1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2020, Intel Corporation 3 */ 4 5 #include <linux/clk-provider.h> 6 #include <linux/pci.h> 7 #include <linux/dmi.h> 8 #include "dwmac-intel.h" 9 #include "dwmac4.h" 10 #include "stmmac.h" 11 #include "stmmac_ptp.h" 12 13 #define INTEL_MGBE_ADHOC_ADDR 0x15 14 #define INTEL_MGBE_XPCS_ADDR 0x16 15 16 /* Selection for PTP Clock Freq belongs to PSE & PCH GbE */ 17 #define PSE_PTP_CLK_FREQ_MASK (GMAC_GPO0 | GMAC_GPO3) 18 #define PSE_PTP_CLK_FREQ_19_2MHZ (GMAC_GPO0) 19 #define PSE_PTP_CLK_FREQ_200MHZ (GMAC_GPO0 | GMAC_GPO3) 20 #define PSE_PTP_CLK_FREQ_256MHZ (0) 21 #define PCH_PTP_CLK_FREQ_MASK (GMAC_GPO0) 22 #define PCH_PTP_CLK_FREQ_19_2MHZ (GMAC_GPO0) 23 #define PCH_PTP_CLK_FREQ_200MHZ (0) 24 25 /* Cross-timestamping defines */ 26 #define ART_CPUID_LEAF 0x15 27 #define EHL_PSE_ART_MHZ 19200000 28 29 struct intel_priv_data { 30 int mdio_adhoc_addr; /* mdio address for serdes & etc */ 31 unsigned long crossts_adj; 32 bool is_pse; 33 }; 34 35 /* This struct is used to associate PCI Function of MAC controller on a board, 36 * discovered via DMI, with the address of PHY connected to the MAC. The 37 * negative value of the address means that MAC controller is not connected 38 * with PHY. 39 */ 40 struct stmmac_pci_func_data { 41 unsigned int func; 42 int phy_addr; 43 }; 44 45 struct stmmac_pci_dmi_data { 46 const struct stmmac_pci_func_data *func; 47 size_t nfuncs; 48 }; 49 50 struct stmmac_pci_info { 51 int (*setup)(struct pci_dev *pdev, struct plat_stmmacenet_data *plat); 52 }; 53 54 static int stmmac_pci_find_phy_addr(struct pci_dev *pdev, 55 const struct dmi_system_id *dmi_list) 56 { 57 const struct stmmac_pci_func_data *func_data; 58 const struct stmmac_pci_dmi_data *dmi_data; 59 const struct dmi_system_id *dmi_id; 60 int func = PCI_FUNC(pdev->devfn); 61 size_t n; 62 63 dmi_id = dmi_first_match(dmi_list); 64 if (!dmi_id) 65 return -ENODEV; 66 67 dmi_data = dmi_id->driver_data; 68 func_data = dmi_data->func; 69 70 for (n = 0; n < dmi_data->nfuncs; n++, func_data++) 71 if (func_data->func == func) 72 return func_data->phy_addr; 73 74 return -ENODEV; 75 } 76 77 static int serdes_status_poll(struct stmmac_priv *priv, int phyaddr, 78 int phyreg, u32 mask, u32 val) 79 { 80 unsigned int retries = 10; 81 int val_rd; 82 83 do { 84 val_rd = mdiobus_read(priv->mii, phyaddr, phyreg); 85 if ((val_rd & mask) == (val & mask)) 86 return 0; 87 udelay(POLL_DELAY_US); 88 } while (--retries); 89 90 return -ETIMEDOUT; 91 } 92 93 static int intel_serdes_powerup(struct net_device *ndev, void *priv_data) 94 { 95 struct intel_priv_data *intel_priv = priv_data; 96 struct stmmac_priv *priv = netdev_priv(ndev); 97 int serdes_phy_addr = 0; 98 u32 data = 0; 99 100 if (!intel_priv->mdio_adhoc_addr) 101 return 0; 102 103 serdes_phy_addr = intel_priv->mdio_adhoc_addr; 104 105 /* assert clk_req */ 106 data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0); 107 data |= SERDES_PLL_CLK; 108 mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data); 109 110 /* check for clk_ack assertion */ 111 data = serdes_status_poll(priv, serdes_phy_addr, 112 SERDES_GSR0, 113 SERDES_PLL_CLK, 114 SERDES_PLL_CLK); 115 116 if (data) { 117 dev_err(priv->device, "Serdes PLL clk request timeout\n"); 118 return data; 119 } 120 121 /* assert lane reset */ 122 data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0); 123 data |= SERDES_RST; 124 mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data); 125 126 /* check for assert lane reset reflection */ 127 data = serdes_status_poll(priv, serdes_phy_addr, 128 SERDES_GSR0, 129 SERDES_RST, 130 SERDES_RST); 131 132 if (data) { 133 dev_err(priv->device, "Serdes assert lane reset timeout\n"); 134 return data; 135 } 136 137 /* move power state to P0 */ 138 data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0); 139 140 data &= ~SERDES_PWR_ST_MASK; 141 data |= SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT; 142 143 mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data); 144 145 /* Check for P0 state */ 146 data = serdes_status_poll(priv, serdes_phy_addr, 147 SERDES_GSR0, 148 SERDES_PWR_ST_MASK, 149 SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT); 150 151 if (data) { 152 dev_err(priv->device, "Serdes power state P0 timeout.