xref: /openbmc/linux/drivers/net/ethernet/stmicro/stmmac/dwmac-intel.c (revision fe17b91a7777df140d0f1433991da67ba658796c)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2020, Intel Corporation
3  */
4 
5 #include <linux/clk-provider.h>
6 #include <linux/pci.h>
7 #include <linux/dmi.h>
8 #include "dwmac-intel.h"
9 #include "dwmac4.h"
10 #include "stmmac.h"
11 #include "stmmac_ptp.h"
12 
13 struct intel_priv_data {
14 	int mdio_adhoc_addr;	/* mdio address for serdes & etc */
15 	unsigned long crossts_adj;
16 	bool is_pse;
17 };
18 
19 /* This struct is used to associate PCI Function of MAC controller on a board,
20  * discovered via DMI, with the address of PHY connected to the MAC. The
21  * negative value of the address means that MAC controller is not connected
22  * with PHY.
23  */
24 struct stmmac_pci_func_data {
25 	unsigned int func;
26 	int phy_addr;
27 };
28 
29 struct stmmac_pci_dmi_data {
30 	const struct stmmac_pci_func_data *func;
31 	size_t nfuncs;
32 };
33 
34 struct stmmac_pci_info {
35 	int (*setup)(struct pci_dev *pdev, struct plat_stmmacenet_data *plat);
36 };
37 
38 static int stmmac_pci_find_phy_addr(struct pci_dev *pdev,
39 				    const struct dmi_system_id *dmi_list)
40 {
41 	const struct stmmac_pci_func_data *func_data;
42 	const struct stmmac_pci_dmi_data *dmi_data;
43 	const struct dmi_system_id *dmi_id;
44 	int func = PCI_FUNC(pdev->devfn);
45 	size_t n;
46 
47 	dmi_id = dmi_first_match(dmi_list);
48 	if (!dmi_id)
49 		return -ENODEV;
50 
51 	dmi_data = dmi_id->driver_data;
52 	func_data = dmi_data->func;
53 
54 	for (n = 0; n < dmi_data->nfuncs; n++, func_data++)
55 		if (func_data->func == func)
56 			return func_data->phy_addr;
57 
58 	return -ENODEV;
59 }
60 
61 static int serdes_status_poll(struct stmmac_priv *priv, int phyaddr,
62 			      int phyreg, u32 mask, u32 val)
63 {
64 	unsigned int retries = 10;
65 	int val_rd;
66 
67 	do {
68 		val_rd = mdiobus_read(priv->mii, phyaddr, phyreg);
69 		if ((val_rd & mask) == (val & mask))
70 			return 0;
71 		udelay(POLL_DELAY_US);
72 	} while (--retries);
73 
74 	return -ETIMEDOUT;
75 }
76 
77 static int intel_serdes_powerup(struct net_device *ndev, void *priv_data)
78 {
79 	struct intel_priv_data *intel_priv = priv_data;
80 	struct stmmac_priv *priv = netdev_priv(ndev);
81 	int serdes_phy_addr = 0;
82 	u32 data = 0;
83 
84 	if (!intel_priv->mdio_adhoc_addr)
85 		return 0;
86 
87 	serdes_phy_addr = intel_priv->mdio_adhoc_addr;
88 
89 	/* Set the serdes rate and the PCLK rate */
90 	data = mdiobus_read(priv->mii, serdes_phy_addr,
91 			    SERDES_GCR0);
92 
93 	data &= ~SERDES_RATE_MASK;
94 	data &= ~SERDES_PCLK_MASK;
95 
96 	if (priv->plat->max_speed == 2500)
97 		data |= SERDES_RATE_PCIE_GEN2 << SERDES_RATE_PCIE_SHIFT |
98 			SERDES_PCLK_37p5MHZ << SERDES_PCLK_SHIFT;
99 	else
100 		data |= SERDES_RATE_PCIE_GEN1 << SERDES_RATE_PCIE_SHIFT |
101 			SERDES_PCLK_70MHZ << SERDES_PCLK_SHIFT;
102 
103 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
104 
105 	/* assert clk_req */
106 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
107 	data |= SERDES_PLL_CLK;
108 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
109 
110 	/* check for clk_ack assertion */
111 	data = serdes_status_poll(priv, serdes_phy_addr,
112 				  SERDES_GSR0,
113 				  SERDES_PLL_CLK,
114 				  SERDES_PLL_CLK);
115 
116 	if (data) {
117 		dev_err(priv->device, "Serdes PLL clk request timeout\n");
118 		return data;
119 	}
120 
121 	/* assert lane reset */
122 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
123 	data |= SERDES_RST;
124 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
125 
126 	/* check for assert lane reset reflection */
127 	data = serdes_status_poll(priv, serdes_phy_addr,
128 				  SERDES_GSR0,
129 				  SERDES_RST,
130 				  SERDES_RST);
131 
132 	if (data) {
133 		dev_err(priv->device, "Serdes assert lane reset timeout\n");
134 		return data;
135 	}
136 
137 	/*  move power state to P0 */
138 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
139 
140 	data &= ~SERDES_PWR_ST_MASK;
141 	data |= SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT;
142 
143 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
144 
145 	/* Check for P0 state */
146 	data = serdes_status_poll(priv, serdes_phy_addr,
147 				  SERDES_GSR0,
148 				  SERDES_PWR_ST_MASK,
149 				  SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT);
150 
151 	if (data) {
152 		dev_err(priv->device, "Serdes power state P0 timeout.\n");
153 		return data;
154 	}
155 
156 	/* PSE only - ungate SGMII PHY Rx Clock */
157 	if (intel_priv->is_pse)
158 		mdiobus_modify(priv->mii, serdes_phy_addr, SERDES_GCR0,
159 			       0, SERDES_PHY_RX_CLK);
160 
161 	return 0;
162 }
163 
164 static void intel_serdes_powerdown(struct net_device *ndev, void *intel_data)
165 {
166 	struct intel_priv_data *intel_priv = intel_data;
167 	struct stmmac_priv *priv = netdev_priv(ndev);
168 	int serdes_phy_addr = 0;
169 	u32 data = 0;
170 
171 	if (!intel_priv->mdio_adhoc_addr)
