1 /* 2 * smc91x.c 3 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices. 4 * 5 * Copyright (C) 1996 by Erik Stahlman 6 * Copyright (C) 2001 Standard Microsystems Corporation 7 * Developed by Simple Network Magic Corporation 8 * Copyright (C) 2003 Monta Vista Software, Inc. 9 * Unified SMC91x driver by Nicolas Pitre 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2 of the License, or 14 * (at your option) any later version. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, see <http://www.gnu.org/licenses/>. 23 * 24 * Arguments: 25 * io = for the base address 26 * irq = for the IRQ 27 * nowait = 0 for normal wait states, 1 eliminates additional wait states 28 * 29 * original author: 30 * Erik Stahlman <erik@vt.edu> 31 * 32 * hardware multicast code: 33 * Peter Cammaert <pc@denkart.be> 34 * 35 * contributors: 36 * Daris A Nevil <dnevil@snmc.com> 37 * Nicolas Pitre <nico@fluxnic.net> 38 * Russell King <rmk@arm.linux.org.uk> 39 * 40 * History: 41 * 08/20/00 Arnaldo Melo fix kfree(skb) in smc_hardware_send_packet 42 * 12/15/00 Christian Jullien fix "Warning: kfree_skb on hard IRQ" 43 * 03/16/01 Daris A Nevil modified smc9194.c for use with LAN91C111 44 * 08/22/01 Scott Anderson merge changes from smc9194 to smc91111 45 * 08/21/01 Pramod B Bhardwaj added support for RevB of LAN91C111 46 * 12/20/01 Jeff Sutherland initial port to Xscale PXA with DMA support 47 * 04/07/03 Nicolas Pitre unified SMC91x driver, killed irq races, 48 * more bus abstraction, big cleanup, etc. 49 * 29/09/03 Russell King - add driver model support 50 * - ethtool support 51 * - convert to use generic MII interface 52 * - add link up/down notification 53 * - don't try to handle full negotiation in 54 * smc_phy_configure 55 * - clean up (and fix stack overrun) in PHY 56 * MII read/write functions 57 * 22/09/04 Nicolas Pitre big update (see commit log for details) 58 */ 59 static const char version[] = 60 "smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>"; 61 62 /* Debugging level */ 63 #ifndef SMC_DEBUG 64 #define SMC_DEBUG 0 65 #endif 66 67 68 #include <linux/module.h> 69 #include <linux/kernel.h> 70 #include <linux/sched.h> 71 #include <linux/delay.h> 72 #include <linux/interrupt.h> 73 #include <linux/irq.h> 74 #include <linux/errno.h> 75 #include <linux/ioport.h> 76 #include <linux/crc32.h> 77 #include <linux/platform_device.h> 78 #include <linux/spinlock.h> 79 #include <linux/ethtool.h> 80 #include <linux/mii.h> 81 #include <linux/workqueue.h> 82 #include <linux/of.h> 83 #include <linux/of_device.h> 84 #include <linux/of_gpio.h> 85 86 #include <linux/netdevice.h> 87 #include <linux/etherdevice.h> 88 #include <linux/skbuff.h> 89 90 #include <asm/io.h> 91 92 #include "smc91x.h" 93 94 #ifndef SMC_NOWAIT 95 # define SMC_NOWAIT 0 96 #endif 97 static int nowait = SMC_NOWAIT; 98 module_param(nowait, int, 0400); 99 MODULE_PARM_DESC(nowait, "set to 1 for no wait state"); 100 101 /* 102 * Transmit timeout, default 5 seconds. 103 */ 104 static int watchdog = 1000; 105 module_param(watchdog, int, 0400); 106 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds"); 107 108 MODULE_LICENSE("GPL"); 109 MODULE_ALIAS("platform:smc91x"); 110 111 /* 112 * The internal workings of the driver. If you are changing anything 113 * here with the SMC stuff, you should have the datasheet and know 114 * what you are doing. 115 */ 116 #define CARDNAME "smc91x" 117 118 /* 119 * Use power-down feature of the chip 120 */ 121 #define POWER_DOWN 1 122 123 /* 124 * Wait time for memory to be free. This probably shouldn't be 125 * tuned that much, as waiting for this means nothing else happens 126 * in the system 127 */ 128 #define MEMORY_WAIT_TIME 16 129 130 /* 131 * The maximum number of processing loops allowed for each call to the 132 * IRQ handler. 133 */ 134 #define MAX_IRQ_LOOPS 8 135 136 /* 137 * This selects whether TX packets are sent one by one to the SMC91x internal 138 * memory and throttled until transmission completes. This may prevent 139 * RX overruns a litle by keeping much of the memory free for RX packets 140 * but to the expense of reduced TX throughput and increased IRQ overhead. 141 * Note this is not a cure for a too slow data bus or too high IRQ latency. 142 */ 143 #define THROTTLE_TX_PKTS 0 144 145 /* 146 * The MII clock high/low times. 2x this number gives the MII clock period 147 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!) 148 */ 149 #define MII_DELAY 1 150 151 #define DBG(n, dev, fmt, ...) \ 152 do { \ 153 if (SMC_DEBUG >= (n)) \ 154 netdev_dbg(dev, fmt, ##__VA_ARGS__); \ 155 } while (0) 156 157 #define PRINTK(dev, fmt, ...) \ 158 do { \ 159 if (SMC_DEBUG > 0) \ 160 netdev_info(dev, fmt, ##__VA_ARGS__); \ 161 else \ 162 netdev_dbg(dev, fmt, ##__VA_ARGS__); \ 163 } while (0) 164 165 #if SMC_DEBUG > 3 166 static void PRINT_PKT(u_char *buf, int length) 167 { 168 int i; 169 int remainder; 170 int lines; 171 172 lines = length / 16; 173 remainder = length % 16; 174 175 for (i = 0; i < lines ; i ++) { 176 int cur; 177 printk(KERN_DEBUG); 178 for (cur = 0; cur < 8; cur++) { 179 u_char a, b; 180 a = *buf++; 181 b = *buf++; 182 pr_cont("%02x%02x ", a, b); 183 } 184 pr_cont("\n"); 185 } 186 printk(KERN_DEBUG); 187 for (i = 0; i < remainder/2 ; i++) { 188 u_char a, b; 189 a = *buf++; 190 b = *buf++; 191 pr_cont("%02x%02x ", a, b); 192 } 193 pr_cont("\n"); 194 } 195 #else 196 static inline void PRINT_PKT(u_char *buf, int length) { } 197 #endif 198 199 200 /* this enables an interrupt in the interrupt mask register */ 201 #define SMC_ENABLE_INT(lp, x) do { \ 202 unsigned char mask; \ 203 unsigned long smc_enable_flags; \ 204 spin_lock_irqsave(&lp->lock, smc_enable_flags); \ 205 mask = SMC_GET_INT_MASK(lp); \ 206 mask |= (x); \ 207 SMC_SET_INT_MASK(lp, mask); \ 208 spin_unlock_irqrestore(&lp->lock, smc_enable_flags); \ 209 } while (0) 210 211 /* this disables an interrupt from the interrupt mask register */ 212 #define SMC_DISABLE_INT(lp, x) do { \ 213 unsigned char mask; \ 214 unsigned long smc_disable_flags; \ 215 spin_lock_irqsave(&lp->lock, smc_disable_flags); \ 216 mask = SMC_GET_INT_MASK(lp); \ 217 mask &= ~(x); \ 218 SMC_SET_INT_MASK(lp, mask); \ 219 spin_unlock_irqrestore(&lp->lock, smc_disable_flags); \ 220 } while (0) 221 222 /* 223 * Wait while MMU is busy. This is usually in the order of a few nanosecs 224 * if at all, but let's avoid deadlocking the system if the hardware 225 * decides to go south. 226 */ 227 #define SMC_WAIT_MMU_BUSY(lp) do { \ 228 if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) { \ 229 unsigned long timeout = jiffies + 2; \ 230 while (SMC_GET_MMU_CMD(lp) & MC_BUSY) { \ 231 if (time_after(jiffies, timeout)) { \ 232 netdev_dbg(dev, "timeout %s line %d\n", \ 233 __FILE__, __LINE__); \ 234 break; \ 235 } \ 236 cpu_relax(); \ 237 } \ 238 } \ 239 } while (0) 240 241 242 /* 243 * this does a soft reset on the device 244 */ 245 static void smc_reset(struct net_device *dev) 246 { 247 struct smc_local *lp = netdev_priv(dev); 248 void __iomem *ioaddr = lp->base; 249 unsigned int ctl, cfg; 250 struct sk_buff *pending_skb; 251 252 DBG(2, dev, "%s\n", __func__); 253 254 /* Disable all interrupts, block TX tasklet */ 255 spin_lock_irq(&lp->lock); 256 SMC_SELECT_BANK(lp, 2); 257 SMC_SET_INT_MASK(lp, 0); 258 pending_skb = lp->pending_tx_skb; 259 lp->pending_tx_skb = NULL; 260 spin_unlock_irq(&lp->lock); 261 262 /* free any pending tx skb */ 263 if (pending_skb) { 264 dev_kfree_skb(pending_skb); 265 dev->stats.tx_errors++; 266 dev->stats.tx_aborted_errors++; 267 } 268 269 /* 270 * This resets the registers mostly to defaults, but doesn't 271 * affect EEPROM. That seems unnecessary 272 */ 273 SMC_SELECT_BANK(lp, 0); 274 SMC_SET_RCR(lp, RCR_SOFTRST); 275 276 /* 277 * Setup the Configuration Register 278 * This is necessary because the CONFIG_REG is not affected 279 * by a soft reset 280 */ 281 SMC_SELECT_BANK(lp, 1); 282 283 cfg = CONFIG_DEFAULT; 284 285 /* 286 * Setup for fast accesses if requested. If the card/system 287 * can't handle it then there will be no recovery except for 288 * a hard reset or power cycle 289 */ 290 if (lp->cfg.flags & SMC91X_NOWAIT) 291 cfg |= CONFIG_NO_WAIT; 292 293 /* 294 * Release from possible power-down state 295 * Configuration register is not affected by Soft Reset 296 */ 297 cfg |= CONFIG_EPH_POWER_EN; 298 299 SMC_SET_CONFIG(lp, cfg); 300 301 /* this should pause enough for the chip to be happy */ 302 /* 303 * elaborate? What does the chip _need_? --jgarzik 304 * 305 * This seems to be undocumented, but something the original 306 * driver(s) have always done. Suspect undocumented timing 307 * info/determined empirically. --rmk 308 */ 309 udelay(1); 310 311 /* Disable transmit and receive functionality */ 312 SMC_SELECT_BANK(lp, 0); 313 SMC_SET_RCR(lp, RCR_CLEAR); 314 SMC_SET_TCR(lp, TCR_CLEAR); 315 316 SMC_SELECT_BANK(lp, 1); 317 ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE; 318 319 /* 320 * Set the control register