx_en) 732 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0); 733 else { 734 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR | 735 tstamp_all | ptp_v2 | ptp_over_ethernet | 736 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en | 737 ts_master_en | snap_type_sel); 738 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value); 739 740 /* program Sub Second Increment reg */ 741 stmmac_config_sub_second_increment(priv, 742 priv->ptpaddr, priv->plat->clk_ptp_rate, 743 xmac, &sec_inc); 744 temp = div_u64(1000000000ULL, sec_inc); 745 746 /* Store sub second increment and flags for later use */ 747 priv->sub_second_inc = sec_inc; 748 priv->systime_flags = value; 749 750 /* calculate default added value: 751 * formula is : 752 * addend = (2^32)/freq_div_ratio; 753 * where, freq_div_ratio = 1e9ns/sec_inc 754 */ 755 temp = (u64)(temp << 32); 756 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate); 757 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend); 758 759 /* initialize system time */ 760 ktime_get_real_ts64(&now); 761 762 /* lower 32 bits of tv_sec are safe until y2106 */ 763 stmmac_init_systime(priv, priv->ptpaddr, 764 (u32)now.tv_sec, now.tv_nsec); 765 } 766 767 memcpy(&priv->tstamp_config, &config, sizeof(config)); 768 769 return copy_to_user(ifr->ifr_data, &config, 770 sizeof(config)) ? -EFAULT : 0; 771 } 772 773 /** 774 * stmmac_hwtstamp_get - read hardware timestamping. 775 * @dev: device pointer. 776 * @ifr: An IOCTL specific structure, that can contain a pointer to 777 * a proprietary structure used to pass information to the driver. 778 * Description: 779 * This function obtain the current hardware timestamping settings 780 as requested. 781 */ 782 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 783 { 784 struct stmmac_priv *priv = netdev_priv(dev); 785 struct hwtstamp_config *config = &priv->tstamp_config; 786 787 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 788 return -EOPNOTSUPP; 789 790 return copy_to_user(ifr->ifr_data, config, 791 sizeof(*config)) ? -EFAULT : 0; 792 } 793 794 /** 795 * stmmac_init_ptp - init PTP 796 * @priv: driver private structure 797 * Description: this is to verify if the HW supports the PTPv1 or PTPv2. 798 * This is done by looking at the HW cap. register. 799 * This function also registers the ptp driver. 800 */ 801 static int stmmac_init_ptp(struct stmmac_priv *priv) 802 { 803 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 804 805 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 806 return -EOPNOTSUPP; 807 808 priv->adv_ts = 0; 809 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */ 810 if (xmac && priv->dma_cap.atime_stamp) 811 priv->adv_ts = 1; 812 /* Dwmac 3.x core with extend_desc can support adv_ts */ 813 else if (priv->extend_desc && priv->dma_cap.atime_stamp) 814 priv->adv_ts = 1; 815 816 if (priv->dma_cap.time_stamp) 817 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n"); 818 819 if (priv->adv_ts) 820 netdev_info(priv->dev, 821 "IEEE 1588-2008 Advanced Timestamp supported\n"); 822 823 priv->hwts_tx_en = 0; 824 priv->hwts_rx_en = 0; 825 826 stmmac_ptp_register(priv); 827 828 return 0; 829 } 830 831 static void stmmac_release_ptp(struct stmmac_priv *priv) 832 { 833 if (priv->plat->clk_ptp_ref) 834 clk_disable_unprepare(priv->plat->clk_ptp_ref); 835 stmmac_ptp_unregister(priv); 836 } 837 838 /** 839 * stmmac_mac_flow_ctrl - Configure flow control in all queues 840 * @priv: driver private structure 841 * Description: It is used for configuring the flow control in all queues 842 */ 843 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex) 844 { 845 u32 tx_cnt = priv->plat->tx_queues_to_use; 846 847 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl, 848 priv->pause, tx_cnt); 849 } 850 851 /** 852 * stmmac_adjust_link - adjusts the link parameters 853 * @dev: net device structure 854 * Description: this is the helper called by the physical abstraction layer 855 * drivers to communicate the phy link status. According the speed and duplex 856 * this driver can invoke registered glue-logic as well. 857 * It also invoke the eee initialization because it could happen when switch 858 * on different networks (that are eee capable). 859 */ 860 static void stmmac_adjust_link(struct net_device *dev) 861 { 862 struct stmmac_priv *priv = netdev_priv(dev); 863 struct phy_device *phydev = dev->phydev; 864 bool new_state = false; 865 866 if (!phydev) 867 return; 868 869 mutex_lock(&priv->lock); 870 871 if (phydev->link) { 872 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG); 873 874 /* Now we make sure that we can be in full duplex mode. 875 * If not, we operate in half-duplex mode. */ 876 if (phydev->duplex != priv->oldduplex) { 877 new_state = true; 878 if (!phydev->duplex) 879 ctrl &= ~priv->hw->link.duplex; 880 else 881 ctrl |= priv->hw->link.duplex; 882 priv->oldduplex = phydev->duplex; 883 } 884 /* Flow Control operation */ 885 if (phydev->pause) 886 stmmac_mac_flow_ctrl(priv, phydev->duplex); 887 888 if (phydev->speed != priv->speed) { 889 new_state = true; 890 ctrl &= ~priv->hw->link.speed_mask; 891 switch (phydev->speed) { 892 case SPEED_1000: 893 ctrl |= priv->hw->link.speed1000; 894 break; 895 case SPEED_100: 896 ctrl |= priv->hw->link.speed100; 897 break; 898 case SPEED_10: 899 ctrl |= priv->hw->link.speed10; 900 break; 901 default: 902 netif_warn(priv, link, priv->dev, 903 "broken speed: %d\n", phydev->speed); 904 phydev->speed = SPEED_UNKNOWN; 905 break; 906 } 907 if (phydev->speed != SPEED_UNKNOWN) 908 stmmac_hw_fix_mac_speed(priv); 909 priv->speed = phydev->speed; 910 } 911 912 writel(ctrl, priv->ioaddr + MAC_CTRL_REG); 913 914 if (!priv->oldlink) { 915 new_state = true; 916 priv->oldlink = true; 917 } 918 } else if (priv->oldlink) { 919 new_state = true; 920 priv->oldlink = false; 921 priv->speed = SPEED_UNKNOWN; 922 priv->oldduplex = DUPLEX_UNKNOWN; 923 } 924 925 if (new_state && netif_msg_link(priv)) 926 phy_print_status(phydev); 927 928 mutex_unlock(&priv->lock); 929 930 if (phydev->is_pseudo_fixed_link) 931 /* Stop PHY layer to call the hook to adjust the link in case 932 * of a switch is attached to the stmmac driver. 933 */ 934 phydev->irq = PHY_IGNORE_INTERRUPT; 935 else 936 /* At this stage, init the EEE if supported. 937 * Never called in case of fixed_link. 938 */ 939 priv->eee_enabled = stmmac_eee_init(priv); 940 } 941 942 /** 943 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported 944 * @priv: driver private structure 945 * Description: this is to verify if the HW supports the PCS. 946 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is 947 * configured for the TBI, RTBI, or SGMII PHY interface. 948 */ 949 static void stmmac_check_pcs_mode(struct stmmac_priv *priv) 950 { 951 int interface = priv->plat->interface; 952 953 if (priv->dma_cap.pcs) { 954 if ((interface == PHY_INTERFACE_MODE_RGMII) || 955 (interface == PHY_INTERFACE_MODE_RGMII_ID) || 956 (interface == PHY_INTERFACE_MODE_RGMII_RXID) || 957 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) { 958 netdev_dbg(priv->dev, "PCS RGMII support enabled\n"); 959 priv->hw->pcs = STMMAC_PCS_RGMII; 960 } else if (interface == PHY_INTERFACE_MODE_SGMII) { 961 netdev_dbg(priv->dev, "PCS SGMII support enabled\n"); 962 priv->hw->pcs = STMMAC_PCS_SGMII; 963 } 964 } 965 } 966 967 /** 968 * stmmac_init_phy - PHY initialization 969 * @dev: net device structure 970 * Description: it initializes the driver's PHY state, and attaches the PHY 971 * to the mac driver. 972 * Return value: 973 * 0 on success 974 */ 975 static int stmmac_init_phy(struct net_device *dev) 976 { 977 struct stmmac_priv *priv = netdev_priv(dev); 978 u32 tx_cnt = priv->plat->tx_queues_to_use; 979 struct phy_device *phydev; 980 char phy_id_fmt[MII_BUS_ID_SIZE + 3]; 981 char bus_id[MII_BUS_ID_SIZE]; 982 int interface = priv->plat->interface; 983 int max_speed = priv->plat->max_speed; 984 priv->oldlink = false; 985 priv->speed = SPEED_UNKNOWN; 986 priv->oldduplex = DUPLEX_UNKNOWN; 987 988 if (priv->plat->phy_node) { 989 phydev = of_phy_connect(dev, priv->plat->phy_node, 990 &stmmac_adjust_link, 0, interface); 991 } else { 992 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x", 993 priv->plat->bus_id); 994 995 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id, 996 priv->plat->phy_addr); 997 netdev_dbg(priv->dev, "%s: trying to attach to %s\n", __func__, 998 phy_id_fmt); 999 1000 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, 1001 interface); 1002 } 1003 1004 if (IS_ERR_OR_NULL(phydev)) { 1005 netdev_err(priv->dev, "Could not attach to PHY\n"); 1006 if (!phydev) 1007 return -ENODEV; 1008 1009 return PTR_ERR(phydev); 1010 } 1011 1012 /* Stop Advertising 1000BASE Capability if interface is not GMII */ 1013 if ((interface == PHY_INTERFACE_MODE_MII) || 1014 (interface == PHY_INTERFACE_MODE_RMII) || 1015 (max_speed < 1000 && max_speed > 0)) 1016 phy_set_max_speed(phydev, SPEED_100); 1017 1018 /* 1019 * Half-duplex mode not supported with multiqueue 1020 * half-duplex can only works with single queue 1021 */ 1022 if (tx_cnt > 1) { 1023 phy_remove_link_mode(phydev, 1024 ETHTOOL_LINK_MODE_10baseT_Half_BIT); 1025 phy_remove_link_mode(phydev, 1026 ETHTOOL_LINK_MODE_100baseT_Half_BIT); 1027 phy_remove_link_mode(phydev, 1028 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 1029 } 1030 1031 /* 1032 * Broken HW is sometimes missing the pull-up resistor on the 1033 * MDIO line, which results in reads to non-existent devices returning 1034 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent 1035 * device as well. 1036 * Note: phydev->phy_id is the result of reading the UID PHY registers. 1037 */ 1038 if (!priv->plat->phy_node && phydev->phy_id == 0) { 1039 phy_disconnect(phydev); 1040 return -ENODEV; 1041 } 1042 1043 /* stmmac_adjust_link will change this to PHY_IGNORE_INTERRUPT to avoid 1044 * subsequent PHY polling, make sure we force a link transition if 1045 * we have a UP/DOWN/UP transition 1046 */ 1047 if (phydev->is_pseudo_fixed_link) 1048 phydev->irq = PHY_POLL; 1049 1050 phy_attached_info(phydev); 1051 return 0; 1052 } 1053 1054 static void stmmac_display_rx_rings(struct stmmac_priv *priv) 1055 { 1056 u32 rx_cnt = priv->plat->rx_queues_to_use; 1057 void *head_rx; 1058 u32 queue; 1059 1060 /* Display RX rings */ 1061 for (queue = 0; queue < rx_cnt; queue++) { 1062 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1063 1064 pr_info("\tRX Queue %u rings\n", queue); 1065 1066 if (priv->extend_desc) 1067 head_rx = (void *)rx_q->dma_erx; 1068 else 1069 head_rx = (void *)rx_q->dma_rx; 1070 1071 /* Display RX ring */ 1072 stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true); 1073 } 1074 } 1075 1076 static void stmmac_display_tx_rings(struct stmmac_priv *priv) 1077 { 1078 u32 tx_cnt = priv->plat->tx_queues_to_use; 1079 void *head_tx; 1080 u32 queue; 1081 1082 /* Display TX rings */ 1083 for (queue = 0; queue < tx_cnt; queue++) { 1084 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1085 1086 pr_info("\tTX Queue %d rings\n", queue); 1087 1088 if (priv->extend_desc) 1089 head_tx = (void *)tx_q->dma_etx; 1090 else 1091 head_tx = (void *)tx_q->dma_tx; 1092 1093 stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false); 1094 } 1095 } 1096 1097 static void stmmac_display_rings(struct stmmac_priv *priv) 1098 { 1099 /* Display RX ring */ 1100 stmmac_display_rx_rings(priv); 1101 1102 /* Display TX ring */ 1103 stmmac_display_tx_rings(priv); 1104 } 1105 1106 static int stmmac_set_bfsize(int mtu, int bufsize) 1107 { 1108 int ret = bufsize; 1109 1110 if (mtu >= BUF_SIZE_4KiB) 1111 ret = BUF_SIZE_8KiB; 1112 else if (mtu >= BUF_SIZE_2KiB) 1113 ret = BUF_SIZE_4KiB; 1114 else if (mtu > DEFAULT_BUFSIZE) 1115 ret = BUF_SIZE_2KiB; 1116 else 1117 ret = DEFAULT_BUFSIZE; 1118 1119 return ret; 1120 } 1121 1122 /** 1123 * stmmac_clear_rx_descriptors - clear RX descriptors 1124 * @priv: driver private structure 1125 * @queue: RX queue index 1126 * Description: this function is called to clear the RX descriptors 1127 * in case of both basic and extended descriptors are used. 1128 */ 1129 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue) 1130 { 1131 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1132 int i; 1133 1134 /* Clear the RX descriptors */ 1135 for (i = 0; i < DMA_RX_SIZE; i++) 1136 if (priv->extend_desc) 1137 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic, 1138 priv->use_riwt, priv->mode, 1139 (i == DMA_RX_SIZE - 1)); 1140 else 1141 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i], 1142 priv->use_riwt, priv->mode, 1143 (i == DMA_RX_SIZE - 1)); 1144 } 1145 1146 /** 1147 * stmmac_clear_tx_descriptors - clear tx descriptors 1148 * @priv: driver private structure 1149 * @queue: TX queue index. 1150 * Description: this function is called to clear the TX descriptors 1151 * in case of both basic and extended descriptors are used. 1152 */ 1153 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue) 1154 { 1155 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1156 int i; 1157 1158 /* Clear the TX descriptors */ 1159 for (i = 0; i < DMA_TX_SIZE; i++) 1160 if (priv->extend_desc) 1161 stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic, 1162 priv->mode, (i == DMA_TX_SIZE - 1)); 1163 else 1164 stmmac_init_tx_desc(priv, &tx_q->dma_tx[i], 1165 priv->mode, (i == DMA_TX_SIZE - 1)); 1166 } 1167 1168 /** 1169 * stmmac_clear_descriptors - clear descriptors 1170 * @priv: driver private structure 1171 * Description: this function is called to clear the TX and RX descriptors 1172 * in case of both basic and extended descriptors are used. 1173 */ 1174 static void stmmac_clear_descriptors(struct stmmac_priv *priv) 1175 { 1176 u32 rx_queue_cnt = priv->plat->rx_queues_to_use; 1177 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1178 u32 queue; 1179 1180 /* Clear the RX descriptors */ 1181 for (queue = 0; queue < rx_queue_cnt; queue++) 1182 stmmac_clear_rx_descriptors(priv, queue); 1183 1184 /* Clear the TX descriptors */ 1185 for (queue = 0; queue < tx_queue_cnt; queue++) 1186 stmmac_clear_tx_descriptors(priv, queue); 1187 } 1188 1189 /** 1190 * stmmac_init_rx_buffers - init the RX descriptor buffer. 1191 * @priv: driver private structure 1192 * @p: descriptor pointer 1193 * @i: descriptor index 1194 * @flags: gfp flag 1195 * @queue: RX queue index 1196 * Description: this function is called to allocate a receive buffer, perform 1197 * the DMA mapping and init the descriptor. 1198 */ 1199 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p, 1200 int i, gfp_t flags, u32 queue) 1201 { 1202 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1203 struct sk_buff *skb; 1204 1205 skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags); 1206 if (!skb) { 1207 netdev_err(priv->dev, 1208 "%s: Rx init fails; skb is NULL\n", __func__); 1209 return -ENOMEM; 1210 } 1211 rx_q->rx_skbuff[i] = skb; 1212 rx_q->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data, 1213 priv->dma_buf_sz, 1214 DMA_FROM_DEVICE); 1215 if (dma_mapping_error(priv->device, rx_q->rx_skbuff_dma[i])) { 1216 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__); 1217 dev_kfree_skb_any(skb); 1218 return -EINVAL; 1219 } 1220 1221 stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[i]); 1222 1223 if (priv->dma_buf_sz == BUF_SIZE_16KiB) 1224 stmmac_init_desc3(priv, p); 1225 1226 return 0; 1227 } 1228 1229 /** 1230 * stmmac_free_rx_buffer - free RX dma buffers 1231 * @priv: private structure 1232 * @queue: RX queue index 1233 * @i: buffer index. 