172 		return;
173 
174 	serdes_phy_addr = intel_priv->mdio_adhoc_addr;
175 
176 	/* PSE only - gate SGMII PHY Rx Clock */
177 	if (intel_priv->is_pse)
178 		mdiobus_modify(priv->mii, serdes_phy_addr, SERDES_GCR0,
179 			       SERDES_PHY_RX_CLK, 0);
180 
181 	/*  move power state to P3 */
182 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
183 
184 	data &= ~SERDES_PWR_ST_MASK;
185 	data |= SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT;
186 
187 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
188 
189 	/* Check for P3 state */
190 	data = serdes_status_poll(priv, serdes_phy_addr,
191 				  SERDES_GSR0,
192 				  SERDES_PWR_ST_MASK,
193 				  SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT);
194 
195 	if (data) {
196 		dev_err(priv->device, "Serdes power state P3 timeout\n");
197 		return;
198 	}
199 
200 	/* de-assert clk_req */
201 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
202 	data &= ~SERDES_PLL_CLK;
203 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
204 
205 	/* check for clk_ack de-assert */
206 	data = serdes_status_poll(priv, serdes_phy_addr,
207 				  SERDES_GSR0,
208 				  SERDES_PLL_CLK,
209 				  (u32)~SERDES_PLL_CLK);
210 
211 	if (data) {
212 		dev_err(priv->device, "Serdes PLL clk de-assert timeout\n");
213 		return;
214 	}
215 
216 	/* de-assert lane reset */
217 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
218 	data &= ~SERDES_RST;
219 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
220 
221 	/* check for de-assert lane reset reflection */
222 	data = serdes_status_poll(priv, serdes_phy_addr,
223 				  SERDES_GSR0,
224 				  SERDES_RST,
225 				  (u32)~SERDES_RST);
226 
227 	if (data) {
228 		dev_err(priv->device, "Serdes de-assert lane reset timeout\n");
229 		return;
230 	}
231 }
232 
233 static void intel_speed_mode_2500(struct net_device *ndev, void *intel_data)
234 {
235 	struct intel_priv_data *intel_priv = intel_data;
236 	struct stmmac_priv *priv = netdev_priv(ndev);
237 	int serdes_phy_addr = 0;
238 	u32 data = 0;
239 
240 	serdes_phy_addr = intel_priv->mdio_adhoc_addr;
241 
242 	/* Determine the link speed mode: 2.5Gbps/1Gbps */
243 	data = mdiobus_read(priv->mii, serdes_phy_addr,
244 			    SERDES_GCR);
245 
246 	if (((data & SERDES_LINK_MODE_MASK) >> SERDES_LINK_MODE_SHIFT) ==
247 	    SERDES_LINK_MODE_2G5) {
248 		dev_info(priv->device, "Link Speed Mode: 2.5Gbps\n");
249 		priv->plat->max_speed = 2500;
250 		priv->plat->phy_interface = PHY_INTERFACE_MODE_2500BASEX;
251 		priv->plat->mdio_bus_data->xpcs_an_inband = false;
252 	} else {
253 		priv->plat->max_speed = 1000;
254 		priv->plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
255 		priv->plat->mdio_bus_data->xpcs_an_inband = true;
256 	}
257 }
258 
259 /* Program PTP Clock Frequency for different variant of
260  * Intel mGBE that has slightly different GPO mapping
261  */
262 static void intel_mgbe_ptp_clk_freq_config(void *npriv)
263 {
264 	struct stmmac_priv *priv = (struct stmmac_priv *)npriv;
265 	struct intel_priv_data *intel_priv;
266 	u32 gpio_value;
267 
268 	intel_priv = (struct intel_priv_data *)priv->plat->bsp_priv;
269 
270 	gpio_value = readl(priv->ioaddr + GMAC_GPIO_STATUS);
271 
272 	if (intel_priv->is_pse) {
273 		/* For PSE GbE, use 200MHz */
274 		gpio_value &= ~PSE_PTP_CLK_FREQ_MASK;
275 		gpio_value |= PSE_PTP_CLK_FREQ_200MHZ;
276 	} else {
277 		/* For PCH GbE, use 200MHz */
278 		gpio_value &= ~PCH_PTP_CLK_FREQ_MASK;
279 		gpio_value |= PCH_PTP_CLK_FREQ_200MHZ;
280 	}
281 
282 	writel(gpio_value, priv->ioaddr + GMAC_GPIO_STATUS);
283 }
284 
285 static void get_arttime(struct mii_bus *mii, int intel_adhoc_addr,
286 			u64 *art_time)
287 {
288 	u64 ns;
289 
290 	ns = mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE3);
291 	ns <<= GMAC4_ART_TIME_SHIFT;
292 	ns |= mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE2);
293 	ns <<= GMAC4_ART_TIME_SHIFT;
294 	ns |= mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE1);
295 	ns <<= GMAC4_ART_TIME_SHIFT;
296 	ns |= mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE0);
297 
298 	*art_time = ns;
299 }
300 
301 static int stmmac_cross_ts_isr(struct stmmac_priv *priv)
302 {
303 	return (readl(priv->ioaddr + GMAC_INT_STATUS) & GMAC_INT_TSIE);
304 }
305 
306 static int intel_crosststamp(ktime_t *device,
307 			     struct system_counterval_t *system,
308 			     void *ctx)
309 {
310 	struct intel_priv_data *intel_priv;
311 
312 	struct stmmac_priv *priv = (struct stmmac_priv *)ctx;
313 	void __iomem *ptpaddr = priv->ptpaddr;
314 	void __iomem *ioaddr = priv->hw->pcsr;
315 	unsigned long flags;
316 	u64 art_time = 0;
317 	u64 ptp_time = 0;
318 	u32 num_snapshot;
319 	u32 gpio_value;
320 	u32 acr_value;
321 	int i;
322 
323 	if (!boot_cpu_has(X86_FEATURE_ART))
324 		return -EOPNOTSUPP;
325 
326 	intel_priv = priv->plat->bsp_priv;
327 
328 	/* Both internal crosstimestamping and external triggered event
329 	 * timestamping cannot be run concurrently.
