1 /******************************************************************************* 2 This contains the functions to handle the normal descriptors. 3 4 Copyright (C) 2007-2009 STMicroelectronics Ltd 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 The full GNU General Public License is included in this distribution in 16 the file called "COPYING". 17 18 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> 19 *******************************************************************************/ 20 21 #include <linux/stmmac.h> 22 #include "common.h" 23 #include "descs_com.h" 24 25 static int ndesc_get_tx_status(void *data, struct stmmac_extra_stats *x, 26 struct dma_desc *p, void __iomem *ioaddr) 27 { 28 struct net_device_stats *stats = (struct net_device_stats *)data; 29 unsigned int tdes0 = le32_to_cpu(p->des0); 30 unsigned int tdes1 = le32_to_cpu(p->des1); 31 int ret = tx_done; 32 33 /* Get tx owner first */ 34 if (unlikely(tdes0 & TDES0_OWN)) 35 return tx_dma_own; 36 37 /* Verify tx error by looking at the last segment. */ 38 if (likely(!(tdes1 & TDES1_LAST_SEGMENT))) 39 return tx_not_ls; 40 41 if (unlikely(tdes0 & TDES0_ERROR_SUMMARY)) { 42 if (unlikely(tdes0 & TDES0_UNDERFLOW_ERROR)) { 43 x->tx_underflow++; 44 stats->tx_fifo_errors++; 45 } 46 if (unlikely(tdes0 & TDES0_NO_CARRIER)) { 47 x->tx_carrier++; 48 stats->tx_carrier_errors++; 49 } 50 if (unlikely(tdes0 & TDES0_LOSS_CARRIER)) { 51 x->tx_losscarrier++; 52 stats->tx_carrier_errors++; 53 } 54 if (unlikely((tdes0 & TDES0_EXCESSIVE_DEFERRAL) || 55 (tdes0 & TDES0_EXCESSIVE_COLLISIONS) || 56 (tdes0 & TDES0_LATE_COLLISION))) { 57 unsigned int collisions; 58 59 collisions = (tdes0 & TDES0_COLLISION_COUNT_MASK) >> 3; 60 stats->collisions += collisions; 61 } 62 ret = tx_err; 63 } 64 65 if (tdes0 & TDES0_VLAN_FRAME) 66 x->tx_vlan++; 67 68 if (unlikely(tdes0 & TDES0_DEFERRED)) 69 x->tx_deferred++; 70 71 return ret; 72 } 73 74 static int ndesc_get_tx_len(struct dma_desc *p) 75 { 76 return (le32_to_cpu(p->des1) & RDES1_BUFFER1_SIZE_MASK); 77 } 78 79 /* This function verifies if each incoming frame has some errors 80 * and, if required, updates the multicast statistics. 81 * In case of success, it returns good_frame because the GMAC device 82 * is supposed to be able to compute the csum in HW. */ 83 static int ndesc_get_rx_status(void *data, struct stmmac_extra_stats *x, 84 struct dma_desc *p) 85 { 86 int ret = good_frame; 87 unsigned int rdes0 = le32_to_cpu(p->des0); 88 struct net_device_stats *stats = (struct net_device_stats *)data; 89 90 if (unlikely(rdes0 & RDES0_OWN)) 91 return dma_own; 92 93 if (unlikely(!(rdes0 & RDES0_LAST_DESCRIPTOR))) { 94 pr_warn("%s: Oversized frame spanned multiple buffers\n", 95 __func__); 96 stats->rx_length_errors++; 97 return discard_frame; 98 } 99 100 if (unlikely(rdes0 & RDES0_ERROR_SUMMARY)) { 101 if (unlikely(rdes0 & RDES0_DESCRIPTOR_ERROR)) 102 x->rx_desc++; 103 if (unlikely(rdes0 & RDES0_SA_FILTER_FAIL)) 104 x->sa_filter_fail++; 105 if (unlikely(rdes0 & RDES0_OVERFLOW_ERROR)) 106 x->overflow_error++; 107 if (unlikely(rdes0 & RDES0_IPC_CSUM_ERROR)) 