to automatically release successfully 321 * transmitted packets, to make the best use out of our limited 322 * memory 323 */ 324 if(!THROTTLE_TX_PKTS) 325 ctl |= CTL_AUTO_RELEASE; 326 else 327 ctl &= ~CTL_AUTO_RELEASE; 328 SMC_SET_CTL(lp, ctl); 329 330 /* Reset the MMU */ 331 SMC_SELECT_BANK(lp, 2); 332 SMC_SET_MMU_CMD(lp, MC_RESET); 333 SMC_WAIT_MMU_BUSY(lp); 334 } 335 336 /* 337 * Enable Interrupts, Receive, and Transmit 338 */ 339 static void smc_enable(struct net_device *dev) 340 { 341 struct smc_local *lp = netdev_priv(dev); 342 void __iomem *ioaddr = lp->base; 343 int mask; 344 345 DBG(2, dev, "%s\n", __func__); 346 347 /* see the header file for options in TCR/RCR DEFAULT */ 348 SMC_SELECT_BANK(lp, 0); 349 SMC_SET_TCR(lp, lp->tcr_cur_mode); 350 SMC_SET_RCR(lp, lp->rcr_cur_mode); 351 352 SMC_SELECT_BANK(lp, 1); 353 SMC_SET_MAC_ADDR(lp, dev->dev_addr); 354 355 /* now, enable interrupts */ 356 mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT; 357 if (lp->version >= (CHIP_91100 << 4)) 358 mask |= IM_MDINT; 359 SMC_SELECT_BANK(lp, 2); 360 SMC_SET_INT_MASK(lp, mask); 361 362 /* 363 * From this point the register bank must _NOT_ be switched away 364 * to something else than bank 2 without proper locking against 365 * races with any tasklet or interrupt handlers until smc_shutdown() 366 * or smc_reset() is called. 367 */ 368 } 369 370 /* 371 * this puts the device in an inactive state 372 */ 373 static void smc_shutdown(struct net_device *dev) 374 { 375 struct smc_local *lp = netdev_priv(dev); 376 void __iomem *ioaddr = lp->base; 377 struct sk_buff *pending_skb; 378 379 DBG(2, dev, "%s: %s\n", CARDNAME, __func__); 380 381 /* no more interrupts for me */ 382 spin_lock_irq(&lp->lock); 383 SMC_SELECT_BANK(lp, 2); 384 SMC_SET_INT_MASK(lp, 0); 385 pending_skb = lp->pending_tx_skb; 386 lp->pending_tx_skb = NULL; 387 spin_unlock_irq(&lp->lock); 388 if (pending_skb) 389 dev_kfree_skb(pending_skb); 390 391 /* and tell the card to stay away from that nasty outside world */ 392 SMC_SELECT_BANK(lp, 0); 393 SMC_SET_RCR(lp, RCR_CLEAR); 394 SMC_SET_TCR(lp, TCR_CLEAR); 395 396 #ifdef POWER_DOWN 397 /* finally, shut the chip down */ 398 SMC_SELECT_BANK(lp, 1); 399 SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN); 400 #endif 401 } 402 403 /* 404 * This is the procedure to handle the receipt of a packet. 405 */ 406 static inline void smc_rcv(struct net_device *dev) 407 { 408 struct smc_local *lp = netdev_priv(dev); 409 void __iomem *ioaddr = lp->base; 410 unsigned int packet_number, status, packet_len; 411 412 DBG(3, dev, "%s\n", __func__); 413 414 packet_number = SMC_GET_RXFIFO(lp); 415 if (unlikely(packet_number & RXFIFO_REMPTY)) { 416 PRINTK(dev, "smc_rcv with nothing on FIFO.\n"); 417 return; 418 } 419 420 /* read from start of packet */ 421 SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC); 422 423 /* First two words are status and packet length */ 424 SMC_GET_PKT_HDR(lp, status, packet_len); 425 packet_len &= 0x07ff; /* mask off top bits */ 426 DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n", 427 packet_number, status, packet_len, packet_len); 428 429 back: 430 if (unlikely(packet_len < 6 || status & RS_ERRORS)) { 431 if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) { 432 /* accept VLAN packets */ 433 status &= ~RS_TOOLONG; 434 goto back; 435 } 436 if (packet_len < 6) { 437 /* bloody hardware */ 438 netdev_err(dev, "fubar (rxlen %u status %x\n", 439 packet_len, status); 440 status |= RS_TOOSHORT; 441 } 442 SMC_WAIT_MMU_BUSY(lp); 443 SMC_SET_MMU_CMD(lp, MC_RELEASE); 444 dev->stats.rx_errors++; 445 if (status & RS_ALGNERR) 446 dev->stats.rx_frame_errors++; 447 if (status & (RS_TOOSHORT | RS_TOOLONG)) 448 dev->stats.rx_length_errors++; 449 if (status & RS_BADCRC) 450 dev->stats.rx_crc_errors++; 451 } else { 452 struct sk_buff *skb; 453 unsigned char *data; 454 unsigned int data_len; 455 456 /* set multicast stats */ 457 if (status & RS_MULTICAST) 458 dev->stats.multicast++; 459 460 /* 461 * Actual payload is packet_len - 6 (or 5 if odd byte). 462 * We want skb_reserve(2) and the final ctrl word 463 * (2 bytes, possibly containing the payload odd byte). 464 * Furthermore, we add 2 bytes to allow rounding up to 465 * multiple of 4 bytes on 32 bit buses. 466 * Hence packet_len - 6 + 2 + 2 + 2. 467 */ 468 skb = netdev_alloc_skb(dev, packet_len); 469 if (unlikely(skb == NULL)) { 470 SMC_WAIT_MMU_BUSY(lp); 471 SMC_SET_MMU_CMD(lp, MC_RELEASE); 472 dev->stats.rx_dropped++; 473 return; 474 } 475 476 /* Align IP header to 32 bits */ 477 skb_reserve(skb, 2); 478 479 /* BUG: the LAN91C111 rev A never sets this bit. Force it. */ 480 if (lp->version == 0x90) 481 status |= RS_ODDFRAME; 482 483 /* 484 * If odd length: packet_len - 5, 485 * otherwise packet_len - 6. 486 * With the trailing ctrl byte it's packet_len - 4. 487 */ 488 data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6); 489 data = skb_put(skb, data_len); 490 SMC_PULL_DATA(lp, data, packet_len - 4); 491 492 SMC_WAIT_MMU_BUSY(lp); 493 SMC_SET_MMU_CMD(lp, MC_RELEASE); 494 495 PRINT_PKT(data, packet_len - 4); 496 497 skb->protocol = eth_type_trans(skb, dev); 498 netif_rx(skb); 499 dev->stats.rx_packets++; 500 dev->stats.rx_bytes += data_len; 501 } 502 } 503 504 #ifdef CONFIG_SMP 505 /* 506 * On SMP we have the following problem: 507 * 508 * A = smc_hardware_send_pkt() 509 * B = smc_hard_start_xmit() 510 * C = smc_interrupt() 511 * 512 * A and B can never be executed simultaneously. However, at least on UP, 513 * it is possible (and even desirable) for C to interrupt execution of 514 * A or B in order to have better RX reliability and avoid overruns. 515 * C, just like A and B, must have exclusive access to the chip and 516 * each of them must lock against any other concurrent access. 517 * Unfortunately this is not possible to have C suspend execution of A or 518 * B taking place on another CPU. On UP this is no an issue since A and B 519 * are run from softirq context and C from hard IRQ context, and there is 520 * no other CPU where concurrent access can happen. 521 * If ever there is a way to force at least B and C to always be executed 522 * on the same CPU then we could use read/write locks to protect against 523 * any other concurrent access and C would always interrupt B. But life 524 * isn't that easy in a SMP world... 525 */ 526 #define smc_special_trylock(lock, flags) \ 527 ({ \ 528 int __ret; \ 529 local_irq_save(flags); \ 530 __ret = spin_trylock(lock); \ 531 if (!__ret) \ 532 local_irq_restore(flags); \ 533 __ret; \ 534 }) 535 #define smc_special_lock(lock, flags) spin_lock_irqsave(lock, flags) 536 #define smc_special_unlock(lock, flags) spin_unlock_irqrestore(lock, flags) 537 #else 538 #define smc_special_trylock(lock, flags) (flags == flags) 539 #define smc_special_lock(lock, flags) do { flags = 0; } while (0) 540 #define smc_special_unlock(lock, flags) do { flags = 0; } while (0) 541 #endif 542 543 /* 544 * This is called to actually send a packet to the chip. 545 */ 546 static void smc_hardware_send_pkt(unsigned long data) 547 { 548 struct net_device *dev = (struct net_device *)data; 549 struct smc_local *lp = netdev_priv(dev); 550 void __iomem *ioaddr = lp->base; 551 struct sk_buff *skb; 552 unsigned int packet_no, len; 553 unsigned char *buf; 554 unsigned long flags; 555 556 DBG(3, dev, "%s\n", __func__); 557 558 if (!smc_special_trylock(&lp->lock, flags)) { 559 netif_stop_queue(dev); 560 tasklet_schedule(&lp->tx_task); 561 return; 562 } 563 564 skb = lp->pending_tx_skb; 565 if (unlikely(!skb)) { 566 smc_special_unlock(&lp->lock, flags); 567 return; 568 } 569 lp->pending_tx_skb = NULL; 570 571 packet_no = SMC_GET_AR(lp); 572 if (unlikely(packet_no & AR_FAILED)) { 573 netdev_err(dev, "Memory allocation failed.\n"); 574 dev->stats.tx_errors++; 575 dev->stats.tx_fifo_errors++; 576 smc_special_unlock(&lp->lock, flags); 577 goto done; 578 } 579 580 /* point to the beginning of the packet */ 581 SMC_SET_PN(lp, packet_no); 582 SMC_SET_PTR(lp, PTR_AUTOINC); 583 584 buf = skb->data; 585 len = skb->len; 586 DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n", 587 packet_no, len, len, buf); 588 PRINT_PKT(buf, len); 589 590 /* 591 * Send the packet length (+6 for status words, length, and ctl. 592 * The card will pad to 64 bytes with zeroes if packet is too small. 