1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the GMAC on-chip Ethernet controller for ST SoCs.
4   DWC Ether MAC 10/100/1000 Universal version 3.41a  has been used for
5   developing this code.
6 
7   This contains the functions to handle the dma.
8 
9   Copyright (C) 2007-2009  STMicroelectronics Ltd
10 
11 
12   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
13 *******************************************************************************/
14 
15 #include <asm/io.h>
16 #include "dwmac1000.h"
17 #include "dwmac_dma.h"
18 
19 static void dwmac1000_dma_axi(void __iomem *ioaddr, struct stmmac_axi *axi)
20 {
21 	u32 value = readl(ioaddr + DMA_AXI_BUS_MODE);
22 	int i;
23 
24 	pr_info("dwmac1000: Master AXI performs %s burst length\n",
25 		!(value & DMA_AXI_UNDEF) ? "fixed" : "any");
26 
27 	if (axi->axi_lpi_en)
28 		value |= DMA_AXI_EN_LPI;
29 	if (axi->axi_xit_frm)
30 		value |= DMA_AXI_LPI_XIT_FRM;
31 
32 	value &= ~DMA_AXI_WR_OSR_LMT;
33 	value |= (axi->axi_wr_osr_lmt & DMA_AXI_WR_OSR_LMT_MASK) <<
34 		 DMA_AXI_WR_OSR_LMT_SHIFT;
35 
36 	value &= ~DMA_AXI_RD_OSR_LMT;
37 	value |= (axi->axi_rd_osr_lmt & DMA_AXI_RD_OSR_LMT_MASK) <<
38 		 DMA_AXI_RD_OSR_LMT_SHIFT;
39 
40 	/* Depending on the UNDEF bit the Master AXI will perform any burst
41 	 * length according to the BLEN programmed (by default all BLEN are
42 	 * set).
43 	 */
44 	for (i = 0; i < AXI_BLEN; i++) {
45 		switch (axi->axi_blen[i]) {
46 		case 256:
47 			value |= DMA_AXI_BLEN256;
48 			break;
49 		case 128:
50 			value |= DMA_AXI_BLEN128;
51 			break;
52 		case 64:
53 			value |= DMA_AXI_BLEN64;
54 			break;
55 		case 32:
56 			value |= DMA_AXI_BLEN32;
57 			break;
58 		case 16:
59 			value |= DMA_AXI_BLEN16;
60 			break;
61 		case 8:
62 			value |= DMA_AXI_BLEN8;
63 			break;
64 		case 4:
65 			value |= DMA_AXI_BLEN4;
66 			break;
67 		}
68 	}
69 
70 	writel(value, ioaddr + DMA_AXI_BUS_MODE);
71 }
72 
73 static void dwmac1000_dma_init(void __iomem *ioaddr,
74 			       struct stmmac_dma_cfg *dma_cfg, int atds)
75 {
76 	u32 value = readl(ioaddr + DMA_BUS_MODE);
77 	int txpbl = dma_cfg->txpbl ?: dma_cfg->pbl;
78 	int rxpbl = dma_cfg->rxpbl ?: dma_cfg->pbl;
79 
80 	/*
81 	 * Set the DMA PBL (Programmable Burst Length) mode.
82 	 *
83 	 * Note: before stmmac core 3.50 this mode bit was 4xPBL, and
84 	 * post 3.5 mode bit acts as 8*PBL.
