1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2020, Intel Corporation
3  */
4 
5 #include <linux/clk-provider.h>
6 #include <linux/pci.h>
7 #include <linux/dmi.h>
8 #include "dwmac-intel.h"
9 #include "dwmac4.h"
10 #include "stmmac.h"
11 
12 struct intel_priv_data {
13 	int mdio_adhoc_addr;	/* mdio address for serdes & etc */
14 };
15 
16 /* This struct is used to associate PCI Function of MAC controller on a board,
17  * discovered via DMI, with the address of PHY connected to the MAC. The
18  * negative value of the address means that MAC controller is not connected
19  * with PHY.
20  */
21 struct stmmac_pci_func_data {
22 	unsigned int func;
23 	int phy_addr;
24 };
25 
26 struct stmmac_pci_dmi_data {
27 	const struct stmmac_pci_func_data *func;
28 	size_t nfuncs;
29 };
30 
31 struct stmmac_pci_info {
32 	int (*setup)(struct pci_dev *pdev, struct plat_stmmacenet_data *plat);
33 };
34 
35 static int stmmac_pci_find_phy_addr(struct pci_dev *pdev,
36 				    const struct dmi_system_id *dmi_list)
37 {
38 	const struct stmmac_pci_func_data *func_data;
39 	const struct stmmac_pci_dmi_data *dmi_data;
40 	const struct dmi_system_id *dmi_id;
41 	int func = PCI_FUNC(pdev->devfn);
42 	size_t n;
43 
44 	dmi_id = dmi_first_match(dmi_list);
45 	if (!dmi_id)
46 		return -ENODEV;
47 
48 	dmi_data = dmi_id->driver_data;
49 	func_data = dmi_data->func;
50 
51 	for (n = 0; n < dmi_data->nfuncs; n++, func_data++)
52 		if (func_data->func == func)
53 			return func_data->phy_addr;
54 
55 	return -ENODEV;
56 }
57 
58 static int serdes_status_poll(struct stmmac_priv *priv, int phyaddr,
59 			      int phyreg, u32 mask, u32 val)
60 {
61 	unsigned int retries = 10;
62 	int val_rd;
63 
64 	do {
65 		val_rd = mdiobus_read(priv->mii, phyaddr, phyreg);
66 		if ((val_rd & mask) == (val & mask))
67 			return 0;
68 		udelay(POLL_DELAY_US);
69 	} while (--retries);
70 
71 	return -ETIMEDOUT;
72 }
73 
74 static int intel_serdes_powerup(struct net_device *ndev, void *priv_data)
75 {
76 	struct intel_priv_data *intel_priv = priv_data;
77 	struct stmmac_priv *priv = netdev_priv(ndev);
78 	int serdes_phy_addr = 0;
79 	u32 data = 0;
80 
81 	if (!intel_priv->mdio_adhoc_addr)
82 		return 0;
83 
84 	serdes_phy_addr = intel_priv->mdio_adhoc_addr;
85 
86 	/* assert clk_req */
87 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
88 	data |= SERDES_PLL_CLK;
89 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
90 
91 	/* check for clk_ack assertion */
92 	data = serdes_status_poll(priv, serdes_phy_addr,
93 				  SERDES_GSR0,
94 				  SERDES_PLL_CLK,
95 				  SERDES_PLL_CLK);
96 
97 	if (data) {
98 		dev_err(priv->device, "Serdes PLL clk request timeout\n");
99 		return data;
100 	}
101 
102 	/* assert lane reset */
103 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
104 	data |= SERDES_RST;
105 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
106 
107 	/* check for assert lane reset reflection */
108 	data = serdes_status_poll(priv, serdes_phy_addr,
109 				  SERDES_GSR0,
110 				  SERDES_RST,
111 				  SERDES_RST);
112 
113 	if (data) {
114 		dev_err(priv->device, "Serdes assert lane reset timeout\n");
115 		return data;
116 	}
117 
118 	/*  move power state to P0 */
119 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
120 
121 	data &= ~SERDES_PWR_ST_MASK;
122 	data |= SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT;
123 
124 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
125 
