1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2020, Intel Corporation
3  */
4 
5 #include <linux/clk-provider.h>
6 #include <linux/pci.h>
7 #include <linux/dmi.h>
8 #include "dwmac-intel.h"
9 #include "dwmac4.h"
10 #include "stmmac.h"
11 
12 struct intel_priv_data {
13 	int mdio_adhoc_addr;	/* mdio address for serdes & etc */
14 };
15 
16 /* This struct is used to associate PCI Function of MAC controller on a board,
17  * discovered via DMI, with the address of PHY connected to the MAC. The
18  * negative value of the address means that MAC controller is not connected
19  * with PHY.
20  */
21 struct stmmac_pci_func_data {
22 	unsigned int func;
23 	int phy_addr;
24 };
25 
26 struct stmmac_pci_dmi_data {
27 	const struct stmmac_pci_func_data *func;
28 	size_t nfuncs;
29 };
30 
31 struct stmmac_pci_info {
32 	int (*setup)(struct pci_dev *pdev, struct plat_stmmacenet_data *plat);
33 };
34 
35 static int stmmac_pci_find_phy_addr(struct pci_dev *pdev,
36 				    const struct dmi_system_id *dmi_list)
37 {
38 	const struct stmmac_pci_func_data *func_data;
39 	const struct stmmac_pci_dmi_data *dmi_data;
40 	const struct dmi_system_id *dmi_id;
41 	int func = PCI_FUNC(pdev->devfn);
42 	size_t n;
43 
44 	dmi_id = dmi_first_match(dmi_list);
45 	if (!dmi_id)
46 		return -ENODEV;
47 
48 	dmi_data = dmi_id->driver_data;
49 	func_data = dmi_data->func;
50 
51 	for (n = 0; n < dmi_data->nfuncs; n++, func_data++)
52 		if (func_data->func == func)
53 			return func_data->phy_addr;
54 
55 	return -ENODEV;
56 }
57 
58 static int serdes_status_poll(struct stmmac_priv *priv, int phyaddr,
59 			      int phyreg, u32 mask, u32 val)
60 {
61 	unsigned int retries = 10;
62 	int val_rd;
63 
64 	do {
65 		val_rd = mdiobus_read(priv->mii, phyaddr, phyreg);
66 		if ((val_rd & mask) == (val & mask))
67 			return 0;
68 		udelay(POLL_DELAY_US);
69 	} while (--retries);
70 
71 	return -ETIMEDOUT;
72 }
73 
74 static int intel_serdes_powerup(struct net_device *ndev, void *priv_data)
75 {
76 	struct intel_priv_data *intel_priv = priv_data;
77 	struct stmmac_priv *priv = netdev_priv(ndev);
78 	int serdes_phy_addr = 0;
79 	u32 data = 0;
80 
81 	if (!intel_priv->mdio_adhoc_addr)
82 		return 0;
83 
84 	serdes_phy_addr = intel_priv->mdio_adhoc_addr;
85 
86 	/* assert clk_req */
87 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
88 	data |= SERDES_PLL_CLK;
89 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
90 
91 	/* check for clk_ack assertion */
92 	data = serdes_status_poll(priv, serdes_phy_addr,
93 				  SERDES_GSR0,
94 				  SERDES_PLL_CLK,
95 				  SERDES_PLL_CLK);
96 
97 	if (data) {
98 		dev_err(priv->device, "Serdes PLL clk request timeout\n");
99 		return data;
100 	}
101 
102 	/* assert lane reset */
103 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
104 	data |= SERDES_RST;
105 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
106 
107 	/* check for assert lane reset reflection */
108 	data = serdes_status_poll(priv, serdes_phy_addr,
109 				  SERDES_GSR0,
110 				  SERDES_RST,
111 				  SERDES_RST);
112 
113 	if (data) {
114 		dev_err(priv->device, "Serdes assert lane reset timeout\n");
115 		return data;
116 	}
117 
118 	/*  move power state to P0 */
119 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
120 
121 	data &= ~SERDES_PWR_ST_MASK;
122 	data |= SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT;