1234 */ 1235 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1236 { 1237 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1238 1239 if (rx_q->rx_skbuff[i]) { 1240 dma_unmap_single(priv->device, rx_q->rx_skbuff_dma[i], 1241 priv->dma_buf_sz, DMA_FROM_DEVICE); 1242 dev_kfree_skb_any(rx_q->rx_skbuff[i]); 1243 } 1244 rx_q->rx_skbuff[i] = NULL; 1245 } 1246 1247 /** 1248 * stmmac_free_tx_buffer - free RX dma buffers 1249 * @priv: private structure 1250 * @queue: RX queue index 1251 * @i: buffer index. 1252 */ 1253 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1254 { 1255 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1256 1257 if (tx_q->tx_skbuff_dma[i].buf) { 1258 if (tx_q->tx_skbuff_dma[i].map_as_page) 1259 dma_unmap_page(priv->device, 1260 tx_q->tx_skbuff_dma[i].buf, 1261 tx_q->tx_skbuff_dma[i].len, 1262 DMA_TO_DEVICE); 1263 else 1264 dma_unmap_single(priv->device, 1265 tx_q->tx_skbuff_dma[i].buf, 1266 tx_q->tx_skbuff_dma[i].len, 1267 DMA_TO_DEVICE); 1268 } 1269 1270 if (tx_q->tx_skbuff[i]) { 1271 dev_kfree_skb_any(tx_q->tx_skbuff[i]); 1272 tx_q->tx_skbuff[i] = NULL; 1273 tx_q->tx_skbuff_dma[i].buf = 0; 1274 tx_q->tx_skbuff_dma[i].map_as_page = false; 1275 } 1276 } 1277 1278 /** 1279 * init_dma_rx_desc_rings - init the RX descriptor rings 1280 * @dev: net device structure 1281 * @flags: gfp flag. 1282 * Description: this function initializes the DMA RX descriptors 1283 * and allocates the socket buffers. It supports the chained and ring 1284 * modes. 1285 */ 1286 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags) 1287 { 1288 struct stmmac_priv *priv = netdev_priv(dev); 1289 u32 rx_count = priv->plat->rx_queues_to_use; 1290 int ret = -ENOMEM; 1291 int bfsize = 0; 1292 int queue; 1293 int i; 1294 1295 bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu); 1296 if (bfsize < 0) 1297 bfsize = 0; 1298 1299 if (bfsize < BUF_SIZE_16KiB) 1300 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz); 1301 1302 priv->dma_buf_sz = bfsize; 1303 1304 /* RX INITIALIZATION */ 1305 netif_dbg(priv, probe, priv->dev, 1306 "SKB addresses:\nskb\t\tskb data\tdma data\n"); 1307 1308 for (queue = 0; queue < rx_count; queue++) { 1309 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1310 1311 netif_dbg(priv, probe, priv->dev, 1312 "(%s) dma_rx_phy=0x%08x\n", __func__, 1313 (u32)rx_q->dma_rx_phy); 1314 1315 for (i = 0; i < DMA_RX_SIZE; i++) { 1316 struct dma_desc *p; 1317 1318 if (priv->extend_desc) 1319 p = &((rx_q->dma_erx + i)->basic); 1320 else 1321 p = rx_q->dma_rx + i; 1322 1323 ret = stmmac_init_rx_buffers(priv, p, i, flags, 1324 queue); 1325 if (ret) 1326 goto err_init_rx_buffers; 1327 1328 netif_dbg(priv, probe, priv->dev, "[%p]\t[%p]\t[%x]\n", 1329 rx_q->rx_skbuff[i], rx_q->rx_skbuff[i]->data, 1330 (unsigned int)rx_q->rx_skbuff_dma[i]); 1331 } 1332 1333 rx_q->cur_rx = 0; 1334 rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE); 1335 1336 stmmac_clear_rx_descriptors(priv, queue); 1337 1338 /* Setup the chained descriptor addresses */ 1339 if (priv->mode == STMMAC_CHAIN_MODE) { 1340 if (priv->extend_desc) 1341 stmmac_mode_init(priv, rx_q->dma_erx, 1342 rx_q->dma_rx_phy, DMA_RX_SIZE, 1); 1343 else 1344 stmmac_mode_init(priv, rx_q->dma_rx, 1345 rx_q->dma_rx_phy, DMA_RX_SIZE, 0); 1346 } 1347 } 1348 1349 buf_sz = bfsize; 1350 1351 return 0; 1352 1353 err_init_rx_buffers: 1354 while (queue >= 0) { 1355 while (--i >= 0) 1356 stmmac_free_rx_buffer(priv, queue, i); 1357 1358 if (queue == 0) 1359 break; 1360 1361 i = DMA_RX_SIZE; 1362 queue--; 1363 } 1364 1365 return ret; 1366 } 1367 1368 /** 1369 * init_dma_tx_desc_rings - init the TX descriptor rings 1370 * @dev: net device structure. 1371 * Description: this function initializes the DMA TX descriptors 1372 * and allocates the socket buffers. It supports the chained and ring 1373 * modes. 1374 */ 1375 static int init_dma_tx_desc_rings(struct net_device *dev) 1376 { 1377 struct stmmac_priv *priv = netdev_priv(dev); 1378 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1379 u32 queue; 1380 int i; 1381 1382 for (queue = 0; queue < tx_queue_cnt; queue++) { 1383 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1384 1385 netif_dbg(priv, probe, priv->dev, 1386 "(%s) dma_tx_phy=0x%08x\n", __func__, 1387 (u32)tx_q->dma_tx_phy); 1388 1389 /* Setup the chained descriptor addresses */ 1390 if (priv->mode == STMMAC_CHAIN_MODE) { 1391 if (priv->extend_desc) 1392 stmmac_mode_init(priv, tx_q->dma_etx, 1393 tx_q->dma_tx_phy, DMA_TX_SIZE, 1); 1394 else 1395 stmmac_mode_init(priv, tx_q->dma_tx, 1396 tx_q->dma_tx_phy, DMA_TX_SIZE, 0); 1397 } 1398 1399 for (i = 0; i < DMA_TX_SIZE; i++) { 1400 struct dma_desc *p; 1401 if (priv->extend_desc) 1402 p = &((tx_q->dma_etx + i)->basic); 1403 else 1404 p = tx_q->dma_tx + i; 1405 1406 stmmac_clear_desc(priv, p); 1407 1408 tx_q->tx_skbuff_dma[i].buf = 0; 1409 tx_q->tx_skbuff_dma[i].map_as_page = false; 1410 tx_q->tx_skbuff_dma[i].len = 0; 1411 tx_q->tx_skbuff_dma[i].last_segment = false; 1412 tx_q->tx_skbuff[i] = NULL; 1413 } 1414 1415 tx_q->dirty_tx = 0; 1416 tx_q->cur_tx = 0; 1417 tx_q->mss = 0; 1418 1419 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 1420 } 1421 1422 return 0; 1423 } 1424 1425 /** 1426 * init_dma_desc_rings - init the RX/TX descriptor rings 1427 * @dev: net device structure 1428 * @flags: gfp flag. 1429 * Description: this function initializes the DMA RX/TX descriptors 1430 * and allocates the socket buffers. It supports the chained and ring 1431 * modes. 1432 */ 1433 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags) 1434 { 1435 struct stmmac_priv *priv = netdev_priv(dev); 1436 int ret; 1437 1438 ret = init_dma_rx_desc_rings(dev, flags); 1439 if (ret) 1440 return ret; 1441 1442 ret = init_dma_tx_desc_rings(dev); 1443 1444 stmmac_clear_descriptors(priv); 1445 1446 if (netif_msg_hw(priv)) 1447 stmmac_display_rings(priv); 1448 1449 return ret; 1450 } 1451 1452 /** 1453 * dma_free_rx_skbufs - free RX dma buffers 1454 * @priv: private structure 1455 * @queue: RX queue index 1456 */ 1457 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue) 1458 { 1459 int i; 1460 1461 for (i = 0; i < DMA_RX_SIZE; i++) 1462 stmmac_free_rx_buffer(priv, queue, i); 1463 } 1464 1465 /** 1466 * dma_free_tx_skbufs - free TX dma buffers 1467 * @priv: private structure 1468 * @queue: TX queue index 1469 */ 1470 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue) 1471 { 1472 int i; 1473 1474 for (i = 0; i < DMA_TX_SIZE; i++) 1475 stmmac_free_tx_buffer(priv, queue, i); 1476 } 1477 1478 /** 1479 * free_dma_rx_desc_resources - free RX dma desc resources 1480 * @priv: private structure 1481 */ 1482 static void free_dma_rx_desc_resources(struct stmmac_priv *priv) 1483 { 1484 u32 rx_count = priv->plat->rx_queues_to_use; 1485 u32 queue; 1486 1487 /* Free RX queue resources */ 1488 for (queue = 0; queue < rx_count; queue++) { 1489 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1490 1491 /* Release the DMA RX socket buffers */ 1492 dma_free_rx_skbufs(priv, queue); 1493 1494 /* Free DMA regions of consistent memory previously allocated */ 1495 if (!priv->extend_desc) 1496 dma_free_coherent(priv->device, 1497 DMA_RX_SIZE * sizeof(struct dma_desc), 1498 rx_q->dma_rx, rx_q->dma_rx_phy); 1499 else 1500 dma_free_coherent(priv->device, DMA_RX_SIZE * 1501 sizeof(struct dma_extended_desc), 1502 rx_q->dma_erx, rx_q->dma_rx_phy); 1503 1504 kfree(rx_q->rx_skbuff_dma); 1505 kfree(rx_q->rx_skbuff); 1506 } 1507 } 1508 1509 /** 1510 * free_dma_tx_desc_resources - free TX dma desc resources 1511 * @priv: private structure 1512 */ 1513 static void free_dma_tx_desc_resources(struct stmmac_priv *priv) 1514 { 1515 u32 tx_count = priv->plat->tx_queues_to_use; 1516 u32 queue; 1517 1518 /* Free TX queue resources */ 1519 for (queue = 0; queue < tx_count; queue++) { 1520 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1521 1522 /* Release the DMA TX socket buffers */ 1523 dma_free_tx_skbufs(priv, queue); 1524 1525 /* Free DMA regions of consistent memory previously allocated */ 1526 if (!priv->extend_desc) 1527 dma_free_coherent(priv->device, 1528 DMA_TX_SIZE * sizeof(struct dma_desc), 1529 tx_q->dma_tx, tx_q->dma_tx_phy); 1530 else 1531 dma_free_coherent(priv->device, DMA_TX_SIZE * 1532 sizeof(struct dma_extended_desc), 1533 tx_q->dma_etx, tx_q->dma_tx_phy); 1534 1535 kfree(tx_q->tx_skbuff_dma); 1536 kfree(tx_q->tx_skbuff); 1537 } 1538 } 1539 1540 /** 1541 * alloc_dma_rx_desc_resources - alloc RX resources. 1542 * @priv: private structure 1543 * Description: according to which descriptor can be used (extend or basic) 1544 * this function allocates the resources for TX and RX paths. In case of 1545 * reception, for example, it pre-allocated the RX socket buffer in order to 1546 * allow zero-copy mechanism. 1547 */ 1548 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv) 1549 { 1550 u32 rx_count = priv->plat->rx_queues_to_use; 1551 int ret = -ENOMEM; 1552 u32 queue; 1553 1554 /* RX queues buffers and DMA */ 1555 for (queue = 0; queue < rx_count; queue++) { 1556 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1557 1558 rx_q->queue_index = queue; 1559 rx_q->priv_data = priv; 1560 1561 rx_q->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE, 1562 sizeof(dma_addr_t), 1563 GFP_KERNEL); 1564 if (!rx_q->rx_skbuff_dma) 1565 goto err_dma; 1566 1567 rx_q->rx_skbuff = kmalloc_array(DMA_RX_SIZE, 1568 sizeof(struct sk_buff *), 1569 GFP_KERNEL); 1570 if (!rx_q->rx_skbuff) 1571 goto err_dma; 1572 1573 if (priv->extend_desc) { 1574 rx_q->dma_erx = dma_alloc_coherent(priv->device, 1575 DMA_RX_SIZE * sizeof(struct dma_extended_desc), 1576 &rx_q->dma_rx_phy, 1577 GFP_KERNEL); 1578 if (!rx_q->dma_erx) 1579 goto err_dma; 1580 1581 } else { 1582 rx_q->dma_rx = dma_alloc_coherent(priv->device, 1583 DMA_RX_SIZE * sizeof(struct dma_desc), 1584 &rx_q->dma_rx_phy, 1585 GFP_KERNEL); 1586 if (!rx_q->dma_rx) 1587 goto err_dma; 1588 } 1589 } 1590 1591 return 0; 1592 1593 err_dma: 1594 free_dma_rx_desc_resources(priv); 1595 1596 return ret; 1597 } 1598 1599 /** 1600 * alloc_dma_tx_desc_resources - alloc TX resources. 1601 * @priv: private structure 1602 * Description: according to which descriptor can be used (extend or basic) 1603 * this function allocates the resources for TX and RX paths. In case of 1604 * reception, for example, it pre-allocated the RX socket buffer in order to 1605 * allow zero-copy mechanism. 1606 */ 1607 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv) 1608 { 1609 u32 tx_count = priv->plat->tx_queues_to_use; 1610 int ret = -ENOMEM; 1611 u32 queue; 1612 1613 /* TX queues buffers and DMA */ 1614 for (queue = 0; queue < tx_count; queue++) { 1615 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1616 1617 tx_q->queue_index = queue; 1618 tx_q->priv_data = priv; 1619 1620 tx_q->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE, 1621 sizeof(*tx_q->tx_skbuff_dma), 1622 GFP_KERNEL); 1623 if (!tx_q->tx_skbuff_dma) 1624 goto err_dma; 1625 1626 tx_q->tx_skbuff = kmalloc_array(DMA_TX_SIZE, 1627 sizeof(struct sk_buff *), 1628 GFP_KERNEL); 1629 if (!tx_q->tx_skbuff) 1630 goto err_dma; 1631 1632 if (priv->extend_desc) { 1633 tx_q->dma_etx = dma_alloc_coherent(priv->device, 1634 DMA_TX_SIZE * sizeof(struct dma_extended_desc), 1635 &tx_q->dma_tx_phy, 1636 GFP_KERNEL); 1637 if (!tx_q->dma_etx) 1638 goto err_dma; 1639 } else { 1640 tx_q->dma_tx = dma_alloc_coherent(priv->device, 1641 DMA_TX_SIZE * sizeof(struct dma_desc), 1642 &tx_q->dma_tx_phy, 1643 GFP_KERNEL); 1644 if (!tx_q->dma_tx) 1645 goto err_dma; 1646 } 1647 } 1648 1649 return 0; 1650 1651 err_dma: 1652 free_dma_tx_desc_resources(priv); 1653 1654 return ret; 1655 } 1656 1657 /** 1658 * alloc_dma_desc_resources - alloc TX/RX resources. 1659 * @priv: private structure 1660 * Description: according to which descriptor can be used (extend or basic) 1661 * this function allocates the resources for TX and RX paths. In case of 1662 * reception, for example, it pre-allocated the RX socket buffer in order to 1663 * allow zero-copy mechanism. 1664 */ 1665 static int alloc_dma_desc_resources(struct stmmac_priv *priv) 1666 { 1667 /* RX Allocation */ 1668 int ret = alloc_dma_rx_desc_resources(priv); 1669 1670 if (ret) 1671 return ret; 1672 1673 ret = alloc_dma_tx_desc_resources(priv); 1674 1675 return ret; 1676 } 1677 1678 /** 1679 * free_dma_desc_resources - free dma desc resources 1680 * @priv: private structure 1681 */ 1682 static void free_dma_desc_resources(struct stmmac_priv *priv) 1683 { 1684 /* Release the DMA RX socket buffers */ 1685 free_dma_rx_desc_resources(priv); 1686 1687 /* Release the DMA TX socket buffers */ 1688 free_dma_tx_desc_resources(priv); 1689 } 1690 1691 /** 1692 * stmmac_mac_enable_rx_queues - Enable MAC rx queues 1693 * @priv: driver private structure 1694 * Description: It is used for enabling the rx queues in the MAC 1695 */ 1696 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv) 1697 { 1698 u32 rx_queues_count = priv->plat->rx_queues_to_use; 1699 int queue; 1700 u8 mode; 1701 1702 for (queue = 0; queue < rx_queues_count; queue++) { 1703 mode = priv->plat->rx_queues_cfg[queue].mode_to_use; 1704 stmmac_rx_queue_enable(priv, priv->hw, mode, queue); 1705 } 1706 } 1707 1708 /** 1709 * stmmac_start_rx_dma - start RX DMA channel 1710 * @priv: driver private structure 1711 * @chan: RX channel index 1712 * Description: 1713 * This starts a RX DMA channel 1714 */ 1715 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan) 1716 { 1717 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan); 1718 stmmac_start_rx(priv, priv->ioaddr, chan); 1719 } 1720 1721 /** 1722 * stmmac_start_tx_dma - start TX DMA channel 1723 * @priv: driver private structure 1724 * @chan: TX channel index 1725 * Description: 1726 * This starts a TX DMA channel 1727 */ 1728 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan) 1729 { 1730 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan); 1731 stmmac_start_tx(priv, priv->ioaddr, chan); 1732 } 1733 1734 /** 1735 * stmmac_stop_rx_dma - stop RX DMA channel 1736 * @priv: driver private structure 1737 * @chan: RX channel index 1738 * Description: 1739 * This stops a RX DMA channel 1740 */ 1741 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan) 1742 { 1743 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan); 1744 stmmac_stop_rx(priv, priv->ioaddr, chan); 1745 } 1746 1747 /** 1748 * stmmac_stop_tx_dma - stop TX DMA channel 1749 * @priv: driver private structure 1750 * @chan: TX channel index 1751 * Description: 1752 * This stops a TX DMA channel 1753 */ 1754 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan) 1755 { 1756 