126 	/* Check for P0 state */
127 	data = serdes_status_poll(priv, serdes_phy_addr,
128 				  SERDES_GSR0,
129 				  SERDES_PWR_ST_MASK,
130 				  SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT);
131 
132 	if (data) {
133 		dev_err(priv->device, "Serdes power state P0 timeout.\n");
134 		return data;
135 	}
136 
137 	return 0;
138 }
139 
140 static void intel_serdes_powerdown(struct net_device *ndev, void *intel_data)
141 {
142 	struct intel_priv_data *intel_priv = intel_data;
143 	struct stmmac_priv *priv = netdev_priv(ndev);
144 	int serdes_phy_addr = 0;
145 	u32 data = 0;
146 
147 	if (!intel_priv->mdio_adhoc_addr)
148 		return;
149 
150 	serdes_phy_addr = intel_priv->mdio_adhoc_addr;
151 
152 	/*  move power state to P3 */
153 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
154 
155 	data &= ~SERDES_PWR_ST_MASK;
156 	data |= SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT;
157 
158 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
159 
160 	/* Check for P3 state */
161 	data = serdes_status_poll(priv, serdes_phy_addr,
162 				  SERDES_GSR0,
163 				  SERDES_PWR_ST_MASK,
164 				  SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT);
165 
166 	if (data) {
167 		dev_err(priv->device, "Serdes power state P3 timeout\n");
168 		return;
169 	}
170 
171 	/* de-assert clk_req */
172 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
173 	data &= ~SERDES_PLL_CLK;
174 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
175 
176 	/* check for clk_ack de-assert */
177 	data = serdes_status_poll(priv, serdes_phy_addr,
178 				  SERDES_GSR0,
179 				  SERDES_PLL_CLK,
180 				  (u32)~SERDES_PLL_CLK);
181 
182 	if (data) {
183 		dev_err(priv->device, "Serdes PLL clk de-assert timeout\n");
184 		return;
185 	}
186 
187 	/* de-assert lane reset */
188 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
189 	data &= ~SERDES_RST;
190 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
191 
192 	/* check for de-assert lane reset reflection */
193 	data = serdes_status_poll(priv, serdes_phy_addr,
194 				  SERDES_GSR0,
195 				  SERDES_RST,
196 				  (u32)~SERDES_RST);
197 
198 	if (data) {
199 		dev_err(priv->device, "Serdes de-assert lane reset timeout\n");
200 		return;
201 	}
202 }
203 
204 static void common_default_data(struct plat_stmmacenet_data *plat)
205 {
206 	plat->clk_csr = 2;	/* clk_csr_i = 20-35MHz & MDC = clk_csr_i/16 */
207 	plat->has_gmac = 1;
208 	plat->force_sf_dma_mode = 1;
209 
210 	plat->mdio_bus_data->needs_reset = true;
211 
212 	/* Set default value for multicast hash bins */
213 	plat->multicast_filter_bins = HASH_TABLE_SIZE;
214 
215 	/* Set default value for unicast filter entries */
216 	plat->unicast_filter_entries = 1;
217 
218 	/* Set the maxmtu to a default of JUMBO_LEN */
219 	plat->maxmtu = JUMBO_LEN;
220 
221 	/* Set default number of RX and TX queues to use */
222 	plat->tx_queues_to_use = 1;
223 	plat->rx_queues_to_use = 1;
224 
225 	/* Disable Priority config by default */
226 	plat->tx_queues_cfg[0].use_prio = false;
227 	plat->rx_queues_cfg[0].use_prio = false;
228 
229 	/* Disable RX queues routing by default */
230 	plat->rx_queues_cfg[0].pkt_route = 0x0;
231 }
232 
233 static int intel_mgbe_common_data(struct pci_dev *pdev,
234 				  struct plat_stmmacenet_data *plat)
235 {
236 	int ret;
237 	int i;
238 
239 	plat->phy_addr = -1;
240 	plat->clk_csr = 5;
241 	plat->has_gmac = 0;
242 	plat->has_gmac4 = 1;
243 	plat->force_sf_dma_mode = 0;