593 */ 594 SMC_PUT_PKT_HDR(lp, 0, len + 6); 595 596 /* send the actual data */ 597 SMC_PUSH_DATA(lp, buf, len & ~1); 598 599 /* Send final ctl word with the last byte if there is one */ 600 SMC_outw(((len & 1) ? (0x2000 | buf[len-1]) : 0), ioaddr, DATA_REG(lp)); 601 602 /* 603 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will 604 * have the effect of having at most one packet queued for TX 605 * in the chip's memory at all time. 606 * 607 * If THROTTLE_TX_PKTS is not set then the queue is stopped only 608 * when memory allocation (MC_ALLOC) does not succeed right away. 609 */ 610 if (THROTTLE_TX_PKTS) 611 netif_stop_queue(dev); 612 613 /* queue the packet for TX */ 614 SMC_SET_MMU_CMD(lp, MC_ENQUEUE); 615 smc_special_unlock(&lp->lock, flags); 616 617 dev->trans_start = jiffies; 618 dev->stats.tx_packets++; 619 dev->stats.tx_bytes += len; 620 621 SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT); 622 623 done: if (!THROTTLE_TX_PKTS) 624 netif_wake_queue(dev); 625 626 dev_consume_skb_any(skb); 627 } 628 629 /* 630 * Since I am not sure if I will have enough room in the chip's ram 631 * to store the packet, I call this routine which either sends it 632 * now, or set the card to generates an interrupt when ready 633 * for the packet. 634 */ 635 static int smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) 636 { 637 struct smc_local *lp = netdev_priv(dev); 638 void __iomem *ioaddr = lp->base; 639 unsigned int numPages, poll_count, status; 640 unsigned long flags; 641 642 DBG(3, dev, "%s\n", __func__); 643 644 BUG_ON(lp->pending_tx_skb != NULL); 645 646 /* 647 * The MMU wants the number of pages to be the number of 256 bytes 648 * 'pages', minus 1 (since a packet can't ever have 0 pages :)) 649 * 650 * The 91C111 ignores the size bits, but earlier models don't. 651 * 652 * Pkt size for allocating is data length +6 (for additional status 653 * words, length and ctl) 654 * 655 * If odd size then last byte is included in ctl word. 656 */ 657 numPages = ((skb->len & ~1) + (6 - 1)) >> 8; 658 if (unlikely(numPages > 7)) { 659 netdev_warn(dev, "Far too big packet error.\n"); 660 dev->stats.tx_errors++; 661 dev->stats.tx_dropped++; 662 dev_kfree_skb_any(skb); 663 return NETDEV_TX_OK; 664 } 665 666 smc_special_lock(&lp->lock, flags); 667 668 /* now, try to allocate the memory */ 669 SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages); 670 671 /* 672 * Poll the chip for a short amount of time in case the 673 * allocation succeeds quickly. 674 */ 675 poll_count = MEMORY_WAIT_TIME; 676 do { 677 status = SMC_GET_INT(lp); 678 if (status & IM_ALLOC_INT) { 679 SMC_ACK_INT(lp, IM_ALLOC_INT); 680 break; 681 } 682 } while (--poll_count); 683 684 smc_special_unlock(&lp->lock, flags); 685 686 lp->pending_tx_skb = skb; 687 if (!poll_count) { 688 /* oh well, wait until the chip finds memory later */ 689 netif_stop_queue(dev); 690 DBG(2, dev, "TX memory allocation deferred.\n"); 691 SMC_ENABLE_INT(lp, IM_ALLOC_INT); 692 } else { 693 /* 694 * Allocation succeeded: push packet to the chip's own memory 695 * immediately. 696 */ 697 smc_hardware_send_pkt((unsigned long)dev); 698 } 699 700 return NETDEV_TX_OK; 701 } 702 703 /* 704 * This handles a TX interrupt, which is only called when: 705 * - a TX error occurred, or 706 * - CTL_AUTO_RELEASE is not set and TX of a packet completed. 707 */ 708 static void smc_tx(struct net_device *dev) 709 { 710 struct smc_local *lp = netdev_priv(dev); 711 void __iomem *ioaddr = lp->base; 712 unsigned int saved_packet, packet_no, tx_status, pkt_len; 713 714 DBG(3, dev, "%s\n", __func__); 715 716 /* If the TX FIFO is empty then nothing to do */ 717 packet_no = SMC_GET_TXFIFO(lp); 718 if (unlikely(packet_no & TXFIFO_TEMPTY)) { 719 PRINTK(dev, "smc_tx with nothing on FIFO.\n"); 720 return; 721 } 722 723 /* select packet to read from */ 724 saved_packet = SMC_GET_PN(lp); 725 SMC_SET_PN(lp, packet_no); 726 727 /* read the first word (status word) from this packet */ 728 SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ); 729 SMC_GET_PKT_HDR(lp, tx_status, pkt_len); 730 DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n", 731 tx_status, packet_no); 732 733 if (!(tx_status & ES_TX_SUC)) 734 dev->stats.tx_errors++; 735 736 if (tx_status & ES_LOSTCARR) 737 dev->stats.tx_carrier_errors++; 738 739 if (tx_status & (ES_LATCOL | ES_16COL)) { 740 PRINTK(dev, "%s occurred on last xmit\n", 741 (tx_status & ES_LATCOL) ? 742 "late collision" : "too many collisions"); 743 dev->stats.tx_window_errors++; 744 if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) { 745 netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n"); 746 } 747 } 748 749 /* kill the packet */ 750 SMC_WAIT_MMU_BUSY(lp); 751 SMC_SET_MMU_CMD(lp, MC_FREEPKT); 752 753 /* Don't restore Packet Number Reg until busy bit is cleared */ 754 SMC_WAIT_MMU_BUSY(lp); 755 SMC_SET_PN(lp, saved_packet); 756 757 /* re-enable transmit */ 758 SMC_SELECT_BANK(lp, 0); 759 SMC_SET_TCR(lp, lp->tcr_cur_mode); 760 SMC_SELECT_BANK(lp, 2); 761 } 762 763 764 /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/ 765 766 static void smc_mii_out(struct net_device *dev, unsigned int val, int bits) 767 { 768 struct smc_local *lp = netdev_priv(dev); 769 void __iomem *ioaddr = lp->base; 770 unsigned int mii_reg, mask; 771 772 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO); 773 mii_reg |= MII_MDOE; 774 775 for (mask = 1 << (bits - 1); mask; mask >>= 1) { 776 if (val & mask) 777 mii_reg |= MII_MDO; 778 else 779 mii_reg &= ~MII_MDO; 780 781 SMC_SET_MII(lp, mii_reg); 782 udelay(MII_DELAY); 783 SMC_SET_MII(lp, mii_reg | MII_MCLK); 784 udelay(MII_DELAY); 785 } 786 } 787 788 static unsigned int smc_mii_in(struct net_device *dev, int bits) 789 { 790 struct smc_local *lp = netdev_priv(dev); 791 void __iomem *ioaddr = lp->base; 792 unsigned int mii_reg, mask, val; 793 794 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO); 795 SMC_SET_MII(lp, mii_reg); 796 797 for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) { 798 if (SMC_GET_MII(lp) & MII_MDI) 799 val |= mask; 800 801 SMC_SET_MII(lp, mii_reg); 802 udelay(MII_DELAY); 803 SMC_SET_MII(lp, mii_reg | MII_MCLK); 804 udelay(MII_DELAY); 805 } 806 807 return val; 808 } 809 810 /* 811 * Reads a register from the MII Management serial interface 812 */ 813 static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg) 814 { 815 struct smc_local *lp = netdev_priv(dev); 816 void __iomem *ioaddr = lp->base; 817 unsigned int phydata; 818 819 SMC_SELECT_BANK(lp, 3); 820 821 /* Idle - 32 ones */ 822 smc_mii_out(dev, 0xffffffff, 32); 823 824 /* Start code (01) + read (10) + phyaddr + phyreg */ 825 smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14); 826 827 /* Turnaround (2bits) + phydata */ 828 phydata = smc_mii_in(dev, 18); 829 830 /* Return to idle state */ 831 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO)); 832 833 DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n", 834 __func__, phyaddr, phyreg, phydata); 835 836 SMC_SELECT_BANK(lp, 2); 837 return phydata; 838 } 839 840 /* 841 * Writes a register to the MII Management serial interface 842 */ 843 static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg, 844 int phydata) 845 { 846 struct smc_local *lp = netdev_priv(dev); 847 void __iomem *ioaddr = lp->base; 848 849 SMC_SELECT_BANK(lp, 3); 850 851 /* Idle - 32 ones */ 852 smc_mii_out(dev, 0xffffffff, 32); 853 854 /* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */ 855 smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32); 856 857 /* Return to idle state */ 858 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO)); 859 860 DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n", 861 __func__, phyaddr, phyreg, phydata); 862 863 SMC_SELECT_BANK(lp, 2); 864 } 865 866 /* 867 * Finds and reports the PHY address 868 */ 869 static void smc_phy_detect(struct net_device *dev) 870 { 871 struct smc_local *lp = netdev_priv(dev); 872 int phyaddr; 873 874 DBG(2, dev, "%s\n", __func__); 875 876 lp->phy_type = 0; 877 878 /* 879 * Scan all 32 PHY addresses if necessary, starting at 880 * PHY#1 to PHY#31, and then PHY#0 last. 881 */ 882 for (phyaddr = 1; phyaddr < 33; ++phyaddr) { 883 unsigned int id1, id2; 884 885 /* Read the PHY identifiers */ 886 id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1); 887 id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2); 888 889 DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n", 890 id1, id2); 891 892 /* Make sure it is a valid identifier */ 893 if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 && 894 id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) { 895 /* Save the PHY's address */ 896 lp->mii.phy_id = phyaddr & 31; 897 lp->phy_type = id1 << 16 | id2; 898 break; 899 } 900 } 901 } 902 903 /* 904 * Sets the PHY to a configuration as determined by the user 905 */ 906 static int smc_phy_fixed(struct net_device *dev) 907 { 908 struct smc_local *lp = netdev_priv(dev); 909 void __iomem *ioaddr = lp->base; 910 int phyaddr = lp->mii.phy_id; 911 int bmcr, cfg1; 912 913 DBG(3, dev, "%s\n", __func__); 914 915 /* Enter Link Disable state */ 916 cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG); 917 cfg1 |= PHY_CFG1_LNKDIS; 918 smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1); 919 920 /* 921 * Set our fixed capabilities 922 * Disable auto-negotiation 923 */ 924 bmcr = 0; 925 926 if (lp->ctl_rfduplx) 927 bmcr |= BMCR_FULLDPLX; 928 929 if (lp->ctl_rspeed == 100) 930 bmcr |= BMCR_SPEED100; 931 932 /* Write our capabilities to the phy control register */ 933 smc_phy_write(dev, phyaddr, MII_BMCR, bmcr); 934 935 /* Re-Configure the Receive/Phy Control register */ 936 SMC_SELECT_BANK(lp, 0); 937 SMC_SET_RPC(lp, lp->rpc_cur_mode); 938 SMC_SELECT_BANK(lp, 2); 939 940 return 1; 941 } 942 943 /** 944 * smc_phy_reset - reset the phy 945 * @dev: net device 946 * @phy: phy address 947 * 948 * Issue a software reset for the specified PHY and 949 * wait up to 100ms for the reset to complete. We should 950 * not access the PHY for 50ms after issuing the reset. 