85 	 */
86 	if (dma_cfg->pblx8)
87 		value |= DMA_BUS_MODE_MAXPBL;
88 	value |= DMA_BUS_MODE_USP;
89 	value &= ~(DMA_BUS_MODE_PBL_MASK | DMA_BUS_MODE_RPBL_MASK);
90 	value |= (txpbl << DMA_BUS_MODE_PBL_SHIFT);
91 	value |= (rxpbl << DMA_BUS_MODE_RPBL_SHIFT);
92 
93 	/* Set the Fixed burst mode */
94 	if (dma_cfg->fixed_burst)
95 		value |= DMA_BUS_MODE_FB;
96 
97 	/* Mixed Burst has no effect when fb is set */
98 	if (dma_cfg->mixed_burst)
99 		value |= DMA_BUS_MODE_MB;
100 
101 	if (atds)
102 		value |= DMA_BUS_MODE_ATDS;
103 
104 	if (dma_cfg->aal)
105 		value |= DMA_BUS_MODE_AAL;
106 
107 	writel(value, ioaddr + DMA_BUS_MODE);
108 
109 	/* Mask interrupts by writing to CSR7 */
110 	writel(DMA_INTR_DEFAULT_MASK, ioaddr + DMA_INTR_ENA);
111 }
112 
113 static void dwmac1000_dma_init_rx(struct stmmac_priv *priv,
114 				  void __iomem *ioaddr,
115 				  struct stmmac_dma_cfg *dma_cfg,
116 				  dma_addr_t dma_rx_phy, u32 chan)
117 {
118 	/* RX descriptor base address list must be written into DMA CSR3 */
119 	writel(lower_32_bits(dma_rx_phy), ioaddr + DMA_RCV_BASE_ADDR);
120 }
121 
122 static void dwmac1000_dma_init_tx(struct stmmac_priv *priv,
123 				  void __iomem *ioaddr,
124 				  struct stmmac_dma_cfg *dma_cfg,
125 				  dma_addr_t dma_tx_phy, u32 chan)
126 {
127 	/* TX descriptor base address list must be written into DMA CSR4 */
128 	writel(lower_32_bits(dma_tx_phy), ioaddr + DMA_TX_BASE_ADDR);
129 }
130 
131 static u32 dwmac1000_configure_fc(u32 csr6, int rxfifosz)
132 {
133 	csr6 &= ~DMA_CONTROL_RFA_MASK;
134 	csr6 &= ~DMA_CONTROL_RFD_MASK;
135 
136 	/* Leave flow control disabled if receive fifo size is less than
137 	 * 4K or 0. Otherwise, send XOFF when fifo is 1K less than full,
138 	 * and send XON when 2K less than full.
139 	 */
140 	if (rxfifosz < 4096) {
141 		csr6 &= ~DMA_CONTROL_EFC;
142 		pr_debug("GMAC: disabling flow control, rxfifo too small(%d)\n",
143 			 rxfifosz);
144 	} else {
145 		csr6 |= DMA_CONTROL_EFC;
146 		csr6 |= RFA_FULL_MINUS_1K;
147 		csr6 |= RFD_FULL_MINUS_2K;
148 	}
149 	return csr6;
150 }
151 
152 static void dwmac1000_dma_operation_mode_rx(struct stmmac_priv *priv,
153 					    void __iomem *ioaddr, int mode,
154 					    u32 channel, int fifosz, u8 qmode)
155 {
156 	u32 csr6 = readl(ioaddr + DMA_CONTROL);
157 
158 	if (mode == SF_DMA_MODE) {
159 		pr_debug("GMAC: enable RX store and forward mode\n");
160 		csr6 |= DMA_CONTROL_RSF;
161 	} else {
162 		pr_debug("GMAC: disable RX SF mode (threshold %d)\n", mode);
163 		csr6 &= ~DMA_CONTROL_RSF;
164 		csr6 &= DMA_CONTROL_TC_RX_MASK;
165 		if (mode <= 32)
166 			csr6 |= DMA_CONTROL_RTC_32;
167 		else if (mode <= 64)
168 			csr6 |= DMA_CONTROL_RTC_64;
169 		else if (mode <= 96)
170 			csr6 |= DMA_CONTROL_RTC_96;
171 		else
172 			csr6 |= DMA_CONTROL_RTC_128;
173 	}
174 
175 	/* Configure flow control based on rx fifo size */
176 	csr6 = dwmac1000_configure_fc(csr6, fifosz);
177 
178 	writel(csr6, ioaddr + DMA_CONTROL);
179 }
180 
181 static void dwmac1000_dma_operation_mode_tx(struct stmmac_priv *priv,
182 					    void __iomem *ioaddr, int mode,
183 					    u32 channel, int fifosz, u8 qmode)
184 {
185 	u32 csr6 = readl(ioaddr + DMA_CONTROL);
186 
187 	if (mode == SF_DMA_MODE) {
188 		pr_debug("GMAC: enable TX store and forward mode\n");
189 		/* Transmit COE type 2 cannot be done in cut-through mode. */
190 		csr6 |= DMA_CONTROL_TSF;
191 		/* Operating on second frame increase the performance
192 		 * especially when transmit store-and-forward is used.
