xref: /openbmc/linux/drivers/net/ethernet/smsc/smc91x.c (revision df3305156f989339529b3d6744b898d498fb1f7b)
1 /*
2  * smc91x.c
3  * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
4  *
5  * Copyright (C) 1996 by Erik Stahlman
6  * Copyright (C) 2001 Standard Microsystems Corporation
7  *	Developed by Simple Network Magic Corporation
8  * Copyright (C) 2003 Monta Vista Software, Inc.
9  *	Unified SMC91x driver by Nicolas Pitre
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, see <http://www.gnu.org/licenses/>.
23  *
24  * Arguments:
25  * 	io	= for the base address
26  *	irq	= for the IRQ
27  *	nowait	= 0 for normal wait states, 1 eliminates additional wait states
28  *
29  * original author:
30  * 	Erik Stahlman <erik@vt.edu>
31  *
32  * hardware multicast code:
33  *    Peter Cammaert <pc@denkart.be>
34  *
35  * contributors:
36  * 	Daris A Nevil <dnevil@snmc.com>
37  *      Nicolas Pitre <nico@fluxnic.net>
38  *	Russell King <rmk@arm.linux.org.uk>
39  *
40  * History:
41  *   08/20/00  Arnaldo Melo       fix kfree(skb) in smc_hardware_send_packet
42  *   12/15/00  Christian Jullien  fix "Warning: kfree_skb on hard IRQ"
43  *   03/16/01  Daris A Nevil      modified smc9194.c for use with LAN91C111
44  *   08/22/01  Scott Anderson     merge changes from smc9194 to smc91111
45  *   08/21/01  Pramod B Bhardwaj  added support for RevB of LAN91C111
46  *   12/20/01  Jeff Sutherland    initial port to Xscale PXA with DMA support
47  *   04/07/03  Nicolas Pitre      unified SMC91x driver, killed irq races,
48  *                                more bus abstraction, big cleanup, etc.
49  *   29/09/03  Russell King       - add driver model support
50  *                                - ethtool support
51  *                                - convert to use generic MII interface
52  *                                - add link up/down notification
53  *                                - don't try to handle full negotiation in
54  *                                  smc_phy_configure
55  *                                - clean up (and fix stack overrun) in PHY
56  *                                  MII read/write functions
57  *   22/09/04  Nicolas Pitre      big update (see commit log for details)
58  */
59 static const char version[] =
60 	"smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>";
61 
62 /* Debugging level */
63 #ifndef SMC_DEBUG
64 #define SMC_DEBUG		0
65 #endif
66 
67 
68 #include <linux/module.h>
69 #include <linux/kernel.h>
70 #include <linux/sched.h>
71 #include <linux/delay.h>
72 #include <linux/interrupt.h>
73 #include <linux/irq.h>
74 #include <linux/errno.h>
75 #include <linux/ioport.h>
76 #include <linux/crc32.h>
77 #include <linux/platform_device.h>
78 #include <linux/spinlock.h>
79 #include <linux/ethtool.h>
80 #include <linux/mii.h>
81 #include <linux/workqueue.h>
82 #include <linux/of.h>
83 #include <linux/of_device.h>
84 #include <linux/of_gpio.h>
85 
86 #include <linux/netdevice.h>
87 #include <linux/etherdevice.h>
88 #include <linux/skbuff.h>
89 
90 #include <asm/io.h>
91 
92 #include "smc91x.h"
93 
94 #ifndef SMC_NOWAIT
95 # define SMC_NOWAIT		0
96 #endif
97 static int nowait = SMC_NOWAIT;
98 module_param(nowait, int, 0400);
99 MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
100 
101 /*
102  * Transmit timeout, default 5 seconds.
103  */
104 static int watchdog = 1000;
105 module_param(watchdog, int, 0400);
106 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
107 
108 MODULE_LICENSE("GPL");
109 MODULE_ALIAS("platform:smc91x");
110 
111 /*
112  * The internal workings of the driver.  If you are changing anything
113  * here with the SMC stuff, you should have the datasheet and know
114  * what you are doing.
115  */
116 #define CARDNAME "smc91x"
117 
118 /*
119  * Use power-down feature of the chip
120  */
121 #define POWER_DOWN		1
122 
123 /*
124  * Wait time for memory to be free.  This probably shouldn't be
125  * tuned that much, as waiting for this means nothing else happens
126  * in the system
127  */
128 #define MEMORY_WAIT_TIME	16
129 
130 /*
131  * The maximum number of processing loops allowed for each call to the
132  * IRQ handler.
133  */
134 #define MAX_IRQ_LOOPS		8
135 
136 /*
137  * This selects whether TX packets are sent one by one to the SMC91x internal
138  * memory and throttled until transmission completes.  This may prevent
139  * RX overruns a litle by keeping much of the memory free for RX packets
140  * but to the expense of reduced TX throughput and increased IRQ overhead.
141  * Note this is not a cure for a too slow data bus or too high IRQ latency.
142  */
143 #define THROTTLE_TX_PKTS	0
144 
145 /*
146  * The MII clock high/low times.  2x this number gives the MII clock period
147  * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
148  */
149 #define MII_DELAY		1
150 
151 #define DBG(n, dev, fmt, ...)					\
152 	do {							\
153 		if (SMC_DEBUG >= (n))				\
154 			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
155 	} while (0)
156 
157 #define PRINTK(dev, fmt, ...)					\
158 	do {							\
159 		if (SMC_DEBUG > 0)				\
160 			netdev_info(dev, fmt, ##__VA_ARGS__);	\
161 		else						\
162 			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
163 	} while (0)
164 
165 #if SMC_DEBUG > 3
166 static void PRINT_PKT(u_char *buf, int length)
167 {
168 	int i;
169 	int remainder;
170 	int lines;
171 
172 	lines = length / 16;
173 	remainder = length % 16;
174 
175 	for (i = 0; i < lines ; i ++) {
176 		int cur;
177 		printk(KERN_DEBUG);
178 		for (cur = 0; cur < 8; cur++) {
179 			u_char a, b;
180 			a = *buf++;
181 			b = *buf++;
182 			pr_cont("%02x%02x ", a, b);
183 		}
184 		pr_cont("\n");
185 	}
186 	printk(KERN_DEBUG);
187 	for (i = 0; i < remainder/2 ; i++) {
188 		u_char a, b;
189 		a = *buf++;
190 		b = *buf++;
191 		pr_cont("%02x%02x ", a, b);
192 	}
193 	pr_cont("\n");
194 }
195 #else
196 static inline void PRINT_PKT(u_char *buf, int length) { }
197 #endif
198 
199 
200 /* this enables an interrupt in the interrupt mask register */
201 #define SMC_ENABLE_INT(lp, x) do {					\
202 	unsigned char mask;						\
203 	unsigned long smc_enable_flags;					\
204 	spin_lock_irqsave(&lp->lock, smc_enable_flags);			\
205 	mask = SMC_GET_INT_MASK(lp);					\
206 	mask |= (x);							\
207 	SMC_SET_INT_MASK(lp, mask);					\
208 	spin_unlock_irqrestore(&lp->lock, smc_enable_flags);		\
209 } while (0)
210 
211 /* this disables an interrupt from the interrupt mask register */
212 #define SMC_DISABLE_INT(lp, x) do {					\
213 	unsigned char mask;						\
214 	unsigned long smc_disable_flags;				\
215 	spin_lock_irqsave(&lp->lock, smc_disable_flags);		\
216 	mask = SMC_GET_INT_MASK(lp);					\
217 	mask &= ~(x);							\
218 	SMC_SET_INT_MASK(lp, mask);					\
219 	spin_unlock_irqrestore(&lp->lock, smc_disable_flags);		\
220 } while (0)
221 
222 /*
223  * Wait while MMU is busy.  This is usually in the order of a few nanosecs
224  * if at all, but let's avoid deadlocking the system if the hardware
225  * decides to go south.
226  */
227 #define SMC_WAIT_MMU_BUSY(lp) do {					\
228 	if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) {		\
229 		unsigned long timeout = jiffies + 2;			\
230 		while (SMC_GET_MMU_CMD(lp) & MC_BUSY) {		\
231 			if (time_after(jiffies, timeout)) {		\
232 				netdev_dbg(dev, "timeout %s line %d\n",	\
233 					   __FILE__, __LINE__);		\
234 				break;					\
235 			}						\
236 			cpu_relax();					\
237 		}							\
238 	}								\
239 } while (0)
240 
241 
242 /*
243  * this does a soft reset on the device
244  */
245 static void smc_reset(struct net_device *dev)
246 {
247 	struct smc_local *lp = netdev_priv(dev);
248 	void __iomem *ioaddr = lp->base;
249 	unsigned int ctl, cfg;
250 	struct sk_buff *pending_skb;
251 
252 	DBG(2, dev, "%s\n", __func__);
253 
254 	/* Disable all interrupts, block TX tasklet */
255 	spin_lock_irq(&lp->lock);
256 	SMC_SELECT_BANK(lp, 2);
257 	SMC_SET_INT_MASK(lp, 0);
258 	pending_skb = lp->pending_tx_skb;
259 	lp->pending_tx_skb = NULL;
260 	spin_unlock_irq(&lp->lock);
261 
262 	/* free any pending tx skb */
263 	if (pending_skb) {
264 		dev_kfree_skb(pending_skb);
265 		dev->stats.tx_errors++;
266 		dev->stats.tx_aborted_errors++;
267 	}
268 
269 	/*
270 	 * This resets the registers mostly to defaults, but doesn't
271 	 * affect EEPROM.  That seems unnecessary
272 	 */
273 	SMC_SELECT_BANK(lp, 0);
274 	SMC_SET_RCR(lp, RCR_SOFTRST);
275 
276 	/*
277 	 * Setup the Configuration Register
278 	 * This is necessary because the CONFIG_REG is not affected
279 	 * by a soft reset
280 	 */
281 	SMC_SELECT_BANK(lp, 1);
282 
283 	cfg = CONFIG_DEFAULT;
284 
285 	/*
286 	 * Setup for fast accesses if requested.  If the card/system
287 	 * can't handle it then there will be no recovery except for
288 	 * a hard reset or power cycle
289 	 */
290 	if (lp->cfg.flags & SMC91X_NOWAIT)
291 		cfg |= CONFIG_NO_WAIT;
292 
293 	/*
294 	 * Release from possible power-down state
295 	 * Configuration register is not affected by Soft Reset
296 	 */
297 	cfg |= CONFIG_EPH_POWER_EN;
298 
299 	SMC_SET_CONFIG(lp, cfg);
300 
301 	/* this should pause enough for the chip to be happy */
302 	/*
303 	 * elaborate?  What does the chip _need_? --jgarzik
304 	 *
305 	 * This seems to be undocumented, but something the original
306 	 * driver(s) have always done.  Suspect undocumented timing
307 	 * info/determined empirically. --rmk
308 	 */
309 	udelay(1);
310 
311 	/* Disable transmit and receive functionality */
312 	SMC_SELECT_BANK(lp, 0);
313 	SMC_SET_RCR(lp, RCR_CLEAR);
314 	SMC_SET_TCR(lp, TCR_CLEAR);
315 
316 	SMC_SELECT_BANK(lp, 1);
317 	ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
318 
319 	/*
320 	 * Set the control register to automatically release successfully
321 	 * transmitted packets, to make the best use out of our limited
322 	 * memory
323 	 */
324 	if(!THROTTLE_TX_PKTS)
325 		ctl |= CTL_AUTO_RELEASE;
326 	else
327 		ctl &= ~CTL_AUTO_RELEASE;
328 	SMC_SET_CTL(lp, ctl);
329 
330 	/* Reset the MMU */
331 	SMC_SELECT_BANK(lp, 2);
332 	SMC_SET_MMU_CMD(lp, MC_RESET);
333 	SMC_WAIT_MMU_BUSY(lp);
334 }
335 
336 /*
337  * Enable Interrupts, Receive, and Transmit
338  */
339 static void smc_enable(struct net_device *dev)
340 {
341 	struct smc_local *lp = netdev_priv(dev);
342 	void __iomem *ioaddr = lp->base;
343 	int mask;
344 
345 	DBG(2, dev, "%s\n", __func__);
346 
347 	/* see the header file for options in TCR/RCR DEFAULT */
348 	SMC_SELECT_BANK(lp, 0);
349 	SMC_SET_TCR(lp, lp->tcr_cur_mode);
350 	SMC_SET_RCR(lp, lp->rcr_cur_mode);
351 
352 	SMC_SELECT_BANK(lp, 1);
353 	SMC_SET_MAC_ADDR(lp, dev->dev_addr);
354 
355 	/* now, enable interrupts */
356 	mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
357 	if (lp->version >= (CHIP_91100 << 4))
358 		mask |= IM_MDINT;
359 	SMC_SELECT_BANK(lp, 2);
360 	SMC_SET_INT_MASK(lp, mask);
361 
362 	/*
363 	 * From this point the register bank must _NOT_ be switched away
364 	 * to something else than bank 2 without proper locking against
365 	 * races with any tasklet or interrupt handlers until smc_shutdown()
366 	 * or smc_reset() is called.