244 	plat->tso_en = 1;
245 
246 	plat->rx_sched_algorithm = MTL_RX_ALGORITHM_SP;
247 
248 	for (i = 0; i < plat->rx_queues_to_use; i++) {
249 		plat->rx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB;
250 		plat->rx_queues_cfg[i].chan = i;
251 
252 		/* Disable Priority config by default */
253 		plat->rx_queues_cfg[i].use_prio = false;
254 
255 		/* Disable RX queues routing by default */
256 		plat->rx_queues_cfg[i].pkt_route = 0x0;
257 	}
258 
259 	for (i = 0; i < plat->tx_queues_to_use; i++) {
260 		plat->tx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB;
261 
262 		/* Disable Priority config by default */
263 		plat->tx_queues_cfg[i].use_prio = false;
264 	}
265 
266 	/* FIFO size is 4096 bytes for 1 tx/rx queue */
267 	plat->tx_fifo_size = plat->tx_queues_to_use * 4096;
268 	plat->rx_fifo_size = plat->rx_queues_to_use * 4096;
269 
270 	plat->tx_sched_algorithm = MTL_TX_ALGORITHM_WRR;
271 	plat->tx_queues_cfg[0].weight = 0x09;
272 	plat->tx_queues_cfg[1].weight = 0x0A;
273 	plat->tx_queues_cfg[2].weight = 0x0B;
274 	plat->tx_queues_cfg[3].weight = 0x0C;
275 	plat->tx_queues_cfg[4].weight = 0x0D;
276 	plat->tx_queues_cfg[5].weight = 0x0E;
277 	plat->tx_queues_cfg[6].weight = 0x0F;
278 	plat->tx_queues_cfg[7].weight = 0x10;
279 
280 	plat->dma_cfg->pbl = 32;
281 	plat->dma_cfg->pblx8 = true;
282 	plat->dma_cfg->fixed_burst = 0;
283 	plat->dma_cfg->mixed_burst = 0;
284 	plat->dma_cfg->aal = 0;
285 
286 	plat->axi = devm_kzalloc(&pdev->dev, sizeof(*plat->axi),
287 				 GFP_KERNEL);
288 	if (!plat->axi)
289 		return -ENOMEM;
290 
291 	plat->axi->axi_lpi_en = 0;
292 	plat->axi->axi_xit_frm = 0;
293 	plat->axi->axi_wr_osr_lmt = 1;
294 	plat->axi->axi_rd_osr_lmt = 1;
295 	plat->axi->axi_blen[0] = 4;
296 	plat->axi->axi_blen[1] = 8;
297 	plat->axi->axi_blen[2] = 16;
298 
299 	plat->ptp_max_adj = plat->clk_ptp_rate;
300 	plat->eee_usecs_rate = plat->clk_ptp_rate;
301 
302 	/* Set system clock */
303 	plat->stmmac_clk = clk_register_fixed_rate(&pdev->dev,
304 						   "stmmac-clk", NULL, 0,
305 						   plat->clk_ptp_rate);
306 
307 	if (IS_ERR(plat->stmmac_clk)) {
308 		dev_warn(&pdev->dev, "Fail to register stmmac-clk\n");
309 		plat->stmmac_clk = NULL;
310 	}
311 
312 	ret = clk_prepare_enable(plat->stmmac_clk);
313 	if (ret) {
314 		clk_unregister_fixed_rate(plat->stmmac_clk);
315 		return ret;
316 	}
317 
318 	/* Set default value for multicast hash bins */
319 	plat->multicast_filter_bins = HASH_TABLE_SIZE;
320 
321 	/* Set default value for unicast filter entries */
322 	plat->unicast_filter_entries = 1;
323 
324 	/* Set the maxmtu to a default of JUMBO_LEN */
325 	plat->maxmtu = JUMBO_LEN;
326 
327 	plat->vlan_fail_q_en = true;
328 
329 	/* Use the last Rx queue */
330 	plat->vlan_fail_q = plat->rx_queues_to_use - 1;
331 
332 	return 0;
333 }
334 
335 static int ehl_common_data(struct pci_dev *pdev,
336 			   struct plat_stmmacenet_data *plat)
337 {
338 	plat->rx_queues_to_use = 8;
339 	plat->tx_queues_to_use = 8;
340 	plat->clk_ptp_rate = 200000000;
341 
342 	return intel_mgbe_common_data(pdev, plat);
343 }
344 
345 static int ehl_sgmii_data(struct pci_dev *pdev,
346 			  struct plat_stmmacenet_data *plat)
347 {
348 	plat->bus_id = 1;
349 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
350 
351 	plat->serdes_powerup = intel_serdes_powerup;
352 	plat->serdes_powerdown = intel_serdes_powerdown;
353 
354 	return ehl_common_data(pdev, plat);
355 }
356 