\n"); 153 return data; 154 } 155 156 /* PSE only - ungate SGMII PHY Rx Clock */ 157 if (intel_priv->is_pse) 158 mdiobus_modify(priv->mii, serdes_phy_addr, SERDES_GCR0, 159 0, SERDES_PHY_RX_CLK); 160 161 return 0; 162 } 163 164 static void intel_serdes_powerdown(struct net_device *ndev, void *intel_data) 165 { 166 struct intel_priv_data *intel_priv = intel_data; 167 struct stmmac_priv *priv = netdev_priv(ndev); 168 int serdes_phy_addr = 0; 169 u32 data = 0; 170 171 if (!intel_priv->mdio_adhoc_addr) 172 return; 173 174 serdes_phy_addr = intel_priv->mdio_adhoc_addr; 175 176 /* PSE only - gate SGMII PHY Rx Clock */ 177 if (intel_priv->is_pse) 178 mdiobus_modify(priv->mii, serdes_phy_addr, SERDES_GCR0, 179 SERDES_PHY_RX_CLK, 0); 180 181 /* move power state to P3 */ 182 data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0); 183 184 data &= ~SERDES_PWR_ST_MASK; 185 data |= SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT; 186 187 mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data); 188 189 /* Check for P3 state */ 190 data = serdes_status_poll(priv, serdes_phy_addr, 191 SERDES_GSR0, 192 SERDES_PWR_ST_MASK, 193 SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT); 194 195 if (data) { 196 dev_err(priv->device, "Serdes power state P3 timeout\n"); 197 return; 198 } 199 200 /* de-assert clk_req */ 201 data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0); 202 data &= ~SERDES_PLL_CLK; 203 mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data); 204 205 /* check for clk_ack de-assert */ 206 data = serdes_status_poll(priv, serdes_phy_addr, 207 SERDES_GSR0, 208 SERDES_PLL_CLK, 209 (u32)~SERDES_PLL_CLK); 210 211 if (data) { 212 dev_err(priv->device, "Serdes PLL clk de-assert timeout\n"); 213 return; 214 } 215 216 /* de-assert lane reset */ 217 data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0); 218 data &= ~SERDES_RST; 219 mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data); 220 221 /* check for de-assert lane reset reflection */ 222 data = serdes_status_poll(priv, serdes_phy_addr, 223 SERDES_GSR0, 224 SERDES_RST, 225 (u32)~SERDES_RST); 226 227 if (data) { 228 dev_err(priv->device, "Serdes de-assert lane reset timeout\n"); 229 return; 230 } 231 } 232 233 /* Program PTP Clock Frequency for different variant of 234 * Intel mGBE that has slightly different GPO mapping 235 */ 236 static void intel_mgbe_ptp_clk_freq_config(void *npriv) 237 { 238 struct stmmac_priv *priv = (struct stmmac_priv *)npriv; 239 struct intel_priv_data *intel_priv; 240 u32 gpio_value; 241 242 intel_priv = (struct intel_priv_data *)priv->plat->bsp_priv; 243 244 gpio_value = readl(priv->ioaddr + GMAC_GPIO_STATUS); 245 246 if (intel_priv->is_pse) { 247 /* For PSE GbE, use 200MHz */ 248 gpio_value &= ~PSE_PTP_CLK_FREQ_MASK; 249 gpio_value |= PSE_PTP_CLK_FREQ_200MHZ; 250 } else { 251 /* For PCH GbE, use 200MHz */ 252 gpio_value &= ~PCH_PTP_CLK_FREQ_MASK; 253 gpio_value |= PCH_PTP_CLK_FREQ_200MHZ; 254 } 255 256 writel(gpio_value, priv->ioaddr + GMAC_GPIO_STATUS); 257 } 258 259 static void get_arttime(struct mii_bus *mii, int intel_adhoc_addr, 260 u64 *art_time) 261 { 262 u64 ns; 263 264 ns = mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE3); 265 ns <<= GMAC4_ART_TIME_SHIFT; 266 ns |= mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE2); 267 ns <<= GMAC4_ART_TIME_SHIFT; 268 ns |= mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE1); 269 ns <<= GMAC4_ART_TIME_SHIFT; 270 ns |= mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE0); 271 272 *art_time = ns; 273 } 274 275 static int intel_crosststamp(ktime_t *device, 276 struct system_counterval_t *system, 277 void *ctx) 278 { 279 struct intel_priv_data *intel_priv; 280 281 struct stmmac_priv *priv = (struct stmmac_priv *)ctx; 282 void __iomem *ptpaddr = priv->ptpaddr; 283 void __iomem *ioaddr = priv->hw->pcsr; 284 unsigned long flags; 285 u64 art_time = 0; 286 u64 ptp_time = 0; 287 u32 num_snapshot; 288 u32 gpio_value; 289 u32 acr_value; 290 int ret; 291 u32 v; 292 int i; 293 294 if (!boot_cpu_has(X86_FEATURE_ART)) 295 return -EOPNOTSUPP; 296 297 intel_priv = priv->plat->bsp_priv; 298 299 /* Both internal crosstimestamping and external triggered event 300 * timestamping cannot be run concurrently. 