367 	 */
368 }
369 
370 /*
371  * this puts the device in an inactive state
372  */
373 static void smc_shutdown(struct net_device *dev)
374 {
375 	struct smc_local *lp = netdev_priv(dev);
376 	void __iomem *ioaddr = lp->base;
377 	struct sk_buff *pending_skb;
378 
379 	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
380 
381 	/* no more interrupts for me */
382 	spin_lock_irq(&lp->lock);
383 	SMC_SELECT_BANK(lp, 2);
384 	SMC_SET_INT_MASK(lp, 0);
385 	pending_skb = lp->pending_tx_skb;
386 	lp->pending_tx_skb = NULL;
387 	spin_unlock_irq(&lp->lock);
388 	if (pending_skb)
389 		dev_kfree_skb(pending_skb);
390 
391 	/* and tell the card to stay away from that nasty outside world */
392 	SMC_SELECT_BANK(lp, 0);
393 	SMC_SET_RCR(lp, RCR_CLEAR);
394 	SMC_SET_TCR(lp, TCR_CLEAR);
395 
396 #ifdef POWER_DOWN
397 	/* finally, shut the chip down */
398 	SMC_SELECT_BANK(lp, 1);
399 	SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
400 #endif
401 }
402 
403 /*
404  * This is the procedure to handle the receipt of a packet.
405  */
406 static inline void  smc_rcv(struct net_device *dev)
407 {
408 	struct smc_local *lp = netdev_priv(dev);
409 	void __iomem *ioaddr = lp->base;
410 	unsigned int packet_number, status, packet_len;
411 
412 	DBG(3, dev, "%s\n", __func__);
413 
414 	packet_number = SMC_GET_RXFIFO(lp);
415 	if (unlikely(packet_number & RXFIFO_REMPTY)) {
416 		PRINTK(dev, "smc_rcv with nothing on FIFO.\n");
417 		return;
418 	}
419 
420 	/* read from start of packet */
421 	SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
422 
423 	/* First two words are status and packet length */
424 	SMC_GET_PKT_HDR(lp, status, packet_len);
425 	packet_len &= 0x07ff;  /* mask off top bits */
426 	DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
427 	    packet_number, status, packet_len, packet_len);
428 
429 	back:
430 	if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
431 		if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
432 			/* accept VLAN packets */
433 			status &= ~RS_TOOLONG;
434 			goto back;
435 		}
436 		if (packet_len < 6) {
437 			/* bloody hardware */
438 			netdev_err(dev, "fubar (rxlen %u status %x\n",
439 				   packet_len, status);
440 			status |= RS_TOOSHORT;
441 		}
442 		SMC_WAIT_MMU_BUSY(lp);
443 		SMC_SET_MMU_CMD(lp, MC_RELEASE);
444 		dev->stats.rx_errors++;
445 		if (status & RS_ALGNERR)
446 			dev->stats.rx_frame_errors++;
447 		if (status & (RS_TOOSHORT | RS_TOOLONG))
448 			dev->stats.rx_length_errors++;
449 		if (status & RS_BADCRC)
450 			dev->stats.rx_crc_errors++;
451 	} else {
452 		struct sk_buff *skb;
453 		unsigned char *data;
454 		unsigned int data_len;
455 
456 		/* set multicast stats */
457 		if (status & RS_MULTICAST)
458 			dev->stats.multicast++;
459 
460 		/*
461 		 * Actual payload is packet_len - 6 (or 5 if odd byte).
462 		 * We want skb_reserve(2) and the final ctrl word
463 		 * (2 bytes, possibly containing the payload odd byte).
464 		 * Furthermore, we add 2 bytes to allow rounding up to
465 		 * multiple of 4 bytes on 32 bit buses.
466 		 * Hence packet_len - 6 + 2 + 2 + 2.
467 		 */
468 		skb = netdev_alloc_skb(dev, packet_len);
469 		if (unlikely(skb == NULL)) {
470 			SMC_WAIT_MMU_BUSY(lp);
471 			SMC_SET_MMU_CMD(lp, MC_RELEASE);
472 			dev->stats.rx_dropped++;
473 			return;
474 		}
475 
476 		/* Align IP header to 32 bits */
477 		skb_reserve(skb, 2);
478 
479 		/* BUG: the LAN91C111 rev A never sets this bit. Force it. */
480 		if (lp->version == 0x90)
481 			status |= RS_ODDFRAME;
482 
483 		/*
484 		 * If odd length: packet_len - 5,
485 		 * otherwise packet_len - 6.
486 		 * With the trailing ctrl byte it's packet_len - 4.
487 		 */
488 		data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
489 		data = skb_put(skb, data_len);
490 		SMC_PULL_DATA(lp, data, packet_len - 4);
491 
492 		SMC_WAIT_MMU_BUSY(lp);
493 		SMC_SET_MMU_CMD(lp, MC_RELEASE);
494 
495 		PRINT_PKT(data, packet_len - 4);
496 
497 		skb->protocol = eth_type_trans(skb, dev);
498 		netif_rx(skb);
499 		dev->stats.rx_packets++;
500 		dev->stats.rx_bytes += data_len;
501 	}
502 }
503 
504 #ifdef CONFIG_SMP
505 /*
506  * On SMP we have the following problem:
507  *
508  * 	A = smc_hardware_send_pkt()
509  * 	B = smc_hard_start_xmit()
510  * 	C = smc_interrupt()
511  *
512  * A and B can never be executed simultaneously.  However, at least on UP,
513  * it is possible (and even desirable) for C to interrupt execution of
514  * A or B in order to have better RX reliability and avoid overruns.
515  * C, just like A and B, must have exclusive access to the chip and
516  * each of them must lock against any other concurrent access.
517  * Unfortunately this is not possible to have C suspend execution of A or
518  * B taking place on another CPU. On UP this is no an issue since A and B
519  * are run from softirq context and C from hard IRQ context, and there is
520  * no other CPU where concurrent access can happen.
521  * If ever there is a way to force at least B and C to always be executed
522  * on the same CPU then we could use read/write locks to protect against
523  * any other concurrent access and C would always interrupt B. But life
524  * isn't that easy in a SMP world...
525  */
526 #define smc_special_trylock(lock, flags)				\
527 ({									\
528 	int __ret;							\
529 	local_irq_save(flags);						\
530 	__ret = spin_trylock(lock);					\
531 	if (!__ret)							\
532 		local_irq_restore(flags);				\
533 	__ret;								\
534 })
535 #define smc_special_lock(lock, flags)		spin_lock_irqsave(lock, flags)
536 #define smc_special_unlock(lock, flags) 	spin_unlock_irqrestore(lock, flags)
537 #else
538 #define smc_special_trylock(lock, flags)	(flags == flags)
539 #define smc_special_lock(lock, flags)   	do { flags = 0; } while (0)
540 #define smc_special_unlock(lock, flags)	do { flags = 0; } while (0)
541 #endif
542 
543 /*
544  * This is called to actually send a packet to the chip.
545  */
546 static void smc_hardware_send_pkt(unsigned long data)
547 {
548 	struct net_device *dev = (struct net_device *)data;
549 	struct smc_local *lp = netdev_priv(dev);
550 	void __iomem *ioaddr = lp->base;
551 	struct sk_buff *skb;
552 	unsigned int packet_no, len;
553 	unsigned char *buf;
554 	unsigned long flags;
555 
556 	DBG(3, dev, "%s\n", __func__);
557 
558 	if (!smc_special_trylock(&lp->lock, flags)) {
559 		netif_stop_queue(dev);
560 		tasklet_schedule(&lp->tx_task);
561 		return;
562 	}
563 
564 	skb = lp->pending_tx_skb;
565 	if (unlikely(!skb)) {
566 		smc_special_unlock(&lp->lock, flags);
567 		return;
568 	}
569 	lp->pending_tx_skb = NULL;
570 
571 	packet_no = SMC_GET_AR(lp);
572 	if (unlikely(packet_no & AR_FAILED)) {
573 		netdev_err(dev, "Memory allocation failed.\n");
574 		dev->stats.tx_errors++;
575 		dev->stats.tx_fifo_errors++;
576 		smc_special_unlock(&lp->lock, flags);
577 		goto done;
578 	}
579 
580 	/* point to the beginning of the packet */
581 	SMC_SET_PN(lp, packet_no);
582 	SMC_SET_PTR(lp, PTR_AUTOINC);
583 
584 	buf = skb->data;
585 	len = skb->len;
586 	DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
587 	    packet_no, len, len, buf);
588 	PRINT_PKT(buf, len);
589 
590 	/*
591 	 * Send the packet length (+6 for status words, length, and ctl.
592 	 * The card will pad to 64 bytes with zeroes if packet is too small.
593 	 */
594 	SMC_PUT_PKT_HDR(lp, 0, len + 6);
595 
596 	/* send the actual data */
597 	SMC_PUSH_DATA(lp, buf, len & ~1);
598 
599 	/* Send final ctl word with the last byte if there is one */
600 	SMC_outw(((len & 1) ? (0x2000 | buf[len-1]) : 0), ioaddr, DATA_REG(lp));
601 
602 	/*
603 	 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
604 	 * have the effect of having at most one packet queued for TX
605 	 * in the chip's memory at all time.