108 x->ipc_csum_error++; 109 if (unlikely(rdes0 & RDES0_COLLISION)) { 110 x->rx_collision++; 111 stats->collisions++; 112 } 113 if (unlikely(rdes0 & RDES0_CRC_ERROR)) { 114 x->rx_crc_errors++; 115 stats->rx_crc_errors++; 116 } 117 ret = discard_frame; 118 } 119 if (unlikely(rdes0 & RDES0_DRIBBLING)) 120 x->dribbling_bit++; 121 122 if (unlikely(rdes0 & RDES0_LENGTH_ERROR)) { 123 x->rx_length++; 124 ret = discard_frame; 125 } 126 if (unlikely(rdes0 & RDES0_MII_ERROR)) { 127 x->rx_mii++; 128 ret = discard_frame; 129 } 130 #ifdef STMMAC_VLAN_TAG_USED 131 if (rdes0 & RDES0_VLAN_TAG) 132 x->vlan_tag++; 133 #endif 134 return ret; 135 } 136 137 static void ndesc_init_rx_desc(struct dma_desc *p, int disable_rx_ic, int mode, 138 int end) 139 { 140 p->des0 |= cpu_to_le32(RDES0_OWN); 141 p->des1 |= cpu_to_le32((BUF_SIZE_2KiB - 1) & RDES1_BUFFER1_SIZE_MASK); 142 143 if (mode == STMMAC_CHAIN_MODE) 144 ndesc_rx_set_on_chain(p, end); 145 else 146 ndesc_rx_set_on_ring(p, end); 147 148 if (disable_rx_ic) 149 p->des1 |= cpu_to_le32(RDES1_DISABLE_IC); 150 } 151 152 static void ndesc_init_tx_desc(struct dma_desc *p, int mode, int end) 153 { 154 p->des0 &= cpu_to_le32(~TDES0_OWN); 155 if (mode == STMMAC_CHAIN_MODE) 156 ndesc_tx_set_on_chain(p); 157 else 158 ndesc_end_tx_desc_on_ring(p, end); 159 } 160 161 static int ndesc_get_tx_owner(struct dma_desc *p) 162 { 163 return (le32_to_cpu(p->des0) & TDES0_OWN) >> 31; 164 } 165 166 static void ndesc_set_tx_owner(struct dma_desc *p) 167 { 168 p->des0 |= cpu_to_le32(TDES0_OWN); 169 } 170 171 static void ndesc_set_rx_owner(struct dma_desc *p, int disable_rx_ic) 172 { 173 p->des0 |= cpu_to_le32(RDES0_OWN); 174 } 175 176 static int ndesc_get_tx_ls(struct dma_desc *p) 177 { 178 return (le32_to_cpu(p->des1) & TDES1_LAST_SEGMENT) >> 30; 179 } 180 181 static void ndesc_release_tx_desc(struct dma_desc *p, int mode) 182 { 183 int ter = (le32_to_cpu(p->des1) & TDES1_END_RING) >> 25; 184 185 memset(p, 0, offsetof(struct dma_desc, des2)); 186 if (mode == STMMAC_CHAIN_MODE) 187 ndesc_tx_set_on_chain(p); 188 else 189 ndesc_end_tx_desc_on_ring(p, ter); 190 } 191 192 static void ndesc_prepare_tx_desc(struct dma_desc *p, int is_fs, int len, 193 bool csum_flag, int mode, bool tx_own, 194 bool ls, unsigned int tot_pkt_len) 195 { 196 unsigned int tdes1 = le32_to_cpu(p->des1); 197 198 if (is_fs) 199 tdes1 |= TDES1_FIRST_SEGMENT; 200 else 201 tdes1 &= ~TDES1_FIRST_SEGMENT; 202 203 if (likely(csum_flag)) 204 tdes1 |= (TX_CIC_FULL) << TDES1_CHECKSUM_INSERTION_SHIFT; 205 else 206 tdes1 &= ~(TX_CIC_FULL << TDES1_CHECKSUM_INSERTION_SHIFT); 207 208 if (ls) 209 tdes1 |= TDES1_LAST_SEGMENT; 210 211 p->des1 = cpu_to_le32(tdes1); 212 213 if (mode == STMMAC_CHAIN_MODE) 214 norm_set_tx_desc_len_on_chain(p, len); 215 else 216 norm_set_tx_desc_len_on_ring(p, len); 217 218 if (tx_own) 219 p->des0 |= cpu_to_le32(TDES0_OWN); 220 } 221 222 static void ndesc_set_tx_ic(struct dma_desc *p) 223 { 224 p->des1 |= cpu_to_le32(TDES1_INTERRUPT); 225 } 226 227 static int ndesc_get_rx_frame_len(struct dma_desc *p, int rx_coe_type) 228 { 229 unsigned int csum = 0; 230 231 /* The type-1 checksum offload engines append the checksum at 232 * the end of frame and the two bytes of checksum are added in 233 * the length. 