1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2020, Intel Corporation
3  */
4 
5 #include <linux/clk-provider.h>
6 #include <linux/pci.h>
7 #include <linux/dmi.h>
8 #include "dwmac-intel.h"
9 #include "dwmac4.h"
10 #include "stmmac.h"
11 
12 struct intel_priv_data {
13 	int mdio_adhoc_addr;	/* mdio address for serdes & etc */
14 };
15 
16 /* This struct is used to associate PCI Function of MAC controller on a board,
17  * discovered via DMI, with the address of PHY connected to the MAC. The
18  * negative value of the address means that MAC controller is not connected
19  * with PHY.
20  */
21 struct stmmac_pci_func_data {
22 	unsigned int func;
23 	int phy_addr;
24 };
25 
26 struct stmmac_pci_dmi_data {
27 	const struct stmmac_pci_func_data *func;
28 	size_t nfuncs;
29 };
30 
31 struct stmmac_pci_info {
32 	int (*setup)(struct pci_dev *pdev, struct plat_stmmacenet_data *plat);
33 };
34 
35 static int stmmac_pci_find_phy_addr(struct pci_dev *pdev,
36 				    const struct dmi_system_id *dmi_list)
37 {
38 	const struct stmmac_pci_func_data *func_data;
39 	const struct stmmac_pci_dmi_data *dmi_data;
40 	const struct dmi_system_id *dmi_id;
41 	int func = PCI_FUNC(pdev->devfn);
42 	size_t n;
43 
44 	dmi_id = dmi_first_match(dmi_list);
45 	if (!dmi_id)
46 		return -ENODEV;
47 
48 	dmi_data = dmi_id->driver_data;
49 	func_data = dmi_data->func;
50 
51 	for (n = 0; n < dmi_data->nfuncs; n++, func_data++)
52 		if (func_data->func == func)
53 			return func_data->phy_addr;
54 
55 	return -ENODEV;
56 }
57 
58 static int serdes_status_poll(struct stmmac_priv *priv, int phyaddr,
59 			      int phyreg, u32 mask, u32 val)
60 {
61 	unsigned int retries = 10;
62 	int val_rd;
63 
64 	do {
65 		val_rd = mdiobus_read(priv->mii, phyaddr, phyreg);
66 		if ((val_rd & mask) == (val & mask))
67 			return 0;
68 		udelay(POLL_DELAY_US);
69 	} while (--retries);
70 
71 	return -ETIMEDOUT;
72 }
73 
74 static int intel_serdes_powerup(struct net_device *ndev, void *priv_data)
75 {
76 	struct intel_priv_data *intel_priv = priv_data;
77 	struct stmmac_priv *priv = netdev_priv(ndev);
78 	int serdes_phy_addr = 0;
79 	u32 data = 0;
80 
81 	if (!intel_priv->mdio_adhoc_addr)
82 		return 0;
83 
84 	serdes_phy_addr = intel_priv->mdio_adhoc_addr;
85 
86 	/* assert clk_req */
87 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
88 	data |= SERDES_PLL_CLK;
89 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
90 
91 	/* check for clk_ack assertion */
92 	data = serdes_status_poll(priv, serdes_phy_addr,
93 				  SERDES_GSR0,
94 				  SERDES_PLL_CLK,
95 				  SERDES_PLL_CLK);
96 
97 	if (data) {
98 		dev_err(priv->device, "Serdes PLL clk request timeout\n");
99 		return data;
100 	}
101 
102 	/* assert lane reset */
103 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
104 	data |= SERDES_RST;
105 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
106 
107 	/* check for assert lane reset reflection */
108 	data = serdes_status_poll(priv, serdes_phy_addr,
109 				  SERDES_GSR0,
110 				  SERDES_RST,
111 				  SERDES_RST);
112 
113 	if (data) {
114 		dev_err(priv->device, "Serdes assert lane reset timeout\n");
115 		return data;
116 	}
117 
118 	/*  move power state to P0 */
119 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
120 
121 	data &= ~SERDES_PWR_ST_MASK;
122 	data |= SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT;
123 
124 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
125 
126 	/* Check for P0 state */
