1 /*------------------------------------------------------------------------ 2 . smc91x.h - macros for SMSC's 91C9x/91C1xx single-chip Ethernet device. 3 . 4 . Copyright (C) 1996 by Erik Stahlman 5 . Copyright (C) 2001 Standard Microsystems Corporation 6 . Developed by Simple Network Magic Corporation 7 . Copyright (C) 2003 Monta Vista Software, Inc. 8 . Unified SMC91x driver by Nicolas Pitre 9 . 10 . This program is free software; you can redistribute it and/or modify 11 . it under the terms of the GNU General Public License as published by 12 . the Free Software Foundation; either version 2 of the License, or 13 . (at your option) any later version. 14 . 15 . This program is distributed in the hope that it will be useful, 16 . but WITHOUT ANY WARRANTY; without even the implied warranty of 17 . MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 . GNU General Public License for more details. 19 . 20 . You should have received a copy of the GNU General Public License 21 . along with this program; if not, write to the Free Software 22 . Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 23 . 24 . Information contained in this file was obtained from the LAN91C111 25 . manual from SMC. To get a copy, if you really want one, you can find 26 . information under www.smsc.com. 27 . 28 . Authors 29 . Erik Stahlman <erik@vt.edu> 30 . Daris A Nevil <dnevil@snmc.com> 31 . Nicolas Pitre <nico@fluxnic.net> 32 . 33 ---------------------------------------------------------------------------*/ 34 #ifndef _SMC91X_H_ 35 #define _SMC91X_H_ 36 37 #include <linux/smc91x.h> 38 39 /* 40 * Define your architecture specific bus configuration parameters here. 41 */ 42 43 #if defined(CONFIG_ARCH_LUBBOCK) ||\ 44 defined(CONFIG_MACH_MAINSTONE) ||\ 45 defined(CONFIG_MACH_ZYLONITE) ||\ 46 defined(CONFIG_MACH_LITTLETON) ||\ 47 defined(CONFIG_MACH_ZYLONITE2) ||\ 48 defined(CONFIG_ARCH_VIPER) ||\ 49 defined(CONFIG_MACH_STARGATE2) 50 51 #include <asm/mach-types.h> 52 53 /* Now the bus width is specified in the platform data 54 * pretend here to support all I/O access types 55 */ 56 #define SMC_CAN_USE_8BIT 1 57 #define SMC_CAN_USE_16BIT 1 58 #define SMC_CAN_USE_32BIT 1 59 #define SMC_NOWAIT 1 60 61 #define SMC_IO_SHIFT (lp->io_shift) 62 63 #define SMC_inb(a, r) readb((a) + (r)) 64 #define SMC_inw(a, r) readw((a) + (r)) 65 #define SMC_inl(a, r) readl((a) + (r)) 66 #define SMC_outb(v, a, r) writeb(v, (a) + (r)) 67 #define SMC_outl(v, a, r) writel(v, (a) + (r)) 68 #define SMC_insw(a, r, p, l) readsw((a) + (r), p, l) 69 #define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l) 70 #define SMC_insl(a, r, p, l) readsl((a) + (r), p, l) 71 #define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l) 72 #define SMC_IRQ_FLAGS (-1) /* from resource */ 73 74 /* We actually can't write halfwords properly if not word aligned */ 75 static inline void SMC_outw(u16 val, void __iomem *ioaddr, int reg) 76 { 77 if ((machine_is_mainstone() || machine_is_stargate2()) && reg & 2) { 78 unsigned int v = val << 16; 79 v |= readl(ioaddr + (reg & ~2)) & 0xffff; 80 writel(v, ioaddr + (reg & ~2)); 81 } else { 82 writew(val, ioaddr + reg); 83 } 84 } 85 86 #elif defined(CONFIG_SA1100_PLEB) 87 /* We can only do 16-bit reads and writes in the static memory space. */ 88 #define SMC_CAN_USE_8BIT 1 89 #define SMC_CAN_USE_16BIT 1 90 #define SMC_CAN_USE_32BIT 0 91 #define SMC_IO_SHIFT 0 92 #define SMC_NOWAIT 1 93 94 #define SMC_inb(a, r) readb((a) + (r)) 95 #define SMC_insb(a, r, p, l) readsb((a) + (r), p, (l)) 96 #define SMC_inw(a, r) readw((a) + (r)) 97 #define SMC_insw(a, r, p, l) readsw((a) + (r), p, l) 98 #define SMC_outb(v, a, r) writeb(v, (a) + (r)) 99 #define SMC_outsb(a, r, p, l) writesb((a) + (r), p, (l)) 100 #define SMC_outw(v, a, r) writew(v, (a) + (r)) 101 #define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l) 102 103 #define SMC_IRQ_FLAGS (-1) 104 105 #elif defined(CONFIG_SA1100_ASSABET) 106 107 #include <mach/neponset.h> 108 109 /* We can only do 8-bit reads and writes in the static memory space. */ 110 #define SMC_CAN_USE_8BIT 1 111 #define SMC_CAN_USE_16BIT 0 112 #define SMC_CAN_USE_32BIT 0 113 #define SMC_NOWAIT 1 114 115 /* The first two address lines aren't connected... */ 116 #define SMC_IO_SHIFT 2 117 118 #define SMC_inb(a, r) readb((a) + (r)) 119 #define SMC_outb(v, a, r) writeb(v, (a) + (r)) 120 #define SMC_insb(a, r, p, l) readsb((a) + (r), p, (l)) 121 #define SMC_outsb(a, r, p, l) writesb((a) + (r), p, (l)) 122 #define SMC_IRQ_FLAGS (-1) /* from resource */ 123 124 #elif defined(CONFIG_MACH_LOGICPD_PXA270) || \ 125 defined(CONFIG_MACH_NOMADIK_8815NHK) 126 127 #define SMC_CAN_USE_8BIT 0 128 #define SMC_CAN_USE_16BIT 1 129 #define SMC_CAN_USE_32BIT 0 130 #define SMC_IO_SHIFT 0 131 #define SMC_NOWAIT 1 132 133 #define SMC_inw(a, r) readw((a) + (r)) 134 #define