xref: /openbmc/linux/drivers/net/ethernet/smsc/smc91x.h (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*------------------------------------------------------------------------
3  . smc91x.h - macros for SMSC's 91C9x/91C1xx single-chip Ethernet device.
4  .
5  . Copyright (C) 1996 by Erik Stahlman
6  . Copyright (C) 2001 Standard Microsystems Corporation
7  .	Developed by Simple Network Magic Corporation
8  . Copyright (C) 2003 Monta Vista Software, Inc.
9  .	Unified SMC91x driver by Nicolas Pitre
10  .
11  .
12  . Information contained in this file was obtained from the LAN91C111
13  . manual from SMC.  To get a copy, if you really want one, you can find
14  . information under www.smsc.com.
15  .
16  . Authors
17  .	Erik Stahlman		<erik@vt.edu>
18  .	Daris A Nevil		<dnevil@snmc.com>
19  .	Nicolas Pitre 		<nico@fluxnic.net>
20  .
21  ---------------------------------------------------------------------------*/
22 #ifndef _SMC91X_H_
23 #define _SMC91X_H_
24 
25 #include <linux/dmaengine.h>
26 #include <linux/smc91x.h>
27 
28 /*
29  * Any 16-bit access is performed with two 8-bit accesses if the hardware
30  * can't do it directly. Most registers are 16-bit so those are mandatory.
31  */
32 #define SMC_outw_b(x, a, r)						\
33 	do {								\
34 		unsigned int __val16 = (x);				\
35 		unsigned int __reg = (r);				\
36 		SMC_outb(__val16, a, __reg);				\
37 		SMC_outb(__val16 >> 8, a, __reg + (1 << SMC_IO_SHIFT));	\
38 	} while (0)
39 
40 #define SMC_inw_b(a, r)							\
41 	({								\
42 		unsigned int __val16;					\
43 		unsigned int __reg = r;					\
44 		__val16  = SMC_inb(a, __reg);				\
45 		__val16 |= SMC_inb(a, __reg + (1 << SMC_IO_SHIFT)) << 8; \
46 		__val16;						\
47 	})
48 
49 /*
50  * Define your architecture specific bus configuration parameters here.
51  */
52 
53 #if defined(CONFIG_ARM)
54 
55 #include <asm/mach-types.h>
56 
57 /* Now the bus width is specified in the platform data
58  * pretend here to support all I/O access types
59  */
60 #define SMC_CAN_USE_8BIT	1
61 #define SMC_CAN_USE_16BIT	1
62 #define SMC_CAN_USE_32BIT	1
63 #define SMC_NOWAIT		1
64 
65 #define SMC_IO_SHIFT		(lp->io_shift)
66 
67 #define SMC_inb(a, r)		readb((a) + (r))
68 #define SMC_inw(a, r)							\
69 	({								\
70 		unsigned int __smc_r = r;				\
71 		SMC_16BIT(lp) ? readw((a) + __smc_r) :			\
72 		SMC_8BIT(lp) ? SMC_inw_b(a, __smc_r) :			\
73 		({ BUG(); 0; });					\
74 	})
75 
76 #define SMC_inl(a, r)		readl((a) + (r))
77 #define SMC_outb(v, a, r)	writeb(v, (a) + (r))
78 #define SMC_outw(lp, v, a, r)						\
79 	do {								\
80 		unsigned int __v = v, __smc_r = r;			\
81 		if (SMC_16BIT(lp))					\
82 			__SMC_outw(lp, __v, a, __smc_r);		\
83 		else if (SMC_8BIT(lp))					\
84 			SMC_outw_b(__v, a, __smc_r);			\
85 		else							\
86 			BUG();						\
87 	} while (0)
88 
89 #define SMC_outl(v, a, r)	writel(v, (a) + (r))
90 #define SMC_insb(a, r, p, l)	readsb((a) + (r), p, l)
91 #define SMC_outsb(a, r, p, l)	writesb((a) + (r), p, l)
92 #define SMC_insw(a, r, p, l)	readsw((a) + (r), p, l)
93 #define SMC_outsw(a, r, p, l)	writesw((a) + (r), p, l)
94 #define SMC_insl(a, r, p, l)	readsl((a) + (r), p, l)
95 #define SMC_outsl(a, r, p, l)	writesl((a) + (r), p, l)
96 #define SMC_IRQ_FLAGS		(-1)	/* from resource */
97 
98 /* We actually can't write halfwords properly if not word aligned */
99 static inline void _SMC_outw_align4(u16 val, void __iomem *ioaddr, int reg,
100 				    bool use_align4_workaround)
101 {
102 	if (use_align4_workaround) {
103 		unsigned int v = val << 16;
104 		v |= readl(ioaddr + (reg & ~2)) & 0xffff;
105 		writel(v, ioaddr + (reg & ~2));
106 	} else {
107 		writew(val, ioaddr + reg);
108 	}
109 }
110 
111 #define __SMC_outw(lp, v, a, r)						\
112 	_SMC_outw_align4((v), (a), (r),					\
113 			 IS_BUILTIN(CONFIG_ARCH_PXA) && ((r) & 2) &&	\
114 			 (lp)->cfg.pxa_u16_align4)
115 
116 
117 #elif	defined(CONFIG_SH_SH4202_MICRODEV)
118 
119 #define SMC_CAN_USE_8BIT	0
120 #define SMC_CAN_USE_16BIT	1
121 #define SMC_CAN_USE_32BIT	0
122 
123 #define SMC_inb(a, r)		inb((a) + (r) - 0xa0000000)
124 #define SMC_inw(a, r)		inw((a) + (r) - 0xa0000000)
125 #define SMC_inl(a, r)		inl((a) + (r) - 0xa0000000)
126 #define SMC_outb(v, a, r)	outb(v, (a) + (r) - 0xa0000000)
127 #define SMC_outw(lp, v, a, r)	outw(v, (a) + (r) - 0xa0000000)
128 #define SMC_outl(v, a, r)	outl(v, (a) + (r) - 0xa0000000)
129 #define SMC_insl(a, r, p, l)	insl((a) + (r) - 0xa0000000, p, l)
130 #define SMC_outsl(a, r, p, l)	outsl((a) + (r) - 0xa0000000, p, l)
131 #define SMC_insw(a, r, p, l)	insw((a) + (r) - 0xa0000000, p, l)
132 #define SMC_outsw(a, r, p, l)	outsw((a) + (r) - 0xa0000000, p, l)
133 
134 #define SMC_IRQ_FLAGS		(0)
135 
136 #elif defined(CONFIG_ATARI)
137 
138 #define SMC_CAN_USE_8BIT        1
139 #define SMC_CAN_USE_16BIT       1
