xref: /openbmc/linux/drivers/net/ethernet/stmicro/stmmac/dwmac-intel.c (revision 901bdf5ea1a836400ee69aa32b04e9c209271ec7)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2020, Intel Corporation
3  */
4 
5 #include <linux/clk-provider.h>
6 #include <linux/pci.h>
7 #include <linux/dmi.h>
8 #include "dwmac-intel.h"
9 #include "dwmac4.h"
10 #include "stmmac.h"
11 #include "stmmac_ptp.h"
12 
13 struct intel_priv_data {
14 	int mdio_adhoc_addr;	/* mdio address for serdes & etc */
15 	unsigned long crossts_adj;
16 	bool is_pse;
17 };
18 
19 /* This struct is used to associate PCI Function of MAC controller on a board,
20  * discovered via DMI, with the address of PHY connected to the MAC. The
21  * negative value of the address means that MAC controller is not connected
22  * with PHY.
23  */
24 struct stmmac_pci_func_data {
25 	unsigned int func;
26 	int phy_addr;
27 };
28 
29 struct stmmac_pci_dmi_data {
30 	const struct stmmac_pci_func_data *func;
31 	size_t nfuncs;
32 };
33 
34 struct stmmac_pci_info {
35 	int (*setup)(struct pci_dev *pdev, struct plat_stmmacenet_data *plat);
36 };
37 
38 static int stmmac_pci_find_phy_addr(struct pci_dev *pdev,
39 				    const struct dmi_system_id *dmi_list)
40 {
41 	const struct stmmac_pci_func_data *func_data;
42 	const struct stmmac_pci_dmi_data *dmi_data;
43 	const struct dmi_system_id *dmi_id;
44 	int func = PCI_FUNC(pdev->devfn);
45 	size_t n;
46 
47 	dmi_id = dmi_first_match(dmi_list);
48 	if (!dmi_id)
49 		return -ENODEV;
50 
51 	dmi_data = dmi_id->driver_data;
52 	func_data = dmi_data->func;
53 
54 	for (n = 0; n < dmi_data->nfuncs; n++, func_data++)
55 		if (func_data->func == func)
56 			return func_data->phy_addr;
57 
58 	return -ENODEV;
59 }
60 
61 static int serdes_status_poll(struct stmmac_priv *priv, int phyaddr,
62 			      int phyreg, u32 mask, u32 val)
63 {
64 	unsigned int retries = 10;
65 	int val_rd;
66 
67 	do {
68 		val_rd = mdiobus_read(priv->mii, phyaddr, phyreg);
69 		if ((val_rd & mask) == (val & mask))
70 			return 0;
71 		udelay(POLL_DELAY_US);
72 	} while (--retries);
73 
74 	return -ETIMEDOUT;
75 }
76 
77 static int intel_serdes_powerup(struct net_device *ndev, void *priv_data)
78 {
79 	struct intel_priv_data *intel_priv = priv_data;
80 	struct stmmac_priv *priv = netdev_priv(ndev);
81 	int serdes_phy_addr = 0;
82 	u32 data = 0;
83 
84 	if (!intel_priv->mdio_adhoc_addr)
85 		return 0;
86 
87 	serdes_phy_addr = intel_priv->mdio_adhoc_addr;
88 
89 	/* Set the serdes rate and the PCLK rate */
90 	data = mdiobus_read(priv->mii, serdes_phy_addr,
91 			    SERDES_GCR0);
92 
93 	data &= ~SERDES_RATE_MASK;
94 	data &= ~SERDES_PCLK_MASK;
95 
96 	if (priv->plat->max_speed == 2500)
97 		data |= SERDES_RATE_PCIE_GEN2 << SERDES_RATE_PCIE_SHIFT |
98 			SERDES_PCLK_37p5MHZ << SERDES_PCLK_SHIFT;
99 	else
100 		data |= SERDES_RATE_PCIE_GEN1 << SERDES_RATE_PCIE_SHIFT |
101 			SERDES_PCLK_70MHZ << SERDES_PCLK_SHIFT;
102 
103 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
104 
105 	/* assert clk_req */
106 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
107 	data |= SERDES_PLL_CLK;
108 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
109 
110 	/* check for clk_ack assertion */
111 	data = serdes_status_poll(priv, serdes_phy_addr,
112 				  SERDES_GSR0,
113 				  SERDES_PLL_CLK,
114 				  SERDES_PLL_CLK);
115 
116 	if (data) {
117 		dev_err(priv->device, "Serdes PLL clk request timeout\n");
118 		return data;
119 	}
120 
121 	/* assert lane reset */
122 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
123 	data |= SERDES_RST;
124 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
125 
126 	/* check for assert lane reset reflection */
127 	data = serdes_status_poll(priv, serdes_phy_addr,
128 				  SERDES_GSR0,
129 				  SERDES_RST,
130 				  SERDES_RST);
131 
132 	if (data) {
133 		dev_err(priv->device, "Serdes assert lane reset timeout\n");
134 		return data;
135 	}
136 
137 	/*  move power state to P0 */
138 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
139 
140 	data &= ~SERDES_PWR_ST_MASK;
141 	data |= SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT;
142 
143 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
144 
145 	/* Check for P0 state */
146 	data = serdes_status_poll(priv, serdes_phy_addr,
147 				  SERDES_GSR0,
148 				  SERDES_PWR_ST_MASK,
149 				  SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT);
150 
151 	if (data) {
152 		dev_err(priv->device, "Serdes power state P0 timeout.\n");
153 		return data;
154 	}
155 
156 	/* PSE only - ungate SGMII PHY Rx Clock */
157 	if (intel_priv->is_pse)
158 		mdiobus_modify(priv->mii, serdes_phy_addr, SERDES_GCR0,
159 			       0, SERDES_PHY_RX_CLK);
160 
161 	return 0;
162 }
163 
164 static void intel_serdes_powerdown(struct net_device *ndev, void *intel_data)
165 {
166 	struct intel_priv_data *intel_priv = intel_data;
167 	struct stmmac_priv *priv = netdev_priv(ndev);
168 	int serdes_phy_addr = 0;
169 	u32 data = 0;
170 
171 	if (!intel_priv->mdio_adhoc_addr)
172 		return;
173 
174 	serdes_phy_addr = intel_priv->mdio_adhoc_addr;
175 
176 	/* PSE only - gate SGMII PHY Rx Clock */
177 	if (intel_priv->is_pse)
178 		mdiobus_modify(priv->mii, serdes_phy_addr, SERDES_GCR0,
179 			       SERDES_PHY_RX_CLK, 0);
180 
181 	/*  move power state to P3 */
182 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
183 
184 	data &= ~SERDES_PWR_ST_MASK;
185 	data |= SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT;
186 
