1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2020, Intel Corporation 3 */ 4 5 #include <linux/clk-provider.h> 6 #include <linux/pci.h> 7 #include <linux/dmi.h> 8 #include "dwmac-intel.h" 9 #include "dwmac4.h" 10 #include "stmmac.h" 11 #include "stmmac_ptp.h" 12 13 struct intel_priv_data { 14 int mdio_adhoc_addr; /* mdio address for serdes & etc */ 15 unsigned long crossts_adj; 16 bool is_pse; 17 }; 18 19 /* This struct is used to associate PCI Function of MAC controller on a board, 20 * discovered via DMI, with the address of PHY connected to the MAC. The 21 * negative value of the address means that MAC controller is not connected 22 * with PHY. 23 */ 24 struct stmmac_pci_func_data { 25 unsigned int func; 26 int phy_addr; 27 }; 28 29 struct stmmac_pci_dmi_data { 30 const struct stmmac_pci_func_data *func; 31 size_t nfuncs; 32 }; 33 34 struct stmmac_pci_info { 35 int (*setup)(struct pci_dev *pdev, struct plat_stmmacenet_data *plat); 36 }; 37 38 static int stmmac_pci_find_phy_addr(struct pci_dev *pdev, 39 const struct dmi_system_id *dmi_list) 40 { 41 const struct stmmac_pci_func_data *func_data; 42 const struct stmmac_pci_dmi_data *dmi_data; 43 const struct dmi_system_id *dmi_id; 44 int func = PCI_FUNC(pdev->devfn); 45 size_t n; 46 47 dmi_id = dmi_first_match(dmi_list); 48 if (!dmi_id) 49 return -ENODEV; 50 51 dmi_data = dmi_id->driver_data; 52 func_data = dmi_data->func; 53 54 for (n = 0; n < dmi_data->nfuncs; n++, func_data++) 55 if (func_data->func == func) 56 return func_data->phy_addr; 57 58 return -ENODEV; 59 } 60 61 static int serdes_status_poll(struct stmmac_priv *priv, int phyaddr, 62 int phyreg, u32 mask, u32 val) 63 { 64 unsigned int retries = 10; 65 int val_rd; 66 67 do { 68 val_rd = mdiobus_read(priv->mii, phyaddr, phyreg); 69 if ((val_rd & mask) == (val & mask)) 70 return 0; 71 udelay(POLL_DELAY_US); 72 } while (--retries); 73 74 return -ETIMEDOUT; 75 } 76 77 static int intel_serdes_powerup(struct net_device *ndev, void *priv_data) 78 { 79 struct intel_priv_data *intel_priv = priv_data; 80 struct stmmac_priv *priv = netdev_priv(ndev); 81 int serdes_phy_addr = 0; 82 u32 data = 0; 83 84 if (!intel_priv->mdio_adhoc_addr) 85 return 0; 86 87 serdes_phy_addr = intel_priv->mdio_adhoc_addr; 88 89 /* Set the serdes rate and the PCLK rate */ 90 data = mdiobus_read(priv->mii, serdes_phy_addr, 91 SERDES_GCR0); 92 93 data &= ~SERDES_RATE_MASK; 94 data &= ~SERDES_PCLK_MASK; 95 96 if (priv->plat->max_speed == 2500) 97 data |= SERDES_RATE_PCIE_GEN2 << SERDES_RATE_PCIE_SHIFT | 98 SERDES_PCLK_37p5MHZ << SERDES_PCLK_SHIFT; 99 else 100 data |= SERDES_RATE_PCIE_GEN1 << SERDES_RATE_PCIE_SHIFT | 101 SERDES_PCLK_70MHZ << SERDES_PCLK_SHIFT; 102 103 mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data); 104 105 /* assert clk_req */ 106 data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0); 107 data |= SERDES_PLL_CLK; 108 mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data); 109 110 /* check for clk_ack assertion */ 111 data = serdes_status_poll(priv, serdes_phy_addr, 112 SERDES_GSR0, 113 SERDES_PLL_CLK, 114 SERDES_PLL_CLK); 115 116 if (data) { 117 dev_err(priv->device, "Serdes PLL clk request timeout\n"); 118 return data; 119 } 120 121 /* assert lane reset */ 122 data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0); 123 data |= SERDES_RST; 124 mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data); 125 126 /* check for assert lane reset reflection */ 127 data = serdes_status_poll(priv, serdes_phy_addr, 128 SERDES_GSR0, 129 SERDES_RST, 130 SERDES_RST); 131 132 if (data) { 133 dev_err(priv->device, "Serdes assert lane reset timeout\n"); 134 return data; 135 } 136 137 /* move power state to P0 */ 138 data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0); 139 140 data &= ~SERDES_PWR_ST_MASK; 141 data |= SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT; 142 143 mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data); 144 145 /* Check for P0 state */ 146 data = serdes_status_poll(priv, serdes_phy_addr, 147 SERDES_GSR0, 148 SERDES_PWR_ST_MASK, 149 SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT); 150 151 if (data) { 152 dev_err(priv->device, "Serdes power state P0 timeout.