xref: /openbmc/linux/drivers/net/ethernet/smsc/smc91x.c (revision c4df19a6)
1 /*
2  * smc91x.c
3  * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
4  *
5  * Copyright (C) 1996 by Erik Stahlman
6  * Copyright (C) 2001 Standard Microsystems Corporation
7  *	Developed by Simple Network Magic Corporation
8  * Copyright (C) 2003 Monta Vista Software, Inc.
9  *	Unified SMC91x driver by Nicolas Pitre
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, see <http://www.gnu.org/licenses/>.
23  *
24  * Arguments:
25  * 	io	= for the base address
26  *	irq	= for the IRQ
27  *	nowait	= 0 for normal wait states, 1 eliminates additional wait states
28  *
29  * original author:
30  * 	Erik Stahlman <erik@vt.edu>
31  *
32  * hardware multicast code:
33  *    Peter Cammaert <pc@denkart.be>
34  *
35  * contributors:
36  * 	Daris A Nevil <dnevil@snmc.com>
37  *      Nicolas Pitre <nico@fluxnic.net>
38  *	Russell King <rmk@arm.linux.org.uk>
39  *
40  * History:
41  *   08/20/00  Arnaldo Melo       fix kfree(skb) in smc_hardware_send_packet
42  *   12/15/00  Christian Jullien  fix "Warning: kfree_skb on hard IRQ"
43  *   03/16/01  Daris A Nevil      modified smc9194.c for use with LAN91C111
44  *   08/22/01  Scott Anderson     merge changes from smc9194 to smc91111
45  *   08/21/01  Pramod B Bhardwaj  added support for RevB of LAN91C111
46  *   12/20/01  Jeff Sutherland    initial port to Xscale PXA with DMA support
47  *   04/07/03  Nicolas Pitre      unified SMC91x driver, killed irq races,
48  *                                more bus abstraction, big cleanup, etc.
49  *   29/09/03  Russell King       - add driver model support
50  *                                - ethtool support
51  *                                - convert to use generic MII interface
52  *                                - add link up/down notification
53  *                                - don't try to handle full negotiation in
54  *                                  smc_phy_configure
55  *                                - clean up (and fix stack overrun) in PHY
56  *                                  MII read/write functions
57  *   22/09/04  Nicolas Pitre      big update (see commit log for details)
58  */
59 static const char version[] =
60 	"smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>";
61 
62 /* Debugging level */
63 #ifndef SMC_DEBUG
64 #define SMC_DEBUG		0
65 #endif
66 
67 
68 #include <linux/module.h>
69 #include <linux/kernel.h>
70 #include <linux/sched.h>
71 #include <linux/delay.h>
72 #include <linux/interrupt.h>
73 #include <linux/irq.h>
74 #include <linux/errno.h>
75 #include <linux/ioport.h>
76 #include <linux/crc32.h>
77 #include <linux/platform_device.h>
78 #include <linux/spinlock.h>
79 #include <linux/ethtool.h>
80 #include <linux/mii.h>
81 #include <linux/workqueue.h>
82 #include <linux/of.h>
83 #include <linux/of_device.h>
84 #include <linux/of_gpio.h>
85 
86 #include <linux/netdevice.h>
87 #include <linux/etherdevice.h>
88 #include <linux/skbuff.h>
89 
90 #include <asm/io.h>
91 
92 #include "smc91x.h"
93 
94 #if defined(CONFIG_ASSABET_NEPONSET)
95 #include <mach/assabet.h>
96 #include <mach/neponset.h>
97 #endif
98 
99 #ifndef SMC_NOWAIT
100 # define SMC_NOWAIT		0
101 #endif
102 static int nowait = SMC_NOWAIT;
103 module_param(nowait, int, 0400);
104 MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
105 
106 /*
107  * Transmit timeout, default 5 seconds.