187 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
188 
189 	/* Check for P3 state */
190 	data = serdes_status_poll(priv, serdes_phy_addr,
191 				  SERDES_GSR0,
192 				  SERDES_PWR_ST_MASK,
193 				  SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT);
194 
195 	if (data) {
196 		dev_err(priv->device, "Serdes power state P3 timeout\n");
197 		return;
198 	}
199 
200 	/* de-assert clk_req */
201 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
202 	data &= ~SERDES_PLL_CLK;
203 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
204 
205 	/* check for clk_ack de-assert */
206 	data = serdes_status_poll(priv, serdes_phy_addr,
207 				  SERDES_GSR0,
208 				  SERDES_PLL_CLK,
209 				  (u32)~SERDES_PLL_CLK);
210 
211 	if (data) {
212 		dev_err(priv->device, "Serdes PLL clk de-assert timeout\n");
213 		return;
214 	}
215 
216 	/* de-assert lane reset */
217 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
218 	data &= ~SERDES_RST;
219 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
220 
221 	/* check for de-assert lane reset reflection */
222 	data = serdes_status_poll(priv, serdes_phy_addr,
223 				  SERDES_GSR0,
224 				  SERDES_RST,
225 				  (u32)~SERDES_RST);
226 
227 	if (data) {
228 		dev_err(priv->device, "Serdes de-assert lane reset timeout\n");
229 		return;
230 	}
231 }
232 
233 static void intel_speed_mode_2500(struct net_device *ndev, void *intel_data)
234 {
235 	struct intel_priv_data *intel_priv = intel_data;
236 	struct stmmac_priv *priv = netdev_priv(ndev);
237 	int serdes_phy_addr = 0;
238 	u32 data = 0;
239 
240 	serdes_phy_addr = intel_priv->mdio_adhoc_addr;
241 
242 	/* Determine the link speed mode: 2.5Gbps/1Gbps */
243 	data = mdiobus_read(priv->mii, serdes_phy_addr,
244 			    SERDES_GCR);
245 
246 	if (((data & SERDES_LINK_MODE_MASK) >> SERDES_LINK_MODE_SHIFT) ==
247 	    SERDES_LINK_MODE_2G5) {
248 		dev_info(priv->device, "Link Speed Mode: 2.5Gbps\n");
249 		priv->plat->max_speed = 2500;
250 		priv->plat->phy_interface = PHY_INTERFACE_MODE_2500BASEX;
251 		priv->plat->mdio_bus_data->xpcs_an_inband = false;
252 	} else {
253 		priv->plat->max_speed = 1000;
254 	}
255 }
256 
257 /* Program PTP Clock Frequency for different variant of
258  * Intel mGBE that has slightly different GPO mapping
259  */
260 static void intel_mgbe_ptp_clk_freq_config(void *npriv)
261 {
262 	struct stmmac_priv *priv = (struct stmmac_priv *)npriv;
263 	struct intel_priv_data *intel_priv;
264 	u32 gpio_value;
265 
266 	intel_priv = (struct intel_priv_data *)priv->plat->bsp_priv;
267 
268 	gpio_value = readl(priv->ioaddr + GMAC_GPIO_STATUS);
269 
270 	if (intel_priv->is_pse) {
271 		/* For PSE GbE, use 200MHz */
272 		gpio_value &= ~PSE_PTP_CLK_FREQ_MASK;
273 		gpio_value |= PSE_PTP_CLK_FREQ_200MHZ;
274 	} else {
275 		/* For PCH GbE, use 200MHz */
276 		gpio_value &= ~PCH_PTP_CLK_FREQ_MASK;
277 		gpio_value |= PCH_PTP_CLK_FREQ_200MHZ;
278 	}
279 
280 	writel(gpio_value, priv->ioaddr + GMAC_GPIO_STATUS);
281 }
282 
283 static void get_arttime(struct mii_bus *mii, int intel_adhoc_addr,
284 			u64 *art_time)
285 {
286 	u64 ns;
287 
288 	ns = mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE3);
289 	ns <<= GMAC4_ART_TIME_SHIFT;
290 	ns |= mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE2);
291 	ns <<= GMAC4_ART_TIME_SHIFT;
292 	ns |= mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE1);
293 	ns <<= GMAC4_ART_TIME_SHIFT;
294 	ns |= mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE0);
295 
296 	*art_time = ns;
297 }
298 
299 static int stmmac_cross_ts_isr(struct stmmac_priv *priv)
300 {
301 	return (readl(priv->ioaddr + GMAC_INT_STATUS) & GMAC_INT_TSIE);
302 }
303 
304 static int intel_crosststamp(ktime_t *device,
305 			     struct system_counterval_t *system,
306 			     void *ctx)
307 {
308 	struct intel_priv_data *intel_priv;
309 
310 	struct stmmac_priv *priv = (struct stmmac_priv *)ctx;
311 	void __iomem *ptpaddr = priv->ptpaddr;
312 	void __iomem *ioaddr = priv->hw->pcsr;
313 	unsigned long flags;
314 	u64 art_time = 0;
315 	u64 ptp_time = 0;
316 	u32 num_snapshot;
317 	u32 gpio_value;
318 	u32 acr_value;
319 	int i;
320 
321 	if (!boot_cpu_has(X86_FEATURE_ART))
322 		return -EOPNOTSUPP;
323 
324 	intel_priv = priv->plat->bsp_priv;
325 
326 	/* Both internal crosstimestamping and external triggered event
327 	 * timestamping cannot be run concurrently.
328 	 */
329 	if (priv->plat->ext_snapshot_en)
330 		return -EBUSY;
331 
332 	priv->plat->int_snapshot_en = 1;
333 
334 	mutex_lock(&priv->aux_ts_lock);
335 	/* Enable Internal snapshot trigger */
336 	acr_value = readl(ptpaddr + PTP_ACR);
337 	acr_value &= ~PTP_ACR_MASK;
338 	switch (priv->plat->int_snapshot_num) {
339 	case AUX_SNAPSHOT0:
340 		acr_value |= PTP_ACR_ATSEN0;
341 		break;
342 	case AUX_SNAPSHOT1:
343 		acr_value |= PTP_ACR_ATSEN1;
344 		break;
345 	case AUX_SNAPSHOT2:
346 		acr_value |= PTP_ACR_ATSEN2;
347 		break;
348 	case AUX_SNAPSHOT3:
349 		acr_value |= PTP_ACR_ATSEN3;
350 		break;
351 	default:
352 		mutex_unlock(&priv->aux_ts_lock);
353 		priv->plat->int_snapshot_en = 0;
354 		return -EINVAL;
355 	}
356 	writel(acr_value, ptpaddr + PTP_ACR);
357 
358 	/* Clear FIFO */
359 	acr_value = readl(ptpaddr + PTP_ACR);
360 	acr_value |= PTP_ACR_ATSFC;
361 	writel(acr_value, ptpaddr + PTP_ACR);
362 	/* Release the mutex */
363 	mutex_unlock(&priv->aux_ts_lock);
364 
365 	/* Trigger Internal snapshot signal
366 	 * Create a rising edge by just toggle the GPO1 to low
367 	 * and back to high.