330 	 */
331 	if (priv->plat->ext_snapshot_en)
332 		return -EBUSY;
333 
334 	priv->plat->int_snapshot_en = 1;
335 
336 	mutex_lock(&priv->aux_ts_lock);
337 	/* Enable Internal snapshot trigger */
338 	acr_value = readl(ptpaddr + PTP_ACR);
339 	acr_value &= ~PTP_ACR_MASK;
340 	switch (priv->plat->int_snapshot_num) {
341 	case AUX_SNAPSHOT0:
342 		acr_value |= PTP_ACR_ATSEN0;
343 		break;
344 	case AUX_SNAPSHOT1:
345 		acr_value |= PTP_ACR_ATSEN1;
346 		break;
347 	case AUX_SNAPSHOT2:
348 		acr_value |= PTP_ACR_ATSEN2;
349 		break;
350 	case AUX_SNAPSHOT3:
351 		acr_value |= PTP_ACR_ATSEN3;
352 		break;
353 	default:
354 		mutex_unlock(&priv->aux_ts_lock);
355 		priv->plat->int_snapshot_en = 0;
356 		return -EINVAL;
357 	}
358 	writel(acr_value, ptpaddr + PTP_ACR);
359 
360 	/* Clear FIFO */
361 	acr_value = readl(ptpaddr + PTP_ACR);
362 	acr_value |= PTP_ACR_ATSFC;
363 	writel(acr_value, ptpaddr + PTP_ACR);
364 	/* Release the mutex */
365 	mutex_unlock(&priv->aux_ts_lock);
366 
367 	/* Trigger Internal snapshot signal
368 	 * Create a rising edge by just toggle the GPO1 to low
369 	 * and back to high.
370 	 */
371 	gpio_value = readl(ioaddr + GMAC_GPIO_STATUS);
372 	gpio_value &= ~GMAC_GPO1;
373 	writel(gpio_value, ioaddr + GMAC_GPIO_STATUS);
374 	gpio_value |= GMAC_GPO1;
375 	writel(gpio_value, ioaddr + GMAC_GPIO_STATUS);
376 
377 	/* Time sync done Indication - Interrupt method */
378 	if (!wait_event_interruptible_timeout(priv->tstamp_busy_wait,
379 					      stmmac_cross_ts_isr(priv),
380 					      HZ / 100)) {
381 		priv->plat->int_snapshot_en = 0;
382 		return -ETIMEDOUT;
383 	}
384 
385 	num_snapshot = (readl(ioaddr + GMAC_TIMESTAMP_STATUS) &
386 			GMAC_TIMESTAMP_ATSNS_MASK) >>
387 			GMAC_TIMESTAMP_ATSNS_SHIFT;
388 
389 	/* Repeat until the timestamps are from the FIFO last segment */
390 	for (i = 0; i < num_snapshot; i++) {
391 		read_lock_irqsave(&priv->ptp_lock, flags);
392 		stmmac_get_ptptime(priv, ptpaddr, &ptp_time);
393 		*device = ns_to_ktime(ptp_time);
394 		read_unlock_irqrestore(&priv->ptp_lock, flags);
395 		get_arttime(priv->mii, intel_priv->mdio_adhoc_addr, &art_time);
396 		*system = convert_art_to_tsc(art_time);
397 	}
398 
399 	system->cycles *= intel_priv->crossts_adj;
400 	priv->plat->int_snapshot_en = 0;
401 
402 	return 0;
403 }
404 
405 static void intel_mgbe_pse_crossts_adj(struct intel_priv_data *intel_priv,
406 				       int base)
407 {
408 	if (boot_cpu_has(X86_FEATURE_ART)) {
409 		unsigned int art_freq;
410 
411 		/* On systems that support ART, ART frequency can be obtained
412 		 * from ECX register of CPUID leaf (0x15).
413 		 */
414 		art_freq = cpuid_ecx(ART_CPUID_LEAF);
415 		do_div(art_freq, base);
416 		intel_priv->crossts_adj = art_freq;
417 	}
418 }
419 
420 static void common_default_data(struct plat_stmmacenet_data *plat)
421 {
422 	plat->clk_csr = 2;	/* clk_csr_i = 20-35MHz & MDC = clk_csr_i/16 */
423 	plat->has_gmac = 1;
424 	plat->force_sf_dma_mode = 1;
425 
426 	plat->mdio_bus_data->needs_reset = true;
427 
428 	/* Set default value for multicast hash bins */
429 	plat->multicast_filter_bins = HASH_TABLE_SIZE;
430 
431 	/* Set default value for unicast filter entries */
432 	plat->unicast_filter_entries = 1;
433 
434 	/* Set the maxmtu to a default of JUMBO_LEN */
435 	plat->maxmtu = JUMBO_LEN;
436 
437 	/* Set default number of RX and TX queues to use */
438 	plat->tx_queues_to_use = 1;
439 	plat->rx_queues_to_use = 1;
440 
441 	/* Disable Priority config by default */
442 	plat->tx_queues_cfg[0].use_prio = false;
443 	plat->rx_queues_cfg[0].use_prio = false;
444 
445 	/* Disable RX queues routing by default */
446 	plat->rx_queues_cfg[0].pkt_route = 0x0;
447 }
448 
449 static int intel_mgbe_common_data(struct pci_dev *pdev,
450 				  struct plat_stmmacenet_data *plat)
451 {
452 	char clk_name[20];
453 	int ret;
454 	int i;
455 
456 	plat->pdev = pdev;
457 	plat->phy_addr = -1;
458 	plat->clk_csr = 5;
459 	plat->has_gmac = 0;
460 	plat->has_gmac4 = 1;
461 	plat->force_sf_dma_mode = 0;
462 	plat->tso_en = 1;
463 	plat->sph_disable = 1;
464 
465 	/* Multiplying factor to the clk_eee_i clock time
466 	 * period to make it closer to 100 ns. This value
467 	 * should be programmed such that the clk_eee_time_period *
468 	 * (MULT_FACT_100NS + 1) should be within 80 ns to 120 ns
469 	 * clk_eee frequency is 19.2Mhz
470 	 * clk_eee_time_period is 52ns
471 	 * 52ns * (1 + 1) = 104ns
472 	 * MULT_FACT_100NS = 1
473 	 */
474 	plat->mult_fact_100ns = 1;
475 
476 	plat->rx_sched_algorithm = MTL_RX_ALGORITHM_SP;
477 
478 	for (i = 0; i < plat->rx_queues_to_use; i++) {
479 		plat->rx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB;
480 		plat->rx_queues_cfg[i].chan = i;
481 
482 		/* Disable Priority config by default */
483 		plat->rx_queues_cfg[i].use_prio = false;
484 
485 		/* Disable RX queues routing by default */
486 		plat->rx_queues_cfg[i].pkt_route = 0x0;
487 	}
488 
489 	for (i = 0; i < plat->tx_queues_to_use; i++) {
490 		plat->tx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB;