123 
124 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
125 
126 	/* Check for P0 state */
127 	data = serdes_status_poll(priv, serdes_phy_addr,
128 				  SERDES_GSR0,
129 				  SERDES_PWR_ST_MASK,
130 				  SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT);
131 
132 	if (data) {
133 		dev_err(priv->device, "Serdes power state P0 timeout.\n");
134 		return data;
135 	}
136 
137 	return 0;
138 }
139 
140 static void intel_serdes_powerdown(struct net_device *ndev, void *intel_data)
141 {
142 	struct intel_priv_data *intel_priv = intel_data;
143 	struct stmmac_priv *priv = netdev_priv(ndev);
144 	int serdes_phy_addr = 0;
145 	u32 data = 0;
146 
147 	if (!intel_priv->mdio_adhoc_addr)
148 		return;
149 
150 	serdes_phy_addr = intel_priv->mdio_adhoc_addr;
151 
152 	/*  move power state to P3 */
153 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
154 
155 	data &= ~SERDES_PWR_ST_MASK;
156 	data |= SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT;
157 
158 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
159 
160 	/* Check for P3 state */
161 	data = serdes_status_poll(priv, serdes_phy_addr,
162 				  SERDES_GSR0,
163 				  SERDES_PWR_ST_MASK,
164 				  SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT);
165 
166 	if (data) {
167 		dev_err(priv->device, "Serdes power state P3 timeout\n");
168 		return;
169 	}
170 
171 	/* de-assert clk_req */
172 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
173 	data &= ~SERDES_PLL_CLK;
174 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
175 
176 	/* check for clk_ack de-assert */
177 	data = serdes_status_poll(priv, serdes_phy_addr,
178 				  SERDES_GSR0,
179 				  SERDES_PLL_CLK,
180 				  (u32)~SERDES_PLL_CLK);
181 
182 	if (data) {
183 		dev_err(priv->device, "Serdes PLL clk de-assert timeout\n");
184 		return;
185 	}
186 
187 	/* de-assert lane reset */
188 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
189 	data &= ~SERDES_RST;
190 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
191 
192 	/* check for de-assert lane reset reflection */
193 	data = serdes_status_poll(priv, serdes_phy_addr,
194 				  SERDES_GSR0,
195 				  SERDES_RST,
196 				  (u32)~SERDES_RST);
197 
198 	if (data) {
199 		dev_err(priv->device, "Serdes de-assert lane reset timeout\n");
200 		return;
201 	}
202 }
203 
204 static void common_default_data(struct plat_stmmacenet_data *plat)
205 {
206 	plat->clk_csr = 2;	/* clk_csr_i = 20-35MHz & MDC = clk_csr_i/16 */
207 	plat->has_gmac = 1;
208 	plat->force_sf_dma_mode = 1;
209 
210 	plat->mdio_bus_data->needs_reset = true;
211 
212 	/* Set default value for multicast hash bins */
213 	plat->multicast_filter_bins = HASH_TABLE_SIZE;
214 
215 	/* Set default value for unicast filter entries */
216 	plat->unicast_filter_entries = 1;
217 
218 	/* Set the maxmtu to a default of JUMBO_LEN */
219 	plat->maxmtu = JUMBO_LEN;
220 
221 	/* Set default number of RX and TX queues to use */
222 	plat->tx_queues_to_use = 1;
223 	plat->rx_queues_to_use = 1;
224 
225 	/* Disable Priority config by default */
226 	plat->tx_queues_cfg[0].use_prio = false;
227 	plat->rx_queues_cfg[0].use_prio = false;
228 
229 	/* Disable RX queues routing by default */
230 	plat->rx_queues_cfg[0].pkt_route = 0x0;
231 }
232 
233 static int intel_mgbe_common_data(struct pci_dev *pdev,
234 				  struct plat_stmmacenet_data *plat)
235 {