368 	 */
369 	gpio_value = readl(ioaddr + GMAC_GPIO_STATUS);
370 	gpio_value &= ~GMAC_GPO1;
371 	writel(gpio_value, ioaddr + GMAC_GPIO_STATUS);
372 	gpio_value |= GMAC_GPO1;
373 	writel(gpio_value, ioaddr + GMAC_GPIO_STATUS);
374 
375 	/* Time sync done Indication - Interrupt method */
376 	if (!wait_event_interruptible_timeout(priv->tstamp_busy_wait,
377 					      stmmac_cross_ts_isr(priv),
378 					      HZ / 100)) {
379 		priv->plat->int_snapshot_en = 0;
380 		return -ETIMEDOUT;
381 	}
382 
383 	num_snapshot = (readl(ioaddr + GMAC_TIMESTAMP_STATUS) &
384 			GMAC_TIMESTAMP_ATSNS_MASK) >>
385 			GMAC_TIMESTAMP_ATSNS_SHIFT;
386 
387 	/* Repeat until the timestamps are from the FIFO last segment */
388 	for (i = 0; i < num_snapshot; i++) {
389 		read_lock_irqsave(&priv->ptp_lock, flags);
390 		stmmac_get_ptptime(priv, ptpaddr, &ptp_time);
391 		*device = ns_to_ktime(ptp_time);
392 		read_unlock_irqrestore(&priv->ptp_lock, flags);
393 		get_arttime(priv->mii, intel_priv->mdio_adhoc_addr, &art_time);
394 		*system = convert_art_to_tsc(art_time);
395 	}
396 
397 	system->cycles *= intel_priv->crossts_adj;
398 	priv->plat->int_snapshot_en = 0;
399 
400 	return 0;
401 }
402 
403 static void intel_mgbe_pse_crossts_adj(struct intel_priv_data *intel_priv,
404 				       int base)
405 {
406 	if (boot_cpu_has(X86_FEATURE_ART)) {
407 		unsigned int art_freq;
408 
409 		/* On systems that support ART, ART frequency can be obtained
410 		 * from ECX register of CPUID leaf (0x15).
411 		 */
412 		art_freq = cpuid_ecx(ART_CPUID_LEAF);
413 		do_div(art_freq, base);
414 		intel_priv->crossts_adj = art_freq;
415 	}
416 }
417 
418 static void common_default_data(struct plat_stmmacenet_data *plat)
419 {
420 	plat->clk_csr = 2;	/* clk_csr_i = 20-35MHz & MDC = clk_csr_i/16 */
421 	plat->has_gmac = 1;
422 	plat->force_sf_dma_mode = 1;
423 
424 	plat->mdio_bus_data->needs_reset = true;
425 
426 	/* Set default value for multicast hash bins */
427 	plat->multicast_filter_bins = HASH_TABLE_SIZE;
428 
429 	/* Set default value for unicast filter entries */
430 	plat->unicast_filter_entries = 1;
431 
432 	/* Set the maxmtu to a default of JUMBO_LEN */
433 	plat->maxmtu = JUMBO_LEN;
434 
435 	/* Set default number of RX and TX queues to use */
436 	plat->tx_queues_to_use = 1;
437 	plat->rx_queues_to_use = 1;
438 
439 	/* Disable Priority config by default */
440 	plat->tx_queues_cfg[0].use_prio = false;
441 	plat->rx_queues_cfg[0].use_prio = false;
442 
443 	/* Disable RX queues routing by default */
444 	plat->rx_queues_cfg[0].pkt_route = 0x0;
445 }
446 
447 static int intel_mgbe_common_data(struct pci_dev *pdev,
448 				  struct plat_stmmacenet_data *plat)
449 {
450 	struct fwnode_handle *fwnode;
451 	char clk_name[20];
452 	int ret;
453 	int i;
454 
455 	plat->pdev = pdev;
456 	plat->phy_addr = -1;
457 	plat->clk_csr = 5;
458 	plat->has_gmac = 0;
459 	plat->has_gmac4 = 1;
460 	plat->force_sf_dma_mode = 0;
461 	plat->tso_en = 1;
462 	plat->sph_disable = 1;
463 
464 	/* Multiplying factor to the clk_eee_i clock time
465 	 * period to make it closer to 100 ns. This value
466 	 * should be programmed such that the clk_eee_time_period *
467 	 * (MULT_FACT_100NS + 1) should be within 80 ns to 120 ns
468 	 * clk_eee frequency is 19.2Mhz
469 	 * clk_eee_time_period is 52ns
470 	 * 52ns * (1 + 1) = 104ns
471 	 * MULT_FACT_100NS = 1
472 	 */
473 	plat->mult_fact_100ns = 1;
474 
475 	plat->rx_sched_algorithm = MTL_RX_ALGORITHM_SP;
476 
477 	for (i = 0; i < plat->rx_queues_to_use; i++) {
478 		plat->rx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB;
479 		plat->rx_queues_cfg[i].chan = i;
480 
481 		/* Disable Priority config by default */
482 		plat->rx_queues_cfg[i].use_prio = false;
483 
484 		/* Disable RX queues routing by default */
485 		plat->rx_queues_cfg[i].pkt_route = 0x0;
486 	}
487 
488 	for (i = 0; i < plat->tx_queues_to_use; i++) {
489 		plat->tx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB;
490 
491 		/* Disable Priority config by default */
492 		plat->tx_queues_cfg[i].use_prio = false;
493 		/* Default TX Q0 to use TSO and rest TXQ for TBS */
494 		if (i > 0)
495 			plat->tx_queues_cfg[i].tbs_en = 1;
496 	}
497 
498 	/* FIFO size is 4096 bytes for 1 tx/rx queue */
499 	plat->tx_fifo_size = plat->tx_queues_to_use * 4096;
500 	plat->rx_fifo_size = plat->rx_queues_to_use * 4096;
501 
502 	plat->tx_sched_algorithm = MTL_TX_ALGORITHM_WRR;
503 	plat->tx_queues_cfg[0].weight = 0x09;
504 	plat->tx_queues_cfg[1].weight = 0x0A;
505 	plat->tx_queues_cfg[2].weight = 0x0B;
506 	plat->tx_queues_cfg[3].weight = 0x0C;
507 	plat->tx_queues_cfg[4].weight = 0x0D;
508 	plat->tx_queues_cfg[5].weight = 0x0E;
509 	plat->tx_queues_cfg[6].weight = 0x0F;
510 	plat->tx_queues_cfg[7].weight = 0x10;
511 
512 	plat->dma_cfg->pbl = 32;
513 	plat->dma_cfg->pblx8 = true;
514 	plat->dma_cfg->fixed_burst = 0;
515 	plat->dma_cfg->mixed_burst = 0;
516 	plat->dma_cfg->aal = 0;
517 	plat->dma_cfg->dche = true;
518 
519 	plat->axi = devm_kzalloc(&pdev->dev, sizeof(*plat->axi),