357 static struct stmmac_pci_info ehl_sgmii1g_info = {
358 	.setup = ehl_sgmii_data,
359 };
360 
361 static int ehl_rgmii_data(struct pci_dev *pdev,
362 			  struct plat_stmmacenet_data *plat)
363 {
364 	plat->bus_id = 1;
365 	plat->phy_interface = PHY_INTERFACE_MODE_RGMII;
366 
367 	return ehl_common_data(pdev, plat);
368 }
369 
370 static struct stmmac_pci_info ehl_rgmii1g_info = {
371 	.setup = ehl_rgmii_data,
372 };
373 
374 static int ehl_pse0_common_data(struct pci_dev *pdev,
375 				struct plat_stmmacenet_data *plat)
376 {
377 	plat->bus_id = 2;
378 	plat->addr64 = 32;
379 	return ehl_common_data(pdev, plat);
380 }
381 
382 static int ehl_pse0_rgmii1g_data(struct pci_dev *pdev,
383 				 struct plat_stmmacenet_data *plat)
384 {
385 	plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID;
386 	return ehl_pse0_common_data(pdev, plat);
387 }
388 
389 static struct stmmac_pci_info ehl_pse0_rgmii1g_info = {
390 	.setup = ehl_pse0_rgmii1g_data,
391 };
392 
393 static int ehl_pse0_sgmii1g_data(struct pci_dev *pdev,
394 				 struct plat_stmmacenet_data *plat)
395 {
396 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
397 	plat->serdes_powerup = intel_serdes_powerup;
398 	plat->serdes_powerdown = intel_serdes_powerdown;
399 	return ehl_pse0_common_data(pdev, plat);
400 }
401 
402 static struct stmmac_pci_info ehl_pse0_sgmii1g_info = {
403 	.setup = ehl_pse0_sgmii1g_data,
404 };
405 
406 static int ehl_pse1_common_data(struct pci_dev *pdev,
407 				struct plat_stmmacenet_data *plat)
408 {
409 	plat->bus_id = 3;
410 	plat->addr64 = 32;
411 	return ehl_common_data(pdev, plat);
412 }
413 
414 static int ehl_pse1_rgmii1g_data(struct pci_dev *pdev,
415 				 struct plat_stmmacenet_data *plat)
416 {
417 	plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID;
418 	return ehl_pse1_common_data(pdev, plat);
419 }
420 
421 static struct stmmac_pci_info ehl_pse1_rgmii1g_info = {
422 	.setup = ehl_pse1_rgmii1g_data,
423 };
424 
425 static int ehl_pse1_sgmii1g_data(struct pci_dev *pdev,
426 				 struct plat_stmmacenet_data *plat)
427 {
428 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
429 	plat->serdes_powerup = intel_serdes_powerup;
430 	plat->serdes_powerdown = intel_serdes_powerdown;
431 	return ehl_pse1_common_data(pdev, plat);
432 }
433 
434 static struct stmmac_pci_info ehl_pse1_sgmii1g_info = {
435 	.setup = ehl_pse1_sgmii1g_data,
436 };
437 
438 static int tgl_common_data(struct pci_dev *pdev,
439 			   struct plat_stmmacenet_data *plat)
440 {
441 	plat->rx_queues_to_use = 6;
442 	plat->tx_queues_to_use = 4;
443 	plat->clk_ptp_rate = 200000000;
444 
445 	return intel_mgbe_common_data(pdev, plat);
446 }
447 
448 static int tgl_sgmii_data(struct pci_dev *pdev,
449 			  struct plat_stmmacenet_data *plat)
450 {
451 	plat->bus_id = 1;
452 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
453 	plat->serdes_powerup = intel_serdes_powerup;
454 	plat->serdes_powerdown = intel_serdes_powerdown;
455 	return tgl_common_data(pdev, plat);
456 }
457 
458 static struct stmmac_pci_info tgl_sgmii1g_info = {
459 	.setup = tgl_sgmii_data,
460 };
461 
462 static int adls_sgmii_data(struct pci_dev *pdev,
463 			   struct plat_stmmacenet_data *plat)
464 {
465 	plat->bus_id = 1;
466 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
467 
468 	/* SerDes power up and power down are done in BIOS for ADL */
469 
470 	return tgl_common_data(pdev, plat);
471 }
472 
473 static struct stmmac_pci_info adls_sgmii1g_info = {