108  */
109 static int watchdog = 1000;
110 module_param(watchdog, int, 0400);
111 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
112 
113 MODULE_LICENSE("GPL");
114 MODULE_ALIAS("platform:smc91x");
115 
116 /*
117  * The internal workings of the driver.  If you are changing anything
118  * here with the SMC stuff, you should have the datasheet and know
119  * what you are doing.
120  */
121 #define CARDNAME "smc91x"
122 
123 /*
124  * Use power-down feature of the chip
125  */
126 #define POWER_DOWN		1
127 
128 /*
129  * Wait time for memory to be free.  This probably shouldn't be
130  * tuned that much, as waiting for this means nothing else happens
131  * in the system
132  */
133 #define MEMORY_WAIT_TIME	16
134 
135 /*
136  * The maximum number of processing loops allowed for each call to the
137  * IRQ handler.
138  */
139 #define MAX_IRQ_LOOPS		8
140 
141 /*
142  * This selects whether TX packets are sent one by one to the SMC91x internal
143  * memory and throttled until transmission completes.  This may prevent
144  * RX overruns a litle by keeping much of the memory free for RX packets
145  * but to the expense of reduced TX throughput and increased IRQ overhead.
146  * Note this is not a cure for a too slow data bus or too high IRQ latency.
147  */
148 #define THROTTLE_TX_PKTS	0
149 
150 /*
151  * The MII clock high/low times.  2x this number gives the MII clock period
152  * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
153  */
154 #define MII_DELAY		1
155 
156 #define DBG(n, dev, fmt, ...)					\
157 	do {							\
158 		if (SMC_DEBUG >= (n))				\
159 			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
160 	} while (0)
161 
162 #define PRINTK(dev, fmt, ...)					\
163 	do {							\
164 		if (SMC_DEBUG > 0)				\
165 			netdev_info(dev, fmt, ##__VA_ARGS__);	\
166 		else						\
167 			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
168 	} while (0)
169 
170 #if SMC_DEBUG > 3
171 static void PRINT_PKT(u_char *buf, int length)
172 {
173 	int i;
174 	int remainder;
175 	int lines;
176 
177 	lines = length / 16;
178 	remainder = length % 16;
179 
180 	for (i = 0; i < lines ; i ++) {
181 		int cur;
182 		printk(KERN_DEBUG);
183 		for (cur = 0; cur < 8; cur++) {
184 			u_char a, b;
185 			a = *buf++;
186 			b = *buf++;
187 			pr_cont("%02x%02x ", a, b);
188 		}
189 		pr_cont("\n");
190 	}
191 	printk(KERN_DEBUG);
192 	for (i = 0; i < remainder/2 ; i++) {
193 		u_char a, b;
194 		a = *buf++;
195 		b = *buf++;
196 		pr_cont("%02x%02x ", a, b);
197 	}
198 	pr_cont("\n");
199 }
200 #else
201 static inline void PRINT_PKT(u_char *buf, int length) { }
202 #endif
203 
204 
205 /* this enables an interrupt in the interrupt mask register */
206 #define SMC_ENABLE_INT(lp, x) do {					\
207 	unsigned char mask;						\
208 	unsigned long smc_enable_flags;					\
209 	spin_lock_irqsave(&lp->lock, smc_enable_flags);			\
210 	mask = SMC_GET_INT_MASK(lp);					\
211 	mask |= (x);							\
212 	SMC_SET_INT_MASK(lp, mask);					\
213 	spin_unlock_irqrestore(&lp->lock, smc_enable_flags);		\
214 } while (0)
215 
216 /* this disables an interrupt from the interrupt mask register */
217 #define SMC_DISABLE_INT(lp, x) do {					\
218 	unsigned char mask;						\
219 	unsigned long smc_disable_flags;				\
220 	spin_lock_irqsave(&lp->lock, smc_disable_flags);		\
221 	mask = SMC_GET_INT_MASK(lp);					\
222 	mask &= ~(x);							\
223 	SMC_SET_INT_MASK(lp, mask);					\
224 	spin_unlock_irqrestore(&lp->lock, smc_disable_flags);		\
225 } while (0)
226 
227 /*
228  * Wait while MMU is busy.  This is usually in the order of a few nanosecs
229  * if at all, but let's avoid deadlocking the system if the hardware
230  * decides to go south.