491 
492 		/* Disable Priority config by default */
493 		plat->tx_queues_cfg[i].use_prio = false;
494 		/* Default TX Q0 to use TSO and rest TXQ for TBS */
495 		if (i > 0)
496 			plat->tx_queues_cfg[i].tbs_en = 1;
497 	}
498 
499 	/* FIFO size is 4096 bytes for 1 tx/rx queue */
500 	plat->tx_fifo_size = plat->tx_queues_to_use * 4096;
501 	plat->rx_fifo_size = plat->rx_queues_to_use * 4096;
502 
503 	plat->tx_sched_algorithm = MTL_TX_ALGORITHM_WRR;
504 	plat->tx_queues_cfg[0].weight = 0x09;
505 	plat->tx_queues_cfg[1].weight = 0x0A;
506 	plat->tx_queues_cfg[2].weight = 0x0B;
507 	plat->tx_queues_cfg[3].weight = 0x0C;
508 	plat->tx_queues_cfg[4].weight = 0x0D;
509 	plat->tx_queues_cfg[5].weight = 0x0E;
510 	plat->tx_queues_cfg[6].weight = 0x0F;
511 	plat->tx_queues_cfg[7].weight = 0x10;
512 
513 	plat->dma_cfg->pbl = 32;
514 	plat->dma_cfg->pblx8 = true;
515 	plat->dma_cfg->fixed_burst = 0;
516 	plat->dma_cfg->mixed_burst = 0;
517 	plat->dma_cfg->aal = 0;
518 	plat->dma_cfg->dche = true;
519 
520 	plat->axi = devm_kzalloc(&pdev->dev, sizeof(*plat->axi),
521 				 GFP_KERNEL);
522 	if (!plat->axi)
523 		return -ENOMEM;
524 
525 	plat->axi->axi_lpi_en = 0;
526 	plat->axi->axi_xit_frm = 0;
527 	plat->axi->axi_wr_osr_lmt = 1;
528 	plat->axi->axi_rd_osr_lmt = 1;
529 	plat->axi->axi_blen[0] = 4;
530 	plat->axi->axi_blen[1] = 8;
531 	plat->axi->axi_blen[2] = 16;
532 
533 	plat->ptp_max_adj = plat->clk_ptp_rate;
534 	plat->eee_usecs_rate = plat->clk_ptp_rate;
535 
536 	/* Set system clock */
537 	sprintf(clk_name, "%s-%s", "stmmac", pci_name(pdev));
538 
539 	plat->stmmac_clk = clk_register_fixed_rate(&pdev->dev,
540 						   clk_name, NULL, 0,
541 						   plat->clk_ptp_rate);
542 
543 	if (IS_ERR(plat->stmmac_clk)) {
544 		dev_warn(&pdev->dev, "Fail to register stmmac-clk\n");
545 		plat->stmmac_clk = NULL;
546 	}
547 
548 	ret = clk_prepare_enable(plat->stmmac_clk);
549 	if (ret) {
550 		clk_unregister_fixed_rate(plat->stmmac_clk);
551 		return ret;
552 	}
553 
554 	plat->ptp_clk_freq_config = intel_mgbe_ptp_clk_freq_config;
555 
556 	/* Set default value for multicast hash bins */
557 	plat->multicast_filter_bins = HASH_TABLE_SIZE;
558 
559 	/* Set default value for unicast filter entries */
560 	plat->unicast_filter_entries = 1;
561 
562 	/* Set the maxmtu to a default of JUMBO_LEN */
563 	plat->maxmtu = JUMBO_LEN;
564 
565 	plat->vlan_fail_q_en = true;
566 
567 	/* Use the last Rx queue */
568 	plat->vlan_fail_q = plat->rx_queues_to_use - 1;
569 
570 	/* Intel mgbe SGMII interface uses pcs-xcps */
571 	if (plat->phy_interface == PHY_INTERFACE_MODE_SGMII) {
572 		plat->mdio_bus_data->has_xpcs = true;
573 		plat->mdio_bus_data->xpcs_an_inband = true;
574 	}
575 
576 	/* Ensure mdio bus scan skips intel serdes and pcs-xpcs */
577 	plat->mdio_bus_data->phy_mask = 1 << INTEL_MGBE_ADHOC_ADDR;
578 	plat->mdio_bus_data->phy_mask |= 1 << INTEL_MGBE_XPCS_ADDR;
579 
580 	plat->int_snapshot_num = AUX_SNAPSHOT1;
581 	plat->ext_snapshot_num = AUX_SNAPSHOT0;
582 
583 	plat->has_crossts = true;
584 	plat->crosststamp = intel_crosststamp;
585 	plat->int_snapshot_en = 0;
586 
587 	/* Setup MSI vector offset specific to Intel mGbE controller */
588 	plat->msi_mac_vec = 29;
589 	plat->msi_lpi_vec = 28;
590 	plat->msi_sfty_ce_vec = 27;
591 	plat->msi_sfty_ue_vec = 26;
592 	plat->msi_rx_base_vec = 0;
593 	plat->msi_tx_base_vec = 1;
594 
595 	return 0;
596 }
597 
598 static int ehl_common_data(struct pci_dev *pdev,
599 			   struct plat_stmmacenet_data *plat)
600 {
601 	plat->rx_queues_to_use = 8;
602 	plat->tx_queues_to_use = 8;
603 	plat->clk_ptp_rate = 200000000;
604 	plat->use_phy_wol = 1;
605 
606 	plat->safety_feat_cfg->tsoee = 1;
607 	plat->safety_feat_cfg->mrxpee = 1;
608 	plat->safety_feat_cfg->mestee = 1;
609 	plat->safety_feat_cfg->mrxee = 1;
610 	plat->safety_feat_cfg->mtxee = 1;
611 	plat->safety_feat_cfg->epsi = 0;
612 	plat->safety_feat_cfg->edpp = 0;
613 	plat->safety_feat_cfg->prtyen = 0;
614 	plat->safety_feat_cfg->tmouten = 0;
615 
616 	return intel_mgbe_common_data(pdev, plat);
617 }
618 
619 static int ehl_sgmii_data(struct pci_dev *pdev,
620 			  struct plat_stmmacenet_data *plat)
621 {
622 	plat->bus_id = 1;
623 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
624 	plat->speed_mode_2500 = intel_speed_mode_2500;
625 	plat->serdes_powerup = intel_serdes_powerup;
626 	plat->serdes_powerdown = intel_serdes_powerdown;
627 
628 	return ehl_common_data(pdev, plat);
629 }
630 
631 static struct stmmac_pci_info ehl_sgmii1g_info = {
632 	.setup = ehl_sgmii_data,
633 };
634 
635 static int ehl_rgmii_data(struct pci_dev *pdev,
636 			  struct plat_stmmacenet_data *plat)
637 {
638 	plat->bus_id = 1;
639 	plat->phy_interface = PHY_INTERFACE_MODE_RGMII;
640 
641 	return ehl_common_data(pdev, plat);
642 }
643 
644 static struct stmmac_pci_info ehl_rgmii1g_info = {
645 	.setup = ehl_rgmii_data,
646 };
647 
648 static int ehl_pse0_common_data(struct pci_dev *pdev,
649 				struct plat_stmmacenet_data *plat)
650 {