474 	.setup = adls_sgmii_data,
475 };
476 
477 static const struct stmmac_pci_func_data galileo_stmmac_func_data[] = {
478 	{
479 		.func = 6,
480 		.phy_addr = 1,
481 	},
482 };
483 
484 static const struct stmmac_pci_dmi_data galileo_stmmac_dmi_data = {
485 	.func = galileo_stmmac_func_data,
486 	.nfuncs = ARRAY_SIZE(galileo_stmmac_func_data),
487 };
488 
489 static const struct stmmac_pci_func_data iot2040_stmmac_func_data[] = {
490 	{
491 		.func = 6,
492 		.phy_addr = 1,
493 	},
494 	{
495 		.func = 7,
496 		.phy_addr = 1,
497 	},
498 };
499 
500 static const struct stmmac_pci_dmi_data iot2040_stmmac_dmi_data = {
501 	.func = iot2040_stmmac_func_data,
502 	.nfuncs = ARRAY_SIZE(iot2040_stmmac_func_data),
503 };
504 
505 static const struct dmi_system_id quark_pci_dmi[] = {
506 	{
507 		.matches = {
508 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "Galileo"),
509 		},
510 		.driver_data = (void *)&galileo_stmmac_dmi_data,
511 	},
512 	{
513 		.matches = {
514 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "GalileoGen2"),
515 		},
516 		.driver_data = (void *)&galileo_stmmac_dmi_data,
517 	},
518 	/* There are 2 types of SIMATIC IOT2000: IOT2020 and IOT2040.
519 	 * The asset tag "6ES7647-0AA00-0YA2" is only for IOT2020 which
520 	 * has only one pci network device while other asset tags are
521 	 * for IOT2040 which has two.
522 	 */
523 	{
524 		.matches = {
525 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"),
526 			DMI_EXACT_MATCH(DMI_BOARD_ASSET_TAG,
527 					"6ES7647-0AA00-0YA2"),
528 		},
529 		.driver_data = (void *)&galileo_stmmac_dmi_data,
530 	},
531 	{
532 		.matches = {
533 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"),
534 		},
535 		.driver_data = (void *)&iot2040_stmmac_dmi_data,
536 	},
537 	{}
538 };
539 
540 static int quark_default_data(struct pci_dev *pdev,
541 			      struct plat_stmmacenet_data *plat)
542 {
543 	int ret;
544 
545 	/* Set common default data first */
546 	common_default_data(plat);
547 
548 	/* Refuse to load the driver and register net device if MAC controller
549 	 * does not connect to any PHY interface.
550 	 */
551 	ret = stmmac_pci_find_phy_addr(pdev, quark_pci_dmi);
552 	if (ret < 0) {
553 		/* Return error to the caller on DMI enabled boards. */
554 		if (dmi_get_system_info(DMI_BOARD_NAME))
555 			return ret;
556 
557 		/* Galileo boards with old firmware don't support DMI. We always
558 		 * use 1 here as PHY address, so at least the first found MAC
559 		 * controller would be probed.
560 		 */
561 		ret = 1;
562 	}
563 
564 	plat->bus_id = pci_dev_id(pdev);
565 	plat->phy_addr = ret;
566 	plat->phy_interface = PHY_INTERFACE_MODE_RMII;
567 
568 	plat->dma_cfg->pbl = 16;
569 	plat->dma_cfg->pblx8 = true;
570 	plat->dma_cfg->fixed_burst = 1;
571 	/* AXI (TODO) */
572 
573 	return 0;
574 }
575 
576 static const struct stmmac_pci_info quark_info = {
577 	.setup = quark_default_data,
578 };
579 
580 /**
581  * intel_eth_pci_probe
582  *
583  * @pdev: pci device pointer
584  * @id: pointer to table of device id/id's.
585  *
586  * Description: This probing function gets called for all PCI devices which
587  * match the ID table and are not "owned" by other driver yet. This function
588  * gets passed a "struct pci_dev *" for each device whose entry in the ID table
589  * matches the device. The probe functions returns zero when the driver choose
590  * to take "ownership" of the device or an error code(-ve no) otherwise.