140 #define SMC_CAN_USE_32BIT       1
141 #define SMC_NOWAIT              1
142 
143 #define SMC_inb(a, r)           readb((a) + (r))
144 #define SMC_inw(a, r)           readw((a) + (r))
145 #define SMC_inl(a, r)           readl((a) + (r))
146 #define SMC_outb(v, a, r)       writeb(v, (a) + (r))
147 #define SMC_outw(lp, v, a, r)   writew(v, (a) + (r))
148 #define SMC_outl(v, a, r)       writel(v, (a) + (r))
149 #define SMC_insw(a, r, p, l)    readsw((a) + (r), p, l)
150 #define SMC_outsw(a, r, p, l)   writesw((a) + (r), p, l)
151 #define SMC_insl(a, r, p, l)    readsl((a) + (r), p, l)
152 #define SMC_outsl(a, r, p, l)   writesl((a) + (r), p, l)
153 
154 #define RPC_LSA_DEFAULT         RPC_LED_100_10
155 #define RPC_LSB_DEFAULT         RPC_LED_TX_RX
156 
157 #elif defined(CONFIG_COLDFIRE)
158 
159 #define SMC_CAN_USE_8BIT	0
160 #define SMC_CAN_USE_16BIT	1
161 #define SMC_CAN_USE_32BIT	0
162 #define SMC_NOWAIT		1
163 
164 static inline void mcf_insw(void *a, unsigned char *p, int l)
165 {
166 	u16 *wp = (u16 *) p;
167 	while (l-- > 0)
168 		*wp++ = readw(a);
169 }
170 
171 static inline void mcf_outsw(void *a, unsigned char *p, int l)
172 {
173 	u16 *wp = (u16 *) p;
174 	while (l-- > 0)
175 		writew(*wp++, a);
176 }
177 
178 #define SMC_inw(a, r)		_swapw(readw((a) + (r)))
179 #define SMC_outw(lp, v, a, r)	writew(_swapw(v), (a) + (r))
180 #define SMC_insw(a, r, p, l)	mcf_insw(a + r, p, l)
181 #define SMC_outsw(a, r, p, l)	mcf_outsw(a + r, p, l)
182 
183 #define SMC_IRQ_FLAGS		0
184 
185 #elif defined(CONFIG_H8300)
186 #define SMC_CAN_USE_8BIT	1
187 #define SMC_CAN_USE_16BIT	0
188 #define SMC_CAN_USE_32BIT	0
189 #define SMC_NOWAIT		0
190 
191 #define SMC_inb(a, r)		ioread8((a) + (r))
192 #define SMC_outb(v, a, r)	iowrite8(v, (a) + (r))
193 #define SMC_insb(a, r, p, l)	ioread8_rep((a) + (r), p, l)
194 #define SMC_outsb(a, r, p, l)	iowrite8_rep((a) + (r), p, l)
195 
196 #else
197 
198 /*
199  * Default configuration
200  */
201 
202 #define SMC_CAN_USE_8BIT	1
203 #define SMC_CAN_USE_16BIT	1
204 #define SMC_CAN_USE_32BIT	1
205 #define SMC_NOWAIT		1
206 
207 #define SMC_IO_SHIFT		(lp->io_shift)
208 
209 #define SMC_inb(a, r)		ioread8((a) + (r))
210 #define SMC_inw(a, r)		ioread16((a) + (r))
211 #define SMC_inl(a, r)		ioread32((a) + (r))
212 #define SMC_outb(v, a, r)	iowrite8(v, (a) + (r))
213 #define SMC_outw(lp, v, a, r)	iowrite16(v, (a) + (r))
214 #define SMC_outl(v, a, r)	iowrite32(v, (a) + (r))
215 #define SMC_insw(a, r, p, l)	ioread16_rep((a) + (r), p, l)
216 #define SMC_outsw(a, r, p, l)	iowrite16_rep((a) + (r), p, l)
217 #define SMC_insl(a, r, p, l)	ioread32_rep((a) + (r), p, l)
218 #define SMC_outsl(a, r, p, l)	iowrite32_rep((a) + (r), p, l)
219 
220 #define RPC_LSA_DEFAULT		RPC_LED_100_10
221 #define RPC_LSB_DEFAULT		RPC_LED_TX_RX
222 
223 #endif
224 
225 
226 /* store this information for the driver.. */
227 struct smc_local {
228 	/*
229 	 * If I have to wait until memory is available to send a
230 	 * packet, I will store the skbuff here, until I get the
231 	 * desired memory.  Then, I'll send it out and free it.
232 	 */
233 	struct sk_buff *pending_tx_skb;
234 	struct tasklet_struct tx_task;
235 
236 	struct gpio_desc *power_gpio;
237 	struct gpio_desc *reset_gpio;
238 
239 	/* version/revision of the SMC91x chip */
240 	int	version;
241 
242 	/* Contains the current active transmission mode */
243 	int	tcr_cur_mode;
244 
245 	/* Contains the current active receive mode */
246 	int	rcr_cur_mode;
247 
248 	/* Contains the current active receive/phy mode */
249 	int	rpc_cur_mode;
250 	int	ctl_rfduplx;
251 	int	ctl_rspeed;
252 
253 	u32	msg_enable;
254 	u32	phy_type;
255 	struct mii_if_info mii;
256 
257 	/* work queue */
258 	struct work_struct phy_configure;
259 	struct net_device *dev;
260 	int	work_pending;
261 
262 	spinlock_t lock;
263 
264 #ifdef CONFIG_ARCH_PXA
265 	/* DMA needs the physical address of the chip */
266 	u_long physaddr;
267 	struct device *device;
268 #endif
269 	struct dma_chan *dma_chan;
270 	void __iomem *base;
271 	void __iomem *datacs;
272 
273 	/* the low address lines on some platforms aren't connected... */
274 	int	io_shift;
275 	/* on some platforms a u16 write must be 4-bytes aligned */
276 	bool	half_word_align4;
277 
278 	struct smc91x_platdata cfg;
279 };
280 
281 #define SMC_8BIT(p)	((p)->cfg.flags & SMC91X_USE_8BIT)
282 #define SMC_16BIT(p)	((p)->cfg.flags & SMC91X_USE_16BIT)
283 #define SMC_32BIT(p)	((p)->cfg.flags & SMC91X_USE_32BIT)
284 
285 #ifdef CONFIG_ARCH_PXA
286 /*
287  * Let's use the DMA engine on the XScale PXA2xx for RX packets. This is
288  * always happening in irq context so no need to worry about races.  TX is
289  * different and probably not worth it for that reason, and not as critical
290  * as RX which can overrun memory and lose packets.