SMC_outw(v, a, r) writew(v, (a) + (r)) 135 #define SMC_insw(a, r, p, l) readsw((a) + (r), p, l) 136 #define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l) 137 138 #elif defined(CONFIG_ARCH_INNOKOM) || \ 139 defined(CONFIG_ARCH_PXA_IDP) || \ 140 defined(CONFIG_ARCH_RAMSES) || \ 141 defined(CONFIG_ARCH_PCM027) 142 143 #define SMC_CAN_USE_8BIT 1 144 #define SMC_CAN_USE_16BIT 1 145 #define SMC_CAN_USE_32BIT 1 146 #define SMC_IO_SHIFT 0 147 #define SMC_NOWAIT 1 148 #define SMC_USE_PXA_DMA 1 149 150 #define SMC_inb(a, r) readb((a) + (r)) 151 #define SMC_inw(a, r) readw((a) + (r)) 152 #define SMC_inl(a, r) readl((a) + (r)) 153 #define SMC_outb(v, a, r) writeb(v, (a) + (r)) 154 #define SMC_outl(v, a, r) writel(v, (a) + (r)) 155 #define SMC_insl(a, r, p, l) readsl((a) + (r), p, l) 156 #define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l) 157 #define SMC_IRQ_FLAGS (-1) /* from resource */ 158 159 /* We actually can't write halfwords properly if not word aligned */ 160 static inline void 161 SMC_outw(u16 val, void __iomem *ioaddr, int reg) 162 { 163 if (reg & 2) { 164 unsigned int v = val << 16; 165 v |= readl(ioaddr + (reg & ~2)) & 0xffff; 166 writel(v, ioaddr + (reg & ~2)); 167 } else { 168 writew(val, ioaddr + reg); 169 } 170 } 171 172 #elif defined(CONFIG_SH_SH4202_MICRODEV) 173 174 #define SMC_CAN_USE_8BIT 0 175 #define SMC_CAN_USE_16BIT 1 176 #define SMC_CAN_USE_32BIT 0 177 178 #define SMC_inb(a, r) inb((a) + (r) - 0xa0000000) 179 #define SMC_inw(a, r) inw((a) + (r) - 0xa0000000) 180 #define SMC_inl(a, r) inl((a) + (r) - 0xa0000000) 181 #define SMC_outb(v, a, r) outb(v, (a) + (r) - 0xa0000000) 182 #define SMC_outw(v, a, r) outw(v, (a) + (r) - 0xa0000000) 183 #define SMC_outl(v, a, r) outl(v, (a) + (r) - 0xa0000000) 184 #define SMC_insl(a, r, p, l) insl((a) + (r) - 0xa0000000, p, l) 185 #define SMC_outsl(a, r, p, l) outsl((a) + (r) - 0xa0000000, p, l) 186 #define SMC_insw(a, r, p, l) insw((a) + (r) - 0xa0000000, p, l) 187 #define SMC_outsw(a, r, p, l) outsw((a) + (r) - 0xa0000000, p, l) 188 189 #define SMC_IRQ_FLAGS (0) 190 191 #elif defined(CONFIG_M32R) 192 193 #define SMC_CAN_USE_8BIT 0 194 #define SMC_CAN_USE_16BIT 1 195 #define SMC_CAN_USE_32BIT 0 196 197 #define SMC_inb(a, r) inb(((u32)a) + (r)) 198 #define SMC_inw(a, r) inw(((u32)a) + (r)) 199 #define SMC_outb(v, a, r) outb(v, ((u32)a) + (r)) 200 #define SMC_outw(v, a, r) outw(v, ((u32)a) + (r)) 201 #define SMC_insw(a, r, p, l) insw(((u32)a) + (r), p, l) 202 #define SMC_outsw(a, r, p, l) outsw(((u32)a) + (r), p, l) 203 204 #define SMC_IRQ_FLAGS (0) 205 206 #define RPC_LSA_DEFAULT RPC_LED_TX_RX 207 #define RPC_LSB_DEFAULT RPC_LED_100_10 208 209 #elif defined(CONFIG_ARCH_VERSATILE) 210 211 #define SMC_CAN_USE_8BIT 1 212 #define SMC_CAN_USE_16BIT 1 213 #define SMC_CAN_USE_32BIT 1 214 #define SMC_NOWAIT 1 215 216 #define SMC_inb(a, r) readb((a) + (r)) 217 #define SMC_inw(a, r) readw((a) + (r)) 218 #define SMC_inl(a, r) readl((a) + (r)) 219 #define SMC_outb(v, a, r) writeb(v, (a) + (r)) 220 #define SMC_outw(v, a, r) writew(v, (a) + (r)) 221 #define SMC_outl(v, a, r) writel(v, (a) + (r)) 222 #define SMC_insl(a, r, p, l) readsl((a) + (r), p, l) 223 #define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l) 224 #define SMC_IRQ_FLAGS (-1) /* from resource */ 225 226 #elif defined(CONFIG_MN10300) 227 228 /* 229 * MN10300/AM33 configuration 230 */ 231 232 #include <unit/smc91111.h> 233 234 #elif defined(CONFIG_ARCH_MSM) 235 236 #define SMC_CAN_USE_8BIT 0 237 #define SMC_CAN_USE_16BIT 1 238 #define SMC_CAN_USE_32BIT 0 239 #define SMC_NOWAIT 1 240 241 #define SMC_inw(a, r) readw((a) + (r)) 242 #define SMC_outw(v, a, r) writew(v, (a) + (r)) 243 #define SMC_insw(a, r, p, l) readsw((a) + (r), p, l) 244 #define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l) 245 246 #define SMC_IRQ_FLAGS IRQF_TRIGGER_HIGH 247 248 #elif defined(CONFIG_COLDFIRE) 249 250 #define SMC_CAN_USE_8BIT 0 251 #define SMC_CAN_USE_16BIT 1 252 #define SMC_CAN_USE_32BIT 0 253 #define SMC_NOWAIT 1 254 255 static inline void mcf_insw(void *a, unsigned char *p, int l) 256 { 257 u16 *wp = (u16 *) p; 258 while (l-- > 0) 259 *wp++ = readw(a); 260 } 261 262 static inline void mcf_outsw(void *a, unsigned char *p, int l) 263 { 264 u16 *wp = (u16 *) p; 265 while (l-- > 0) 266 writew(*wp++, a); 267 } 268 269 #define SMC_inw(a, r) _swapw(readw((a) + (r))) 270 #define SMC_outw(v, a, r) writew(_swapw(v), (a) + (r)) 271 #define SMC_insw(a, r, p, l) mcf_insw(a + r, p, l) 272 #define SMC_outsw(a, r, p, l) mcf_outsw(a + r, p, l) 273 274 #define SMC_IRQ_FLAGS (IRQF_DISABLED) 275 276 #else 277 278 /* 279 * Default configuration 280 */ 281 282 #define SMC_CAN_USE_8BIT 1 283 #define SMC_CAN_USE_16BIT 1 284 #define SMC_CAN_USE_32BIT 1 285 #define SMC_NOWAIT 1 286 287 #define SMC_IO_SHIFT (lp->io_shift) 288 289 #define SMC_inb(a, r) readb((a) + (r)) 290 #define SMC_inw(a, r) readw((a) + (r)) 291 #define SMC_inl(a, r) readl((a) + (r)) 292 #define SMC_outb(v, a, r) writeb(v, (a) + (r)) 293 #define SMC_outw(v, a, r) writew(v, (a) + (r)) 294 #define SMC_outl(v, a, r) writel(v, (a) + (r)) 295 #define SMC_insw(a, r, p, l) readsw((a) + (r), p, l) 296 #define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l) 297 #define SMC_insl(a, r, p, l) readsl((a) + (r), p, l) 298 #define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l) 299 300 #define RPC_LSA_DEFAULT RPC_LED_100_10 301 #define RPC_LSB_DEFAULT RPC_LED_TX_RX 302 303 #endif 304 305 306 /* store this information for the driver.. */ 307 struct smc_local { 308 /* 309 * If I have to wait until memory is available to send a 310 * packet, I will store the skbuff here, until I get the 311 * desired memory. Then, I'll send it out and free it. 312 */ 313 struct sk_buff *pending_tx_skb; 314 struct tasklet_struct tx_task; 315 316 /* version/revision of the SMC91x chip */ 317 int version; 318 319 /* Contains the current active transmission mode */ 320 int tcr_cur_mode; 321 322 /* Contains the current active receive mode */ 323 int rcr_cur_mode; 324 325 /* Contains the current active receive/phy mode */ 326 int rpc_cur_mode; 327 int ctl_rfduplx; 328 int ctl_rspeed; 329 330 u32 msg_enable; 331 u32 phy_type; 332 struct mii_if_info mii; 333 334 /* work queue */ 335 struct work_struct phy_configure; 336 struct net_device *dev; 337 int work_pending; 338 339 spinlock_t lock; 340 341 #ifdef CONFIG_ARCH_PXA 342 /* DMA needs the physical address of the chip */ 343 u_long physaddr; 344 struct device *device; 345 #endif 346 void __iomem *base; 347 void __iomem *datacs; 348 349 /* the low address lines on some platforms aren't connected... */ 350 int io_shift; 351 352 struct smc91x_platdata cfg; 353 }; 354 355 #define SMC_8BIT(p) ((p)->cfg.flags & SMC91X_USE_8BIT) 356 #define SMC_16BIT(p) ((p)->cfg.flags & SMC91X_USE_16BIT) 357 #define SMC_32BIT(p) ((p)->cfg.flags & SMC91X_USE_32BIT) 358 359 #ifdef CONFIG_ARCH_PXA 360 /* 361 * Let's use the DMA engine on the XScale PXA2xx for RX packets. This is 362 * always happening in irq context so no need to worry about races. TX is 363 * different and probably not worth it for that reason, and not as critical 364 * as RX which can overrun memory and lose packets. 365 */ 366 #include <linux/dma-mapping.h> 367 #include <mach/dma.h> 368 369 #ifdef SMC_insl 370 #undef SMC_insl 371 #define SMC_insl(a, r, p, l) \ 372 smc_pxa_dma_insl(a, lp, r, dev->dma, p, l) 373 static inline void 374 smc_pxa_dma_insl(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma, 375 u_char *buf, int len) 376 { 377 u_long physaddr = lp->physaddr; 378 dma_addr_t dmabuf; 379 380 /* fallback if no DMA available */ 381 if (dma == (unsigned char)-1) { 382 readsl(ioaddr + reg, buf, len); 383 return; 384 } 385 386 /* 64 bit alignment is required for memory to memory DMA */ 387 if ((long)buf & 4) { 388 *((u32 *)buf) = SMC_inl(ioaddr, reg); 389 buf += 4; 390 len--; 391 } 392 393 len *= 4; 394 dmabuf = dma_map_single(lp->device, buf, len, DMA_FROM_DEVICE); 395 DCSR(dma) = DCSR_NODESC; 396 DTADR(dma) = dmabuf; 397 DSADR(dma) = physaddr + reg; 398 DCMD(dma) = (DCMD_INCTRGADDR | DCMD_BURST32 | 399 DCMD_WIDTH4 | (DCMD_LENGTH & len)); 400 DCSR(dma) = DCSR_NODESC | DCSR_RUN; 401 while (!(DCSR(dma) & DCSR_STOPSTATE)) 402 cpu_relax(); 403 DCSR(dma) = 0; 404 dma_unmap_single(lp->device, dmabuf, len, DMA_FROM_DEVICE); 405 } 406 #endif 407 408 #ifdef SMC_insw 409 #undef SMC_insw 410 #define SMC_insw(a, r, p, l) \ 411 smc_pxa_dma_insw(a, lp, r, dev->dma, p, l) 412 static inline void 413 smc_pxa_dma_insw(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma, 414 u_char *buf, int len) 415 { 416 u_long physaddr = lp->physaddr; 417 dma_addr_t dmabuf; 418 419 /* fallback if no DMA available */ 420 if (dma == (unsigned char)-1) { 421 readsw(ioaddr + reg, buf, len); 422 return; 423 } 424 425 /* 64 bit alignment is required for memory to memory DMA */ 426 while ((long)buf & 6) { 427 *((u16 *)buf) = SMC_inw(ioaddr, reg); 428 buf += 2; 429 len--; 430 } 431 432 len *= 2; 433 dmabuf = dma_map_single(lp->device, buf, len, DMA_FROM_DEVICE); 434 DCSR(dma) = DCSR_NODESC; 435 DTADR(dma) = dmabuf; 436 DSADR(dma) = physaddr + reg; 437 DCMD(dma) = (DCMD_INCTRGADDR | DCMD_BURST32 | 438 DCMD_WIDTH2 | (DCMD_LENGTH & len)); 439 DCSR(dma) = DCSR_NODESC | DCSR_RUN; 440 while (!