127 	data = serdes_status_poll(priv, serdes_phy_addr,
128 				  SERDES_GSR0,
129 				  SERDES_PWR_ST_MASK,
130 				  SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT);
131 
132 	if (data) {
133 		dev_err(priv->device, "Serdes power state P0 timeout.\n");
134 		return data;
135 	}
136 
137 	return 0;
138 }
139 
140 static void intel_serdes_powerdown(struct net_device *ndev, void *intel_data)
141 {
142 	struct intel_priv_data *intel_priv = intel_data;
143 	struct stmmac_priv *priv = netdev_priv(ndev);
144 	int serdes_phy_addr = 0;
145 	u32 data = 0;
146 
147 	if (!intel_priv->mdio_adhoc_addr)
148 		return;
149 
150 	serdes_phy_addr = intel_priv->mdio_adhoc_addr;
151 
152 	/*  move power state to P3 */
153 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
154 
155 	data &= ~SERDES_PWR_ST_MASK;
156 	data |= SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT;
157 
158 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
159 
160 	/* Check for P3 state */
161 	data = serdes_status_poll(priv, serdes_phy_addr,
162 				  SERDES_GSR0,
163 				  SERDES_PWR_ST_MASK,
164 				  SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT);
165 
166 	if (data) {
167 		dev_err(priv->device, "Serdes power state P3 timeout\n");
168 		return;
169 	}
170 
171 	/* de-assert clk_req */
172 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
173 	data &= ~SERDES_PLL_CLK;
174 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
175 
176 	/* check for clk_ack de-assert */
177 	data = serdes_status_poll(priv, serdes_phy_addr,
178 				  SERDES_GSR0,
179 				  SERDES_PLL_CLK,
180 				  (u32)~SERDES_PLL_CLK);
181 
182 	if (data) {
183 		dev_err(priv->device, "Serdes PLL clk de-assert timeout\n");
184 		return;
185 	}
186 
187 	/* de-assert lane reset */
188 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
189 	data &= ~SERDES_RST;
190 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
191 
192 	/* check for de-assert lane reset reflection */
193 	data = serdes_status_poll(priv, serdes_phy_addr,
194 				  SERDES_GSR0,
195 				  SERDES_RST,
196 				  (u32)~SERDES_RST);
197 
198 	if (data) {
199 		dev_err(priv->device, "Serdes de-assert lane reset timeout\n");
200 		return;
201 	}
202 }
203 
204 static void common_default_data(struct plat_stmmacenet_data *plat)
205 {
206 	plat->clk_csr = 2;	/* clk_csr_i = 20-35MHz & MDC = clk_csr_i/16 */
207 	plat->has_gmac = 1;
208 	plat->force_sf_dma_mode = 1;
209 
210 	plat->mdio_bus_data->needs_reset = true;
211 
212 	/* Set default value for multicast hash bins */
213 	plat->multicast_filter_bins = HASH_TABLE_SIZE;
214 
215 	/* Set default value for unicast filter entries */
216 	plat->unicast_filter_entries = 1;
217 
218 	/* Set the maxmtu to a default of JUMBO_LEN */
219 	plat->maxmtu = JUMBO_LEN;
220 
221 	/* Set default number of RX and TX queues to use */
222 	plat->tx_queues_to_use = 1;
223 	plat->rx_queues_to_use = 1;
224 
225 	/* Disable Priority config by default */
226 	plat->tx_queues_cfg[0].use_prio = false;
227 	plat->rx_queues_cfg[0].use_prio = false;
228 
229 	/* Disable RX queues routing by default */
230 	plat->rx_queues_cfg[0].pkt_route = 0x0;
231 }
232 
233 static int intel_mgbe_common_data(struct pci_dev *pdev,
234 				  struct plat_stmmacenet_data *plat)
235 {
236 	int ret;
237 	int i;
238 
239 	plat->pdev = pdev;
240 	plat->phy_addr = -1;
241 	plat->clk_csr = 5;
242 	plat->has_gmac = 0;
243 	plat->has_gmac4 = 1;
244 	plat->force_sf_dma_mode = 0;