520 				 GFP_KERNEL);
521 	if (!plat->axi)
522 		return -ENOMEM;
523 
524 	plat->axi->axi_lpi_en = 0;
525 	plat->axi->axi_xit_frm = 0;
526 	plat->axi->axi_wr_osr_lmt = 1;
527 	plat->axi->axi_rd_osr_lmt = 1;
528 	plat->axi->axi_blen[0] = 4;
529 	plat->axi->axi_blen[1] = 8;
530 	plat->axi->axi_blen[2] = 16;
531 
532 	plat->ptp_max_adj = plat->clk_ptp_rate;
533 	plat->eee_usecs_rate = plat->clk_ptp_rate;
534 
535 	/* Set system clock */
536 	sprintf(clk_name, "%s-%s", "stmmac", pci_name(pdev));
537 
538 	plat->stmmac_clk = clk_register_fixed_rate(&pdev->dev,
539 						   clk_name, NULL, 0,
540 						   plat->clk_ptp_rate);
541 
542 	if (IS_ERR(plat->stmmac_clk)) {
543 		dev_warn(&pdev->dev, "Fail to register stmmac-clk\n");
544 		plat->stmmac_clk = NULL;
545 	}
546 
547 	ret = clk_prepare_enable(plat->stmmac_clk);
548 	if (ret) {
549 		clk_unregister_fixed_rate(plat->stmmac_clk);
550 		return ret;
551 	}
552 
553 	plat->ptp_clk_freq_config = intel_mgbe_ptp_clk_freq_config;
554 
555 	/* Set default value for multicast hash bins */
556 	plat->multicast_filter_bins = HASH_TABLE_SIZE;
557 
558 	/* Set default value for unicast filter entries */
559 	plat->unicast_filter_entries = 1;
560 
561 	/* Set the maxmtu to a default of JUMBO_LEN */
562 	plat->maxmtu = JUMBO_LEN;
563 
564 	plat->vlan_fail_q_en = true;
565 
566 	/* Use the last Rx queue */
567 	plat->vlan_fail_q = plat->rx_queues_to_use - 1;
568 
569 	/* For fixed-link setup, we allow phy-mode setting */
570 	fwnode = dev_fwnode(&pdev->dev);
571 	if (fwnode) {
572 		int phy_mode;
573 
574 		/* "phy-mode" setting is optional. If it is set,
575 		 *  we allow either sgmii or 1000base-x for now.
576 		 */
577 		phy_mode = fwnode_get_phy_mode(fwnode);
578 		if (phy_mode >= 0) {
579 			if (phy_mode == PHY_INTERFACE_MODE_SGMII ||
580 			    phy_mode == PHY_INTERFACE_MODE_1000BASEX)
581 				plat->phy_interface = phy_mode;
582 			else
583 				dev_warn(&pdev->dev, "Invalid phy-mode\n");
584 		}
585 	}
586 
587 	/* Intel mgbe SGMII interface uses pcs-xcps */
588 	if (plat->phy_interface == PHY_INTERFACE_MODE_SGMII ||
589 	    plat->phy_interface == PHY_INTERFACE_MODE_1000BASEX) {
590 		plat->mdio_bus_data->has_xpcs = true;
591 		plat->mdio_bus_data->xpcs_an_inband = true;
592 	}
593 
594 	/* For fixed-link setup, we clear xpcs_an_inband */
595 	if (fwnode) {
596 		struct fwnode_handle *fixed_node;
597 
598 		fixed_node = fwnode_get_named_child_node(fwnode, "fixed-link");
599 		if (fixed_node)
600 			plat->mdio_bus_data->xpcs_an_inband = false;
601 
602 		fwnode_handle_put(fixed_node);
603 	}
604 
605 	/* Ensure mdio bus scan skips intel serdes and pcs-xpcs */
606 	plat->mdio_bus_data->phy_mask = 1 << INTEL_MGBE_ADHOC_ADDR;
607 	plat->mdio_bus_data->phy_mask |= 1 << INTEL_MGBE_XPCS_ADDR;
608 
609 	plat->int_snapshot_num = AUX_SNAPSHOT1;
610 	plat->ext_snapshot_num = AUX_SNAPSHOT0;
611 
612 	plat->crosststamp = intel_crosststamp;
613 	plat->int_snapshot_en = 0;
614 
615 	/* Setup MSI vector offset specific to Intel mGbE controller */
616 	plat->msi_mac_vec = 29;
617 	plat->msi_lpi_vec = 28;
618 	plat->msi_sfty_ce_vec = 27;
619 	plat->msi_sfty_ue_vec = 26;
620 	plat->msi_rx_base_vec = 0;
621 	plat->msi_tx_base_vec = 1;
622 
623 	return 0;
624 }
625 
626 static int ehl_common_data(struct pci_dev *pdev,
627 			   struct plat_stmmacenet_data *plat)
628 {
629 	plat->rx_queues_to_use = 8;
630 	plat->tx_queues_to_use = 8;
631 	plat->use_phy_wol = 1;
632 
633 	plat->safety_feat_cfg->tsoee = 1;
634 	plat->safety_feat_cfg->mrxpee = 1;
635 	plat->safety_feat_cfg->mestee = 1;
636 	plat->safety_feat_cfg->mrxee = 1;
637 	plat->safety_feat_cfg->mtxee = 1;
638 	plat->safety_feat_cfg->epsi = 0;
639 	plat->safety_feat_cfg->edpp = 0;
640 	plat->safety_feat_cfg->prtyen = 0;
641 	plat->safety_feat_cfg->tmouten = 0;
642 
643 	return intel_mgbe_common_data(pdev, plat);
644 }
645 
646 static int ehl_sgmii_data(struct pci_dev *pdev,
647 			  struct plat_stmmacenet_data *plat)
648 {
649 	plat->bus_id = 1;
650 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
651 	plat->speed_mode_2500 = intel_speed_mode_2500;
652 	plat->serdes_powerup = intel_serdes_powerup;
653 	plat->serdes_powerdown = intel_serdes_powerdown;
654 
655 	plat->clk_ptp_rate = 204800000;
656 
657 	return ehl_common_data(pdev, plat);
658 }
659 
660 static struct stmmac_pci_info ehl_sgmii1g_info = {
661 	.setup = ehl_sgmii_data,
662 };
663 
664 static int ehl_rgmii_data(struct pci_dev *pdev,
665 			  struct plat_stmmacenet_data *plat)
666 {
667 	plat->bus_id = 1;
668 	plat->phy_interface = PHY_INTERFACE_MODE_RGMII;
669 
670 	plat->clk_ptp_rate = 204800000;
671 
672 	return ehl_common_data(pdev, plat);
673 }
674 
675 static struct stmmac_pci_info ehl_rgmii1g_info = {
676 	.setup = ehl_rgmii_data,
677 };
678 
679 static int ehl_pse0_common_data(struct pci_dev *pdev,
680 				struct plat_stmmacenet_data *plat)
681 {
682 	struct intel_priv_data *intel_priv = plat->bsp_priv;
683 
684 	intel_priv->is_pse = true;
685 	plat->bus_id = 2;