231  */
232 #define SMC_WAIT_MMU_BUSY(lp) do {					\
233 	if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) {		\
234 		unsigned long timeout = jiffies + 2;			\
235 		while (SMC_GET_MMU_CMD(lp) & MC_BUSY) {		\
236 			if (time_after(jiffies, timeout)) {		\
237 				netdev_dbg(dev, "timeout %s line %d\n",	\
238 					   __FILE__, __LINE__);		\
239 				break;					\
240 			}						\
241 			cpu_relax();					\
242 		}							\
243 	}								\
244 } while (0)
245 
246 
247 /*
248  * this does a soft reset on the device
249  */
250 static void smc_reset(struct net_device *dev)
251 {
252 	struct smc_local *lp = netdev_priv(dev);
253 	void __iomem *ioaddr = lp->base;
254 	unsigned int ctl, cfg;
255 	struct sk_buff *pending_skb;
256 
257 	DBG(2, dev, "%s\n", __func__);
258 
259 	/* Disable all interrupts, block TX tasklet */
260 	spin_lock_irq(&lp->lock);
261 	SMC_SELECT_BANK(lp, 2);
262 	SMC_SET_INT_MASK(lp, 0);
263 	pending_skb = lp->pending_tx_skb;
264 	lp->pending_tx_skb = NULL;
265 	spin_unlock_irq(&lp->lock);
266 
267 	/* free any pending tx skb */
268 	if (pending_skb) {
269 		dev_kfree_skb(pending_skb);
270 		dev->stats.tx_errors++;
271 		dev->stats.tx_aborted_errors++;
272 	}
273 
274 	/*
275 	 * This resets the registers mostly to defaults, but doesn't
276 	 * affect EEPROM.  That seems unnecessary
277 	 */
278 	SMC_SELECT_BANK(lp, 0);
279 	SMC_SET_RCR(lp, RCR_SOFTRST);
280 
281 	/*
282 	 * Setup the Configuration Register
283 	 * This is necessary because the CONFIG_REG is not affected
284 	 * by a soft reset
285 	 */
286 	SMC_SELECT_BANK(lp, 1);
287 
288 	cfg = CONFIG_DEFAULT;
289 
290 	/*
291 	 * Setup for fast accesses if requested.  If the card/system
292 	 * can't handle it then there will be no recovery except for
293 	 * a hard reset or power cycle
294 	 */
295 	if (lp->cfg.flags & SMC91X_NOWAIT)
296 		cfg |= CONFIG_NO_WAIT;
297 
298 	/*
299 	 * Release from possible power-down state
300 	 * Configuration register is not affected by Soft Reset
301 	 */
302 	cfg |= CONFIG_EPH_POWER_EN;
303 
304 	SMC_SET_CONFIG(lp, cfg);
305 
306 	/* this should pause enough for the chip to be happy */
307 	/*
308 	 * elaborate?  What does the chip _need_? --jgarzik
309 	 *
310 	 * This seems to be undocumented, but something the original
311 	 * driver(s) have always done.  Suspect undocumented timing
312 	 * info/determined empirically. --rmk
313 	 */
314 	udelay(1);
315 
316 	/* Disable transmit and receive functionality */
317 	SMC_SELECT_BANK(lp, 0);
318 	SMC_SET_RCR(lp, RCR_CLEAR);
319 	SMC_SET_TCR(lp, TCR_CLEAR);
320 