\n"); 153 return data; 154 } 155 156 /* PSE only - ungate SGMII PHY Rx Clock */ 157 if (intel_priv->is_pse) 158 mdiobus_modify(priv->mii, serdes_phy_addr, SERDES_GCR0, 159 0, SERDES_PHY_RX_CLK); 160 161 return 0; 162 } 163 164 static void intel_serdes_powerdown(struct net_device *ndev, void *intel_data) 165 { 166 struct intel_priv_data *intel_priv = intel_data; 167 struct stmmac_priv *priv = netdev_priv(ndev); 168 int serdes_phy_addr = 0; 169 u32 data = 0; 170 171 if (!intel_priv->mdio_adhoc_addr) 172 return; 173 174 serdes_phy_addr = intel_priv->mdio_adhoc_addr; 175 176 /* PSE only - gate SGMII PHY Rx Clock */ 177 if (intel_priv->is_pse) 178 mdiobus_modify(priv->mii, serdes_phy_addr, SERDES_GCR0, 179 SERDES_PHY_RX_CLK, 0); 180 181 /* move power state to P3 */ 182 data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0); 183 184 data &= ~SERDES_PWR_ST_MASK; 185 data |= SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT; 186 187 mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data); 188 189 /* Check for P3 state */ 190 data = serdes_status_poll(priv, serdes_phy_addr, 191 SERDES_GSR0, 192 SERDES_PWR_ST_MASK, 193 SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT); 194 195 if (data) { 196 dev_err(priv->device, "Serdes power state P3 timeout\n"); 197 return; 198 } 199 200 /* de-assert clk_req */ 201 data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0); 202 data &= ~SERDES_PLL_CLK; 203 mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data); 204 205 /* check for clk_ack de-assert */ 206 data = serdes_status_poll(priv, serdes_phy_addr, 207 SERDES_GSR0, 208 SERDES_PLL_CLK, 209 (u32)~SERDES_PLL_CLK); 210 211 if (data) { 212 dev_err(priv->device, "Serdes PLL clk de-assert timeout\n"); 213 return; 214 } 215 216 /* de-assert lane reset */ 217 data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0); 218 data &= ~SERDES_RST; 219 mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data); 220 221 /* check for de-assert lane reset reflection */ 222 data = serdes_status_poll(priv, serdes_phy_addr, 223 SERDES_GSR0, 224 SERDES_RST, 225 (u32)~SERDES_RST); 226 227 if (data) { 228 dev_err(priv->device, "Serdes de-assert lane reset timeout\n"); 229 return; 230 } 231 } 232 233 static void intel_speed_mode_2500(struct net_device *ndev, void *intel_data) 234 { 235 struct intel_priv_data *intel_priv = intel_data; 236 struct stmmac_priv *priv = netdev_priv(ndev); 237 int serdes_phy_addr = 0; 238 u32 data = 0; 239 240 serdes_phy_addr = intel_priv->mdio_adhoc_addr; 241 242 /* Determine the link speed mode: 2.5Gbps/1Gbps */ 243 data = mdiobus_read(priv->mii, serdes_phy_addr, 244 SERDES_GCR); 245 246 if (((data & SERDES_LINK_MODE_MASK) >> SERDES_LINK_MODE_SHIFT) == 247 SERDES_LINK_MODE_2G5) { 248 dev_info(priv->device, "Link Speed Mode: 2.5Gbps\n"); 249 priv->plat->max_speed = 2500; 250 priv->plat->phy_interface = PHY_INTERFACE_MODE_2500BASEX; 251 priv->plat->mdio_bus_data->xpcs_an_inband = false; 252 } else { 253 priv->plat->max_speed = 1000; 254 priv->plat->phy_interface = PHY_INTERFACE_MODE_SGMII; 255 priv->plat->mdio_bus_data->xpcs_an_inband = true; 256 } 257 } 258 259 /* Program PTP Clock Frequency for different variant of 260 * Intel mGBE that has slightly different GPO mapping 261 */ 262 static void intel_mgbe_ptp_clk_freq_config(void *npriv) 263 { 264 struct stmmac_priv *priv = (struct stmmac_priv *)npriv; 265 struct intel_priv_data *intel_priv; 266 u32 gpio_value; 267 268 intel_priv = (struct intel_priv_data *)priv->plat->bsp_priv; 269 270 gpio_value = readl(priv->ioaddr + GMAC_GPIO_STATUS); 271 272 if (intel_priv->is_pse) { 273 /* For PSE GbE, use 200MHz */ 274 gpio_value &= ~PSE_PTP_CLK_FREQ_MASK; 275 gpio_value |= PSE_PTP_CLK_FREQ_200MHZ; 276 } else { 277 /* For PCH GbE, use 200MHz */ 278 gpio_value &= ~PCH_PTP_CLK_FREQ_MASK; 279 gpio_value |= PCH_PTP_CLK_FREQ_200MHZ; 280 } 281 282 writel(gpio_value, priv->ioaddr + GMAC_GPIO_STATUS); 283 } 284 285 static void get_arttime(struct mii_bus *mii, int intel_adhoc_addr, 286 u64 *art_time) 287 { 288 u64 ns; 289 290 ns = mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE3); 291 ns <<= GMAC4_ART_TIME_SHIFT; 292 ns |= mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE2); 293 ns <<= GMAC4_ART_TIME_SHIFT; 294 ns |= mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE1); 295 ns <<= GMAC4_ART_TIME_SHIFT; 296 ns |= mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE0); 297 298 *art_time = ns; 299 } 300 301 static int intel_crosststamp(ktime_t *device, 302 struct system_counterval_t *system, 303 void *ctx) 304 { 305 struct intel_priv_data *intel_priv; 306 307 struct stmmac_priv *priv = (struct stmmac_priv *)ctx; 308 void __iomem *ptpaddr = priv->ptpaddr; 309 void __iomem *ioaddr = priv->hw->pcsr; 310 unsigned long flags; 311 u64 art_time = 0; 312 u64 ptp_time = 0; 313 u32 num_snapshot; 314 u32 gpio_value; 315 u32 acr_value; 316 int ret; 317 u32 v; 318 int i; 319 320 if (!boot_cpu_has(X86_FEATURE_ART)) 321 return -EOPNOTSUPP; 322 323 intel_priv = priv->plat->bsp_priv; 324 325 /* Both internal crosstimestamping and external triggered event 326 * timestamping cannot be run concurrently. 