291  */
292 #include <linux/dma-mapping.h>
293 
294 #ifdef SMC_insl
295 #undef SMC_insl
296 #define SMC_insl(a, r, p, l) \
297 	smc_pxa_dma_insl(a, lp, r, dev->dma, p, l)
298 static inline void
299 smc_pxa_dma_inpump(struct smc_local *lp, u_char *buf, int len)
300 {
301 	dma_addr_t dmabuf;
302 	struct dma_async_tx_descriptor *tx;
303 	dma_cookie_t cookie;
304 	enum dma_status status;
305 	struct dma_tx_state state;
306 
307 	dmabuf = dma_map_single(lp->device, buf, len, DMA_FROM_DEVICE);
308 	tx = dmaengine_prep_slave_single(lp->dma_chan, dmabuf, len,
309 					 DMA_DEV_TO_MEM, 0);
310 	if (tx) {
311 		cookie = dmaengine_submit(tx);
312 		dma_async_issue_pending(lp->dma_chan);
313 		do {
314 			status = dmaengine_tx_status(lp->dma_chan, cookie,
315 						     &state);
316 			cpu_relax();
317 		} while (status != DMA_COMPLETE && status != DMA_ERROR &&
318 			 state.residue);
319 		dmaengine_terminate_all(lp->dma_chan);
320 	}
321 	dma_unmap_single(lp->device, dmabuf, len, DMA_FROM_DEVICE);
322 }
323 
324 static inline void
325 smc_pxa_dma_insl(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
326 		 u_char *buf, int len)
327 {
328 	struct dma_slave_config	config;
329 	int ret;
330 
331 	/* fallback if no DMA available */
332 	if (!lp->dma_chan) {
333 		readsl(ioaddr + reg, buf, len);
334 		return;
335 	}
336 
337 	/* 64 bit alignment is required for memory to memory DMA */
338 	if ((long)buf & 4) {
339 		*((u32 *)buf) = SMC_inl(ioaddr, reg);
340 		buf += 4;
341 		len--;
342 	}
343 
344 	memset(&config, 0, sizeof(config));
345 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
346 	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
347 	config.src_addr = lp->physaddr + reg;
348 	config.dst_addr = lp->physaddr + reg;
349 	config.src_maxburst = 32;
350 	config.dst_maxburst = 32;
351 	ret = dmaengine_slave_config(lp->dma_chan, &config);
352 	if (ret) {
353 		dev_err(lp->device, "dma channel configuration failed: %d\n",
354 			ret);
355 		return;
356 	}
357 
358 	len *= 4;
359 	smc_pxa_dma_inpump(lp, buf, len);
360 }
361 #endif
362 
363 #ifdef SMC_insw
364 #undef SMC_insw
365 #define SMC_insw(a, r, p, l) \
366 	smc_pxa_dma_insw(a, lp, r, dev->dma, p, l)
367 static inline void
368 smc_pxa_dma_insw(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
369 		 u_char *buf, int len)
370 {
371 	struct dma_slave_config	config;
372 	int ret;
373 
374 	/* fallback if no DMA available */
375 	if (!lp->dma_chan) {
376 		readsw(ioaddr + reg, buf, len);
377 		return;
378 	}
379 
380 	/* 64 bit alignment is required for memory to memory DMA */
381 	while ((long)buf & 6) {
382 		*((u16 *)buf) = SMC_inw(ioaddr, reg);
383 		buf += 2;
384 		len--;
385 	}
386 
387 	memset(&config, 0, sizeof(config));
388 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
389 	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
390 	config.src_addr = lp->physaddr + reg;
391 	config.dst_addr = lp->physaddr + reg;
392 	config.src_maxburst = 32;
393 	config.dst_maxburst = 32;
394 	ret = dmaengine_slave_config(lp->dma_chan, &config);
395 	if (ret) {
396 		dev_err(lp->device, "dma channel configuration failed: %d\n",
397 			ret);
398 		return;
399 	}
400 
401 	len *= 2;
402 	smc_pxa_dma_inpump(lp, buf, len);
403 }
404 #endif
405 
406 #endif  /* CONFIG_ARCH_PXA */
407 
408 
409 /*
410  * Everything a particular hardware setup needs should have been defined
411  * at this point.  Add stubs for the undefined cases, mainly to avoid
412  * compilation warnings since they'll be optimized away, or to prevent buggy
413  * use of them.
414  */
415 
416 #if ! SMC_CAN_USE_32BIT
417 #define SMC_inl(ioaddr, reg)		({ BUG(); 0; })
418 #define SMC_outl(x, ioaddr, reg)	BUG()
419 #define SMC_insl(a, r, p, l)		BUG()
420 #define SMC_outsl(a, r, p, l)		BUG()
421 #endif
422 
423 #if !defined(SMC_insl) || !defined(SMC_outsl)
424 #define SMC_insl(a, r, p, l)		BUG()
425 #define SMC_outsl(a, r, p, l)		BUG()
426 #endif
427 
428 #if ! SMC_CAN_USE_16BIT
429 
430 #define SMC_outw(lp, x, ioaddr, reg)	SMC_outw_b(x, ioaddr, reg)
431 #define SMC_inw(ioaddr, reg)		SMC_inw_b(ioaddr, reg)
432 #define SMC_insw(a, r, p, l)		BUG()
433 #define SMC_outsw(a, r, p, l)		BUG()
434 
435 #endif
436 
437 #if !defined(SMC_insw) || !defined(SMC_outsw)
438 #define SMC_insw(a, r, p, l)		BUG()
439 #define SMC_outsw(a, r, p, l)		BUG()
440 #endif
441 
442 #if ! SMC_CAN_USE_8BIT
443 #undef SMC_inb
444 #define SMC_inb(ioaddr, reg)		({ BUG(); 0; })
445 #undef SMC_outb
446 #define SMC_outb(x, ioaddr, reg)	BUG()
447 #define SMC_insb(a, r, p, l)		BUG()
448 #define SMC_outsb(a, r, p, l)		BUG()
449 #endif
450 
451 #if !defined(SMC_insb) || !defined(SMC_outsb)
452 #define SMC_insb(a, r, p, l)		BUG()
453 #define SMC_outsb(a, r, p, l)		BUG()
454 #endif
455 
456 #ifndef SMC_CAN_USE_DATACS
457 #define SMC_CAN_USE_DATACS	0
458 #endif
459 
460 #ifndef SMC_IO_SHIFT
461 #define SMC_IO_SHIFT	0
462 #endif
463 
464 #ifndef	SMC_IRQ_FLAGS
465 #define	SMC_IRQ_FLAGS		IRQF_TRIGGER_RISING
466 #endif
467 
468 #ifndef SMC_INTERRUPT_PREAMBLE
469 #define SMC_INTERRUPT_PREAMBLE
470 #endif
471 
472 
473 /* Because of bank switching, the LAN91x uses only 16 I/O ports */
474 #define SMC_IO_EXTENT	(16 << SMC_IO_SHIFT)
475 #define SMC_DATA_EXTENT (4)
476 
477 /*
478  . Bank Select Register:
479  .