(DCSR(dma) & DCSR_STOPSTATE)) 441 cpu_relax(); 442 DCSR(dma) = 0; 443 dma_unmap_single(lp->device, dmabuf, len, DMA_FROM_DEVICE); 444 } 445 #endif 446 447 static void 448 smc_pxa_dma_irq(int dma, void *dummy) 449 { 450 DCSR(dma) = 0; 451 } 452 #endif /* CONFIG_ARCH_PXA */ 453 454 455 /* 456 * Everything a particular hardware setup needs should have been defined 457 * at this point. Add stubs for the undefined cases, mainly to avoid 458 * compilation warnings since they'll be optimized away, or to prevent buggy 459 * use of them. 460 */ 461 462 #if ! SMC_CAN_USE_32BIT 463 #define SMC_inl(ioaddr, reg) ({ BUG(); 0; }) 464 #define SMC_outl(x, ioaddr, reg) BUG() 465 #define SMC_insl(a, r, p, l) BUG() 466 #define SMC_outsl(a, r, p, l) BUG() 467 #endif 468 469 #if !defined(SMC_insl) || !defined(SMC_outsl) 470 #define SMC_insl(a, r, p, l) BUG() 471 #define SMC_outsl(a, r, p, l) BUG() 472 #endif 473 474 #if ! SMC_CAN_USE_16BIT 475 476 /* 477 * Any 16-bit access is performed with two 8-bit accesses if the hardware 478 * can't do it directly. Most registers are 16-bit so those are mandatory. 479 */ 480 #define SMC_outw(x, ioaddr, reg) \ 481 do { \ 482 unsigned int __val16 = (x); \ 483 SMC_outb( __val16, ioaddr, reg ); \ 484 SMC_outb( __val16 >> 8, ioaddr, reg + (1 << SMC_IO_SHIFT));\ 485 } while (0) 486 #define SMC_inw(ioaddr, reg) \ 487 ({ \ 488 unsigned int __val16; \ 489 __val16 = SMC_inb( ioaddr, reg ); \ 490 __val16 |= SMC_inb( ioaddr, reg + (1 << SMC_IO_SHIFT)) << 8; \ 491 __val16; \ 492 }) 493 494 #define SMC_insw(a, r, p, l) BUG() 495 #define SMC_outsw(a, r, p, l) BUG() 496 497 #endif 498 499 #if !defined(SMC_insw) || !defined(SMC_outsw) 500 #define SMC_insw(a, r, p, l) BUG() 501 #define SMC_outsw(a, r, p, l) BUG() 502 #endif 503 504 #if ! SMC_CAN_USE_8BIT 505 #define SMC_inb(ioaddr, reg) ({ BUG(); 0; }) 506 #define SMC_outb(x, ioaddr, reg) BUG() 507 #define SMC_insb(a, r, p, l) BUG() 508 #define SMC_outsb(a, r, p, l) BUG() 509 #endif 510 511 #if !defined(SMC_insb) || !defined(SMC_outsb) 512 #define SMC_insb(a, r, p, l) BUG() 513 #define SMC_outsb(a, r, p, l) BUG() 514 #endif 515 516 #ifndef SMC_CAN_USE_DATACS 517 #define SMC_CAN_USE_DATACS 0 518 #endif 519 520 #ifndef SMC_IO_SHIFT 521 #define SMC_IO_SHIFT 0 522 #endif 523 524 #ifndef SMC_IRQ_FLAGS 525 #define SMC_IRQ_FLAGS IRQF_TRIGGER_RISING 526 #endif 527 528 #ifndef SMC_INTERRUPT_PREAMBLE 529 #define SMC_INTERRUPT_PREAMBLE 530 #endif 531 532 533 /* Because of bank switching, the LAN91x uses only 16 I/O ports */ 534 #define SMC_IO_EXTENT (16 << SMC_IO_SHIFT) 535 #define SMC_DATA_EXTENT (4) 536 537 /* 538 . Bank Select Register: 539 . 540 . yyyy yyyy 0000 00xx 541 . xx = bank number 542 . yyyy yyyy = 0x33, for identification purposes. 543 */ 544 #define BANK_SELECT (14 << SMC_IO_SHIFT) 545 546 547 // Transmit Control Register 548 /* BANK 0 */ 549 #define TCR_REG(lp) SMC_REG(lp, 0x0000, 0) 550 #define TCR_ENABLE 0x0001 // When 1 we can transmit 551 #define TCR_LOOP 0x0002 // Controls output pin LBK 552 #define TCR_FORCOL 0x0004 // When 1 will force a collision 553 #define TCR_PAD_EN 0x0080 // When 1 will pad tx frames < 64 bytes w/0 554 #define TCR_NOCRC 0x0100 // When 1 will not append CRC to tx frames 555 #define TCR_MON_CSN 0x0400 // When 1 tx monitors carrier 556 #define TCR_FDUPLX 0x0800 // When 1 enables full duplex operation 557 #define TCR_STP_SQET 0x1000 // When 1 stops tx if Signal Quality Error 558 #define TCR_EPH_LOOP 0x2000 // When 1 enables EPH block loopback 559 #define TCR_SWFDUP 0x8000 // When 1 enables Switched Full Duplex mode 560 561 #define TCR_CLEAR 0 /* do NOTHING */ 562 /* the default settings for the TCR register : */ 563 #define TCR_DEFAULT (TCR_ENABLE | TCR_PAD_EN) 564 565 566 // EPH Status Register 567 /* BANK 0 */ 568 #define EPH_STATUS_REG(lp) SMC_REG(lp, 0x0002, 0) 569 #define ES_TX_SUC 0x0001 // Last TX was successful 570 #define ES_SNGL_COL 0x0002 // Single collision detected for last tx 571 #define ES_MUL_COL 0x0004 // Multiple collisions detected for last tx 572 #define ES_LTX_MULT 0x0008 // Last tx was a multicast 573 #define ES_16COL 0x0010 // 16 Collisions Reached 574 #define ES_SQET 0x0020 // Signal Quality Error Test 575 #define ES_LTXBRD 0x0040 // Last tx was a broadcast 576 #define ES_TXDEFR 0x0080 // Transmit Deferred 577 #define ES_LATCOL 0x0200 // Late collision detected on last tx 578 #define ES_LOSTCARR 0x0400 // Lost Carrier Sense 579 #define ES_EXC_DEF 0x0800 // Excessive Deferral 580 #define ES_CTR_ROL 0x1000 // Counter Roll Over indication 581 #define ES_LINK_OK 0x4000 // Driven by inverted value of nLNK pin 582 #define ES_TXUNRN 0x8000 // Tx Underrun 583 584 585 // Receive Control Register 586 /* BANK 0 */ 587 #define RCR_REG(lp) SMC_REG(lp, 0x0004, 0) 588 #define RCR_RX_ABORT 0x0001 // Set if a rx frame was aborted 589 #define RCR_PRMS 0x0002 // Enable promiscuous mode 590 #define RCR_ALMUL 0x0004 // When set accepts all multicast frames 591 #define RCR_RXEN 0x0100 // IFF this is set, we can receive packets 592 #define RCR_STRIP_CRC 0x0200 // When set strips CRC from rx packets 593 #define RCR_ABORT_ENB 0x0200 // When set will abort rx on collision 594 #define RCR_FILT_CAR 0x0400 // When set filters leading 12 bit s of carrier 595 #define RCR_SOFTRST 0x8000 // resets the