686 	plat->host_dma_width = 32;
687 
688 	plat->clk_ptp_rate = 200000000;
689 
690 	intel_mgbe_pse_crossts_adj(intel_priv, EHL_PSE_ART_MHZ);
691 
692 	return ehl_common_data(pdev, plat);
693 }
694 
695 static int ehl_pse0_rgmii1g_data(struct pci_dev *pdev,
696 				 struct plat_stmmacenet_data *plat)
697 {
698 	plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID;
699 	return ehl_pse0_common_data(pdev, plat);
700 }
701 
702 static struct stmmac_pci_info ehl_pse0_rgmii1g_info = {
703 	.setup = ehl_pse0_rgmii1g_data,
704 };
705 
706 static int ehl_pse0_sgmii1g_data(struct pci_dev *pdev,
707 				 struct plat_stmmacenet_data *plat)
708 {
709 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
710 	plat->speed_mode_2500 = intel_speed_mode_2500;
711 	plat->serdes_powerup = intel_serdes_powerup;
712 	plat->serdes_powerdown = intel_serdes_powerdown;
713 	return ehl_pse0_common_data(pdev, plat);
714 }
715 
716 static struct stmmac_pci_info ehl_pse0_sgmii1g_info = {
717 	.setup = ehl_pse0_sgmii1g_data,
718 };
719 
720 static int ehl_pse1_common_data(struct pci_dev *pdev,
721 				struct plat_stmmacenet_data *plat)
722 {
723 	struct intel_priv_data *intel_priv = plat->bsp_priv;
724 
725 	intel_priv->is_pse = true;
726 	plat->bus_id = 3;
727 	plat->host_dma_width = 32;
728 
729 	plat->clk_ptp_rate = 200000000;
730 
731 	intel_mgbe_pse_crossts_adj(intel_priv, EHL_PSE_ART_MHZ);
732 
733 	return ehl_common_data(pdev, plat);
734 }
735 
736 static int ehl_pse1_rgmii1g_data(struct pci_dev *pdev,
737 				 struct plat_stmmacenet_data *plat)
738 {
739 	plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID;
740 	return ehl_pse1_common_data(pdev, plat);
741 }
742 
743 static struct stmmac_pci_info ehl_pse1_rgmii1g_info = {
744 	.setup = ehl_pse1_rgmii1g_data,
745 };
746 
747 static int ehl_pse1_sgmii1g_data(struct pci_dev *pdev,
748 				 struct plat_stmmacenet_data *plat)
749 {
750 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
751 	plat->speed_mode_2500 = intel_speed_mode_2500;
752 	plat->serdes_powerup = intel_serdes_powerup;
753 	plat->serdes_powerdown = intel_serdes_powerdown;
754 	return ehl_pse1_common_data(pdev, plat);
755 }
756 
757 static struct stmmac_pci_info ehl_pse1_sgmii1g_info = {
758 	.setup = ehl_pse1_sgmii1g_data,
759 };
760 
761 static int tgl_common_data(struct pci_dev *pdev,
762 			   struct plat_stmmacenet_data *plat)
763 {
764 	plat->rx_queues_to_use = 6;
765 	plat->tx_queues_to_use = 4;
766 	plat->clk_ptp_rate = 204800000;
767 	plat->speed_mode_2500 = intel_speed_mode_2500;
768 
769 	plat->safety_feat_cfg->tsoee = 1;
770 	plat->safety_feat_cfg->mrxpee = 0;
771 	plat->safety_feat_cfg->mestee = 1;
772 	plat->safety_feat_cfg->mrxee = 1;
773 	plat->safety_feat_cfg->mtxee = 1;
774 	plat->safety_feat_cfg->epsi = 0;
775 	plat->safety_feat_cfg->edpp = 0;
776 	plat->safety_feat_cfg->prtyen = 0;
777 	plat->safety_feat_cfg->tmouten = 0;
778 
779 	return intel_mgbe_common_data(pdev, plat);
780 }
781 
782 static int tgl_sgmii_phy0_data(struct pci_dev *pdev,
783 			       struct plat_stmmacenet_data *plat)
784 {
785 	plat->bus_id = 1;
786 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
787 	plat->serdes_powerup = intel_serdes_powerup;
788 	plat->serdes_powerdown = intel_serdes_powerdown;
789 	return tgl_common_data(pdev, plat);
790 }
791 
792 static struct stmmac_pci_info tgl_sgmii1g_phy0_info = {
793 	.setup = tgl_sgmii_phy0_data,
794 };
795 
796 static int tgl_sgmii_phy1_data(struct pci_dev *pdev,
797 			       struct plat_stmmacenet_data *plat)
798 {
799 	plat->bus_id = 2;
800 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
801 	plat->serdes_powerup = intel_serdes_powerup;
802 	plat->serdes_powerdown = intel_serdes_powerdown;
803 	return tgl_common_data(pdev, plat);
804 }
805 
806 static struct stmmac_pci_info tgl_sgmii1g_phy1_info = {
807 	.setup = tgl_sgmii_phy1_data,
808 };
809 
810 static int adls_sgmii_phy0_data(struct pci_dev *pdev,
811 				struct plat_stmmacenet_data *plat)
812 {
813 	plat->bus_id = 1;
814 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
815 
816 	/* SerDes power up and power down are done in BIOS for ADL */
817 
818 	return tgl_common_data(pdev, plat);
819 }
820 
821 static struct stmmac_pci_info adls_sgmii1g_phy0_info = {
822 	.setup = adls_sgmii_phy0_data,
823 };
824 
825 static int adls_sgmii_phy1_data(struct pci_dev *pdev,
826 				struct plat_stmmacenet_data *plat)
827 {
828 	plat->bus_id = 2;
829 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
830 
831 	/* SerDes power up and power down are done in BIOS for ADL */
832 
833 	return tgl_common_data(pdev, plat);
834 }
835 
836 static struct stmmac_pci_info adls_sgmii1g_phy1_info = {
837 	.setup = adls_sgmii_phy1_data,
838 };
839 static const struct stmmac_pci_func_data galileo_stmmac_func_data[] = {
840 	{
841 		.func = 6,
842 		.phy_addr = 1,
843 	},
844 };
845 
846 static const struct stmmac_pci_dmi_data galileo_stmmac_dmi_data = {
847 	.func = galileo_stmmac_func_data,
848 	.nfuncs = ARRAY_SIZE(galileo_stmmac_func_data),