606 	 *
607 	 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
608 	 * when memory allocation (MC_ALLOC) does not succeed right away.
609 	 */
610 	if (THROTTLE_TX_PKTS)
611 		netif_stop_queue(dev);
612 
613 	/* queue the packet for TX */
614 	SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
615 	smc_special_unlock(&lp->lock, flags);
616 
617 	dev->trans_start = jiffies;
618 	dev->stats.tx_packets++;
619 	dev->stats.tx_bytes += len;
620 
621 	SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
622 
623 done:	if (!THROTTLE_TX_PKTS)
624 		netif_wake_queue(dev);
625 
626 	dev_consume_skb_any(skb);
627 }
628 
629 /*
630  * Since I am not sure if I will have enough room in the chip's ram
631  * to store the packet, I call this routine which either sends it
632  * now, or set the card to generates an interrupt when ready
633  * for the packet.
634  */
635 static int smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
636 {
637 	struct smc_local *lp = netdev_priv(dev);
638 	void __iomem *ioaddr = lp->base;
639 	unsigned int numPages, poll_count, status;
640 	unsigned long flags;
641 
642 	DBG(3, dev, "%s\n", __func__);
643 
644 	BUG_ON(lp->pending_tx_skb != NULL);
645 
646 	/*
647 	 * The MMU wants the number of pages to be the number of 256 bytes
648 	 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
649 	 *
650 	 * The 91C111 ignores the size bits, but earlier models don't.
651 	 *
652 	 * Pkt size for allocating is data length +6 (for additional status
653 	 * words, length and ctl)
654 	 *
655 	 * If odd size then last byte is included in ctl word.
656 	 */
657 	numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
658 	if (unlikely(numPages > 7)) {
659 		netdev_warn(dev, "Far too big packet error.\n");
660 		dev->stats.tx_errors++;
661 		dev->stats.tx_dropped++;
662 		dev_kfree_skb_any(skb);
663 		return NETDEV_TX_OK;
664 	}
665 
666 	smc_special_lock(&lp->lock, flags);
667 
668 	/* now, try to allocate the memory */
669 	SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
670 
671 	/*
672 	 * Poll the chip for a short amount of time in case the
673 	 * allocation succeeds quickly.
674 	 */
675 	poll_count = MEMORY_WAIT_TIME;
676 	do {
677 		status = SMC_GET_INT(lp);
678 		if (status & IM_ALLOC_INT) {
679 			SMC_ACK_INT(lp, IM_ALLOC_INT);
680   			break;
681 		}
682    	} while (--poll_count);
683 
684 	smc_special_unlock(&lp->lock, flags);
685 
686 	lp->pending_tx_skb = skb;
687    	if (!poll_count) {
688 		/* oh well, wait until the chip finds memory later */
689 		netif_stop_queue(dev);
690 		DBG(2, dev, "TX memory allocation deferred.\n");
691 		SMC_ENABLE_INT(lp, IM_ALLOC_INT);
692    	} else {
693 		/*
694 		 * Allocation succeeded: push packet to the chip's own memory
695 		 * immediately.
696 		 */
697 		smc_hardware_send_pkt((unsigned long)dev);
698 	}
699 
700 	return NETDEV_TX_OK;
701 }
702 
703 /*
704  * This handles a TX interrupt, which is only called when:
705  * - a TX error occurred, or
706  * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
707  */
708 static void smc_tx(struct net_device *dev)
709 {
710 	struct smc_local *lp = netdev_priv(dev);
711 	void __iomem *ioaddr = lp->base;
712 	unsigned int saved_packet, packet_no, tx_status, pkt_len;
713 
714 	DBG(3, dev, "%s\n", __func__);
715 
716 	/* If the TX FIFO is empty then nothing to do */
717 	packet_no = SMC_GET_TXFIFO(lp);
718 	if (unlikely(packet_no & TXFIFO_TEMPTY)) {
719 		PRINTK(dev, "smc_tx with nothing on FIFO.\n");
720 		return;
721 	}
722 
723 	/* select packet to read from */
724 	saved_packet = SMC_GET_PN(lp);
725 	SMC_SET_PN(lp, packet_no);
726 
727 	/* read the first word (status word) from this packet */
728 	SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
729 	SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
730 	DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n",
731 	    tx_status, packet_no);
732 
733 	if (!(tx_status & ES_TX_SUC))
734 		dev->stats.tx_errors++;
735 
736 	if (tx_status & ES_LOSTCARR)
737 		dev->stats.tx_carrier_errors++;
738 
739 	if (tx_status & (ES_LATCOL | ES_16COL)) {
740 		PRINTK(dev, "%s occurred on last xmit\n",
741 		       (tx_status & ES_LATCOL) ?
742 			"late collision" : "too many collisions");
743 		dev->stats.tx_window_errors++;
744 		if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
745 			netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n");
746 		}
747 	}
748 
749 	/* kill the packet */
750 	SMC_WAIT_MMU_BUSY(lp);
751 	SMC_SET_MMU_CMD(lp, MC_FREEPKT);
752 
753 	/* Don't restore Packet Number Reg until busy bit is cleared */
754 	SMC_WAIT_MMU_BUSY(lp);
755 	SMC_SET_PN(lp, saved_packet);
756 
757 	/* re-enable transmit */
758 	SMC_SELECT_BANK(lp, 0);
759 	SMC_SET_TCR(lp, lp->tcr_cur_mode);
760 	SMC_SELECT_BANK(lp, 2);
761 }
762 
763 
764 /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
765 
766 static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
767 {
768 	struct smc_local *lp = netdev_priv(dev);
769 	void __iomem *ioaddr = lp->base;
770 	unsigned int mii_reg, mask;
771 
772 	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
773 	mii_reg |= MII_MDOE;
774 
775 	for (mask = 1 << (bits - 1); mask; mask >>= 1) {
776 		if (val & mask)
777 			mii_reg |= MII_MDO;
778 		else
779 			mii_reg &= ~MII_MDO;
780 
781 		SMC_SET_MII(lp, mii_reg);
782 		udelay(MII_DELAY);
783 		SMC_SET_MII(lp, mii_reg | MII_MCLK);
784 		udelay(MII_DELAY);
785 	}
786 }
787 
788 static unsigned int smc_mii_in(struct net_device *dev, int bits)
789 {
790 	struct smc_local *lp = netdev_priv(dev);
791 	void __iomem *ioaddr = lp->base;
792 	unsigned int mii_reg, mask, val;
793 
794 	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
795 	SMC_SET_MII(lp, mii_reg);
796 
797 	for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
798 		if (SMC_GET_MII(lp) & MII_MDI)
799 			val |= mask;
800 
801 		SMC_SET_MII(lp, mii_reg);
802 		udelay(MII_DELAY);
803 		SMC_SET_MII(lp, mii_reg | MII_MCLK);
804 		udelay(MII_DELAY);
805 	}
806 
807 	return val;
808 }
809 
810 /*
811  * Reads a register from the MII Management serial interface
812  */
813 static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
814 {
815 	struct smc_local *lp = netdev_priv(dev);
816 	void __iomem *ioaddr = lp->base;
817 	unsigned int phydata;
818 
819 	SMC_SELECT_BANK(lp, 3);
820 
821 	/* Idle - 32 ones */
822 	smc_mii_out(dev, 0xffffffff, 32);
823 
824 	/* Start code (01) + read (10) + phyaddr + phyreg */
825 	smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
826 
827 	/* Turnaround (2bits) + phydata */
828 	phydata = smc_mii_in(dev, 18);
829 
830 	/* Return to idle state */
831 	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
832 
833 	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
834 	    __func__, phyaddr, phyreg, phydata);
835 
836 	SMC_SELECT_BANK(lp, 2);
837 	return phydata;
838 }
839 
840 /*
841  * Writes a register to the MII Management serial interface
842  */
843 static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
844 			  int phydata)
845 {
846 	struct smc_local *lp = netdev_priv(dev);
847 	void __iomem *ioaddr = lp->base;
848 
849 	SMC_SELECT_BANK(lp, 3);
850 
851 	/* Idle - 32 ones */
852 	smc_mii_out(dev, 0xffffffff, 32);
853 
854 	/* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
855 	smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
856 
857 	/* Return to idle state */
858 	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
859 
860 	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
861 	    __func__, phyaddr, phyreg, phydata);
862 
863 	SMC_SELECT_BANK(lp, 2);
864 }
865 
866 /*
867  * Finds and reports the PHY address
868  */
869 static void smc_phy_detect(struct net_device *dev)
870 {
871 	struct smc_local *lp = netdev_priv(dev);
872 	int phyaddr;
873 
874 	DBG(2, dev, "%s\n", __func__);
875 
876 	lp->phy_type = 0;
877 
878 	/*
879 	 * Scan all 32 PHY addresses if necessary, starting at
880 	 * PHY#1 to PHY#31, and then PHY#0 last.
881 	 */
882 	for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
883 		unsigned int id1, id2;
884 
885 		/* Read the PHY identifiers */
886 		id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
887 		id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
888 
889 		DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n",
890 		    id1, id2);
891 
892 		/* Make sure it is a valid identifier */
893 		if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
894 		    id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
895 			/* Save the PHY's address */
896 			lp->mii.phy_id = phyaddr & 31;
897 			lp->phy_type = id1 << 16 | id2;
898 			break;
899 		}
900 	}
901 }
902 
903 /*
904  * Sets the PHY to a configuration as determined by the user
905  */
906 static int smc_phy_fixed(struct net_device *dev)
907 {
908 	struct smc_local *lp = netdev_priv(dev);
909 	void __iomem *ioaddr = lp->base;
910 	int phyaddr = lp->mii.phy_id;
911 	int bmcr, cfg1;
912 
913 	DBG(3, dev, "%s\n", __func__);
914 
915 	/* Enter Link Disable state */
916 	cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
917 	cfg1 |= PHY_CFG1_LNKDIS;
918 	smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
919 
920 	/*
921 	 * Set our fixed capabilities
922 	 * Disable auto-negotiation
923 	 */
924 	bmcr = 0;
925 
926 	if (lp->ctl_rfduplx)
927 		bmcr |= BMCR_FULLDPLX;
928 
929 	if (lp->ctl_rspeed == 100)
930 		bmcr |= BMCR_SPEED100;
931 
932 	/* Write our capabilities to the phy control register */
933 	smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
934 
935 	/* Re-Configure the Receive/Phy Control register */
936 	SMC_SELECT_BANK(lp, 0);
937 	SMC_SET_RPC(lp, lp->rpc_cur_mode);
938 	SMC_SELECT_BANK(lp, 2);
939 
940 	return 1;
941 }
942 
943 /**
944  * smc_phy_reset - reset the phy
945  * @dev: net device
946  * @phy: phy address
947  *
948  * Issue a software reset for the specified PHY and
949  * wait up to 100ms for the reset to complete.  We should
950  * not access the PHY for 50ms after issuing the reset.