301 */ 302 if (priv->plat->ext_snapshot_en) 303 return -EBUSY; 304 305 mutex_lock(&priv->aux_ts_lock); 306 /* Enable Internal snapshot trigger */ 307 acr_value = readl(ptpaddr + PTP_ACR); 308 acr_value &= ~PTP_ACR_MASK; 309 switch (priv->plat->int_snapshot_num) { 310 case AUX_SNAPSHOT0: 311 acr_value |= PTP_ACR_ATSEN0; 312 break; 313 case AUX_SNAPSHOT1: 314 acr_value |= PTP_ACR_ATSEN1; 315 break; 316 case AUX_SNAPSHOT2: 317 acr_value |= PTP_ACR_ATSEN2; 318 break; 319 case AUX_SNAPSHOT3: 320 acr_value |= PTP_ACR_ATSEN3; 321 break; 322 default: 323 mutex_unlock(&priv->aux_ts_lock); 324 return -EINVAL; 325 } 326 writel(acr_value, ptpaddr + PTP_ACR); 327 328 /* Clear FIFO */ 329 acr_value = readl(ptpaddr + PTP_ACR); 330 acr_value |= PTP_ACR_ATSFC; 331 writel(acr_value, ptpaddr + PTP_ACR); 332 /* Release the mutex */ 333 mutex_unlock(&priv->aux_ts_lock); 334 335 /* Trigger Internal snapshot signal 336 * Create a rising edge by just toggle the GPO1 to low 337 * and back to high. 338 */ 339 gpio_value = readl(ioaddr + GMAC_GPIO_STATUS); 340 gpio_value &= ~GMAC_GPO1; 341 writel(gpio_value, ioaddr + GMAC_GPIO_STATUS); 342 gpio_value |= GMAC_GPO1; 343 writel(gpio_value, ioaddr + GMAC_GPIO_STATUS); 344 345 /* Poll for time sync operation done */ 346 ret = readl_poll_timeout(priv->ioaddr + GMAC_INT_STATUS, v, 347 (v & GMAC_INT_TSIE), 100, 10000); 348 349 if (ret == -ETIMEDOUT) { 350 pr_err("%s: Wait for time sync operation timeout\n", __func__); 351 return ret; 352 } 353 354 num_snapshot = (readl(ioaddr + GMAC_TIMESTAMP_STATUS) & 355 GMAC_TIMESTAMP_ATSNS_MASK) >> 356 GMAC_TIMESTAMP_ATSNS_SHIFT; 357 358 /* Repeat until the timestamps are from the FIFO last segment */ 359 for (i = 0; i < num_snapshot; i++) { 360 spin_lock_irqsave(&priv->ptp_lock, flags); 361 stmmac_get_ptptime(priv, ptpaddr, &ptp_time); 362 *device = ns_to_ktime(ptp_time); 363 spin_unlock_irqrestore(&priv->ptp_lock, flags); 364 get_arttime(priv->mii, intel_priv->mdio_adhoc_addr, &art_time); 365 *system = convert_art_to_tsc(art_time); 366 } 367 368 system->cycles *= intel_priv->crossts_adj; 369 370 return 0; 371 } 372 373 static void intel_mgbe_pse_crossts_adj(struct intel_priv_data *intel_priv, 374 int base) 375 { 376 if (boot_cpu_has(X86_FEATURE_ART)) { 377 unsigned int art_freq; 378 379 /* On systems that support ART, ART frequency can be obtained 380 * from ECX register of CPUID leaf (0x15). 381 */ 382 art_freq = cpuid_ecx(ART_CPUID_LEAF); 383 do_div(art_freq, base); 384 intel_priv->crossts_adj = art_freq; 385 } 386 } 387 388 static void common_default_data(struct plat_stmmacenet_data *plat) 389 { 390 plat->clk_csr = 2; /* clk_csr_i = 20-35MHz & MDC = clk_csr_i/16 */ 391 plat->has_gmac = 1; 392 plat->force_sf_dma_mode = 1; 393 394 plat->mdio_bus_data->needs_reset = true; 395 396 /* Set default value for multicast hash bins */ 397 plat->multicast_filter_bins = HASH_TABLE_SIZE; 398 399 /* Set default value for unicast filter entries */ 400 plat->unicast_filter_entries = 1; 401 402 /* Set the maxmtu to a default of JUMBO_LEN */ 403 plat->maxmtu = JUMBO_LEN; 404 405 /* Set default number of RX and TX queues to use */ 406 plat->tx_queues_to_use = 1; 407 plat->rx_queues_to_use = 1; 408 409 /* Disable Priority config by default */ 410 plat->tx_queues_cfg[0].use_prio = false; 411 plat->rx_queues_cfg[0].use_prio = false; 412 413 /* Disable RX queues routing by default */ 414 plat->rx_queues_cfg[0].pkt_route = 0x0; 415 } 416 417 static int intel_mgbe_common_data(struct pci_dev *pdev, 418 struct plat_stmmacenet_data *plat) 419 { 420 char clk_name[20]; 421 int ret; 422 int i; 423 424 plat->pdev = pdev; 425 plat->phy_addr = -1; 426 plat->clk_csr = 5; 427 plat->has_gmac = 0; 428 plat->has_gmac4 = 1; 429 plat->force_sf_dma_mode = 0; 430 plat->tso_en = 1; 431 432 /* Multiplying factor to the clk_eee_i clock time 433 * period to make it closer to 100 ns. This value 434 * should be programmed such that the clk_eee_time_period * 435 * (MULT_FACT_100NS + 1) should be within 80 ns to 120 ns 436 * clk_eee frequency is 19.2Mhz 437 * clk_eee_time_period is 52ns 438 * 52ns * (1 + 1) = 104ns 439 * MULT_FACT_100NS = 1 440 */ 441 plat->mult_fact_100ns = 1; 442 443 