245 	plat->tso_en = 1;
246 
247 	plat->rx_sched_algorithm = MTL_RX_ALGORITHM_SP;
248 
249 	for (i = 0; i < plat->rx_queues_to_use; i++) {
250 		plat->rx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB;
251 		plat->rx_queues_cfg[i].chan = i;
252 
253 		/* Disable Priority config by default */
254 		plat->rx_queues_cfg[i].use_prio = false;
255 
256 		/* Disable RX queues routing by default */
257 		plat->rx_queues_cfg[i].pkt_route = 0x0;
258 	}
259 
260 	for (i = 0; i < plat->tx_queues_to_use; i++) {
261 		plat->tx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB;
262 
263 		/* Disable Priority config by default */
264 		plat->tx_queues_cfg[i].use_prio = false;
265 	}
266 
267 	/* FIFO size is 4096 bytes for 1 tx/rx queue */
268 	plat->tx_fifo_size = plat->tx_queues_to_use * 4096;
269 	plat->rx_fifo_size = plat->rx_queues_to_use * 4096;
270 
271 	plat->tx_sched_algorithm = MTL_TX_ALGORITHM_WRR;
272 	plat->tx_queues_cfg[0].weight = 0x09;
273 	plat->tx_queues_cfg[1].weight = 0x0A;
274 	plat->tx_queues_cfg[2].weight = 0x0B;
275 	plat->tx_queues_cfg[3].weight = 0x0C;
276 	plat->tx_queues_cfg[4].weight = 0x0D;
277 	plat->tx_queues_cfg[5].weight = 0x0E;
278 	plat->tx_queues_cfg[6].weight = 0x0F;
279 	plat->tx_queues_cfg[7].weight = 0x10;
280 
281 	plat->dma_cfg->pbl = 32;
282 	plat->dma_cfg->pblx8 = true;
283 	plat->dma_cfg->fixed_burst = 0;
284 	plat->dma_cfg->mixed_burst = 0;
285 	plat->dma_cfg->aal = 0;
286 
287 	plat->axi = devm_kzalloc(&pdev->dev, sizeof(*plat->axi),
288 				 GFP_KERNEL);
289 	if (!plat->axi)
290 		return -ENOMEM;
291 
292 	plat->axi->axi_lpi_en = 0;
293 	plat->axi->axi_xit_frm = 0;
294 	plat->axi->axi_wr_osr_lmt = 1;
295 	plat->axi->axi_rd_osr_lmt = 1;
296 	plat->axi->axi_blen[0] = 4;
297 	plat->axi->axi_blen[1] = 8;
298 	plat->axi->axi_blen[2] = 16;
299 
300 	plat->ptp_max_adj = plat->clk_ptp_rate;
301 	plat->eee_usecs_rate = plat->clk_ptp_rate;
302 
303 	/* Set system clock */
304 	plat->stmmac_clk = clk_register_fixed_rate(&pdev->dev,
305 						   "stmmac-clk", NULL, 0,
306 						   plat->clk_ptp_rate);
307 
308 	if (IS_ERR(plat->stmmac_clk)) {
309 		dev_warn(&pdev->dev, "Fail to register stmmac-clk\n");
310 		plat->stmmac_clk = NULL;
311 	}
312 
313 	ret = clk_prepare_enable(plat->stmmac_clk);
314 	if (ret) {
315 		clk_unregister_fixed_rate(plat->stmmac_clk);
316 		return ret;
317 	}
318 
319 	/* Set default value for multicast hash bins */
320 	plat->multicast_filter_bins = HASH_TABLE_SIZE;
321 
322 	/* Set default value for unicast filter entries */
323 	plat->unicast_filter_entries = 1;
324 
325 	/* Set the maxmtu to a default of JUMBO_LEN */
326 	plat->maxmtu = JUMBO_LEN;
327 
328 	plat->vlan_fail_q_en = true;
329 
330 	/* Use the last Rx queue */
331 	plat->vlan_fail_q = plat->rx_queues_to_use - 1;
332 
333 	return 0;
334 }
335 
336 static int ehl_common_data(struct pci_dev *pdev,
337 			   struct plat_stmmacenet_data *plat)
338 {
339 	plat->rx_queues_to_use = 8;
340 	plat->tx_queues_to_use = 8;
341 	plat->clk_ptp_rate = 200000000;
342 
343 	return intel_mgbe_common_data(pdev, plat);
344 }
345 
346 static int ehl_sgmii_data(struct pci_dev *pdev,
347 			  struct plat_stmmacenet_data *plat)
348 {
349 	plat->bus_id = 1;
350 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
351 
352 	plat->serdes_powerup = intel_serdes_powerup;
353 	plat->serdes_powerdown = intel_serdes_powerdown;
354 
355 	return ehl_common_data(pdev, plat);
356 }
357 