327 */ 328 if (priv->plat->ext_snapshot_en) 329 return -EBUSY; 330 331 mutex_lock(&priv->aux_ts_lock); 332 /* Enable Internal snapshot trigger */ 333 acr_value = readl(ptpaddr + PTP_ACR); 334 acr_value &= ~PTP_ACR_MASK; 335 switch (priv->plat->int_snapshot_num) { 336 case AUX_SNAPSHOT0: 337 acr_value |= PTP_ACR_ATSEN0; 338 break; 339 case AUX_SNAPSHOT1: 340 acr_value |= PTP_ACR_ATSEN1; 341 break; 342 case AUX_SNAPSHOT2: 343 acr_value |= PTP_ACR_ATSEN2; 344 break; 345 case AUX_SNAPSHOT3: 346 acr_value |= PTP_ACR_ATSEN3; 347 break; 348 default: 349 mutex_unlock(&priv->aux_ts_lock); 350 return -EINVAL; 351 } 352 writel(acr_value, ptpaddr + PTP_ACR); 353 354 /* Clear FIFO */ 355 acr_value = readl(ptpaddr + PTP_ACR); 356 acr_value |= PTP_ACR_ATSFC; 357 writel(acr_value, ptpaddr + PTP_ACR); 358 /* Release the mutex */ 359 mutex_unlock(&priv->aux_ts_lock); 360 361 /* Trigger Internal snapshot signal 362 * Create a rising edge by just toggle the GPO1 to low 363 * and back to high. 364 */ 365 gpio_value = readl(ioaddr + GMAC_GPIO_STATUS); 366 gpio_value &= ~GMAC_GPO1; 367 writel(gpio_value, ioaddr + GMAC_GPIO_STATUS); 368 gpio_value |= GMAC_GPO1; 369 writel(gpio_value, ioaddr + GMAC_GPIO_STATUS); 370 371 /* Poll for time sync operation done */ 372 ret = readl_poll_timeout(priv->ioaddr + GMAC_INT_STATUS, v, 373 (v & GMAC_INT_TSIE), 100, 10000); 374 375 if (ret == -ETIMEDOUT) { 376 pr_err("%s: Wait for time sync operation timeout\n", __func__); 377 return ret; 378 } 379 380 num_snapshot = (readl(ioaddr + GMAC_TIMESTAMP_STATUS) & 381 GMAC_TIMESTAMP_ATSNS_MASK) >> 382 GMAC_TIMESTAMP_ATSNS_SHIFT; 383 384 /* Repeat until the timestamps are from the FIFO last segment */ 385 for (i = 0; i < num_snapshot; i++) { 386 read_lock_irqsave(&priv->ptp_lock, flags); 387 stmmac_get_ptptime(priv, ptpaddr, &ptp_time); 388 *device = ns_to_ktime(ptp_time); 389 read_unlock_irqrestore(&priv->ptp_lock, flags); 390 get_arttime(priv->mii, intel_priv->mdio_adhoc_addr, &art_time); 391 *system = convert_art_to_tsc(art_time); 392 } 393 394 system->cycles *= intel_priv->crossts_adj; 395 396 return 0; 397 } 398 399 static void intel_mgbe_pse_crossts_adj(struct intel_priv_data *intel_priv, 400 int base) 401 { 402 if (boot_cpu_has(X86_FEATURE_ART)) { 403 unsigned int art_freq; 404 405 /* On systems that support ART, ART frequency can be obtained 406 * from ECX register of CPUID leaf (0x15). 407 */ 408 art_freq = cpuid_ecx(ART_CPUID_LEAF); 409 do_div(art_freq, base); 410 intel_priv->crossts_adj = art_freq; 411 } 412 } 413 414 static void common_default_data(struct plat_stmmacenet_data *plat) 415 { 416 plat->clk_csr = 2; /* clk_csr_i = 20-35MHz & MDC = clk_csr_i/16 */ 417 plat->has_gmac = 1; 418 plat->force_sf_dma_mode = 1; 419 420 plat->mdio_bus_data->needs_reset = true; 421 422 /* Set default value for multicast hash bins */ 423 plat->multicast_filter_bins = HASH_TABLE_SIZE; 424 425 /* Set default value for unicast filter entries */ 426 plat->unicast_filter_entries = 1; 427 428 /* Set the maxmtu to a default of JUMBO_LEN */ 429 plat->maxmtu = JUMBO_LEN; 430 431 /* Set default number of RX and TX queues to use */ 432 plat->tx_queues_to_use = 1; 433 plat->rx_queues_to_use = 1; 434 435 /* Disable Priority config by default */ 436 plat->tx_queues_cfg[0].use_prio = false; 437 plat->rx_queues_cfg[0].use_prio = false; 438 439 /* Disable RX queues routing by default */ 440 plat->rx_queues_cfg[0].pkt_route = 0x0; 441 } 442 443 static int intel_mgbe_common_data(struct pci_dev *pdev, 444 struct plat_stmmacenet_data *plat) 445 { 446 char clk_name[20]; 447 int ret; 448 int i; 449 450 plat->pdev = pdev; 451 plat->phy_addr = -1; 452 plat->clk_csr = 5; 453 plat->has_gmac = 0; 454 plat->has_gmac4 = 1; 455 plat->force_sf_dma_mode = 0; 456 plat->tso_en = 1; 457 plat->sph_disable = 1; 458 459 /* Multiplying factor to the clk_eee_i clock time 460 * period to make it closer to 100 ns. This value 461 * should be programmed such that the clk_eee_time_period * 462 * (MULT_FACT_100NS + 1) should be within 80 ns to 120 ns 463 * clk_eee frequency is 19.2Mhz 464 * clk_eee_time_period is 52ns 465 * 52ns * (1 + 1) = 104ns 466 * MULT_FACT_100NS = 1 467 */ 468 plat->mult_fact_100ns = 1; 469 