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan); 1757 stmmac_stop_tx(priv, priv->ioaddr, chan); 1758 } 1759 1760 /** 1761 * stmmac_start_all_dma - start all RX and TX DMA channels 1762 * @priv: driver private structure 1763 * Description: 1764 * This starts all the RX and TX DMA channels 1765 */ 1766 static void stmmac_start_all_dma(struct stmmac_priv *priv) 1767 { 1768 u32 rx_channels_count = priv->plat->rx_queues_to_use; 1769 u32 tx_channels_count = priv->plat->tx_queues_to_use; 1770 u32 chan = 0; 1771 1772 for (chan = 0; chan < rx_channels_count; chan++) 1773 stmmac_start_rx_dma(priv, chan); 1774 1775 for (chan = 0; chan < tx_channels_count; chan++) 1776 stmmac_start_tx_dma(priv, chan); 1777 } 1778 1779 /** 1780 * stmmac_stop_all_dma - stop all RX and TX DMA channels 1781 * @priv: driver private structure 1782 * Description: 1783 * This stops the RX and TX DMA channels 1784 */ 1785 static void stmmac_stop_all_dma(struct stmmac_priv *priv) 1786 { 1787 u32 rx_channels_count = priv->plat->rx_queues_to_use; 1788 u32 tx_channels_count = priv->plat->tx_queues_to_use; 1789 u32 chan = 0; 1790 1791 for (chan = 0; chan < rx_channels_count; chan++) 1792 stmmac_stop_rx_dma(priv, chan); 1793 1794 for (chan = 0; chan < tx_channels_count; chan++) 1795 stmmac_stop_tx_dma(priv, chan); 1796 } 1797 1798 /** 1799 * stmmac_dma_operation_mode - HW DMA operation mode 1800 * @priv: driver private structure 1801 * Description: it is used for configuring the DMA operation mode register in 1802 * order to program the tx/rx DMA thresholds or Store-And-Forward mode. 1803 */ 1804 static void stmmac_dma_operation_mode(struct stmmac_priv *priv) 1805 { 1806 u32 rx_channels_count = priv->plat->rx_queues_to_use; 1807 u32 tx_channels_count = priv->plat->tx_queues_to_use; 1808 int rxfifosz = priv->plat->rx_fifo_size; 1809 int txfifosz = priv->plat->tx_fifo_size; 1810 u32 txmode = 0; 1811 u32 rxmode = 0; 1812 u32 chan = 0; 1813 u8 qmode = 0; 1814 1815 if (rxfifosz == 0) 1816 rxfifosz = priv->dma_cap.rx_fifo_size; 1817 if (txfifosz == 0) 1818 txfifosz = priv->dma_cap.tx_fifo_size; 1819 1820 /* Adjust for real per queue fifo size */ 1821 rxfifosz /= rx_channels_count; 1822 txfifosz /= tx_channels_count; 1823 1824 if (priv->plat->force_thresh_dma_mode) { 1825 txmode = tc; 1826 rxmode = tc; 1827 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { 1828 /* 1829 * In case of GMAC, SF mode can be enabled 1830 * to perform the TX COE in HW. This depends on: 1831 * 1) TX COE if actually supported 1832 * 2) There is no bugged Jumbo frame support 1833 * that needs to not insert csum in the TDES. 1834 */ 1835 txmode = SF_DMA_MODE; 1836 rxmode = SF_DMA_MODE; 1837 priv->xstats.threshold = SF_DMA_MODE; 1838 } else { 1839 txmode = tc; 1840 rxmode = SF_DMA_MODE; 1841 } 1842 1843 /* configure all channels */ 1844 for (chan = 0; chan < rx_channels_count; chan++) { 1845 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 1846 1847 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, 1848 rxfifosz, qmode); 1849 stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz, 1850 chan); 1851 } 1852 1853 for (chan = 0; chan < tx_channels_count; chan++) { 1854 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 1855 1856 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, 1857 txfifosz, qmode); 1858 } 1859 } 1860 1861 /** 1862 * stmmac_tx_clean - to manage the transmission completion 1863 * @priv: driver private structure 1864 * @queue: TX queue index 1865 * Description: it reclaims the transmit resources after transmission completes. 1866 */ 1867 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue) 1868 { 1869 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1870 unsigned int bytes_compl = 0, pkts_compl = 0; 1871 unsigned int entry, count = 0; 1872 1873 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue)); 1874 1875 priv->xstats.tx_clean++; 1876 1877 entry = tx_q->dirty_tx; 1878 while ((entry != tx_q->cur_tx) && (count < budget)) { 1879 struct sk_buff *skb = tx_q->tx_skbuff[entry]; 1880 struct dma_desc *p; 1881 int status; 1882 1883 if (priv->extend_desc) 1884 p = (struct dma_desc *)(tx_q->dma_etx + entry); 1885 else 1886 p = tx_q->dma_tx + entry; 1887 1888 status = stmmac_tx_status(priv, &priv->dev->stats, 1889 &priv->xstats, p, priv->ioaddr); 1890 /* Check if the descriptor is owned by the DMA */ 1891 if (unlikely(status & tx_dma_own)) 1892 break; 1893 1894 count++; 1895 1896 /* Make sure descriptor fields are read after reading 1897 * the own bit. 1898 */ 1899 dma_rmb(); 1900 1901 /* Just consider the last segment and ...*/ 1902 if (likely(!(status & tx_not_ls))) { 1903 /* ... verify the status error condition */ 1904 if (unlikely(status & tx_err)) { 1905 priv->dev->stats.tx_errors++; 1906 } else { 1907 priv->dev->stats.tx_packets++; 1908 priv->xstats.tx_pkt_n++; 1909 } 1910 stmmac_get_tx_hwtstamp(priv, p, skb); 1911 } 1912 1913 if (likely(tx_q->tx_skbuff_dma[entry].buf)) { 1914 if (tx_q->tx_skbuff_dma[entry].map_as_page) 1915 dma_unmap_page(priv->device, 1916 tx_q->tx_skbuff_dma[entry].buf, 1917 tx_q->tx_skbuff_dma[entry].len, 1918 DMA_TO_DEVICE); 1919 else 1920 dma_unmap_single(priv->device, 1921 tx_q->tx_skbuff_dma[entry].buf, 1922 tx_q->tx_skbuff_dma[entry].len, 1923 DMA_TO_DEVICE); 1924 tx_q->tx_skbuff_dma[entry].buf = 0; 1925 tx_q->tx_skbuff_dma[entry].len = 0; 1926 tx_q->tx_skbuff_dma[entry].map_as_page = false; 1927 } 1928 1929 stmmac_clean_desc3(priv, tx_q, p); 1930 1931 tx_q->tx_skbuff_dma[entry].last_segment = false; 1932 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 1933 1934 if (likely(skb != NULL)) { 1935 pkts_compl++; 1936 bytes_compl += skb->len; 1937 dev_consume_skb_any(skb); 1938 tx_q->tx_skbuff[entry] = NULL; 1939 } 1940 1941 stmmac_release_tx_desc(priv, p, priv->mode); 1942 1943 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); 1944 } 1945 tx_q->dirty_tx = entry; 1946 1947 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue), 1948 pkts_compl, bytes_compl); 1949 1950 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev, 1951 queue))) && 1952 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) { 1953 1954 netif_dbg(priv, tx_done, priv->dev, 1955 "%s: restart transmit\n", __func__); 1956 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue)); 1957 } 1958 1959 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) { 1960 stmmac_enable_eee_mode(priv); 1961 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); 1962 } 1963 1964 /* We still have pending packets, let's call for a new scheduling */ 1965 if (tx_q->dirty_tx != tx_q->cur_tx) 1966 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10)); 1967 1968 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue)); 1969 1970 return count; 1971 } 1972 1973 /** 1974 * stmmac_tx_err - to manage the tx error 1975 * @priv: driver private structure 1976 * @chan: channel index 1977 * Description: it cleans the descriptors and restarts the transmission 1978 * in case of transmission errors. 1979 */ 1980 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan) 1981 { 1982 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 1983 int i; 1984 1985 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan)); 1986 1987 stmmac_stop_tx_dma(priv, chan); 1988 dma_free_tx_skbufs(priv, chan); 1989 for (i = 0; i < DMA_TX_SIZE; i++) 1990 if (priv->extend_desc) 1991 stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic, 1992 priv->mode, (i == DMA_TX_SIZE - 1)); 1993 else 1994 stmmac_init_tx_desc(priv, &tx_q->dma_tx[i], 1995 priv->mode, (i == DMA_TX_SIZE - 1)); 1996 tx_q->dirty_tx = 0; 1997 tx_q->cur_tx = 0; 1998 tx_q->mss = 0; 1999 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan)); 2000 stmmac_start_tx_dma(priv, chan); 2001 2002 priv->dev->stats.tx_errors++; 2003 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan)); 2004 } 2005 2006 /** 2007 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel 2008 * @priv: driver private structure 2009 * @txmode: TX operating mode 2010 * @rxmode: RX operating mode 2011 * @chan: channel index 2012 * Description: it is used for configuring of the DMA operation mode in 2013 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward 2014 * mode. 2015 */ 2016 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 2017 u32 rxmode, u32 chan) 2018 { 2019 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2020 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2021 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2022 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2023 int rxfifosz = priv->plat->rx_fifo_size; 2024 int txfifosz = priv->plat->tx_fifo_size; 2025 2026 if (rxfifosz == 0) 2027 rxfifosz = priv->dma_cap.rx_fifo_size; 2028 if (txfifosz == 0) 2029 txfifosz = priv->dma_cap.tx_fifo_size; 2030 2031 /* Adjust for real per queue fifo size */ 2032 rxfifosz /= rx_channels_count; 2033 txfifosz /= tx_channels_count; 2034 2035 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode); 2036 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode); 2037 } 2038 2039 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv) 2040 { 2041 int ret; 2042 2043 ret = stmmac_safety_feat_irq_status(priv, priv->dev, 2044 priv->ioaddr, priv->dma_cap.asp, &priv->sstats); 2045 if (ret && (ret != -EINVAL)) { 2046 stmmac_global_err(priv); 2047 return true; 2048 } 2049 2050 return false; 2051 } 2052 2053 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan) 2054 { 2055 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr, 2056 &priv->xstats, chan); 2057 struct stmmac_channel *ch = &priv->channel[chan]; 2058 2059 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) { 2060 stmmac_disable_dma_irq(priv, priv->ioaddr, chan); 2061 napi_schedule_irqoff(&ch->rx_napi); 2062 } 2063 2064 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) { 2065 stmmac_disable_dma_irq(priv, priv->ioaddr, chan); 2066 napi_schedule_irqoff(&ch->tx_napi); 2067 } 2068 2069 return status; 2070 } 2071 2072 /** 2073 * stmmac_dma_interrupt - DMA ISR 2074 * @priv: driver private structure 2075 * Description: this is the DMA ISR. It is called by the main ISR. 2076 * It calls the dwmac dma routine and schedule poll method in case of some 2077 * work can be done. 2078 */ 2079 static void stmmac_dma_interrupt(struct stmmac_priv *priv) 2080 { 2081 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2082 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2083 u32 channels_to_check = tx_channel_count > rx_channel_count ? 2084 tx_channel_count : rx_channel_count; 2085 u32 chan; 2086 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)]; 2087 2088 /* Make sure we never check beyond our status buffer. */ 2089 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status))) 2090 channels_to_check = ARRAY_SIZE(status); 2091 2092 for (chan = 0; chan < channels_to_check; chan++) 2093 status[chan] = stmmac_napi_check(priv, chan); 2094 2095 for (chan = 0; chan < tx_channel_count; chan++) { 2096 if (unlikely(status[chan] & tx_hard_error_bump_tc)) { 2097 /* Try to bump up the dma threshold on this failure */ 2098 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && 2099 (tc <= 256)) { 2100 tc += 64; 2101 if (priv->plat->force_thresh_dma_mode) 2102 stmmac_set_dma_operation_mode(priv, 2103 tc, 2104 tc, 2105 chan); 2106 else 2107 stmmac_set_dma_operation_mode(priv, 2108 tc, 2109 SF_DMA_MODE, 2110 chan); 2111 priv->xstats.threshold = tc; 2112 } 2113 } else if (unlikely(status[chan] == tx_hard_error)) { 2114 stmmac_tx_err(priv, chan); 2115 } 2116 } 2117 } 2118 2119 /** 2120 * stmmac_mmc_setup: setup the Mac Management Counters (MMC) 2121 * @priv: driver private structure 2122 * Description: this masks the MMC irq, in fact, the counters are managed in SW. 2123 */ 2124 static void stmmac_mmc_setup(struct stmmac_priv *priv) 2125 { 2126 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | 2127 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; 2128 2129 dwmac_mmc_intr_all_mask(priv->mmcaddr); 2130 2131 if (priv->dma_cap.rmon) { 2132 dwmac_mmc_ctrl(priv->mmcaddr, mode); 2133 memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); 2134 } else 2135 netdev_info(priv->dev, "No MAC Management Counters available\n"); 2136 } 2137 2138 /** 2139 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register. 2140 * @priv: driver private structure 2141 * Description: 2142 * new GMAC chip generations have a new register to indicate the 2143 * presence of the optional feature/functions. 2144 * This can be also used to override the value passed through the 2145 * platform and necessary for old MAC10/100 and GMAC chips. 2146 */ 2147 static int stmmac_get_hw_features(struct stmmac_priv *priv) 2148 { 2149 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0; 2150 } 2151 2152 /** 2153 * stmmac_check_ether_addr - check if the MAC addr is valid 2154 * @priv: driver private structure 2155 * Description: 2156 * it is to verify if the MAC address is valid, in case of failures it 2157 * generates a random MAC address 2158 */ 2159 static void stmmac_check_ether_addr(struct stmmac_priv *priv) 2160 { 2161 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 2162 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0); 2163 if (!is_valid_ether_addr(priv->dev->dev_addr)) 2164 eth_hw_addr_random(priv->dev); 2165 netdev_info(priv->dev, "device MAC address %pM\n", 2166 priv->dev->dev_addr); 2167 } 2168 } 2169 2170 /** 2171 * stmmac_init_dma_engine - DMA init. 2172 * @priv: driver private structure 2173 * Description: 2174 * It inits the DMA invoking the specific MAC/GMAC callback. 2175 * Some DMA parameters can be passed from the platform; 2176 * in case of these are not passed a default is kept for the MAC or GMAC. 2177 */ 2178 static int stmmac_init_dma_engine(struct stmmac_priv *priv) 2179 { 2180 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2181 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2182 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); 2183 struct stmmac_rx_queue *rx_q; 2184 struct stmmac_tx_queue *tx_q; 2185 u32 chan = 0; 2186 int atds = 0; 2187 int ret = 0; 2188 2189 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) { 2190 dev_err(priv->device, "Invalid DMA configuration\n"); 2191 return -EINVAL; 2192 } 2193 2194 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) 2195 atds = 1; 2196 2197 ret = stmmac_reset(priv, priv->ioaddr); 2198 if (ret) { 2199 dev_err(priv->device, "Failed to reset the dma\n"); 2200 return ret; 2201 } 2202 2203 /* DMA Configuration */ 2204 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds); 2205 2206 if (priv->plat->axi) 2207 stmmac_axi(priv, priv->ioaddr, priv->plat->axi); 2208 2209 /* DMA RX Channel Configuration */ 2210 for (chan = 0; chan < rx_channels_count; chan++) { 2211 rx_q = &priv->rx_queue[chan]; 2212 2213 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2214 rx_q->dma_rx_phy, chan); 2215 2216 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 2217 (DMA_RX_SIZE * sizeof(struct dma_desc)); 2218 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 2219 rx_q->rx_tail_addr, chan); 2220 } 2221 2222 /* DMA TX Channel Configuration */ 2223 for (chan = 0; chan < tx_channels_count; chan++) { 2224 tx_q = &priv->tx_queue[chan]; 2225 2226 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2227 tx_q->dma_tx_phy, chan); 2228 2229 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 2230 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 2231 tx_q->tx_tail_addr, chan); 2232 } 2233 2234 /* DMA CSR Channel configuration */ 2235 for (chan = 0; chan < dma_csr_ch; chan++) 2236 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 2237 2238 return ret; 2239 } 2240 2241 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue) 2242 { 2243 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2244 2245 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer)); 2246 } 2247 2248 /** 2249 * stmmac_tx_timer - mitigation sw timer for tx. 2250 * @data: data pointer 2251 * Description: 2252 * This is the timer handler to directly invoke the stmmac_tx_clean. 