951 * 952 * The time to wait appears to be dependent on the PHY. 953 * 954 * Must be called with lp->lock locked. 955 */ 956 static int smc_phy_reset(struct net_device *dev, int phy) 957 { 958 struct smc_local *lp = netdev_priv(dev); 959 unsigned int bmcr; 960 int timeout; 961 962 smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET); 963 964 for (timeout = 2; timeout; timeout--) { 965 spin_unlock_irq(&lp->lock); 966 msleep(50); 967 spin_lock_irq(&lp->lock); 968 969 bmcr = smc_phy_read(dev, phy, MII_BMCR); 970 if (!(bmcr & BMCR_RESET)) 971 break; 972 } 973 974 return bmcr & BMCR_RESET; 975 } 976 977 /** 978 * smc_phy_powerdown - powerdown phy 979 * @dev: net device 980 * 981 * Power down the specified PHY 982 */ 983 static void smc_phy_powerdown(struct net_device *dev) 984 { 985 struct smc_local *lp = netdev_priv(dev); 986 unsigned int bmcr; 987 int phy = lp->mii.phy_id; 988 989 if (lp->phy_type == 0) 990 return; 991 992 /* We need to ensure that no calls to smc_phy_configure are 993 pending. 994 */ 995 cancel_work_sync(&lp->phy_configure); 996 997 bmcr = smc_phy_read(dev, phy, MII_BMCR); 998 smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN); 999 } 1000 1001 /** 1002 * smc_phy_check_media - check the media status and adjust TCR 1003 * @dev: net device 1004 * @init: set true for initialisation 1005 * 1006 * Select duplex mode depending on negotiation state. This 1007 * also updates our carrier state. 1008 */ 1009 static void smc_phy_check_media(struct net_device *dev, int init) 1010 { 1011 struct smc_local *lp = netdev_priv(dev); 1012 void __iomem *ioaddr = lp->base; 1013 1014 if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) { 1015 /* duplex state has changed */ 1016 if (lp->mii.full_duplex) { 1017 lp->tcr_cur_mode |= TCR_SWFDUP; 1018 } else { 1019 lp->tcr_cur_mode &= ~TCR_SWFDUP; 1020 } 1021 1022 SMC_SELECT_BANK(lp, 0); 1023 SMC_SET_TCR(lp, lp->tcr_cur_mode); 1024 } 1025 } 1026 1027 /* 1028 * Configures the specified PHY through the MII management interface 1029 * using Autonegotiation. 1030 * Calls smc_phy_fixed() if the user has requested a certain config. 1031 * If RPC ANEG bit is set, the media selection is dependent purely on 1032 * the selection by the MII (either in the MII BMCR reg or the result 1033 * of autonegotiation.) If the RPC ANEG bit is cleared, the selection 1034 * is controlled by the RPC SPEED and RPC DPLX bits. 1035 */ 1036 static void smc_phy_configure(struct work_struct *work) 1037 { 1038 struct smc_local *lp = 1039 container_of(work, struct smc_local, phy_configure); 1040 struct net_device *dev = lp->dev; 1041 void __iomem *ioaddr = lp->base; 1042 int phyaddr = lp->mii.phy_id; 1043 int my_phy_caps; /* My PHY capabilities */ 1044 int my_ad_caps; /* My Advertised capabilities */ 1045 int status; 1046 1047 DBG(3, dev, "smc_program_phy()\n"); 1048 1049 spin_lock_irq(&lp->lock); 1050 1051 /* 1052 * We should not be called if phy_type is zero. 1053 */ 1054 if (lp->phy_type == 0) 1055 goto smc_phy_configure_exit; 1056 1057 if (smc_phy_reset(dev, phyaddr)) { 1058 netdev_info(dev, "PHY reset timed out\n"); 1059 goto smc_phy_configure_exit; 1060 } 1061 1062 /* 1063 * Enable PHY Interrupts (for register 18) 1064 * Interrupts listed here are disabled 1065 */ 1066 smc_phy_write(dev, phyaddr, PHY_MASK_REG, 1067 PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD | 1068 PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB | 1069 PHY_INT_SPDDET | PHY_INT_DPLXDET); 1070 1071 /* Configure the Receive/Phy Control register */ 1072 SMC_SELECT_BANK(lp, 0); 1073 SMC_SET_RPC(lp, lp->rpc_cur_mode); 1074 1075 /* If the user requested no auto neg, then go set his request */ 1076 if (lp->mii.force_media) { 1077 smc_phy_fixed(dev); 1078 goto smc_phy_configure_exit; 1079 } 1080 1081 /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */ 1082 my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR); 1083 1084 if (!(my_phy_caps & BMSR_ANEGCAPABLE)) { 1085 netdev_info(dev, "Auto negotiation NOT supported\n"); 1086 smc_phy_fixed(dev); 1087 goto smc_phy_configure_exit; 1088 } 1089 1090 my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */ 1091 1092 if (my_phy_caps & BMSR_100BASE4) 1093 my_ad_caps |= ADVERTISE_100BASE4; 1094 if (my_phy_caps & BMSR_100FULL) 1095 my_ad_caps |= ADVERTISE_100FULL; 1096 if (my_phy_caps & BMSR_100HALF) 1097 my_ad_caps |= ADVERTISE_100HALF; 1098 if (my_phy_caps & BMSR_10FULL) 1099 my_ad_caps |= ADVERTISE_10FULL; 1100 if (my_phy_caps & BMSR_10HALF) 1101 my_ad_caps |= ADVERTISE_10HALF; 1102 1103 /* Disable capabilities not selected by our user */ 1104 if (lp->ctl_rspeed != 100) 1105 my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF); 1106 1107 if (!lp->ctl_rfduplx) 1108 my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL); 1109 1110 /* Update our Auto-Neg Advertisement Register */ 1111 smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps); 1112 lp->mii.advertising = my_ad_caps; 1113 1114 /* 1115 * Read the register back. Without this, it appears that when 1116 * auto-negotiation is restarted, sometimes it isn't ready and 1117 * the link does not come up. 1118 */ 1119 status = smc_phy_read(dev, phyaddr, MII_ADVERTISE); 1120 1121 DBG(2, dev, "phy caps=%x\n", my_phy_caps); 1122 DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps); 1123 1124 /* Restart auto-negotiation process in order to advertise my caps */ 1125 smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART); 1126 1127 smc_phy_check_media(dev, 1); 1128 1129 smc_phy_configure_exit: 1130 SMC_SELECT_BANK(lp, 2); 1131 spin_unlock_irq(&lp->lock); 1132 } 1133 1134 /* 1135 * smc_phy_interrupt 1136 * 1137 * Purpose: Handle interrupts relating to PHY register 18. This is 1138 * called from the "hard" interrupt handler under our private spinlock. 1139 */ 1140 static void smc_phy_interrupt(struct net_device *dev) 1141 { 1142 struct smc_local *lp = netdev_priv(dev); 1143 int phyaddr = lp->mii.phy_id; 1144 int phy18; 1145 1146 DBG(2, dev, "%s\n", __func__); 1147 1148 if (lp->phy_type == 0) 1149 return; 1150 1151 for(;;) { 1152 smc_phy_check_media(dev, 0); 1153 1154 /* Read PHY Register 18, Status Output */ 1155 phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG); 1156 if ((phy18 & PHY_INT_INT) == 0) 1157 break; 1158 } 1159 } 1160 1161 /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/ 1162 1163 static void smc_10bt_check_media(struct net_device *dev, int init) 1164 { 1165 struct smc_local *lp = netdev_priv(dev); 1166 void __iomem *ioaddr = lp->base; 1167 unsigned int old_carrier, new_carrier; 1168 1169 old_carrier = netif_carrier_ok(dev) ? 1 : 0; 1170 1171 SMC_SELECT_BANK(lp, 0); 1172 new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0; 1173 SMC_SELECT_BANK(lp, 2); 1174 1175 if (init || (old_carrier != new_carrier)) { 1176 if (!new_carrier) { 1177 netif_carrier_off(dev); 1178 } else { 1179 netif_carrier_on(dev); 1180 } 1181 if (netif_msg_link(lp)) 1182 netdev_info(dev, "link %s\n", 1183 new_carrier ? "up" : "down"); 1184 } 1185 } 1186 1187 static void smc_eph_interrupt(struct net_device *dev) 1188 { 1189 struct smc_local *lp = netdev_priv(dev); 1190 void __iomem *ioaddr = lp->base; 1191 unsigned int ctl; 1192 1193 smc_10bt_check_media(dev, 0); 1194 1195 SMC_SELECT_BANK(lp, 1); 1196 ctl = SMC_GET_CTL(lp); 1197 SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE); 1198 SMC_SET_CTL(lp, ctl); 1199 SMC_SELECT_BANK(lp, 2); 1200 } 1201 1202 /* 1203 * This is the main routine of the driver, to handle the device when 1204 * it needs some attention. 