1 /*------------------------------------------------------------------------ 2 . smc91x.h - macros for SMSC's 91C9x/91C1xx single-chip Ethernet device. 3 . 4 . Copyright (C) 1996 by Erik Stahlman 5 . Copyright (C) 2001 Standard Microsystems Corporation 6 . Developed by Simple Network Magic Corporation 7 . Copyright (C) 2003 Monta Vista Software, Inc. 8 . Unified SMC91x driver by Nicolas Pitre 9 . 10 . This program is free software; you can redistribute it and/or modify 11 . it under the terms of the GNU General Public License as published by 12 . the Free Software Foundation; either version 2 of the License, or 13 . (at your option) any later version. 14 . 15 . This program is distributed in the hope that it will be useful, 16 . but WITHOUT ANY WARRANTY; without even the implied warranty of 17 . MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 . GNU General Public License for more details. 19 . 20 . You should have received a copy of the GNU General Public License 21 . along with this program; if not, see <http://www.gnu.org/licenses/>. 22 . 23 . Information contained in this file was obtained from the LAN91C111 24 . manual from SMC. To get a copy, if you really want one, you can find 25 . information under www.smsc.com. 26 . 27 . Authors 28 . Erik Stahlman <erik@vt.edu> 29 . Daris A Nevil <dnevil@snmc.com> 30 . Nicolas Pitre <nico@fluxnic.net> 31 . 32 ---------------------------------------------------------------------------*/ 33 #ifndef _SMC91X_H_ 34 #define _SMC91X_H_ 35 36 #include <linux/dmaengine.h> 37 #include <linux/smc91x.h> 38 39 /* 40 * Any 16-bit access is performed with two 8-bit accesses if the hardware 41 * can't do it directly. Most registers are 16-bit so those are mandatory. 42 */ 43 #define SMC_outw_b(x, a, r) \ 44 do { \ 45 unsigned int __val16 = (x); \ 46 unsigned int __reg = (r); \ 47 SMC_outb(__val16, a, __reg); \ 48 SMC_outb(__val16 >> 8, a, __reg + (1 << SMC_IO_SHIFT)); \ 49 } while (0) 50 51 #define SMC_inw_b(a, r) \ 52 ({ \ 53 unsigned int __val16; \ 54 unsigned int __reg = r; \ 55 __val16 = SMC_inb(a, __reg); \ 56 __val16 |= SMC_inb(a, __reg + (1 << SMC_IO_SHIFT)) << 8; \ 57 __val16; \ 58 }) 59 60 /* 61 * Define your architecture specific bus configuration parameters here. 62 */ 63 64 #if defined(CONFIG_ARM) 65 66 #include <asm/mach-types.h> 67 68 /* Now the bus width is specified in the platform data 69 * pretend here to support all I/O access types 70 */ 71 #define SMC_CAN_USE_8BIT 1 72 #define SMC_CAN_USE_16BIT 1 73 #define SMC_CAN_USE_32BIT 1 74 #define SMC_NOWAIT 1 75 76 #define SMC_IO_SHIFT (lp->io_shift) 77 78 #define SMC_inb(a, r) readb((a) + (r)) 79 #define SMC_inw(a, r) \ 80 ({ \ 81 unsigned int __smc_r = r; \ 82 SMC_16BIT(lp) ? readw((a) + __smc_r) : \ 83 SMC_8BIT(lp) ? SMC_inw_b(a, __smc_r) : \ 84 ({ BUG(); 0; }); \ 85 }) 86 87 #define SMC_inl(a, r) readl((a) + (r)) 88 #define SMC_outb(v, a, r) writeb(v, (a) + (r)) 89 #define SMC_outw(lp, v, a, r) \ 90 do { \ 91 unsigned int __v = v, __smc_r = r; \ 92 if (SMC_16BIT(lp)) \ 93 __SMC_outw(lp, __v, a, __smc_r); \ 94 else if (SMC_8BIT(lp)) \ 95 SMC_outw_b(__v, a, __smc_r); \ 96 else \ 97 BUG(); \ 98 } while (0) 99 100 #define SMC_outl(v, a, r) writel(v, (a) + (r)) 101 #define SMC_insb(a, r, p, l) readsb((a) + (r), p, l) 102 #define SMC_outsb(a, r, p, l) writesb((a) + (r), p, l) 103 #define SMC_insw(a, r, p, l) readsw((a) + (r), p, l) 104 #define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l) 105 #define SMC_insl(a, r, p, l) readsl((a) + (r), p, l) 106 #define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l) 107 #define SMC_IRQ_FLAGS (-1) /* from resource */ 108 109 /* We actually can't write halfwords properly if not word aligned */ 110 static inline void _SMC_outw_align4(u16 val, void __iomem *ioaddr, int reg, 111 bool use_align4_workaround) 112 { 113 if (use_align4_workaround) { 114 unsigned int v = val << 16; 115 v |= readl(ioaddr + (reg & ~2)) & 0xffff; 116 writel(v, ioaddr + (reg & ~2)); 117 } else { 118 writew(val, ioaddr + reg); 119 } 120 } 121 122 #define __SMC_outw(lp, v, a, r) \ 123 _SMC_outw_align4((v), (a), (r), \ 124 IS_BUILTIN(CONFIG_ARCH_PXA) && ((r) & 2) && \ 125 (lp)->cfg.pxa_u16_align4) 126 127 128 #elif defined(CONFIG_SH_SH4202_MICRODEV) 129 130 #define SMC_CAN_USE_8BIT 0 131 #define SMC_CAN_USE_16BIT 1 132 #define SMC_CAN_USE_32BIT 0 133 134 #define SMC_inb(a, r) inb((a) + (r) - 0xa0000000) 135 #define SMC_inw(a, r) inw((a) + (r) - 0xa0000000) 136 #define SMC_inl(a, r) inl((a) + (r) - 0xa0000000) 137 #define SMC_outb(v, a, r) outb(v, (a) + (r) - 0xa0000000) 138 #define SMC_outw(lp, v, a, r) outw(v, (a) + (r) - 