236 	int ret;
237 	int i;
238 
239 	plat->phy_addr = -1;
240 	plat->clk_csr = 5;
241 	plat->has_gmac = 0;
242 	plat->has_gmac4 = 1;
243 	plat->force_sf_dma_mode = 0;
244 	plat->tso_en = 1;
245 
246 	plat->rx_sched_algorithm = MTL_RX_ALGORITHM_SP;
247 
248 	for (i = 0; i < plat->rx_queues_to_use; i++) {
249 		plat->rx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB;
250 		plat->rx_queues_cfg[i].chan = i;
251 
252 		/* Disable Priority config by default */
253 		plat->rx_queues_cfg[i].use_prio = false;
254 
255 		/* Disable RX queues routing by default */
256 		plat->rx_queues_cfg[i].pkt_route = 0x0;
257 	}
258 
259 	for (i = 0; i < plat->tx_queues_to_use; i++) {
260 		plat->tx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB;
261 
262 		/* Disable Priority config by default */
263 		plat->tx_queues_cfg[i].use_prio = false;
264 	}
265 
266 	/* FIFO size is 4096 bytes for 1 tx/rx queue */
267 	plat->tx_fifo_size = plat->tx_queues_to_use * 4096;
268 	plat->rx_fifo_size = plat->rx_queues_to_use * 4096;
269 
270 	plat->tx_sched_algorithm = MTL_TX_ALGORITHM_WRR;
271 	plat->tx_queues_cfg[0].weight = 0x09;
272 	plat->tx_queues_cfg[1].weight = 0x0A;
273 	plat->tx_queues_cfg[2].weight = 0x0B;
274 	plat->tx_queues_cfg[3].weight = 0x0C;
275 	plat->tx_queues_cfg[4].weight = 0x0D;
276 	plat->tx_queues_cfg[5].weight = 0x0E;
277 	plat->tx_queues_cfg[6].weight = 0x0F;
278 	plat->tx_queues_cfg[7].weight = 0x10;
279 
280 	plat->dma_cfg->pbl = 32;
281 	plat->dma_cfg->pblx8 = true;
282 	plat->dma_cfg->fixed_burst = 0;
283 	plat->dma_cfg->mixed_burst = 0;
284 	plat->dma_cfg->aal = 0;
285 
286 	plat->axi = devm_kzalloc(&pdev->dev, sizeof(*plat->axi),
287 				 GFP_KERNEL);
288 	if (!plat->axi)
289 		return -ENOMEM;
290 
291 	plat->axi->axi_lpi_en = 0;
292 	plat->axi->axi_xit_frm = 0;
293 	plat->axi->axi_wr_osr_lmt = 1;
294 	plat->axi->axi_rd_osr_lmt = 1;
295 	plat->axi->axi_blen[0] = 4;
296 	plat->axi->axi_blen[1] = 8;
297 	plat->axi->axi_blen[2] = 16;
298 
299 	plat->ptp_max_adj = plat->clk_ptp_rate;
300 	plat->eee_usecs_rate = plat->clk_ptp_rate;
301 
302 	/* Set system clock */
303 	plat->stmmac_clk = clk_register_fixed_rate(&pdev->dev,
304 						   "stmmac-clk", NULL, 0,
305 						   plat->clk_ptp_rate);
306 
307 	if (IS_ERR(plat->stmmac_clk)) {
308 		dev_warn(&pdev->dev, "Fail to register stmmac-clk\n");
309 		plat->stmmac_clk = NULL;
310 	}
311 
312 	ret = clk_prepare_enable(plat->stmmac_clk);
313 	if (ret) {
314 		clk_unregister_fixed_rate(plat->stmmac_clk);
315 		return ret;
316 	}
317 
318 	/* Set default value for multicast hash bins */
319 	plat->multicast_filter_bins = HASH_TABLE_SIZE;
320 
321 	/* Set default value for unicast filter entries */
322 	plat->unicast_filter_entries = 1;
323 
324 	/* Set the maxmtu to a default of JUMBO_LEN */
325 	plat->maxmtu = JUMBO_LEN;
326 
327 	plat->vlan_fail_q_en = true;
328 
329 	/* Use the last Rx queue */
330 	plat->vlan_fail_q = plat->rx_queues_to_use - 1;
331 
332 	return 0;
333 }
334 
335 static int ehl_common_data(struct pci_dev *pdev,
336 			   struct plat_stmmacenet_data *plat)
337 {
338 	plat->rx_queues_to_use = 8;
339 	plat->tx_queues_to_use = 8;
340 	plat->clk_ptp_rate = 200000000;
341 
342 	return intel_mgbe_common_data(pdev, plat);
343 }
344 
345 static int ehl_sgmii_data(struct pci_dev *pdev,
346 			  struct plat_stmmacenet_data *plat)
347 {
348 	plat->bus_id = 1;