1205 */ 1206 static irqreturn_t smc_interrupt(int irq, void *dev_id) 1207 { 1208 struct net_device *dev = dev_id; 1209 struct smc_local *lp = netdev_priv(dev); 1210 void __iomem *ioaddr = lp->base; 1211 int status, mask, timeout, card_stats; 1212 int saved_pointer; 1213 1214 DBG(3, dev, "%s\n", __func__); 1215 1216 spin_lock(&lp->lock); 1217 1218 /* A preamble may be used when there is a potential race 1219 * between the interruptible transmit functions and this 1220 * ISR. */ 1221 SMC_INTERRUPT_PREAMBLE; 1222 1223 saved_pointer = SMC_GET_PTR(lp); 1224 mask = SMC_GET_INT_MASK(lp); 1225 SMC_SET_INT_MASK(lp, 0); 1226 1227 /* set a timeout value, so I don't stay here forever */ 1228 timeout = MAX_IRQ_LOOPS; 1229 1230 do { 1231 status = SMC_GET_INT(lp); 1232 1233 DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n", 1234 status, mask, 1235 ({ int meminfo; SMC_SELECT_BANK(lp, 0); 1236 meminfo = SMC_GET_MIR(lp); 1237 SMC_SELECT_BANK(lp, 2); meminfo; }), 1238 SMC_GET_FIFO(lp)); 1239 1240 status &= mask; 1241 if (!status) 1242 break; 1243 1244 if (status & IM_TX_INT) { 1245 /* do this before RX as it will free memory quickly */ 1246 DBG(3, dev, "TX int\n"); 1247 smc_tx(dev); 1248 SMC_ACK_INT(lp, IM_TX_INT); 1249 if (THROTTLE_TX_PKTS) 1250 netif_wake_queue(dev); 1251 } else if (status & IM_RCV_INT) { 1252 DBG(3, dev, "RX irq\n"); 1253 smc_rcv(dev); 1254 } else if (status & IM_ALLOC_INT) { 1255 DBG(3, dev, "Allocation irq\n"); 1256 tasklet_hi_schedule(&lp->tx_task); 1257 mask &= ~IM_ALLOC_INT; 1258 } else if (status & IM_TX_EMPTY_INT) { 1259 DBG(3, dev, "TX empty\n"); 1260 mask &= ~IM_TX_EMPTY_INT; 1261 1262 /* update stats */ 1263 SMC_SELECT_BANK(lp, 0); 1264 card_stats = SMC_GET_COUNTER(lp); 1265 SMC_SELECT_BANK(lp, 2); 1266 1267 /* single collisions */ 1268 dev->stats.collisions += card_stats & 0xF; 1269 card_stats >>= 4; 1270 1271 /* multiple collisions */ 1272 dev->stats.collisions += card_stats & 0xF; 1273 } else if (status & IM_RX_OVRN_INT) { 1274 DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n", 1275 ({ int eph_st; SMC_SELECT_BANK(lp, 0); 1276 eph_st = SMC_GET_EPH_STATUS(lp); 1277 SMC_SELECT_BANK(lp, 2); eph_st; })); 1278 SMC_ACK_INT(lp, IM_RX_OVRN_INT); 1279 dev->stats.rx_errors++; 1280 dev->stats.rx_fifo_errors++; 1281 } else if (status & IM_EPH_INT) { 1282 smc_eph_interrupt(dev); 1283 } else if (status & IM_MDINT) { 1284 SMC_ACK_INT(lp, IM_MDINT); 1285 smc_phy_interrupt(dev); 1286 } else if (status & IM_ERCV_INT) { 1287 SMC_ACK_INT(lp, IM_ERCV_INT); 1288 PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n"); 1289 } 1290 } while (--timeout); 1291 1292 /* restore register states */ 1293 SMC_SET_PTR(lp, saved_pointer); 1294 SMC_SET_INT_MASK(lp, mask); 1295 spin_unlock(&lp->lock); 1296 1297 #ifndef CONFIG_NET_POLL_CONTROLLER 1298 if (timeout == MAX_IRQ_LOOPS) 1299 PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n", 1300 mask); 1301 #endif 1302 DBG(3, dev, "Interrupt done (%d loops)\n", 1303 MAX_IRQ_LOOPS - timeout); 1304 1305 /* 1306 * We return IRQ_HANDLED unconditionally here even if there was 1307 * nothing to do. There is a possibility that a packet might 1308 * get enqueued into the chip right after TX_EMPTY_INT is raised 1309 * but just before the CPU acknowledges the IRQ. 1310 * Better take an unneeded IRQ in some occasions than complexifying 1311 * the code for all cases. 1312 */ 1313 return IRQ_HANDLED; 1314 } 1315 1316 #ifdef CONFIG_NET_POLL_CONTROLLER 1317 /* 1318 * Polling receive - used by netconsole and other diagnostic tools 1319 * to allow network i/o with interrupts disabled. 1320 */ 1321 static void smc_poll_controller(struct net_device *dev) 1322 { 1323 disable_irq(dev->irq); 1324 smc_interrupt(dev->irq, dev); 1325 enable_irq(dev->irq); 1326 } 1327 #endif 1328 1329 /* Our watchdog timed out. Called by the networking layer */ 1330 static void smc_timeout(struct net_device *dev) 1331 { 1332 struct smc_local *lp = netdev_priv(dev); 1333 void __iomem *ioaddr = lp->base; 1334 int status, mask, eph_st, meminfo, fifo; 1335 1336 DBG(2, dev, "%s\n", __func__); 1337 1338 spin_lock_irq(&lp->lock); 1339 status = SMC_GET_INT(lp); 1340 mask = SMC_GET_INT_MASK(lp); 1341 fifo = SMC_GET_FIFO(lp); 1342 SMC_SELECT_BANK(lp, 0); 1343 eph_st = SMC_GET_EPH_STATUS(lp); 1344 meminfo = SMC_GET_MIR(lp); 1345 SMC_SELECT_BANK(lp, 2); 1346 spin_unlock_irq(&lp->lock); 1347 PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n", 1348 status, mask, meminfo, fifo, eph_st); 1349 1350 smc_reset(dev); 1351 smc_enable(dev); 1352 1353 /* 1354 * Reconfiguring the PHY doesn't seem like a bad idea here, but 1355 * smc_phy_configure() calls msleep() which calls schedule_timeout() 1356 * which calls schedule(). Hence we use a work queue. 1357 */ 1358 if (lp->phy_type != 0) 1359 schedule_work(&lp->phy_configure); 1360 1361 /* We can accept TX packets again */ 1362 dev->trans_start = jiffies; /* prevent tx timeout */ 1363 netif_wake_queue(dev); 1364 } 1365 1366 /* 1367 * This routine will, depending on the values passed to it, 1368 * either make it accept multicast packets, go into 1369 * promiscuous mode (for TCPDUMP and cousins) or accept 1370 * a select set of multicast packets 1371 */ 1372 static void smc_set_multicast_list(struct net_device *dev) 1373 { 1374 struct smc_local *lp = netdev_priv(dev); 1375 void __iomem *ioaddr = lp->base; 1376 unsigned char multicast_table[8]; 1377 int update_multicast = 0; 1378 1379 DBG(2, dev, "%s\n", __func__); 1380 1381 if (dev->flags & IFF_PROMISC) { 1382 DBG(2, dev, "RCR_PRMS\n"); 1383 lp->rcr_cur_mode |= RCR_PRMS; 1384 } 1385 1386 /* BUG? I never disable promiscuous mode if multicasting was turned on. 1387 Now, I turn off promiscuous mode, but I don't do anything to multicasting 1388 when promiscuous mode is turned on. 1389 */ 1390 1391 /* 1392 * Here, I am setting this to accept all multicast packets. 1393 * I don't need to zero the multicast table, because the flag is 1394 * checked before the table is 1395 */ 1396 else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) { 1397 DBG(2, dev, "RCR_ALMUL\n"); 1398 lp->rcr_cur_mode |= RCR_ALMUL; 1399 } 1400 1401 /* 1402 * This sets the internal hardware table to filter out unwanted 1403 * multicast packets before they take up memory. 1404 * 1405 * The SMC chip uses a hash table where the high 6 bits of the CRC of 1406 * address are the offset into the table. If that bit is 1, then the 1407 * multicast packet is accepted. Otherwise, it's dropped silently. 1408 * 1409 * To use the 6 bits as an offset into the table, the high 3 bits are 1410 * the number of the 8 bit register, while the low 3 bits are the bit 1411 * within that register. 1412 */ 1413 else if (!netdev_mc_empty(dev)) { 1414 struct netdev_hw_addr *ha; 1415 1416 /* table for flipping the order of 3 bits */ 1417 static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7}; 1418 1419 /* start with a table of all zeros: reject all */ 1420 memset(multicast_table, 0, sizeof(multicast_table)); 1421 1422 netdev_for_each_mc_addr(ha, dev) { 1423 int position; 1424 1425 /* only use the low order bits */ 1426 position = crc32_le(~0, ha->addr, 6) & 0x3f; 1427 1428 /* do some messy swapping to put the bit in the right spot */ 1429 multicast_table[invert3[position&7]] |= 1430 (1<<invert3[(position>>3)&7]); 1431 } 1432 1433 /* be sure I get rid of flags I might have set */ 1434 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL); 1435 1436 /* now, the table can be loaded into the chipset */ 1437 update_multicast = 1; 1438 } else { 1439 DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n"); 1440 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL); 1441 1442 /* 1443 * since I'm disabling all multicast entirely, I need to 1444 * clear the multicast list 1445 */ 1446 memset(multicast_table, 0, sizeof(multicast_table)); 1447 update_multicast = 1; 1448 } 1449 1450 spin_lock_irq(&lp->lock); 1451 SMC_SELECT_BANK(lp, 0); 1452 SMC_SET_RCR(lp, lp->rcr_cur_mode); 1453 if (update_multicast) { 1454 SMC_SELECT_BANK(lp, 3); 1455 SMC_SET_MCAST(lp, multicast_table); 1456 } 1457 SMC_SELECT_BANK(lp, 2); 1458 spin_unlock_irq(&lp->lock); 1459 } 1460 1461 1462 /* 1463 * Open and Initialize the board 1464 * 1465 * Set up everything, reset the card, etc.. 1466 */ 1467 static int 1468 smc_open(struct net_device *dev) 1469 { 1470 struct smc_local *lp = netdev_priv(dev); 1471 1472 DBG(2, dev, "%s\n", __func__); 1473 1474 /* Setup the default Register Modes */ 1475 lp->tcr_cur_mode = TCR_DEFAULT; 1476 lp->rcr_cur_mode = RCR_DEFAULT; 1477 lp->rpc_cur_mode = RPC_DEFAULT | 1478 lp->cfg.leda << RPC_LSXA_SHFT | 1479 lp->cfg.ledb << RPC_LSXB_SHFT; 1480 1481 /* 1482 * If we are not using a MII interface, we need to 1483 * monitor our own carrier signal to detect faults. 