358 static struct stmmac_pci_info ehl_sgmii1g_info = {
359 	.setup = ehl_sgmii_data,
360 };
361 
362 static int ehl_rgmii_data(struct pci_dev *pdev,
363 			  struct plat_stmmacenet_data *plat)
364 {
365 	plat->bus_id = 1;
366 	plat->phy_interface = PHY_INTERFACE_MODE_RGMII;
367 
368 	return ehl_common_data(pdev, plat);
369 }
370 
371 static struct stmmac_pci_info ehl_rgmii1g_info = {
372 	.setup = ehl_rgmii_data,
373 };
374 
375 static int ehl_pse0_common_data(struct pci_dev *pdev,
376 				struct plat_stmmacenet_data *plat)
377 {
378 	plat->bus_id = 2;
379 	plat->addr64 = 32;
380 	return ehl_common_data(pdev, plat);
381 }
382 
383 static int ehl_pse0_rgmii1g_data(struct pci_dev *pdev,
384 				 struct plat_stmmacenet_data *plat)
385 {
386 	plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID;
387 	return ehl_pse0_common_data(pdev, plat);
388 }
389 
390 static struct stmmac_pci_info ehl_pse0_rgmii1g_info = {
391 	.setup = ehl_pse0_rgmii1g_data,
392 };
393 
394 static int ehl_pse0_sgmii1g_data(struct pci_dev *pdev,
395 				 struct plat_stmmacenet_data *plat)
396 {
397 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
398 	plat->serdes_powerup = intel_serdes_powerup;
399 	plat->serdes_powerdown = intel_serdes_powerdown;
400 	return ehl_pse0_common_data(pdev, plat);
401 }
402 
403 static struct stmmac_pci_info ehl_pse0_sgmii1g_info = {
404 	.setup = ehl_pse0_sgmii1g_data,
405 };
406 
407 static int ehl_pse1_common_data(struct pci_dev *pdev,
408 				struct plat_stmmacenet_data *plat)
409 {
410 	plat->bus_id = 3;
411 	plat->addr64 = 32;
412 	return ehl_common_data(pdev, plat);
413 }
414 
415 static int ehl_pse1_rgmii1g_data(struct pci_dev *pdev,
416 				 struct plat_stmmacenet_data *plat)
417 {
418 	plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID;
419 	return ehl_pse1_common_data(pdev, plat);
420 }
421 
422 static struct stmmac_pci_info ehl_pse1_rgmii1g_info = {
423 	.setup = ehl_pse1_rgmii1g_data,
424 };
425 
426 static int ehl_pse1_sgmii1g_data(struct pci_dev *pdev,
427 				 struct plat_stmmacenet_data *plat)
428 {
429 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
430 	plat->serdes_powerup = intel_serdes_powerup;
431 	plat->serdes_powerdown = intel_serdes_powerdown;
432 	return ehl_pse1_common_data(pdev, plat);
433 }
434 
435 static struct stmmac_pci_info ehl_pse1_sgmii1g_info = {
436 	.setup = ehl_pse1_sgmii1g_data,
437 };
438 
439 static int tgl_common_data(struct pci_dev *pdev,
440 			   struct plat_stmmacenet_data *plat)
441 {
442 	plat->rx_queues_to_use = 6;
443 	plat->tx_queues_to_use = 4;
444 	plat->clk_ptp_rate = 200000000;
445 
446 	return intel_mgbe_common_data(pdev, plat);
447 }
448 
449 static int tgl_sgmii_data(struct pci_dev *pdev,
450 			  struct plat_stmmacenet_data *plat)
451 {
452 	plat->bus_id = 1;
453 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
454 	plat->serdes_powerup = intel_serdes_powerup;
455 	plat->serdes_powerdown = intel_serdes_powerdown;
456 	return tgl_common_data(pdev, plat);
457 }
458 
459 static struct stmmac_pci_info tgl_sgmii1g_info = {
460 	.setup = tgl_sgmii_data,
461 };
462 
463 static int adls_sgmii_data(struct pci_dev *pdev,
464 			   struct plat_stmmacenet_data *plat)
465 {
466 	plat->bus_id = 1;
467 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
468 
469 	/* SerDes power up and power down are done in BIOS for ADL */
470 
471 	return tgl_common_data(pdev, plat);
472 }
473 
474 static struct stmmac_pci_info adls_sgmii1g_info = {