951  *
952  * The time to wait appears to be dependent on the PHY.
953  *
954  * Must be called with lp->lock locked.
955  */
956 static int smc_phy_reset(struct net_device *dev, int phy)
957 {
958 	struct smc_local *lp = netdev_priv(dev);
959 	unsigned int bmcr;
960 	int timeout;
961 
962 	smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
963 
964 	for (timeout = 2; timeout; timeout--) {
965 		spin_unlock_irq(&lp->lock);
966 		msleep(50);
967 		spin_lock_irq(&lp->lock);
968 
969 		bmcr = smc_phy_read(dev, phy, MII_BMCR);
970 		if (!(bmcr & BMCR_RESET))
971 			break;
972 	}
973 
974 	return bmcr & BMCR_RESET;
975 }
976 
977 /**
978  * smc_phy_powerdown - powerdown phy
979  * @dev: net device
980  *
981  * Power down the specified PHY
982  */
983 static void smc_phy_powerdown(struct net_device *dev)
984 {
985 	struct smc_local *lp = netdev_priv(dev);
986 	unsigned int bmcr;
987 	int phy = lp->mii.phy_id;
988 
989 	if (lp->phy_type == 0)
990 		return;
991 
992 	/* We need to ensure that no calls to smc_phy_configure are
993 	   pending.
994 	*/
995 	cancel_work_sync(&lp->phy_configure);
996 
997 	bmcr = smc_phy_read(dev, phy, MII_BMCR);
998 	smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
999 }
1000 
1001 /**
1002  * smc_phy_check_media - check the media status and adjust TCR
1003  * @dev: net device
1004  * @init: set true for initialisation
1005  *
1006  * Select duplex mode depending on negotiation state.  This
1007  * also updates our carrier state.
1008  */
1009 static void smc_phy_check_media(struct net_device *dev, int init)
1010 {
1011 	struct smc_local *lp = netdev_priv(dev);
1012 	void __iomem *ioaddr = lp->base;
1013 
1014 	if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1015 		/* duplex state has changed */
1016 		if (lp->mii.full_duplex) {
1017 			lp->tcr_cur_mode |= TCR_SWFDUP;
1018 		} else {
1019 			lp->tcr_cur_mode &= ~TCR_SWFDUP;
1020 		}
1021 
1022 		SMC_SELECT_BANK(lp, 0);
1023 		SMC_SET_TCR(lp, lp->tcr_cur_mode);
1024 	}
1025 }
1026 
1027 /*
1028  * Configures the specified PHY through the MII management interface
1029  * using Autonegotiation.
1030  * Calls smc_phy_fixed() if the user has requested a certain config.
1031  * If RPC ANEG bit is set, the media selection is dependent purely on
1032  * the selection by the MII (either in the MII BMCR reg or the result
1033  * of autonegotiation.)  If the RPC ANEG bit is cleared, the selection
1034  * is controlled by the RPC SPEED and RPC DPLX bits.
1035  */
1036 static void smc_phy_configure(struct work_struct *work)
1037 {
1038 	struct smc_local *lp =
1039 		container_of(work, struct smc_local, phy_configure);
1040 	struct net_device *dev = lp->dev;
1041 	void __iomem *ioaddr = lp->base;
1042 	int phyaddr = lp->mii.phy_id;
1043 	int my_phy_caps; /* My PHY capabilities */
1044 	int my_ad_caps; /* My Advertised capabilities */
1045 	int status;
1046 
1047 	DBG(3, dev, "smc_program_phy()\n");
1048 
1049 	spin_lock_irq(&lp->lock);
1050 
1051 	/*
1052 	 * We should not be called if phy_type is zero.
1053 	 */
1054 	if (lp->phy_type == 0)
1055 		goto smc_phy_configure_exit;
1056 
1057 	if (smc_phy_reset(dev, phyaddr)) {
1058 		netdev_info(dev, "PHY reset timed out\n");
1059 		goto smc_phy_configure_exit;
1060 	}
1061 
1062 	/*
1063 	 * Enable PHY Interrupts (for register 18)
1064 	 * Interrupts listed here are disabled
1065 	 */
1066 	smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1067 		PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1068 		PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1069 		PHY_INT_SPDDET | PHY_INT_DPLXDET);
1070 
1071 	/* Configure the Receive/Phy Control register */
1072 	SMC_SELECT_BANK(lp, 0);
1073 	SMC_SET_RPC(lp, lp->rpc_cur_mode);
1074 
1075 	/* If the user requested no auto neg, then go set his request */
1076 	if (lp->mii.force_media) {
1077 		smc_phy_fixed(dev);
1078 		goto smc_phy_configure_exit;
1079 	}
1080 
1081 	/* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1082 	my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1083 
1084 	if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1085 		netdev_info(dev, "Auto negotiation NOT supported\n");
1086 		smc_phy_fixed(dev);
1087 		goto smc_phy_configure_exit;
1088 	}
1089 
1090 	my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1091 
1092 	if (my_phy_caps & BMSR_100BASE4)
1093 		my_ad_caps |= ADVERTISE_100BASE4;
1094 	if (my_phy_caps & BMSR_100FULL)
1095 		my_ad_caps |= ADVERTISE_100FULL;
1096 	if (my_phy_caps & BMSR_100HALF)
1097 		my_ad_caps |= ADVERTISE_100HALF;
1098 	if (my_phy_caps & BMSR_10FULL)
1099 		my_ad_caps |= ADVERTISE_10FULL;
1100 	if (my_phy_caps & BMSR_10HALF)
1101 		my_ad_caps |= ADVERTISE_10HALF;
1102 
1103 	/* Disable capabilities not selected by our user */
1104 	if (lp->ctl_rspeed != 100)
1105 		my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1106 
1107 	if (!lp->ctl_rfduplx)
1108 		my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1109 
1110 	/* Update our Auto-Neg Advertisement Register */
1111 	smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1112 	lp->mii.advertising = my_ad_caps;
1113 
1114 	/*
1115 	 * Read the register back.  Without this, it appears that when
1116 	 * auto-negotiation is restarted, sometimes it isn't ready and
1117 	 * the link does not come up.
1118 	 */
1119 	status = smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1120 
1121 	DBG(2, dev, "phy caps=%x\n", my_phy_caps);
1122 	DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps);
1123 
1124 	/* Restart auto-negotiation process in order to advertise my caps */
1125 	smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1126 
1127 	smc_phy_check_media(dev, 1);
1128 
1129 smc_phy_configure_exit:
1130 	SMC_SELECT_BANK(lp, 2);
1131 	spin_unlock_irq(&lp->lock);
1132 }
1133 
1134 /*
1135  * smc_phy_interrupt
1136  *
1137  * Purpose:  Handle interrupts relating to PHY register 18. This is
1138  *  called from the "hard" interrupt handler under our private spinlock.
1139  */
1140 static void smc_phy_interrupt(struct net_device *dev)
1141 {
1142 	struct smc_local *lp = netdev_priv(dev);
1143 	int phyaddr = lp->mii.phy_id;
1144 	int phy18;
1145 
1146 	DBG(2, dev, "%s\n", __func__);
1147 
1148 	if (lp->phy_type == 0)
1149 		return;
1150 
1151 	for(;;) {
1152 		smc_phy_check_media(dev, 0);
1153 
1154 		/* Read PHY Register 18, Status Output */
1155 		phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1156 		if ((phy18 & PHY_INT_INT) == 0)
1157 			break;
1158 	}
1159 }
1160 
1161 /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1162 
1163 static void smc_10bt_check_media(struct net_device *dev, int init)
1164 {
1165 	struct smc_local *lp = netdev_priv(dev);
1166 	void __iomem *ioaddr = lp->base;
1167 	unsigned int old_carrier, new_carrier;
1168 
1169 	old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1170 
1171 	SMC_SELECT_BANK(lp, 0);
1172 	new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1173 	SMC_SELECT_BANK(lp, 2);
1174 
1175 	if (init || (old_carrier != new_carrier)) {
1176 		if (!new_carrier) {
1177 			netif_carrier_off(dev);
1178 		} else {
1179 			netif_carrier_on(dev);
1180 		}
1181 		if (netif_msg_link(lp))
1182 			netdev_info(dev, "link %s\n",
1183 				    new_carrier ? "up" : "down");
1184 	}
1185 }
1186 
1187 static void smc_eph_interrupt(struct net_device *dev)
1188 {
1189 	struct smc_local *lp = netdev_priv(dev);
1190 	void __iomem *ioaddr = lp->base;
1191 	unsigned int ctl;
1192 
1193 	smc_10bt_check_media(dev, 0);
1194 
1195 	SMC_SELECT_BANK(lp, 1);
1196 	ctl = SMC_GET_CTL(lp);
1197 	SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1198 	SMC_SET_CTL(lp, ctl);
1199 	SMC_SELECT_BANK(lp, 2);
1200 }
1201 
1202 /*
1203  * This is the main routine of the driver, to handle the device when
1204  * it needs some attention.