349 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
350 
351 	plat->serdes_powerup = intel_serdes_powerup;
352 	plat->serdes_powerdown = intel_serdes_powerdown;
353 
354 	return ehl_common_data(pdev, plat);
355 }
356 
357 static struct stmmac_pci_info ehl_sgmii1g_info = {
358 	.setup = ehl_sgmii_data,
359 };
360 
361 static int ehl_rgmii_data(struct pci_dev *pdev,
362 			  struct plat_stmmacenet_data *plat)
363 {
364 	plat->bus_id = 1;
365 	plat->phy_interface = PHY_INTERFACE_MODE_RGMII;
366 
367 	return ehl_common_data(pdev, plat);
368 }
369 
370 static struct stmmac_pci_info ehl_rgmii1g_info = {
371 	.setup = ehl_rgmii_data,
372 };
373 
374 static int ehl_pse0_common_data(struct pci_dev *pdev,
375 				struct plat_stmmacenet_data *plat)
376 {
377 	plat->bus_id = 2;
378 	plat->addr64 = 32;
379 	return ehl_common_data(pdev, plat);
380 }
381 
382 static int ehl_pse0_rgmii1g_data(struct pci_dev *pdev,
383 				 struct plat_stmmacenet_data *plat)
384 {
385 	plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID;
386 	return ehl_pse0_common_data(pdev, plat);
387 }
388 
389 static struct stmmac_pci_info ehl_pse0_rgmii1g_info = {
390 	.setup = ehl_pse0_rgmii1g_data,
391 };
392 
393 static int ehl_pse0_sgmii1g_data(struct pci_dev *pdev,
394 				 struct plat_stmmacenet_data *plat)
395 {
396 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
397 	plat->serdes_powerup = intel_serdes_powerup;
398 	plat->serdes_powerdown = intel_serdes_powerdown;
399 	return ehl_pse0_common_data(pdev, plat);
400 }
401 
402 static struct stmmac_pci_info ehl_pse0_sgmii1g_info = {
403 	.setup = ehl_pse0_sgmii1g_data,
404 };
405 
406 static int ehl_pse1_common_data(struct pci_dev *pdev,
407 				struct plat_stmmacenet_data *plat)
408 {
409 	plat->bus_id = 3;
410 	plat->addr64 = 32;
411 	return ehl_common_data(pdev, plat);
412 }
413 
414 static int ehl_pse1_rgmii1g_data(struct pci_dev *pdev,
415 				 struct plat_stmmacenet_data *plat)
416 {
417 	plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID;
418 	return ehl_pse1_common_data(pdev, plat);
419 }
420 
421 static struct stmmac_pci_info ehl_pse1_rgmii1g_info = {
422 	.setup = ehl_pse1_rgmii1g_data,
423 };
424 
425 static int ehl_pse1_sgmii1g_data(struct pci_dev *pdev,
426 				 struct plat_stmmacenet_data *plat)
427 {
428 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
429 	plat->serdes_powerup = intel_serdes_powerup;
430 	plat->serdes_powerdown = intel_serdes_powerdown;
431 	return ehl_pse1_common_data(pdev, plat);
432 }
433 
434 static struct stmmac_pci_info ehl_pse1_sgmii1g_info = {
435 	.setup = ehl_pse1_sgmii1g_data,
436 };
437 
438 static int tgl_common_data(struct pci_dev *pdev,
439 			   struct plat_stmmacenet_data *plat)
440 {
441 	plat->rx_queues_to_use = 6;
442 	plat->tx_queues_to_use = 4;
443 	plat->clk_ptp_rate = 200000000;
444 
445 	return intel_mgbe_common_data(pdev, plat);
446 }
447 
448 static int tgl_sgmii_data(struct pci_dev *pdev,
449 			  struct plat_stmmacenet_data *plat)
450 {
451 	plat->bus_id = 1;
452 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
453 	plat->serdes_powerup = intel_serdes_powerup;
454 	plat->serdes_powerdown = intel_serdes_powerdown;
455 	return tgl_common_data(pdev, plat);
456 }
457 
458 static struct stmmac_pci_info tgl_sgmii1g_info = {
459 	.setup = tgl_sgmii_data,
460 };
461 
462 static const struct stmmac_pci_func_data galileo_stmmac_func_data[] = {