0xa0000000) 139 #define SMC_outl(v, a, r) outl(v, (a) + (r) - 0xa0000000) 140 #define SMC_insl(a, r, p, l) insl((a) + (r) - 0xa0000000, p, l) 141 #define SMC_outsl(a, r, p, l) outsl((a) + (r) - 0xa0000000, p, l) 142 #define SMC_insw(a, r, p, l) insw((a) + (r) - 0xa0000000, p, l) 143 #define SMC_outsw(a, r, p, l) outsw((a) + (r) - 0xa0000000, p, l) 144 145 #define SMC_IRQ_FLAGS (0) 146 147 #elif defined(CONFIG_ATARI) 148 149 #define SMC_CAN_USE_8BIT 1 150 #define SMC_CAN_USE_16BIT 1 151 #define SMC_CAN_USE_32BIT 1 152 #define SMC_NOWAIT 1 153 154 #define SMC_inb(a, r) readb((a) + (r)) 155 #define SMC_inw(a, r) readw((a) + (r)) 156 #define SMC_inl(a, r) readl((a) + (r)) 157 #define SMC_outb(v, a, r) writeb(v, (a) + (r)) 158 #define SMC_outw(lp, v, a, r) writew(v, (a) + (r)) 159 #define SMC_outl(v, a, r) writel(v, (a) + (r)) 160 #define SMC_insw(a, r, p, l) readsw((a) + (r), p, l) 161 #define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l) 162 #define SMC_insl(a, r, p, l) readsl((a) + (r), p, l) 163 #define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l) 164 165 #define RPC_LSA_DEFAULT RPC_LED_100_10 166 #define RPC_LSB_DEFAULT RPC_LED_TX_RX 167 168 #elif defined(CONFIG_COLDFIRE) 169 170 #define SMC_CAN_USE_8BIT 0 171 #define SMC_CAN_USE_16BIT 1 172 #define SMC_CAN_USE_32BIT 0 173 #define SMC_NOWAIT 1 174 175 static inline void mcf_insw(void *a, unsigned char *p, int l) 176 { 177 u16 *wp = (u16 *) p; 178 while (l-- > 0) 179 *wp++ = readw(a); 180 } 181 182 static inline void mcf_outsw(void *a, unsigned char *p, int l) 183 { 184 u16 *wp = (u16 *) p; 185 while (l-- > 0) 186 writew(*wp++, a); 187 } 188 189 #define SMC_inw(a, r) _swapw(readw((a) + (r))) 190 #define SMC_outw(lp, v, a, r) writew(_swapw(v), (a) + (r)) 191 #define SMC_insw(a, r, p, l) mcf_insw(a + r, p, l) 192 #define SMC_outsw(a, r, p, l) mcf_outsw(a + r, p, l) 193 194 #define SMC_IRQ_FLAGS 0 195 196 #elif defined(CONFIG_H8300) 197 #define SMC_CAN_USE_8BIT 1 198 #define SMC_CAN_USE_16BIT 0 199 #define SMC_CAN_USE_32BIT 0 200 #define SMC_NOWAIT 0 201 202 #define SMC_inb(a, r) ioread8((a) + (r)) 203 #define SMC_outb(v, a, r) iowrite8(v, (a) + (r)) 204 #define SMC_insb(a, r, p, l) ioread8_rep((a) + (r), p, l) 205 #define SMC_outsb(a, r, p, l) iowrite8_rep((a) + (r), p, l) 206 207 #else 208 209 /* 210 * Default configuration 211 */ 212 213 #define SMC_CAN_USE_8BIT 1 214 #define SMC_CAN_USE_16BIT 1 215 #define SMC_CAN_USE_32BIT 1 216 #define SMC_NOWAIT 1 217 218 #define SMC_IO_SHIFT (lp->io_shift) 219 220 #define SMC_inb(a, r) ioread8((a) + (r)) 221 #define SMC_inw(a, r) ioread16((a) + (r)) 222 #define SMC_inl(a, r) ioread32((a) + (r)) 223 #define SMC_outb(v, a, r) iowrite8(v, (a) + (r)) 224 #define SMC_outw(lp, v, a, r) iowrite16(v, (a) + (r)) 225 #define SMC_outl(v, a, r) iowrite32(v, (a) + (r)) 226 #define SMC_insw(a, r, p, l) ioread16_rep((a) + (r), p, l) 227 #define SMC_outsw(a, r, p, l) iowrite16_rep((a) + (r), p, l) 228 #define SMC_insl(a, r, p, l) ioread32_rep((a) + (r), p, l) 229 #define SMC_outsl(a, r, p, l) iowrite32_rep((a) + (r), p, l) 230 231 #define RPC_LSA_DEFAULT RPC_LED_100_10 232 #define RPC_LSB_DEFAULT RPC_LED_TX_RX 233 234 #endif 235 236 237 /* store this information for the driver.. */ 238 struct smc_local { 239 /* 240 * If I have to wait until memory is available to send a 241 * packet, I will store the skbuff here, until I get the 242 * desired memory. Then, I'll send it out and free it. 243 */ 244 struct sk_buff *pending_tx_skb; 245 struct tasklet_struct tx_task; 246 247 struct gpio_desc *power_gpio; 248 struct gpio_desc *reset_gpio; 249 250 /* version/revision of the SMC91x chip */ 251 int version; 252 253 /* Contains the current active transmission mode */ 254 int tcr_cur_mode; 255 256 /* Contains the current active receive mode */ 257 int rcr_cur_mode; 258 259 /* Contains the current active receive/phy mode */ 260 int rpc_cur_mode; 261 int ctl_rfduplx; 262 int ctl_rspeed; 263 264 u32 msg_enable; 265 u32 phy_type; 266 struct mii_if_info mii; 267 268 /* work queue */ 269 struct work_struct phy_configure; 270 struct net_device *dev; 271 int work_pending; 272 273 spinlock_t lock; 274 275 #ifdef CONFIG_ARCH_PXA 276 /* DMA needs the physical address of the chip */ 277 u_long physaddr; 278 struct device *device; 279 #endif 280 struct dma_chan *dma_chan; 281 void __iomem *base; 282 void __iomem *datacs; 283 284 /* the low address lines on some platforms aren't connected... */ 285 int io_shift; 286 /* on some platforms a u16 write must be 4-bytes aligned */ 287 bool half_word_align4; 288 289 struct smc91x_platdata cfg; 290 }; 291 292 #define SMC_8BIT(p) ((p)->cfg.flags & SMC91X_USE_8BIT) 293 #define SMC_16BIT(p) ((p)->cfg.flags & SMC91X_USE_16BIT) 294 #define SMC_32BIT(p) ((p)->cfg.flags & SMC91X_USE_32BIT) 295 296 #ifdef CONFIG_ARCH_PXA 297 /* 298 * Let's use the DMA engine on the XScale PXA2xx for RX packets. This is 299 * always happening in irq context so no need to worry about races. TX is 300 * different and probably not worth it for that reason, and not as critical 301 * as RX which can overrun memory and lose packets. 