651 	struct intel_priv_data *intel_priv = plat->bsp_priv;
652 
653 	intel_priv->is_pse = true;
654 	plat->bus_id = 2;
655 	plat->addr64 = 32;
656 
657 	intel_mgbe_pse_crossts_adj(intel_priv, EHL_PSE_ART_MHZ);
658 
659 	return ehl_common_data(pdev, plat);
660 }
661 
662 static int ehl_pse0_rgmii1g_data(struct pci_dev *pdev,
663 				 struct plat_stmmacenet_data *plat)
664 {
665 	plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID;
666 	return ehl_pse0_common_data(pdev, plat);
667 }
668 
669 static struct stmmac_pci_info ehl_pse0_rgmii1g_info = {
670 	.setup = ehl_pse0_rgmii1g_data,
671 };
672 
673 static int ehl_pse0_sgmii1g_data(struct pci_dev *pdev,
674 				 struct plat_stmmacenet_data *plat)
675 {
676 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
677 	plat->speed_mode_2500 = intel_speed_mode_2500;
678 	plat->serdes_powerup = intel_serdes_powerup;
679 	plat->serdes_powerdown = intel_serdes_powerdown;
680 	return ehl_pse0_common_data(pdev, plat);
681 }
682 
683 static struct stmmac_pci_info ehl_pse0_sgmii1g_info = {
684 	.setup = ehl_pse0_sgmii1g_data,
685 };
686 
687 static int ehl_pse1_common_data(struct pci_dev *pdev,
688 				struct plat_stmmacenet_data *plat)
689 {
690 	struct intel_priv_data *intel_priv = plat->bsp_priv;
691 
692 	intel_priv->is_pse = true;
693 	plat->bus_id = 3;
694 	plat->addr64 = 32;
695 
696 	intel_mgbe_pse_crossts_adj(intel_priv, EHL_PSE_ART_MHZ);
697 
698 	return ehl_common_data(pdev, plat);
699 }
700 
701 static int ehl_pse1_rgmii1g_data(struct pci_dev *pdev,
702 				 struct plat_stmmacenet_data *plat)
703 {
704 	plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID;
705 	return ehl_pse1_common_data(pdev, plat);
706 }
707 
708 static struct stmmac_pci_info ehl_pse1_rgmii1g_info = {
709 	.setup = ehl_pse1_rgmii1g_data,
710 };
711 
712 static int ehl_pse1_sgmii1g_data(struct pci_dev *pdev,
713 				 struct plat_stmmacenet_data *plat)
714 {
715 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
716 	plat->speed_mode_2500 = intel_speed_mode_2500;
717 	plat->serdes_powerup = intel_serdes_powerup;
718 	plat->serdes_powerdown = intel_serdes_powerdown;
719 	return ehl_pse1_common_data(pdev, plat);
720 }
721 
722 static struct stmmac_pci_info ehl_pse1_sgmii1g_info = {
723 	.setup = ehl_pse1_sgmii1g_data,
724 };
725 
726 static int tgl_common_data(struct pci_dev *pdev,
727 			   struct plat_stmmacenet_data *plat)
728 {
729 	plat->rx_queues_to_use = 6;
730 	plat->tx_queues_to_use = 4;
731 	plat->clk_ptp_rate = 200000000;
732 	plat->speed_mode_2500 = intel_speed_mode_2500;
733 
734 	plat->safety_feat_cfg->tsoee = 1;
735 	plat->safety_feat_cfg->mrxpee = 0;
736 	plat->safety_feat_cfg->mestee = 1;
737 	plat->safety_feat_cfg->mrxee = 1;
738 	plat->safety_feat_cfg->mtxee = 1;
739 	plat->safety_feat_cfg->epsi = 0;
740 	plat->safety_feat_cfg->edpp = 0;
741 	plat->safety_feat_cfg->prtyen = 0;
742 	plat->safety_feat_cfg->tmouten = 0;
743 
744 	return intel_mgbe_common_data(pdev, plat);
745 }
746 
747 static int tgl_sgmii_phy0_data(struct pci_dev *pdev,
748 			       struct plat_stmmacenet_data *plat)
749 {
750 	plat->bus_id = 1;
751 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
752 	plat->serdes_powerup = intel_serdes_powerup;
753 	plat->serdes_powerdown = intel_serdes_powerdown;
754 	return tgl_common_data(pdev, plat);
755 }
756 
757 static struct stmmac_pci_info tgl_sgmii1g_phy0_info = {
758 	.setup = tgl_sgmii_phy0_data,
759 };
760 
761 static int tgl_sgmii_phy1_data(struct pci_dev *pdev,
762 			       struct plat_stmmacenet_data *plat)
763 {
764 	plat->bus_id = 2;
765 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
766 	plat->serdes_powerup = intel_serdes_powerup;
767 	plat->serdes_powerdown = intel_serdes_powerdown;
768 	return tgl_common_data(pdev, plat);
769 }
770 
771 static struct stmmac_pci_info tgl_sgmii1g_phy1_info = {
772 	.setup = tgl_sgmii_phy1_data,
773 };
774 
775 static int adls_sgmii_phy0_data(struct pci_dev *pdev,
776 				struct plat_stmmacenet_data *plat)
777 {
778 	plat->bus_id = 1;
779 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
780 
781 	/* SerDes power up and power down are done in BIOS for ADL */
782 
783 	return tgl_common_data(pdev, plat);
784 }
785 
786 static struct stmmac_pci_info adls_sgmii1g_phy0_info = {
787 	.setup = adls_sgmii_phy0_data,
788 };
789 
790 static int adls_sgmii_phy1_data(struct pci_dev *pdev,
791 				struct plat_stmmacenet_data *plat)
792 {
793 	plat->bus_id = 2;
794 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
795 
796 	/* SerDes power up and power down are done in BIOS for ADL */
797 
798 	return tgl_common_data(pdev, plat);
799 }
800 
801 static struct stmmac_pci_info adls_sgmii1g_phy1_info = {
802 	.setup = adls_sgmii_phy1_data,
803 };
804 static const struct stmmac_pci_func_data galileo_stmmac_func_data[] = {
805 	{
806 		.func = 6,
807 		.phy_addr = 1,
808 	},
809 };
810 
811 static const struct stmmac_pci_dmi_data galileo_stmmac_dmi_data = {
812 	.func = galileo_stmmac_func_data,
813 	.nfuncs = ARRAY_SIZE(galileo_stmmac_func_data),