480  .		yyyy yyyy 0000 00xx
481  .		xx 		= bank number
482  .		yyyy yyyy	= 0x33, for identification purposes.
483 */
484 #define BANK_SELECT		(14 << SMC_IO_SHIFT)
485 
486 
487 // Transmit Control Register
488 /* BANK 0  */
489 #define TCR_REG(lp) 	SMC_REG(lp, 0x0000, 0)
490 #define TCR_ENABLE	0x0001	// When 1 we can transmit
491 #define TCR_LOOP	0x0002	// Controls output pin LBK
492 #define TCR_FORCOL	0x0004	// When 1 will force a collision
493 #define TCR_PAD_EN	0x0080	// When 1 will pad tx frames < 64 bytes w/0
494 #define TCR_NOCRC	0x0100	// When 1 will not append CRC to tx frames
495 #define TCR_MON_CSN	0x0400	// When 1 tx monitors carrier
496 #define TCR_FDUPLX    	0x0800  // When 1 enables full duplex operation
497 #define TCR_STP_SQET	0x1000	// When 1 stops tx if Signal Quality Error
498 #define TCR_EPH_LOOP	0x2000	// When 1 enables EPH block loopback
499 #define TCR_SWFDUP	0x8000	// When 1 enables Switched Full Duplex mode
500 
501 #define TCR_CLEAR	0	/* do NOTHING */
502 /* the default settings for the TCR register : */
503 #define TCR_DEFAULT	(TCR_ENABLE | TCR_PAD_EN)
504 
505 
506 // EPH Status Register
507 /* BANK 0  */
508 #define EPH_STATUS_REG(lp)	SMC_REG(lp, 0x0002, 0)
509 #define ES_TX_SUC	0x0001	// Last TX was successful
510 #define ES_SNGL_COL	0x0002	// Single collision detected for last tx
511 #define ES_MUL_COL	0x0004	// Multiple collisions detected for last tx
512 #define ES_LTX_MULT	0x0008	// Last tx was a multicast
513 #define ES_16COL	0x0010	// 16 Collisions Reached
514 #define ES_SQET		0x0020	// Signal Quality Error Test
515 #define ES_LTXBRD	0x0040	// Last tx was a broadcast
516 #define ES_TXDEFR	0x0080	// Transmit Deferred
517 #define ES_LATCOL	0x0200	// Late collision detected on last tx
518 #define ES_LOSTCARR	0x0400	// Lost Carrier Sense
519 #define ES_EXC_DEF	0x0800	// Excessive Deferral
520 #define ES_CTR_ROL	0x1000	// Counter Roll Over indication
521 #define ES_LINK_OK	0x4000	// Driven by inverted value of nLNK pin
522 #define ES_TXUNRN	0x8000	// Tx Underrun
523 
524 
525 // Receive Control Register
526 /* BANK 0  */
527 #define RCR_REG(lp)		SMC_REG(lp, 0x0004, 0)
528 #define RCR_RX_ABORT	0x0001	// Set if a rx frame was aborted
529 #define RCR_PRMS	0x0002	// Enable promiscuous mode
530 #define RCR_ALMUL	0x0004	// When set accepts all multicast frames
531 #define RCR_RXEN	0x0100	// IFF this is set, we can receive packets
532 #define RCR_STRIP_CRC	0x0200	// When set strips CRC from rx packets
533 #define RCR_ABORT_ENB	0x0200	// When set will abort rx on collision
534 #define RCR_FILT_CAR	0x0400	// When set filters leading 12 bit s of carrier
535 #define RCR_SOFTRST	0x8000 	// resets the chip
536 
537 /* the normal settings for the RCR register : */
538 #define RCR_DEFAULT	(RCR_STRIP_CRC | RCR_RXEN)
539 #define RCR_CLEAR	0x0	// set it to a base state
540 
541 
542 // Counter Register
543 /* BANK 0  */
544 #define COUNTER_REG(lp)	SMC_REG(lp, 0x0006, 0)
545 
546 
547 // Memory Information Register
548 /* BANK 0  */
549 #define MIR_REG(lp)		SMC_REG(lp, 0x0008, 0)
550 
551 
552 // Receive/Phy Control Register
553 /* BANK 0  */
554 #define RPC_REG(lp)		SMC_REG(lp, 0x000A, 0)
555 #define RPC_SPEED	0x2000	// When 1 PHY is in 100Mbps mode.
556 #define RPC_DPLX	0x1000	// When 1 PHY is in Full-Duplex Mode
557 #define RPC_ANEG	0x0800	// When 1 PHY is in Auto-Negotiate Mode
558 #define RPC_LSXA_SHFT	5	// Bits to shift LS2A,LS1A,LS0A to lsb
559 #define RPC_LSXB_SHFT	2	// Bits to get LS2B,LS1B,LS0B to lsb
560 
561 #ifndef RPC_LSA_DEFAULT
562 #define RPC_LSA_DEFAULT	RPC_LED_100
563 #endif
564 #ifndef RPC_LSB_DEFAULT
565 #define RPC_LSB_DEFAULT RPC_LED_FD
566 #endif
567 
568 #define RPC_DEFAULT (RPC_ANEG | RPC_SPEED | RPC_DPLX)
569 
570 
571 /* Bank 0 0x0C is reserved */
572 
573 // Bank Select Register
574 /* All Banks */
575 #define BSR_REG		0x000E
576 
577 
578 // Configuration Reg
579 /* BANK 1 */
580 #define CONFIG_REG(lp)	SMC_REG(lp, 0x0000,	1)
581 #define CONFIG_EXT_PHY	0x0200	// 1=external MII, 0=internal Phy
582 #define CONFIG_GPCNTRL	0x0400	// Inverse value drives pin nCNTRL
583 #define CONFIG_NO_WAIT	0x1000	// When 1 no extra wait states on ISA bus
584 #define CONFIG_EPH_POWER_EN 0x8000 // When 0 EPH is placed into low power mode.