849 };
850 
851 static const struct stmmac_pci_func_data iot2040_stmmac_func_data[] = {
852 	{
853 		.func = 6,
854 		.phy_addr = 1,
855 	},
856 	{
857 		.func = 7,
858 		.phy_addr = 1,
859 	},
860 };
861 
862 static const struct stmmac_pci_dmi_data iot2040_stmmac_dmi_data = {
863 	.func = iot2040_stmmac_func_data,
864 	.nfuncs = ARRAY_SIZE(iot2040_stmmac_func_data),
865 };
866 
867 static const struct dmi_system_id quark_pci_dmi[] = {
868 	{
869 		.matches = {
870 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "Galileo"),
871 		},
872 		.driver_data = (void *)&galileo_stmmac_dmi_data,
873 	},
874 	{
875 		.matches = {
876 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "GalileoGen2"),
877 		},
878 		.driver_data = (void *)&galileo_stmmac_dmi_data,
879 	},
880 	/* There are 2 types of SIMATIC IOT2000: IOT2020 and IOT2040.
881 	 * The asset tag "6ES7647-0AA00-0YA2" is only for IOT2020 which
882 	 * has only one pci network device while other asset tags are
883 	 * for IOT2040 which has two.
884 	 */
885 	{
886 		.matches = {
887 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"),
888 			DMI_EXACT_MATCH(DMI_BOARD_ASSET_TAG,
889 					"6ES7647-0AA00-0YA2"),
890 		},
891 		.driver_data = (void *)&galileo_stmmac_dmi_data,
892 	},
893 	{
894 		.matches = {
895 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"),
896 		},
897 		.driver_data = (void *)&iot2040_stmmac_dmi_data,
898 	},
899 	{}
900 };
901 
902 static int quark_default_data(struct pci_dev *pdev,
903 			      struct plat_stmmacenet_data *plat)
904 {
905 	int ret;
906 
907 	/* Set common default data first */
908 	common_default_data(plat);
909 
910 	/* Refuse to load the driver and register net device if MAC controller
911 	 * does not connect to any PHY interface.
912 	 */
913 	ret = stmmac_pci_find_phy_addr(pdev, quark_pci_dmi);
914 	if (ret < 0) {
915 		/* Return error to the caller on DMI enabled boards. */
916 		if (dmi_get_system_info(DMI_BOARD_NAME))
917 			return ret;
918 
919 		/* Galileo boards with old firmware don't support DMI. We always
920 		 * use 1 here as PHY address, so at least the first found MAC
921 		 * controller would be probed.
922 		 */
923 		ret = 1;
924 	}
925 
926 	plat->bus_id = pci_dev_id(pdev);
927 	plat->phy_addr = ret;
928 	plat->phy_interface = PHY_INTERFACE_MODE_RMII;
929 
930 	plat->dma_cfg->pbl = 16;
931 	plat->dma_cfg->pblx8 = true;
932 	plat->dma_cfg->fixed_burst = 1;
933 	/* AXI (TODO) */
934 
935 	return 0;
936 }
937 
938 static const struct stmmac_pci_info quark_info = {
939 	.setup = quark_default_data,
940 };
941 
942 static int stmmac_config_single_msi(struct pci_dev *pdev,
943 				    struct plat_stmmacenet_data *plat,
944 				    struct stmmac_resources *res)
945 {
946 	int ret;
947 
948 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
949 	if (ret < 0) {
950 		dev_info(&pdev->dev, "%s: Single IRQ enablement failed\n",
951 			 __func__);
952 		return ret;
953 	}
954 
955 	res->irq = pci_irq_vector(pdev, 0);
956 	res->wol_irq = res->irq;
957 	plat->multi_msi_en = 0;
958 	dev_info(&pdev->dev, "%s: Single IRQ enablement successful\n",
959 		 __func__);
960 
961 	return 0;
962 }
963 
964 static int stmmac_config_multi_msi(struct pci_dev *pdev,
965 				   struct plat_stmmacenet_data *plat,
966 				   struct stmmac_resources *res)
967 {
968 	int ret;
969 	int i;
970 
971 	if (plat->msi_rx_base_vec >= STMMAC_MSI_VEC_MAX ||
972 	    plat->msi_tx_base_vec >= STMMAC_MSI_VEC_MAX) {
973 		dev_info(&pdev->dev, "%s: Invalid RX & TX vector defined\n",
974 			 __func__);
975 		return -1;
976 	}
977 
978 	ret = pci_alloc_irq_vectors(pdev, 2, STMMAC_MSI_VEC_MAX,
979 				    PCI_IRQ_MSI | PCI_IRQ_MSIX);
980 	if (ret < 0) {
981 		dev_info(&pdev->dev, "%s: multi MSI enablement failed\n",
982 			 __func__);
983 		return ret;
984 	}
985 
986 	/* For RX MSI */
987 	for (i = 0; i < plat->rx_queues_to_use; i++) {
988 		res->rx_irq[i] = pci_irq_vector(pdev,
989 						plat->msi_rx_base_vec + i * 2);
990 	}
991 
992 	/* For TX MSI */
993 	for (i = 0; i < plat->tx_queues_to_use; i++) {
994 		res->tx_irq[i] = pci_irq_vector(pdev,
995 						plat->msi_tx_base_vec + i * 2);
996 	}
997 
998 	if (plat->msi_mac_vec < STMMAC_MSI_VEC_MAX)
999 		res->irq = pci_irq_vector(pdev, plat->msi_mac_vec);
1000 	if (plat->msi_wol_vec < STMMAC_MSI_VEC_MAX)
1001 		res->wol_irq = pci_irq_vector(pdev, plat->msi_wol_vec);
1002 	if (plat->msi_lpi_vec < STMMAC_MSI_VEC_MAX)
1003 		res->lpi_irq = pci_irq_vector(pdev, plat->msi_lpi_vec);
1004 	if (plat->msi_sfty_ce_vec < STMMAC_MSI_VEC_MAX)
1005 		res->sfty_ce_irq = pci_irq_vector(pdev, plat->msi_sfty_ce_vec);
1006 	if (plat->msi_sfty_ue_vec < STMMAC_MSI_VEC_MAX)
1007 		res->sfty_ue_irq = pci_irq_vector(pdev, plat->msi_sfty_ue_vec);
1008 
1009 	plat->multi_msi_en = 1;
1010 	dev_info(&pdev->dev, "%s: multi MSI enablement successful\n", __func__);
1011 
1012 	return 0;
1013 }
1014 
1015 /**
1016  * intel_eth_pci_probe
1017  *
1018  * @pdev: pci device pointer
1019  * @id: pointer to table of device id/id's.