814 };
815 
816 static const struct stmmac_pci_func_data iot2040_stmmac_func_data[] = {
817 	{
818 		.func = 6,
819 		.phy_addr = 1,
820 	},
821 	{
822 		.func = 7,
823 		.phy_addr = 1,
824 	},
825 };
826 
827 static const struct stmmac_pci_dmi_data iot2040_stmmac_dmi_data = {
828 	.func = iot2040_stmmac_func_data,
829 	.nfuncs = ARRAY_SIZE(iot2040_stmmac_func_data),
830 };
831 
832 static const struct dmi_system_id quark_pci_dmi[] = {
833 	{
834 		.matches = {
835 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "Galileo"),
836 		},
837 		.driver_data = (void *)&galileo_stmmac_dmi_data,
838 	},
839 	{
840 		.matches = {
841 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "GalileoGen2"),
842 		},
843 		.driver_data = (void *)&galileo_stmmac_dmi_data,
844 	},
845 	/* There are 2 types of SIMATIC IOT2000: IOT2020 and IOT2040.
846 	 * The asset tag "6ES7647-0AA00-0YA2" is only for IOT2020 which
847 	 * has only one pci network device while other asset tags are
848 	 * for IOT2040 which has two.
849 	 */
850 	{
851 		.matches = {
852 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"),
853 			DMI_EXACT_MATCH(DMI_BOARD_ASSET_TAG,
854 					"6ES7647-0AA00-0YA2"),
855 		},
856 		.driver_data = (void *)&galileo_stmmac_dmi_data,
857 	},
858 	{
859 		.matches = {
860 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"),
861 		},
862 		.driver_data = (void *)&iot2040_stmmac_dmi_data,
863 	},
864 	{}
865 };
866 
867 static int quark_default_data(struct pci_dev *pdev,
868 			      struct plat_stmmacenet_data *plat)
869 {
870 	int ret;
871 
872 	/* Set common default data first */
873 	common_default_data(plat);
874 
875 	/* Refuse to load the driver and register net device if MAC controller
876 	 * does not connect to any PHY interface.
877 	 */
878 	ret = stmmac_pci_find_phy_addr(pdev, quark_pci_dmi);
879 	if (ret < 0) {
880 		/* Return error to the caller on DMI enabled boards. */
881 		if (dmi_get_system_info(DMI_BOARD_NAME))
882 			return ret;
883 
884 		/* Galileo boards with old firmware don't support DMI. We always
885 		 * use 1 here as PHY address, so at least the first found MAC
886 		 * controller would be probed.
887 		 */
888 		ret = 1;
889 	}
890 
891 	plat->bus_id = pci_dev_id(pdev);
892 	plat->phy_addr = ret;
893 	plat->phy_interface = PHY_INTERFACE_MODE_RMII;
894 
895 	plat->dma_cfg->pbl = 16;
896 	plat->dma_cfg->pblx8 = true;
897 	plat->dma_cfg->fixed_burst = 1;
898 	/* AXI (TODO) */
899 
900 	return 0;
901 }
902 
903 static const struct stmmac_pci_info quark_info = {
904 	.setup = quark_default_data,
905 };
906 
907 static int stmmac_config_single_msi(struct pci_dev *pdev,
908 				    struct plat_stmmacenet_data *plat,
909 				    struct stmmac_resources *res)
910 {
911 	int ret;
912 
913 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
914 	if (ret < 0) {
915 		dev_info(&pdev->dev, "%s: Single IRQ enablement failed\n",
916 			 __func__);
917 		return ret;
918 	}
919 
920 	res->irq = pci_irq_vector(pdev, 0);
921 	res->wol_irq = res->irq;
922 	plat->multi_msi_en = 0;
923 	dev_info(&pdev->dev, "%s: Single IRQ enablement successful\n",
924 		 __func__);
925 
926 	return 0;
927 }
928 
929 static int stmmac_config_multi_msi(struct pci_dev *pdev,
930 				   struct plat_stmmacenet_data *plat,
931 				   struct stmmac_resources *res)
932 {
933 	int ret;
934 	int i;
935 
936 	if (plat->msi_rx_base_vec >= STMMAC_MSI_VEC_MAX ||
937 	    plat->msi_tx_base_vec >= STMMAC_MSI_VEC_MAX) {
938 		dev_info(&pdev->dev, "%s: Invalid RX & TX vector defined\n",
939 			 __func__);
940 		return -1;
941 	}
942 
943 	ret = pci_alloc_irq_vectors(pdev, 2, STMMAC_MSI_VEC_MAX,
944 				    PCI_IRQ_MSI | PCI_IRQ_MSIX);
945 	if (ret < 0) {
946 		dev_info(&pdev->dev, "%s: multi MSI enablement failed\n",
947 			 __func__);
948 		return ret;
949 	}
950 
951 	/* For RX MSI */
952 	for (i = 0; i < plat->rx_queues_to_use; i++) {
953 		res->rx_irq[i] = pci_irq_vector(pdev,
954 						plat->msi_rx_base_vec + i * 2);
955 	}
956 
957 	/* For TX MSI */
958 	for (i = 0; i < plat->tx_queues_to_use; i++) {
959 		res->tx_irq[i] = pci_irq_vector(pdev,
960 						plat->msi_tx_base_vec + i * 2);
961 	}
962 
963 	if (plat->msi_mac_vec < STMMAC_MSI_VEC_MAX)
964 		res->irq = pci_irq_vector(pdev, plat->msi_mac_vec);
965 	if (plat->msi_wol_vec < STMMAC_MSI_VEC_MAX)
966 		res->wol_irq = pci_irq_vector(pdev, plat->msi_wol_vec);
967 	if (plat->msi_lpi_vec < STMMAC_MSI_VEC_MAX)
968 		res->lpi_irq = pci_irq_vector(pdev, plat->msi_lpi_vec);
969 	if (plat->msi_sfty_ce_vec < STMMAC_MSI_VEC_MAX)
970 		res->sfty_ce_irq = pci_irq_vector(pdev, plat->msi_sfty_ce_vec);
971 	if (plat->msi_sfty_ue_vec < STMMAC_MSI_VEC_MAX)
972 		res->sfty_ue_irq = pci_irq_vector(pdev, plat->msi_sfty_ue_vec);
973 
974 	plat->multi_msi_en = 1;
975 	dev_info(&pdev->dev, "%s: multi MSI enablement successful\n", __func__);
976 
977 	return 0;
978 }
979 
980 /**
981  * intel_eth_pci_probe
982  *
983  * @pdev: pci device pointer
984  * @id: pointer to table of device id/id's.