470 plat->rx_sched_algorithm = MTL_RX_ALGORITHM_SP; 471 472 for (i = 0; i < plat->rx_queues_to_use; i++) { 473 plat->rx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB; 474 plat->rx_queues_cfg[i].chan = i; 475 476 /* Disable Priority config by default */ 477 plat->rx_queues_cfg[i].use_prio = false; 478 479 /* Disable RX queues routing by default */ 480 plat->rx_queues_cfg[i].pkt_route = 0x0; 481 } 482 483 for (i = 0; i < plat->tx_queues_to_use; i++) { 484 plat->tx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB; 485 486 /* Disable Priority config by default */ 487 plat->tx_queues_cfg[i].use_prio = false; 488 /* Default TX Q0 to use TSO and rest TXQ for TBS */ 489 if (i > 0) 490 plat->tx_queues_cfg[i].tbs_en = 1; 491 } 492 493 /* FIFO size is 4096 bytes for 1 tx/rx queue */ 494 plat->tx_fifo_size = plat->tx_queues_to_use * 4096; 495 plat->rx_fifo_size = plat->rx_queues_to_use * 4096; 496 497 plat->tx_sched_algorithm = MTL_TX_ALGORITHM_WRR; 498 plat->tx_queues_cfg[0].weight = 0x09; 499 plat->tx_queues_cfg[1].weight = 0x0A; 500 plat->tx_queues_cfg[2].weight = 0x0B; 501 plat->tx_queues_cfg[3].weight = 0x0C; 502 plat->tx_queues_cfg[4].weight = 0x0D; 503 plat->tx_queues_cfg[5].weight = 0x0E; 504 plat->tx_queues_cfg[6].weight = 0x0F; 505 plat->tx_queues_cfg[7].weight = 0x10; 506 507 plat->dma_cfg->pbl = 32; 508 plat->dma_cfg->pblx8 = true; 509 plat->dma_cfg->fixed_burst = 0; 510 plat->dma_cfg->mixed_burst = 0; 511 plat->dma_cfg->aal = 0; 512 plat->dma_cfg->dche = true; 513 514 plat->axi = devm_kzalloc(&pdev->dev, sizeof(*plat->axi), 515 GFP_KERNEL); 516 if (!plat->axi) 517 return -ENOMEM; 518 519 plat->axi->axi_lpi_en = 0; 520 plat->axi->axi_xit_frm = 0; 521 plat->axi->axi_wr_osr_lmt = 1; 522 plat->axi->axi_rd_osr_lmt = 1; 523 plat->axi->axi_blen[0] = 4; 524 plat->axi->axi_blen[1] = 8; 525 plat->axi->axi_blen[2] = 16; 526 527 plat->ptp_max_adj = plat->clk_ptp_rate; 528 plat->eee_usecs_rate = plat->clk_ptp_rate; 529 530 /* Set system clock */ 531 sprintf(clk_name, "%s-%s", "stmmac", pci_name(pdev)); 532 533 plat->stmmac_clk = clk_register_fixed_rate(&pdev->dev, 534 clk_name, NULL, 0, 535 plat->clk_ptp_rate); 536 537 if (IS_ERR(plat->stmmac_clk)) { 538 dev_warn(&pdev->dev, "Fail to register stmmac-clk\n"); 539 plat->stmmac_clk = NULL; 540 } 541 542 ret = clk_prepare_enable(plat->stmmac_clk); 543 if (ret) { 544 clk_unregister_fixed_rate(plat->stmmac_clk); 545 return ret; 546 } 547 548 plat->ptp_clk_freq_config = intel_mgbe_ptp_clk_freq_config; 549 550 /* Set default value for multicast hash bins */ 551 plat->multicast_filter_bins = HASH_TABLE_SIZE; 552 553 /* Set default value for unicast filter entries */ 554 plat->unicast_filter_entries = 1; 555 556 /* Set the maxmtu to a default of JUMBO_LEN */ 557 plat->maxmtu = JUMBO_LEN; 558 559 plat->vlan_fail_q_en = true; 560 561 /* Use the last Rx queue */ 562 plat->vlan_fail_q = plat->rx_queues_to_use - 1; 563 564 /* Intel mgbe SGMII interface uses pcs-xcps */ 565 if (plat->phy_interface == PHY_INTERFACE_MODE_SGMII) { 566 plat->mdio_bus_data->has_xpcs = true; 567 plat->mdio_bus_data->xpcs_an_inband = true; 568 } 569 570 /* Ensure mdio bus scan skips intel serdes and pcs-xpcs */ 571 plat->mdio_bus_data->phy_mask = 1 << INTEL_MGBE_ADHOC_ADDR; 572 plat->mdio_bus_data->phy_mask |= 1 << INTEL_MGBE_XPCS_ADDR; 573 574 plat->int_snapshot_num = AUX_SNAPSHOT1; 575 plat->ext_snapshot_num = AUX_SNAPSHOT0; 576 577 plat->has_crossts = true; 578 plat->crosststamp = intel_crosststamp; 579 580 /* Setup MSI vector offset specific to Intel mGbE controller */ 581 plat->msi_mac_vec = 29; 582 plat->msi_lpi_vec = 28; 583 plat->msi_sfty_ce_vec = 27; 584 plat->msi_sfty_ue_vec = 26; 585 plat->msi_rx_base_vec = 0; 586 plat->msi_tx_base_vec = 1; 587 588 return 0; 589 } 590 591 static int ehl_common_data(struct pci_dev *pdev, 592 struct plat_stmmacenet_data *plat) 593 { 594 plat->rx_queues_to_use = 8; 595 plat->tx_queues_to_use = 8; 596 plat->clk_ptp_rate = 200000000; 597 plat->use_phy_wol = 1; 598 599 plat->safety_feat_cfg->tsoee = 1; 600 plat->safety_feat_cfg->mrxpee = 1; 601 plat->safety_feat_cfg->mestee = 1; 602 plat->safety_feat_cfg->mrxee = 1; 603 plat->safety_feat_cfg->mtxee = 1; 604 plat->safety_feat_cfg->epsi = 0; 605 plat->safety_feat_cfg->edpp = 0; 606 plat->safety_feat_cfg->prtyen = 0; 607 plat->safety_feat_cfg->tmouten = 0; 608 609 return intel_mgbe_common_data(pdev, plat); 610 } 611 612 static int ehl_sgmii_data(struct pci_dev *pdev, 613 struct plat_stmmacenet_data *plat) 614 { 615 plat->bus_id = 1; 616 plat->phy_interface = PHY_INTERFACE_MODE_SGMII; 617 plat->speed_mode_2500 = intel_speed_mode_2500; 618 plat->serdes_powerup = intel_serdes_powerup; 619 plat->serdes_powerdown = intel_serdes_powerdown; 620 621 return ehl_common_data(pdev, plat); 622 } 623 624 static struct stmmac_pci_info ehl_sgmii1g_info = { 625 .setup = ehl_sgmii_data, 626 }; 627 628 static int ehl_rgmii_data(struct pci_dev *pdev, 629 struct plat_stmmacenet_data *plat) 630 { 631 plat->bus_id = 1; 632 plat->phy_interface = PHY_INTERFACE_MODE_RGMII; 633 634 return ehl_common_data(pdev, plat); 635 } 636 637 static struct stmmac_pci_info ehl_rgmii1g_info = { 638 .setup = ehl_rgmii_data, 639 }; 640 641 static int ehl_pse0_common_data(struct pci_dev *pdev, 642 struct plat_stmmacenet_data *plat) 643 { 644 struct intel_priv_data *intel_priv = plat->bsp_priv; 645 646 intel_priv->is_pse = true; 647 plat->bus_id = 2; 648 plat->addr64 = 32; 649 650 intel_mgbe_pse_crossts_adj(intel_priv, EHL_PSE_ART_MHZ); 651 652 return ehl_common_data(pdev, plat); 653 } 654 655 static int ehl_pse0_rgmii1g_data(struct pci_dev *pdev, 656 struct plat_stmmacenet_data *plat) 657 { 658 plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID; 659 return ehl_pse0_common_data(pdev, plat); 660 } 661 662 static struct stmmac_pci_info ehl_pse0_rgmii1g_info = { 663 .setup = ehl_pse0_rgmii1g_data, 664 }; 665 666 static int ehl_pse0_sgmii1g_data(struct pci_dev *pdev, 667 struct plat_stmmacenet_data *plat) 668 { 669 plat->phy_interface = PHY_INTERFACE_MODE_SGMII; 670 plat->speed_mode_2500 = intel_speed_mode_2500; 671 plat->serdes_powerup = intel_serdes_powerup; 672 plat->serdes_powerdown = intel_serdes_powerdown; 673 return ehl_pse0_common_data(pdev, plat); 674 } 675 676 static struct stmmac_pci_info ehl_pse0_sgmii1g_info = { 677 .setup = ehl_pse0_sgmii1g_data, 678 }; 679 680 static int ehl_pse1_common_data(struct pci_dev *pdev, 681 struct plat_stmmacenet_data *plat) 682 { 683 struct intel_priv_data *intel_priv = plat->bsp_priv; 684 685 intel_priv->is_pse = true; 686 plat->bus_id = 3; 687 plat->addr64 = 32; 688 689 intel_mgbe_pse_crossts_adj(intel_priv, EHL_PSE_ART_MHZ); 690 691 return ehl_common_data(pdev, plat); 692 } 693 694 static int ehl_pse1_rgmii1g_data(struct pci_dev *pdev, 695 struct plat_stmmacenet_data *plat) 696 { 697 plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID; 698 return ehl_pse1_common_data(pdev, plat); 699 } 700 701 static struct stmmac_pci_info ehl_pse1_rgmii1g_info = { 702 .setup = ehl_pse1_rgmii1g_data, 703 }; 704 705 static int ehl_pse1_sgmii1g_data(struct pci_dev *pdev, 706 struct plat_stmmacenet_data *plat) 707 { 708 plat->phy_interface = PHY_INTERFACE_MODE_SGMII; 709 plat->speed_mode_2500 = intel_speed_mode_2500; 710 plat->serdes_powerup = intel_serdes_powerup; 711 plat->serdes_powerdown = intel_serdes_powerdown; 712 return ehl_pse1_common_data(pdev, plat); 713 } 714 715 static struct stmmac_pci_info ehl_pse1_sgmii1g_info = { 716 .setup = ehl_pse1_sgmii1g_data, 717 }; 718 719 static int tgl_common_data(struct pci_dev *pdev, 720 struct plat_stmmacenet_data *plat) 721 { 722 plat->rx_queues_to_use = 6; 723 plat->tx_queues_to_use = 4; 724 plat->clk_ptp_rate = 200000000; 725 plat->speed_mode_2500 = intel_speed_mode_2500; 726 727 plat->safety_feat_cfg->tsoee = 1; 728 plat->safety_feat_cfg->mrxpee = 0; 729 plat->safety_feat_cfg->mestee = 1; 730 plat->safety_feat_cfg->mrxee = 1; 731 plat->safety_feat_cfg->mtxee = 1; 732 plat->safety_feat_cfg->epsi = 0; 733 plat->safety_feat_cfg->edpp = 0; 734 plat->safety_feat_cfg->prtyen = 0; 735 plat->safety_feat_cfg->tmouten = 0; 736 737 return intel_mgbe_common_data(pdev, plat); 738 } 739 740 static int tgl_sgmii_phy0_data(struct pci_dev *pdev, 741 struct plat_stmmacenet_data *plat) 742 { 743 plat->bus_id = 1; 744 plat->phy_interface = PHY_INTERFACE_MODE_SGMII; 745 plat->serdes_powerup = intel_serdes_powerup; 746 plat->serdes_powerdown = intel_serdes_powerdown; 747 return tgl_common_data(pdev, plat); 748 } 749 750 static struct stmmac_pci_info tgl_sgmii1g_phy0_info = { 751 .setup = tgl_sgmii_phy0_data, 752 }; 753 754 static int tgl_sgmii_phy1_data(struct pci_dev *pdev, 755 struct plat_stmmacenet_data *plat) 756 { 757 plat->bus_id = 2; 758 plat->phy_interface = PHY_INTERFACE_MODE_SGMII; 759 plat->serdes_powerup = intel_serdes_powerup; 760 plat->serdes_powerdown = intel_serdes_powerdown; 761 return tgl_common_data(pdev, plat); 762 } 763 764 static struct stmmac_pci_info tgl_sgmii1g_phy1_info = { 765 .setup = tgl_sgmii_phy1_data, 