302 */ 303 #include <linux/dma-mapping.h> 304 #include <linux/dma/pxa-dma.h> 305 306 #ifdef SMC_insl 307 #undef SMC_insl 308 #define SMC_insl(a, r, p, l) \ 309 smc_pxa_dma_insl(a, lp, r, dev->dma, p, l) 310 static inline void 311 smc_pxa_dma_inpump(struct smc_local *lp, u_char *buf, int len) 312 { 313 dma_addr_t dmabuf; 314 struct dma_async_tx_descriptor *tx; 315 dma_cookie_t cookie; 316 enum dma_status status; 317 struct dma_tx_state state; 318 319 dmabuf = dma_map_single(lp->device, buf, len, DMA_FROM_DEVICE); 320 tx = dmaengine_prep_slave_single(lp->dma_chan, dmabuf, len, 321 DMA_DEV_TO_MEM, 0); 322 if (tx) { 323 cookie = dmaengine_submit(tx); 324 dma_async_issue_pending(lp->dma_chan); 325 do { 326 status = dmaengine_tx_status(lp->dma_chan, cookie, 327 &state); 328 cpu_relax(); 329 } while (status != DMA_COMPLETE && status != DMA_ERROR && 330 state.residue); 331 dmaengine_terminate_all(lp->dma_chan); 332 } 333 dma_unmap_single(lp->device, dmabuf, len, DMA_FROM_DEVICE); 334 } 335 336 static inline void 337 smc_pxa_dma_insl(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma, 338 u_char *buf, int len) 339 { 340 struct dma_slave_config config; 341 int ret; 342 343 /* fallback if no DMA available */ 344 if (!lp->dma_chan) { 345 readsl(ioaddr + reg, buf, len); 346 return; 347 } 348 349 /* 64 bit alignment is required for memory to memory DMA */ 350 if ((long)buf & 4) { 351 *((u32 *)buf) = SMC_inl(ioaddr, reg); 352 buf += 4; 353 len--; 354 } 355 356 memset(&config, 0, sizeof(config)); 357 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 358 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 359 config.src_addr = lp->physaddr + reg; 360 config.dst_addr = lp->physaddr + reg; 361 config.src_maxburst = 32; 362 config.dst_maxburst = 32; 363 ret = dmaengine_slave_config(lp->dma_chan, &config); 364 if (ret) { 365 dev_err(lp->device, "dma channel configuration failed: %d\n", 366 ret); 367 return; 368 } 369 370 len *= 4; 371 smc_pxa_dma_inpump(lp, buf, len); 372 } 373 #endif 374 375 #ifdef SMC_insw 376 #undef SMC_insw 377 #define SMC_insw(a, r, p, l) \ 378 smc_pxa_dma_insw(a, lp, r, dev->dma, p, l) 379 static inline void 380 smc_pxa_dma_insw(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma, 381 u_char *buf, int len) 382 { 383 struct dma_slave_config config; 384 int ret; 385 386 /* fallback if no DMA available */ 387 if (!lp->dma_chan) { 388 readsw(ioaddr + reg, buf, len); 389 return; 390 } 391 392 /* 64 bit alignment is required for memory to memory DMA */ 393 while ((long)buf & 6) { 394 *((u16 *)buf) = SMC_inw(ioaddr, reg); 395 buf += 2; 396 len--; 397 } 398 399 memset(&config, 0, sizeof(config)); 400 config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 401 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 402 config.src_addr = lp->physaddr + reg; 403 config.dst_addr = lp->physaddr + reg; 404 config.src_maxburst = 32; 405 config.dst_maxburst = 32; 406 ret = dmaengine_slave_config(lp->dma_chan, &config); 407 if (ret) { 408 dev_err(lp->device, "dma channel configuration failed: %d\n", 409 ret); 410 return; 411 } 412 413 len *= 2; 414 smc_pxa_dma_inpump(lp, buf, len); 415 } 416 #endif 417 418 #endif /* CONFIG_ARCH_PXA */ 419 420 421 /* 422 * Everything a particular hardware setup needs should have been defined 423 * at this point. Add stubs for the undefined cases, mainly to avoid 424 * compilation warnings since they'll be optimized away, or to prevent buggy 425 * use of them. 426 */ 427 428 #if ! SMC_CAN_USE_32BIT 429 #define SMC_inl(ioaddr, reg) ({ BUG(); 0; }) 430 #define SMC_outl(x, ioaddr, reg) BUG() 431 #define SMC_insl(a, r, p, l) BUG() 432 #define SMC_outsl(a, r, p, l) BUG() 433 #endif 434 435 #if !defined(SMC_insl) || !defined(SMC_outsl) 436 #define SMC_insl(a, r, p, l) BUG() 437 #define SMC_outsl(a, r, p, l) BUG() 438 #endif 439 440 #if ! SMC_CAN_USE_16BIT 441 442 #define SMC_outw(lp, x, ioaddr, reg) SMC_outw_b(x, ioaddr, reg) 443 #define SMC_inw(ioaddr, reg) SMC_inw_b(ioaddr, reg) 444 #define SMC_insw(a, r, p, l) BUG() 445 #define SMC_outsw(a, r, p, l) BUG() 446 447 #endif 448 449 #if !defined(SMC_insw) || !defined(SMC_outsw) 