1020  *
1021  * Description: This probing function gets called for all PCI devices which
1022  * match the ID table and are not "owned" by other driver yet. This function
1023  * gets passed a "struct pci_dev *" for each device whose entry in the ID table
1024  * matches the device. The probe functions returns zero when the driver choose
1025  * to take "ownership" of the device or an error code(-ve no) otherwise.
1026  */
1027 static int intel_eth_pci_probe(struct pci_dev *pdev,
1028 			       const struct pci_device_id *id)
1029 {
1030 	struct stmmac_pci_info *info = (struct stmmac_pci_info *)id->driver_data;
1031 	struct intel_priv_data *intel_priv;
1032 	struct plat_stmmacenet_data *plat;
1033 	struct stmmac_resources res;
1034 	int ret;
1035 
1036 	intel_priv = devm_kzalloc(&pdev->dev, sizeof(*intel_priv), GFP_KERNEL);
1037 	if (!intel_priv)
1038 		return -ENOMEM;
1039 
1040 	plat = devm_kzalloc(&pdev->dev, sizeof(*plat), GFP_KERNEL);
1041 	if (!plat)
1042 		return -ENOMEM;
1043 
1044 	plat->mdio_bus_data = devm_kzalloc(&pdev->dev,
1045 					   sizeof(*plat->mdio_bus_data),
1046 					   GFP_KERNEL);
1047 	if (!plat->mdio_bus_data)
1048 		return -ENOMEM;
1049 
1050 	plat->dma_cfg = devm_kzalloc(&pdev->dev, sizeof(*plat->dma_cfg),
1051 				     GFP_KERNEL);
1052 	if (!plat->dma_cfg)
1053 		return -ENOMEM;
1054 
1055 	plat->safety_feat_cfg = devm_kzalloc(&pdev->dev,
1056 					     sizeof(*plat->safety_feat_cfg),
1057 					     GFP_KERNEL);
1058 	if (!plat->safety_feat_cfg)
1059 		return -ENOMEM;
1060 
1061 	/* Enable pci device */
1062 	ret = pcim_enable_device(pdev);
1063 	if (ret) {
1064 		dev_err(&pdev->dev, "%s: ERROR: failed to enable device\n",
1065 			__func__);
1066 		return ret;
1067 	}
1068 
1069 	ret = pcim_iomap_regions(pdev, BIT(0), pci_name(pdev));
1070 	if (ret)
1071 		return ret;
1072 
1073 	pci_set_master(pdev);
1074 
1075 	plat->bsp_priv = intel_priv;
1076 	intel_priv->mdio_adhoc_addr = INTEL_MGBE_ADHOC_ADDR;
1077 	intel_priv->crossts_adj = 1;
1078 
1079 	/* Initialize all MSI vectors to invalid so that it can be set
1080 	 * according to platform data settings below.
1081 	 * Note: MSI vector takes value from 0 upto 31 (STMMAC_MSI_VEC_MAX)
1082 	 */
1083 	plat->msi_mac_vec = STMMAC_MSI_VEC_MAX;
1084 	plat->msi_wol_vec = STMMAC_MSI_VEC_MAX;
1085 	plat->msi_lpi_vec = STMMAC_MSI_VEC_MAX;
1086 	plat->msi_sfty_ce_vec = STMMAC_MSI_VEC_MAX;
1087 	plat->msi_sfty_ue_vec = STMMAC_MSI_VEC_MAX;
1088 	plat->msi_rx_base_vec = STMMAC_MSI_VEC_MAX;
1089 	plat->msi_tx_base_vec = STMMAC_MSI_VEC_MAX;
1090 
1091 	ret = info->setup(pdev, plat);
1092 	if (ret)
1093 		return ret;
1094 
1095 	memset(&res, 0, sizeof(res));
1096 	res.addr = pcim_iomap_table(pdev)[0];
1097 
1098 	if (plat->eee_usecs_rate > 0) {
1099 		u32 tx_lpi_usec;
1100 
1101 		tx_lpi_usec = (plat->eee_usecs_rate / 1000000) - 1;
1102 		writel(tx_lpi_usec, res.addr + GMAC_1US_TIC_COUNTER);
1103 	}
1104 
1105 	ret = stmmac_config_multi_msi(pdev, plat, &res);
1106 	if (ret) {
1107 		ret = stmmac_config_single_msi(pdev, plat, &res);
1108 		if (ret) {
1109 			dev_err(&pdev->dev, "%s: ERROR: failed to enable IRQ\n",
1110 				__func__);
1111 			goto err_alloc_irq;
1112 		}
1113 	}
1114 
1115 	ret = stmmac_dvr_probe(&pdev->dev, plat, &res);
1116 	if (ret) {
1117 		goto err_alloc_irq;
1118 	}
1119 
1120 	return 0;
1121 
1122 err_alloc_irq:
1123 	clk_disable_unprepare(plat->stmmac_clk);
1124 	clk_unregister_fixed_rate(plat->stmmac_clk);
1125 	return ret;
1126 }
1127 
1128 /**
1129  * intel_eth_pci_remove
1130  *
1131  * @pdev: pci device pointer
1132  * Description: this function calls the main to free the net resources
1133  * and releases the PCI resources.