2253 */ 2254 static void stmmac_tx_timer(struct timer_list *t) 2255 { 2256 struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer); 2257 struct stmmac_priv *priv = tx_q->priv_data; 2258 struct stmmac_channel *ch; 2259 2260 ch = &priv->channel[tx_q->queue_index]; 2261 2262 /* 2263 * If NAPI is already running we can miss some events. Let's rearm 2264 * the timer and try again. 2265 */ 2266 if (likely(napi_schedule_prep(&ch->tx_napi))) 2267 __napi_schedule(&ch->tx_napi); 2268 else 2269 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10)); 2270 } 2271 2272 /** 2273 * stmmac_init_tx_coalesce - init tx mitigation options. 2274 * @priv: driver private structure 2275 * Description: 2276 * This inits the transmit coalesce parameters: i.e. timer rate, 2277 * timer handler and default threshold used for enabling the 2278 * interrupt on completion bit. 2279 */ 2280 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv) 2281 { 2282 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2283 u32 chan; 2284 2285 priv->tx_coal_frames = STMMAC_TX_FRAMES; 2286 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER; 2287 2288 for (chan = 0; chan < tx_channel_count; chan++) { 2289 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2290 2291 timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0); 2292 } 2293 } 2294 2295 static void stmmac_set_rings_length(struct stmmac_priv *priv) 2296 { 2297 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2298 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2299 u32 chan; 2300 2301 /* set TX ring length */ 2302 for (chan = 0; chan < tx_channels_count; chan++) 2303 stmmac_set_tx_ring_len(priv, priv->ioaddr, 2304 (DMA_TX_SIZE - 1), chan); 2305 2306 /* set RX ring length */ 2307 for (chan = 0; chan < rx_channels_count; chan++) 2308 stmmac_set_rx_ring_len(priv, priv->ioaddr, 2309 (DMA_RX_SIZE - 1), chan); 2310 } 2311 2312 /** 2313 * stmmac_set_tx_queue_weight - Set TX queue weight 2314 * @priv: driver private structure 2315 * Description: It is used for setting TX queues weight 2316 */ 2317 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv) 2318 { 2319 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2320 u32 weight; 2321 u32 queue; 2322 2323 for (queue = 0; queue < tx_queues_count; queue++) { 2324 weight = priv->plat->tx_queues_cfg[queue].weight; 2325 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue); 2326 } 2327 } 2328 2329 /** 2330 * stmmac_configure_cbs - Configure CBS in TX queue 2331 * @priv: driver private structure 2332 * Description: It is used for configuring CBS in AVB TX queues 2333 */ 2334 static void stmmac_configure_cbs(struct stmmac_priv *priv) 2335 { 2336 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2337 u32 mode_to_use; 2338 u32 queue; 2339 2340 /* queue 0 is reserved for legacy traffic */ 2341 for (queue = 1; queue < tx_queues_count; queue++) { 2342 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use; 2343 if (mode_to_use == MTL_QUEUE_DCB) 2344 continue; 2345 2346 stmmac_config_cbs(priv, priv->hw, 2347 priv->plat->tx_queues_cfg[queue].send_slope, 2348 priv->plat->tx_queues_cfg[queue].idle_slope, 2349 priv->plat->tx_queues_cfg[queue].high_credit, 2350 priv->plat->tx_queues_cfg[queue].low_credit, 2351 queue); 2352 } 2353 } 2354 2355 /** 2356 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel 2357 * @priv: driver private structure 2358 * Description: It is used for mapping RX queues to RX dma channels 2359 */ 2360 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv) 2361 { 2362 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2363 u32 queue; 2364 u32 chan; 2365 2366 for (queue = 0; queue < rx_queues_count; queue++) { 2367 chan = priv->plat->rx_queues_cfg[queue].chan; 2368 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan); 2369 } 2370 } 2371 2372 /** 2373 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority 2374 * @priv: driver private structure 2375 * Description: It is used for configuring the RX Queue Priority 2376 */ 2377 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv) 2378 { 2379 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2380 u32 queue; 2381 u32 prio; 2382 2383 for (queue = 0; queue < rx_queues_count; queue++) { 2384 if (!priv->plat->rx_queues_cfg[queue].use_prio) 2385 continue; 2386 2387 prio = priv->plat->rx_queues_cfg[queue].prio; 2388 stmmac_rx_queue_prio(priv, priv->hw, prio, queue); 2389 } 2390 } 2391 2392 /** 2393 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority 2394 * @priv: driver private structure 2395 * Description: It is used for configuring the TX Queue Priority 2396 */ 2397 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv) 2398 { 2399 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2400 u32 queue; 2401 u32 prio; 2402 2403 for (queue = 0; queue < tx_queues_count; queue++) { 2404 if (!priv->plat->tx_queues_cfg[queue].use_prio) 2405 continue; 2406 2407 prio = priv->plat->tx_queues_cfg[queue].prio; 2408 stmmac_tx_queue_prio(priv, priv->hw, prio, queue); 2409 } 2410 } 2411 2412 /** 2413 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing 2414 * @priv: driver private structure 2415 * Description: It is used for configuring the RX queue routing 2416 */ 2417 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv) 2418 { 2419 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2420 u32 queue; 2421 u8 packet; 2422 2423 for (queue = 0; queue < rx_queues_count; queue++) { 2424 /* no specific packet type routing specified for the queue */ 2425 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0) 2426 continue; 2427 2428 packet = priv->plat->rx_queues_cfg[queue].pkt_route; 2429 stmmac_rx_queue_routing(priv, priv->hw, packet, queue); 2430 } 2431 } 2432 2433 /** 2434 * stmmac_mtl_configuration - Configure MTL 2435 * @priv: driver private structure 2436 * Description: It is used for configurring MTL 2437 */ 2438 static void stmmac_mtl_configuration(struct stmmac_priv *priv) 2439 { 2440 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2441 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2442 2443 if (tx_queues_count > 1) 2444 stmmac_set_tx_queue_weight(priv); 2445 2446 /* Configure MTL RX algorithms */ 2447 if (rx_queues_count > 1) 2448 stmmac_prog_mtl_rx_algorithms(priv, priv->hw, 2449 priv->plat->rx_sched_algorithm); 2450 2451 /* Configure MTL TX algorithms */ 2452 if (tx_queues_count > 1) 2453 stmmac_prog_mtl_tx_algorithms(priv, priv->hw, 2454 priv->plat->tx_sched_algorithm); 2455 2456 /* Configure CBS in AVB TX queues */ 2457 if (tx_queues_count > 1) 2458 stmmac_configure_cbs(priv); 2459 2460 /* Map RX MTL to DMA channels */ 2461 stmmac_rx_queue_dma_chan_map(priv); 2462 2463 /* Enable MAC RX Queues */ 2464 stmmac_mac_enable_rx_queues(priv); 2465 2466 /* Set RX priorities */ 2467 if (rx_queues_count > 1) 2468 stmmac_mac_config_rx_queues_prio(priv); 2469 2470 /* Set TX priorities */ 2471 if (tx_queues_count > 1) 2472 stmmac_mac_config_tx_queues_prio(priv); 2473 2474 /* Set RX routing */ 2475 if (rx_queues_count > 1) 2476 stmmac_mac_config_rx_queues_routing(priv); 2477 } 2478 2479 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv) 2480 { 2481 if (priv->dma_cap.asp) { 2482 netdev_info(priv->dev, "Enabling Safety Features\n"); 2483 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp); 2484 } else { 2485 netdev_info(priv->dev, "No Safety Features support found\n"); 2486 } 2487 } 2488 2489 /** 2490 * stmmac_hw_setup - setup mac in a usable state. 2491 * @dev : pointer to the device structure. 2492 * Description: 2493 * this is the main function to setup the HW in a usable state because the 2494 * dma engine is reset, the core registers are configured (e.g. AXI, 2495 * Checksum features, timers). The DMA is ready to start receiving and 2496 * transmitting. 2497 * Return value: 2498 * 0 on success and an appropriate (-)ve integer as defined in errno.h 2499 * file on failure. 2500 */ 2501 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp) 2502 { 2503 struct stmmac_priv *priv = netdev_priv(dev); 2504 u32 rx_cnt = priv->plat->rx_queues_to_use; 2505 u32 tx_cnt = priv->plat->tx_queues_to_use; 2506 u32 chan; 2507 int ret; 2508 2509 /* DMA initialization and SW reset */ 2510 ret = stmmac_init_dma_engine(priv); 2511 if (ret < 0) { 2512 netdev_err(priv->dev, "%s: DMA engine initialization failed\n", 2513 __func__); 2514 return ret; 2515 } 2516 2517 /* Copy the MAC addr into the HW */ 2518 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0); 2519 2520 /* PS and related bits will be programmed according to the speed */ 2521 if (priv->hw->pcs) { 2522 int speed = priv->plat->mac_port_sel_speed; 2523 2524 if ((speed == SPEED_10) || (speed == SPEED_100) || 2525 (speed == SPEED_1000)) { 2526 priv->hw->ps = speed; 2527 } else { 2528 dev_warn(priv->device, "invalid port speed\n"); 2529 priv->hw->ps = 0; 2530 } 2531 } 2532 2533 /* Initialize the MAC Core */ 2534 stmmac_core_init(priv, priv->hw, dev); 2535 2536 /* Initialize MTL*/ 2537 stmmac_mtl_configuration(priv); 2538 2539 /* Initialize Safety Features */ 2540 stmmac_safety_feat_configuration(priv); 2541 2542 ret = stmmac_rx_ipc(priv, priv->hw); 2543 if (!ret) { 2544 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n"); 2545 priv->plat->rx_coe = STMMAC_RX_COE_NONE; 2546 priv->hw->rx_csum = 0; 2547 } 2548 2549 /* Enable the MAC Rx/Tx */ 2550 stmmac_mac_set(priv, priv->ioaddr, true); 2551 2552 /* Set the HW DMA mode and the COE */ 2553 stmmac_dma_operation_mode(priv); 2554 2555 stmmac_mmc_setup(priv); 2556 2557 if (init_ptp) { 2558 ret = clk_prepare_enable(priv->plat->clk_ptp_ref); 2559 if (ret < 0) 2560 netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret); 2561 2562 ret = stmmac_init_ptp(priv); 2563 if (ret == -EOPNOTSUPP) 2564 netdev_warn(priv->dev, "PTP not supported by HW\n"); 2565 else if (ret) 2566 netdev_warn(priv->dev, "PTP init failed\n"); 2567 } 2568 2569 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS; 2570 2571 if (priv->use_riwt) { 2572 ret = stmmac_rx_watchdog(priv, priv->ioaddr, MAX_DMA_RIWT, rx_cnt); 2573 if (!ret) 2574 priv->rx_riwt = MAX_DMA_RIWT; 2575 } 2576 2577 if (priv->hw->pcs) 2578 stmmac_pcs_ctrl_ane(priv, priv->hw, 1, priv->hw->ps, 0); 2579 2580 /* set TX and RX rings length */ 2581 stmmac_set_rings_length(priv); 2582 2583 /* Enable TSO */ 2584 if (priv->tso) { 2585 for (chan = 0; chan < tx_cnt; chan++) 2586 stmmac_enable_tso(priv, priv->ioaddr, 1, chan); 2587 } 2588 2589 /* Start the ball rolling... */ 2590 stmmac_start_all_dma(priv); 2591 2592 return 0; 2593 } 2594 2595 static void stmmac_hw_teardown(struct net_device *dev) 2596 { 2597 struct stmmac_priv *priv = netdev_priv(dev); 2598 2599 clk_disable_unprepare(priv->plat->clk_ptp_ref); 2600 } 2601 2602 /** 2603 * stmmac_open - open entry point of the driver 2604 * @dev : pointer to the device structure. 2605 * Description: 2606 * This function is the open entry point of the driver. 2607 * Return value: 2608 * 0 on success and an appropriate (-)ve integer as defined in errno.h 2609 * file on failure. 2610 */ 2611 static int stmmac_open(struct net_device *dev) 2612 { 2613 struct stmmac_priv *priv = netdev_priv(dev); 2614 u32 chan; 2615 int ret; 2616 2617 stmmac_check_ether_addr(priv); 2618 2619 if (priv->hw->pcs != STMMAC_PCS_RGMII && 2620 priv->hw->pcs != STMMAC_PCS_TBI && 2621 priv->hw->pcs != STMMAC_PCS_RTBI) { 2622 ret = stmmac_init_phy(dev); 2623 if (ret) { 2624 netdev_err(priv->dev, 2625 "%s: Cannot attach to PHY (error: %d)\n", 2626 __func__, ret); 2627 return ret; 2628 } 2629 } 2630 2631 /* Extra statistics */ 2632 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats)); 2633 priv->xstats.threshold = tc; 2634 2635 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz); 2636 priv->rx_copybreak = STMMAC_RX_COPYBREAK; 2637 2638 ret = alloc_dma_desc_resources(priv); 2639 if (ret < 0) { 2640 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n", 2641 __func__); 2642 goto dma_desc_error; 2643 } 2644 2645 ret = init_dma_desc_rings(dev, GFP_KERNEL); 2646 if (ret < 0) { 2647 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n", 2648 __func__); 2649 goto init_error; 2650 } 2651 2652 ret = stmmac_hw_setup(dev, true); 2653 if (ret < 0) { 2654 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__); 2655 goto init_error; 2656 } 2657 2658 stmmac_init_tx_coalesce(priv); 2659 2660 if (dev->phydev) 2661 phy_start(dev->phydev); 2662 2663 /* Request the IRQ lines */ 2664 ret = request_irq(dev->irq, stmmac_interrupt, 2665 IRQF_SHARED, dev->name, dev); 2666 if (unlikely(ret < 0)) { 2667 netdev_err(priv->dev, 2668 "%s: ERROR: allocating the IRQ %d (error: %d)\n", 2669 __func__, dev->irq, ret); 2670 goto irq_error; 2671 } 2672 2673 /* Request the Wake IRQ in case of another line is used for WoL */ 2674 if (priv->wol_irq != dev->irq) { 2675 ret = request_irq(priv->wol_irq, stmmac_interrupt, 2676 IRQF_SHARED, dev->name, dev); 2677 if (unlikely(ret < 0)) { 2678 netdev_err(priv->dev, 2679 "%s: ERROR: allocating the WoL IRQ %d (%d)\n", 2680 __func__, priv->wol_irq, ret); 2681 goto wolirq_error; 2682 } 2683 } 2684 2685 /* Request the IRQ lines */ 2686 if (priv->lpi_irq > 0) { 2687 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED, 2688 dev->name, dev); 2689 if (unlikely(ret < 0)) { 2690 netdev_err(priv->dev, 2691 "%s: ERROR: allocating the LPI IRQ %d (%d)\n", 2692 __func__, priv->lpi_irq, ret); 2693 goto lpiirq_error; 2694 } 2695 } 2696 2697 stmmac_enable_all_queues(priv); 2698 stmmac_start_all_queues(priv); 2699 2700 return 0; 2701 2702 lpiirq_error: 2703 if (priv->wol_irq != dev->irq) 2704 free_irq(priv->wol_irq, dev); 2705 wolirq_error: 2706 free_irq(dev->irq, dev); 2707 irq_error: 2708 if (dev->phydev) 2709 phy_stop(dev->phydev); 2710 2711 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 2712 del_timer_sync(&priv->tx_queue[chan].txtimer); 2713 2714 stmmac_hw_teardown(dev); 2715 init_error: 2716 free_dma_desc_resources(priv); 2717 dma_desc_error: 2718 if (dev->phydev) 2719 phy_disconnect(dev->phydev); 2720 2721 return ret; 2722 } 2723 2724 /** 2725 * stmmac_release - close entry point of the driver 2726 * @dev : device pointer. 