plat->rx_sched_algorithm = MTL_RX_ALGORITHM_SP; 444 445 for (i = 0; i < plat->rx_queues_to_use; i++) { 446 plat->rx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB; 447 plat->rx_queues_cfg[i].chan = i; 448 449 /* Disable Priority config by default */ 450 plat->rx_queues_cfg[i].use_prio = false; 451 452 /* Disable RX queues routing by default */ 453 plat->rx_queues_cfg[i].pkt_route = 0x0; 454 } 455 456 for (i = 0; i < plat->tx_queues_to_use; i++) { 457 plat->tx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB; 458 459 /* Disable Priority config by default */ 460 plat->tx_queues_cfg[i].use_prio = false; 461 /* Default TX Q0 to use TSO and rest TXQ for TBS */ 462 if (i > 0) 463 plat->tx_queues_cfg[i].tbs_en = 1; 464 } 465 466 /* FIFO size is 4096 bytes for 1 tx/rx queue */ 467 plat->tx_fifo_size = plat->tx_queues_to_use * 4096; 468 plat->rx_fifo_size = plat->rx_queues_to_use * 4096; 469 470 plat->tx_sched_algorithm = MTL_TX_ALGORITHM_WRR; 471 plat->tx_queues_cfg[0].weight = 0x09; 472 plat->tx_queues_cfg[1].weight = 0x0A; 473 plat->tx_queues_cfg[2].weight = 0x0B; 474 plat->tx_queues_cfg[3].weight = 0x0C; 475 plat->tx_queues_cfg[4].weight = 0x0D; 476 plat->tx_queues_cfg[5].weight = 0x0E; 477 plat->tx_queues_cfg[6].weight = 0x0F; 478 plat->tx_queues_cfg[7].weight = 0x10; 479 480 plat->dma_cfg->pbl = 32; 481 plat->dma_cfg->pblx8 = true; 482 plat->dma_cfg->fixed_burst = 0; 483 plat->dma_cfg->mixed_burst = 0; 484 plat->dma_cfg->aal = 0; 485 plat->dma_cfg->dche = true; 486 487 plat->axi = devm_kzalloc(&pdev->dev, sizeof(*plat->axi), 488 GFP_KERNEL); 489 if (!plat->axi) 490 return -ENOMEM; 491 492 plat->axi->axi_lpi_en = 0; 493 plat->axi->axi_xit_frm = 0; 494 plat->axi->axi_wr_osr_lmt = 1; 495 plat->axi->axi_rd_osr_lmt = 1; 496 plat->axi->axi_blen[0] = 4; 497 plat->axi->axi_blen[1] = 8; 498 plat->axi->axi_blen[2] = 16; 499 500 plat->ptp_max_adj = plat->clk_ptp_rate; 501 plat->eee_usecs_rate = plat->clk_ptp_rate; 502 503 /* Set system clock */ 504 sprintf(clk_name, "%s-%s", "stmmac", pci_name(pdev)); 505 506 plat->stmmac_clk = clk_register_fixed_rate(&pdev->dev, 507 clk_name, NULL, 0, 508 plat->clk_ptp_rate); 509 510 if (IS_ERR(plat->stmmac_clk)) { 511 dev_warn(&pdev->dev, "Fail to register stmmac-clk\n"); 512 plat->stmmac_clk = NULL; 513 } 514 515 ret = clk_prepare_enable(plat->stmmac_clk); 516 if (ret) { 517 clk_unregister_fixed_rate(plat->stmmac_clk); 518 return ret; 519 } 520 521 plat->ptp_clk_freq_config = intel_mgbe_ptp_clk_freq_config; 522 523 /* Set default value for multicast hash bins */ 524 plat->multicast_filter_bins = HASH_TABLE_SIZE; 525 526 /* Set default value for unicast filter entries */ 527 plat->unicast_filter_entries = 1; 528 529 /* Set the maxmtu to a default of JUMBO_LEN */ 530 plat->maxmtu = JUMBO_LEN; 531 532 plat->vlan_fail_q_en = true; 533 534 /* Use the last Rx queue */ 535 plat->vlan_fail_q = plat->rx_queues_to_use - 1; 536 537 /* Intel mgbe SGMII interface uses pcs-xcps */ 538 if (plat->phy_interface == PHY_INTERFACE_MODE_SGMII) { 539 plat->mdio_bus_data->has_xpcs = true; 540 plat->mdio_bus_data->xpcs_an_inband = true; 541 } 542 543 /* Ensure mdio bus scan skips intel serdes and pcs-xpcs */ 544 plat->mdio_bus_data->phy_mask = 1 << INTEL_MGBE_ADHOC_ADDR; 545 plat->mdio_bus_data->phy_mask |= 1 << INTEL_MGBE_XPCS_ADDR; 546 547 plat->int_snapshot_num = AUX_SNAPSHOT1; 548 plat->ext_snapshot_num = AUX_SNAPSHOT0; 549 550 plat->has_crossts = true; 551 plat->crosststamp = intel_crosststamp; 552 553 /* Setup MSI vector offset specific to Intel mGbE controller */ 554 plat->msi_mac_vec = 29; 555 plat->msi_lpi_vec = 28; 556 plat->msi_sfty_ce_vec = 27; 557 plat->msi_sfty_ue_vec = 26; 558 plat->msi_rx_base_vec = 0; 559 plat->msi_tx_base_vec = 1; 560 561 return 0; 562 } 563 564 static int ehl_common_data(struct pci_dev *pdev, 565 struct plat_stmmacenet_data *plat) 566 { 567 plat->rx_queues_to_use = 8; 568 plat->tx_queues_to_use = 8; 569 plat->clk_ptp_rate = 200000000; 570 571 return intel_mgbe_common_data(pdev, plat); 572 } 573 574 static int ehl_sgmii_data(struct pci_dev *pdev, 575 struct plat_stmmacenet_data *plat) 576 { 577 plat->bus_id = 1; 578 plat->phy_interface = PHY_INTERFACE_MODE_SGMII; 579 580 plat->serdes_powerup = intel_serdes_powerup; 581 