591  */
592 static int intel_eth_pci_probe(struct pci_dev *pdev,
593 			       const struct pci_device_id *id)
594 {
595 	struct stmmac_pci_info *info = (struct stmmac_pci_info *)id->driver_data;
596 	struct intel_priv_data *intel_priv;
597 	struct plat_stmmacenet_data *plat;
598 	struct stmmac_resources res;
599 	int ret;
600 
601 	intel_priv = devm_kzalloc(&pdev->dev, sizeof(*intel_priv), GFP_KERNEL);
602 	if (!intel_priv)
603 		return -ENOMEM;
604 
605 	plat = devm_kzalloc(&pdev->dev, sizeof(*plat), GFP_KERNEL);
606 	if (!plat)
607 		return -ENOMEM;
608 
609 	plat->mdio_bus_data = devm_kzalloc(&pdev->dev,
610 					   sizeof(*plat->mdio_bus_data),
611 					   GFP_KERNEL);
612 	if (!plat->mdio_bus_data)
613 		return -ENOMEM;
614 
615 	plat->dma_cfg = devm_kzalloc(&pdev->dev, sizeof(*plat->dma_cfg),
616 				     GFP_KERNEL);
617 	if (!plat->dma_cfg)
618 		return -ENOMEM;
619 
620 	/* Enable pci device */
621 	ret = pci_enable_device(pdev);
622 	if (ret) {
623 		dev_err(&pdev->dev, "%s: ERROR: failed to enable device\n",
624 			__func__);
625 		return ret;
626 	}
627 
628 	ret = pcim_iomap_regions(pdev, BIT(0), pci_name(pdev));
629 	if (ret)
630 		return ret;
631 
632 	pci_set_master(pdev);
633 
634 	plat->bsp_priv = intel_priv;
635 	intel_priv->mdio_adhoc_addr = 0x15;
636 
637 	ret = info->setup(pdev, plat);
638 	if (ret)
639 		return ret;
640 
641 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
642 	if (ret < 0)
643 		return ret;
644 
645 	memset(&res, 0, sizeof(res));
646 	res.addr = pcim_iomap_table(pdev)[0];
647 	res.wol_irq = pci_irq_vector(pdev, 0);
648 	res.irq = pci_irq_vector(pdev, 0);
649 
650 	if (plat->eee_usecs_rate > 0) {
651 		u32 tx_lpi_usec;
652 
653 		tx_lpi_usec = (plat->eee_usecs_rate / 1000000) - 1;
654 		writel(tx_lpi_usec, res.addr + GMAC_1US_TIC_COUNTER);
655 	}
656 
657 	ret = stmmac_dvr_probe(&pdev->dev, plat, &res);
658 	if (ret) {
659 		pci_free_irq_vectors(pdev);
660 		clk_disable_unprepare(plat->stmmac_clk);
661 		clk_unregister_fixed_rate(plat->stmmac_clk);
662 	}
663 
664 	return ret;
665 }
666 
667 /**
668  * intel_eth_pci_remove
669  *
670  * @pdev: platform device pointer
671  * Description: this function calls the main to free the net resources
672  * and releases the PCI resources.
673  */
674 static void intel_eth_pci_remove(struct pci_dev *pdev)
675 {
676 	struct net_device *ndev = dev_get_drvdata(&pdev->dev);
677 	struct stmmac_priv *priv = netdev_priv(ndev);
678 
679 	stmmac_dvr_remove(&pdev->dev);
680 
681 	pci_free_irq_vectors(pdev);
682 
683 	clk_unregister_fixed_rate(priv->plat->stmmac_clk);
684 
685 	pcim_iounmap_regions(pdev, BIT(0));
686 
687 	pci_disable_device(pdev);
688 }
689 
690 static int __maybe_unused intel_eth_pci_suspend(struct device *dev)
691 {
692 	struct pci_dev *pdev = to_pci_dev(dev);
693 	int ret;
694 
695 	ret = stmmac_suspend(dev);
696 	if (ret)
697 		return ret;
698 
699 	ret = pci_save_state(pdev);
700 	if (ret)
701 		return ret;
702 
703 	pci_disable_device(pdev);
704 	pci_wake_from_d3(pdev, true);
705 	return 0;
706 }
707 
708 static int __maybe_unused intel_eth_pci_resume(struct device *dev)
709 {
710 	struct pci_dev *pdev = to_pci_dev(dev);
711 	int ret;
712 