2727 * Description: 2728 * This is the stop entry point of the driver. 2729 */ 2730 static int stmmac_release(struct net_device *dev) 2731 { 2732 struct stmmac_priv *priv = netdev_priv(dev); 2733 u32 chan; 2734 2735 if (priv->eee_enabled) 2736 del_timer_sync(&priv->eee_ctrl_timer); 2737 2738 /* Stop and disconnect the PHY */ 2739 if (dev->phydev) { 2740 phy_stop(dev->phydev); 2741 phy_disconnect(dev->phydev); 2742 } 2743 2744 stmmac_stop_all_queues(priv); 2745 2746 stmmac_disable_all_queues(priv); 2747 2748 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 2749 del_timer_sync(&priv->tx_queue[chan].txtimer); 2750 2751 /* Free the IRQ lines */ 2752 free_irq(dev->irq, dev); 2753 if (priv->wol_irq != dev->irq) 2754 free_irq(priv->wol_irq, dev); 2755 if (priv->lpi_irq > 0) 2756 free_irq(priv->lpi_irq, dev); 2757 2758 /* Stop TX/RX DMA and clear the descriptors */ 2759 stmmac_stop_all_dma(priv); 2760 2761 /* Release and free the Rx/Tx resources */ 2762 free_dma_desc_resources(priv); 2763 2764 /* Disable the MAC Rx/Tx */ 2765 stmmac_mac_set(priv, priv->ioaddr, false); 2766 2767 netif_carrier_off(dev); 2768 2769 stmmac_release_ptp(priv); 2770 2771 return 0; 2772 } 2773 2774 /** 2775 * stmmac_tso_allocator - close entry point of the driver 2776 * @priv: driver private structure 2777 * @des: buffer start address 2778 * @total_len: total length to fill in descriptors 2779 * @last_segmant: condition for the last descriptor 2780 * @queue: TX queue index 2781 * Description: 2782 * This function fills descriptor and request new descriptors according to 2783 * buffer length to fill 2784 */ 2785 static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des, 2786 int total_len, bool last_segment, u32 queue) 2787 { 2788 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2789 struct dma_desc *desc; 2790 u32 buff_size; 2791 int tmp_len; 2792 2793 tmp_len = total_len; 2794 2795 while (tmp_len > 0) { 2796 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE); 2797 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 2798 desc = tx_q->dma_tx + tx_q->cur_tx; 2799 2800 desc->des0 = cpu_to_le32(des + (total_len - tmp_len)); 2801 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ? 2802 TSO_MAX_BUFF_SIZE : tmp_len; 2803 2804 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size, 2805 0, 1, 2806 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE), 2807 0, 0); 2808 2809 tmp_len -= TSO_MAX_BUFF_SIZE; 2810 } 2811 } 2812 2813 /** 2814 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO) 2815 * @skb : the socket buffer 2816 * @dev : device pointer 2817 * Description: this is the transmit function that is called on TSO frames 2818 * (support available on GMAC4 and newer chips). 2819 * Diagram below show the ring programming in case of TSO frames: 2820 * 2821 * First Descriptor 2822 * -------- 2823 * | DES0 |---> buffer1 = L2/L3/L4 header 2824 * | DES1 |---> TCP Payload (can continue on next descr...) 2825 * | DES2 |---> buffer 1 and 2 len 2826 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0] 2827 * -------- 2828 * | 2829 * ... 2830 * | 2831 * -------- 2832 * | DES0 | --| Split TCP Payload on Buffers 1 and 2 2833 * | DES1 | --| 2834 * | DES2 | --> buffer 1 and 2 len 2835 * | DES3 | 2836 * -------- 2837 * 2838 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field. 2839 */ 2840 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) 2841 { 2842 struct dma_desc *desc, *first, *mss_desc = NULL; 2843 struct stmmac_priv *priv = netdev_priv(dev); 2844 int nfrags = skb_shinfo(skb)->nr_frags; 2845 u32 queue = skb_get_queue_mapping(skb); 2846 unsigned int first_entry, des; 2847 struct stmmac_tx_queue *tx_q; 2848 int tmp_pay_len = 0; 2849 u32 pay_len, mss; 2850 u8 proto_hdr_len; 2851 int i; 2852 2853 tx_q = &priv->tx_queue[queue]; 2854 2855 /* Compute header lengths */ 2856 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2857 2858 /* Desc availability based on threshold should be enough safe */ 2859 if (unlikely(stmmac_tx_avail(priv, queue) < 2860 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) { 2861 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 2862 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 2863 queue)); 2864 /* This is a hard error, log it. */ 2865 netdev_err(priv->dev, 2866 "%s: Tx Ring full when queue awake\n", 2867 __func__); 2868 } 2869 return NETDEV_TX_BUSY; 2870 } 2871 2872 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */ 2873 2874 mss = skb_shinfo(skb)->gso_size; 2875 2876 /* set new MSS value if needed */ 2877 if (mss != tx_q->mss) { 2878 mss_desc = tx_q->dma_tx + tx_q->cur_tx; 2879 stmmac_set_mss(priv, mss_desc, mss); 2880 tx_q->mss = mss; 2881 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE); 2882 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 2883 } 2884 2885 if (netif_msg_tx_queued(priv)) { 2886 pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n", 2887 __func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss); 2888 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len, 2889 skb->data_len); 2890 } 2891 2892 first_entry = tx_q->cur_tx; 2893 WARN_ON(tx_q->tx_skbuff[first_entry]); 2894 2895 desc = tx_q->dma_tx + first_entry; 2896 first = desc; 2897 2898 /* first descriptor: fill Headers on Buf1 */ 2899 des = dma_map_single(priv->device, skb->data, skb_headlen(skb), 2900 DMA_TO_DEVICE); 2901 if (dma_mapping_error(priv->device, des)) 2902 goto dma_map_err; 2903 2904 tx_q->tx_skbuff_dma[first_entry].buf = des; 2905 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb); 2906 2907 first->des0 = cpu_to_le32(des); 2908 2909 /* Fill start of payload in buff2 of first descriptor */ 2910 if (pay_len) 2911 first->des1 = cpu_to_le32(des + proto_hdr_len); 2912 2913 /* If needed take extra descriptors to fill the remaining payload */ 2914 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE; 2915 2916 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue); 2917 2918 /* Prepare fragments */ 2919 for (i = 0; i < nfrags; i++) { 2920 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2921 2922 des = skb_frag_dma_map(priv->device, frag, 0, 2923 skb_frag_size(frag), 2924 DMA_TO_DEVICE); 2925 if (dma_mapping_error(priv->device, des)) 2926 goto dma_map_err; 2927 2928 stmmac_tso_allocator(priv, des, skb_frag_size(frag), 2929 (i == nfrags - 1), queue); 2930 2931 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des; 2932 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag); 2933 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true; 2934 } 2935 2936 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true; 2937 2938 /* Only the last descriptor gets to point to the skb. */ 2939 tx_q->tx_skbuff[tx_q->cur_tx] = skb; 2940 2941 /* We've used all descriptors we need for this skb, however, 2942 * advance cur_tx so that it references a fresh descriptor. 2943 * ndo_start_xmit will fill this descriptor the next time it's 2944 * called and stmmac_tx_clean may clean up to this descriptor. 2945 */ 2946 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE); 2947 2948 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 2949 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 2950 __func__); 2951 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 2952 } 2953 2954 dev->stats.tx_bytes += skb->len; 2955 priv->xstats.tx_tso_frames++; 2956 priv->xstats.tx_tso_nfrags += nfrags; 2957 2958 /* Manage tx mitigation */ 2959 tx_q->tx_count_frames += nfrags + 1; 2960 if (priv->tx_coal_frames <= tx_q->tx_count_frames) { 2961 stmmac_set_tx_ic(priv, desc); 2962 priv->xstats.tx_set_ic_bit++; 2963 tx_q->tx_count_frames = 0; 2964 } else { 2965 stmmac_tx_timer_arm(priv, queue); 2966 } 2967 2968 skb_tx_timestamp(skb); 2969 2970 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 2971 priv->hwts_tx_en)) { 2972 /* declare that device is doing timestamping */ 2973 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2974 stmmac_enable_tx_timestamp(priv, first); 2975 } 2976 2977 /* Complete the first descriptor before granting the DMA */ 2978 stmmac_prepare_tso_tx_desc(priv, first, 1, 2979 proto_hdr_len, 2980 pay_len, 2981 1, tx_q->tx_skbuff_dma[first_entry].last_segment, 2982 tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len)); 2983 2984 /* If context desc is used to change MSS */ 2985 if (mss_desc) { 2986 /* Make sure that first descriptor has been completely 2987 * written, including its own bit. This is because MSS is 2988 * actually before first descriptor, so we need to make 2989 * sure that MSS's own bit is the last thing written. 2990 */ 2991 dma_wmb(); 2992 stmmac_set_tx_owner(priv, mss_desc); 2993 } 2994 2995 /* The own bit must be the latest setting done when prepare the 2996 * descriptor and then barrier is needed to make sure that 2997 * all is coherent before granting the DMA engine. 2998 */ 2999 wmb(); 3000 3001 if (netif_msg_pktdata(priv)) { 3002 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n", 3003 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 3004 tx_q->cur_tx, first, nfrags); 3005 3006 stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0); 3007 3008 pr_info(">>> frame to be transmitted: "); 3009 print_pkt(skb->data, skb_headlen(skb)); 3010 } 3011 3012 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 3013 3014 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc)); 3015 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); 3016 3017 return NETDEV_TX_OK; 3018 3019 dma_map_err: 3020 dev_err(priv->device, "Tx dma map failed\n"); 3021 dev_kfree_skb(skb); 3022 priv->dev->stats.tx_dropped++; 3023 return NETDEV_TX_OK; 3024 } 3025 3026 /** 3027 * stmmac_xmit - Tx entry point of the driver 3028 * @skb : the socket buffer 3029 * @dev : device pointer 3030 * Description : this is the tx entry point of the driver. 3031 * It programs the chain or the ring and supports oversized frames 3032 * and SG feature. 3033 */ 3034 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) 3035 { 3036 struct stmmac_priv *priv = netdev_priv(dev); 3037 unsigned int nopaged_len = skb_headlen(skb); 3038 int i, csum_insertion = 0, is_jumbo = 0; 3039 u32 queue = skb_get_queue_mapping(skb); 3040 int nfrags = skb_shinfo(skb)->nr_frags; 3041 int entry; 3042 unsigned int first_entry; 3043 struct dma_desc *desc, *first; 3044 struct stmmac_tx_queue *tx_q; 3045 unsigned int enh_desc; 3046 unsigned int des; 3047 3048 tx_q = &priv->tx_queue[queue]; 3049 3050 if (priv->tx_path_in_lpi_mode) 3051 stmmac_disable_eee_mode(priv); 3052 3053 /* Manage oversized TCP frames for GMAC4 device */ 3054 if (skb_is_gso(skb) && priv->tso) { 3055 if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) { 3056 /* 3057 * There is no way to determine the number of TSO 3058 * capable Queues. Let's use always the Queue 0 3059 * because if TSO is supported then at least this 3060 * one will be capable. 3061 */ 3062 skb_set_queue_mapping(skb, 0); 3063 3064 return stmmac_tso_xmit(skb, dev); 3065 } 3066 } 3067 3068 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) { 3069 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 3070 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 3071 queue)); 3072 /* This is a hard error, log it. */ 3073 netdev_err(priv->dev, 3074 "%s: Tx Ring full when queue awake\n", 3075 __func__); 3076 } 3077 return NETDEV_TX_BUSY; 3078 } 3079 3080 entry = tx_q->cur_tx; 3081 first_entry = entry; 3082 WARN_ON(tx_q->tx_skbuff[first_entry]); 3083 3084 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); 3085 3086 if (likely(priv->extend_desc)) 3087 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 3088 else 3089 desc = tx_q->dma_tx + entry; 3090 3091 first = desc; 3092 3093 enh_desc = priv->plat->enh_desc; 3094 /* To program the descriptors according to the size of the frame */ 3095 if (enh_desc) 3096 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc); 3097 3098 if (unlikely(is_jumbo)) { 3099 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion); 3100 if (unlikely(entry < 0) && (entry != -EINVAL)) 3101 goto dma_map_err; 3102 } 3103 3104 for (i = 0; i < nfrags; i++) { 3105 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3106 int len = skb_frag_size(frag); 3107 bool last_segment = (i == (nfrags - 1)); 3108 3109 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); 3110 WARN_ON(tx_q->tx_skbuff[entry]); 3111 3112 if (likely(priv->extend_desc)) 3113 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 3114 else 3115 desc = tx_q->dma_tx + entry; 3116 3117 des = skb_frag_dma_map(priv->device, frag, 0, len, 3118 DMA_TO_DEVICE); 3119 if (dma_mapping_error(priv->device, des)) 3120 goto dma_map_err; /* should reuse desc w/o issues */ 3121 3122 tx_q->tx_skbuff_dma[entry].buf = des; 3123 3124 stmmac_set_desc_addr(priv, desc, des); 3125 3126 tx_q->tx_skbuff_dma[entry].map_as_page = true; 3127 tx_q->tx_skbuff_dma[entry].len = len; 3128 tx_q->tx_skbuff_dma[entry].last_segment = last_segment; 3129 3130 /* Prepare the descriptor and set the own bit too */ 3131 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion, 3132 priv->mode, 1, last_segment, skb->len); 3133 } 3134 3135 /* Only the last descriptor gets to point to the skb. */ 3136 tx_q->tx_skbuff[entry] = skb; 3137 3138 /* We've used all descriptors we need for this skb, however, 3139 * advance cur_tx so that it references a fresh descriptor. 3140 * ndo_start_xmit will fill this descriptor the next time it's 3141 * called and stmmac_tx_clean may clean up to this descriptor. 3142 */ 3143 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); 3144 tx_q->cur_tx = entry; 3145 3146 if (netif_msg_pktdata(priv)) { 3147 void *tx_head; 3148 3149 netdev_dbg(priv->dev, 3150 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d", 3151 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 3152 entry, first, nfrags); 3153 3154 if (priv->extend_desc) 3155 tx_head = (void *)tx_q->dma_etx; 3156 else 3157 tx_head = (void *)tx_q->dma_tx; 3158 3159 stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false); 3160 3161 netdev_dbg(priv->dev, ">>> frame to be transmitted: "); 3162 print_pkt(skb->data, skb->len); 3163 } 3164 3165 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 3166 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 3167 __func__); 3168 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 3169 } 3170 3171 dev->stats.tx_bytes += skb->len; 3172 3173 /* According to the coalesce parameter the IC bit for the latest 3174 * segment is reset and the timer re-started to clean the tx status. 3175 * This approach takes care about the fragments: desc is the first 3176 * element in case of no SG. 3177 */ 3178 tx_q->tx_count_frames += nfrags + 1; 3179 if (priv->tx_coal_frames <= tx_q->tx_count_frames) { 3180 stmmac_set_tx_ic(priv, desc); 3181 priv->xstats.tx_set_ic_bit++; 3182 tx_q->tx_count_frames = 0; 3183 } else { 3184 stmmac_tx_timer_arm(priv, queue); 3185 } 3186 3187 skb_tx_timestamp(skb); 3188 3189 /* Ready to fill the first descriptor and set the OWN bit w/o any 3190 * problems because all the descriptors are actually ready to be 3191 * passed to the DMA engine. 