475 	.setup = adls_sgmii_data,
476 };
477 
478 static const struct stmmac_pci_func_data galileo_stmmac_func_data[] = {
479 	{
480 		.func = 6,
481 		.phy_addr = 1,
482 	},
483 };
484 
485 static const struct stmmac_pci_dmi_data galileo_stmmac_dmi_data = {
486 	.func = galileo_stmmac_func_data,
487 	.nfuncs = ARRAY_SIZE(galileo_stmmac_func_data),
488 };
489 
490 static const struct stmmac_pci_func_data iot2040_stmmac_func_data[] = {
491 	{
492 		.func = 6,
493 		.phy_addr = 1,
494 	},
495 	{
496 		.func = 7,
497 		.phy_addr = 1,
498 	},
499 };
500 
501 static const struct stmmac_pci_dmi_data iot2040_stmmac_dmi_data = {
502 	.func = iot2040_stmmac_func_data,
503 	.nfuncs = ARRAY_SIZE(iot2040_stmmac_func_data),
504 };
505 
506 static const struct dmi_system_id quark_pci_dmi[] = {
507 	{
508 		.matches = {
509 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "Galileo"),
510 		},
511 		.driver_data = (void *)&galileo_stmmac_dmi_data,
512 	},
513 	{
514 		.matches = {
515 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "GalileoGen2"),
516 		},
517 		.driver_data = (void *)&galileo_stmmac_dmi_data,
518 	},
519 	/* There are 2 types of SIMATIC IOT2000: IOT2020 and IOT2040.
520 	 * The asset tag "6ES7647-0AA00-0YA2" is only for IOT2020 which
521 	 * has only one pci network device while other asset tags are
522 	 * for IOT2040 which has two.
523 	 */
524 	{
525 		.matches = {
526 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"),
527 			DMI_EXACT_MATCH(DMI_BOARD_ASSET_TAG,
528 					"6ES7647-0AA00-0YA2"),
529 		},
530 		.driver_data = (void *)&galileo_stmmac_dmi_data,
531 	},
532 	{
533 		.matches = {
534 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"),
535 		},
536 		.driver_data = (void *)&iot2040_stmmac_dmi_data,
537 	},
538 	{}
539 };
540 
541 static int quark_default_data(struct pci_dev *pdev,
542 			      struct plat_stmmacenet_data *plat)
543 {
544 	int ret;
545 
546 	/* Set common default data first */
547 	common_default_data(plat);
548 
549 	/* Refuse to load the driver and register net device if MAC controller
550 	 * does not connect to any PHY interface.
551 	 */
552 	ret = stmmac_pci_find_phy_addr(pdev, quark_pci_dmi);
553 	if (ret < 0) {
554 		/* Return error to the caller on DMI enabled boards. */
555 		if (dmi_get_system_info(DMI_BOARD_NAME))
556 			return ret;
557 
558 		/* Galileo boards with old firmware don't support DMI. We always
559 		 * use 1 here as PHY address, so at least the first found MAC
560 		 * controller would be probed.
561 		 */
562 		ret = 1;
563 	}
564 
565 	plat->bus_id = pci_dev_id(pdev);
566 	plat->phy_addr = ret;
567 	plat->phy_interface = PHY_INTERFACE_MODE_RMII;
568 
569 	plat->dma_cfg->pbl = 16;
570 	plat->dma_cfg->pblx8 = true;
571 	plat->dma_cfg->fixed_burst = 1;
572 	/* AXI (TODO) */
573 
574 	return 0;
575 }
576 
577 static const struct stmmac_pci_info quark_info = {
578 	.setup = quark_default_data,
579 };
580 
581 /**
582  * intel_eth_pci_probe
583  *
584  * @pdev: pci device pointer
585  * @id: pointer to table of device id/id's.
586  *
587  * Description: This probing function gets called for all PCI devices which
588  * match the ID table and are not "owned" by other driver yet. This function
589  * gets passed a "struct pci_dev *" for each device whose entry in the ID table
590  * matches the device. The probe functions returns zero when the driver choose
591  * to take "ownership" of the device or an error code(-ve no) otherwise.