450 #define SMC_insw(a, r, p, l) BUG() 451 #define SMC_outsw(a, r, p, l) BUG() 452 #endif 453 454 #if ! SMC_CAN_USE_8BIT 455 #undef SMC_inb 456 #define SMC_inb(ioaddr, reg) ({ BUG(); 0; }) 457 #undef SMC_outb 458 #define SMC_outb(x, ioaddr, reg) BUG() 459 #define SMC_insb(a, r, p, l) BUG() 460 #define SMC_outsb(a, r, p, l) BUG() 461 #endif 462 463 #if !defined(SMC_insb) || !defined(SMC_outsb) 464 #define SMC_insb(a, r, p, l) BUG() 465 #define SMC_outsb(a, r, p, l) BUG() 466 #endif 467 468 #ifndef SMC_CAN_USE_DATACS 469 #define SMC_CAN_USE_DATACS 0 470 #endif 471 472 #ifndef SMC_IO_SHIFT 473 #define SMC_IO_SHIFT 0 474 #endif 475 476 #ifndef SMC_IRQ_FLAGS 477 #define SMC_IRQ_FLAGS IRQF_TRIGGER_RISING 478 #endif 479 480 #ifndef SMC_INTERRUPT_PREAMBLE 481 #define SMC_INTERRUPT_PREAMBLE 482 #endif 483 484 485 /* Because of bank switching, the LAN91x uses only 16 I/O ports */ 486 #define SMC_IO_EXTENT (16 << SMC_IO_SHIFT) 487 #define SMC_DATA_EXTENT (4) 488 489 /* 490 . Bank Select Register: 491 . 492 . yyyy yyyy 0000 00xx 493 . xx = bank number 494 . yyyy yyyy = 0x33, for identification purposes. 495 */ 496 #define BANK_SELECT (14 << SMC_IO_SHIFT) 497 498 499 // Transmit Control Register 500 /* BANK 0 */ 501 #define TCR_REG(lp) SMC_REG(lp, 0x0000, 0) 502 #define TCR_ENABLE 0x0001 // When 1 we can transmit 503 #define TCR_LOOP 0x0002 // Controls output pin LBK 504 #define TCR_FORCOL 0x0004 // When 1 will force a collision 505 #define TCR_PAD_EN 0x0080 // When 1 will pad tx frames < 64 bytes w/0 506 #define TCR_NOCRC 0x0100 // When 1 will not append CRC to tx frames 507 #define TCR_MON_CSN 0x0400 // When 1 tx monitors carrier 508 #define TCR_FDUPLX 0x0800 // When 1 enables full duplex operation 509 #define TCR_STP_SQET 0x1000 // When 1 stops tx if Signal Quality Error 510 #define TCR_EPH_LOOP 0x2000 // When 1 enables EPH block loopback 511 #define TCR_SWFDUP 0x8000 // When 1 enables Switched Full Duplex mode 512 513 #define TCR_CLEAR 0 /* do NOTHING */ 514 /* the default settings for the TCR register : */ 515 #define TCR_DEFAULT (TCR_ENABLE | TCR_PAD_EN) 516 517 518 // EPH Status Register 519 /* BANK 0 */ 520 #define EPH_STATUS_REG(lp) SMC_REG(lp, 0x0002, 0) 521 #define ES_TX_SUC 0x0001 // Last TX was successful 522 #define ES_SNGL_COL 0x0002 // Single collision detected for last tx 523 #define ES_MUL_COL 0x0004 // Multiple collisions detected for last tx 524 #define ES_LTX_MULT 0x0008 // Last tx was a multicast 525 #define ES_16COL 0x0010 // 16 Collisions Reached 526 #define ES_SQET 0x0020 // Signal Quality Error Test 527 #define ES_LTXBRD 0x0040 // Last tx was a broadcast 528 #define ES_TXDEFR 0x0080 // Transmit Deferred 529 #define ES_LATCOL 0x0200 // Late collision detected on last tx 530 #define ES_LOSTCARR 0x0400 // Lost Carrier Sense 531 #define ES_EXC_DEF 0x0800 // Excessive Deferral 532 #define ES_CTR_ROL 0x1000 // Counter Roll Over indication 533 #define ES_LINK_OK 0x4000 // Driven by inverted value of nLNK pin 534 #define ES_TXUNRN 0x8000 // Tx Underrun 535 536 537 // Receive Control Register 538 /* BANK 0 */ 539 #define RCR_REG(lp) SMC_REG(lp, 0x0004, 0) 540 #define RCR_RX_ABORT 0x0001 // Set if a rx frame was aborted 541 #define RCR_PRMS 0x0002 // Enable promiscuous mode 542 #define RCR_ALMUL 0x0004 // When set accepts all multicast frames 543 #define RCR_RXEN 0x0100 // IFF this is set, we can receive packets 544 #define RCR_STRIP_CRC 0x0200 // When set strips CRC from rx packets 545 #define RCR_ABORT_ENB 0x0200 // When set will abort rx on collision 546 #define RCR_FILT_CAR 0x0400 // When set filters leading 12 bit s of carrier 547 #define RCR_SOFTRST 0x8000 // resets the chip 548 549 /* the normal settings for the RCR register : */ 550 #define RCR_DEFAULT (RCR_STRIP_CRC | RCR_RXEN) 551 #define RCR_CLEAR 0x0 // set it to a base state 552 553 554 // Counter Register 555 /* BANK 0 */ 556 #define COUNTER_REG(lp) SMC_REG(lp, 0x0006, 0) 557 558 559 // Memory Information Register 560 /* BANK 0 */ 561 #define MIR_REG(lp) SMC_REG(lp, 0x0008, 0) 562 563 564 // Receive/Phy Control Register 565 /* BANK 0 */ 566 #define RPC_REG(lp) SMC_REG(lp, 0x000A, 0) 567 #define RPC_SPEED 0x2000 // When 1 PHY is in 100Mbps mode. 568 #define RPC_DPLX 0x1000 // When 1 PHY is in Full-Duplex Mode 569 #define RPC_ANEG 0x0800 // When 1 PHY is in Auto-Negotiate Mode 570 #define RPC_LSXA_SHFT 5 // Bits to shift LS2A,LS1A,LS0A to lsb 571 #define RPC_LSXB_SHFT 2 // Bits to get LS2B,LS1B,LS0B to lsb 572 573 #ifndef RPC_LSA_DEFAULT 574 #define RPC_LSA_DEFAULT RPC_LED_100 575 #endif 576 #ifndef RPC_LSB_DEFAULT 577 #define RPC_LSB_DEFAULT