713 	pci_restore_state(pdev);
714 	pci_set_power_state(pdev, PCI_D0);
715 
716 	ret = pci_enable_device(pdev);
717 	if (ret)
718 		return ret;
719 
720 	pci_set_master(pdev);
721 
722 	return stmmac_resume(dev);
723 }
724 
725 static SIMPLE_DEV_PM_OPS(intel_eth_pm_ops, intel_eth_pci_suspend,
726 			 intel_eth_pci_resume);
727 
728 #define PCI_DEVICE_ID_INTEL_QUARK_ID			0x0937
729 #define PCI_DEVICE_ID_INTEL_EHL_RGMII1G_ID		0x4b30
730 #define PCI_DEVICE_ID_INTEL_EHL_SGMII1G_ID		0x4b31
731 #define PCI_DEVICE_ID_INTEL_EHL_SGMII2G5_ID		0x4b32
732 /* Intel(R) Programmable Services Engine (Intel(R) PSE) consist of 2 MAC
733  * which are named PSE0 and PSE1
734  */
735 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_RGMII1G_ID		0x4ba0
736 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII1G_ID		0x4ba1
737 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII2G5_ID	0x4ba2
738 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_RGMII1G_ID		0x4bb0
739 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII1G_ID		0x4bb1
740 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII2G5_ID	0x4bb2
741 #define PCI_DEVICE_ID_INTEL_TGLH_SGMII1G_0_ID		0x43ac
742 #define PCI_DEVICE_ID_INTEL_TGLH_SGMII1G_1_ID		0x43a2
743 #define PCI_DEVICE_ID_INTEL_TGL_SGMII1G_ID		0xa0ac
744 #define PCI_DEVICE_ID_INTEL_ADLS_SGMII1G_0_ID		0x7aac
745 #define PCI_DEVICE_ID_INTEL_ADLS_SGMII1G_1_ID		0x7aad
746 
747 static const struct pci_device_id intel_eth_pci_id_table[] = {
748 	{ PCI_DEVICE_DATA(INTEL, QUARK_ID, &quark_info) },
749 	{ PCI_DEVICE_DATA(INTEL, EHL_RGMII1G_ID, &ehl_rgmii1g_info) },
750 	{ PCI_DEVICE_DATA(INTEL, EHL_SGMII1G_ID, &ehl_sgmii1g_info) },
751 	{ PCI_DEVICE_DATA(INTEL, EHL_SGMII2G5_ID, &ehl_sgmii1g_info) },
752 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_RGMII1G_ID, &ehl_pse0_rgmii1g_info) },
753 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII1G_ID, &ehl_pse0_sgmii1g_info) },
754 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII2G5_ID, &ehl_pse0_sgmii1g_info) },
755 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_RGMII1G_ID, &ehl_pse1_rgmii1g_info) },
756 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII1G_ID, &ehl_pse1_sgmii1g_info) },
757 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII2G5_ID, &ehl_pse1_sgmii1g_info) },
758 	{ PCI_DEVICE_DATA(INTEL, TGL_SGMII1G_ID, &tgl_sgmii1g_info) },
759 	{ PCI_DEVICE_DATA(INTEL, TGLH_SGMII1G_0_ID, &tgl_sgmii1g_info) },
760 	{ PCI_DEVICE_DATA(INTEL, TGLH_SGMII1G_1_ID, &tgl_sgmii1g_info) },
761 	{ PCI_DEVICE_DATA(INTEL, ADLS_SGMII1G_0_ID, &adls_sgmii1g_info) },
762 	{ PCI_DEVICE_DATA(INTEL, ADLS_SGMII1G_1_ID, &adls_sgmii1g_info) },
763 	{}
764 };
765 MODULE_DEVICE_TABLE(pci, intel_eth_pci_id_table);
766 
767 static struct pci_driver intel_eth_pci_driver = {
768 	.name = "intel-eth-pci",
769 	.id_table = intel_eth_pci_id_table,
770 	.probe = intel_eth_pci_probe,
771 	.remove = intel_eth_pci_remove,
772 	.driver         = {
773 		.pm     = &intel_eth_pm_ops,
774 	},
775 };
776 
777 module_pci_driver(intel_eth_pci_driver);
778 
779 MODULE_DESCRIPTION("INTEL 10/100/1000 Ethernet PCI driver");
780 MODULE_AUTHOR("Voon Weifeng <weifeng.voon@intel.com>");
781 MODULE_LICENSE("GPL v2");
782