592  */
593 static int intel_eth_pci_probe(struct pci_dev *pdev,
594 			       const struct pci_device_id *id)
595 {
596 	struct stmmac_pci_info *info = (struct stmmac_pci_info *)id->driver_data;
597 	struct intel_priv_data *intel_priv;
598 	struct plat_stmmacenet_data *plat;
599 	struct stmmac_resources res;
600 	int ret;
601 
602 	intel_priv = devm_kzalloc(&pdev->dev, sizeof(*intel_priv), GFP_KERNEL);
603 	if (!intel_priv)
604 		return -ENOMEM;
605 
606 	plat = devm_kzalloc(&pdev->dev, sizeof(*plat), GFP_KERNEL);
607 	if (!plat)
608 		return -ENOMEM;
609 
610 	plat->mdio_bus_data = devm_kzalloc(&pdev->dev,
611 					   sizeof(*plat->mdio_bus_data),
612 					   GFP_KERNEL);
613 	if (!plat->mdio_bus_data)
614 		return -ENOMEM;
615 
616 	plat->dma_cfg = devm_kzalloc(&pdev->dev, sizeof(*plat->dma_cfg),
617 				     GFP_KERNEL);
618 	if (!plat->dma_cfg)
619 		return -ENOMEM;
620 
621 	/* Enable pci device */
622 	ret = pci_enable_device(pdev);
623 	if (ret) {
624 		dev_err(&pdev->dev, "%s: ERROR: failed to enable device\n",
625 			__func__);
626 		return ret;
627 	}
628 
629 	ret = pcim_iomap_regions(pdev, BIT(0), pci_name(pdev));
630 	if (ret)
631 		return ret;
632 
633 	pci_set_master(pdev);
634 
635 	plat->bsp_priv = intel_priv;
636 	intel_priv->mdio_adhoc_addr = 0x15;
637 
638 	ret = info->setup(pdev, plat);
639 	if (ret)
640 		return ret;
641 
642 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
643 	if (ret < 0)
644 		return ret;
645 
646 	memset(&res, 0, sizeof(res));
647 	res.addr = pcim_iomap_table(pdev)[0];
648 	res.wol_irq = pci_irq_vector(pdev, 0);
649 	res.irq = pci_irq_vector(pdev, 0);
650 
651 	if (plat->eee_usecs_rate > 0) {
652 		u32 tx_lpi_usec;
653 
654 		tx_lpi_usec = (plat->eee_usecs_rate / 1000000) - 1;
655 		writel(tx_lpi_usec, res.addr + GMAC_1US_TIC_COUNTER);
656 	}
657 
658 	ret = stmmac_dvr_probe(&pdev->dev, plat, &res);
659 	if (ret) {
660 		pci_free_irq_vectors(pdev);
661 		clk_disable_unprepare(plat->stmmac_clk);
662 		clk_unregister_fixed_rate(plat->stmmac_clk);
663 	}
664 
665 	return ret;
666 }
667 
668 /**
669  * intel_eth_pci_remove
670  *
671  * @pdev: platform device pointer
672  * Description: this function calls the main to free the net resources
673  * and releases the PCI resources.
674  */
675 static void intel_eth_pci_remove(struct pci_dev *pdev)
676 {
677 	struct net_device *ndev = dev_get_drvdata(&pdev->dev);
678 	struct stmmac_priv *priv = netdev_priv(ndev);
679 
680 	stmmac_dvr_remove(&pdev->dev);
681 
682 	pci_free_irq_vectors(pdev);
683 
684 	clk_unregister_fixed_rate(priv->plat->stmmac_clk);
685 
686 	pcim_iounmap_regions(pdev, BIT(0));
687 
688 	pci_disable_device(pdev);
689 }
690 
691 static int __maybe_unused intel_eth_pci_suspend(struct device *dev)
692 {
693 	struct pci_dev *pdev = to_pci_dev(dev);
694 	int ret;
695 
696 	ret = stmmac_suspend(dev);
697 	if (ret)
698 		return ret;
699 
700 	ret = pci_save_state(pdev);
701 	if (ret)
702 		return ret;
703 
704 	pci_disable_device(pdev);
705 	pci_wake_from_d3(pdev, true);
706 	return 0;
707 }
708 
709 static int __maybe_unused intel_eth_pci_resume(struct device *dev)
710 {
711 	struct pci_dev *pdev = to_pci_dev(dev);
712 	int ret;
713 