985  *
986  * Description: This probing function gets called for all PCI devices which
987  * match the ID table and are not "owned" by other driver yet. This function
988  * gets passed a "struct pci_dev *" for each device whose entry in the ID table
989  * matches the device. The probe functions returns zero when the driver choose
990  * to take "ownership" of the device or an error code(-ve no) otherwise.
991  */
992 static int intel_eth_pci_probe(struct pci_dev *pdev,
993 			       const struct pci_device_id *id)
994 {
995 	struct stmmac_pci_info *info = (struct stmmac_pci_info *)id->driver_data;
996 	struct intel_priv_data *intel_priv;
997 	struct plat_stmmacenet_data *plat;
998 	struct stmmac_resources res;
999 	int ret;
1000 
1001 	intel_priv = devm_kzalloc(&pdev->dev, sizeof(*intel_priv), GFP_KERNEL);
1002 	if (!intel_priv)
1003 		return -ENOMEM;
1004 
1005 	plat = devm_kzalloc(&pdev->dev, sizeof(*plat), GFP_KERNEL);
1006 	if (!plat)
1007 		return -ENOMEM;
1008 
1009 	plat->mdio_bus_data = devm_kzalloc(&pdev->dev,
1010 					   sizeof(*plat->mdio_bus_data),
1011 					   GFP_KERNEL);
1012 	if (!plat->mdio_bus_data)
1013 		return -ENOMEM;
1014 
1015 	plat->dma_cfg = devm_kzalloc(&pdev->dev, sizeof(*plat->dma_cfg),
1016 				     GFP_KERNEL);
1017 	if (!plat->dma_cfg)
1018 		return -ENOMEM;
1019 
1020 	plat->safety_feat_cfg = devm_kzalloc(&pdev->dev,
1021 					     sizeof(*plat->safety_feat_cfg),
1022 					     GFP_KERNEL);
1023 	if (!plat->safety_feat_cfg)
1024 		return -ENOMEM;
1025 
1026 	/* Enable pci device */
1027 	ret = pcim_enable_device(pdev);
1028 	if (ret) {
1029 		dev_err(&pdev->dev, "%s: ERROR: failed to enable device\n",
1030 			__func__);
1031 		return ret;
1032 	}
1033 
1034 	ret = pcim_iomap_regions(pdev, BIT(0), pci_name(pdev));
1035 	if (ret)
1036 		return ret;
1037 
1038 	pci_set_master(pdev);
1039 
1040 	plat->bsp_priv = intel_priv;
1041 	intel_priv->mdio_adhoc_addr = INTEL_MGBE_ADHOC_ADDR;
1042 	intel_priv->crossts_adj = 1;
1043 
1044 	/* Initialize all MSI vectors to invalid so that it can be set
1045 	 * according to platform data settings below.
1046 	 * Note: MSI vector takes value from 0 upto 31 (STMMAC_MSI_VEC_MAX)
1047 	 */
1048 	plat->msi_mac_vec = STMMAC_MSI_VEC_MAX;
1049 	plat->msi_wol_vec = STMMAC_MSI_VEC_MAX;
1050 	plat->msi_lpi_vec = STMMAC_MSI_VEC_MAX;
1051 	plat->msi_sfty_ce_vec = STMMAC_MSI_VEC_MAX;
1052 	plat->msi_sfty_ue_vec = STMMAC_MSI_VEC_MAX;
1053 	plat->msi_rx_base_vec = STMMAC_MSI_VEC_MAX;
1054 	plat->msi_tx_base_vec = STMMAC_MSI_VEC_MAX;
1055 
1056 	ret = info->setup(pdev, plat);
1057 	if (ret)
1058 		return ret;
1059 
1060 	memset(&res, 0, sizeof(res));
1061 	res.addr = pcim_iomap_table(pdev)[0];
1062 
1063 	if (plat->eee_usecs_rate > 0) {
1064 		u32 tx_lpi_usec;
1065 
1066 		tx_lpi_usec = (plat->eee_usecs_rate / 1000000) - 1;
1067 		writel(tx_lpi_usec, res.addr + GMAC_1US_TIC_COUNTER);
1068 	}
1069 
1070 	ret = stmmac_config_multi_msi(pdev, plat, &res);
1071 	if (ret) {
1072 		ret = stmmac_config_single_msi(pdev, plat, &res);
1073 		if (ret) {
1074 			dev_err(&pdev->dev, "%s: ERROR: failed to enable IRQ\n",
1075 				__func__);
1076 			goto err_alloc_irq;
1077 		}
1078 	}
1079 
1080 	ret = stmmac_dvr_probe(&pdev->dev, plat, &res);
1081 	if (ret) {
1082 		goto err_alloc_irq;
1083 	}
1084 
1085 	return 0;
1086 
1087 err_alloc_irq:
1088 	clk_disable_unprepare(plat->stmmac_clk);
1089 	clk_unregister_fixed_rate(plat->stmmac_clk);
1090 	return ret;
1091 }
1092 
1093 /**
1094  * intel_eth_pci_remove
1095  *
1096  * @pdev: pci device pointer
1097  * Description: this function calls the main to free the net resources
1098  * and releases the PCI resources.