234 * Adjust for that in the framelen for type-1 checksum offload 235 * engines 236 */ 237 if (rx_coe_type == STMMAC_RX_COE_TYPE1) 238 csum = 2; 239 240 return (((le32_to_cpu(p->des0) & RDES0_FRAME_LEN_MASK) 241 >> RDES0_FRAME_LEN_SHIFT) - 242 csum); 243 244 } 245 246 static void ndesc_enable_tx_timestamp(struct dma_desc *p) 247 { 248 p->des1 |= cpu_to_le32(TDES1_TIME_STAMP_ENABLE); 249 } 250 251 static int ndesc_get_tx_timestamp_status(struct dma_desc *p) 252 { 253 return (le32_to_cpu(p->des0) & TDES0_TIME_STAMP_STATUS) >> 17; 254 } 255 256 static void ndesc_get_timestamp(void *desc, u32 ats, u64 *ts) 257 { 258 struct dma_desc *p = (struct dma_desc *)desc; 259 u64 ns; 260 261 ns = le32_to_cpu(p->des2); 262 /* convert high/sec time stamp value to nanosecond */ 263 ns += le32_to_cpu(p->des3) * 1000000000ULL; 264 265 *ts = ns; 266 } 267 268 static int ndesc_get_rx_timestamp_status(void *desc, void *next_desc, u32 ats) 269 { 270 struct dma_desc *p = (struct dma_desc *)desc; 271 272 if ((le32_to_cpu(p->des2) == 0xffffffff) && 273 (le32_to_cpu(p->des3) == 0xffffffff)) 274 /* timestamp is corrupted, hence don't store it */ 275 return 0; 276 else 277 return 1; 278 } 279 280 static void ndesc_display_ring(void *head, unsigned int size, bool rx) 281 { 282 struct dma_desc *p = (struct dma_desc *)head; 283 int i; 284 285 pr_info("%s descriptor ring:\n", rx ? "RX" : "TX"); 286 287 for (i = 0; i < size; i++) { 288 u64 x; 289 290 x = *(u64 *)p; 291 pr_info("%03d [0x%x]: 0x%x 0x%x 0x%x 0x%x", 292 i, (unsigned int)virt_to_phys(p), 293 (unsigned int)x, (unsigned int)(x >> 32), 294 p->des2, p->des3); 295 p++; 296 } 297 pr_info("\n"); 298 } 299 300 static void ndesc_get_addr(struct dma_desc *p, unsigned int *addr) 301 { 302 *addr = le32_to_cpu(p->des2); 303 } 304 305 static void ndesc_set_addr(struct dma_desc *p, dma_addr_t addr) 306 { 307 p->des2 = cpu_to_le32(addr); 308 } 309 310 static void ndesc_clear(struct dma_desc *p) 311 { 312 p->des2 = 0; 313 } 314 315 const struct stmmac_desc_ops ndesc_ops = { 316 .tx_status = ndesc_get_tx_status, 317 .rx_status = ndesc_get_rx_status, 318 .get_tx_len = ndesc_get_tx_len, 319 .init_rx_desc = ndesc_init_rx_desc, 320 .init_tx_desc = ndesc_init_tx_desc, 321 .get_tx_owner = ndesc_get_tx_owner, 322 .release_tx_desc = ndesc_release_tx_desc, 323 .prepare_tx_desc = ndesc_prepare_tx_desc, 324 .set_tx_ic = ndesc_set_tx_ic, 325 .get_tx_ls = ndesc_get_tx_ls, 326 .set_tx_owner = ndesc_set_tx_owner, 327 .set_rx_owner = ndesc_set_rx_owner, 328 .get_rx_frame_len = ndesc_get_rx_frame_len, 329 .enable_tx_timestamp = ndesc_enable_tx_timestamp, 330 .get_tx_timestamp_status = ndesc_get_tx_timestamp_status, 331 .get_timestamp = ndesc_get_timestamp, 332 .get_rx_timestamp_status = ndesc_get_rx_timestamp_status, 333 .display_ring = ndesc_display_ring, 334 .get_addr = ndesc_get_addr, 335 .set_addr = ndesc_set_addr, 336 .clear = ndesc_clear, 337 }; 338