585 
586 // Default is powered-up, Internal Phy, Wait States, and pin nCNTRL=low
587 #define CONFIG_DEFAULT	(CONFIG_EPH_POWER_EN)
588 
589 
590 // Base Address Register
591 /* BANK 1 */
592 #define BASE_REG(lp)	SMC_REG(lp, 0x0002, 1)
593 
594 
595 // Individual Address Registers
596 /* BANK 1 */
597 #define ADDR0_REG(lp)	SMC_REG(lp, 0x0004, 1)
598 #define ADDR1_REG(lp)	SMC_REG(lp, 0x0006, 1)
599 #define ADDR2_REG(lp)	SMC_REG(lp, 0x0008, 1)
600 
601 
602 // General Purpose Register
603 /* BANK 1 */
604 #define GP_REG(lp)		SMC_REG(lp, 0x000A, 1)
605 
606 
607 // Control Register
608 /* BANK 1 */
609 #define CTL_REG(lp)		SMC_REG(lp, 0x000C, 1)
610 #define CTL_RCV_BAD	0x4000 // When 1 bad CRC packets are received
611 #define CTL_AUTO_RELEASE 0x0800 // When 1 tx pages are released automatically
612 #define CTL_LE_ENABLE	0x0080 // When 1 enables Link Error interrupt
613 #define CTL_CR_ENABLE	0x0040 // When 1 enables Counter Rollover interrupt
614 #define CTL_TE_ENABLE	0x0020 // When 1 enables Transmit Error interrupt
615 #define CTL_EEPROM_SELECT 0x0004 // Controls EEPROM reload & store
616 #define CTL_RELOAD	0x0002 // When set reads EEPROM into registers
617 #define CTL_STORE	0x0001 // When set stores registers into EEPROM
618 
619 
620 // MMU Command Register
621 /* BANK 2 */
622 #define MMU_CMD_REG(lp)	SMC_REG(lp, 0x0000, 2)
623 #define MC_BUSY		1	// When 1 the last release has not completed
624 #define MC_NOP		(0<<5)	// No Op
625 #define MC_ALLOC	(1<<5) 	// OR with number of 256 byte packets
626 #define MC_RESET	(2<<5)	// Reset MMU to initial state
627 #define MC_REMOVE	(3<<5) 	// Remove the current rx packet
628 #define MC_RELEASE  	(4<<5) 	// Remove and release the current rx packet
629 #define MC_FREEPKT  	(5<<5) 	// Release packet in PNR register
630 #define MC_ENQUEUE	(6<<5)	// Enqueue the packet for transmit
631 #define MC_RSTTXFIFO	(7<<5)	// Reset the TX FIFOs
632 
633 
634 // Packet Number Register
635 /* BANK 2 */
636 #define PN_REG(lp)		SMC_REG(lp, 0x0002, 2)
637 
638 
639 // Allocation Result Register
640 /* BANK 2 */
641 #define AR_REG(lp)		SMC_REG(lp, 0x0003, 2)
642 #define AR_FAILED	0x80	// Alocation Failed
643 
644 
645 // TX FIFO Ports Register
646 /* BANK 2 */
647 #define TXFIFO_REG(lp)	SMC_REG(lp, 0x0004, 2)
648 #define TXFIFO_TEMPTY	0x80	// TX FIFO Empty
649 
650 // RX FIFO Ports Register
651 /* BANK 2 */
652 #define RXFIFO_REG(lp)	SMC_REG(lp, 0x0005, 2)
653 #define RXFIFO_REMPTY	0x80	// RX FIFO Empty
654 
655 #define FIFO_REG(lp)	SMC_REG(lp, 0x0004, 2)
656 
657 // Pointer Register
658 /* BANK 2 */
659 #define PTR_REG(lp)		SMC_REG(lp, 0x0006, 2)
660 #define PTR_RCV		0x8000 // 1=Receive area, 0=Transmit area
661 #define PTR_AUTOINC 	0x4000 // Auto increment the pointer on each access
662 #define PTR_READ	0x2000 // When 1 the operation is a read
663 
664 
665 // Data Register
666 /* BANK 2 */
667 #define DATA_REG(lp)	SMC_REG(lp, 0x0008, 2)
668 
669 
670 // Interrupt Status/Acknowledge Register
671 /* BANK 2 */
672 #define INT_REG(lp)		SMC_REG(lp, 0x000C, 2)
673 
674 
675 // Interrupt Mask Register
676 /* BANK 2 */
677 #define IM_REG(lp)		SMC_REG(lp, 0x000D, 2)
678 #define IM_MDINT	0x80 // PHY MI Register 18 Interrupt
679 #define IM_ERCV_INT	0x40 // Early Receive Interrupt
680 #define IM_EPH_INT	0x20 // Set by Ethernet Protocol Handler section
681 #define IM_RX_OVRN_INT	0x10 // Set by Receiver Overruns
682 #define IM_ALLOC_INT	0x08 // Set when allocation request is completed
683 #define IM_TX_EMPTY_INT	0x04 // Set if the TX FIFO goes empty
684 #define IM_TX_INT	0x02 // Transmit Interrupt
685 #define IM_RCV_INT	0x01 // Receive Interrupt
686 
687 
688 // Multicast Table Registers
689 /* BANK 3 */
690 #define MCAST_REG1(lp)	SMC_REG(lp, 0x0000, 3)
691 #define MCAST_REG2(lp)	SMC_REG(lp, 0x0002, 3)
692 #define MCAST_REG3(lp)	SMC_REG(lp, 0x0004, 3)
693 #define MCAST_REG4(lp)	SMC_REG(lp, 0x0006, 3)
694 
695 
696 // Management Interface Register (MII)
697 /* BANK 3 */
698 #define MII_REG(lp)		SMC_REG(lp, 0x0008, 3)
699 #define MII_MSK_CRS100	0x4000 // Disables CRS100 detection during tx half dup
700 #define MII_MDOE	0x0008 // MII Output Enable
701 #define MII_MCLK	0x0004 // MII Clock, pin MDCLK
702 #define MII_MDI		0x0002 // MII Input, pin MDI
703 #define MII_MDO		0x0001 // MII Output, pin MDO
704 
705 
706 // Revision Register
707 /* BANK 3 */
708 /* ( hi: chip id   low: rev # ) */
709 #define REV_REG(lp)		SMC_REG(lp, 0x000A, 3)
710 
711 
712 // Early RCV Register
713 /* BANK 3 */
714 /* this is NOT on SMC9192 */
715 #define ERCV_REG(lp)	SMC_REG(lp, 0x000C, 3)
716 #define ERCV_RCV_DISCRD	0x0080 // When 1 discards a packet being received
717 #define ERCV_THRESHOLD	0x001F // ERCV Threshold Mask
718 
719 
720 // External Register
721 /* BANK 7 */
722 #define EXT_REG(lp)		SMC_REG(lp, 0x0000, 7)
723 
724 
725 #define CHIP_9192	3
726 #define CHIP_9194	4
727 #define CHIP_9195	5
728 #define CHIP_9196	6
729 #define CHIP_91100	7
730 #define CHIP_91100FD	8
731 #define CHIP_91111FD	9
732 
733 static const char * chip_ids[ 16 ] =  {
734 	NULL, NULL, NULL,
735 	/* 3 */ "SMC91C90/91C92",
736 	/* 4 */ "SMC91C94",
737 	/* 5 */ "SMC91C95",
738 	/* 6 */ "SMC91C96",
739 	/* 7 */ "SMC91C100",
740 	/* 8 */ "SMC91C100FD",
741 	/* 9 */ "SMC91C11xFD",
742 	NULL, NULL, NULL,
743 	NULL, NULL, NULL};
744 
745 
746 /*
747  . Receive status bits
748 */
749 #define RS_ALGNERR	0x8000
750 #define RS_BRODCAST	0x4000
751 #define RS_BADCRC	0x2000
752 #define RS_ODDFRAME	0x1000
753 #define RS_TOOLONG	0x0800
754 #define RS_TOOSHORT	0x0400
755 #define RS_MULTICAST	0x0001
756 #define RS_ERRORS	(RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT)
757 
758 
759 /*
760  * PHY IDs
761  *  LAN83C183 == LAN91C111 Internal PHY
762  */
763 #define PHY_LAN83C183	0x0016f840
764 #define PHY_LAN83C180	0x02821c50
765 
766 /*
767  * PHY Register Addresses (LAN91C111 Internal PHY)
768  *
769  * Generic PHY registers can be found in <linux/mii.h>
770  *
771  * These phy registers are specific to our on-board phy.