1205  */
1206 static irqreturn_t smc_interrupt(int irq, void *dev_id)
1207 {
1208 	struct net_device *dev = dev_id;
1209 	struct smc_local *lp = netdev_priv(dev);
1210 	void __iomem *ioaddr = lp->base;
1211 	int status, mask, timeout, card_stats;
1212 	int saved_pointer;
1213 
1214 	DBG(3, dev, "%s\n", __func__);
1215 
1216 	spin_lock(&lp->lock);
1217 
1218 	/* A preamble may be used when there is a potential race
1219 	 * between the interruptible transmit functions and this
1220 	 * ISR. */
1221 	SMC_INTERRUPT_PREAMBLE;
1222 
1223 	saved_pointer = SMC_GET_PTR(lp);
1224 	mask = SMC_GET_INT_MASK(lp);
1225 	SMC_SET_INT_MASK(lp, 0);
1226 
1227 	/* set a timeout value, so I don't stay here forever */
1228 	timeout = MAX_IRQ_LOOPS;
1229 
1230 	do {
1231 		status = SMC_GET_INT(lp);
1232 
1233 		DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1234 		    status, mask,
1235 		    ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1236 		       meminfo = SMC_GET_MIR(lp);
1237 		       SMC_SELECT_BANK(lp, 2); meminfo; }),
1238 		    SMC_GET_FIFO(lp));
1239 
1240 		status &= mask;
1241 		if (!status)
1242 			break;
1243 
1244 		if (status & IM_TX_INT) {
1245 			/* do this before RX as it will free memory quickly */
1246 			DBG(3, dev, "TX int\n");
1247 			smc_tx(dev);
1248 			SMC_ACK_INT(lp, IM_TX_INT);
1249 			if (THROTTLE_TX_PKTS)
1250 				netif_wake_queue(dev);
1251 		} else if (status & IM_RCV_INT) {
1252 			DBG(3, dev, "RX irq\n");
1253 			smc_rcv(dev);
1254 		} else if (status & IM_ALLOC_INT) {
1255 			DBG(3, dev, "Allocation irq\n");
1256 			tasklet_hi_schedule(&lp->tx_task);
1257 			mask &= ~IM_ALLOC_INT;
1258 		} else if (status & IM_TX_EMPTY_INT) {
1259 			DBG(3, dev, "TX empty\n");
1260 			mask &= ~IM_TX_EMPTY_INT;
1261 
1262 			/* update stats */
1263 			SMC_SELECT_BANK(lp, 0);
1264 			card_stats = SMC_GET_COUNTER(lp);
1265 			SMC_SELECT_BANK(lp, 2);
1266 
1267 			/* single collisions */
1268 			dev->stats.collisions += card_stats & 0xF;
1269 			card_stats >>= 4;
1270 
1271 			/* multiple collisions */
1272 			dev->stats.collisions += card_stats & 0xF;
1273 		} else if (status & IM_RX_OVRN_INT) {
1274 			DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n",
1275 			    ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1276 			       eph_st = SMC_GET_EPH_STATUS(lp);
1277 			       SMC_SELECT_BANK(lp, 2); eph_st; }));
1278 			SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1279 			dev->stats.rx_errors++;
1280 			dev->stats.rx_fifo_errors++;
1281 		} else if (status & IM_EPH_INT) {
1282 			smc_eph_interrupt(dev);
1283 		} else if (status & IM_MDINT) {
1284 			SMC_ACK_INT(lp, IM_MDINT);
1285 			smc_phy_interrupt(dev);
1286 		} else if (status & IM_ERCV_INT) {
1287 			SMC_ACK_INT(lp, IM_ERCV_INT);
1288 			PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n");
1289 		}
1290 	} while (--timeout);
1291 
1292 	/* restore register states */
1293 	SMC_SET_PTR(lp, saved_pointer);
1294 	SMC_SET_INT_MASK(lp, mask);
1295 	spin_unlock(&lp->lock);
1296 
1297 #ifndef CONFIG_NET_POLL_CONTROLLER
1298 	if (timeout == MAX_IRQ_LOOPS)
1299 		PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n",
1300 		       mask);
1301 #endif
1302 	DBG(3, dev, "Interrupt done (%d loops)\n",
1303 	    MAX_IRQ_LOOPS - timeout);
1304 
1305 	/*
1306 	 * We return IRQ_HANDLED unconditionally here even if there was
1307 	 * nothing to do.  There is a possibility that a packet might
1308 	 * get enqueued into the chip right after TX_EMPTY_INT is raised
1309 	 * but just before the CPU acknowledges the IRQ.
1310 	 * Better take an unneeded IRQ in some occasions than complexifying
1311 	 * the code for all cases.
1312 	 */
1313 	return IRQ_HANDLED;
1314 }
1315 
1316 #ifdef CONFIG_NET_POLL_CONTROLLER
1317 /*
1318  * Polling receive - used by netconsole and other diagnostic tools
1319  * to allow network i/o with interrupts disabled.
1320  */
1321 static void smc_poll_controller(struct net_device *dev)
1322 {
1323 	disable_irq(dev->irq);
1324 	smc_interrupt(dev->irq, dev);
1325 	enable_irq(dev->irq);
1326 }
1327 #endif
1328 
1329 /* Our watchdog timed out. Called by the networking layer */
1330 static void smc_timeout(struct net_device *dev)
1331 {
1332 	struct smc_local *lp = netdev_priv(dev);
1333 	void __iomem *ioaddr = lp->base;
1334 	int status, mask, eph_st, meminfo, fifo;
1335 
1336 	DBG(2, dev, "%s\n", __func__);
1337 
1338 	spin_lock_irq(&lp->lock);
1339 	status = SMC_GET_INT(lp);
1340 	mask = SMC_GET_INT_MASK(lp);
1341 	fifo = SMC_GET_FIFO(lp);
1342 	SMC_SELECT_BANK(lp, 0);
1343 	eph_st = SMC_GET_EPH_STATUS(lp);
1344 	meminfo = SMC_GET_MIR(lp);
1345 	SMC_SELECT_BANK(lp, 2);
1346 	spin_unlock_irq(&lp->lock);
1347 	PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1348 	       status, mask, meminfo, fifo, eph_st);
1349 
1350 	smc_reset(dev);
1351 	smc_enable(dev);
1352 
1353 	/*
1354 	 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1355 	 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1356 	 * which calls schedule().  Hence we use a work queue.
1357 	 */
1358 	if (lp->phy_type != 0)
1359 		schedule_work(&lp->phy_configure);
1360 
1361 	/* We can accept TX packets again */
1362 	dev->trans_start = jiffies; /* prevent tx timeout */
1363 	netif_wake_queue(dev);
1364 }
1365 
1366 /*
1367  * This routine will, depending on the values passed to it,
1368  * either make it accept multicast packets, go into
1369  * promiscuous mode (for TCPDUMP and cousins) or accept
1370  * a select set of multicast packets
1371  */
1372 static void smc_set_multicast_list(struct net_device *dev)
1373 {
1374 	struct smc_local *lp = netdev_priv(dev);
1375 	void __iomem *ioaddr = lp->base;
1376 	unsigned char multicast_table[8];
1377 	int update_multicast = 0;
1378 
1379 	DBG(2, dev, "%s\n", __func__);
1380 
1381 	if (dev->flags & IFF_PROMISC) {
1382 		DBG(2, dev, "RCR_PRMS\n");
1383 		lp->rcr_cur_mode |= RCR_PRMS;
1384 	}
1385 
1386 /* BUG?  I never disable promiscuous mode if multicasting was turned on.
1387    Now, I turn off promiscuous mode, but I don't do anything to multicasting
1388    when promiscuous mode is turned on.
1389 */
1390 
1391 	/*
1392 	 * Here, I am setting this to accept all multicast packets.
1393 	 * I don't need to zero the multicast table, because the flag is
1394 	 * checked before the table is
1395 	 */
1396 	else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1397 		DBG(2, dev, "RCR_ALMUL\n");
1398 		lp->rcr_cur_mode |= RCR_ALMUL;
1399 	}
1400 
1401 	/*
1402 	 * This sets the internal hardware table to filter out unwanted
1403 	 * multicast packets before they take up memory.
1404 	 *
1405 	 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1406 	 * address are the offset into the table.  If that bit is 1, then the
1407 	 * multicast packet is accepted.  Otherwise, it's dropped silently.
1408 	 *
1409 	 * To use the 6 bits as an offset into the table, the high 3 bits are
1410 	 * the number of the 8 bit register, while the low 3 bits are the bit
1411 	 * within that register.
1412 	 */
1413 	else if (!netdev_mc_empty(dev)) {
1414 		struct netdev_hw_addr *ha;
1415 
1416 		/* table for flipping the order of 3 bits */
1417 		static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1418 
1419 		/* start with a table of all zeros: reject all */
1420 		memset(multicast_table, 0, sizeof(multicast_table));
1421 
1422 		netdev_for_each_mc_addr(ha, dev) {
1423 			int position;
1424 
1425 			/* only use the low order bits */
1426 			position = crc32_le(~0, ha->addr, 6) & 0x3f;
1427 
1428 			/* do some messy swapping to put the bit in the right spot */
1429 			multicast_table[invert3[position&7]] |=
1430 				(1<<invert3[(position>>3)&7]);
1431 		}
1432 
1433 		/* be sure I get rid of flags I might have set */
1434 		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1435 
1436 		/* now, the table can be loaded into the chipset */
1437 		update_multicast = 1;
1438 	} else  {
1439 		DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n");
1440 		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1441 
1442 		/*
1443 		 * since I'm disabling all multicast entirely, I need to
1444 		 * clear the multicast list
1445 		 */
1446 		memset(multicast_table, 0, sizeof(multicast_table));
1447 		update_multicast = 1;
1448 	}
1449 
1450 	spin_lock_irq(&lp->lock);
1451 	SMC_SELECT_BANK(lp, 0);
1452 	SMC_SET_RCR(lp, lp->rcr_cur_mode);
1453 	if (update_multicast) {
1454 		SMC_SELECT_BANK(lp, 3);
1455 		SMC_SET_MCAST(lp, multicast_table);
1456 	}
1457 	SMC_SELECT_BANK(lp, 2);
1458 	spin_unlock_irq(&lp->lock);
1459 }
1460 
1461 
1462 /*
1463  * Open and Initialize the board
1464  *
1465  * Set up everything, reset the card, etc..
1466  */
1467 static int
1468 smc_open(struct net_device *dev)
1469 {
1470 	struct smc_local *lp = netdev_priv(dev);
1471 
1472 	DBG(2, dev, "%s\n", __func__);
1473 
1474 	/* Setup the default Register Modes */
1475 	lp->tcr_cur_mode = TCR_DEFAULT;
1476 	lp->rcr_cur_mode = RCR_DEFAULT;
1477 	lp->rpc_cur_mode = RPC_DEFAULT |
1478 				lp->cfg.leda << RPC_LSXA_SHFT |
1479 				lp->cfg.ledb << RPC_LSXB_SHFT;
1480 
1481 	/*
1482 	 * If we are not using a MII interface, we need to
1483 	 * monitor our own carrier signal to detect faults.