1484 */ 1485 if (lp->phy_type == 0) 1486 lp->tcr_cur_mode |= TCR_MON_CSN; 1487 1488 /* reset the hardware */ 1489 smc_reset(dev); 1490 smc_enable(dev); 1491 1492 /* Configure the PHY, initialize the link state */ 1493 if (lp->phy_type != 0) 1494 smc_phy_configure(&lp->phy_configure); 1495 else { 1496 spin_lock_irq(&lp->lock); 1497 smc_10bt_check_media(dev, 1); 1498 spin_unlock_irq(&lp->lock); 1499 } 1500 1501 netif_start_queue(dev); 1502 return 0; 1503 } 1504 1505 /* 1506 * smc_close 1507 * 1508 * this makes the board clean up everything that it can 1509 * and not talk to the outside world. Caused by 1510 * an 'ifconfig ethX down' 1511 */ 1512 static int smc_close(struct net_device *dev) 1513 { 1514 struct smc_local *lp = netdev_priv(dev); 1515 1516 DBG(2, dev, "%s\n", __func__); 1517 1518 netif_stop_queue(dev); 1519 netif_carrier_off(dev); 1520 1521 /* clear everything */ 1522 smc_shutdown(dev); 1523 tasklet_kill(&lp->tx_task); 1524 smc_phy_powerdown(dev); 1525 return 0; 1526 } 1527 1528 /* 1529 * Ethtool support 1530 */ 1531 static int 1532 smc_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd) 1533 { 1534 struct smc_local *lp = netdev_priv(dev); 1535 int ret; 1536 1537 cmd->maxtxpkt = 1; 1538 cmd->maxrxpkt = 1; 1539 1540 if (lp->phy_type != 0) { 1541 spin_lock_irq(&lp->lock); 1542 ret = mii_ethtool_gset(&lp->mii, cmd); 1543 spin_unlock_irq(&lp->lock); 1544 } else { 1545 cmd->supported = SUPPORTED_10baseT_Half | 1546 SUPPORTED_10baseT_Full | 1547 SUPPORTED_TP | SUPPORTED_AUI; 1548 1549 if (lp->ctl_rspeed == 10) 1550 ethtool_cmd_speed_set(cmd, SPEED_10); 1551 else if (lp->ctl_rspeed == 100) 1552 ethtool_cmd_speed_set(cmd, SPEED_100); 1553 1554 cmd->autoneg = AUTONEG_DISABLE; 1555 cmd->transceiver = XCVR_INTERNAL; 1556 cmd->port = 0; 1557 cmd->duplex = lp->tcr_cur_mode & TCR_SWFDUP ? DUPLEX_FULL : DUPLEX_HALF; 1558 1559 ret = 0; 1560 } 1561 1562 return ret; 1563 } 1564 1565 static int 1566 smc_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd) 1567 { 1568 struct smc_local *lp = netdev_priv(dev); 1569 int ret; 1570 1571 if (lp->phy_type != 0) { 1572 spin_lock_irq(&lp->lock); 1573 ret = mii_ethtool_sset(&lp->mii, cmd); 1574 spin_unlock_irq(&lp->lock); 1575 } else { 1576 if (cmd->autoneg != AUTONEG_DISABLE || 1577 cmd->speed != SPEED_10 || 1578 (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) || 1579 (cmd->port != PORT_TP && cmd->port != PORT_AUI)) 1580 return -EINVAL; 1581 1582 // lp->port = cmd->port; 1583 lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL; 1584 1585 // if (netif_running(dev)) 1586 // smc_set_port(dev); 1587 1588 ret = 0; 1589 } 1590 1591 return ret; 1592 } 1593 1594 static void 1595 smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1596 { 1597 strlcpy(info->driver, CARDNAME, sizeof(info->driver)); 1598 strlcpy(info->version, version, sizeof(info->version)); 1599 strlcpy(info->bus_info, dev_name(dev->dev.parent), 1600 sizeof(info->bus_info)); 1601 } 1602 1603 static int smc_ethtool_nwayreset(struct net_device *dev) 1604 { 1605 struct smc_local *lp = netdev_priv(dev); 1606 int ret = -EINVAL; 1607 1608 if (lp->phy_type != 0) { 1609 spin_lock_irq(&lp->lock); 1610 ret = mii_nway_restart(&lp->mii); 1611 spin_unlock_irq(&lp->lock); 1612 } 1613 1614 return ret; 1615 } 1616 1617 static u32 smc_ethtool_getmsglevel(struct net_device *dev) 1618 { 1619 struct smc_local *lp = netdev_priv(dev); 1620 return lp->msg_enable; 1621 } 1622 1623 static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level) 1624 { 1625 struct smc_local *lp = netdev_priv(dev); 1626 lp->msg_enable = level; 1627 } 1628 1629 static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word) 1630 { 1631 u16 ctl; 1632 struct smc_local *lp = netdev_priv(dev); 1633 void __iomem *ioaddr = lp->base; 1634 1635 spin_lock_irq(&lp->lock); 1636 /* load word into GP register */ 1637 SMC_SELECT_BANK(lp, 1); 1638 SMC_SET_GP(lp, word); 1639 /* set the address to put the data in EEPROM */ 1640 SMC_SELECT_BANK(lp, 2); 1641 SMC_SET_PTR(lp, addr); 1642 /* tell it to write */ 1643 SMC_SELECT_BANK(lp, 1); 1644 ctl = SMC_GET_CTL(lp); 1645 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE)); 1646 /* wait for it to finish */ 1647 do { 1648 udelay(1); 1649 } while (SMC_GET_CTL(lp) & CTL_STORE); 1650 /* clean up */ 1651 SMC_SET_CTL(lp, ctl); 1652 SMC_SELECT_BANK(lp, 2); 1653 spin_unlock_irq(&lp->lock); 1654 return 0; 1655 } 1656 1657 static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word) 1658 { 1659 u16 ctl; 1660 struct smc_local *lp = netdev_priv(dev); 1661 void __iomem *ioaddr = lp->base; 1662 1663 spin_lock_irq(&lp->lock); 1664 /* set the EEPROM address to get the data from */ 1665 SMC_SELECT_BANK(lp, 2); 1666 SMC_SET_PTR(lp, addr | PTR_READ); 1667 /* tell it to load */ 1668 SMC_SELECT_BANK(lp, 1); 1669 SMC_SET_GP(lp, 0xffff); /* init to known */ 1670 ctl = SMC_GET_CTL(lp); 1671 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD)); 1672 /* wait for it to finish */ 1673 do { 1674 udelay(1); 1675 } while (SMC_GET_CTL(lp) & CTL_RELOAD); 1676 /* read word from GP register */ 1677 *word = SMC_GET_GP(lp); 1678 /* clean up */ 1679 SMC_SET_CTL(lp, ctl); 1680 SMC_SELECT_BANK(lp, 2); 1681 spin_unlock_irq(&lp->lock); 1682 return 0; 1683 } 1684 1685 static int smc_ethtool_geteeprom_len(struct net_device *dev) 1686 { 1687 return 0x23 * 2; 1688 } 1689 1690 static int smc_ethtool_geteeprom(struct net_device *dev, 1691 struct ethtool_eeprom *eeprom, u8 *data) 1692 { 1693 int i; 1694 int imax; 1695 1696 DBG(1, dev, "Reading %d bytes at %d(0x%x)\n", 1697 eeprom->len, eeprom->offset, eeprom->offset); 1698 imax = smc_ethtool_geteeprom_len(dev); 1699 for (i = 0; i < eeprom->len; i += 2) { 1700 int ret; 1701 u16 wbuf; 1702 int offset = i + eeprom->offset; 1703 if (offset > imax) 1704 break; 1705 ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf); 1706 if (ret != 0) 1707 return ret; 1708 DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1); 1709 data[i] = (wbuf >> 8) & 0xff; 1710 data[i+1] = wbuf & 0xff; 1711 } 1712 return 0; 1713 } 1714 1715 static int smc_ethtool_seteeprom(struct net_device *dev, 1716 struct ethtool_eeprom *eeprom, u8 *data) 1717 { 1718 int i; 1719 int imax; 1720 1721 DBG(1, dev, "Writing %d bytes to %d(0x%x)\n", 1722 eeprom->len, eeprom->offset, eeprom->offset); 1723 imax = smc_ethtool_geteeprom_len(dev); 1724 for (i = 0; i < eeprom->len; i += 2) { 1725 int ret; 1726 u16 wbuf; 1727 int offset = i + eeprom->offset; 1728 if (offset > imax) 1729 break; 1730 wbuf = (data[i] << 8) | data[i + 1]; 1731 DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1); 1732 ret = smc_write_eeprom_word(dev, offset >> 1, wbuf); 1733 if (ret != 0) 1734 return ret; 1735 } 1736 return 0; 1737 } 1738 1739 1740 static const struct ethtool_ops smc_ethtool_ops = { 1741 .get_settings = smc_ethtool_getsettings, 1742 .set_settings = smc_ethtool_setsettings, 1743 .get_drvinfo = smc_ethtool_getdrvinfo, 1744 1745 .get_msglevel = smc_ethtool_getmsglevel, 1746 .set_msglevel = smc_ethtool_setmsglevel, 1747 .nway_reset = smc_ethtool_nwayreset, 1748 .get_link = ethtool_op_get_link, 1749 .get_eeprom_len = smc_ethtool_geteeprom_len, 1750 .get_eeprom = smc_ethtool_geteeprom, 1751 .set_eeprom = smc_ethtool_seteeprom, 1752 }; 1753 1754 static const struct net_device_ops smc_netdev_ops = { 1755 .ndo_open = smc_open, 1756 .ndo_stop = smc_close, 1757 .ndo_start_xmit = smc_hard_start_xmit, 1758 .ndo_tx_timeout = smc_timeout, 1759 .ndo_set_rx_mode = smc_set_multicast_list, 1760 .ndo_change_mtu = eth_change_mtu, 1761 .ndo_validate_addr = eth_validate_addr, 1762 .ndo_set_mac_address = eth_mac_addr, 1763 #ifdef CONFIG_NET_POLL_CONTROLLER 1764 .ndo_poll_controller = smc_poll_controller, 1765 #endif 1766 }; 1767 1768 /* 1769 * smc_findirq 1770 * 1771 * This routine has a simple purpose -- make the SMC chip generate an 1772 * interrupt, so an auto-detect routine can detect it, and find the IRQ, 1773 */ 1774 /* 1775 * does this still work? 1776 * 1777 * I just deleted auto_irq.c, since it was never built... 1778 * --jgarzik 1779 */ 1780 static int smc_findirq(struct smc_local *lp) 1781 { 1782 void __iomem *ioaddr = lp->base; 1783 int timeout = 20; 1784 unsigned long cookie; 1785 1786 DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__); 1787 1788 cookie = probe_irq_on(); 1789 1790 /* 1791 * What I try to do here is trigger an ALLOC_INT. This is done 1792 * by allocating a small chunk of memory, which will give an interrupt 1793 * when done. 1794 */ 1795 /* enable ALLOCation interrupts ONLY */ 1796 SMC_SELECT_BANK(lp, 2); 1797 SMC_SET_INT_MASK(lp, IM_ALLOC_INT); 1798 1799 /* 1800 * Allocate 512 bytes of memory. Note that the chip was just 1801 * reset so all the memory is available 1802 */ 1803 SMC_SET_MMU_CMD(lp, MC_ALLOC | 1); 1804 1805 /* 1806 * Wait until positive that the interrupt has been generated 1807 */ 1808 do { 1809 int int_status; 1810 udelay(10); 1811 int_status = SMC_GET_INT(lp); 1812 if (int_status & IM_ALLOC_INT) 1813 break; /* got the interrupt */ 1814 } while (--timeout); 1815 1816 /* 1817 * there is really nothing that I can do here if timeout fails, 1818 * as autoirq_report will return a 0 anyway, which is what I 1819 * want in this case. Plus, the clean up is needed in both 1820 * cases. 1821 */ 1822 1823 /* and disable all interrupts again */ 1824 SMC_SET_INT_MASK(lp, 0); 1825 1826 /* and return what I found */ 1827 return probe_irq_off(cookie); 1828 } 1829 1830 /* 1831 * Function: smc_probe(unsigned long ioaddr) 1832 * 1833 * Purpose: 1834 * Tests to see if a given ioaddr points to an SMC91x chip. 1835 * Returns a 0 on success 1836 * 1837 * Algorithm: 1838 * (1) see if the high byte of BANK_SELECT is 0x33 1839 * (2) compare the ioaddr with the base register's address 1840 * (3) see if I recognize the chip ID in the appropriate register 1841 * 1842 * Here I do typical initialization tasks. 