772  */
773 
774 // PHY Configuration Register 1
775 #define PHY_CFG1_REG		0x10
776 #define PHY_CFG1_LNKDIS		0x8000	// 1=Rx Link Detect Function disabled
777 #define PHY_CFG1_XMTDIS		0x4000	// 1=TP Transmitter Disabled
778 #define PHY_CFG1_XMTPDN		0x2000	// 1=TP Transmitter Powered Down
779 #define PHY_CFG1_BYPSCR		0x0400	// 1=Bypass scrambler/descrambler
780 #define PHY_CFG1_UNSCDS		0x0200	// 1=Unscramble Idle Reception Disable
781 #define PHY_CFG1_EQLZR		0x0100	// 1=Rx Equalizer Disabled
782 #define PHY_CFG1_CABLE		0x0080	// 1=STP(150ohm), 0=UTP(100ohm)
783 #define PHY_CFG1_RLVL0		0x0040	// 1=Rx Squelch level reduced by 4.5db
784 #define PHY_CFG1_TLVL_SHIFT	2	// Transmit Output Level Adjust
785 #define PHY_CFG1_TLVL_MASK	0x003C
786 #define PHY_CFG1_TRF_MASK	0x0003	// Transmitter Rise/Fall time
787 
788 
789 // PHY Configuration Register 2
790 #define PHY_CFG2_REG		0x11
791 #define PHY_CFG2_APOLDIS	0x0020	// 1=Auto Polarity Correction disabled
792 #define PHY_CFG2_JABDIS		0x0010	// 1=Jabber disabled
793 #define PHY_CFG2_MREG		0x0008	// 1=Multiple register access (MII mgt)
794 #define PHY_CFG2_INTMDIO	0x0004	// 1=Interrupt signaled with MDIO pulseo
795 
796 // PHY Status Output (and Interrupt status) Register
797 #define PHY_INT_REG		0x12	// Status Output (Interrupt Status)
798 #define PHY_INT_INT		0x8000	// 1=bits have changed since last read
799 #define PHY_INT_LNKFAIL		0x4000	// 1=Link Not detected
800 #define PHY_INT_LOSSSYNC	0x2000	// 1=Descrambler has lost sync
801 #define PHY_INT_CWRD		0x1000	// 1=Invalid 4B5B code detected on rx
802 #define PHY_INT_SSD		0x0800	// 1=No Start Of Stream detected on rx
803 #define PHY_INT_ESD		0x0400	// 1=No End Of Stream detected on rx
804 #define PHY_INT_RPOL		0x0200	// 1=Reverse Polarity detected
805 #define PHY_INT_JAB		0x0100	// 1=Jabber detected
806 #define PHY_INT_SPDDET		0x0080	// 1=100Base-TX mode, 0=10Base-T mode
807 #define PHY_INT_DPLXDET		0x0040	// 1=Device in Full Duplex
808 
809 // PHY Interrupt/Status Mask Register
810 #define PHY_MASK_REG		0x13	// Interrupt Mask
811 // Uses the same bit definitions as PHY_INT_REG
812 
813 
814 /*
815  * SMC91C96 ethernet config and status registers.
816  * These are in the "attribute" space.
817  */
818 #define ECOR			0x8000
819 #define ECOR_RESET		0x80
820 #define ECOR_LEVEL_IRQ		0x40
821 #define ECOR_WR_ATTRIB		0x04
822 #define ECOR_ENABLE		0x01
823 
824 #define ECSR			0x8002
825 #define ECSR_IOIS8		0x20
826 #define ECSR_PWRDWN		0x04
827 #define ECSR_INT		0x02
828 
829 #define ATTRIB_SIZE		((64*1024) << SMC_IO_SHIFT)
830 
831 
832 /*
833  * Macros to abstract register access according to the data bus
834  * capabilities.  Please use those and not the in/out primitives.
835  * Note: the following macros do *not* select the bank -- this must
836  * be done separately as needed in the main code.  The SMC_REG() macro
837  * only uses the bank argument for debugging purposes (when enabled).
838  *
839  * Note: despite inline functions being safer, everything leading to this
840  * should preferably be macros to let BUG() display the line number in
841  * the core source code since we're interested in the top call site
842  * not in any inline function location.
843  */
844 
845 #if SMC_DEBUG > 0
846 #define SMC_REG(lp, reg, bank)					\
847 	({								\
848 		int __b = SMC_CURRENT_BANK(lp);			\
849 		if (unlikely((__b & ~0xf0) != (0x3300 | bank))) {	\
850 			pr_err("%s: bank reg screwed (0x%04x)\n",	\
851 			       CARDNAME, __b);				\
852 			BUG();						\
853 		}							\
854 		reg<<SMC_IO_SHIFT;					\
855 	})
856 #else
857 #define SMC_REG(lp, reg, bank)	(reg<<SMC_IO_SHIFT)
858 #endif
859 
860 /*
861  * Hack Alert: Some setups just can't write 8 or 16 bits reliably when not
862  * aligned to a 32 bit boundary.  I tell you that does exist!