193 		 */
194 		csr6 |= DMA_CONTROL_OSF;
195 	} else {
196 		pr_debug("GMAC: disabling TX SF (threshold %d)\n", mode);
197 		csr6 &= ~DMA_CONTROL_TSF;
198 		csr6 &= DMA_CONTROL_TC_TX_MASK;
199 		/* Set the transmit threshold */
200 		if (mode <= 32)
201 			csr6 |= DMA_CONTROL_TTC_32;
202 		else if (mode <= 64)
203 			csr6 |= DMA_CONTROL_TTC_64;
204 		else if (mode <= 128)
205 			csr6 |= DMA_CONTROL_TTC_128;
206 		else if (mode <= 192)
207 			csr6 |= DMA_CONTROL_TTC_192;
208 		else
209 			csr6 |= DMA_CONTROL_TTC_256;
210 	}
211 
212 	writel(csr6, ioaddr + DMA_CONTROL);
213 }
214 
215 static void dwmac1000_dump_dma_regs(struct stmmac_priv *priv,
216 				    void __iomem *ioaddr, u32 *reg_space)
217 {
218 	int i;
219 
220 	for (i = 0; i < NUM_DWMAC1000_DMA_REGS; i++)
221 		if ((i < 12) || (i > 17))
222 			reg_space[DMA_BUS_MODE / 4 + i] =
223 				readl(ioaddr + DMA_BUS_MODE + i * 4);
224 }
225 
226 static int dwmac1000_get_hw_feature(void __iomem *ioaddr,
227 				    struct dma_features *dma_cap)
228 {
229 	u32 hw_cap = readl(ioaddr + DMA_HW_FEATURE);
230 
231 	if (!hw_cap) {
232 		/* 0x00000000 is the value read on old hardware that does not
233 		 * implement this register
234 		 */
235 		return -EOPNOTSUPP;
236 	}
237 
238 	dma_cap->mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
239 	dma_cap->mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
240 	dma_cap->half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
241 	dma_cap->hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
242 	dma_cap->multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
243 	dma_cap->pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
244 	dma_cap->sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
245 	dma_cap->pmt_remote_wake_up = (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
246 	dma_cap->pmt_magic_frame = (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
247 	/* MMC */
248 	dma_cap->rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
249 	/* IEEE 1588-2002 */
250 	dma_cap->time_stamp =
251 	    (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
252 	/* IEEE 1588-2008 */
253 	dma_cap->atime_stamp = (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
254 	/* 802.3az - Energy-Efficient Ethernet (EEE) */
255 	dma_cap->eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
256 	dma_cap->av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
257 	/* TX and RX csum */
258 	dma_cap->tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
259 	dma_cap->rx_coe_type1 = (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
260 	dma_cap->rx_coe_type2 = (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
261 	dma_cap->rxfifo_over_2048 = (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
262 	/* TX and RX number of channels */
263 	dma_cap->number_rx_channel = (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
264 	dma_cap->number_tx_channel = (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
265 	/* Alternate (enhanced) DESC mode */
266 	dma_cap->enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
267 
268 	return 0;
269 }
270 
271 static void dwmac1000_rx_watchdog(struct stmmac_priv *priv,
272 				  void __iomem *ioaddr, u32 riwt, u32 queue)
273 {
274 	writel(riwt, ioaddr + DMA_RX_WATCHDOG);
275 }
276 
277 const struct stmmac_dma_ops dwmac1000_dma_ops = {
278 	.reset = dwmac_dma_reset,
279 	.init = dwmac1000_dma_init,
280 	.init_rx_chan = dwmac1000_dma_init_rx,
281 	.init_tx_chan = dwmac1000_dma_init_tx,
282 	.axi = dwmac1000_dma_axi,
283 	.dump_regs = dwmac1000_dump_dma_regs,
284 	.dma_rx_mode = dwmac1000_dma_operation_mode_rx,
285 	.dma_tx_mode = dwmac1000_dma_operation_mode_tx,
286 	.enable_dma_transmission = dwmac_enable_dma_transmission,
287 	.enable_dma_irq = dwmac_enable_dma_irq,
288 	.disable_dma_irq = dwmac_disable_dma_irq,
289 	.start_tx = dwmac_dma_start_tx,
290 	.stop_tx = dwmac_dma_stop_tx,
291 	.start_rx = dwmac_dma_start_rx,
292 	.stop_rx = dwmac_dma_stop_rx,
293 	.dma_interrupt = dwmac_dma_interrupt,
294 	.get_hw_feature = dwmac1000_get_hw_feature,
295 	.rx_watchdog = dwmac1000_rx_watchdog,
296 };
297