463 	{
464 		.func = 6,
465 		.phy_addr = 1,
466 	},
467 };
468 
469 static const struct stmmac_pci_dmi_data galileo_stmmac_dmi_data = {
470 	.func = galileo_stmmac_func_data,
471 	.nfuncs = ARRAY_SIZE(galileo_stmmac_func_data),
472 };
473 
474 static const struct stmmac_pci_func_data iot2040_stmmac_func_data[] = {
475 	{
476 		.func = 6,
477 		.phy_addr = 1,
478 	},
479 	{
480 		.func = 7,
481 		.phy_addr = 1,
482 	},
483 };
484 
485 static const struct stmmac_pci_dmi_data iot2040_stmmac_dmi_data = {
486 	.func = iot2040_stmmac_func_data,
487 	.nfuncs = ARRAY_SIZE(iot2040_stmmac_func_data),
488 };
489 
490 static const struct dmi_system_id quark_pci_dmi[] = {
491 	{
492 		.matches = {
493 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "Galileo"),
494 		},
495 		.driver_data = (void *)&galileo_stmmac_dmi_data,
496 	},
497 	{
498 		.matches = {
499 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "GalileoGen2"),
500 		},
501 		.driver_data = (void *)&galileo_stmmac_dmi_data,
502 	},
503 	/* There are 2 types of SIMATIC IOT2000: IOT2020 and IOT2040.
504 	 * The asset tag "6ES7647-0AA00-0YA2" is only for IOT2020 which
505 	 * has only one pci network device while other asset tags are
506 	 * for IOT2040 which has two.
507 	 */
508 	{
509 		.matches = {
510 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"),
511 			DMI_EXACT_MATCH(DMI_BOARD_ASSET_TAG,
512 					"6ES7647-0AA00-0YA2"),
513 		},
514 		.driver_data = (void *)&galileo_stmmac_dmi_data,
515 	},
516 	{
517 		.matches = {
518 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"),
519 		},
520 		.driver_data = (void *)&iot2040_stmmac_dmi_data,
521 	},
522 	{}
523 };
524 
525 static int quark_default_data(struct pci_dev *pdev,
526 			      struct plat_stmmacenet_data *plat)
527 {
528 	int ret;
529 
530 	/* Set common default data first */
531 	common_default_data(plat);
532 
533 	/* Refuse to load the driver and register net device if MAC controller
534 	 * does not connect to any PHY interface.
535 	 */
536 	ret = stmmac_pci_find_phy_addr(pdev, quark_pci_dmi);
537 	if (ret < 0) {
538 		/* Return error to the caller on DMI enabled boards. */
539 		if (dmi_get_system_info(DMI_BOARD_NAME))
540 			return ret;
541 
542 		/* Galileo boards with old firmware don't support DMI. We always
543 		 * use 1 here as PHY address, so at least the first found MAC
544 		 * controller would be probed.
545 		 */
546 		ret = 1;
547 	}
548 
549 	plat->bus_id = pci_dev_id(pdev);
550 	plat->phy_addr = ret;
551 	plat->phy_interface = PHY_INTERFACE_MODE_RMII;
552 
553 	plat->dma_cfg->pbl = 16;
554 	plat->dma_cfg->pblx8 = true;
555 	plat->dma_cfg->fixed_burst = 1;
556 	/* AXI (TODO) */
557 
558 	return 0;
559 }
560 
561 static const struct stmmac_pci_info quark_info = {
562 	.setup = quark_default_data,
563 };
564 
565 /**
566  * intel_eth_pci_probe
567  *
568  * @pdev: pci device pointer
569  * @id: pointer to table of device id/id's.
570  *
571  * Description: This probing function gets called for all PCI devices which
572  * match the ID table and are not "owned" by other driver yet. This function
573  * gets passed a "struct pci_dev *" for each device whose entry in the ID table
574  * matches the device. The probe functions returns zero when the driver choose
575  * to take "ownership" of the device or an error code(-ve no) otherwise.