863  * Fortunately the affected register accesses can be easily worked around
864  * since we can write zeroes to the preceding 16 bits without adverse
865  * effects and use a 32-bit access.
866  *
867  * Enforce it on any 32-bit capable setup for now.
868  */
869 #define SMC_MUST_ALIGN_WRITE(lp)	SMC_32BIT(lp)
870 
871 #define SMC_GET_PN(lp)						\
872 	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, PN_REG(lp)))	\
873 				: (SMC_inw(ioaddr, PN_REG(lp)) & 0xFF))
874 
875 #define SMC_SET_PN(lp, x)						\
876 	do {								\
877 		if (SMC_MUST_ALIGN_WRITE(lp))				\
878 			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 0, 2));	\
879 		else if (SMC_8BIT(lp))				\
880 			SMC_outb(x, ioaddr, PN_REG(lp));		\
881 		else							\
882 			SMC_outw(lp, x, ioaddr, PN_REG(lp));		\
883 	} while (0)
884 
885 #define SMC_GET_AR(lp)						\
886 	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, AR_REG(lp)))	\
887 				: (SMC_inw(ioaddr, PN_REG(lp)) >> 8))
888 
889 #define SMC_GET_TXFIFO(lp)						\
890 	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, TXFIFO_REG(lp)))	\
891 				: (SMC_inw(ioaddr, TXFIFO_REG(lp)) & 0xFF))
892 
893 #define SMC_GET_RXFIFO(lp)						\
894 	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, RXFIFO_REG(lp)))	\
895 				: (SMC_inw(ioaddr, TXFIFO_REG(lp)) >> 8))
896 
897 #define SMC_GET_INT(lp)						\
898 	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, INT_REG(lp)))	\
899 				: (SMC_inw(ioaddr, INT_REG(lp)) & 0xFF))
900 
901 #define SMC_ACK_INT(lp, x)						\
902 	do {								\
903 		if (SMC_8BIT(lp))					\
904 			SMC_outb(x, ioaddr, INT_REG(lp));		\
905 		else {							\
906 			unsigned long __flags;				\
907 			int __mask;					\
908 			local_irq_save(__flags);			\
909 			__mask = SMC_inw(ioaddr, INT_REG(lp)) & ~0xff; \
910 			SMC_outw(lp, __mask | (x), ioaddr, INT_REG(lp)); \
911 			local_irq_restore(__flags);			\
912 		}							\
913 	} while (0)
914 
915 #define SMC_GET_INT_MASK(lp)						\
916 	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, IM_REG(lp)))	\
917 				: (SMC_inw(ioaddr, INT_REG(lp)) >> 8))
918 
919 #define SMC_SET_INT_MASK(lp, x)					\
920 	do {								\
921 		if (SMC_8BIT(lp))					\
922 			SMC_outb(x, ioaddr, IM_REG(lp));		\
923 		else							\
924 			SMC_outw(lp, (x) << 8, ioaddr, INT_REG(lp));	\
925 	} while (0)
926 
927 #define SMC_CURRENT_BANK(lp)	SMC_inw(ioaddr, BANK_SELECT)
928 
929 #define SMC_SELECT_BANK(lp, x)					\
930 	do {								\
931 		if (SMC_MUST_ALIGN_WRITE(lp))				\
932 			SMC_outl((x)<<16, ioaddr, 12<<SMC_IO_SHIFT);	\
933 		else							\
934 			SMC_outw(lp, x, ioaddr, BANK_SELECT);		\
935 	} while (0)
936 
937 #define SMC_GET_BASE(lp)		SMC_inw(ioaddr, BASE_REG(lp))
938 
939 #define SMC_SET_BASE(lp, x)	SMC_outw(lp, x, ioaddr, BASE_REG(lp))
940 
941 #define SMC_GET_CONFIG(lp)	SMC_inw(ioaddr, CONFIG_REG(lp))
942 
943 #define SMC_SET_CONFIG(lp, x)	SMC_outw(lp, x, ioaddr, CONFIG_REG(lp))
944 
945 #define SMC_GET_COUNTER(lp)	SMC_inw(ioaddr, COUNTER_REG(lp))
946 
947 #define SMC_GET_CTL(lp)		SMC_inw(ioaddr, CTL_REG(lp))
948 
949 #define SMC_SET_CTL(lp, x)	SMC_outw(lp, x, ioaddr, CTL_REG(lp))
950 
951 #define SMC_GET_MII(lp)		SMC_inw(ioaddr, MII_REG(lp))
952 
953 #define SMC_GET_GP(lp)		SMC_inw(ioaddr, GP_REG(lp))
954 
955 #define SMC_SET_GP(lp, x)						\
956 	do {								\
957 		if (SMC_MUST_ALIGN_WRITE(lp))				\
958 			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 1));	\
959 		else							\
960 			SMC_outw(lp, x, ioaddr, GP_REG(lp));		\
961 	} while (0)
962 
963 #define SMC_SET_MII(lp, x)	SMC_outw(lp, x, ioaddr, MII_REG(lp))
964 
965 #define SMC_GET_MIR(lp)		SMC_inw(ioaddr, MIR_REG(lp))
966 
967 #define SMC_SET_MIR(lp, x)	SMC_outw(lp, x, ioaddr, MIR_REG(lp))
968 
969 #define SMC_GET_MMU_CMD(lp)	SMC_inw(ioaddr, MMU_CMD_REG(lp))
970 
971 #define SMC_SET_MMU_CMD(lp, x)	SMC_outw(lp, x, ioaddr, MMU_CMD_REG(lp))
972 
973 #define SMC_GET_FIFO(lp)	SMC_inw(ioaddr, FIFO_REG(lp))
974 
975 #define SMC_GET_PTR(lp)		SMC_inw(ioaddr, PTR_REG(lp))
976 
977 #define SMC_SET_PTR(lp, x)						\
978 	do {								\
979 		if (SMC_MUST_ALIGN_WRITE(lp))				\
980 			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 4, 2));	\
981 		else							\
982 			SMC_outw(lp, x, ioaddr, PTR_REG(lp));		\
983 	} while (0)
984 
985 #define SMC_GET_EPH_STATUS(lp)	SMC_inw(ioaddr, EPH_STATUS_REG(lp))
986 
987 #define SMC_GET_RCR(lp)		SMC_inw(ioaddr, RCR_REG(lp))
988 
989 #define SMC_SET_RCR(lp, x)		SMC_outw(lp, x, ioaddr, RCR_REG(lp))
990 
991 #define SMC_GET_REV(lp)		SMC_inw(ioaddr, REV_REG(lp))
992 
993 #define SMC_GET_RPC(lp)		SMC_inw(ioaddr, RPC_REG(lp))