3192 */ 3193 if (likely(!is_jumbo)) { 3194 bool last_segment = (nfrags == 0); 3195 3196 des = dma_map_single(priv->device, skb->data, 3197 nopaged_len, DMA_TO_DEVICE); 3198 if (dma_mapping_error(priv->device, des)) 3199 goto dma_map_err; 3200 3201 tx_q->tx_skbuff_dma[first_entry].buf = des; 3202 3203 stmmac_set_desc_addr(priv, first, des); 3204 3205 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len; 3206 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment; 3207 3208 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 3209 priv->hwts_tx_en)) { 3210 /* declare that device is doing timestamping */ 3211 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3212 stmmac_enable_tx_timestamp(priv, first); 3213 } 3214 3215 /* Prepare the first descriptor setting the OWN bit too */ 3216 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len, 3217 csum_insertion, priv->mode, 1, last_segment, 3218 skb->len); 3219 } else { 3220 stmmac_set_tx_owner(priv, first); 3221 } 3222 3223 /* The own bit must be the latest setting done when prepare the 3224 * descriptor and then barrier is needed to make sure that 3225 * all is coherent before granting the DMA engine. 3226 */ 3227 wmb(); 3228 3229 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 3230 3231 stmmac_enable_dma_transmission(priv, priv->ioaddr); 3232 3233 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc)); 3234 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); 3235 3236 return NETDEV_TX_OK; 3237 3238 dma_map_err: 3239 netdev_err(priv->dev, "Tx DMA map failed\n"); 3240 dev_kfree_skb(skb); 3241 priv->dev->stats.tx_dropped++; 3242 return NETDEV_TX_OK; 3243 } 3244 3245 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) 3246 { 3247 struct vlan_ethhdr *veth; 3248 __be16 vlan_proto; 3249 u16 vlanid; 3250 3251 veth = (struct vlan_ethhdr *)skb->data; 3252 vlan_proto = veth->h_vlan_proto; 3253 3254 if ((vlan_proto == htons(ETH_P_8021Q) && 3255 dev->features & NETIF_F_HW_VLAN_CTAG_RX) || 3256 (vlan_proto == htons(ETH_P_8021AD) && 3257 dev->features & NETIF_F_HW_VLAN_STAG_RX)) { 3258 /* pop the vlan tag */ 3259 vlanid = ntohs(veth->h_vlan_TCI); 3260 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2); 3261 skb_pull(skb, VLAN_HLEN); 3262 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid); 3263 } 3264 } 3265 3266 3267 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q) 3268 { 3269 if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH) 3270 return 0; 3271 3272 return 1; 3273 } 3274 3275 /** 3276 * stmmac_rx_refill - refill used skb preallocated buffers 3277 * @priv: driver private structure 3278 * @queue: RX queue index 3279 * Description : this is to reallocate the skb for the reception process 3280 * that is based on zero-copy. 3281 */ 3282 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue) 3283 { 3284 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 3285 int dirty = stmmac_rx_dirty(priv, queue); 3286 unsigned int entry = rx_q->dirty_rx; 3287 3288 int bfsize = priv->dma_buf_sz; 3289 3290 while (dirty-- > 0) { 3291 struct dma_desc *p; 3292 3293 if (priv->extend_desc) 3294 p = (struct dma_desc *)(rx_q->dma_erx + entry); 3295 else 3296 p = rx_q->dma_rx + entry; 3297 3298 if (likely(!rx_q->rx_skbuff[entry])) { 3299 struct sk_buff *skb; 3300 3301 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize); 3302 if (unlikely(!skb)) { 3303 /* so for a while no zero-copy! */ 3304 rx_q->rx_zeroc_thresh = STMMAC_RX_THRESH; 3305 if (unlikely(net_ratelimit())) 3306 dev_err(priv->device, 3307 "fail to alloc skb entry %d\n", 3308 entry); 3309 break; 3310 } 3311 3312 rx_q->rx_skbuff[entry] = skb; 3313 rx_q->rx_skbuff_dma[entry] = 3314 dma_map_single(priv->device, skb->data, bfsize, 3315 DMA_FROM_DEVICE); 3316 if (dma_mapping_error(priv->device, 3317 rx_q->rx_skbuff_dma[entry])) { 3318 netdev_err(priv->dev, "Rx DMA map failed\n"); 3319 dev_kfree_skb(skb); 3320 break; 3321 } 3322 3323 stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[entry]); 3324 stmmac_refill_desc3(priv, rx_q, p); 3325 3326 if (rx_q->rx_zeroc_thresh > 0) 3327 rx_q->rx_zeroc_thresh--; 3328 3329 netif_dbg(priv, rx_status, priv->dev, 3330 "refill entry #%d\n", entry); 3331 } 3332 dma_wmb(); 3333 3334 stmmac_set_rx_owner(priv, p, priv->use_riwt); 3335 3336 dma_wmb(); 3337 3338 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE); 3339 } 3340 rx_q->dirty_rx = entry; 3341 } 3342 3343 /** 3344 * stmmac_rx - manage the receive process 3345 * @priv: driver private structure 3346 * @limit: napi bugget 3347 * @queue: RX queue index. 3348 * Description : this the function called by the napi poll method. 3349 * It gets all the frames inside the ring. 3350 */ 3351 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue) 3352 { 3353 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 3354 struct stmmac_channel *ch = &priv->channel[queue]; 3355 unsigned int entry = rx_q->cur_rx; 3356 int coe = priv->hw->rx_csum; 3357 unsigned int next_entry; 3358 unsigned int count = 0; 3359 bool xmac; 3360 3361 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 3362 3363 if (netif_msg_rx_status(priv)) { 3364 void *rx_head; 3365 3366 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 3367 if (priv->extend_desc) 3368 rx_head = (void *)rx_q->dma_erx; 3369 else 3370 rx_head = (void *)rx_q->dma_rx; 3371 3372 stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true); 3373 } 3374 while (count < limit) { 3375 int status; 3376 struct dma_desc *p; 3377 struct dma_desc *np; 3378 3379 if (priv->extend_desc) 3380 p = (struct dma_desc *)(rx_q->dma_erx + entry); 3381 else 3382 p = rx_q->dma_rx + entry; 3383 3384 /* read the status of the incoming frame */ 3385 status = stmmac_rx_status(priv, &priv->dev->stats, 3386 &priv->xstats, p); 3387 /* check if managed by the DMA otherwise go ahead */ 3388 if (unlikely(status & dma_own)) 3389 break; 3390 3391 count++; 3392 3393 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE); 3394 next_entry = rx_q->cur_rx; 3395 3396 if (priv->extend_desc) 3397 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 3398 else 3399 np = rx_q->dma_rx + next_entry; 3400 3401 prefetch(np); 3402 3403 if (priv->extend_desc) 3404 stmmac_rx_extended_status(priv, &priv->dev->stats, 3405 &priv->xstats, rx_q->dma_erx + entry); 3406 if (unlikely(status == discard_frame)) { 3407 priv->dev->stats.rx_errors++; 3408 if (priv->hwts_rx_en && !priv->extend_desc) { 3409 /* DESC2 & DESC3 will be overwritten by device 3410 * with timestamp value, hence reinitialize 3411 * them in stmmac_rx_refill() function so that 3412 * device can reuse it. 3413 */ 3414 dev_kfree_skb_any(rx_q->rx_skbuff[entry]); 3415 rx_q->rx_skbuff[entry] = NULL; 3416 dma_unmap_single(priv->device, 3417 rx_q->rx_skbuff_dma[entry], 3418 priv->dma_buf_sz, 3419 DMA_FROM_DEVICE); 3420 } 3421 } else { 3422 struct sk_buff *skb; 3423 int frame_len; 3424 unsigned int des; 3425 3426 stmmac_get_desc_addr(priv, p, &des); 3427 frame_len = stmmac_get_rx_frame_len(priv, p, coe); 3428 3429 /* If frame length is greater than skb buffer size 3430 * (preallocated during init) then the packet is 3431 * ignored 3432 */ 3433 if (frame_len > priv->dma_buf_sz) { 3434 netdev_err(priv->dev, 3435 "len %d larger than size (%d)\n", 3436 frame_len, priv->dma_buf_sz); 3437 priv->dev->stats.rx_length_errors++; 3438 break; 3439 } 3440 3441 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 3442 * Type frames (LLC/LLC-SNAP) 3443 * 3444 * llc_snap is never checked in GMAC >= 4, so this ACS 3445 * feature is always disabled and packets need to be 3446 * stripped manually. 3447 */ 3448 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) || 3449 unlikely(status != llc_snap)) 3450 frame_len -= ETH_FCS_LEN; 3451 3452 if (netif_msg_rx_status(priv)) { 3453 netdev_dbg(priv->dev, "\tdesc: %p [entry %d] buff=0x%x\n", 3454 p, entry, des); 3455 netdev_dbg(priv->dev, "frame size %d, COE: %d\n", 3456 frame_len, status); 3457 } 3458 3459 /* The zero-copy is always used for all the sizes 3460 * in case of GMAC4 because it needs 3461 * to refill the used descriptors, always. 3462 */ 3463 if (unlikely(!xmac && 3464 ((frame_len < priv->rx_copybreak) || 3465 stmmac_rx_threshold_count(rx_q)))) { 3466 skb = netdev_alloc_skb_ip_align(priv->dev, 3467 frame_len); 3468 if (unlikely(!skb)) { 3469 if (net_ratelimit()) 3470 dev_warn(priv->device, 3471 "packet dropped\n"); 3472 priv->dev->stats.rx_dropped++; 3473 break; 3474 } 3475 3476 dma_sync_single_for_cpu(priv->device, 3477 rx_q->rx_skbuff_dma 3478 [entry], frame_len, 3479 DMA_FROM_DEVICE); 3480 skb_copy_to_linear_data(skb, 3481 rx_q-> 3482 rx_skbuff[entry]->data, 3483 frame_len); 3484 3485 skb_put(skb, frame_len); 3486 dma_sync_single_for_device(priv->device, 3487 rx_q->rx_skbuff_dma 3488 [entry], frame_len, 3489 DMA_FROM_DEVICE); 3490 } else { 3491 skb = rx_q->rx_skbuff[entry]; 3492 if (unlikely(!skb)) { 3493 netdev_err(priv->dev, 3494 "%s: Inconsistent Rx chain\n", 3495 priv->dev->name); 3496 priv->dev->stats.rx_dropped++; 3497 break; 3498 } 3499 prefetch(skb->data - NET_IP_ALIGN); 3500 rx_q->rx_skbuff[entry] = NULL; 3501 rx_q->rx_zeroc_thresh++; 3502 3503 skb_put(skb, frame_len); 3504 dma_unmap_single(priv->device, 3505 rx_q->rx_skbuff_dma[entry], 3506 priv->dma_buf_sz, 3507 DMA_FROM_DEVICE); 3508 } 3509 3510 if (netif_msg_pktdata(priv)) { 3511 netdev_dbg(priv->dev, "frame received (%dbytes)", 3512 frame_len); 3513 print_pkt(skb->data, frame_len); 3514 } 3515 3516 stmmac_get_rx_hwtstamp(priv, p, np, skb); 3517 3518 stmmac_rx_vlan(priv->dev, skb); 3519 3520 skb->protocol = eth_type_trans(skb, priv->dev); 3521 3522 if (unlikely(!coe)) 3523 skb_checksum_none_assert(skb); 3524 else 3525 skb->ip_summed = CHECKSUM_UNNECESSARY; 3526 3527 napi_gro_receive(&ch->rx_napi, skb); 3528 3529 priv->dev->stats.rx_packets++; 3530 priv->dev->stats.rx_bytes += frame_len; 3531 } 3532 entry = next_entry; 3533 } 3534 3535 stmmac_rx_refill(priv, queue); 3536 3537 priv->xstats.rx_pkt_n += count; 3538 3539 return count; 3540 } 3541 3542 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget) 3543 { 3544 struct stmmac_channel *ch = 3545 container_of(napi, struct stmmac_channel, rx_napi); 3546 struct stmmac_priv *priv = ch->priv_data; 3547 u32 chan = ch->index; 3548 int work_done; 3549 3550 priv->xstats.napi_poll++; 3551 3552 work_done = stmmac_rx(priv, budget, chan); 3553 if (work_done < budget && napi_complete_done(napi, work_done)) 3554 stmmac_enable_dma_irq(priv, priv->ioaddr, chan); 3555 return work_done; 3556 } 3557 3558 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget) 3559 { 3560 struct stmmac_channel *ch = 3561 container_of(napi, struct stmmac_channel, tx_napi); 3562 struct stmmac_priv *priv = ch->priv_data; 3563 struct stmmac_tx_queue *tx_q; 3564 u32 chan = ch->index; 3565 int work_done; 3566 3567 priv->xstats.napi_poll++; 3568 3569 work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan); 3570 work_done = min(work_done, budget); 3571 3572 if (work_done < budget && napi_complete_done(napi, work_done)) 3573 stmmac_enable_dma_irq(priv, priv->ioaddr, chan); 3574 3575 /* Force transmission restart */ 3576 tx_q = &priv->tx_queue[chan]; 3577 if (tx_q->cur_tx != tx_q->dirty_tx) { 3578 stmmac_enable_dma_transmission(priv, priv->ioaddr); 3579 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, 3580 chan); 3581 } 3582 3583 return work_done; 3584 } 3585 3586 /** 3587 * stmmac_tx_timeout 3588 * @dev : Pointer to net device structure 3589 * Description: this function is called when a packet transmission fails to 3590 * complete within a reasonable time. The driver will mark the error in the 3591 * netdev structure and arrange for the device to be reset to a sane state 3592 * in order to transmit a new packet. 3593 */ 3594 static void stmmac_tx_timeout(struct net_device *dev) 3595 { 3596 struct stmmac_priv *priv = netdev_priv(dev); 3597 3598 stmmac_global_err(priv); 3599 } 3600 3601 /** 3602 * stmmac_set_rx_mode - entry point for multicast addressing 3603 * @dev : pointer to the device structure 3604 * Description: 3605 * This function is a driver entry point which gets called by the kernel 3606 * whenever multicast addresses must be enabled/disabled. 3607 * Return value: 3608 * void. 3609 */ 3610 static void stmmac_set_rx_mode(struct net_device *dev) 3611 { 3612 struct stmmac_priv *priv = netdev_priv(dev); 3613 3614 stmmac_set_filter(priv, priv->hw, dev); 3615 } 3616 3617 /** 3618 * stmmac_change_mtu - entry point to change MTU size for the device. 3619 * @dev : device pointer. 3620 * @new_mtu : the new MTU size for the device. 3621 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 3622 * to drive packet transmission. Ethernet has an MTU of 1500 octets 3623 * (ETH_DATA_LEN). This value can be changed with ifconfig. 3624 * Return value: 3625 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3626 * file on failure. 3627 */ 3628 static int stmmac_change_mtu(struct net_device *dev, int new_mtu) 3629 { 3630 struct stmmac_priv *priv = netdev_priv(dev); 3631 3632 if (netif_running(dev)) { 3633 netdev_err(priv->dev, "must be stopped to change its MTU\n"); 3634 return -EBUSY; 3635 } 3636 3637 dev->mtu = new_mtu; 3638 3639 netdev_update_features(dev); 3640 3641 return 0; 3642 } 3643 3644 static netdev_features_t stmmac_fix_features(struct net_device *dev, 3645 netdev_features_t features) 3646 { 3647 struct stmmac_priv *priv = netdev_priv(dev); 3648 3649 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) 3650 features &= ~NETIF_F_RXCSUM; 3651 3652 if (!priv->plat->tx_coe) 3653 features &= ~NETIF_F_CSUM_MASK; 3654 3655 /* Some GMAC devices have a bugged Jumbo frame support that 3656 * needs to have the Tx COE disabled for oversized frames 3657 * (due to limited buffer sizes). In this case we disable 3658 * the TX csum insertion in the TDES and not use SF. 3659 */ 3660 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) 3661 features &= ~NETIF_F_CSUM_MASK; 3662 3663 /* Disable tso if asked by ethtool */ 3664 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 3665 if (features & NETIF_F_TSO) 3666 priv->tso = true; 3667 else 3668 priv->tso = false; 3669 } 3670 3671 return features; 3672 } 3673 3674 static int stmmac_set_features(struct net_device *netdev, 3675 netdev_features_t features) 3676 { 3677 struct stmmac_priv *priv = netdev_priv(netdev); 3678 3679 /* Keep the COE Type in case of csum is supporting */ 3680 if (features & NETIF_F_RXCSUM) 3681 priv->hw->rx_csum = priv->plat->rx_coe; 3682 else 3683 priv->hw->rx_csum = 0; 3684 /* No check needed because rx_coe has been set before and it will be 3685 * fixed in case of issue. 3686 */ 3687 stmmac_rx_ipc(priv, priv->hw); 3688 3689 return 0; 3690 } 3691 3692 /** 3693 * stmmac_interrupt - main ISR 3694 * @irq: interrupt number. 3695 * @dev_id: to pass the net device pointer. 3696 * Description: this is the main driver interrupt service routine. 3697 * It can call: 3698 * o DMA service routine (to manage incoming frame reception and transmission 3699 * status) 3700 * o Core interrupts to manage: remote wake-up, management counter, LPI 3701 * interrupts. 