chip 596 597 /* the normal settings for the RCR register : */ 598 #define RCR_DEFAULT (RCR_STRIP_CRC | RCR_RXEN) 599 #define RCR_CLEAR 0x0 // set it to a base state 600 601 602 // Counter Register 603 /* BANK 0 */ 604 #define COUNTER_REG(lp) SMC_REG(lp, 0x0006, 0) 605 606 607 // Memory Information Register 608 /* BANK 0 */ 609 #define MIR_REG(lp) SMC_REG(lp, 0x0008, 0) 610 611 612 // Receive/Phy Control Register 613 /* BANK 0 */ 614 #define RPC_REG(lp) SMC_REG(lp, 0x000A, 0) 615 #define RPC_SPEED 0x2000 // When 1 PHY is in 100Mbps mode. 616 #define RPC_DPLX 0x1000 // When 1 PHY is in Full-Duplex Mode 617 #define RPC_ANEG 0x0800 // When 1 PHY is in Auto-Negotiate Mode 618 #define RPC_LSXA_SHFT 5 // Bits to shift LS2A,LS1A,LS0A to lsb 619 #define RPC_LSXB_SHFT 2 // Bits to get LS2B,LS1B,LS0B to lsb 620 621 #ifndef RPC_LSA_DEFAULT 622 #define RPC_LSA_DEFAULT RPC_LED_100 623 #endif 624 #ifndef RPC_LSB_DEFAULT 625 #define RPC_LSB_DEFAULT RPC_LED_FD 626 #endif 627 628 #define RPC_DEFAULT (RPC_ANEG | RPC_SPEED | RPC_DPLX) 629 630 631 /* Bank 0 0x0C is reserved */ 632 633 // Bank Select Register 634 /* All Banks */ 635 #define BSR_REG 0x000E 636 637 638 // Configuration Reg 639 /* BANK 1 */ 640 #define CONFIG_REG(lp) SMC_REG(lp, 0x0000, 1) 641 #define CONFIG_EXT_PHY 0x0200 // 1=external MII, 0=internal Phy 642 #define CONFIG_GPCNTRL 0x0400 // Inverse value drives pin nCNTRL 643 #define CONFIG_NO_WAIT 0x1000 // When 1 no extra wait states on ISA bus 644 #define CONFIG_EPH_POWER_EN 0x8000 // When 0 EPH is placed into low power mode. 645 646 // Default is powered-up, Internal Phy, Wait States, and pin nCNTRL=low 647 #define CONFIG_DEFAULT (CONFIG_EPH_POWER_EN) 648 649 650 // Base Address Register 651 /* BANK 1 */ 652 #define BASE_REG(lp) SMC_REG(lp, 0x0002, 1) 653 654 655 // Individual Address Registers 656 /* BANK 1 */ 657 #define ADDR0_REG(lp) SMC_REG(lp, 0x0004, 1) 658 #define ADDR1_REG(lp) SMC_REG(lp, 0x0006, 1) 659 #define ADDR2_REG(lp) SMC_REG(lp, 0x0008, 1) 660 661 662 // General Purpose Register 663 /* BANK 1 */ 664 #define GP_REG(lp) SMC_REG(lp, 0x000A, 1) 665 666 667 // Control Register 668 /* BANK 1 */ 669 #define CTL_REG(lp) SMC_REG(lp, 0x000C, 1) 670 #define CTL_RCV_BAD 0x4000 // When 1 bad CRC packets are received 671 #define CTL_AUTO_RELEASE 0x0800 // When 1 tx pages are released automatically 672 #define CTL_LE_ENABLE 0x0080 // When 1 enables Link Error interrupt 673 #define CTL_CR_ENABLE 0x0040 // When 1 enables Counter Rollover interrupt 674 #define CTL_TE_ENABLE 0x0020 // When 1 enables Transmit Error interrupt 675 #define CTL_EEPROM_SELECT 0x0004 // Controls EEPROM reload & store 676 #define CTL_RELOAD 0x0002 // When set reads EEPROM into registers 677 #define CTL_STORE 0x0001 // When set stores registers into EEPROM 678 679 680 // MMU Command Register 681 /* BANK 2 */ 682 #define MMU_CMD_REG(lp) SMC_REG(lp, 0x0000, 2) 683 #define MC_BUSY 1 // When 1 the last release has not completed 684 #define MC_NOP (0<<5) // No Op 685 #define MC_ALLOC (1<<5) // OR with number of 256 byte packets 686 #define MC_RESET (2<<5) // Reset MMU to initial state 687 #define MC_REMOVE (3<<5) // Remove the current rx packet 688 #define MC_RELEASE (4<<5) // Remove and release the current rx packet 689 #define MC_FREEPKT (5<<5) // Release packet in PNR register 690 #define MC_ENQUEUE (6<<5) // Enqueue the packet for transmit 691 #define MC_RSTTXFIFO (7<<5) // Reset the TX FIFOs 692 693 694 // Packet Number Register 695 /* BANK 2 */ 696 #define PN_REG(lp) SMC_REG(lp, 0x0002, 2) 697 698 699 // Allocation Result Register 700 /* BANK 2 */ 701 #define AR_REG(lp) SMC_REG(lp, 0x0003, 2) 702 #define AR_FAILED 0x80 // Alocation Failed 703 704 705 // TX FIFO Ports Register 706 /* BANK 2 */ 707 #define TXFIFO_REG(lp) SMC_REG(lp, 0x0004, 2) 708 #define TXFIFO_TEMPTY 0x80 // TX FIFO Empty 709 710 // RX FIFO Ports Register 711 /* BANK 2 */ 712 #define RXFIFO_REG(lp) SMC_REG(lp, 0x0005, 2) 713 #define RXFIFO_REMPTY 0x80 // RX FIFO Empty 714 715 #define FIFO_REG(lp) SMC_REG(lp, 0x0004, 2) 716 717 // Pointer Register 718 /* BANK 2 */ 719 #define PTR_REG(lp) SMC_REG(lp, 0x0006, 2) 720 #define PTR_RCV 0x8000 // 1=Receive area, 0=Transmit area 721 #define PTR_AUTOINC 0x4000 // Auto increment the pointer on each access 722 #define PTR_READ 0x2000 // When 1 the operation is a read 723 724 725 // Data Register 726 /* BANK 2 */ 727 #define DATA_REG(lp) SMC_REG(lp, 0x0008, 2) 728 729 730 // Interrupt Status/Acknowledge Register 731 /* BANK 2 */ 732 #define INT_REG(lp) SMC_REG(lp, 0x000C, 2) 733 734 735 // Interrupt Mask Register 736 /* BANK 2 */ 737 #define IM_REG(lp) SMC_REG(lp, 0x000D, 2) 738 #define IM_MDINT 0x80 // PHY MI Register 18 Interrupt 739 #define IM_ERCV_INT 0x40 // Early Receive Interrupt 740 #define IM_EPH_INT 0x20 // Set by Ethernet Protocol Handler section 741 #define