994 
995 #define SMC_SET_RPC(lp, x)						\
996 	do {								\
997 		if (SMC_MUST_ALIGN_WRITE(lp))				\
998 			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 0));	\
999 		else							\
1000 			SMC_outw(lp, x, ioaddr, RPC_REG(lp));		\
1001 	} while (0)
1002 
1003 #define SMC_GET_TCR(lp)		SMC_inw(ioaddr, TCR_REG(lp))
1004 
1005 #define SMC_SET_TCR(lp, x)	SMC_outw(lp, x, ioaddr, TCR_REG(lp))
1006 
1007 #ifndef SMC_GET_MAC_ADDR
1008 #define SMC_GET_MAC_ADDR(lp, addr)					\
1009 	do {								\
1010 		unsigned int __v;					\
1011 		__v = SMC_inw(ioaddr, ADDR0_REG(lp));			\
1012 		addr[0] = __v; addr[1] = __v >> 8;			\
1013 		__v = SMC_inw(ioaddr, ADDR1_REG(lp));			\
1014 		addr[2] = __v; addr[3] = __v >> 8;			\
1015 		__v = SMC_inw(ioaddr, ADDR2_REG(lp));			\
1016 		addr[4] = __v; addr[5] = __v >> 8;			\
1017 	} while (0)
1018 #endif
1019 
1020 #define SMC_SET_MAC_ADDR(lp, addr)					\
1021 	do {								\
1022 		SMC_outw(lp, addr[0] | (addr[1] << 8), ioaddr, ADDR0_REG(lp)); \
1023 		SMC_outw(lp, addr[2] | (addr[3] << 8), ioaddr, ADDR1_REG(lp)); \
1024 		SMC_outw(lp, addr[4] | (addr[5] << 8), ioaddr, ADDR2_REG(lp)); \
1025 	} while (0)
1026 
1027 #define SMC_SET_MCAST(lp, x)						\
1028 	do {								\
1029 		const unsigned char *mt = (x);				\
1030 		SMC_outw(lp, mt[0] | (mt[1] << 8), ioaddr, MCAST_REG1(lp)); \
1031 		SMC_outw(lp, mt[2] | (mt[3] << 8), ioaddr, MCAST_REG2(lp)); \
1032 		SMC_outw(lp, mt[4] | (mt[5] << 8), ioaddr, MCAST_REG3(lp)); \
1033 		SMC_outw(lp, mt[6] | (mt[7] << 8), ioaddr, MCAST_REG4(lp)); \
1034 	} while (0)
1035 
1036 #define SMC_PUT_PKT_HDR(lp, status, length)				\
1037 	do {								\
1038 		if (SMC_32BIT(lp))					\
1039 			SMC_outl((status) | (length)<<16, ioaddr,	\
1040 				 DATA_REG(lp));			\
1041 		else {							\
1042 			SMC_outw(lp, status, ioaddr, DATA_REG(lp));	\
1043 			SMC_outw(lp, length, ioaddr, DATA_REG(lp));	\
1044 		}							\
1045 	} while (0)
1046 
1047 #define SMC_GET_PKT_HDR(lp, status, length)				\
1048 	do {								\
1049 		if (SMC_32BIT(lp)) {				\
1050 			unsigned int __val = SMC_inl(ioaddr, DATA_REG(lp)); \
1051 			(status) = __val & 0xffff;			\
1052 			(length) = __val >> 16;				\
1053 		} else {						\
1054 			(status) = SMC_inw(ioaddr, DATA_REG(lp));	\
1055 			(length) = SMC_inw(ioaddr, DATA_REG(lp));	\
1056 		}							\
1057 	} while (0)
1058 
1059 #define SMC_PUSH_DATA(lp, p, l)					\
1060 	do {								\
1061 		if (SMC_32BIT(lp)) {				\
1062 			void *__ptr = (p);				\
1063 			int __len = (l);				\
1064 			void __iomem *__ioaddr = ioaddr;		\
1065 			if (__len >= 2 && (unsigned long)__ptr & 2) {	\
1066 				__len -= 2;				\
1067 				SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1068 				__ptr += 2;				\
1069 			}						\
1070 			if (SMC_CAN_USE_DATACS && lp->datacs)		\
1071 				__ioaddr = lp->datacs;			\
1072 			SMC_outsl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1073 			if (__len & 2) {				\
1074 				__ptr += (__len & ~3);			\
1075 				SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1076 			}						\
1077 		} else if (SMC_16BIT(lp))				\
1078 			SMC_outsw(ioaddr, DATA_REG(lp), p, (l) >> 1);	\
1079 		else if (SMC_8BIT(lp))				\
1080 			SMC_outsb(ioaddr, DATA_REG(lp), p, l);	\
1081 	} while (0)
1082 
1083 #define SMC_PULL_DATA(lp, p, l)					\
1084 	do {								\
1085 		if (SMC_32BIT(lp)) {				\
1086 			void *__ptr = (p);				\
1087 			int __len = (l);				\
1088 			void __iomem *__ioaddr = ioaddr;		\
1089 			if ((unsigned long)__ptr & 2) {			\
1090 				/*					\
1091 				 * We want 32bit alignment here.	\
1092 				 * Since some buses perform a full	\
1093 				 * 32bit fetch even for 16bit data	\
1094 				 * we can't use SMC_inw() here.		\
1095 				 * Back both source (on-chip) and	\
1096 				 * destination pointers of 2 bytes.	\
1097 				 * This is possible since the call to	\
1098 				 * SMC_GET_PKT_HDR() already advanced	\
1099 				 * the source pointer of 4 bytes, and	\
1100 				 * the skb_reserve(skb, 2) advanced	\
1101 				 * the destination pointer of 2 bytes.	\
1102 				 */					\
1103 				__ptr -= 2;				\
1104 				__len += 2;				\
1105 				SMC_SET_PTR(lp,			\
1106 					2|PTR_READ|PTR_RCV|PTR_AUTOINC); \
1107 			}						\
1108 			if (SMC_CAN_USE_DATACS && lp->datacs)		\
1109 				__ioaddr = lp->datacs;			\
1110 			__len += 2;					\
1111 			SMC_insl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1112 		} else if (SMC_16BIT(lp))				\
1113 			SMC_insw(ioaddr, DATA_REG(lp), p, (l) >> 1);	\
1114 		else if (SMC_8BIT(lp))				\
1115 			SMC_insb(ioaddr, DATA_REG(lp), p, l);		\
1116 	} while (0)
1117 
1118 #endif  /* _SMC91X_H_ */
1119