321 	SMC_SELECT_BANK(lp, 1);
322 	ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
323 
324 	/*
325 	 * Set the control register to automatically release successfully
326 	 * transmitted packets, to make the best use out of our limited
327 	 * memory
328 	 */
329 	if(!THROTTLE_TX_PKTS)
330 		ctl |= CTL_AUTO_RELEASE;
331 	else
332 		ctl &= ~CTL_AUTO_RELEASE;
333 	SMC_SET_CTL(lp, ctl);
334 
335 	/* Reset the MMU */
336 	SMC_SELECT_BANK(lp, 2);
337 	SMC_SET_MMU_CMD(lp, MC_RESET);
338 	SMC_WAIT_MMU_BUSY(lp);
339 }
340 
341 /*
342  * Enable Interrupts, Receive, and Transmit
343  */
344 static void smc_enable(struct net_device *dev)
345 {
346 	struct smc_local *lp = netdev_priv(dev);
347 	void __iomem *ioaddr = lp->base;
348 	int mask;
349 
350 	DBG(2, dev, "%s\n", __func__);
351 
352 	/* see the header file for options in TCR/RCR DEFAULT */
353 	SMC_SELECT_BANK(lp, 0);
354 	SMC_SET_TCR(lp, lp->tcr_cur_mode);
355 	SMC_SET_RCR(lp, lp->rcr_cur_mode);
356 
357 	SMC_SELECT_BANK(lp, 1);
358 	SMC_SET_MAC_ADDR(lp, dev->dev_addr);
359 
360 	/* now, enable interrupts */
361 	mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
362 	if (lp->version >= (CHIP_91100 << 4))
363 		mask |= IM_MDINT;
364 	SMC_SELECT_BANK(lp, 2);
365 	SMC_SET_INT_MASK(lp, mask);
366 
367 	/*
368 	 * From this point the register bank must _NOT_ be switched away
369 	 * to something else than bank 2 without proper locking against
370 	 * races with any tasklet or interrupt handlers until smc_shutdown()
371 	 * or smc_reset() is called.
372 	 */
373 }
374 
375 /*
376  * this puts the device in an inactive state
377  */
378 static void smc_shutdown(struct net_device *dev)
379 {
380 	struct smc_local *lp = netdev_priv(dev);
381 	void __iomem *ioaddr = lp->base;
382 	struct sk_buff *pending_skb;
383 
384 	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
385 
386 	/* no more interrupts for me */
387 	spin_lock_irq(&lp->lock);
388 	SMC_SELECT_BANK(lp, 2);
389 	SMC_SET_INT_MASK(lp, 0);
390 	pending_skb = lp->pending_tx_skb;
391 	lp->pending_tx_skb = NULL;
392 	spin_unlock_irq(&lp->lock);
393 	if (pending_skb)
394 		dev_kfree_skb(pending_skb);
395 
396 	/* and tell the card to stay away from that nasty outside world */
397 	SMC_SELECT_BANK(lp, 0);
398 	SMC_SET_RCR(lp, RCR_CLEAR);
399 	SMC_SET_TCR(lp, TCR_CLEAR);
400 
401 #ifdef POWER_DOWN
402 	/* finally, shut the chip down */
403 	SMC_SELECT_BANK(lp, 1);
404 	SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
405 #endif
406 }
407 
408 /*
409  * This is the procedure to handle the receipt of a packet.