plat->serdes_powerdown = intel_serdes_powerdown; 582 583 return ehl_common_data(pdev, plat); 584 } 585 586 static struct stmmac_pci_info ehl_sgmii1g_info = { 587 .setup = ehl_sgmii_data, 588 }; 589 590 static int ehl_rgmii_data(struct pci_dev *pdev, 591 struct plat_stmmacenet_data *plat) 592 { 593 plat->bus_id = 1; 594 plat->phy_interface = PHY_INTERFACE_MODE_RGMII; 595 596 return ehl_common_data(pdev, plat); 597 } 598 599 static struct stmmac_pci_info ehl_rgmii1g_info = { 600 .setup = ehl_rgmii_data, 601 }; 602 603 static int ehl_pse0_common_data(struct pci_dev *pdev, 604 struct plat_stmmacenet_data *plat) 605 { 606 struct intel_priv_data *intel_priv = plat->bsp_priv; 607 608 intel_priv->is_pse = true; 609 plat->bus_id = 2; 610 plat->addr64 = 32; 611 612 intel_mgbe_pse_crossts_adj(intel_priv, EHL_PSE_ART_MHZ); 613 614 return ehl_common_data(pdev, plat); 615 } 616 617 static int ehl_pse0_rgmii1g_data(struct pci_dev *pdev, 618 struct plat_stmmacenet_data *plat) 619 { 620 plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID; 621 return ehl_pse0_common_data(pdev, plat); 622 } 623 624 static struct stmmac_pci_info ehl_pse0_rgmii1g_info = { 625 .setup = ehl_pse0_rgmii1g_data, 626 }; 627 628 static int ehl_pse0_sgmii1g_data(struct pci_dev *pdev, 629 struct plat_stmmacenet_data *plat) 630 { 631 plat->phy_interface = PHY_INTERFACE_MODE_SGMII; 632 plat->serdes_powerup = intel_serdes_powerup; 633 plat->serdes_powerdown = intel_serdes_powerdown; 634 return ehl_pse0_common_data(pdev, plat); 635 } 636 637 static struct stmmac_pci_info ehl_pse0_sgmii1g_info = { 638 .setup = ehl_pse0_sgmii1g_data, 639 }; 640 641 static int ehl_pse1_common_data(struct pci_dev *pdev, 642 struct plat_stmmacenet_data *plat) 643 { 644 struct intel_priv_data *intel_priv = plat->bsp_priv; 645 646 intel_priv->is_pse = true; 647 plat->bus_id = 3; 648 plat->addr64 = 32; 649 650 intel_mgbe_pse_crossts_adj(intel_priv, EHL_PSE_ART_MHZ); 651 652 return ehl_common_data(pdev, plat); 653 } 654 655 static int ehl_pse1_rgmii1g_data(struct pci_dev *pdev, 656 struct plat_stmmacenet_data *plat) 657 { 658 plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID; 659 return ehl_pse1_common_data(pdev, plat); 660 } 661 662 static struct stmmac_pci_info ehl_pse1_rgmii1g_info = { 663 .setup = ehl_pse1_rgmii1g_data, 664 }; 665 666 static int ehl_pse1_sgmii1g_data(struct pci_dev *pdev, 667 struct plat_stmmacenet_data *plat) 668 { 669 plat->phy_interface = PHY_INTERFACE_MODE_SGMII; 670 plat->serdes_powerup = intel_serdes_powerup; 671 plat->serdes_powerdown = intel_serdes_powerdown; 672 return ehl_pse1_common_data(pdev, plat); 673 } 674 675 static struct stmmac_pci_info ehl_pse1_sgmii1g_info = { 676 .setup = ehl_pse1_sgmii1g_data, 677 }; 678 679 static int tgl_common_data(struct pci_dev *pdev, 680 struct plat_stmmacenet_data *plat) 681 { 682 plat->rx_queues_to_use = 6; 683 plat->tx_queues_to_use = 4; 684 plat->clk_ptp_rate = 200000000; 685 686 return intel_mgbe_common_data(pdev, plat); 687 } 688 689 static int tgl_sgmii_phy0_data(struct pci_dev *pdev, 690 struct plat_stmmacenet_data *plat) 691 { 692 plat->bus_id = 1; 693 plat->phy_interface = PHY_INTERFACE_MODE_SGMII; 694 plat->serdes_powerup = intel_serdes_powerup; 695 plat->serdes_powerdown = intel_serdes_powerdown; 696 return tgl_common_data(pdev, plat); 697 } 698 699 static struct stmmac_pci_info tgl_sgmii1g_phy0_info = { 700 .setup = tgl_sgmii_phy0_data, 701 }; 702 703 static int tgl_sgmii_phy1_data(struct pci_dev *pdev, 704 struct plat_stmmacenet_data *plat) 705 { 706 plat->bus_id = 2; 707 plat->phy_interface = PHY_INTERFACE_MODE_SGMII; 708 plat->serdes_powerup = intel_serdes_powerup; 709 plat->serdes_powerdown = intel_serdes_powerdown; 710 return tgl_common_data(pdev, plat); 711 } 712 713 static struct stmmac_pci_info tgl_sgmii1g_phy1_info = { 714 .setup = tgl_sgmii_phy1_data, 715 }; 716 717 static int adls_sgmii_phy0_data(struct pci_dev *pdev, 718 struct plat_stmmacenet_data *plat) 719 { 720 plat->bus_id = 1; 721 plat->phy_interface = PHY_INTERFACE_MODE_SGMII; 722 723 /* SerDes power up and power down are done in BIOS for ADL */ 724 725 return tgl_common_data(pdev, plat); 726 } 727 728 static struct stmmac_pci_info adls_sgmii1g_phy0_info = { 729 .setup = adls_sgmii_phy0_data, 730 }; 731 732 static int adls_sgmii_phy1_data(struct pci_dev *pdev, 733 struct plat_stmmacenet_data *plat) 734 { 735 plat->bus_id = 2; 736 plat->phy_interface = PHY_INTERFACE_MODE_SGMII; 737 738 /* SerDes power up and power down are done in BIOS for ADL */ 739 740 return tgl_common_data(pdev, plat); 741 } 742 743 static struct stmmac_pci_info adls_sgmii1g_phy1_info = { 744 .setup = adls_sgmii_phy1_data, 745 }; 746 static const struct stmmac_pci_func_data galileo_stmmac_func_data[] = { 747 { 748 .func = 6, 749 .phy_addr = 1, 750 }, 751 }; 752 753 static const struct stmmac_pci_dmi_data galileo_stmmac_dmi_data = { 754 .func = galileo_stmmac_func_data, 755 .nfuncs = ARRAY_SIZE(galileo_stmmac_func_data), 756 }; 757 758 static const struct stmmac_pci_func_data iot2040_stmmac_func_data[] = { 759 { 760 .func = 6, 761 .phy_addr = 1, 762 }, 763 { 764 .func = 7, 765 .phy_addr = 1, 766 }, 767 }; 768 769 static const struct stmmac_pci_dmi_data iot2040_stmmac_dmi_data = { 770 .func = iot2040_stmmac_func_data, 771 .nfuncs = ARRAY_SIZE(iot2040_stmmac_func_data), 772 }; 773 774 static const struct dmi_system_id quark_pci_dmi[] = { 775 { 776 .matches = { 777 DMI_EXACT_MATCH(DMI_BOARD_NAME, "Galileo"), 778 }, 779 .driver_data = (void *)&galileo_stmmac_dmi_data, 780 }, 781 { 782 .matches = { 783 DMI_EXACT_MATCH(DMI_BOARD_NAME, "GalileoGen2"), 784 }, 785 .driver_data = (void *)&galileo_stmmac_dmi_data, 786 }, 787 /* There are 2 types of SIMATIC IOT2000: IOT2020 and IOT2040. 788 * The asset tag "6ES7647-0AA00-0YA2" is only for IOT2020 which 789 * has only one pci network device while other asset tags are 790 * for IOT2040 which has two. 791 */ 792 { 793 .matches = { 794 DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"), 795 DMI_EXACT_MATCH(DMI_BOARD_ASSET_TAG, 796 "6ES7647-0AA00-0YA2"), 797 }, 798 .driver_data = (void *)&galileo_stmmac_dmi_data, 799 }, 800 { 801 .matches = { 802 DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"), 803 }, 804 .driver_data = (void *)&iot2040_stmmac_dmi_data, 805 }, 806 {} 807 }; 808 809 static int quark_default_data(struct pci_dev *pdev, 810 struct plat_stmmacenet_data *plat) 811 { 812 int ret; 813 814 /* Set common default data first */ 815 common_default_data(plat); 816 817 /* Refuse to load the driver and register net device if MAC controller 818 * does not connect to any PHY interface. 819 */ 820 ret = stmmac_pci_find_phy_addr(pdev, quark_pci_dmi); 821 if (ret < 0) { 822 /* Return error to the caller on DMI enabled boards. */ 823 if (dmi_get_system_info(DMI_BOARD_NAME)) 824 return ret; 825 826 /* Galileo boards with old firmware don't support DMI. We always 827 * use 1 here as PHY address, so at least the first found MAC 828 * controller would be probed. 829 */ 830 ret = 1; 831 } 832 833 plat->bus_id = pci_dev_id(pdev); 834 plat->phy_addr = ret; 835 plat->phy_interface = PHY_INTERFACE_MODE_RMII; 836 837 plat->dma_cfg->pbl = 16; 838 plat->dma_cfg->pblx8 = true; 839 plat->dma_cfg->fixed_burst = 1; 840 /* AXI (TODO) */ 841 842 return 0; 843 } 844 845 static const struct stmmac_pci_info quark_info = { 846 .setup = quark_default_data, 847 }; 848 849 static int stmmac_config_single_msi(struct pci_dev *pdev, 850 struct plat_stmmacenet_data *plat, 851 struct stmmac_resources *res) 852 { 853 int ret; 854 855 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 856 if (ret < 0) { 857 dev_info(&pdev->dev, "%s: Single IRQ enablement failed\n", 858 __func__); 859 return ret; 860 } 861 862 res->irq = pci_irq_vector(pdev, 0); 863 res->wol_irq = res->irq; 864 plat->multi_msi_en = 0; 865 dev_info(&pdev->dev, "%s: Single IRQ enablement successful\n", 866 __func__); 867 868 return 0; 869 } 870 871 static int stmmac_config_multi_msi(struct pci_dev *pdev, 872 struct plat_stmmacenet_data *plat, 873 struct stmmac_resources *res) 874 { 875 int ret; 876 int i; 877 878 if (plat->msi_rx_base_vec >= STMMAC_MSI_VEC_MAX || 879 plat->msi_tx_base_vec >= STMMAC_MSI_VEC_MAX) { 880 dev_info(&pdev->dev, "%s: Invalid RX & TX vector defined\n", 881 __func__); 882 return -1; 883 } 884 885 ret = pci_alloc_irq_vectors(pdev, 2, STMMAC_MSI_VEC_MAX, 886 PCI_IRQ_MSI | PCI_IRQ_MSIX); 887 if (ret < 0) { 888 dev_info(&pdev->dev, "%s: multi MSI