3702 */ 3703 static irqreturn_t stmmac_interrupt(int irq, void *dev_id) 3704 { 3705 struct net_device *dev = (struct net_device *)dev_id; 3706 struct stmmac_priv *priv = netdev_priv(dev); 3707 u32 rx_cnt = priv->plat->rx_queues_to_use; 3708 u32 tx_cnt = priv->plat->tx_queues_to_use; 3709 u32 queues_count; 3710 u32 queue; 3711 bool xmac; 3712 3713 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 3714 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt; 3715 3716 if (priv->irq_wake) 3717 pm_wakeup_event(priv->device, 0); 3718 3719 if (unlikely(!dev)) { 3720 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 3721 return IRQ_NONE; 3722 } 3723 3724 /* Check if adapter is up */ 3725 if (test_bit(STMMAC_DOWN, &priv->state)) 3726 return IRQ_HANDLED; 3727 /* Check if a fatal error happened */ 3728 if (stmmac_safety_feat_interrupt(priv)) 3729 return IRQ_HANDLED; 3730 3731 /* To handle GMAC own interrupts */ 3732 if ((priv->plat->has_gmac) || xmac) { 3733 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats); 3734 int mtl_status; 3735 3736 if (unlikely(status)) { 3737 /* For LPI we need to save the tx status */ 3738 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) 3739 priv->tx_path_in_lpi_mode = true; 3740 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) 3741 priv->tx_path_in_lpi_mode = false; 3742 } 3743 3744 for (queue = 0; queue < queues_count; queue++) { 3745 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 3746 3747 mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw, 3748 queue); 3749 if (mtl_status != -EINVAL) 3750 status |= mtl_status; 3751 3752 if (status & CORE_IRQ_MTL_RX_OVERFLOW) 3753 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 3754 rx_q->rx_tail_addr, 3755 queue); 3756 } 3757 3758 /* PCS link status */ 3759 if (priv->hw->pcs) { 3760 if (priv->xstats.pcs_link) 3761 netif_carrier_on(dev); 3762 else 3763 netif_carrier_off(dev); 3764 } 3765 } 3766 3767 /* To handle DMA interrupts */ 3768 stmmac_dma_interrupt(priv); 3769 3770 return IRQ_HANDLED; 3771 } 3772 3773 #ifdef CONFIG_NET_POLL_CONTROLLER 3774 /* Polling receive - used by NETCONSOLE and other diagnostic tools 3775 * to allow network I/O with interrupts disabled. 3776 */ 3777 static void stmmac_poll_controller(struct net_device *dev) 3778 { 3779 disable_irq(dev->irq); 3780 stmmac_interrupt(dev->irq, dev); 3781 enable_irq(dev->irq); 3782 } 3783 #endif 3784 3785 /** 3786 * stmmac_ioctl - Entry point for the Ioctl 3787 * @dev: Device pointer. 3788 * @rq: An IOCTL specefic structure, that can contain a pointer to 3789 * a proprietary structure used to pass information to the driver. 3790 * @cmd: IOCTL command 3791 * Description: 3792 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 3793 */ 3794 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 3795 { 3796 int ret = -EOPNOTSUPP; 3797 3798 if (!netif_running(dev)) 3799 return -EINVAL; 3800 3801 switch (cmd) { 3802 case SIOCGMIIPHY: 3803 case SIOCGMIIREG: 3804 case SIOCSMIIREG: 3805 if (!dev->phydev) 3806 return -EINVAL; 3807 ret = phy_mii_ioctl(dev->phydev, rq, cmd); 3808 break; 3809 case SIOCSHWTSTAMP: 3810 ret = stmmac_hwtstamp_set(dev, rq); 3811 break; 3812 case SIOCGHWTSTAMP: 3813 ret = stmmac_hwtstamp_get(dev, rq); 3814 break; 3815 default: 3816 break; 3817 } 3818 3819 return ret; 3820 } 3821 3822 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 3823 void *cb_priv) 3824 { 3825 struct stmmac_priv *priv = cb_priv; 3826 int ret = -EOPNOTSUPP; 3827 3828 stmmac_disable_all_queues(priv); 3829 3830 switch (type) { 3831 case TC_SETUP_CLSU32: 3832 if (tc_cls_can_offload_and_chain0(priv->dev, type_data)) 3833 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data); 3834 break; 3835 default: 3836 break; 3837 } 3838 3839 stmmac_enable_all_queues(priv); 3840 return ret; 3841 } 3842 3843 static int stmmac_setup_tc_block(struct stmmac_priv *priv, 3844 struct tc_block_offload *f) 3845 { 3846 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 3847 return -EOPNOTSUPP; 3848 3849 switch (f->command) { 3850 case TC_BLOCK_BIND: 3851 return tcf_block_cb_register(f->block, stmmac_setup_tc_block_cb, 3852 priv, priv, f->extack); 3853 case TC_BLOCK_UNBIND: 3854 tcf_block_cb_unregister(f->block, stmmac_setup_tc_block_cb, priv); 3855 return 0; 3856 default: 3857 return -EOPNOTSUPP; 3858 } 3859 } 3860 3861 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type, 3862 void *type_data) 3863 { 3864 struct stmmac_priv *priv = netdev_priv(ndev); 3865 3866 switch (type) { 3867 case TC_SETUP_BLOCK: 3868 return stmmac_setup_tc_block(priv, type_data); 3869 case TC_SETUP_QDISC_CBS: 3870 return stmmac_tc_setup_cbs(priv, priv, type_data); 3871 default: 3872 return -EOPNOTSUPP; 3873 } 3874 } 3875 3876 static int stmmac_set_mac_address(struct net_device *ndev, void *addr) 3877 { 3878 struct stmmac_priv *priv = netdev_priv(ndev); 3879 int ret = 0; 3880 3881 ret = eth_mac_addr(ndev, addr); 3882 if (ret) 3883 return ret; 3884 3885 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0); 3886 3887 return ret; 3888 } 3889 3890 #ifdef CONFIG_DEBUG_FS 3891 static struct dentry *stmmac_fs_dir; 3892 3893 static void sysfs_display_ring(void *head, int size, int extend_desc, 3894 struct seq_file *seq) 3895 { 3896 int i; 3897 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 3898 struct dma_desc *p = (struct dma_desc *)head; 3899 3900 for (i = 0; i < size; i++) { 3901 if (extend_desc) { 3902 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 3903 i, (unsigned int)virt_to_phys(ep), 3904 le32_to_cpu(ep->basic.des0), 3905 le32_to_cpu(ep->basic.des1), 3906 le32_to_cpu(ep->basic.des2), 3907 le32_to_cpu(ep->basic.des3)); 3908 ep++; 3909 } else { 3910 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 3911 i, (unsigned int)virt_to_phys(p), 3912 le32_to_cpu(p->des0), le32_to_cpu(p->des1), 3913 le32_to_cpu(p->des2), le32_to_cpu(p->des3)); 3914 p++; 3915 } 3916 seq_printf(seq, "\n"); 3917 } 3918 } 3919 3920 static int stmmac_rings_status_show(struct seq_file *seq, void *v) 3921 { 3922 struct net_device *dev = seq->private; 3923 struct stmmac_priv *priv = netdev_priv(dev); 3924 u32 rx_count = priv->plat->rx_queues_to_use; 3925 u32 tx_count = priv->plat->tx_queues_to_use; 3926 u32 queue; 3927 3928 if ((dev->flags & IFF_UP) == 0) 3929 return 0; 3930 3931 for (queue = 0; queue < rx_count; queue++) { 3932 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 3933 3934 seq_printf(seq, "RX Queue %d:\n", queue); 3935 3936 if (priv->extend_desc) { 3937 seq_printf(seq, "Extended descriptor ring:\n"); 3938 sysfs_display_ring((void *)rx_q->dma_erx, 3939 DMA_RX_SIZE, 1, seq); 3940 } else { 3941 seq_printf(seq, "Descriptor ring:\n"); 3942 sysfs_display_ring((void *)rx_q->dma_rx, 3943 DMA_RX_SIZE, 0, seq); 3944 } 3945 } 3946 3947 for (queue = 0; queue < tx_count; queue++) { 3948 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 3949 3950 seq_printf(seq, "TX Queue %d:\n", queue); 3951 3952 if (priv->extend_desc) { 3953 seq_printf(seq, "Extended descriptor ring:\n"); 3954 sysfs_display_ring((void *)tx_q->dma_etx, 3955 DMA_TX_SIZE, 1, seq); 3956 } else { 3957 seq_printf(seq, "Descriptor ring:\n"); 3958 sysfs_display_ring((void *)tx_q->dma_tx, 3959 DMA_TX_SIZE, 0, seq); 3960 } 3961 } 3962 3963 return 0; 3964 } 3965 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status); 3966 3967 static int stmmac_dma_cap_show(struct seq_file *seq, void *v) 3968 { 3969 struct net_device *dev = seq->private; 3970 struct stmmac_priv *priv = netdev_priv(dev); 3971 3972 if (!priv->hw_cap_support) { 3973 seq_printf(seq, "DMA HW features not supported\n"); 3974 return 0; 3975 } 3976 3977 seq_printf(seq, "==============================\n"); 3978 seq_printf(seq, "\tDMA HW features\n"); 3979 seq_printf(seq, "==============================\n"); 3980 3981 seq_printf(seq, "\t10/100 Mbps: %s\n", 3982 (priv->dma_cap.mbps_10_100) ? "Y" : "N"); 3983 seq_printf(seq, "\t1000 Mbps: %s\n", 3984 (priv->dma_cap.mbps_1000) ? "Y" : "N"); 3985 seq_printf(seq, "\tHalf duplex: %s\n", 3986 (priv->dma_cap.half_duplex) ? "Y" : "N"); 3987 seq_printf(seq, "\tHash Filter: %s\n", 3988 (priv->dma_cap.hash_filter) ? "Y" : "N"); 3989 seq_printf(seq, "\tMultiple MAC address registers: %s\n", 3990 (priv->dma_cap.multi_addr) ? "Y" : "N"); 3991 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n", 3992 (priv->dma_cap.pcs) ? "Y" : "N"); 3993 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", 3994 (priv->dma_cap.sma_mdio) ? "Y" : "N"); 3995 seq_printf(seq, "\tPMT Remote wake up: %s\n", 3996 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); 3997 seq_printf(seq, "\tPMT Magic Frame: %s\n", 3998 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); 3999 seq_printf(seq, "\tRMON module: %s\n", 4000 (priv->dma_cap.rmon) ? "Y" : "N"); 4001 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", 4002 (priv->dma_cap.time_stamp) ? "Y" : "N"); 4003 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n", 4004 (priv->dma_cap.atime_stamp) ? "Y" : "N"); 4005 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n", 4006 (priv->dma_cap.eee) ? "Y" : "N"); 4007 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); 4008 seq_printf(seq, "\tChecksum Offload in TX: %s\n", 4009 (priv->dma_cap.tx_coe) ? "Y" : "N"); 4010 if (priv->synopsys_id >= DWMAC_CORE_4_00) { 4011 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n", 4012 (priv->dma_cap.rx_coe) ? "Y" : "N"); 4013 } else { 4014 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", 4015 (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); 4016 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", 4017 (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); 4018 } 4019 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", 4020 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); 4021 seq_printf(seq, "\tNumber of Additional RX channel: %d\n", 4022 priv->dma_cap.number_rx_channel); 4023 seq_printf(seq, "\tNumber of Additional TX channel: %d\n", 4024 priv->dma_cap.number_tx_channel); 4025 seq_printf(seq, "\tEnhanced descriptors: %s\n", 4026 (priv->dma_cap.enh_desc) ? "Y" : "N"); 4027 4028 return 0; 4029 } 4030 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap); 4031 4032 static int stmmac_init_fs(struct net_device *dev) 4033 { 4034 struct stmmac_priv *priv = netdev_priv(dev); 4035 4036 /* Create per netdev entries */ 4037 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir); 4038 4039 if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) { 4040 netdev_err(priv->dev, "ERROR failed to create debugfs directory\n"); 4041 4042 return -ENOMEM; 4043 } 4044 4045 /* Entry to report DMA RX/TX rings */ 4046 priv->dbgfs_rings_status = 4047 debugfs_create_file("descriptors_status", 0444, 4048 priv->dbgfs_dir, dev, 4049 &stmmac_rings_status_fops); 4050 4051 if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) { 4052 netdev_err(priv->dev, "ERROR creating stmmac ring debugfs file\n"); 4053 debugfs_remove_recursive(priv->dbgfs_dir); 4054 4055 return -ENOMEM; 4056 } 4057 4058 /* Entry to report the DMA HW features */ 4059 priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", 0444, 4060 priv->dbgfs_dir, 4061 dev, &stmmac_dma_cap_fops); 4062 4063 if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) { 4064 netdev_err(priv->dev, "ERROR creating stmmac MMC debugfs file\n"); 4065 debugfs_remove_recursive(priv->dbgfs_dir); 4066 4067 return -ENOMEM; 4068 } 4069 4070 return 0; 4071 } 4072 4073 static void stmmac_exit_fs(struct net_device *dev) 4074 { 4075 struct stmmac_priv *priv = netdev_priv(dev); 4076 4077 debugfs_remove_recursive(priv->dbgfs_dir); 4078 } 4079 #endif /* CONFIG_DEBUG_FS */ 4080 4081 static const struct net_device_ops stmmac_netdev_ops = { 4082 .ndo_open = stmmac_open, 4083 .ndo_start_xmit = stmmac_xmit, 4084 .ndo_stop = stmmac_release, 4085 .ndo_change_mtu = stmmac_change_mtu, 4086 .ndo_fix_features = stmmac_fix_features, 4087 .ndo_set_features = stmmac_set_features, 4088 .ndo_set_rx_mode = stmmac_set_rx_mode, 4089 .ndo_tx_timeout = stmmac_tx_timeout, 4090 .ndo_do_ioctl = stmmac_ioctl, 4091 .ndo_setup_tc = stmmac_setup_tc, 4092 #ifdef CONFIG_NET_POLL_CONTROLLER 4093 .ndo_poll_controller = stmmac_poll_controller, 4094 #endif 4095 .ndo_set_mac_address = stmmac_set_mac_address, 4096 }; 4097 4098 static void stmmac_reset_subtask(struct stmmac_priv *priv) 4099 { 4100 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state)) 4101 return; 4102 if (test_bit(STMMAC_DOWN, &priv->state)) 4103 return; 4104 4105 netdev_err(priv->dev, "Reset adapter.\n"); 4106 4107 rtnl_lock(); 4108 netif_trans_update(priv->dev); 4109 while (test_and_set_bit(STMMAC_RESETING, &priv->state)) 4110 usleep_range(1000, 2000); 4111 4112 set_bit(STMMAC_DOWN, &priv->state); 4113 dev_close(priv->dev); 4114 dev_open(priv->dev, NULL); 4115 clear_bit(STMMAC_DOWN, &priv->state); 4116 clear_bit(STMMAC_RESETING, &priv->state); 4117 rtnl_unlock(); 4118 } 4119 4120 static void stmmac_service_task(struct work_struct *work) 4121 { 4122 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 4123 service_task); 4124 4125 stmmac_reset_subtask(priv); 4126 clear_bit(STMMAC_SERVICE_SCHED, &priv->state); 4127 } 4128 4129 /** 4130 * stmmac_hw_init - Init the MAC device 4131 * @priv: driver private structure 4132 * Description: this function is to configure the MAC device according to 4133 * some platform parameters or the HW capability register. It prepares the 4134 * driver to use either ring or chain modes and to setup either enhanced or 4135 * normal descriptors. 4136 */ 4137 static int stmmac_hw_init(struct stmmac_priv *priv) 4138 { 4139 int ret; 4140 4141 /* dwmac-sun8i only work in chain mode */ 4142 if (priv->plat->has_sun8i) 4143 chain_mode = 1; 4144 priv->chain_mode = chain_mode; 4145 4146 /* Initialize HW Interface */ 4147 ret = stmmac_hwif_init(priv); 4148 if (ret) 4149 return ret; 4150 4151 /* Get the HW capability (new GMAC newer than 3.50a) */ 4152 priv->hw_cap_support = stmmac_get_hw_features(priv); 4153 if (priv->hw_cap_support) { 4154 dev_info(priv->device, "DMA HW capability register supported\n"); 4155 4156 /* We can override some gmac/dma configuration fields: e.g. 4157 * enh_desc, tx_coe (e.g. that are passed through the 4158 * platform) with the values from the HW capability 4159 * register (if supported). 