410  */
411 static inline void  smc_rcv(struct net_device *dev)
412 {
413 	struct smc_local *lp = netdev_priv(dev);
414 	void __iomem *ioaddr = lp->base;
415 	unsigned int packet_number, status, packet_len;
416 
417 	DBG(3, dev, "%s\n", __func__);
418 
419 	packet_number = SMC_GET_RXFIFO(lp);
420 	if (unlikely(packet_number & RXFIFO_REMPTY)) {
421 		PRINTK(dev, "smc_rcv with nothing on FIFO.\n");
422 		return;
423 	}
424 
425 	/* read from start of packet */
426 	SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
427 
428 	/* First two words are status and packet length */
429 	SMC_GET_PKT_HDR(lp, status, packet_len);
430 	packet_len &= 0x07ff;  /* mask off top bits */
431 	DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
432 	    packet_number, status, packet_len, packet_len);
433 
434 	back:
435 	if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
436 		if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
437 			/* accept VLAN packets */
438 			status &= ~RS_TOOLONG;
439 			goto back;
440 		}
441 		if (packet_len < 6) {
442 			/* bloody hardware */
443 			netdev_err(dev, "fubar (rxlen %u status %x\n",
444 				   packet_len, status);
445 			status |= RS_TOOSHORT;
446 		}
447 		SMC_WAIT_MMU_BUSY(lp);
448 		SMC_SET_MMU_CMD(lp, MC_RELEASE);
449 		dev->stats.rx_errors++;
450 		if (status & RS_ALGNERR)
451 			dev->stats.rx_frame_errors++;
452 		if (status & (RS_TOOSHORT | RS_TOOLONG))
453 			dev->stats.rx_length_errors++;
454 		if (status & RS_BADCRC)
455 			dev->stats.rx_crc_errors++;
456 	} else {
457 		struct sk_buff *skb;
458 		unsigned char *data;
459 		unsigned int data_len;
460 
461 		/* set multicast stats */
462 		if (status & RS_MULTICAST)
463 			dev->stats.multicast++;
464 
465 		/*
466 		 * Actual payload is packet_len - 6 (or 5 if odd byte).
467 		 * We want skb_reserve(2) and the final ctrl word
468 		 * (2 bytes, possibly containing the payload odd byte).
469 		 * Furthermore, we add 2 bytes to allow rounding up to
470 		 * multiple of 4 bytes on 32 bit buses.
471 		 * Hence packet_len - 6 + 2 + 2 + 2.
472 		 */
473 		skb = netdev_alloc_skb(dev, packet_len);
474 		if (unlikely(skb == NULL)) {
475 			SMC_WAIT_MMU_BUSY(lp);
476 			SMC_SET_MMU_CMD(lp, MC_RELEASE);
477 			dev->stats.rx_dropped++;
478 			return;
479 		}
480 
481 		/* Align IP header to 32 bits */
482 		skb_reserve(skb, 2);
483 
484 		/* BUG: the LAN91C111 rev A never sets this bit. Force it. */
485 		if (lp->version == 0x90)
486 			status |= RS_ODDFRAME;
487 
488 		/*
489 		 * If odd length: packet_len - 5,
490 		 * otherwise packet_len - 6.
491 		 * With the trailing ctrl byte it's packet_len - 4.
492 		 */
493 		data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
494 		data = skb_put(skb, data_len);
495 		SMC_PULL_DATA(lp, data, packet_len - 4);
496 
497 		SMC_WAIT_MMU_BUSY(lp);
498 		SMC_SET_MMU_CMD(lp, MC_RELEASE);
499 
500 		PRINT_PKT(data, packet_len - 4);
501 
502 		skb->protocol = eth_type_trans(skb, dev);
503 		netif_rx(skb);
504 		dev->stats.rx_packets++;
505 		dev->stats.rx_bytes += data_len;
506 	}
507 }
508 
509 #ifdef CONFIG_SMP
510 /*
511  * On SMP we have the following problem:
512  *
513  * 	A = smc_hardware_send_pkt()
514  * 	B = smc_hard_start_xmit()
515  * 	C = smc_interrupt()
516  *
517  * A and B can never be executed simultaneously.  However, at least on UP,
518  * it is possible (and even desirable) for C to interrupt execution of
519  * A or B in order to have better RX reliability and avoid overruns.
520  * C, just like A and B, must have exclusive access to the chip and
521  * each of them must lock against any other concurrent access.
522  * Unfortunately this is not possible to have C suspend execution of A or
523  * B taking place on another CPU. On UP this is no an issue since A and B
524  * are run from softirq context and C from hard IRQ context, and there is
525  * no other CPU where concurrent access can happen.
526  * If ever there is a way to force at least B and C to always be executed
527  * on the same CPU then we could use read/write locks to protect against
528  * any other concurrent access and C would always interrupt B. But life
529  * isn't that easy in a SMP world...