IM_RX_OVRN_INT 0x10 // Set by Receiver Overruns 742 #define IM_ALLOC_INT 0x08 // Set when allocation request is completed 743 #define IM_TX_EMPTY_INT 0x04 // Set if the TX FIFO goes empty 744 #define IM_TX_INT 0x02 // Transmit Interrupt 745 #define IM_RCV_INT 0x01 // Receive Interrupt 746 747 748 // Multicast Table Registers 749 /* BANK 3 */ 750 #define MCAST_REG1(lp) SMC_REG(lp, 0x0000, 3) 751 #define MCAST_REG2(lp) SMC_REG(lp, 0x0002, 3) 752 #define MCAST_REG3(lp) SMC_REG(lp, 0x0004, 3) 753 #define MCAST_REG4(lp) SMC_REG(lp, 0x0006, 3) 754 755 756 // Management Interface Register (MII) 757 /* BANK 3 */ 758 #define MII_REG(lp) SMC_REG(lp, 0x0008, 3) 759 #define MII_MSK_CRS100 0x4000 // Disables CRS100 detection during tx half dup 760 #define MII_MDOE 0x0008 // MII Output Enable 761 #define MII_MCLK 0x0004 // MII Clock, pin MDCLK 762 #define MII_MDI 0x0002 // MII Input, pin MDI 763 #define MII_MDO 0x0001 // MII Output, pin MDO 764 765 766 // Revision Register 767 /* BANK 3 */ 768 /* ( hi: chip id low: rev # ) */ 769 #define REV_REG(lp) SMC_REG(lp, 0x000A, 3) 770 771 772 // Early RCV Register 773 /* BANK 3 */ 774 /* this is NOT on SMC9192 */ 775 #define ERCV_REG(lp) SMC_REG(lp, 0x000C, 3) 776 #define ERCV_RCV_DISCRD 0x0080 // When 1 discards a packet being received 777 #define ERCV_THRESHOLD 0x001F // ERCV Threshold Mask 778 779 780 // External Register 781 /* BANK 7 */ 782 #define EXT_REG(lp) SMC_REG(lp, 0x0000, 7) 783 784 785 #define CHIP_9192 3 786 #define CHIP_9194 4 787 #define CHIP_9195 5 788 #define CHIP_9196 6 789 #define CHIP_91100 7 790 #define CHIP_91100FD 8 791 #define CHIP_91111FD 9 792 793 static const char * chip_ids[ 16 ] = { 794 NULL, NULL, NULL, 795 /* 3 */ "SMC91C90/91C92", 796 /* 4 */ "SMC91C94", 797 /* 5 */ "SMC91C95", 798 /* 6 */ "SMC91C96", 799 /* 7 */ "SMC91C100", 800 /* 8 */ "SMC91C100FD", 801 /* 9 */ "SMC91C11xFD", 802 NULL, NULL, NULL, 803 NULL, NULL, NULL}; 804 805 806 /* 807 . Receive status bits 808 */ 809 #define RS_ALGNERR 0x8000 810 #define RS_BRODCAST 0x4000 811 #define RS_BADCRC 0x2000 812 #define RS_ODDFRAME 0x1000 813 #define RS_TOOLONG 0x0800 814 #define RS_TOOSHORT 0x0400 815 #define RS_MULTICAST 0x0001 816 #define RS_ERRORS (RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT) 817 818 819 /* 820 * PHY IDs 821 * LAN83C183 == LAN91C111 Internal PHY 822 */ 823 #define PHY_LAN83C183 0x0016f840 824 #define PHY_LAN83C180 0x02821c50 825 826 /* 827 * PHY Register Addresses (LAN91C111 Internal PHY) 828 * 829 * Generic PHY registers can be found in <linux/mii.h> 830 * 831 * These phy registers are specific to our on-board phy. 832 */ 833 834 // PHY Configuration Register 1 835 #define PHY_CFG1_REG 0x10 836 #define PHY_CFG1_LNKDIS 0x8000 // 1=Rx Link Detect Function disabled 837 #define PHY_CFG1_XMTDIS 0x4000 // 1=TP Transmitter Disabled 838 #define PHY_CFG1_XMTPDN 0x2000 // 1=TP Transmitter Powered Down 839 #define PHY_CFG1_BYPSCR 0x0400 // 1=Bypass scrambler/descrambler 840 #define PHY_CFG1_UNSCDS 0x0200 // 1=Unscramble Idle Reception Disable 841 #define PHY_CFG1_EQLZR 0x0100 // 1=Rx Equalizer Disabled 842 #define PHY_CFG1_CABLE 0x0080 // 1=STP(150ohm), 0=UTP(100ohm) 843 #define PHY_CFG1_RLVL0 0x0040 // 1=Rx Squelch level reduced by 4.5db 844 #define PHY_CFG1_TLVL_SHIFT 2 // Transmit Output Level Adjust 845 #define PHY_CFG1_TLVL_MASK 0x003C 846 #define PHY_CFG1_TRF_MASK 0x0003 // Transmitter Rise/Fall time 847 848 849 // PHY Configuration Register 2 850 #define PHY_CFG2_REG 0x11 851 #define PHY_CFG2_APOLDIS 0x0020 // 1=Auto Polarity Correction disabled 852 #define PHY_CFG2_JABDIS 0x0010 // 1=Jabber disabled 853 #define PHY_CFG2_MREG 0x0008 // 1=Multiple register access (MII mgt) 854 #define PHY_CFG2_INTMDIO 0x0004 // 1=Interrupt signaled with MDIO pulseo 855 856 // PHY Status Output (and Interrupt status) Register 857 #define PHY_INT_REG 0x12 // Status Output (Interrupt Status) 858 #define PHY_INT_INT 0x8000 // 1=bits have changed since last read 859 #define PHY_INT_LNKFAIL 0x4000 // 1=Link Not detected 860 #define PHY_INT_LOSSSYNC 0x2000 // 1=Descrambler has lost sync 861 #define PHY_INT_CWRD 0x1000 // 1=Invalid 4B5B code detected on rx 862 #define PHY_INT_SSD 0x0800 // 1=No Start Of Stream detected on rx 863 #define PHY_INT_ESD 0x0400 // 1=No End Of Stream detected on rx 864 #define PHY_INT_RPOL 0x0200 // 1=Reverse Polarity detected 865 #define PHY_INT_JAB 0x0100 // 1=Jabber detected 866 #define PHY_INT_SPDDET 0x0080 // 1=100Base-TX mode, 0=10Base-T mode 867 #define PHY_INT_DPLXDET 0x0040 // 1=Device in Full Duplex 868 869 // PHY Interrupt/Status Mask Register 870 #define PHY_MASK_REG 0x13 // Interrupt Mask 871 // Uses the same bit definitions as PHY_INT_REG 872 873 874 /* 875 * SMC91C96 ethernet config and status registers. 876 * These are in the "attribute" space. 