1843 * 1844 * o Initialize the structure if needed 1845 * o print out my vanity message if not done so already 1846 * o print out what type of hardware is detected 1847 * o print out the ethernet address 1848 * o find the IRQ 1849 * o set up my private data 1850 * o configure the dev structure with my subroutines 1851 * o actually GRAB the irq. 1852 * o GRAB the region 1853 */ 1854 static int smc_probe(struct net_device *dev, void __iomem *ioaddr, 1855 unsigned long irq_flags) 1856 { 1857 struct smc_local *lp = netdev_priv(dev); 1858 int retval; 1859 unsigned int val, revision_register; 1860 const char *version_string; 1861 1862 DBG(2, dev, "%s: %s\n", CARDNAME, __func__); 1863 1864 /* First, see if the high byte is 0x33 */ 1865 val = SMC_CURRENT_BANK(lp); 1866 DBG(2, dev, "%s: bank signature probe returned 0x%04x\n", 1867 CARDNAME, val); 1868 if ((val & 0xFF00) != 0x3300) { 1869 if ((val & 0xFF) == 0x33) { 1870 netdev_warn(dev, 1871 "%s: Detected possible byte-swapped interface at IOADDR %p\n", 1872 CARDNAME, ioaddr); 1873 } 1874 retval = -ENODEV; 1875 goto err_out; 1876 } 1877 1878 /* 1879 * The above MIGHT indicate a device, but I need to write to 1880 * further test this. 1881 */ 1882 SMC_SELECT_BANK(lp, 0); 1883 val = SMC_CURRENT_BANK(lp); 1884 if ((val & 0xFF00) != 0x3300) { 1885 retval = -ENODEV; 1886 goto err_out; 1887 } 1888 1889 /* 1890 * well, we've already written once, so hopefully another 1891 * time won't hurt. This time, I need to switch the bank 1892 * register to bank 1, so I can access the base address 1893 * register 1894 */ 1895 SMC_SELECT_BANK(lp, 1); 1896 val = SMC_GET_BASE(lp); 1897 val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT; 1898 if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) { 1899 netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n", 1900 CARDNAME, ioaddr, val); 1901 } 1902 1903 /* 1904 * check if the revision register is something that I 1905 * recognize. These might need to be added to later, 1906 * as future revisions could be added. 1907 */ 1908 SMC_SELECT_BANK(lp, 3); 1909 revision_register = SMC_GET_REV(lp); 1910 DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register); 1911 version_string = chip_ids[ (revision_register >> 4) & 0xF]; 1912 if (!version_string || (revision_register & 0xff00) != 0x3300) { 1913 /* I don't recognize this chip, so... */ 1914 netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n", 1915 CARDNAME, ioaddr, revision_register); 1916 1917 retval = -ENODEV; 1918 goto err_out; 1919 } 1920 1921 /* At this point I'll assume that the chip is an SMC91x. */ 1922 pr_info_once("%s\n", version); 1923 1924 /* fill in some of the fields */ 1925 dev->base_addr = (unsigned long)ioaddr; 1926 lp->base = ioaddr; 1927 lp->version = revision_register & 0xff; 1928 spin_lock_init(&lp->lock); 1929 1930 /* Get the MAC address */ 1931 SMC_SELECT_BANK(lp, 1); 1932 SMC_GET_MAC_ADDR(lp, dev->dev_addr); 1933 1934 /* now, reset the chip, and put it into a known state */ 1935 smc_reset(dev); 1936 1937 /* 1938 * If dev->irq is 0, then the device has to be banged on to see 1939 * what the IRQ is. 1940 * 1941 * This banging doesn't always detect the IRQ, for unknown reasons. 1942 * a workaround is to reset the chip and try again. 1943 * 1944 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to 1945 * be what is requested on the command line. I don't do that, mostly 1946 * because the card that I have uses a non-standard method of accessing 1947 * the IRQs, and because this _should_ work in most configurations. 1948 * 1949 * Specifying an IRQ is done with the assumption that the user knows 1950 * what (s)he is doing. No checking is done!!!! 1951 */ 1952 if (dev->irq < 1) { 1953 int trials; 1954 1955 trials = 3; 1956 while (trials--) { 1957 dev->irq = smc_findirq(lp); 1958 if (dev->irq) 1959 break; 1960 /* kick the card and try again */ 1961 smc_reset(dev); 1962 } 1963 } 1964 if (dev->irq == 0) { 1965 netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n"); 1966 retval = -ENODEV; 1967 goto err_out; 1968 } 1969 dev->irq = irq_canonicalize(dev->irq); 1970 1971 dev->watchdog_timeo = msecs_to_jiffies(watchdog); 1972 dev->netdev_ops = &smc_netdev_ops; 1973 dev->ethtool_ops = &smc_ethtool_ops; 1974 1975 tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev); 1976 INIT_WORK(&lp->phy_configure, smc_phy_configure); 1977 lp->dev = dev; 1978 lp->mii.phy_id_mask = 0x1f; 1979 lp->mii.reg_num_mask = 0x1f; 1980 lp->mii.force_media = 0; 1981 lp->mii.full_duplex = 0; 1982 lp->mii.dev = dev; 1983 lp->mii.mdio_read = smc_phy_read; 1984 lp->mii.mdio_write = smc_phy_write; 1985 1986 /* 1987 * Locate the phy, if any. 1988 */ 1989 if (lp->version >= (CHIP_91100 << 4)) 1990 smc_phy_detect(dev); 1991 1992 /* then shut everything down to save power */ 1993 smc_shutdown(dev); 1994 smc_phy_powerdown(dev); 1995 1996 /* Set default parameters */ 1997 lp->msg_enable = NETIF_MSG_LINK; 1998 lp->ctl_rfduplx = 0; 1999 lp->ctl_rspeed = 10; 2000 2001 if (lp->version >= (CHIP_91100 << 4)) { 2002 lp->ctl_rfduplx = 1; 2003 lp->ctl_rspeed = 100; 2004 } 2005 2006 /* Grab the IRQ */ 2007 retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev); 2008 if (retval) 2009 goto err_out; 2010 2011 #ifdef CONFIG_ARCH_PXA 2012 # ifdef SMC_USE_PXA_DMA 2013 lp->cfg.flags |= SMC91X_USE_DMA; 2014 # endif 2015 if (lp->cfg.flags & SMC91X_USE_DMA) { 2016 int dma = pxa_request_dma(dev->name, DMA_PRIO_LOW, 2017 smc_pxa_dma_irq, NULL); 2018 if (dma >= 0) 2019 dev->dma = dma; 2020 } 2021 #endif 2022 2023 retval = register_netdev(dev); 2024 if (retval == 0) { 2025 /* now, print out the card info, in a short format.. */ 2026 netdev_info(dev, "%s (rev %d) at %p IRQ %d", 2027 version_string, revision_register & 0x0f, 2028 lp->base, dev->irq); 2029 2030 if (dev->dma != (unsigned char)-1) 2031 pr_cont(" DMA %d", dev->dma); 2032 2033 pr_cont("%s%s\n", 2034 lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "", 2035 THROTTLE_TX_PKTS ? " [throttle_tx]" : ""); 2036 2037 if (!is_valid_ether_addr(dev->dev_addr)) { 2038 netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n"); 2039 } else { 2040 /* Print the Ethernet address */ 2041 netdev_info(dev, "Ethernet addr: %pM\n", 2042 dev->dev_addr); 2043 } 2044 2045 if (lp->phy_type == 0) { 2046 PRINTK(dev, "No PHY found\n"); 2047 } else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) { 2048 PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n"); 2049 } else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) { 2050 PRINTK(dev, "PHY LAN83C180\n"); 2051 } 2052 } 2053 2054 err_out: 2055 #ifdef CONFIG_ARCH_PXA 2056 if (retval && dev->dma != (unsigned char)-1) 2057 pxa_free_dma(dev->dma); 2058 #endif 2059 return retval; 2060 } 2061 2062 static int smc_enable_device(struct platform_device *pdev) 2063 { 2064 struct net_device *ndev = platform_get_drvdata(pdev); 2065 struct smc_local *lp = netdev_priv(ndev); 2066 unsigned long flags; 2067 unsigned char ecor, ecsr; 2068 void __iomem *addr; 2069 struct resource * res; 2070 2071 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib"); 2072 if (!res) 2073 return 0; 2074 2075 /* 2076 * Map the attribute space. This is overkill, but clean. 2077 */ 2078 addr = ioremap(res->start, ATTRIB_SIZE); 2079 if (!addr) 2080 return -ENOMEM; 2081 2082 /* 2083 * Reset the device. We must disable IRQs around this 2084 * since a reset causes the IRQ line become active. 2085 */ 2086 local_irq_save(flags); 2087 ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET; 2088 writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT)); 2089 readb(addr + (ECOR << SMC_IO_SHIFT)); 2090 2091 /* 2092 * Wait 100us for the chip to reset. 2093 */ 2094 udelay(100); 2095 2096 /* 2097 * The device will ignore all writes to the enable bit while 2098 * reset is asserted, even if the reset bit is cleared in the 2099 * same write. Must clear reset first, then enable the device. 2100 */ 2101 writeb(ecor, addr + (ECOR << SMC_IO_SHIFT)); 2102 writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT)); 2103 2104 /* 2105 * Set the appropriate byte/word mode. 2106 */ 2107 ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8; 2108 if (!SMC_16BIT(lp)) 2109 ecsr |= ECSR_IOIS8; 2110 writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT)); 2111 local_irq_restore(flags); 2112 2113 iounmap(addr); 2114 2115 /* 2116 * Wait for the chip to wake up. We could poll the control 2117 * register in the main register space, but that isn't mapped 2118 * yet. We know this is going to take 750us. 2119 */ 2120 msleep(1); 2121 2122 return 0; 2123 } 2124 2125 static int smc_request_attrib(struct platform_device *pdev, 2126 struct net_device *ndev) 2127 { 2128 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib"); 2129 struct smc_local *lp __maybe_unused = netdev_priv(ndev); 2130 2131 if (!res) 2132 return 0; 2133 2134 if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME)) 2135 return -EBUSY; 2136 2137 return 0; 2138 } 2139 2140 static void smc_release_attrib(struct platform_device *pdev, 2141 struct net_device *ndev) 2142 { 2143 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib"); 2144 struct smc_local *lp __maybe_unused = netdev_priv(ndev); 2145 2146 if (res) 2147 release_mem_region(res->start, ATTRIB_SIZE); 2148 } 2149 2150 static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev) 2151 { 2152 if (SMC_CAN_USE_DATACS) { 2153 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32"); 2154 struct smc_local *lp = netdev_priv(ndev); 2155 2156 if (!res) 2157 return; 2158 2159 if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) { 2160 netdev_info(ndev, "%s: failed to request datacs memory region.