576  */
577 static int intel_eth_pci_probe(struct pci_dev *pdev,
578 			       const struct pci_device_id *id)
579 {
580 	struct stmmac_pci_info *info = (struct stmmac_pci_info *)id->driver_data;
581 	struct intel_priv_data *intel_priv;
582 	struct plat_stmmacenet_data *plat;
583 	struct stmmac_resources res;
584 	int ret;
585 
586 	intel_priv = devm_kzalloc(&pdev->dev, sizeof(*intel_priv), GFP_KERNEL);
587 	if (!intel_priv)
588 		return -ENOMEM;
589 
590 	plat = devm_kzalloc(&pdev->dev, sizeof(*plat), GFP_KERNEL);
591 	if (!plat)
592 		return -ENOMEM;
593 
594 	plat->mdio_bus_data = devm_kzalloc(&pdev->dev,
595 					   sizeof(*plat->mdio_bus_data),
596 					   GFP_KERNEL);
597 	if (!plat->mdio_bus_data)
598 		return -ENOMEM;
599 
600 	plat->dma_cfg = devm_kzalloc(&pdev->dev, sizeof(*plat->dma_cfg),
601 				     GFP_KERNEL);
602 	if (!plat->dma_cfg)
603 		return -ENOMEM;
604 
605 	/* Enable pci device */
606 	ret = pci_enable_device(pdev);
607 	if (ret) {
608 		dev_err(&pdev->dev, "%s: ERROR: failed to enable device\n",
609 			__func__);
610 		return ret;
611 	}
612 
613 	ret = pcim_iomap_regions(pdev, BIT(0), pci_name(pdev));
614 	if (ret)
615 		return ret;
616 
617 	pci_set_master(pdev);
618 
619 	plat->bsp_priv = intel_priv;
620 	intel_priv->mdio_adhoc_addr = 0x15;
621 
622 	ret = info->setup(pdev, plat);
623 	if (ret)
624 		return ret;
625 
626 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
627 	if (ret < 0)
628 		return ret;
629 
630 	memset(&res, 0, sizeof(res));
631 	res.addr = pcim_iomap_table(pdev)[0];
632 	res.wol_irq = pci_irq_vector(pdev, 0);
633 	res.irq = pci_irq_vector(pdev, 0);
634 
635 	if (plat->eee_usecs_rate > 0) {
636 		u32 tx_lpi_usec;
637 
638 		tx_lpi_usec = (plat->eee_usecs_rate / 1000000) - 1;
639 		writel(tx_lpi_usec, res.addr + GMAC_1US_TIC_COUNTER);
640 	}
641 
642 	ret = stmmac_dvr_probe(&pdev->dev, plat, &res);
643 	if (ret) {
644 		pci_free_irq_vectors(pdev);
645 		clk_disable_unprepare(plat->stmmac_clk);
646 		clk_unregister_fixed_rate(plat->stmmac_clk);
647 	}
648 
649 	return ret;
650 }
651 
652 /**
653  * intel_eth_pci_remove
654  *
655  * @pdev: platform device pointer
656  * Description: this function calls the main to free the net resources
657  * and releases the PCI resources.