4160 */ 4161 priv->plat->enh_desc = priv->dma_cap.enh_desc; 4162 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up; 4163 priv->hw->pmt = priv->plat->pmt; 4164 4165 /* TXCOE doesn't work in thresh DMA mode */ 4166 if (priv->plat->force_thresh_dma_mode) 4167 priv->plat->tx_coe = 0; 4168 else 4169 priv->plat->tx_coe = priv->dma_cap.tx_coe; 4170 4171 /* In case of GMAC4 rx_coe is from HW cap register. */ 4172 priv->plat->rx_coe = priv->dma_cap.rx_coe; 4173 4174 if (priv->dma_cap.rx_coe_type2) 4175 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; 4176 else if (priv->dma_cap.rx_coe_type1) 4177 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; 4178 4179 } else { 4180 dev_info(priv->device, "No HW DMA feature register supported\n"); 4181 } 4182 4183 if (priv->plat->rx_coe) { 4184 priv->hw->rx_csum = priv->plat->rx_coe; 4185 dev_info(priv->device, "RX Checksum Offload Engine supported\n"); 4186 if (priv->synopsys_id < DWMAC_CORE_4_00) 4187 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum); 4188 } 4189 if (priv->plat->tx_coe) 4190 dev_info(priv->device, "TX Checksum insertion supported\n"); 4191 4192 if (priv->plat->pmt) { 4193 dev_info(priv->device, "Wake-Up On Lan supported\n"); 4194 device_set_wakeup_capable(priv->device, 1); 4195 } 4196 4197 if (priv->dma_cap.tsoen) 4198 dev_info(priv->device, "TSO supported\n"); 4199 4200 /* Run HW quirks, if any */ 4201 if (priv->hwif_quirks) { 4202 ret = priv->hwif_quirks(priv); 4203 if (ret) 4204 return ret; 4205 } 4206 4207 /* Rx Watchdog is available in the COREs newer than the 3.40. 4208 * In some case, for example on bugged HW this feature 4209 * has to be disable and this can be done by passing the 4210 * riwt_off field from the platform. 4211 */ 4212 if (((priv->synopsys_id >= DWMAC_CORE_3_50) || 4213 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) { 4214 priv->use_riwt = 1; 4215 dev_info(priv->device, 4216 "Enable RX Mitigation via HW Watchdog Timer\n"); 4217 } 4218 4219 return 0; 4220 } 4221 4222 /** 4223 * stmmac_dvr_probe 4224 * @device: device pointer 4225 * @plat_dat: platform data pointer 4226 * @res: stmmac resource pointer 4227 * Description: this is the main probe function used to 4228 * call the alloc_etherdev, allocate the priv structure. 4229 * Return: 4230 * returns 0 on success, otherwise errno. 4231 */ 4232 int stmmac_dvr_probe(struct device *device, 4233 struct plat_stmmacenet_data *plat_dat, 4234 struct stmmac_resources *res) 4235 { 4236 struct net_device *ndev = NULL; 4237 struct stmmac_priv *priv; 4238 u32 queue, maxq; 4239 int ret = 0; 4240 4241 ndev = alloc_etherdev_mqs(sizeof(struct stmmac_priv), 4242 MTL_MAX_TX_QUEUES, 4243 MTL_MAX_RX_QUEUES); 4244 if (!ndev) 4245 return -ENOMEM; 4246 4247 SET_NETDEV_DEV(ndev, device); 4248 4249 priv = netdev_priv(ndev); 4250 priv->device = device; 4251 priv->dev = ndev; 4252 4253 stmmac_set_ethtool_ops(ndev); 4254 priv->pause = pause; 4255 priv->plat = plat_dat; 4256 priv->ioaddr = res->addr; 4257 priv->dev->base_addr = (unsigned long)res->addr; 4258 4259 priv->dev->irq = res->irq; 4260 priv->wol_irq = res->wol_irq; 4261 priv->lpi_irq = res->lpi_irq; 4262 4263 if (res->mac) 4264 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN); 4265 4266 dev_set_drvdata(device, priv->dev); 4267 4268 /* Verify driver arguments */ 4269 stmmac_verify_args(); 4270 4271 /* Allocate workqueue */ 4272 priv->wq = create_singlethread_workqueue("stmmac_wq"); 4273 if (!priv->wq) { 4274 dev_err(priv->device, "failed to create workqueue\n"); 4275 ret = -ENOMEM; 4276 goto error_wq; 4277 } 4278 4279 INIT_WORK(&priv->service_task, stmmac_service_task); 4280 4281 /* Override with kernel parameters if supplied XXX CRS XXX 4282 * this needs to have multiple instances 4283 */ 4284 if ((phyaddr >= 0) && (phyaddr <= 31)) 4285 priv->plat->phy_addr = phyaddr; 4286 4287 if (priv->plat->stmmac_rst) { 4288 ret = reset_control_assert(priv->plat->stmmac_rst); 4289 reset_control_deassert(priv->plat->stmmac_rst); 4290 /* Some reset controllers have only reset callback instead of 4291 * assert + deassert callbacks pair. 4292 */ 4293 if (ret == -ENOTSUPP) 4294 reset_control_reset(priv->plat->stmmac_rst); 4295 } 4296 4297 /* Init MAC and get the capabilities */ 4298 ret = stmmac_hw_init(priv); 4299 if (ret) 4300 goto error_hw_init; 4301 4302 /* Configure real RX and TX queues */ 4303 netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use); 4304 netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use); 4305 4306 ndev->netdev_ops = &stmmac_netdev_ops; 4307 4308 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 4309 NETIF_F_RXCSUM; 4310 4311 ret = stmmac_tc_init(priv, priv); 4312 if (!ret) { 4313 ndev->hw_features |= NETIF_F_HW_TC; 4314 } 4315 4316 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 4317 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 4318 priv->tso = true; 4319 dev_info(priv->device, "TSO feature enabled\n"); 4320 } 4321 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 4322 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 4323 #ifdef STMMAC_VLAN_TAG_USED 4324 /* Both mac100 and gmac support receive VLAN tag detection */ 4325 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX; 4326 #endif 4327 priv->msg_enable = netif_msg_init(debug, default_msg_level); 4328 4329 /* MTU range: 46 - hw-specific max */ 4330 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 4331 if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00)) 4332 ndev->max_mtu = JUMBO_LEN; 4333 else if (priv->plat->has_xgmac) 4334 ndev->max_mtu = XGMAC_JUMBO_LEN; 4335 else 4336 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); 4337 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu 4338 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range. 4339 */ 4340 if ((priv->plat->maxmtu < ndev->max_mtu) && 4341 (priv->plat->maxmtu >= ndev->min_mtu)) 4342 ndev->max_mtu = priv->plat->maxmtu; 4343 else if (priv->plat->maxmtu < ndev->min_mtu) 4344 dev_warn(priv->device, 4345 "%s: warning: maxmtu having invalid value (%d)\n", 4346 __func__, priv->plat->maxmtu); 4347 4348 if (flow_ctrl) 4349 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ 4350 4351 /* Setup channels NAPI */ 4352 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 4353 4354 for (queue = 0; queue < maxq; queue++) { 4355 struct stmmac_channel *ch = &priv->channel[queue]; 4356 4357 ch->priv_data = priv; 4358 ch->index = queue; 4359 4360 if (queue < priv->plat->rx_queues_to_use) { 4361 netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx, 4362 NAPI_POLL_WEIGHT); 4363 } 4364 if (queue < priv->plat->tx_queues_to_use) { 4365 netif_napi_add(ndev, &ch->tx_napi, stmmac_napi_poll_tx, 4366 NAPI_POLL_WEIGHT); 4367 } 4368 } 4369 4370 mutex_init(&priv->lock); 4371 4372 /* If a specific clk_csr value is passed from the platform 4373 * this means that the CSR Clock Range selection cannot be 4374 * changed at run-time and it is fixed. Viceversa the driver'll try to 4375 * set the MDC clock dynamically according to the csr actual 4376 * clock input. 4377 */ 4378 if (!priv->plat->clk_csr) 4379 stmmac_clk_csr_set(priv); 4380 else 4381 priv->clk_csr = priv->plat->clk_csr; 4382 4383 stmmac_check_pcs_mode(priv); 4384 4385 if (priv->hw->pcs != STMMAC_PCS_RGMII && 4386 priv->hw->pcs != STMMAC_PCS_TBI && 4387 priv->hw->pcs != STMMAC_PCS_RTBI) { 4388 /* MDIO bus Registration */ 4389 ret = stmmac_mdio_register(ndev); 4390 if (ret < 0) { 4391 dev_err(priv->device, 4392 "%s: MDIO bus (id: %d) registration failed", 4393 __func__, priv->plat->bus_id); 4394 goto error_mdio_register; 4395 } 4396 } 4397 4398 ret = register_netdev(ndev); 4399 if (ret) { 4400 dev_err(priv->device, "%s: ERROR %i registering the device\n", 4401 __func__, ret); 4402 goto error_netdev_register; 4403 } 4404 4405 #ifdef CONFIG_DEBUG_FS 4406 ret = stmmac_init_fs(ndev); 4407 if (ret < 0) 4408 netdev_warn(priv->dev, "%s: failed debugFS registration\n", 4409 __func__); 4410 #endif 4411 4412 return ret; 4413 4414 error_netdev_register: 4415 if (priv->hw->pcs != STMMAC_PCS_RGMII && 4416 priv->hw->pcs != STMMAC_PCS_TBI && 4417 priv->hw->pcs != STMMAC_PCS_RTBI) 4418 stmmac_mdio_unregister(ndev); 4419 error_mdio_register: 4420 for (queue = 0; queue < maxq; queue++) { 4421 struct stmmac_channel *ch = &priv->channel[queue]; 4422 4423 if (queue < priv->plat->rx_queues_to_use) 4424 netif_napi_del(&ch->rx_napi); 4425 if (queue < priv->plat->tx_queues_to_use) 4426 netif_napi_del(&ch->tx_napi); 4427 } 4428 error_hw_init: 4429 destroy_workqueue(priv->wq); 4430 error_wq: 4431 free_netdev(ndev); 4432 4433 return ret; 4434 } 4435 EXPORT_SYMBOL_GPL(stmmac_dvr_probe); 4436 4437 /** 4438 * stmmac_dvr_remove 4439 * @dev: device pointer 4440 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 4441 * changes the link status, releases the DMA descriptor rings. 4442 */ 4443 int stmmac_dvr_remove(struct device *dev) 4444 { 4445 struct net_device *ndev = dev_get_drvdata(dev); 4446 struct stmmac_priv *priv = netdev_priv(ndev); 4447 4448 netdev_info(priv->dev, "%s: removing driver", __func__); 4449 4450 #ifdef CONFIG_DEBUG_FS 4451 stmmac_exit_fs(ndev); 4452 #endif 4453 stmmac_stop_all_dma(priv); 4454 4455 stmmac_mac_set(priv, priv->ioaddr, false); 4456 netif_carrier_off(ndev); 4457 unregister_netdev(ndev); 4458 if (priv->plat->stmmac_rst) 4459 reset_control_assert(priv->plat->stmmac_rst); 4460 clk_disable_unprepare(priv->plat->pclk); 4461 clk_disable_unprepare(priv->plat->stmmac_clk); 4462 if (priv->hw->pcs != STMMAC_PCS_RGMII && 4463 priv->hw->pcs != STMMAC_PCS_TBI && 4464 priv->hw->pcs != STMMAC_PCS_RTBI) 4465 stmmac_mdio_unregister(ndev); 4466 destroy_workqueue(priv->wq); 4467 mutex_destroy(&priv->lock); 4468 free_netdev(ndev); 4469 4470 return 0; 4471 } 4472 EXPORT_SYMBOL_GPL(stmmac_dvr_remove); 4473 4474 /** 4475 * stmmac_suspend - suspend callback 4476 * @dev: device pointer 4477 * Description: this is the function to suspend the device and it is called 4478 * by the platform driver to stop the network queue, release the resources, 4479 * program the PMT register (for WoL), clean and release driver resources. 4480 */ 4481 int stmmac_suspend(struct device *dev) 4482 { 4483 struct net_device *ndev = dev_get_drvdata(dev); 4484 struct stmmac_priv *priv = netdev_priv(ndev); 4485 4486 if (!ndev || !netif_running(ndev)) 4487 return 0; 4488 4489 if (ndev->phydev) 4490 phy_stop(ndev->phydev); 4491 4492 mutex_lock(&priv->lock); 4493 4494 netif_device_detach(ndev); 4495 stmmac_stop_all_queues(priv); 4496 4497 stmmac_disable_all_queues(priv); 4498 4499 /* Stop TX/RX DMA */ 4500 stmmac_stop_all_dma(priv); 4501 4502 /* Enable Power down mode by programming the PMT regs */ 4503 if (device_may_wakeup(priv->device)) { 4504 stmmac_pmt(priv, priv->hw, priv->wolopts); 4505 priv->irq_wake = 1; 4506 } else { 4507 stmmac_mac_set(priv, priv->ioaddr, false); 4508 pinctrl_pm_select_sleep_state(priv->device); 4509 /* Disable clock in case of PWM is off */ 4510 clk_disable(priv->plat->pclk); 4511 clk_disable(priv->plat->stmmac_clk); 4512 } 4513 mutex_unlock(&priv->lock); 4514 4515 priv->oldlink = false; 4516 priv->speed = SPEED_UNKNOWN; 4517 priv->oldduplex = DUPLEX_UNKNOWN; 4518 return 0; 4519 } 4520 EXPORT_SYMBOL_GPL(stmmac_suspend); 4521 4522 /** 4523 * stmmac_reset_queues_param - reset queue parameters 4524 * @dev: device pointer 4525 */ 4526 static void stmmac_reset_queues_param(struct stmmac_priv *priv) 4527 { 4528 u32 rx_cnt = priv->plat->rx_queues_to_use; 4529 u32 tx_cnt = priv->plat->tx_queues_to_use; 4530 u32 queue; 4531 4532 for (queue = 0; queue < rx_cnt; queue++) { 4533 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4534 4535 rx_q->cur_rx = 0; 4536 rx_q->dirty_rx = 0; 4537 } 4538 4539 for (queue = 0; queue < tx_cnt; queue++) { 4540 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 4541 4542 tx_q->cur_tx = 0; 4543 tx_q->dirty_tx = 0; 4544 tx_q->mss = 0; 4545 } 4546 } 4547 4548 /** 4549 * stmmac_resume - resume callback 4550 * @dev: device pointer 4551 * Description: when resume this function is invoked to setup the DMA and CORE 4552 * in a usable state. 4553 */ 4554 int stmmac_resume(struct device *dev) 4555 { 4556 struct net_device *ndev = dev_get_drvdata(dev); 4557 struct stmmac_priv *priv = netdev_priv(ndev); 4558 4559 if (!netif_running(ndev)) 4560 return 0; 4561 4562 /* Power Down bit, into the PM register, is cleared 4563 * automatically as soon as a magic packet or a Wake-up frame 4564 * is received. Anyway, it's better to manually clear 4565 * this bit because it can generate problems while resuming 4566 * from another devices (e.g. serial console). 4567 */ 4568 if (device_may_wakeup(priv->device)) { 4569 mutex_lock(&priv->lock); 4570 stmmac_pmt(priv, priv->hw, 0); 4571 mutex_unlock(&priv->lock); 4572 priv->irq_wake = 0; 4573 } else { 4574 pinctrl_pm_select_default_state(priv->device); 4575 /* enable the clk previously disabled */ 4576 clk_enable(priv->plat->stmmac_clk); 4577 clk_enable(priv->plat->pclk); 4578 /* reset the phy so that it's ready */ 4579 if (priv->mii) 4580 stmmac_mdio_reset(priv->mii); 4581 } 4582 4583 netif_device_attach(ndev); 4584 4585 mutex_lock(&priv->lock); 4586 4587 stmmac_reset_queues_param(priv); 4588 4589 stmmac_clear_descriptors(priv); 4590 4591 stmmac_hw_setup(ndev, false); 4592 stmmac_init_tx_coalesce(priv); 4593 stmmac_set_rx_mode(ndev); 4594 4595 stmmac_enable_all_queues(priv); 4596 4597 stmmac_start_all_queues(priv); 4598 4599 mutex_unlock(&priv->lock); 4600 4601 if (ndev->phydev) 4602 phy_start(ndev->phydev); 4603 4604 return 0; 4605 } 4606 EXPORT_SYMBOL_GPL(stmmac_resume); 4607 4608 #ifndef MODULE 4609 static int __init stmmac_cmdline_opt(char *str) 4610 { 4611 char *opt; 4612 4613 if (!str || !*str) 4614 return -EINVAL; 4615 while ((opt = strsep(&str, ",")) != NULL) { 4616 if (!strncmp(opt, "debug:", 6)) { 4617 if (kstrtoint(opt + 6, 0, &debug)) 4618 goto err; 4619 } else if (!strncmp(opt, "phyaddr:", 8)) { 4620 if (kstrtoint(opt + 8, 0, &phyaddr)) 4621 goto err; 4622 } else if (!strncmp(opt, "buf_sz:", 7)) { 4623 if (kstrtoint(opt + 7, 0, &buf_sz)) 4624 goto err; 4625 } else if (!strncmp(opt, "tc:", 3)) { 4626 if (kstrtoint(opt + 3, 0, &tc)) 4627 goto err; 4628 } else if (!strncmp(opt, "watchdog:", 9)) { 4629 if (kstrtoint(opt + 9, 0, &watchdog)) 4630 goto err; 4631 } else if (!strncmp(opt, "flow_ctrl:", 10)) { 4632 if (kstrtoint(opt + 10, 0, &flow_ctrl)) 4633 goto err; 4634 } else if (!strncmp(opt, "pause:", 6)) { 4635 if (kstrtoint(opt + 6, 0, &pause)) 4636 goto err; 4637 } else if (!strncmp(opt, "eee_timer:", 10)) { 4638 if (kstrtoint(opt + 10, 0, &eee_timer)) 4639 goto err; 4640 } else if (!strncmp(opt, "chain_mode:", 11)) { 4641 if (kstrtoint(opt + 11, 0, &chain_mode)) 4642 goto err; 4643 } 4644 } 4645 return 0; 4646 4647 err: 4648 pr_err("%s: ERROR broken module parameter conversion", __func__); 4649 return -EINVAL; 4650 } 4651 4652 __setup("stmmaceth=", stmmac_cmdline_opt); 4653 #endif /* MODULE */ 4654 4655 static int __init stmmac_init(void) 4656 { 4657 #ifdef CONFIG_DEBUG_FS 4658 /* Create debugfs main directory if it doesn't exist yet */ 4659 if (!stmmac_fs_dir) { 4660 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); 4661 4662 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) { 4663 pr_err("ERROR %s, debugfs create directory failed\n", 4664 STMMAC_RESOURCE_NAME); 4665 4666 return -ENOMEM; 4667 } 4668 } 4669 #endif 4670 4671 return 0; 4672 } 4673 4674 static void __exit stmmac_exit(void) 4675 { 4676 #ifdef CONFIG_DEBUG_FS 4677 debugfs_remove_recursive(stmmac_fs_dir); 4678 #endif 4679 } 4680 4681 module_init(stmmac_init) 4682 module_exit(stmmac_exit) 4683 4684 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); 4685 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); 4686 MODULE_LICENSE("GPL"); 4687