877 */ 878 #define ECOR 0x8000 879 #define ECOR_RESET 0x80 880 #define ECOR_LEVEL_IRQ 0x40 881 #define ECOR_WR_ATTRIB 0x04 882 #define ECOR_ENABLE 0x01 883 884 #define ECSR 0x8002 885 #define ECSR_IOIS8 0x20 886 #define ECSR_PWRDWN 0x04 887 #define ECSR_INT 0x02 888 889 #define ATTRIB_SIZE ((64*1024) << SMC_IO_SHIFT) 890 891 892 /* 893 * Macros to abstract register access according to the data bus 894 * capabilities. Please use those and not the in/out primitives. 895 * Note: the following macros do *not* select the bank -- this must 896 * be done separately as needed in the main code. The SMC_REG() macro 897 * only uses the bank argument for debugging purposes (when enabled). 898 * 899 * Note: despite inline functions being safer, everything leading to this 900 * should preferably be macros to let BUG() display the line number in 901 * the core source code since we're interested in the top call site 902 * not in any inline function location. 903 */ 904 905 #if SMC_DEBUG > 0 906 #define SMC_REG(lp, reg, bank) \ 907 ({ \ 908 int __b = SMC_CURRENT_BANK(lp); \ 909 if (unlikely((__b & ~0xf0) != (0x3300 | bank))) { \ 910 printk( "%s: bank reg screwed (0x%04x)\n", \ 911 CARDNAME, __b ); \ 912 BUG(); \ 913 } \ 914 reg<<SMC_IO_SHIFT; \ 915 }) 916 #else 917 #define SMC_REG(lp, reg, bank) (reg<<SMC_IO_SHIFT) 918 #endif 919 920 /* 921 * Hack Alert: Some setups just can't write 8 or 16 bits reliably when not 922 * aligned to a 32 bit boundary. I tell you that does exist! 923 * Fortunately the affected register accesses can be easily worked around 924 * since we can write zeroes to the preceding 16 bits without adverse 925 * effects and use a 32-bit access. 926 * 927 * Enforce it on any 32-bit capable setup for now. 928 */ 929 #define SMC_MUST_ALIGN_WRITE(lp) SMC_32BIT(lp) 930 931 #define SMC_GET_PN(lp) \ 932 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, PN_REG(lp))) \ 933 : (SMC_inw(ioaddr, PN_REG(lp)) & 0xFF)) 934 935 #define SMC_SET_PN(lp, x) \ 936 do { \ 937 if (SMC_MUST_ALIGN_WRITE(lp)) \ 938 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 0, 2)); \ 939 else if (SMC_8BIT(lp)) \ 940 SMC_outb(x, ioaddr, PN_REG(lp)); \ 941 else \ 942 SMC_outw(x, ioaddr, PN_REG(lp)); \ 943 } while (0) 944 945 #define SMC_GET_AR(lp) \ 946 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, AR_REG(lp))) \ 947 : (SMC_inw(ioaddr, PN_REG(lp)) >> 8)) 948 949 #define SMC_GET_TXFIFO(lp) \ 950 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, TXFIFO_REG(lp))) \ 951 : (SMC_inw(ioaddr, TXFIFO_REG(lp)) & 0xFF)) 952 953 #define SMC_GET_RXFIFO(lp) \ 954 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, RXFIFO_REG(lp))) \ 955 : (SMC_inw(ioaddr, TXFIFO_REG(lp)) >> 8)) 956 957 #define SMC_GET_INT(lp) \ 958 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, INT_REG(lp))) \ 959 : (SMC_inw(ioaddr, INT_REG(lp)) & 0xFF)) 960 961 #define SMC_ACK_INT(lp, x) \ 962 do { \ 963 if (SMC_8BIT(lp)) \ 964 SMC_outb(x, ioaddr, INT_REG(lp)); \ 965 else { \ 966 unsigned long __flags; \ 967 int __mask; \ 968 local_irq_save(__flags); \ 969 __mask = SMC_inw(ioaddr, INT_REG(lp)) & ~0xff; \ 970 SMC_outw(__mask | (x), ioaddr, INT_REG(lp)); \ 971 local_irq_restore(__flags); \ 972 } \ 973 } while (0) 974 975 #define SMC_GET_INT_MASK(lp) \ 976 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, IM_REG(lp))) \ 977 : (SMC_inw(ioaddr, INT_REG(lp)) >> 8)) 978 979 #define SMC_SET_INT_MASK(lp, x) \ 980 do { \ 981 if (SMC_8BIT(lp)) \ 982 SMC_outb(x, ioaddr, IM_REG(lp)); \ 983 else \ 984 SMC_outw((x) << 8, ioaddr, INT_REG(lp)); \ 985 } while (0) 986 987 #define SMC_CURRENT_BANK(lp) SMC_inw(ioaddr, BANK_SELECT) 988 989 #define SMC_SELECT_BANK(lp, x) \ 990 do { \ 991 if (SMC_MUST_ALIGN_WRITE(lp)) \ 992 SMC_outl((x)<<16, ioaddr, 12<<SMC_IO_SHIFT); \ 993 else \ 994 SMC_outw(x, ioaddr, BANK_SELECT); \ 995 } while (0) 996 997 #define SMC_GET_BASE(lp) SMC_inw(ioaddr, BASE_REG(lp)) 998 999 #define SMC_SET_BASE(lp, x) SMC_outw(x, ioaddr, BASE_REG(lp)) 1000 1001 #define SMC_GET_CONFIG(lp) SMC_inw(ioaddr, CONFIG_REG(lp)) 1002 1003 #define SMC_SET_CONFIG(lp, x) SMC_outw(x, ioaddr, CONFIG_REG(lp)) 1004 1005 #define SMC_GET_COUNTER(lp) SMC_inw(ioaddr, COUNTER_REG(lp)) 1006 1007 #define SMC_GET_CTL(lp) SMC_inw(ioaddr, CTL_REG(lp)) 1008 1009 #define SMC_SET_CTL(lp, x) SMC_outw(x, ioaddr, CTL_REG(lp)) 1010 1011 #define SMC_GET_MII(lp) SMC_inw(ioaddr, MII_REG(lp)) 1012 1013 #define SMC_GET_GP(lp) SMC_inw(ioaddr, GP_REG(lp)) 1014 1015 #define SMC_SET_GP(lp, x) \ 1016 do { \ 1017 if (SMC_MUST_ALIGN_WRITE(lp)) \ 1018 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 1)); \ 1019 else \ 1020 SMC_outw(x, ioaddr, GP_REG(lp)); \ 1021 } while (0) 1022 1023 #define SMC_SET_MII(lp, x) SMC_outw(x, ioaddr, MII_REG(lp)) 1024 1025 #define SMC_GET_MIR(lp) SMC_inw(ioaddr, MIR_REG(lp)) 1026 1027 #define SMC_SET_MIR(lp, x) SMC_outw(x, ioaddr, MIR_REG(lp)) 1028 1029 #define