766 }; 767 768 static int adls_sgmii_phy0_data(struct pci_dev *pdev, 769 struct plat_stmmacenet_data *plat) 770 { 771 plat->bus_id = 1; 772 plat->phy_interface = PHY_INTERFACE_MODE_SGMII; 773 774 /* SerDes power up and power down are done in BIOS for ADL */ 775 776 return tgl_common_data(pdev, plat); 777 } 778 779 static struct stmmac_pci_info adls_sgmii1g_phy0_info = { 780 .setup = adls_sgmii_phy0_data, 781 }; 782 783 static int adls_sgmii_phy1_data(struct pci_dev *pdev, 784 struct plat_stmmacenet_data *plat) 785 { 786 plat->bus_id = 2; 787 plat->phy_interface = PHY_INTERFACE_MODE_SGMII; 788 789 /* SerDes power up and power down are done in BIOS for ADL */ 790 791 return tgl_common_data(pdev, plat); 792 } 793 794 static struct stmmac_pci_info adls_sgmii1g_phy1_info = { 795 .setup = adls_sgmii_phy1_data, 796 }; 797 static const struct stmmac_pci_func_data galileo_stmmac_func_data[] = { 798 { 799 .func = 6, 800 .phy_addr = 1, 801 }, 802 }; 803 804 static const struct stmmac_pci_dmi_data galileo_stmmac_dmi_data = { 805 .func = galileo_stmmac_func_data, 806 .nfuncs = ARRAY_SIZE(galileo_stmmac_func_data), 807 }; 808 809 static const struct stmmac_pci_func_data iot2040_stmmac_func_data[] = { 810 { 811 .func = 6, 812 .phy_addr = 1, 813 }, 814 { 815 .func = 7, 816 .phy_addr = 1, 817 }, 818 }; 819 820 static const struct stmmac_pci_dmi_data iot2040_stmmac_dmi_data = { 821 .func = iot2040_stmmac_func_data, 822 .nfuncs = ARRAY_SIZE(iot2040_stmmac_func_data), 823 }; 824 825 static const struct dmi_system_id quark_pci_dmi[] = { 826 { 827 .matches = { 828 DMI_EXACT_MATCH(DMI_BOARD_NAME, "Galileo"), 829 }, 830 .driver_data = (void *)&galileo_stmmac_dmi_data, 831 }, 832 { 833 .matches = { 834 DMI_EXACT_MATCH(DMI_BOARD_NAME, "GalileoGen2"), 835 }, 836 .driver_data = (void *)&galileo_stmmac_dmi_data, 837 }, 838 /* There are 2 types of SIMATIC IOT2000: IOT2020 and IOT2040. 839 * The asset tag "6ES7647-0AA00-0YA2" is only for IOT2020 which 840 * has only one pci network device while other asset tags are 841 * for IOT2040 which has two. 842 */ 843 { 844 .matches = { 845 DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"), 846 DMI_EXACT_MATCH(DMI_BOARD_ASSET_TAG, 847 "6ES7647-0AA00-0YA2"), 848 }, 849 .driver_data = (void *)&galileo_stmmac_dmi_data, 850 }, 851 { 852 .matches = { 853 DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"), 854 }, 855 .driver_data = (void *)&iot2040_stmmac_dmi_data, 856 }, 857 {} 858 }; 859 860 static int quark_default_data(struct pci_dev *pdev, 861 struct plat_stmmacenet_data *plat) 862 { 863 int ret; 864 865 /* Set common default data first */ 866 common_default_data(plat); 867 868 /* Refuse to load the driver and register net device if MAC controller 869 * does not connect to any PHY interface. 870 */ 871 ret = stmmac_pci_find_phy_addr(pdev, quark_pci_dmi); 872 if (ret < 0) { 873 /* Return error to the caller on DMI enabled boards. */ 874 if (dmi_get_system_info(DMI_BOARD_NAME)) 875 return ret; 876 877 /* Galileo boards with old firmware don't support DMI. We always 878 * use 1 here as PHY address, so at least the first found MAC 879 * controller would be probed. 880 */ 881 ret = 1; 882 } 883 884 plat->bus_id = pci_dev_id(pdev); 885 plat->phy_addr = ret; 886 plat->phy_interface = PHY_INTERFACE_MODE_RMII; 887 888 plat->dma_cfg->pbl = 16; 889 plat->dma_cfg->pblx8 = true; 890 plat->dma_cfg->fixed_burst = 1; 891 /* AXI (TODO) */ 892 893 return 0; 894 } 895 896 static const struct stmmac_pci_info quark_info = { 897 .setup = quark_default_data, 898 }; 899 900 static int stmmac_config_single_msi(struct pci_dev *pdev, 901 struct plat_stmmacenet_data *plat, 902 struct stmmac_resources *res) 903 { 904 int ret; 905 906 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 907 if (ret < 0) { 908 dev_info(&pdev->dev, "%s: Single IRQ enablement failed\n", 909 __func__); 910 return ret; 911 } 912 913 res->irq = pci_irq_vector(pdev, 0); 914 res->wol_irq = res->irq; 915 plat->multi_msi_en = 0; 916 dev_info(&pdev->dev, "%s: Single IRQ enablement successful\n", 917 __func__); 918 919 return 0; 920 } 921 922 static int stmmac_config_multi_msi(struct pci_dev *pdev, 923 struct plat_stmmacenet_data *plat, 924 struct stmmac_resources *res) 925 { 926 int ret; 927 int i; 928 929 if (plat->msi_rx_base_vec >= STMMAC_MSI_VEC_MAX || 930 plat->msi_tx_base_vec >= STMMAC_MSI_VEC_MAX) { 931 dev_info(&pdev->dev, "%s: Invalid RX & TX vector defined\n", 932 __func__); 933 return -1; 934 } 935 936 ret = pci_alloc_irq_vectors(pdev, 2, STMMAC_MSI_VEC_MAX, 