1484 	 */
1485 	if (lp->phy_type == 0)
1486 		lp->tcr_cur_mode |= TCR_MON_CSN;
1487 
1488 	/* reset the hardware */
1489 	smc_reset(dev);
1490 	smc_enable(dev);
1491 
1492 	/* Configure the PHY, initialize the link state */
1493 	if (lp->phy_type != 0)
1494 		smc_phy_configure(&lp->phy_configure);
1495 	else {
1496 		spin_lock_irq(&lp->lock);
1497 		smc_10bt_check_media(dev, 1);
1498 		spin_unlock_irq(&lp->lock);
1499 	}
1500 
1501 	netif_start_queue(dev);
1502 	return 0;
1503 }
1504 
1505 /*
1506  * smc_close
1507  *
1508  * this makes the board clean up everything that it can
1509  * and not talk to the outside world.   Caused by
1510  * an 'ifconfig ethX down'
1511  */
1512 static int smc_close(struct net_device *dev)
1513 {
1514 	struct smc_local *lp = netdev_priv(dev);
1515 
1516 	DBG(2, dev, "%s\n", __func__);
1517 
1518 	netif_stop_queue(dev);
1519 	netif_carrier_off(dev);
1520 
1521 	/* clear everything */
1522 	smc_shutdown(dev);
1523 	tasklet_kill(&lp->tx_task);
1524 	smc_phy_powerdown(dev);
1525 	return 0;
1526 }
1527 
1528 /*
1529  * Ethtool support
1530  */
1531 static int
1532 smc_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1533 {
1534 	struct smc_local *lp = netdev_priv(dev);
1535 	int ret;
1536 
1537 	cmd->maxtxpkt = 1;
1538 	cmd->maxrxpkt = 1;
1539 
1540 	if (lp->phy_type != 0) {
1541 		spin_lock_irq(&lp->lock);
1542 		ret = mii_ethtool_gset(&lp->mii, cmd);
1543 		spin_unlock_irq(&lp->lock);
1544 	} else {
1545 		cmd->supported = SUPPORTED_10baseT_Half |
1546 				 SUPPORTED_10baseT_Full |
1547 				 SUPPORTED_TP | SUPPORTED_AUI;
1548 
1549 		if (lp->ctl_rspeed == 10)
1550 			ethtool_cmd_speed_set(cmd, SPEED_10);
1551 		else if (lp->ctl_rspeed == 100)
1552 			ethtool_cmd_speed_set(cmd, SPEED_100);
1553 
1554 		cmd->autoneg = AUTONEG_DISABLE;
1555 		cmd->transceiver = XCVR_INTERNAL;
1556 		cmd->port = 0;
1557 		cmd->duplex = lp->tcr_cur_mode & TCR_SWFDUP ? DUPLEX_FULL : DUPLEX_HALF;
1558 
1559 		ret = 0;
1560 	}
1561 
1562 	return ret;
1563 }
1564 
1565 static int
1566 smc_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1567 {
1568 	struct smc_local *lp = netdev_priv(dev);
1569 	int ret;
1570 
1571 	if (lp->phy_type != 0) {
1572 		spin_lock_irq(&lp->lock);
1573 		ret = mii_ethtool_sset(&lp->mii, cmd);
1574 		spin_unlock_irq(&lp->lock);
1575 	} else {
1576 		if (cmd->autoneg != AUTONEG_DISABLE ||
1577 		    cmd->speed != SPEED_10 ||
1578 		    (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) ||
1579 		    (cmd->port != PORT_TP && cmd->port != PORT_AUI))
1580 			return -EINVAL;
1581 
1582 //		lp->port = cmd->port;
1583 		lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL;
1584 
1585 //		if (netif_running(dev))
1586 //			smc_set_port(dev);
1587 
1588 		ret = 0;
1589 	}
1590 
1591 	return ret;
1592 }
1593 
1594 static void
1595 smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1596 {
1597 	strlcpy(info->driver, CARDNAME, sizeof(info->driver));
1598 	strlcpy(info->version, version, sizeof(info->version));
1599 	strlcpy(info->bus_info, dev_name(dev->dev.parent),
1600 		sizeof(info->bus_info));
1601 }
1602 
1603 static int smc_ethtool_nwayreset(struct net_device *dev)
1604 {
1605 	struct smc_local *lp = netdev_priv(dev);
1606 	int ret = -EINVAL;
1607 
1608 	if (lp->phy_type != 0) {
1609 		spin_lock_irq(&lp->lock);
1610 		ret = mii_nway_restart(&lp->mii);
1611 		spin_unlock_irq(&lp->lock);
1612 	}
1613 
1614 	return ret;
1615 }
1616 
1617 static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1618 {
1619 	struct smc_local *lp = netdev_priv(dev);
1620 	return lp->msg_enable;
1621 }
1622 
1623 static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1624 {
1625 	struct smc_local *lp = netdev_priv(dev);
1626 	lp->msg_enable = level;
1627 }
1628 
1629 static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1630 {
1631 	u16 ctl;
1632 	struct smc_local *lp = netdev_priv(dev);
1633 	void __iomem *ioaddr = lp->base;
1634 
1635 	spin_lock_irq(&lp->lock);
1636 	/* load word into GP register */
1637 	SMC_SELECT_BANK(lp, 1);
1638 	SMC_SET_GP(lp, word);
1639 	/* set the address to put the data in EEPROM */
1640 	SMC_SELECT_BANK(lp, 2);
1641 	SMC_SET_PTR(lp, addr);
1642 	/* tell it to write */
1643 	SMC_SELECT_BANK(lp, 1);
1644 	ctl = SMC_GET_CTL(lp);
1645 	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1646 	/* wait for it to finish */
1647 	do {
1648 		udelay(1);
1649 	} while (SMC_GET_CTL(lp) & CTL_STORE);
1650 	/* clean up */
1651 	SMC_SET_CTL(lp, ctl);
1652 	SMC_SELECT_BANK(lp, 2);
1653 	spin_unlock_irq(&lp->lock);
1654 	return 0;
1655 }
1656 
1657 static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1658 {
1659 	u16 ctl;
1660 	struct smc_local *lp = netdev_priv(dev);
1661 	void __iomem *ioaddr = lp->base;
1662 
1663 	spin_lock_irq(&lp->lock);
1664 	/* set the EEPROM address to get the data from */
1665 	SMC_SELECT_BANK(lp, 2);
1666 	SMC_SET_PTR(lp, addr | PTR_READ);
1667 	/* tell it to load */
1668 	SMC_SELECT_BANK(lp, 1);
1669 	SMC_SET_GP(lp, 0xffff);	/* init to known */
1670 	ctl = SMC_GET_CTL(lp);
1671 	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1672 	/* wait for it to finish */
1673 	do {
1674 		udelay(1);
1675 	} while (SMC_GET_CTL(lp) & CTL_RELOAD);
1676 	/* read word from GP register */
1677 	*word = SMC_GET_GP(lp);
1678 	/* clean up */
1679 	SMC_SET_CTL(lp, ctl);
1680 	SMC_SELECT_BANK(lp, 2);
1681 	spin_unlock_irq(&lp->lock);
1682 	return 0;
1683 }
1684 
1685 static int smc_ethtool_geteeprom_len(struct net_device *dev)
1686 {
1687 	return 0x23 * 2;
1688 }
1689 
1690 static int smc_ethtool_geteeprom(struct net_device *dev,
1691 		struct ethtool_eeprom *eeprom, u8 *data)
1692 {
1693 	int i;
1694 	int imax;
1695 
1696 	DBG(1, dev, "Reading %d bytes at %d(0x%x)\n",
1697 		eeprom->len, eeprom->offset, eeprom->offset);
1698 	imax = smc_ethtool_geteeprom_len(dev);
1699 	for (i = 0; i < eeprom->len; i += 2) {
1700 		int ret;
1701 		u16 wbuf;
1702 		int offset = i + eeprom->offset;
1703 		if (offset > imax)
1704 			break;
1705 		ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1706 		if (ret != 0)
1707 			return ret;
1708 		DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1709 		data[i] = (wbuf >> 8) & 0xff;
1710 		data[i+1] = wbuf & 0xff;
1711 	}
1712 	return 0;
1713 }
1714 
1715 static int smc_ethtool_seteeprom(struct net_device *dev,
1716 		struct ethtool_eeprom *eeprom, u8 *data)
1717 {
1718 	int i;
1719 	int imax;
1720 
1721 	DBG(1, dev, "Writing %d bytes to %d(0x%x)\n",
1722 	    eeprom->len, eeprom->offset, eeprom->offset);
1723 	imax = smc_ethtool_geteeprom_len(dev);
1724 	for (i = 0; i < eeprom->len; i += 2) {
1725 		int ret;
1726 		u16 wbuf;
1727 		int offset = i + eeprom->offset;
1728 		if (offset > imax)
1729 			break;
1730 		wbuf = (data[i] << 8) | data[i + 1];
1731 		DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1732 		ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1733 		if (ret != 0)
1734 			return ret;
1735 	}
1736 	return 0;
1737 }
1738 
1739 
1740 static const struct ethtool_ops smc_ethtool_ops = {
1741 	.get_settings	= smc_ethtool_getsettings,
1742 	.set_settings	= smc_ethtool_setsettings,
1743 	.get_drvinfo	= smc_ethtool_getdrvinfo,
1744 
1745 	.get_msglevel	= smc_ethtool_getmsglevel,
1746 	.set_msglevel	= smc_ethtool_setmsglevel,
1747 	.nway_reset	= smc_ethtool_nwayreset,
1748 	.get_link	= ethtool_op_get_link,
1749 	.get_eeprom_len = smc_ethtool_geteeprom_len,
1750 	.get_eeprom	= smc_ethtool_geteeprom,
1751 	.set_eeprom	= smc_ethtool_seteeprom,
1752 };
1753 
1754 static const struct net_device_ops smc_netdev_ops = {
1755 	.ndo_open		= smc_open,
1756 	.ndo_stop		= smc_close,
1757 	.ndo_start_xmit		= smc_hard_start_xmit,
1758 	.ndo_tx_timeout		= smc_timeout,
1759 	.ndo_set_rx_mode	= smc_set_multicast_list,
1760 	.ndo_change_mtu		= eth_change_mtu,
1761 	.ndo_validate_addr	= eth_validate_addr,
1762 	.ndo_set_mac_address 	= eth_mac_addr,
1763 #ifdef CONFIG_NET_POLL_CONTROLLER
1764 	.ndo_poll_controller	= smc_poll_controller,
1765 #endif
1766 };
1767 
1768 /*
1769  * smc_findirq
1770  *
1771  * This routine has a simple purpose -- make the SMC chip generate an
1772  * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1773  */
1774 /*
1775  * does this still work?
1776  *
1777  * I just deleted auto_irq.c, since it was never built...
1778  *   --jgarzik
1779  */
1780 static int smc_findirq(struct smc_local *lp)
1781 {
1782 	void __iomem *ioaddr = lp->base;
1783 	int timeout = 20;
1784 	unsigned long cookie;
1785 
1786 	DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__);
1787 
1788 	cookie = probe_irq_on();
1789 
1790 	/*
1791 	 * What I try to do here is trigger an ALLOC_INT. This is done
1792 	 * by allocating a small chunk of memory, which will give an interrupt
1793 	 * when done.
1794 	 */
1795 	/* enable ALLOCation interrupts ONLY */
1796 	SMC_SELECT_BANK(lp, 2);
1797 	SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1798 
1799 	/*
1800  	 * Allocate 512 bytes of memory.  Note that the chip was just
1801 	 * reset so all the memory is available
1802 	 */
1803 	SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1804 
1805 	/*
1806 	 * Wait until positive that the interrupt has been generated
1807 	 */
1808 	do {
1809 		int int_status;
1810 		udelay(10);
1811 		int_status = SMC_GET_INT(lp);
1812 		if (int_status & IM_ALLOC_INT)
1813 			break;		/* got the interrupt */
1814 	} while (--timeout);
1815 
1816 	/*
1817 	 * there is really nothing that I can do here if timeout fails,
1818 	 * as autoirq_report will return a 0 anyway, which is what I
1819 	 * want in this case.   Plus, the clean up is needed in both
1820 	 * cases.
1821 	 */
1822 
1823 	/* and disable all interrupts again */
1824 	SMC_SET_INT_MASK(lp, 0);
1825 
1826 	/* and return what I found */
1827 	return probe_irq_off(cookie);
1828 }
1829 
1830 /*
1831  * Function: smc_probe(unsigned long ioaddr)
1832  *
1833  * Purpose:
1834  *	Tests to see if a given ioaddr points to an SMC91x chip.
1835  *	Returns a 0 on success
1836  *
1837  * Algorithm:
1838  *	(1) see if the high byte of BANK_SELECT is 0x33
1839  * 	(2) compare the ioaddr with the base register's address
1840  *	(3) see if I recognize the chip ID in the appropriate register
1841  *
1842  * Here I do typical initialization tasks.