658  */
659 static void intel_eth_pci_remove(struct pci_dev *pdev)
660 {
661 	struct net_device *ndev = dev_get_drvdata(&pdev->dev);
662 	struct stmmac_priv *priv = netdev_priv(ndev);
663 
664 	stmmac_dvr_remove(&pdev->dev);
665 
666 	pci_free_irq_vectors(pdev);
667 
668 	clk_unregister_fixed_rate(priv->plat->stmmac_clk);
669 
670 	pcim_iounmap_regions(pdev, BIT(0));
671 
672 	pci_disable_device(pdev);
673 }
674 
675 static int __maybe_unused intel_eth_pci_suspend(struct device *dev)
676 {
677 	struct pci_dev *pdev = to_pci_dev(dev);
678 	int ret;
679 
680 	ret = stmmac_suspend(dev);
681 	if (ret)
682 		return ret;
683 
684 	ret = pci_save_state(pdev);
685 	if (ret)
686 		return ret;
687 
688 	pci_disable_device(pdev);
689 	pci_wake_from_d3(pdev, true);
690 	return 0;
691 }
692 
693 static int __maybe_unused intel_eth_pci_resume(struct device *dev)
694 {
695 	struct pci_dev *pdev = to_pci_dev(dev);
696 	int ret;
697 
698 	pci_restore_state(pdev);
699 	pci_set_power_state(pdev, PCI_D0);
700 
701 	ret = pci_enable_device(pdev);
702 	if (ret)
703 		return ret;
704 
705 	pci_set_master(pdev);
706 
707 	return stmmac_resume(dev);
708 }
709 
710 static SIMPLE_DEV_PM_OPS(intel_eth_pm_ops, intel_eth_pci_suspend,
711 			 intel_eth_pci_resume);
712 
713 #define PCI_DEVICE_ID_INTEL_QUARK_ID			0x0937
714 #define PCI_DEVICE_ID_INTEL_EHL_RGMII1G_ID		0x4b30
715 #define PCI_DEVICE_ID_INTEL_EHL_SGMII1G_ID		0x4b31
716 #define PCI_DEVICE_ID_INTEL_EHL_SGMII2G5_ID		0x4b32
717 /* Intel(R) Programmable Services Engine (Intel(R) PSE) consist of 2 MAC
718  * which are named PSE0 and PSE1
719  */
720 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_RGMII1G_ID		0x4ba0
721 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII1G_ID		0x4ba1
722 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII2G5_ID	0x4ba2
723 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_RGMII1G_ID		0x4bb0
724 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII1G_ID		0x4bb1
725 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII2G5_ID	0x4bb2
726 #define PCI_DEVICE_ID_INTEL_TGLH_SGMII1G_0_ID		0x43ac
727 #define PCI_DEVICE_ID_INTEL_TGLH_SGMII1G_1_ID		0x43a2
728 #define PCI_DEVICE_ID_INTEL_TGL_SGMII1G_ID		0xa0ac
729 
730 static const struct pci_device_id intel_eth_pci_id_table[] = {
731 	{ PCI_DEVICE_DATA(INTEL, QUARK_ID, &quark_info) },
732 	{ PCI_DEVICE_DATA(INTEL, EHL_RGMII1G_ID, &ehl_rgmii1g_info) },
733 	{ PCI_DEVICE_DATA(INTEL, EHL_SGMII1G_ID, &ehl_sgmii1g_info) },
734 	{ PCI_DEVICE_DATA(INTEL, EHL_SGMII2G5_ID, &ehl_sgmii1g_info) },
735 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_RGMII1G_ID, &ehl_pse0_rgmii1g_info) },
736 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII1G_ID, &ehl_pse0_sgmii1g_info) },
737 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII2G5_ID, &ehl_pse0_sgmii1g_info) },
738 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_RGMII1G_ID, &ehl_pse1_rgmii1g_info) },
739 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII1G_ID, &ehl_pse1_sgmii1g_info) },
740 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII2G5_ID, &ehl_pse1_sgmii1g_info) },
741 	{ PCI_DEVICE_DATA(INTEL, TGL_SGMII1G_ID, &tgl_sgmii1g_info) },
742 	{ PCI_DEVICE_DATA(INTEL, TGLH_SGMII1G_0_ID, &tgl_sgmii1g_info) },
743 	{ PCI_DEVICE_DATA(INTEL, TGLH_SGMII1G_1_ID, &tgl_sgmii1g_info) },
744 	{}
745 };
746 MODULE_DEVICE_TABLE(pci, intel_eth_pci_id_table);
747 
748 static struct pci_driver intel_eth_pci_driver = {
749 	.name = "intel-eth-pci",
750 	.id_table = intel_eth_pci_id_table,
751 	.probe = intel_eth_pci_probe,
752 	.remove = intel_eth_pci_remove,
753 	.driver         = {
754 		.pm     = &intel_eth_pm_ops,
755 	},
756 };
757 
758 module_pci_driver(intel_eth_pci_driver);
759 
760 MODULE_DESCRIPTION("INTEL 10/100/1000 Ethernet PCI driver");
761 MODULE_AUTHOR("Voon Weifeng <weifeng.voon@intel.com>");
762 MODULE_LICENSE("GPL v2");
763