714 	pci_restore_state(pdev);
715 	pci_set_power_state(pdev, PCI_D0);
716 
717 	ret = pci_enable_device(pdev);
718 	if (ret)
719 		return ret;
720 
721 	pci_set_master(pdev);
722 
723 	return stmmac_resume(dev);
724 }
725 
726 static SIMPLE_DEV_PM_OPS(intel_eth_pm_ops, intel_eth_pci_suspend,
727 			 intel_eth_pci_resume);
728 
729 #define PCI_DEVICE_ID_INTEL_QUARK_ID			0x0937
730 #define PCI_DEVICE_ID_INTEL_EHL_RGMII1G_ID		0x4b30
731 #define PCI_DEVICE_ID_INTEL_EHL_SGMII1G_ID		0x4b31
732 #define PCI_DEVICE_ID_INTEL_EHL_SGMII2G5_ID		0x4b32
733 /* Intel(R) Programmable Services Engine (Intel(R) PSE) consist of 2 MAC
734  * which are named PSE0 and PSE1
735  */
736 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_RGMII1G_ID		0x4ba0
737 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII1G_ID		0x4ba1
738 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII2G5_ID	0x4ba2
739 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_RGMII1G_ID		0x4bb0
740 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII1G_ID		0x4bb1
741 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII2G5_ID	0x4bb2
742 #define PCI_DEVICE_ID_INTEL_TGLH_SGMII1G_0_ID		0x43ac
743 #define PCI_DEVICE_ID_INTEL_TGLH_SGMII1G_1_ID		0x43a2
744 #define PCI_DEVICE_ID_INTEL_TGL_SGMII1G_ID		0xa0ac
745 #define PCI_DEVICE_ID_INTEL_ADLS_SGMII1G_0_ID		0x7aac
746 #define PCI_DEVICE_ID_INTEL_ADLS_SGMII1G_1_ID		0x7aad
747 
748 static const struct pci_device_id intel_eth_pci_id_table[] = {
749 	{ PCI_DEVICE_DATA(INTEL, QUARK_ID, &quark_info) },
750 	{ PCI_DEVICE_DATA(INTEL, EHL_RGMII1G_ID, &ehl_rgmii1g_info) },
751 	{ PCI_DEVICE_DATA(INTEL, EHL_SGMII1G_ID, &ehl_sgmii1g_info) },
752 	{ PCI_DEVICE_DATA(INTEL, EHL_SGMII2G5_ID, &ehl_sgmii1g_info) },
753 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_RGMII1G_ID, &ehl_pse0_rgmii1g_info) },
754 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII1G_ID, &ehl_pse0_sgmii1g_info) },
755 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII2G5_ID, &ehl_pse0_sgmii1g_info) },
756 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_RGMII1G_ID, &ehl_pse1_rgmii1g_info) },
757 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII1G_ID, &ehl_pse1_sgmii1g_info) },
758 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII2G5_ID, &ehl_pse1_sgmii1g_info) },
759 	{ PCI_DEVICE_DATA(INTEL, TGL_SGMII1G_ID, &tgl_sgmii1g_info) },
760 	{ PCI_DEVICE_DATA(INTEL, TGLH_SGMII1G_0_ID, &tgl_sgmii1g_info) },
761 	{ PCI_DEVICE_DATA(INTEL, TGLH_SGMII1G_1_ID, &tgl_sgmii1g_info) },
762 	{ PCI_DEVICE_DATA(INTEL, ADLS_SGMII1G_0_ID, &adls_sgmii1g_info) },
763 	{ PCI_DEVICE_DATA(INTEL, ADLS_SGMII1G_1_ID, &adls_sgmii1g_info) },
764 	{}
765 };
766 MODULE_DEVICE_TABLE(pci, intel_eth_pci_id_table);
767 
768 static struct pci_driver intel_eth_pci_driver = {
769 	.name = "intel-eth-pci",
770 	.id_table = intel_eth_pci_id_table,
771 	.probe = intel_eth_pci_probe,
772 	.remove = intel_eth_pci_remove,
773 	.driver         = {
774 		.pm     = &intel_eth_pm_ops,
775 	},
776 };
777 
778 module_pci_driver(intel_eth_pci_driver);
779 
780 MODULE_DESCRIPTION("INTEL 10/100/1000 Ethernet PCI driver");
781 MODULE_AUTHOR("Voon Weifeng <weifeng.voon@intel.com>");
782 MODULE_LICENSE("GPL v2");
783