1134  */
1135 static void intel_eth_pci_remove(struct pci_dev *pdev)
1136 {
1137 	struct net_device *ndev = dev_get_drvdata(&pdev->dev);
1138 	struct stmmac_priv *priv = netdev_priv(ndev);
1139 
1140 	stmmac_dvr_remove(&pdev->dev);
1141 
1142 	clk_disable_unprepare(priv->plat->stmmac_clk);
1143 	clk_unregister_fixed_rate(priv->plat->stmmac_clk);
1144 }
1145 
1146 static int __maybe_unused intel_eth_pci_suspend(struct device *dev)
1147 {
1148 	struct pci_dev *pdev = to_pci_dev(dev);
1149 	int ret;
1150 
1151 	ret = stmmac_suspend(dev);
1152 	if (ret)
1153 		return ret;
1154 
1155 	ret = pci_save_state(pdev);
1156 	if (ret)
1157 		return ret;
1158 
1159 	pci_wake_from_d3(pdev, true);
1160 	pci_set_power_state(pdev, PCI_D3hot);
1161 	return 0;
1162 }
1163 
1164 static int __maybe_unused intel_eth_pci_resume(struct device *dev)
1165 {
1166 	struct pci_dev *pdev = to_pci_dev(dev);
1167 	int ret;
1168 
1169 	pci_restore_state(pdev);
1170 	pci_set_power_state(pdev, PCI_D0);
1171 
1172 	ret = pcim_enable_device(pdev);
1173 	if (ret)
1174 		return ret;
1175 
1176 	pci_set_master(pdev);
1177 
1178 	return stmmac_resume(dev);
1179 }
1180 
1181 static SIMPLE_DEV_PM_OPS(intel_eth_pm_ops, intel_eth_pci_suspend,
1182 			 intel_eth_pci_resume);
1183 
1184 #define PCI_DEVICE_ID_INTEL_QUARK		0x0937
1185 #define PCI_DEVICE_ID_INTEL_EHL_RGMII1G		0x4b30
1186 #define PCI_DEVICE_ID_INTEL_EHL_SGMII1G		0x4b31
1187 #define PCI_DEVICE_ID_INTEL_EHL_SGMII2G5	0x4b32
1188 /* Intel(R) Programmable Services Engine (Intel(R) PSE) consist of 2 MAC
1189  * which are named PSE0 and PSE1
1190  */
1191 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_RGMII1G	0x4ba0
1192 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII1G	0x4ba1
1193 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII2G5	0x4ba2
1194 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_RGMII1G	0x4bb0
1195 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII1G	0x4bb1
1196 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII2G5	0x4bb2
1197 #define PCI_DEVICE_ID_INTEL_TGLH_SGMII1G_0	0x43ac
1198 #define PCI_DEVICE_ID_INTEL_TGLH_SGMII1G_1	0x43a2
1199 #define PCI_DEVICE_ID_INTEL_TGL_SGMII1G		0xa0ac
1200 #define PCI_DEVICE_ID_INTEL_ADLS_SGMII1G_0	0x7aac
1201 #define PCI_DEVICE_ID_INTEL_ADLS_SGMII1G_1	0x7aad
1202 #define PCI_DEVICE_ID_INTEL_ADLN_SGMII1G	0x54ac
1203 #define PCI_DEVICE_ID_INTEL_RPLP_SGMII1G	0x51ac
1204 
1205 static const struct pci_device_id intel_eth_pci_id_table[] = {
1206 	{ PCI_DEVICE_DATA(INTEL, QUARK, &quark_info) },
1207 	{ PCI_DEVICE_DATA(INTEL, EHL_RGMII1G, &ehl_rgmii1g_info) },
1208 	{ PCI_DEVICE_DATA(INTEL, EHL_SGMII1G, &ehl_sgmii1g_info) },
1209 	{ PCI_DEVICE_DATA(INTEL, EHL_SGMII2G5, &ehl_sgmii1g_info) },
1210 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_RGMII1G, &ehl_pse0_rgmii1g_info) },
1211 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII1G, &ehl_pse0_sgmii1g_info) },
1212 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII2G5, &ehl_pse0_sgmii1g_info) },
1213 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_RGMII1G, &ehl_pse1_rgmii1g_info) },
1214 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII1G, &ehl_pse1_sgmii1g_info) },
1215 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII2G5, &ehl_pse1_sgmii1g_info) },
1216 	{ PCI_DEVICE_DATA(INTEL, TGL_SGMII1G, &tgl_sgmii1g_phy0_info) },
1217 	{ PCI_DEVICE_DATA(INTEL, TGLH_SGMII1G_0, &tgl_sgmii1g_phy0_info) },
1218 	{ PCI_DEVICE_DATA(INTEL, TGLH_SGMII1G_1, &tgl_sgmii1g_phy1_info) },
1219 	{ PCI_DEVICE_DATA(INTEL, ADLS_SGMII1G_0, &adls_sgmii1g_phy0_info) },
1220 	{ PCI_DEVICE_DATA(INTEL, ADLS_SGMII1G_1, &adls_sgmii1g_phy1_info) },
1221 	{ PCI_DEVICE_DATA(INTEL, ADLN_SGMII1G, &tgl_sgmii1g_phy0_info) },
1222 	{ PCI_DEVICE_DATA(INTEL, RPLP_SGMII1G, &tgl_sgmii1g_phy0_info) },
1223 	{}
1224 };
1225 MODULE_DEVICE_TABLE(pci, intel_eth_pci_id_table);
1226 
1227 static struct pci_driver intel_eth_pci_driver = {
1228 	.name = "intel-eth-pci",
1229 	.id_table = intel_eth_pci_id_table,
1230 	.probe = intel_eth_pci_probe,
1231 	.remove = intel_eth_pci_remove,
1232 	.driver         = {
1233 		.pm     = &intel_eth_pm_ops,
1234 	},
1235 };
1236 
1237 module_pci_driver(intel_eth_pci_driver);
1238 
1239 MODULE_DESCRIPTION("INTEL 10/100/1000 Ethernet PCI driver");
1240 MODULE_AUTHOR("Voon Weifeng <weifeng.voon@intel.com>");
1241 MODULE_LICENSE("GPL v2");
1242