1099  */
1100 static void intel_eth_pci_remove(struct pci_dev *pdev)
1101 {
1102 	struct net_device *ndev = dev_get_drvdata(&pdev->dev);
1103 	struct stmmac_priv *priv = netdev_priv(ndev);
1104 
1105 	stmmac_dvr_remove(&pdev->dev);
1106 
1107 	clk_unregister_fixed_rate(priv->plat->stmmac_clk);
1108 
1109 	pcim_iounmap_regions(pdev, BIT(0));
1110 }
1111 
1112 static int __maybe_unused intel_eth_pci_suspend(struct device *dev)
1113 {
1114 	struct pci_dev *pdev = to_pci_dev(dev);
1115 	int ret;
1116 
1117 	ret = stmmac_suspend(dev);
1118 	if (ret)
1119 		return ret;
1120 
1121 	ret = pci_save_state(pdev);
1122 	if (ret)
1123 		return ret;
1124 
1125 	pci_wake_from_d3(pdev, true);
1126 	pci_set_power_state(pdev, PCI_D3hot);
1127 	return 0;
1128 }
1129 
1130 static int __maybe_unused intel_eth_pci_resume(struct device *dev)
1131 {
1132 	struct pci_dev *pdev = to_pci_dev(dev);
1133 	int ret;
1134 
1135 	pci_restore_state(pdev);
1136 	pci_set_power_state(pdev, PCI_D0);
1137 
1138 	ret = pcim_enable_device(pdev);
1139 	if (ret)
1140 		return ret;
1141 
1142 	pci_set_master(pdev);
1143 
1144 	return stmmac_resume(dev);
1145 }
1146 
1147 static SIMPLE_DEV_PM_OPS(intel_eth_pm_ops, intel_eth_pci_suspend,
1148 			 intel_eth_pci_resume);
1149 
1150 #define PCI_DEVICE_ID_INTEL_QUARK		0x0937
1151 #define PCI_DEVICE_ID_INTEL_EHL_RGMII1G		0x4b30
1152 #define PCI_DEVICE_ID_INTEL_EHL_SGMII1G		0x4b31
1153 #define PCI_DEVICE_ID_INTEL_EHL_SGMII2G5	0x4b32
1154 /* Intel(R) Programmable Services Engine (Intel(R) PSE) consist of 2 MAC
1155  * which are named PSE0 and PSE1
1156  */
1157 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_RGMII1G	0x4ba0
1158 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII1G	0x4ba1
1159 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII2G5	0x4ba2
1160 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_RGMII1G	0x4bb0
1161 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII1G	0x4bb1
1162 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII2G5	0x4bb2
1163 #define PCI_DEVICE_ID_INTEL_TGLH_SGMII1G_0	0x43ac
1164 #define PCI_DEVICE_ID_INTEL_TGLH_SGMII1G_1	0x43a2
1165 #define PCI_DEVICE_ID_INTEL_TGL_SGMII1G		0xa0ac
1166 #define PCI_DEVICE_ID_INTEL_ADLS_SGMII1G_0	0x7aac
1167 #define PCI_DEVICE_ID_INTEL_ADLS_SGMII1G_1	0x7aad
1168 #define PCI_DEVICE_ID_INTEL_ADLN_SGMII1G	0x54ac
1169 #define PCI_DEVICE_ID_INTEL_RPLP_SGMII1G	0x51ac
1170 
1171 static const struct pci_device_id intel_eth_pci_id_table[] = {
1172 	{ PCI_DEVICE_DATA(INTEL, QUARK, &quark_info) },
1173 	{ PCI_DEVICE_DATA(INTEL, EHL_RGMII1G, &ehl_rgmii1g_info) },
1174 	{ PCI_DEVICE_DATA(INTEL, EHL_SGMII1G, &ehl_sgmii1g_info) },
1175 	{ PCI_DEVICE_DATA(INTEL, EHL_SGMII2G5, &ehl_sgmii1g_info) },
1176 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_RGMII1G, &ehl_pse0_rgmii1g_info) },
1177 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII1G, &ehl_pse0_sgmii1g_info) },
1178 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII2G5, &ehl_pse0_sgmii1g_info) },
1179 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_RGMII1G, &ehl_pse1_rgmii1g_info) },
1180 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII1G, &ehl_pse1_sgmii1g_info) },
1181 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII2G5, &ehl_pse1_sgmii1g_info) },
1182 	{ PCI_DEVICE_DATA(INTEL, TGL_SGMII1G, &tgl_sgmii1g_phy0_info) },
1183 	{ PCI_DEVICE_DATA(INTEL, TGLH_SGMII1G_0, &tgl_sgmii1g_phy0_info) },
1184 	{ PCI_DEVICE_DATA(INTEL, TGLH_SGMII1G_1, &tgl_sgmii1g_phy1_info) },
1185 	{ PCI_DEVICE_DATA(INTEL, ADLS_SGMII1G_0, &adls_sgmii1g_phy0_info) },
1186 	{ PCI_DEVICE_DATA(INTEL, ADLS_SGMII1G_1, &adls_sgmii1g_phy1_info) },
1187 	{ PCI_DEVICE_DATA(INTEL, ADLN_SGMII1G, &tgl_sgmii1g_phy0_info) },
1188 	{ PCI_DEVICE_DATA(INTEL, RPLP_SGMII1G, &tgl_sgmii1g_phy0_info) },
1189 	{}
1190 };
1191 MODULE_DEVICE_TABLE(pci, intel_eth_pci_id_table);
1192 
1193 static struct pci_driver intel_eth_pci_driver = {
1194 	.name = "intel-eth-pci",
1195 	.id_table = intel_eth_pci_id_table,
1196 	.probe = intel_eth_pci_probe,
1197 	.remove = intel_eth_pci_remove,
1198 	.driver         = {
1199 		.pm     = &intel_eth_pm_ops,
1200 	},
1201 };
1202 
1203 module_pci_driver(intel_eth_pci_driver);
1204 
1205 MODULE_DESCRIPTION("INTEL 10/100/1000 Ethernet PCI driver");
1206 MODULE_AUTHOR("Voon Weifeng <weifeng.voon@intel.com>");
1207 MODULE_LICENSE("GPL v2");
1208