RPC_LED_FD 578 #endif 579 580 #define RPC_DEFAULT (RPC_ANEG | RPC_SPEED | RPC_DPLX) 581 582 583 /* Bank 0 0x0C is reserved */ 584 585 // Bank Select Register 586 /* All Banks */ 587 #define BSR_REG 0x000E 588 589 590 // Configuration Reg 591 /* BANK 1 */ 592 #define CONFIG_REG(lp) SMC_REG(lp, 0x0000, 1) 593 #define CONFIG_EXT_PHY 0x0200 // 1=external MII, 0=internal Phy 594 #define CONFIG_GPCNTRL 0x0400 // Inverse value drives pin nCNTRL 595 #define CONFIG_NO_WAIT 0x1000 // When 1 no extra wait states on ISA bus 596 #define CONFIG_EPH_POWER_EN 0x8000 // When 0 EPH is placed into low power mode. 597 598 // Default is powered-up, Internal Phy, Wait States, and pin nCNTRL=low 599 #define CONFIG_DEFAULT (CONFIG_EPH_POWER_EN) 600 601 602 // Base Address Register 603 /* BANK 1 */ 604 #define BASE_REG(lp) SMC_REG(lp, 0x0002, 1) 605 606 607 // Individual Address Registers 608 /* BANK 1 */ 609 #define ADDR0_REG(lp) SMC_REG(lp, 0x0004, 1) 610 #define ADDR1_REG(lp) SMC_REG(lp, 0x0006, 1) 611 #define ADDR2_REG(lp) SMC_REG(lp, 0x0008, 1) 612 613 614 // General Purpose Register 615 /* BANK 1 */ 616 #define GP_REG(lp) SMC_REG(lp, 0x000A, 1) 617 618 619 // Control Register 620 /* BANK 1 */ 621 #define CTL_REG(lp) SMC_REG(lp, 0x000C, 1) 622 #define CTL_RCV_BAD 0x4000 // When 1 bad CRC packets are received 623 #define CTL_AUTO_RELEASE 0x0800 // When 1 tx pages are released automatically 624 #define CTL_LE_ENABLE 0x0080 // When 1 enables Link Error interrupt 625 #define CTL_CR_ENABLE 0x0040 // When 1 enables Counter Rollover interrupt 626 #define CTL_TE_ENABLE 0x0020 // When 1 enables Transmit Error interrupt 627 #define CTL_EEPROM_SELECT 0x0004 // Controls EEPROM reload & store 628 #define CTL_RELOAD 0x0002 // When set reads EEPROM into registers 629 #define CTL_STORE 0x0001 // When set stores registers into EEPROM 630 631 632 // MMU Command Register 633 /* BANK 2 */ 634 #define MMU_CMD_REG(lp) SMC_REG(lp, 0x0000, 2) 635 #define MC_BUSY 1 // When 1 the last release has not completed 636 #define MC_NOP (0<<5) // No Op 637 #define MC_ALLOC (1<<5) // OR with number of 256 byte packets 638 #define MC_RESET (2<<5) // Reset MMU to initial state 639 #define MC_REMOVE (3<<5) // Remove the current rx packet 640 #define MC_RELEASE (4<<5) // Remove and release the current rx packet 641 #define MC_FREEPKT (5<<5) // Release packet in PNR register 642 #define MC_ENQUEUE (6<<5) // Enqueue the packet for transmit 643 #define MC_RSTTXFIFO (7<<5) // Reset the TX FIFOs 644 645 646 // Packet Number Register 647 /* BANK 2 */ 648 #define PN_REG(lp) SMC_REG(lp, 0x0002, 2) 649 650 651 // Allocation Result Register 652 /* BANK 2 */ 653 #define AR_REG(lp) SMC_REG(lp, 0x0003, 2) 654 #define AR_FAILED 0x80 // Alocation Failed 655 656 657 // TX FIFO Ports Register 658 /* BANK 2 */ 659 #define TXFIFO_REG(lp) SMC_REG(lp, 0x0004, 2) 660 #define TXFIFO_TEMPTY 0x80 // TX FIFO Empty 661 662 // RX FIFO Ports Register 663 /* BANK 2 */ 664 #define RXFIFO_REG(lp) SMC_REG(lp, 0x0005, 2) 665 #define RXFIFO_REMPTY 0x80 // RX FIFO Empty 666 667 #define FIFO_REG(lp) SMC_REG(lp, 0x0004, 2) 668 669 // Pointer Register 670 /* BANK 2 */ 671 #define PTR_REG(lp) SMC_REG(lp, 0x0006, 2) 672 #define PTR_RCV 0x8000 // 1=Receive area, 0=Transmit area 673 #define PTR_AUTOINC 0x4000 // Auto increment the pointer on each access 674 #define PTR_READ 0x2000 // When 1 the operation is a read 675 676 677 // Data Register 678 /* BANK 2 */ 679 #define DATA_REG(lp) SMC_REG(lp, 0x0008, 2) 680 681 682 // Interrupt Status/Acknowledge Register 683 /* BANK 2 */ 684 #define INT_REG(lp) SMC_REG(lp, 0x000C, 2) 685 686 687 // Interrupt Mask Register 688 /* BANK 2 */ 689 #define IM_REG(lp) SMC_REG(lp, 0x000D, 2) 690 #define IM_MDINT 0x80 // PHY MI Register 18 Interrupt 691 #define IM_ERCV_INT 0x40 // Early Receive Interrupt 692 #define IM_EPH_INT 0x20 // Set by Ethernet Protocol Handler section 693 #define IM_RX_OVRN_INT 0x10 // Set by Receiver Overruns 694 #define IM_ALLOC_INT 0x08 // Set when allocation request is completed 695 #define IM_TX_EMPTY_INT 0x04 // Set if the TX FIFO goes empty 696 #define IM_TX_INT 0x02 // Transmit Interrupt 697 #define IM_RCV_INT 0x01 // Receive Interrupt 698 699 700 // Multicast Table Registers 701 /* BANK 3 */ 702 #define MCAST_REG1(lp) SMC_REG(lp, 0x0000, 3) 703 #define MCAST_REG2(lp) SMC_REG(lp, 0x0002, 3) 704 #define MCAST_REG3(lp) SMC_REG(lp, 0x0004, 3) 705 #define MCAST_REG4(lp) SMC_REG(lp, 0x0006, 3) 706 707 708 // Management Interface Register (MII) 709 /* BANK 3 */ 710 #define MII_REG(lp) SMC_REG(lp, 0x0008, 3) 711 #define MII_MSK_CRS100 0x4000 // Disables CRS100 detection