1843  *
1844  * o  Initialize the structure if needed
1845  * o  print out my vanity message if not done so already
1846  * o  print out what type of hardware is detected
1847  * o  print out the ethernet address
1848  * o  find the IRQ
1849  * o  set up my private data
1850  * o  configure the dev structure with my subroutines
1851  * o  actually GRAB the irq.
1852  * o  GRAB the region
1853  */
1854 static int smc_probe(struct net_device *dev, void __iomem *ioaddr,
1855 		     unsigned long irq_flags)
1856 {
1857 	struct smc_local *lp = netdev_priv(dev);
1858 	int retval;
1859 	unsigned int val, revision_register;
1860 	const char *version_string;
1861 
1862 	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
1863 
1864 	/* First, see if the high byte is 0x33 */
1865 	val = SMC_CURRENT_BANK(lp);
1866 	DBG(2, dev, "%s: bank signature probe returned 0x%04x\n",
1867 	    CARDNAME, val);
1868 	if ((val & 0xFF00) != 0x3300) {
1869 		if ((val & 0xFF) == 0x33) {
1870 			netdev_warn(dev,
1871 				    "%s: Detected possible byte-swapped interface at IOADDR %p\n",
1872 				    CARDNAME, ioaddr);
1873 		}
1874 		retval = -ENODEV;
1875 		goto err_out;
1876 	}
1877 
1878 	/*
1879 	 * The above MIGHT indicate a device, but I need to write to
1880 	 * further test this.
1881 	 */
1882 	SMC_SELECT_BANK(lp, 0);
1883 	val = SMC_CURRENT_BANK(lp);
1884 	if ((val & 0xFF00) != 0x3300) {
1885 		retval = -ENODEV;
1886 		goto err_out;
1887 	}
1888 
1889 	/*
1890 	 * well, we've already written once, so hopefully another
1891 	 * time won't hurt.  This time, I need to switch the bank
1892 	 * register to bank 1, so I can access the base address
1893 	 * register
1894 	 */
1895 	SMC_SELECT_BANK(lp, 1);
1896 	val = SMC_GET_BASE(lp);
1897 	val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1898 	if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1899 		netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n",
1900 			    CARDNAME, ioaddr, val);
1901 	}
1902 
1903 	/*
1904 	 * check if the revision register is something that I
1905 	 * recognize.  These might need to be added to later,
1906 	 * as future revisions could be added.
1907 	 */
1908 	SMC_SELECT_BANK(lp, 3);
1909 	revision_register = SMC_GET_REV(lp);
1910 	DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1911 	version_string = chip_ids[ (revision_register >> 4) & 0xF];
1912 	if (!version_string || (revision_register & 0xff00) != 0x3300) {
1913 		/* I don't recognize this chip, so... */
1914 		netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n",
1915 			    CARDNAME, ioaddr, revision_register);
1916 
1917 		retval = -ENODEV;
1918 		goto err_out;
1919 	}
1920 
1921 	/* At this point I'll assume that the chip is an SMC91x. */
1922 	pr_info_once("%s\n", version);
1923 
1924 	/* fill in some of the fields */
1925 	dev->base_addr = (unsigned long)ioaddr;
1926 	lp->base = ioaddr;
1927 	lp->version = revision_register & 0xff;
1928 	spin_lock_init(&lp->lock);
1929 
1930 	/* Get the MAC address */
1931 	SMC_SELECT_BANK(lp, 1);
1932 	SMC_GET_MAC_ADDR(lp, dev->dev_addr);
1933 
1934 	/* now, reset the chip, and put it into a known state */
1935 	smc_reset(dev);
1936 
1937 	/*
1938 	 * If dev->irq is 0, then the device has to be banged on to see
1939 	 * what the IRQ is.
1940 	 *
1941 	 * This banging doesn't always detect the IRQ, for unknown reasons.
1942 	 * a workaround is to reset the chip and try again.
1943 	 *
1944 	 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1945 	 * be what is requested on the command line.   I don't do that, mostly
1946 	 * because the card that I have uses a non-standard method of accessing
1947 	 * the IRQs, and because this _should_ work in most configurations.
1948 	 *
1949 	 * Specifying an IRQ is done with the assumption that the user knows
1950 	 * what (s)he is doing.  No checking is done!!!!
1951 	 */
1952 	if (dev->irq < 1) {
1953 		int trials;
1954 
1955 		trials = 3;
1956 		while (trials--) {
1957 			dev->irq = smc_findirq(lp);
1958 			if (dev->irq)
1959 				break;
1960 			/* kick the card and try again */
1961 			smc_reset(dev);
1962 		}
1963 	}
1964 	if (dev->irq == 0) {
1965 		netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n");
1966 		retval = -ENODEV;
1967 		goto err_out;
1968 	}
1969 	dev->irq = irq_canonicalize(dev->irq);
1970 
1971 	dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1972 	dev->netdev_ops = &smc_netdev_ops;
1973 	dev->ethtool_ops = &smc_ethtool_ops;
1974 
1975 	tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev);
1976 	INIT_WORK(&lp->phy_configure, smc_phy_configure);
1977 	lp->dev = dev;
1978 	lp->mii.phy_id_mask = 0x1f;
1979 	lp->mii.reg_num_mask = 0x1f;
1980 	lp->mii.force_media = 0;
1981 	lp->mii.full_duplex = 0;
1982 	lp->mii.dev = dev;
1983 	lp->mii.mdio_read = smc_phy_read;
1984 	lp->mii.mdio_write = smc_phy_write;
1985 
1986 	/*
1987 	 * Locate the phy, if any.
1988 	 */
1989 	if (lp->version >= (CHIP_91100 << 4))
1990 		smc_phy_detect(dev);
1991 
1992 	/* then shut everything down to save power */
1993 	smc_shutdown(dev);
1994 	smc_phy_powerdown(dev);
1995 
1996 	/* Set default parameters */
1997 	lp->msg_enable = NETIF_MSG_LINK;
1998 	lp->ctl_rfduplx = 0;
1999 	lp->ctl_rspeed = 10;
2000 
2001 	if (lp->version >= (CHIP_91100 << 4)) {
2002 		lp->ctl_rfduplx = 1;
2003 		lp->ctl_rspeed = 100;
2004 	}
2005 
2006 	/* Grab the IRQ */
2007 	retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
2008       	if (retval)
2009       		goto err_out;
2010 
2011 #ifdef CONFIG_ARCH_PXA
2012 #  ifdef SMC_USE_PXA_DMA
2013 	lp->cfg.flags |= SMC91X_USE_DMA;
2014 #  endif
2015 	if (lp->cfg.flags & SMC91X_USE_DMA) {
2016 		int dma = pxa_request_dma(dev->name, DMA_PRIO_LOW,
2017 					  smc_pxa_dma_irq, NULL);
2018 		if (dma >= 0)
2019 			dev->dma = dma;
2020 	}
2021 #endif
2022 
2023 	retval = register_netdev(dev);
2024 	if (retval == 0) {
2025 		/* now, print out the card info, in a short format.. */
2026 		netdev_info(dev, "%s (rev %d) at %p IRQ %d",
2027 			    version_string, revision_register & 0x0f,
2028 			    lp->base, dev->irq);
2029 
2030 		if (dev->dma != (unsigned char)-1)
2031 			pr_cont(" DMA %d", dev->dma);
2032 
2033 		pr_cont("%s%s\n",
2034 			lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2035 			THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2036 
2037 		if (!is_valid_ether_addr(dev->dev_addr)) {
2038 			netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n");
2039 		} else {
2040 			/* Print the Ethernet address */
2041 			netdev_info(dev, "Ethernet addr: %pM\n",
2042 				    dev->dev_addr);
2043 		}
2044 
2045 		if (lp->phy_type == 0) {
2046 			PRINTK(dev, "No PHY found\n");
2047 		} else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2048 			PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n");
2049 		} else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2050 			PRINTK(dev, "PHY LAN83C180\n");
2051 		}
2052 	}
2053 
2054 err_out:
2055 #ifdef CONFIG_ARCH_PXA
2056 	if (retval && dev->dma != (unsigned char)-1)
2057 		pxa_free_dma(dev->dma);
2058 #endif
2059 	return retval;
2060 }
2061 
2062 static int smc_enable_device(struct platform_device *pdev)
2063 {
2064 	struct net_device *ndev = platform_get_drvdata(pdev);
2065 	struct smc_local *lp = netdev_priv(ndev);
2066 	unsigned long flags;
2067 	unsigned char ecor, ecsr;
2068 	void __iomem *addr;
2069 	struct resource * res;
2070 
2071 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2072 	if (!res)
2073 		return 0;
2074 
2075 	/*
2076 	 * Map the attribute space.  This is overkill, but clean.
2077 	 */
2078 	addr = ioremap(res->start, ATTRIB_SIZE);
2079 	if (!addr)
2080 		return -ENOMEM;
2081 
2082 	/*
2083 	 * Reset the device.  We must disable IRQs around this
2084 	 * since a reset causes the IRQ line become active.
2085 	 */
2086 	local_irq_save(flags);
2087 	ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2088 	writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2089 	readb(addr + (ECOR << SMC_IO_SHIFT));
2090 
2091 	/*
2092 	 * Wait 100us for the chip to reset.
2093 	 */
2094 	udelay(100);
2095 
2096 	/*
2097 	 * The device will ignore all writes to the enable bit while
2098 	 * reset is asserted, even if the reset bit is cleared in the
2099 	 * same write.  Must clear reset first, then enable the device.
2100 	 */
2101 	writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2102 	writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2103 
2104 	/*
2105 	 * Set the appropriate byte/word mode.
2106 	 */
2107 	ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2108 	if (!SMC_16BIT(lp))
2109 		ecsr |= ECSR_IOIS8;
2110 	writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2111 	local_irq_restore(flags);
2112 
2113 	iounmap(addr);
2114 
2115 	/*
2116 	 * Wait for the chip to wake up.  We could poll the control
2117 	 * register in the main register space, but that isn't mapped
2118 	 * yet.  We know this is going to take 750us.