937 PCI_IRQ_MSI | PCI_IRQ_MSIX); 938 if (ret < 0) { 939 dev_info(&pdev->dev, "%s: multi MSI enablement failed\n", 940 __func__); 941 return ret; 942 } 943 944 /* For RX MSI */ 945 for (i = 0; i < plat->rx_queues_to_use; i++) { 946 res->rx_irq[i] = pci_irq_vector(pdev, 947 plat->msi_rx_base_vec + i * 2); 948 } 949 950 /* For TX MSI */ 951 for (i = 0; i < plat->tx_queues_to_use; i++) { 952 res->tx_irq[i] = pci_irq_vector(pdev, 953 plat->msi_tx_base_vec + i * 2); 954 } 955 956 if (plat->msi_mac_vec < STMMAC_MSI_VEC_MAX) 957 res->irq = pci_irq_vector(pdev, plat->msi_mac_vec); 958 if (plat->msi_wol_vec < STMMAC_MSI_VEC_MAX) 959 res->wol_irq = pci_irq_vector(pdev, plat->msi_wol_vec); 960 if (plat->msi_lpi_vec < STMMAC_MSI_VEC_MAX) 961 res->lpi_irq = pci_irq_vector(pdev, plat->msi_lpi_vec); 962 if (plat->msi_sfty_ce_vec < STMMAC_MSI_VEC_MAX) 963 res->sfty_ce_irq = pci_irq_vector(pdev, plat->msi_sfty_ce_vec); 964 if (plat->msi_sfty_ue_vec < STMMAC_MSI_VEC_MAX) 965 res->sfty_ue_irq = pci_irq_vector(pdev, plat->msi_sfty_ue_vec); 966 967 plat->multi_msi_en = 1; 968 dev_info(&pdev->dev, "%s: multi MSI enablement successful\n", __func__); 969 970 return 0; 971 } 972 973 /** 974 * intel_eth_pci_probe 975 * 976 * @pdev: pci device pointer 977 * @id: pointer to table of device id/id's. 978 * 979 * Description: This probing function gets called for all PCI devices which 980 * match the ID table and are not "owned" by other driver yet. This function 981 * gets passed a "struct pci_dev *" for each device whose entry in the ID table 982 * matches the device. The probe functions returns zero when the driver choose 983 * to take "ownership" of the device or an error code(-ve no) otherwise. 984 */ 985 static int intel_eth_pci_probe(struct pci_dev *pdev, 986 const struct pci_device_id *id) 987 { 988 struct stmmac_pci_info *info = (struct stmmac_pci_info *)id->driver_data; 989 struct intel_priv_data *intel_priv; 990 struct plat_stmmacenet_data *plat; 991 struct stmmac_resources res; 992 int ret; 993 994 intel_priv = devm_kzalloc(&pdev->dev, sizeof(*intel_priv), GFP_KERNEL); 995 if (!intel_priv) 996 return -ENOMEM; 997 998 plat = devm_kzalloc(&pdev->dev, sizeof(*plat), GFP_KERNEL); 999 if (!plat) 1000 return -ENOMEM; 1001 1002 plat->mdio_bus_data = devm_kzalloc(&pdev->dev, 1003 sizeof(*plat->mdio_bus_data), 1004 GFP_KERNEL); 1005 if (!plat->mdio_bus_data) 1006 return -ENOMEM; 1007 1008 plat->dma_cfg = devm_kzalloc(&pdev->dev, sizeof(*plat->dma_cfg), 1009 GFP_KERNEL); 1010 if (!plat->dma_cfg) 1011 return -ENOMEM; 1012 1013 plat->safety_feat_cfg = devm_kzalloc(&pdev->dev, 1014 sizeof(*plat->safety_feat_cfg), 1015 GFP_KERNEL); 1016 if (!plat->safety_feat_cfg) 1017 return -ENOMEM; 1018 1019 /* Enable pci device */ 1020 ret = pcim_enable_device(pdev); 1021 if (ret) { 1022 dev_err(&pdev->dev, "%s: ERROR: failed to enable device\n", 1023 __func__); 1024 return ret; 1025 } 1026 1027 ret = pcim_iomap_regions(pdev, BIT(0), pci_name(pdev)); 1028 if (ret) 1029 return ret; 1030 1031 pci_set_master(pdev); 1032 1033 plat->bsp_priv = intel_priv; 1034 intel_priv->mdio_adhoc_addr = INTEL_MGBE_ADHOC_ADDR; 1035 intel_priv->crossts_adj = 1; 1036 1037 /* Initialize all MSI vectors to invalid so that it can be set 1038 * according to platform data settings below. 1039 * Note: MSI vector takes value from 0 upto 31 (STMMAC_MSI_VEC_MAX) 1040 */ 1041 plat->msi_mac_vec = STMMAC_MSI_VEC_MAX; 1042 plat->msi_wol_vec = STMMAC_MSI_VEC_MAX; 1043 plat->msi_lpi_vec = STMMAC_MSI_VEC_MAX; 1044 plat->msi_sfty_ce_vec = STMMAC_MSI_VEC_MAX; 1045 plat->msi_sfty_ue_vec = STMMAC_MSI_VEC_MAX; 1046 plat->msi_rx_base_vec = STMMAC_MSI_VEC_MAX; 1047 plat->msi_tx_base_vec = STMMAC_MSI_VEC_MAX; 1048 1049 ret = info->setup(pdev, plat); 1050 if (ret) 1051 return ret; 1052 1053 memset(&res, 0, sizeof(res)); 1054 res.addr = pcim_iomap_table(pdev)[0]; 1055 1056 if (plat->eee_usecs_rate > 0) { 1057 u32 tx_lpi_usec; 1058 1059 tx_lpi_usec = (plat->eee_usecs_rate / 1000000) - 1; 1060 writel(tx_lpi_usec, res.addr + GMAC_1US_TIC_COUNTER); 1061 } 1062 1063 ret = stmmac_config_multi_msi(pdev, plat, &res); 1064 if (ret) { 1065 ret = stmmac_config_single_msi(pdev, plat, &res); 1066 if (ret) { 1067 dev_err(&pdev->dev, "%s: ERROR: failed to enable IRQ\n", 1068 __func__); 1069 goto err_alloc_irq; 1070 } 1071 } 1072 1073 ret = stmmac_dvr_probe(&pdev->dev, plat, &res); 1074 if (ret) { 1075 goto err_alloc_irq; 1076 } 1077 1078 return 0; 1079 1080 err_alloc_irq: 1081 clk_disable_unprepare(plat->stmmac_clk); 1082 clk_unregister_fixed_rate(plat->stmmac_clk); 1083 return ret; 1084 } 1085 1086 /** 1087 * intel_eth_pci_remove 1088 * 1089 * @pdev: pci device pointer 1090 * Description: this function calls the main to free the net resources 1091 * and releases the PCI resources. 