during tx half dup 712 #define MII_MDOE 0x0008 // MII Output Enable 713 #define MII_MCLK 0x0004 // MII Clock, pin MDCLK 714 #define MII_MDI 0x0002 // MII Input, pin MDI 715 #define MII_MDO 0x0001 // MII Output, pin MDO 716 717 718 // Revision Register 719 /* BANK 3 */ 720 /* ( hi: chip id low: rev # ) */ 721 #define REV_REG(lp) SMC_REG(lp, 0x000A, 3) 722 723 724 // Early RCV Register 725 /* BANK 3 */ 726 /* this is NOT on SMC9192 */ 727 #define ERCV_REG(lp) SMC_REG(lp, 0x000C, 3) 728 #define ERCV_RCV_DISCRD 0x0080 // When 1 discards a packet being received 729 #define ERCV_THRESHOLD 0x001F // ERCV Threshold Mask 730 731 732 // External Register 733 /* BANK 7 */ 734 #define EXT_REG(lp) SMC_REG(lp, 0x0000, 7) 735 736 737 #define CHIP_9192 3 738 #define CHIP_9194 4 739 #define CHIP_9195 5 740 #define CHIP_9196 6 741 #define CHIP_91100 7 742 #define CHIP_91100FD 8 743 #define CHIP_91111FD 9 744 745 static const char * chip_ids[ 16 ] = { 746 NULL, NULL, NULL, 747 /* 3 */ "SMC91C90/91C92", 748 /* 4 */ "SMC91C94", 749 /* 5 */ "SMC91C95", 750 /* 6 */ "SMC91C96", 751 /* 7 */ "SMC91C100", 752 /* 8 */ "SMC91C100FD", 753 /* 9 */ "SMC91C11xFD", 754 NULL, NULL, NULL, 755 NULL, NULL, NULL}; 756 757 758 /* 759 . Receive status bits 760 */ 761 #define RS_ALGNERR 0x8000 762 #define RS_BRODCAST 0x4000 763 #define RS_BADCRC 0x2000 764 #define RS_ODDFRAME 0x1000 765 #define RS_TOOLONG 0x0800 766 #define RS_TOOSHORT 0x0400 767 #define RS_MULTICAST 0x0001 768 #define RS_ERRORS (RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT) 769 770 771 /* 772 * PHY IDs 773 * LAN83C183 == LAN91C111 Internal PHY 774 */ 775 #define PHY_LAN83C183 0x0016f840 776 #define PHY_LAN83C180 0x02821c50 777 778 /* 779 * PHY Register Addresses (LAN91C111 Internal PHY) 780 * 781 * Generic PHY registers can be found in <linux/mii.h> 782 * 783 * These phy registers are specific to our on-board phy. 784 */ 785 786 // PHY Configuration Register 1 787 #define PHY_CFG1_REG 0x10 788 #define PHY_CFG1_LNKDIS 0x8000 // 1=Rx Link Detect Function disabled 789 #define PHY_CFG1_XMTDIS 0x4000 // 1=TP Transmitter Disabled 790 #define PHY_CFG1_XMTPDN 0x2000 // 1=TP Transmitter Powered Down 791 #define PHY_CFG1_BYPSCR 0x0400 // 1=Bypass scrambler/descrambler 792 #define PHY_CFG1_UNSCDS 0x0200 // 1=Unscramble Idle Reception Disable 793 #define PHY_CFG1_EQLZR 0x0100 // 1=Rx Equalizer Disabled 794 #define PHY_CFG1_CABLE 0x0080 // 1=STP(150ohm), 0=UTP(100ohm) 795 #define PHY_CFG1_RLVL0 0x0040 // 1=Rx Squelch level reduced by 4.5db 796 #define PHY_CFG1_TLVL_SHIFT 2 // Transmit Output Level Adjust 797 #define PHY_CFG1_TLVL_MASK 0x003C 798 #define PHY_CFG1_TRF_MASK 0x0003 // Transmitter Rise/Fall time 799 800 801 // PHY Configuration Register 2 802 #define PHY_CFG2_REG 0x11 803 #define PHY_CFG2_APOLDIS 0x0020 // 1=Auto Polarity Correction disabled 804 #define PHY_CFG2_JABDIS 0x0010 // 1=Jabber disabled 805 #define PHY_CFG2_MREG 0x0008 // 1=Multiple register access (MII mgt) 806 #define PHY_CFG2_INTMDIO 0x0004 // 1=Interrupt signaled with MDIO pulseo 807 808 // PHY Status Output (and Interrupt status) Register 809 #define PHY_INT_REG 0x12 // Status Output (Interrupt Status) 810 #define PHY_INT_INT 0x8000 // 1=bits have changed since last read 811 #define PHY_INT_LNKFAIL 0x4000 // 1=Link Not detected 812 #define PHY_INT_LOSSSYNC 0x2000 // 1=Descrambler has lost sync 813 #define PHY_INT_CWRD 0x1000 // 1=Invalid 4B5B code detected on rx 814 #define PHY_INT_SSD 0x0800 // 1=No Start Of Stream detected on rx 815 #define PHY_INT_ESD 0x0400 // 1=No End Of Stream detected on rx 816 #define PHY_INT_RPOL 0x0200 // 1=Reverse Polarity detected 817 #define PHY_INT_JAB 0x0100 // 1=Jabber detected 818 #define PHY_INT_SPDDET 0x0080 // 1=100Base-TX mode, 0=10Base-T mode 819 #define PHY_INT_DPLXDET 0x0040 // 1=Device in Full Duplex 820 821 // PHY Interrupt/Status Mask Register 822 #define PHY_MASK_REG 0x13 // Interrupt Mask 823 // Uses the same bit definitions as PHY_INT_REG 824 825 826 /* 827 * SMC91C96 ethernet config and status registers. 828 * These are in the "attribute" space. 829 */ 830 #define ECOR 0x8000 831 #define ECOR_RESET 0x80 832 #define ECOR_LEVEL_IRQ 0x40 833 #define ECOR_WR_ATTRIB 0x04 834 #define ECOR_ENABLE 0x01 835 836 #define ECSR 0x8002 837 #define ECSR_IOIS8 0x20 838 #define ECSR_PWRDWN 0x04 839 #define ECSR_INT 0x02 840 841 #define ATTRIB_SIZE ((64*1024) << SMC_IO_SHIFT) 842 843 844 /* 845 * Macros to abstract register access according to the data bus 846 * capabilities. Please use those and not the in/out primitives. 