enablement failed\n", 889 __func__); 890 return ret; 891 } 892 893 /* For RX MSI */ 894 for (i = 0; i < plat->rx_queues_to_use; i++) { 895 res->rx_irq[i] = pci_irq_vector(pdev, 896 plat->msi_rx_base_vec + i * 2); 897 } 898 899 /* For TX MSI */ 900 for (i = 0; i < plat->tx_queues_to_use; i++) { 901 res->tx_irq[i] = pci_irq_vector(pdev, 902 plat->msi_tx_base_vec + i * 2); 903 } 904 905 if (plat->msi_mac_vec < STMMAC_MSI_VEC_MAX) 906 res->irq = pci_irq_vector(pdev, plat->msi_mac_vec); 907 if (plat->msi_wol_vec < STMMAC_MSI_VEC_MAX) 908 res->wol_irq = pci_irq_vector(pdev, plat->msi_wol_vec); 909 if (plat->msi_lpi_vec < STMMAC_MSI_VEC_MAX) 910 res->lpi_irq = pci_irq_vector(pdev, plat->msi_lpi_vec); 911 if (plat->msi_sfty_ce_vec < STMMAC_MSI_VEC_MAX) 912 res->sfty_ce_irq = pci_irq_vector(pdev, plat->msi_sfty_ce_vec); 913 if (plat->msi_sfty_ue_vec < STMMAC_MSI_VEC_MAX) 914 res->sfty_ue_irq = pci_irq_vector(pdev, plat->msi_sfty_ue_vec); 915 916 plat->multi_msi_en = 1; 917 dev_info(&pdev->dev, "%s: multi MSI enablement successful\n", __func__); 918 919 return 0; 920 } 921 922 /** 923 * intel_eth_pci_probe 924 * 925 * @pdev: pci device pointer 926 * @id: pointer to table of device id/id's. 927 * 928 * Description: This probing function gets called for all PCI devices which 929 * match the ID table and are not "owned" by other driver yet. This function 930 * gets passed a "struct pci_dev *" for each device whose entry in the ID table 931 * matches the device. The probe functions returns zero when the driver choose 932 * to take "ownership" of the device or an error code(-ve no) otherwise. 933 */ 934 static int intel_eth_pci_probe(struct pci_dev *pdev, 935 const struct pci_device_id *id) 936 { 937 struct stmmac_pci_info *info = (struct stmmac_pci_info *)id->driver_data; 938 struct intel_priv_data *intel_priv; 939 struct plat_stmmacenet_data *plat; 940 struct stmmac_resources res; 941 int ret; 942 943 intel_priv = devm_kzalloc(&pdev->dev, sizeof(*intel_priv), GFP_KERNEL); 944 if (!intel_priv) 945 return -ENOMEM; 946 947 plat = devm_kzalloc(&pdev->dev, sizeof(*plat), GFP_KERNEL); 948 if (!plat) 949 return -ENOMEM; 950 951 plat->mdio_bus_data = devm_kzalloc(&pdev->dev, 952 sizeof(*plat->mdio_bus_data), 953 GFP_KERNEL); 954 if (!plat->mdio_bus_data) 955 return -ENOMEM; 956 957 plat->dma_cfg = devm_kzalloc(&pdev->dev, sizeof(*plat->dma_cfg), 958 GFP_KERNEL); 959 if (!plat->dma_cfg) 960 return -ENOMEM; 961 962 /* Enable pci device */ 963 ret = pcim_enable_device(pdev); 964 if (ret) { 965 dev_err(&pdev->dev, "%s: ERROR: failed to enable device\n", 966 __func__); 967 return ret; 968 } 969 970 ret = pcim_iomap_regions(pdev, BIT(0), pci_name(pdev)); 971 if (ret) 972 return ret; 973 974 pci_set_master(pdev); 975 976 plat->bsp_priv = intel_priv; 977 intel_priv->mdio_adhoc_addr = INTEL_MGBE_ADHOC_ADDR; 978 intel_priv->crossts_adj = 1; 979 980 /* Initialize all MSI vectors to invalid so that it can be set 981 * according to platform data settings below. 982 * Note: MSI vector takes value from 0 upto 31 (STMMAC_MSI_VEC_MAX) 983 */ 984 plat->msi_mac_vec = STMMAC_MSI_VEC_MAX; 985 plat->msi_wol_vec = STMMAC_MSI_VEC_MAX; 986 plat->msi_lpi_vec = STMMAC_MSI_VEC_MAX; 987 plat->msi_sfty_ce_vec = STMMAC_MSI_VEC_MAX; 988 plat->msi_sfty_ue_vec = STMMAC_MSI_VEC_MAX; 989 plat->msi_rx_base_vec = STMMAC_MSI_VEC_MAX; 990 plat->msi_tx_base_vec = STMMAC_MSI_VEC_MAX; 991 992 ret = info->setup(pdev, plat); 993 if (ret) 994 return ret; 995 996 memset(&res, 0, sizeof(res)); 997 res.addr = pcim_iomap_table(pdev)[0]; 998 999 if (plat->eee_usecs_rate > 0) { 1000 u32 tx_lpi_usec; 1001 1002 tx_lpi_usec = (plat->eee_usecs_rate / 1000000) - 1; 1003 writel(tx_lpi_usec, res.addr + GMAC_1US_TIC_COUNTER); 1004 } 1005 1006 ret = stmmac_config_multi_msi(pdev, plat, &res); 1007 if (ret) { 1008 ret = stmmac_config_single_msi(pdev, plat, &res); 1009 if (ret) { 1010 dev_err(&pdev->dev, "%s: ERROR: failed to enable IRQ\n", 1011 __func__); 1012 goto err_alloc_irq; 1013 } 1014 } 1015 1016 ret = stmmac_dvr_probe(&pdev->dev, plat, &res); 1017 if (ret) { 1018 goto err_dvr_probe; 1019 } 1020 1021 return 0; 1022 1023 err_dvr_probe: 1024 pci_free_irq_vectors(pdev); 1025 err_alloc_irq: 1026 clk_disable_unprepare(plat->stmmac_clk); 1027 clk_unregister_fixed_rate(plat->stmmac_clk); 1028 return ret; 1029 } 1030 1031 /** 1032 * intel_eth_pci_remove 1033 * 1034 * @pdev: platform device pointer 1035 * Description: this function calls the main to free the net resources 1036 * and releases the PCI resources. 