1092 */ 1093 static void intel_eth_pci_remove(struct pci_dev *pdev) 1094 { 1095 struct net_device *ndev = dev_get_drvdata(&pdev->dev); 1096 struct stmmac_priv *priv = netdev_priv(ndev); 1097 1098 stmmac_dvr_remove(&pdev->dev); 1099 1100 clk_unregister_fixed_rate(priv->plat->stmmac_clk); 1101 1102 pcim_iounmap_regions(pdev, BIT(0)); 1103 } 1104 1105 static int __maybe_unused intel_eth_pci_suspend(struct device *dev) 1106 { 1107 struct pci_dev *pdev = to_pci_dev(dev); 1108 int ret; 1109 1110 ret = stmmac_suspend(dev); 1111 if (ret) 1112 return ret; 1113 1114 ret = pci_save_state(pdev); 1115 if (ret) 1116 return ret; 1117 1118 pci_wake_from_d3(pdev, true); 1119 pci_set_power_state(pdev, PCI_D3hot); 1120 return 0; 1121 } 1122 1123 static int __maybe_unused intel_eth_pci_resume(struct device *dev) 1124 { 1125 struct pci_dev *pdev = to_pci_dev(dev); 1126 int ret; 1127 1128 pci_restore_state(pdev); 1129 pci_set_power_state(pdev, PCI_D0); 1130 1131 ret = pcim_enable_device(pdev); 1132 if (ret) 1133 return ret; 1134 1135 pci_set_master(pdev); 1136 1137 return stmmac_resume(dev); 1138 } 1139 1140 static SIMPLE_DEV_PM_OPS(intel_eth_pm_ops, intel_eth_pci_suspend, 1141 intel_eth_pci_resume); 1142 1143 #define PCI_DEVICE_ID_INTEL_QUARK 0x0937 1144 #define PCI_DEVICE_ID_INTEL_EHL_RGMII1G 0x4b30 1145 #define PCI_DEVICE_ID_INTEL_EHL_SGMII1G 0x4b31 1146 #define PCI_DEVICE_ID_INTEL_EHL_SGMII2G5 0x4b32 1147 /* Intel(R) Programmable Services Engine (Intel(R) PSE) consist of 2 MAC 1148 * which are named PSE0 and PSE1 1149 */ 1150 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_RGMII1G 0x4ba0 1151 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII1G 0x4ba1 1152 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII2G5 0x4ba2 1153 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_RGMII1G 0x4bb0 1154 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII1G 0x4bb1 1155 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII2G5 0x4bb2 1156 #define PCI_DEVICE_ID_INTEL_TGLH_SGMII1G_0 0x43ac 1157 #define PCI_DEVICE_ID_INTEL_TGLH_SGMII1G_1 0x43a2 1158 #define PCI_DEVICE_ID_INTEL_TGL_SGMII1G 0xa0ac 1159 #define PCI_DEVICE_ID_INTEL_ADLS_SGMII1G_0 0x7aac 1160 #define PCI_DEVICE_ID_INTEL_ADLS_SGMII1G_1 0x7aad 1161 #define PCI_DEVICE_ID_INTEL_ADLN_SGMII1G 0x54ac 1162 #define PCI_DEVICE_ID_INTEL_RPLP_SGMII1G 0x51ac 1163 1164 static const struct pci_device_id intel_eth_pci_id_table[] = { 1165 { PCI_DEVICE_DATA(INTEL, QUARK, &quark_info) }, 1166 { PCI_DEVICE_DATA(INTEL, EHL_RGMII1G, &ehl_rgmii1g_info) }, 1167 { PCI_DEVICE_DATA(INTEL, EHL_SGMII1G, &ehl_sgmii1g_info) }, 1168 { PCI_DEVICE_DATA(INTEL, EHL_SGMII2G5, &ehl_sgmii1g_info) }, 1169 { PCI_DEVICE_DATA(INTEL, EHL_PSE0_RGMII1G, &ehl_pse0_rgmii1g_info) }, 1170 { PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII1G, &ehl_pse0_sgmii1g_info) }, 1171 { PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII2G5, &ehl_pse0_sgmii1g_info) }, 1172 { PCI_DEVICE_DATA(INTEL, EHL_PSE1_RGMII1G, &ehl_pse1_rgmii1g_info) }, 1173 { PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII1G, &ehl_pse1_sgmii1g_info) }, 1174 { PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII2G5, &ehl_pse1_sgmii1g_info) }, 1175 { PCI_DEVICE_DATA(INTEL, TGL_SGMII1G, &tgl_sgmii1g_phy0_info) }, 1176 { PCI_DEVICE_DATA(INTEL, TGLH_SGMII1G_0, &tgl_sgmii1g_phy0_info) }, 1177 { PCI_DEVICE_DATA(INTEL, TGLH_SGMII1G_1, &tgl_sgmii1g_phy1_info) }, 1178 { PCI_DEVICE_DATA(INTEL, ADLS_SGMII1G_0, &adls_sgmii1g_phy0_info) }, 1179 { PCI_DEVICE_DATA(INTEL, ADLS_SGMII1G_1, &adls_sgmii1g_phy1_info) }, 1180 { PCI_DEVICE_DATA(INTEL, ADLN_SGMII1G, &tgl_sgmii1g_phy0_info) }, 1181 { PCI_DEVICE_DATA(INTEL, RPLP_SGMII1G, &tgl_sgmii1g_phy0_info) }, 1182 {} 1183 }; 1184 MODULE_DEVICE_TABLE(pci, intel_eth_pci_id_table); 1185 1186 static struct pci_driver intel_eth_pci_driver = { 1187 .name = "intel-eth-pci", 1188 .id_table = intel_eth_pci_id_table, 1189 .probe = intel_eth_pci_probe, 1190 .remove = intel_eth_pci_remove, 1191 .driver = { 1192 .pm = &intel_eth_pm_ops, 1193 }, 1194 }; 1195 1196 module_pci_driver(intel_eth_pci_driver); 1197 1198 MODULE_DESCRIPTION("INTEL 10/100/1000 Ethernet PCI driver"); 1199 MODULE_AUTHOR("Voon Weifeng <weifeng.voon@intel.com>"); 1200 MODULE_LICENSE("GPL v2"); 1201