SMC_GET_MMU_CMD(lp) SMC_inw(ioaddr, MMU_CMD_REG(lp)) 1030 1031 #define SMC_SET_MMU_CMD(lp, x) SMC_outw(x, ioaddr, MMU_CMD_REG(lp)) 1032 1033 #define SMC_GET_FIFO(lp) SMC_inw(ioaddr, FIFO_REG(lp)) 1034 1035 #define SMC_GET_PTR(lp) SMC_inw(ioaddr, PTR_REG(lp)) 1036 1037 #define SMC_SET_PTR(lp, x) \ 1038 do { \ 1039 if (SMC_MUST_ALIGN_WRITE(lp)) \ 1040 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 4, 2)); \ 1041 else \ 1042 SMC_outw(x, ioaddr, PTR_REG(lp)); \ 1043 } while (0) 1044 1045 #define SMC_GET_EPH_STATUS(lp) SMC_inw(ioaddr, EPH_STATUS_REG(lp)) 1046 1047 #define SMC_GET_RCR(lp) SMC_inw(ioaddr, RCR_REG(lp)) 1048 1049 #define SMC_SET_RCR(lp, x) SMC_outw(x, ioaddr, RCR_REG(lp)) 1050 1051 #define SMC_GET_REV(lp) SMC_inw(ioaddr, REV_REG(lp)) 1052 1053 #define SMC_GET_RPC(lp) SMC_inw(ioaddr, RPC_REG(lp)) 1054 1055 #define SMC_SET_RPC(lp, x) \ 1056 do { \ 1057 if (SMC_MUST_ALIGN_WRITE(lp)) \ 1058 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 0)); \ 1059 else \ 1060 SMC_outw(x, ioaddr, RPC_REG(lp)); \ 1061 } while (0) 1062 1063 #define SMC_GET_TCR(lp) SMC_inw(ioaddr, TCR_REG(lp)) 1064 1065 #define SMC_SET_TCR(lp, x) SMC_outw(x, ioaddr, TCR_REG(lp)) 1066 1067 #ifndef SMC_GET_MAC_ADDR 1068 #define SMC_GET_MAC_ADDR(lp, addr) \ 1069 do { \ 1070 unsigned int __v; \ 1071 __v = SMC_inw(ioaddr, ADDR0_REG(lp)); \ 1072 addr[0] = __v; addr[1] = __v >> 8; \ 1073 __v = SMC_inw(ioaddr, ADDR1_REG(lp)); \ 1074 addr[2] = __v; addr[3] = __v >> 8; \ 1075 __v = SMC_inw(ioaddr, ADDR2_REG(lp)); \ 1076 addr[4] = __v; addr[5] = __v >> 8; \ 1077 } while (0) 1078 #endif 1079 1080 #define SMC_SET_MAC_ADDR(lp, addr) \ 1081 do { \ 1082 SMC_outw(addr[0]|(addr[1] << 8), ioaddr, ADDR0_REG(lp)); \ 1083 SMC_outw(addr[2]|(addr[3] << 8), ioaddr, ADDR1_REG(lp)); \ 1084 SMC_outw(addr[4]|(addr[5] << 8), ioaddr, ADDR2_REG(lp)); \ 1085 } while (0) 1086 1087 #define SMC_SET_MCAST(lp, x) \ 1088 do { \ 1089 const unsigned char *mt = (x); \ 1090 SMC_outw(mt[0] | (mt[1] << 8), ioaddr, MCAST_REG1(lp)); \ 1091 SMC_outw(mt[2] | (mt[3] << 8), ioaddr, MCAST_REG2(lp)); \ 1092 SMC_outw(mt[4] | (mt[5] << 8), ioaddr, MCAST_REG3(lp)); \ 1093 SMC_outw(mt[6] | (mt[7] << 8), ioaddr, MCAST_REG4(lp)); \ 1094 } while (0) 1095 1096 #define SMC_PUT_PKT_HDR(lp, status, length) \ 1097 do { \ 1098 if (SMC_32BIT(lp)) \ 1099 SMC_outl((status) | (length)<<16, ioaddr, \ 1100 DATA_REG(lp)); \ 1101 else { \ 1102 SMC_outw(status, ioaddr, DATA_REG(lp)); \ 1103 SMC_outw(length, ioaddr, DATA_REG(lp)); \ 1104 } \ 1105 } while (0) 1106 1107 #define SMC_GET_PKT_HDR(lp, status, length) \ 1108 do { \ 1109 if (SMC_32BIT(lp)) { \ 1110 unsigned int __val = SMC_inl(ioaddr, DATA_REG(lp)); \ 1111 (status) = __val & 0xffff; \ 1112 (length) = __val >> 16; \ 1113 } else { \ 1114 (status) = SMC_inw(ioaddr, DATA_REG(lp)); \ 1115 (length) = SMC_inw(ioaddr, DATA_REG(lp)); \ 1116 } \ 1117 } while (0) 1118 1119 #define SMC_PUSH_DATA(lp, p, l) \ 1120 do { \ 1121 if (SMC_32BIT(lp)) { \ 1122 void *__ptr = (p); \ 1123 int __len = (l); \ 1124 void __iomem *__ioaddr = ioaddr; \ 1125 if (__len >= 2 && (unsigned long)__ptr & 2) { \ 1126 __len -= 2; \ 1127 SMC_outw(*(u16 *)__ptr, ioaddr, \ 1128 DATA_REG(lp)); \ 1129 __ptr += 2; \ 1130 } \ 1131 if (SMC_CAN_USE_DATACS && lp->datacs) \ 1132 __ioaddr = lp->datacs; \ 1133 SMC_outsl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \ 1134 if (__len & 2) { \ 1135 __ptr += (__len & ~3); \ 1136 SMC_outw(*((u16 *)__ptr), ioaddr, \ 1137 DATA_REG(lp)); \ 1138 } \ 1139 } else if (SMC_16BIT(lp)) \ 1140 SMC_outsw(ioaddr, DATA_REG(lp), p, (l) >> 1); \ 1141 else if (SMC_8BIT(lp)) \ 1142 SMC_outsb(ioaddr, DATA_REG(lp), p, l); \ 1143 } while (0) 1144 1145 #define SMC_PULL_DATA(lp, p, l) \ 1146 do { \ 1147 if (SMC_32BIT(lp)) { \ 1148 void *__ptr = (p); \ 1149 int __len = (l); \ 1150 void __iomem *__ioaddr = ioaddr; \ 1151 if ((unsigned long)__ptr & 2) { \ 1152 /* \ 1153 * We want 32bit alignment here. \ 1154 * Since some buses perform a full \ 1155 * 32bit fetch even for 16bit data \ 1156 * we can't use SMC_inw() here. \ 1157 * Back both source (on-chip) and \ 1158 * destination pointers of 2 bytes. \ 1159 * This is possible since the call to \ 1160 * SMC_GET_PKT_HDR() already advanced \ 1161 * the source pointer of 4 bytes, and \ 1162 * the skb_reserve(skb, 2) advanced \ 1163 * the destination pointer of 2 bytes. \ 1164 */ \ 1165 __ptr -= 2; \ 1166 __len += 2; \ 1167 SMC_SET_PTR(lp, \ 1168 2|PTR_READ|PTR_RCV|PTR_AUTOINC); \ 1169 } \ 1170 if (SMC_CAN_USE_DATACS && lp->datacs) \ 1171 __ioaddr = lp->datacs; \ 1172 __len += 2; \ 1173 SMC_insl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \ 1174 } else if (SMC_16BIT(lp)) \ 1175 SMC_insw(ioaddr, DATA_REG(lp), p, (l) >> 1); \ 1176 else if (SMC_8BIT(lp)) \ 1177 SMC_insb(ioaddr, DATA_REG(lp), p, l); \ 1178 } while (0) 1179 1180 #endif /* _SMC91X_H_ */ 1181