1037 */ 1038 static void intel_eth_pci_remove(struct pci_dev *pdev) 1039 { 1040 struct net_device *ndev = dev_get_drvdata(&pdev->dev); 1041 struct stmmac_priv *priv = netdev_priv(ndev); 1042 1043 stmmac_dvr_remove(&pdev->dev); 1044 1045 clk_unregister_fixed_rate(priv->plat->stmmac_clk); 1046 1047 pcim_iounmap_regions(pdev, BIT(0)); 1048 } 1049 1050 static int __maybe_unused intel_eth_pci_suspend(struct device *dev) 1051 { 1052 struct pci_dev *pdev = to_pci_dev(dev); 1053 int ret; 1054 1055 ret = stmmac_suspend(dev); 1056 if (ret) 1057 return ret; 1058 1059 ret = pci_save_state(pdev); 1060 if (ret) 1061 return ret; 1062 1063 pci_wake_from_d3(pdev, true); 1064 return 0; 1065 } 1066 1067 static int __maybe_unused intel_eth_pci_resume(struct device *dev) 1068 { 1069 struct pci_dev *pdev = to_pci_dev(dev); 1070 int ret; 1071 1072 pci_restore_state(pdev); 1073 pci_set_power_state(pdev, PCI_D0); 1074 1075 ret = pcim_enable_device(pdev); 1076 if (ret) 1077 return ret; 1078 1079 pci_set_master(pdev); 1080 1081 return stmmac_resume(dev); 1082 } 1083 1084 static SIMPLE_DEV_PM_OPS(intel_eth_pm_ops, intel_eth_pci_suspend, 1085 intel_eth_pci_resume); 1086 1087 #define PCI_DEVICE_ID_INTEL_QUARK 0x0937 1088 #define PCI_DEVICE_ID_INTEL_EHL_RGMII1G 0x4b30 1089 #define PCI_DEVICE_ID_INTEL_EHL_SGMII1G 0x4b31 1090 #define PCI_DEVICE_ID_INTEL_EHL_SGMII2G5 0x4b32 1091 /* Intel(R) Programmable Services Engine (Intel(R) PSE) consist of 2 MAC 1092 * which are named PSE0 and PSE1 1093 */ 1094 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_RGMII1G 0x4ba0 1095 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII1G 0x4ba1 1096 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII2G5 0x4ba2 1097 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_RGMII1G 0x4bb0 1098 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII1G 0x4bb1 1099 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII2G5 0x4bb2 1100 #define PCI_DEVICE_ID_INTEL_TGLH_SGMII1G_0 0x43ac 1101 #define PCI_DEVICE_ID_INTEL_TGLH_SGMII1G_1 0x43a2 1102 #define PCI_DEVICE_ID_INTEL_TGL_SGMII1G 0xa0ac 1103 #define PCI_DEVICE_ID_INTEL_ADLS_SGMII1G_0 0x7aac 1104 #define PCI_DEVICE_ID_INTEL_ADLS_SGMII1G_1 0x7aad 1105 1106 static const struct pci_device_id intel_eth_pci_id_table[] = { 1107 { PCI_DEVICE_DATA(INTEL, QUARK, &quark_info) }, 1108 { PCI_DEVICE_DATA(INTEL, EHL_RGMII1G, &ehl_rgmii1g_info) }, 1109 { PCI_DEVICE_DATA(INTEL, EHL_SGMII1G, &ehl_sgmii1g_info) }, 1110 { PCI_DEVICE_DATA(INTEL, EHL_SGMII2G5, &ehl_sgmii1g_info) }, 1111 { PCI_DEVICE_DATA(INTEL, EHL_PSE0_RGMII1G, &ehl_pse0_rgmii1g_info) }, 1112 { PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII1G, &ehl_pse0_sgmii1g_info) }, 1113 { PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII2G5, &ehl_pse0_sgmii1g_info) }, 1114 { PCI_DEVICE_DATA(INTEL, EHL_PSE1_RGMII1G, &ehl_pse1_rgmii1g_info) }, 1115 { PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII1G, &ehl_pse1_sgmii1g_info) }, 1116 { PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII2G5, &ehl_pse1_sgmii1g_info) }, 1117 { PCI_DEVICE_DATA(INTEL, TGL_SGMII1G, &tgl_sgmii1g_phy0_info) }, 1118 { PCI_DEVICE_DATA(INTEL, TGLH_SGMII1G_0, &tgl_sgmii1g_phy0_info) }, 1119 { PCI_DEVICE_DATA(INTEL, TGLH_SGMII1G_1, &tgl_sgmii1g_phy1_info) }, 1120 { PCI_DEVICE_DATA(INTEL, ADLS_SGMII1G_0, &adls_sgmii1g_phy0_info) }, 1121 { PCI_DEVICE_DATA(INTEL, ADLS_SGMII1G_1, &adls_sgmii1g_phy1_info) }, 1122 {} 1123 }; 1124 MODULE_DEVICE_TABLE(pci, intel_eth_pci_id_table); 1125 1126 static struct pci_driver intel_eth_pci_driver = { 1127 .name = "intel-eth-pci", 1128 .id_table = intel_eth_pci_id_table, 1129 .probe = intel_eth_pci_probe, 1130 .remove = intel_eth_pci_remove, 1131 .driver = { 1132 .pm = &intel_eth_pm_ops, 1133 }, 1134 }; 1135 1136 module_pci_driver(intel_eth_pci_driver); 1137 1138 MODULE_DESCRIPTION("INTEL 10/100/1000 Ethernet PCI driver"); 1139 MODULE_AUTHOR("Voon Weifeng <weifeng.voon@intel.com>"); 1140 MODULE_LICENSE("GPL v2"); 1141