847 * Note: the following macros do *not* select the bank -- this must 848 * be done separately as needed in the main code. The SMC_REG() macro 849 * only uses the bank argument for debugging purposes (when enabled). 850 * 851 * Note: despite inline functions being safer, everything leading to this 852 * should preferably be macros to let BUG() display the line number in 853 * the core source code since we're interested in the top call site 854 * not in any inline function location. 855 */ 856 857 #if SMC_DEBUG > 0 858 #define SMC_REG(lp, reg, bank) \ 859 ({ \ 860 int __b = SMC_CURRENT_BANK(lp); \ 861 if (unlikely((__b & ~0xf0) != (0x3300 | bank))) { \ 862 pr_err("%s: bank reg screwed (0x%04x)\n", \ 863 CARDNAME, __b); \ 864 BUG(); \ 865 } \ 866 reg<<SMC_IO_SHIFT; \ 867 }) 868 #else 869 #define SMC_REG(lp, reg, bank) (reg<<SMC_IO_SHIFT) 870 #endif 871 872 /* 873 * Hack Alert: Some setups just can't write 8 or 16 bits reliably when not 874 * aligned to a 32 bit boundary. I tell you that does exist! 875 * Fortunately the affected register accesses can be easily worked around 876 * since we can write zeroes to the preceding 16 bits without adverse 877 * effects and use a 32-bit access. 878 * 879 * Enforce it on any 32-bit capable setup for now. 880 */ 881 #define SMC_MUST_ALIGN_WRITE(lp) SMC_32BIT(lp) 882 883 #define SMC_GET_PN(lp) \ 884 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, PN_REG(lp))) \ 885 : (SMC_inw(ioaddr, PN_REG(lp)) & 0xFF)) 886 887 #define SMC_SET_PN(lp, x) \ 888 do { \ 889 if (SMC_MUST_ALIGN_WRITE(lp)) \ 890 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 0, 2)); \ 891 else if (SMC_8BIT(lp)) \ 892 SMC_outb(x, ioaddr, PN_REG(lp)); \ 893 else \ 894 SMC_outw(lp, x, ioaddr, PN_REG(lp)); \ 895 } while (0) 896 897 #define SMC_GET_AR(lp) \ 898 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, AR_REG(lp))) \ 899 : (SMC_inw(ioaddr, PN_REG(lp)) >> 8)) 900 901 #define SMC_GET_TXFIFO(lp) \ 902 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, TXFIFO_REG(lp))) \ 903 : (SMC_inw(ioaddr, TXFIFO_REG(lp)) & 0xFF)) 904 905 #define SMC_GET_RXFIFO(lp) \ 906 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, RXFIFO_REG(lp))) \ 907 : (SMC_inw(ioaddr, TXFIFO_REG(lp)) >> 8)) 908 909 #define SMC_GET_INT(lp) \ 910 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, INT_REG(lp))) \ 911 : (SMC_inw(ioaddr, INT_REG(lp)) & 0xFF)) 912 913 #define SMC_ACK_INT(lp, x) \ 914 do { \ 915 if (SMC_8BIT(lp)) \ 916 SMC_outb(x, ioaddr, INT_REG(lp)); \ 917 else { \ 918 unsigned long __flags; \ 919 int __mask; \ 920 local_irq_save(__flags); \ 921 __mask = SMC_inw(ioaddr, INT_REG(lp)) & ~0xff; \ 922 SMC_outw(lp, __mask | (x), ioaddr, INT_REG(lp)); \ 923 local_irq_restore(__flags); \ 924 } \ 925 } while (0) 926 927 #define SMC_GET_INT_MASK(lp) \ 928 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, IM_REG(lp))) \ 929 : (SMC_inw(ioaddr, INT_REG(lp)) >> 8)) 930 931 #define SMC_SET_INT_MASK(lp, x) \ 932 do { \ 933 if (SMC_8BIT(lp)) \ 934 SMC_outb(x, ioaddr, IM_REG(lp)); \ 935 else \ 936 SMC_outw(lp, (x) << 8, ioaddr, INT_REG(lp)); \ 937 } while (0) 938 939 #define SMC_CURRENT_BANK(lp) SMC_inw(ioaddr, BANK_SELECT) 940 941 #define SMC_SELECT_BANK(lp, x) \ 942 do { \ 943 if (SMC_MUST_ALIGN_WRITE(lp)) \ 944 SMC_outl((x)<<16, ioaddr, 12<<SMC_IO_SHIFT); \ 945 else \ 946 SMC_outw(lp, x, ioaddr, BANK_SELECT); \ 947 } while (0) 948 949 #define SMC_GET_BASE(lp) SMC_inw(ioaddr, BASE_REG(lp)) 950 951 #define SMC_SET_BASE(lp, x) SMC_outw(lp, x, ioaddr, BASE_REG(lp)) 952 953 #define SMC_GET_CONFIG(lp) SMC_inw(ioaddr, CONFIG_REG(lp)) 954 955 #define SMC_SET_CONFIG(lp, x) SMC_outw(lp, x, ioaddr, CONFIG_REG(lp)) 956 957 #define SMC_GET_COUNTER(lp) SMC_inw(ioaddr, COUNTER_REG(lp)) 958 959 #define SMC_GET_CTL(lp) SMC_inw(ioaddr, CTL_REG(lp)) 960 961 #define SMC_SET_CTL(lp, x) SMC_outw(lp, x, ioaddr, CTL_REG(lp)) 962 963 #define SMC_GET_MII(lp) SMC_inw(ioaddr, MII_REG(lp)) 964 965 #define SMC_GET_GP(lp) SMC_inw(ioaddr, GP_REG(lp)) 966 967 #define SMC_SET_GP(lp, x) \ 968 do { \ 969 if (SMC_MUST_ALIGN_WRITE(lp)) \ 970 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 1)); \ 971 else \ 972 SMC_outw(lp, x, ioaddr, GP_REG(lp)); \ 973 } while (0) 974 975 #define SMC_SET_MII(lp, x) SMC_outw(lp, x, ioaddr, MII_REG(lp)) 976 977 #define SMC_GET_MIR(lp) SMC_inw(ioaddr, MIR_REG(lp)) 978 979 #define SMC_SET_MIR(lp, x) SMC_outw(lp, x, ioaddr, MIR_REG(lp)) 980 981 #define SMC_GET_MMU_CMD(lp) SMC_inw(ioaddr, MMU_CMD_REG(lp)) 982 983 #define SMC_SET_MMU_CMD(lp, x) SMC_outw(lp, x, ioaddr, MMU_CMD_REG(lp)) 984 985 #define SMC_GET_FIFO(lp) SMC_inw(ioaddr, FIFO_REG(lp)) 986 987 #define SMC_GET_PTR(lp) SMC_inw(ioaddr, PTR_REG(lp)) 988 989 #define SMC_SET_PTR(lp, x) \ 990 do { \ 991 if (SMC_MUST_ALIGN_WRITE(lp)) \ 992 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 4, 2)); \ 993 else \ 994 SMC_outw(lp, x, ioaddr, PTR_REG(lp)); \ 995 } while (0) 996 997 #define SMC_GET_EPH_STATUS(lp) SMC_inw(ioaddr, EPH_STATUS_REG(lp)) 998 999 #define SMC_GET_RCR(lp) SMC_inw(ioaddr, RCR_REG(lp)) 1000 1001 #define SMC_SET_RCR(lp, x) SMC_outw(lp, x, ioaddr, RCR_REG(lp)) 1002 1003 #define SMC_GET_REV(lp) SMC_inw(ioaddr, REV_REG(lp)) 1004 1005 #define SMC_GET_RPC(lp) SMC_inw(ioaddr, RPC_REG(lp)) 1006 1007 #define SMC_SET_RPC(lp, x) \ 1008 do { \ 1009 if (SMC_MUST_ALIGN_WRITE(lp)) \ 1010 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 0)); \ 1011 else \ 1012 SMC_outw(lp, x, ioaddr, RPC_REG(lp)); \ 1013 } while (0) 1014 1015 #define SMC_GET_TCR(lp) SMC_inw(ioaddr, TCR_REG(lp)) 1016 1017 #define SMC_SET_TCR(lp, x) SMC_outw(lp, x, ioaddr, TCR_REG(lp)) 1018 1019 #ifndef SMC_GET_MAC_ADDR 1020 #define SMC_GET_MAC_ADDR(lp, addr) \ 1021 do { \ 1022 unsigned int __v; \ 1023 __v = SMC_inw(ioaddr, ADDR0_REG(lp)); \ 1024 addr[0] = __v; addr[1] = __v >> 8; \ 1025 __v = SMC_inw(ioaddr, ADDR1_REG(lp)); \ 1026 addr[2] = __v; addr[3] = __v >> 8; \ 1027 __v = SMC_inw(ioaddr, ADDR2_REG(lp)); \ 1028 addr[4] = __v; addr[5] = __v >> 8; \ 1029 } while (0) 1030 #endif 1031 1032 #define SMC_SET_MAC_ADDR(lp, addr) \ 1033 do { \ 1034 SMC_outw(lp, addr[0] | (addr[1] << 8), ioaddr, ADDR0_REG(lp)); \ 1035 SMC_outw(lp, addr[2] | (addr[3] << 8), ioaddr, ADDR1_REG(lp)); \ 1036 SMC_outw(lp, addr[4] | (addr[5] << 8), ioaddr, ADDR2_REG(lp)); \ 1037 } while (0) 1038 1039 #define SMC_SET_MCAST(lp, x) \ 1040 do { \ 1041 const unsigned char *mt = (x); \ 1042 SMC_outw(lp, mt[0] | (mt[1] << 8), ioaddr, MCAST_REG1(lp)); \ 1043 SMC_outw(lp, mt[2] | (mt[3] << 8), ioaddr, MCAST_REG2(lp)); \ 1044 SMC_outw(lp, mt[4] | (mt[5] << 8), ioaddr, MCAST_REG3(lp)); \ 1045 SMC_outw(lp, mt[6] | (mt[7] << 8), ioaddr, MCAST_REG4(lp)); \ 1046 } while (0) 1047 1048 #define SMC_PUT_PKT_HDR(lp, status, length) \ 1049 do { \ 1050 if (SMC_32BIT(lp)) \ 1051 SMC_outl((status) | (length)<<16, ioaddr, \ 1052 DATA_REG(lp)); \ 1053 else { \ 1054 SMC_outw(lp, status, ioaddr, DATA_REG(lp)); \ 1055 SMC_outw(lp, length, ioaddr, DATA_REG(lp)); \ 1056 } \ 1057 } while (0) 1058 1059 #define SMC_GET_PKT_HDR(lp, status, length) \ 1060 do { \ 1061 if (SMC_32BIT(lp)) { \ 1062 unsigned int __val = SMC_inl(ioaddr, DATA_REG(lp)); \ 1063 (status) = __val & 0xffff; \ 1064 (length) = __val >> 16; \ 1065 } else { \ 1066 (status) = SMC_inw(ioaddr, DATA_REG(lp)); \ 1067 (length) = SMC_inw(ioaddr, DATA_REG(lp)); \ 1068 } \ 1069 } while (0) 1070 1071 #define SMC_PUSH_DATA(lp, p, l) \ 1072 do { \ 1073 if (SMC_32BIT(lp)) { \ 1074 void *__ptr = (p); \ 1075 int __len = (l); \ 1076 void __iomem *__ioaddr = ioaddr; \ 1077 if (__len >= 2 && (unsigned long)__ptr & 2) { \ 1078 __len -= 2; \ 1079 SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \ 1080 __ptr += 2; \ 1081 } \ 1082 if (SMC_CAN_USE_DATACS && lp->datacs) \ 1083 __ioaddr = lp->datacs; \ 1084 SMC_outsl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \ 1085 if (__len & 2) { \ 1086 __ptr += (__len & ~3); \ 1087 SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \ 1088 } \ 1089 } else if (SMC_16BIT(lp)) \ 1090 SMC_outsw(ioaddr, DATA_REG(lp), p, (l) >> 1); \ 1091 else if (SMC_8BIT(lp)) \ 1092 SMC_outsb(ioaddr, DATA_REG(lp), p, l); \ 1093 } while (0) 1094 1095 #define SMC_PULL_DATA(lp, p, l) \ 1096 do { \ 1097 if (SMC_32BIT(lp)) { \ 1098 void *__ptr = (p); \ 1099 int __len = (l); \ 1100 void __iomem *__ioaddr = ioaddr; \ 1101 if ((unsigned long)__ptr & 2) { \ 1102 /* \ 1103 * We want 32bit alignment here. \ 1104 * Since some buses perform a full \ 1105 * 32bit fetch even for 16bit data \ 1106 * we can't use SMC_inw() here. \ 1107 * Back both source (on-chip) and \ 1108 * destination pointers of 2 bytes. \ 1109 * This is possible since the call to \ 1110 * SMC_GET_PKT_HDR() already advanced \ 1111 * the source pointer of 4 bytes, and \ 1112 * the skb_reserve(skb, 2) advanced \ 1113 * the destination pointer of 2 bytes. \ 1114 */ \ 1115 __ptr -= 2; \ 1116 __len += 2; \ 1117 SMC_SET_PTR(lp, \ 1118 2|PTR_READ|PTR_RCV|PTR_AUTOINC); \ 1119 } \ 1120 if (SMC_CAN_USE_DATACS && lp->datacs) \ 1121 __ioaddr = lp->datacs; \ 1122 __len += 2; \ 1123 SMC_insl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \ 1124 } else if (SMC_16BIT(lp)) \ 1125 SMC_insw(ioaddr, DATA_REG(lp), p, (l) >> 1); \ 1126 else if (SMC_8BIT(lp)) \ 1127 SMC_insb(ioaddr, DATA_REG(lp), p, l); \ 1128 } while (0) 1129 1130 #endif /* _SMC91X_H_ */ 1131