2119 	 */
2120 	msleep(1);
2121 
2122 	return 0;
2123 }
2124 
2125 static int smc_request_attrib(struct platform_device *pdev,
2126 			      struct net_device *ndev)
2127 {
2128 	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2129 	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2130 
2131 	if (!res)
2132 		return 0;
2133 
2134 	if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2135 		return -EBUSY;
2136 
2137 	return 0;
2138 }
2139 
2140 static void smc_release_attrib(struct platform_device *pdev,
2141 			       struct net_device *ndev)
2142 {
2143 	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2144 	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2145 
2146 	if (res)
2147 		release_mem_region(res->start, ATTRIB_SIZE);
2148 }
2149 
2150 static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2151 {
2152 	if (SMC_CAN_USE_DATACS) {
2153 		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2154 		struct smc_local *lp = netdev_priv(ndev);
2155 
2156 		if (!res)
2157 			return;
2158 
2159 		if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2160 			netdev_info(ndev, "%s: failed to request datacs memory region.\n",
2161 				    CARDNAME);
2162 			return;
2163 		}
2164 
2165 		lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2166 	}
2167 }
2168 
2169 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2170 {
2171 	if (SMC_CAN_USE_DATACS) {
2172 		struct smc_local *lp = netdev_priv(ndev);
2173 		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2174 
2175 		if (lp->datacs)
2176 			iounmap(lp->datacs);
2177 
2178 		lp->datacs = NULL;
2179 
2180 		if (res)
2181 			release_mem_region(res->start, SMC_DATA_EXTENT);
2182 	}
2183 }
2184 
2185 #if IS_BUILTIN(CONFIG_OF)
2186 static const struct of_device_id smc91x_match[] = {
2187 	{ .compatible = "smsc,lan91c94", },
2188 	{ .compatible = "smsc,lan91c111", },
2189 	{},
2190 };
2191 MODULE_DEVICE_TABLE(of, smc91x_match);
2192 
2193 /**
2194  * of_try_set_control_gpio - configure a gpio if it exists
2195  */
2196 static int try_toggle_control_gpio(struct device *dev,
2197 				   struct gpio_desc **desc,
2198 				   const char *name, int index,
2199 				   int value, unsigned int nsdelay)
2200 {
2201 	struct gpio_desc *gpio = *desc;
2202 	int res;
2203 
2204 	gpio = devm_gpiod_get_index(dev, name, index);
2205 	if (IS_ERR(gpio)) {
2206 		if (PTR_ERR(gpio) == -ENOENT) {
2207 			*desc = NULL;
2208 			return 0;
2209 		}
2210 
2211 		return PTR_ERR(gpio);
2212 	}
2213 	res = gpiod_direction_output(gpio, !value);
2214 	if (res) {
2215 		dev_err(dev, "unable to toggle gpio %s: %i\n", name, res);
2216 		devm_gpiod_put(dev, gpio);
2217 		gpio = NULL;
2218 		return res;
2219 	}
2220 	if (nsdelay)
2221 		usleep_range(nsdelay, 2 * nsdelay);
2222 	gpiod_set_value_cansleep(gpio, value);
2223 	*desc = gpio;
2224 
2225 	return 0;
2226 }
2227 #endif
2228 
2229 /*
2230  * smc_init(void)
2231  *   Input parameters:
2232  *	dev->base_addr == 0, try to find all possible locations
2233  *	dev->base_addr > 0x1ff, this is the address to check
2234  *	dev->base_addr == <anything else>, return failure code
2235  *
2236  *   Output:
2237  *	0 --> there is a device
2238  *	anything else, error
2239  */
2240 static int smc_drv_probe(struct platform_device *pdev)
2241 {
2242 	struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev);
2243 	const struct of_device_id *match = NULL;
2244 	struct smc_local *lp;
2245 	struct net_device *ndev;
2246 	struct resource *res;
2247 	unsigned int __iomem *addr;
2248 	unsigned long irq_flags = SMC_IRQ_FLAGS;
2249 	unsigned long irq_resflags;
2250 	int ret;
2251 
2252 	ndev = alloc_etherdev(sizeof(struct smc_local));
2253 	if (!ndev) {
2254 		ret = -ENOMEM;
2255 		goto out;
2256 	}
2257 	SET_NETDEV_DEV(ndev, &pdev->dev);
2258 
2259 	/* get configuration from platform data, only allow use of
2260 	 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2261 	 */
2262 
2263 	lp = netdev_priv(ndev);
2264 	lp->cfg.flags = 0;
2265 
2266 	if (pd) {
2267 		memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2268 		lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2269 	}
2270 
2271 #if IS_BUILTIN(CONFIG_OF)
2272 	match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev);
2273 	if (match) {
2274 		struct device_node *np = pdev->dev.of_node;
2275 		u32 val;
2276 
2277 		/* Optional pwrdwn GPIO configured? */
2278 		ret = try_toggle_control_gpio(&pdev->dev, &lp->power_gpio,
2279 					      "power", 0, 0, 100);
2280 		if (ret)
2281 			return ret;
2282 
2283 		/*
2284 		 * Optional reset GPIO configured? Minimum 100 ns reset needed
2285 		 * according to LAN91C96 datasheet page 14.
2286 		 */
2287 		ret = try_toggle_control_gpio(&pdev->dev, &lp->reset_gpio,
2288 					      "reset", 0, 0, 100);
2289 		if (ret)
2290 			return ret;
2291 
2292 		/*
2293 		 * Need to wait for optional EEPROM to load, max 750 us according
2294 		 * to LAN91C96 datasheet page 55.
2295 		 */
2296 		if (lp->reset_gpio)
2297 			usleep_range(750, 1000);
2298 
2299 		/* Combination of IO widths supported, default to 16-bit */
2300 		if (!of_property_read_u32(np, "reg-io-width", &val)) {
2301 			if (val & 1)
2302 				lp->cfg.flags |= SMC91X_USE_8BIT;
2303 			if ((val == 0) || (val & 2))
2304 				lp->cfg.flags |= SMC91X_USE_16BIT;
2305 			if (val & 4)
2306 				lp->cfg.flags |= SMC91X_USE_32BIT;
2307 		} else {
2308 			lp->cfg.flags |= SMC91X_USE_16BIT;
2309 		}
2310 	}
2311 #endif
2312 
2313 	if (!pd && !match) {
2314 		lp->cfg.flags |= (SMC_CAN_USE_8BIT)  ? SMC91X_USE_8BIT  : 0;
2315 		lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2316 		lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2317 		lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2318 	}
2319 
2320 	if (!lp->cfg.leda && !lp->cfg.ledb) {
2321 		lp->cfg.leda = RPC_LSA_DEFAULT;
2322 		lp->cfg.ledb = RPC_LSB_DEFAULT;
2323 	}
2324 
2325 	ndev->dma = (unsigned char)-1;
2326 
2327 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2328 	if (!res)
2329 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2330 	if (!res) {
2331 		ret = -ENODEV;
2332 		goto out_free_netdev;
2333 	}
2334 
2335 
2336 	if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2337 		ret = -EBUSY;
2338 		goto out_free_netdev;
2339 	}
2340 
2341 	ndev->irq = platform_get_irq(pdev, 0);
2342 	if (ndev->irq <= 0) {
2343 		ret = -ENODEV;
2344 		goto out_release_io;
2345 	}
2346 	/*
2347 	 * If this platform does not specify any special irqflags, or if
2348 	 * the resource supplies a trigger, override the irqflags with
2349 	 * the trigger flags from the resource.
2350 	 */
2351 	irq_resflags = irqd_get_trigger_type(irq_get_irq_data(ndev->irq));
2352 	if (irq_flags == -1 || irq_resflags & IRQF_TRIGGER_MASK)
2353 		irq_flags = irq_resflags & IRQF_TRIGGER_MASK;
2354 
2355 	ret = smc_request_attrib(pdev, ndev);
2356 	if (ret)
2357 		goto out_release_io;
2358 #if defined(CONFIG_SA1100_ASSABET)
2359 	neponset_ncr_set(NCR_ENET_OSC_EN);
2360 #endif
2361 	platform_set_drvdata(pdev, ndev);
2362 	ret = smc_enable_device(pdev);
2363 	if (ret)
2364 		goto out_release_attrib;
2365 
2366 	addr = ioremap(res->start, SMC_IO_EXTENT);
2367 	if (!addr) {
2368 		ret = -ENOMEM;
2369 		goto out_release_attrib;
2370 	}
2371 
2372 #ifdef CONFIG_ARCH_PXA
2373 	{
2374 		struct smc_local *lp = netdev_priv(ndev);
2375 		lp->device = &pdev->dev;
2376 		lp->physaddr = res->start;
2377 	}
2378 #endif
2379 
2380 	ret = smc_probe(ndev, addr, irq_flags);
2381 	if (ret != 0)
2382 		goto out_iounmap;
2383 
2384 	smc_request_datacs(pdev, ndev);
2385 
2386 	return 0;
2387 
2388  out_iounmap:
2389 	iounmap(addr);
2390  out_release_attrib:
2391 	smc_release_attrib(pdev, ndev);
2392  out_release_io:
2393 	release_mem_region(res->start, SMC_IO_EXTENT);
2394  out_free_netdev:
2395 	free_netdev(ndev);
2396  out:
2397 	pr_info("%s: not found (%d).\n", CARDNAME, ret);
2398 
2399 	return ret;
2400 }
2401 
2402 static int smc_drv_remove(struct platform_device *pdev)
2403 {
2404 	struct net_device *ndev = platform_get_drvdata(pdev);
2405 	struct smc_local *lp = netdev_priv(ndev);
2406 	struct resource *res;
2407 
2408 	unregister_netdev(ndev);
2409 
2410 	free_irq(ndev->irq, ndev);
2411 
2412 #ifdef CONFIG_ARCH_PXA
2413 	if (ndev->dma != (unsigned char)-1)
2414 		pxa_free_dma(ndev->dma);
2415 #endif
2416 	iounmap(lp->base);
2417 
2418 	smc_release_datacs(pdev,ndev);
2419 	smc_release_attrib(pdev,ndev);
2420 
2421 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2422 	if (!res)
2423 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2424 	release_mem_region(res->start, SMC_IO_EXTENT);
2425 
2426 	free_netdev(ndev);
2427 
2428 	return 0;
2429 }
2430 
2431 static int smc_drv_suspend(struct device *dev)
2432 {
2433 	struct platform_device *pdev = to_platform_device(dev);
2434 	struct net_device *ndev = platform_get_drvdata(pdev);
2435 
2436 	if (ndev) {
2437 		if (netif_running(ndev)) {
2438 			netif_device_detach(ndev);
2439 			smc_shutdown(ndev);
2440 			smc_phy_powerdown(ndev);
2441 		}
2442 	}
2443 	return 0;
2444 }
2445 
2446 static int smc_drv_resume(struct device *dev)
2447 {
2448 	struct platform_device *pdev = to_platform_device(dev);
2449 	struct net_device *ndev = platform_get_drvdata(pdev);
2450 
2451 	if (ndev) {
2452 		struct smc_local *lp = netdev_priv(ndev);
2453 		smc_enable_device(pdev);
2454 		if (netif_running(ndev)) {
2455 			smc_reset(ndev);
2456 			smc_enable(ndev);
2457 			if (lp->phy_type != 0)
2458 				smc_phy_configure(&lp->phy_configure);
2459 			netif_device_attach(ndev);
2460 		}
2461 	}
2462 	return 0;
2463 }
2464 
2465 static struct dev_pm_ops smc_drv_pm_ops = {
2466 	.suspend	= smc_drv_suspend,
2467 	.resume		= smc_drv_resume,
2468 };
2469 
2470 static struct platform_driver smc_driver = {
2471 	.probe		= smc_drv_probe,
2472 	.remove		= smc_drv_remove,
2473 	.driver		= {
2474 		.name	= CARDNAME,
2475 		.pm	= &smc_drv_pm_ops,
2476 		.of_match_table = of_match_ptr(smc91x_match),
2477 	},
2478 };
2479 
2480 module_platform_driver(smc_driver);
2481