\n", 2161 CARDNAME); 2162 return; 2163 } 2164 2165 lp->datacs = ioremap(res->start, SMC_DATA_EXTENT); 2166 } 2167 } 2168 2169 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev) 2170 { 2171 if (SMC_CAN_USE_DATACS) { 2172 struct smc_local *lp = netdev_priv(ndev); 2173 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32"); 2174 2175 if (lp->datacs) 2176 iounmap(lp->datacs); 2177 2178 lp->datacs = NULL; 2179 2180 if (res) 2181 release_mem_region(res->start, SMC_DATA_EXTENT); 2182 } 2183 } 2184 2185 #if IS_BUILTIN(CONFIG_OF) 2186 static const struct of_device_id smc91x_match[] = { 2187 { .compatible = "smsc,lan91c94", }, 2188 { .compatible = "smsc,lan91c111", }, 2189 {}, 2190 }; 2191 MODULE_DEVICE_TABLE(of, smc91x_match); 2192 2193 /** 2194 * of_try_set_control_gpio - configure a gpio if it exists 2195 */ 2196 static int try_toggle_control_gpio(struct device *dev, 2197 struct gpio_desc **desc, 2198 const char *name, int index, 2199 int value, unsigned int nsdelay) 2200 { 2201 struct gpio_desc *gpio = *desc; 2202 int res; 2203 2204 gpio = devm_gpiod_get_index(dev, name, index); 2205 if (IS_ERR(gpio)) { 2206 if (PTR_ERR(gpio) == -ENOENT) { 2207 *desc = NULL; 2208 return 0; 2209 } 2210 2211 return PTR_ERR(gpio); 2212 } 2213 res = gpiod_direction_output(gpio, !value); 2214 if (res) { 2215 dev_err(dev, "unable to toggle gpio %s: %i\n", name, res); 2216 devm_gpiod_put(dev, gpio); 2217 gpio = NULL; 2218 return res; 2219 } 2220 if (nsdelay) 2221 usleep_range(nsdelay, 2 * nsdelay); 2222 gpiod_set_value_cansleep(gpio, value); 2223 *desc = gpio; 2224 2225 return 0; 2226 } 2227 #endif 2228 2229 /* 2230 * smc_init(void) 2231 * Input parameters: 2232 * dev->base_addr == 0, try to find all possible locations 2233 * dev->base_addr > 0x1ff, this is the address to check 2234 * dev->base_addr == <anything else>, return failure code 2235 * 2236 * Output: 2237 * 0 --> there is a device 2238 * anything else, error 2239 */ 2240 static int smc_drv_probe(struct platform_device *pdev) 2241 { 2242 struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev); 2243 const struct of_device_id *match = NULL; 2244 struct smc_local *lp; 2245 struct net_device *ndev; 2246 struct resource *res; 2247 unsigned int __iomem *addr; 2248 unsigned long irq_flags = SMC_IRQ_FLAGS; 2249 unsigned long irq_resflags; 2250 int ret; 2251 2252 ndev = alloc_etherdev(sizeof(struct smc_local)); 2253 if (!ndev) { 2254 ret = -ENOMEM; 2255 goto out; 2256 } 2257 SET_NETDEV_DEV(ndev, &pdev->dev); 2258 2259 /* get configuration from platform data, only allow use of 2260 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set. 2261 */ 2262 2263 lp = netdev_priv(ndev); 2264 lp->cfg.flags = 0; 2265 2266 if (pd) { 2267 memcpy(&lp->cfg, pd, sizeof(lp->cfg)); 2268 lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags); 2269 } 2270 2271 #if IS_BUILTIN(CONFIG_OF) 2272 match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev); 2273 if (match) { 2274 struct device_node *np = pdev->dev.of_node; 2275 u32 val; 2276 2277 /* Optional pwrdwn GPIO configured? */ 2278 ret = try_toggle_control_gpio(&pdev->dev, &lp->power_gpio, 2279 "power", 0, 0, 100); 2280 if (ret) 2281 return ret; 2282 2283 /* 2284 * Optional reset GPIO configured? Minimum 100 ns reset needed 2285 * according to LAN91C96 datasheet page 14. 2286 */ 2287 ret = try_toggle_control_gpio(&pdev->dev, &lp->reset_gpio, 2288 "reset", 0, 0, 100); 2289 if (ret) 2290 return ret; 2291 2292 /* 2293 * Need to wait for optional EEPROM to load, max 750 us according 2294 * to LAN91C96 datasheet page 55. 2295 */ 2296 if (lp->reset_gpio) 2297 usleep_range(750, 1000); 2298 2299 /* Combination of IO widths supported, default to 16-bit */ 2300 if (!of_property_read_u32(np, "reg-io-width", &val)) { 2301 if (val & 1) 2302 lp->cfg.flags |= SMC91X_USE_8BIT; 2303 if ((val == 0) || (val & 2)) 2304 lp->cfg.flags |= SMC91X_USE_16BIT; 2305 if (val & 4) 2306 lp->cfg.flags |= SMC91X_USE_32BIT; 2307 } else { 2308 lp->cfg.flags |= SMC91X_USE_16BIT; 2309 } 2310 } 2311 #endif 2312 2313 if (!pd && !match) { 2314 lp->cfg.flags |= (SMC_CAN_USE_8BIT) ? SMC91X_USE_8BIT : 0; 2315 lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0; 2316 lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0; 2317 lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0; 2318 } 2319 2320 if (!lp->cfg.leda && !lp->cfg.ledb) { 2321 lp->cfg.leda = RPC_LSA_DEFAULT; 2322 lp->cfg.ledb = RPC_LSB_DEFAULT; 2323 } 2324 2325 ndev->dma = (unsigned char)-1; 2326 2327 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs"); 2328 if (!res) 2329 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2330 if (!res) { 2331 ret = -ENODEV; 2332 goto out_free_netdev; 2333 } 2334 2335 2336 if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) { 2337 ret = -EBUSY; 2338 goto out_free_netdev; 2339 } 2340 2341 ndev->irq = platform_get_irq(pdev, 0); 2342 if (ndev->irq <= 0) { 2343 ret = -ENODEV; 2344 goto out_release_io; 2345 } 2346 /* 2347 * If this platform does not specify any special irqflags, or if 2348 * the resource supplies a trigger, override the irqflags with 2349 * the trigger flags from the resource. 2350 */ 2351 irq_resflags = irqd_get_trigger_type(irq_get_irq_data(ndev->irq)); 2352 if (irq_flags == -1 || irq_resflags & IRQF_TRIGGER_MASK) 2353 irq_flags = irq_resflags & IRQF_TRIGGER_MASK; 2354 2355 ret = smc_request_attrib(pdev, ndev); 2356 if (ret) 2357 goto out_release_io; 2358 #if defined(CONFIG_SA1100_ASSABET) 2359 neponset_ncr_set(NCR_ENET_OSC_EN); 2360 #endif 2361 platform_set_drvdata(pdev, ndev); 2362 ret = smc_enable_device(pdev); 2363 if (ret) 2364 goto out_release_attrib; 2365 2366 addr = ioremap(res->start, SMC_IO_EXTENT); 2367 if (!addr) { 2368 ret = -ENOMEM; 2369 goto out_release_attrib; 2370 } 2371 2372 #ifdef CONFIG_ARCH_PXA 2373 { 2374 struct smc_local *lp = netdev_priv(ndev); 2375 lp->device = &pdev->dev; 2376 lp->physaddr = res->start; 2377 } 2378 #endif 2379 2380 ret = smc_probe(ndev, addr, irq_flags); 2381 if (ret != 0) 2382 goto out_iounmap; 2383 2384 smc_request_datacs(pdev, ndev); 2385 2386 return 0; 2387 2388 out_iounmap: 2389 iounmap(addr); 2390 out_release_attrib: 2391 smc_release_attrib(pdev, ndev); 2392 out_release_io: 2393 release_mem_region(res->start, SMC_IO_EXTENT); 2394 out_free_netdev: 2395 free_netdev(ndev); 2396 out: 2397 pr_info("%s: not found (%d).\n", CARDNAME, ret); 2398 2399 return ret; 2400 } 2401 2402 static int smc_drv_remove(struct platform_device *pdev) 2403 { 2404 struct net_device *ndev = platform_get_drvdata(pdev); 2405 struct smc_local *lp = netdev_priv(ndev); 2406 struct resource *res; 2407 2408 unregister_netdev(ndev); 2409 2410 free_irq(ndev->irq, ndev); 2411 2412 #ifdef CONFIG_ARCH_PXA 2413 if (ndev->dma != (unsigned char)-1) 2414 pxa_free_dma(ndev->dma); 2415 #endif 2416 iounmap(lp->base); 2417 2418 smc_release_datacs(pdev,ndev); 2419 smc_release_attrib(pdev,ndev); 2420 2421 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs"); 2422 if (!res) 2423 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2424 release_mem_region(res->start, SMC_IO_EXTENT); 2425 2426 free_netdev(ndev); 2427 2428 return 0; 2429 } 2430 2431 static int smc_drv_suspend(struct device *dev) 2432 { 2433 struct platform_device *pdev = to_platform_device(dev); 2434 struct net_device *ndev = platform_get_drvdata(pdev); 2435 2436 if (ndev) { 2437 if (netif_running(ndev)) { 2438 netif_device_detach(ndev); 2439 smc_shutdown(ndev); 2440 smc_phy_powerdown(ndev); 2441 } 2442 } 2443 return 0; 2444 } 2445 2446 static int smc_drv_resume(struct device *dev) 2447 { 2448 struct platform_device *pdev = to_platform_device(dev); 2449 struct net_device *ndev = platform_get_drvdata(pdev); 2450 2451 if (ndev) { 2452 struct smc_local *lp = netdev_priv(ndev); 2453 smc_enable_device(pdev); 2454 if (netif_running(ndev)) { 2455 smc_reset(ndev); 2456 smc_enable(ndev); 2457 if (lp->phy_type != 0) 2458 smc_phy_configure(&lp->phy_configure); 2459 netif_device_attach(ndev); 2460 } 2461 } 2462 return 0; 2463 } 2464 2465 static struct dev_pm_ops smc_drv_pm_ops = { 2466 .suspend = smc_drv_suspend, 2467 .resume = smc_drv_resume, 2468 }; 2469 2470 static struct platform_driver smc_driver = { 2471 .probe = smc_drv_probe, 2472 .remove = smc_drv_remove, 2473 .driver = { 2474 .name = CARDNAME, 2475 .pm = &smc_drv_pm_ops, 2476 .of_match_table = of_match_ptr(smc91x_match), 2477 }, 2478 }; 2479 2480 module_platform_driver(smc_driver); 2481