530  */
531 #define smc_special_trylock(lock, flags)				\
532 ({									\
533 	int __ret;							\
534 	local_irq_save(flags);						\
535 	__ret = spin_trylock(lock);					\
536 	if (!__ret)							\
537 		local_irq_restore(flags);				\
538 	__ret;								\
539 })
540 #define smc_special_lock(lock, flags)		spin_lock_irqsave(lock, flags)
541 #define smc_special_unlock(lock, flags) 	spin_unlock_irqrestore(lock, flags)
542 #else
543 #define smc_special_trylock(lock, flags)	((void)flags, true)
544 #define smc_special_lock(lock, flags)   	do { flags = 0; } while (0)
545 #define smc_special_unlock(lock, flags)	do { flags = 0; } while (0)
546 #endif
547 
548 /*
549  * This is called to actually send a packet to the chip.
550  */
551 static void smc_hardware_send_pkt(unsigned long data)
552 {
553 	struct net_device *dev = (struct net_device *)data;
554 	struct smc_local *lp = netdev_priv(dev);
555 	void __iomem *ioaddr = lp->base;
556 	struct sk_buff *skb;
557 	unsigned int packet_no, len;
558 	unsigned char *buf;
559 	unsigned long flags;
560 
561 	DBG(3, dev, "%s\n", __func__);
562 
563 	if (!smc_special_trylock(&lp->lock, flags)) {
564 		netif_stop_queue(dev);
565 		tasklet_schedule(&lp->tx_task);
566 		return;
567 	}
568 
569 	skb = lp->pending_tx_skb;
570 	if (unlikely(!skb)) {
571 		smc_special_unlock(&lp->lock, flags);
572 		return;
573 	}
574 	lp->pending_tx_skb = NULL;
575 
576 	packet_no = SMC_GET_AR(lp);
577 	if (unlikely(packet_no & AR_FAILED)) {
578 		netdev_err(dev, "Memory allocation failed.\n");
579 		dev->stats.tx_errors++;
580 		dev->stats.tx_fifo_errors++;
581 		smc_special_unlock(&lp->lock, flags);
582 		goto done;
583 	}
584 
585 	/* point to the beginning of the packet */
586 	SMC_SET_PN(lp, packet_no);
587 	SMC_SET_PTR(lp, PTR_AUTOINC);
588 
589 	buf = skb->data;
590 	len = skb->len;
591 	DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
592 	    packet_no, len, len, buf);
593 	PRINT_PKT(buf, len);
594 
595 	/*
596 	 * Send the packet length (+6 for status words, length, and ctl.
597 	 * The card will pad to 64 bytes with zeroes if packet is too small.
598 	 */
599 	SMC_PUT_PKT_HDR(lp, 0, len + 6);
600 
601 	/* send the actual data */
602 	SMC_PUSH_DATA(lp, buf, len & ~1);
603 
604 	/* Send final ctl word with the last byte if there is one */
605 	SMC_outw(lp, ((len & 1) ? (0x2000 | buf[len - 1]) : 0), ioaddr,
606 		 DATA_REG(lp));
607 
608 	/*
609 	 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
610 	 * have the effect of having at most one packet queued for TX
611 	 * in the chip's memory at all time.
612 	 *
613 	 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
614 	 * when memory allocation (MC_ALLOC) does not succeed right away.
615 	 */
616 	if (THROTTLE_TX_PKTS)
617 		netif_stop_queue(dev);
618 
619 	/* queue the packet for TX */
620 	SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
621 	smc_special_unlock(&lp->lock, flags);
622 
623 	netif_trans_update(dev);
624 	dev->stats.tx_packets++;
625 	dev->stats.tx_bytes += len;
626 
627 	SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
628 
629 done:	if (!THROTTLE_TX_PKTS)
630 		netif_wake_queue(dev);
631 
632 	dev_consume_skb_any(skb);
633 }
634 
635 /*
636  * Since I am not sure if I will have enough room in the chip's ram
637  * to store the packet, I call this routine which either sends it
638  * now, or set the card to generates an interrupt when ready
639  * for the packet.
640  */
641 static int smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
642 {
643 	struct smc_local *lp = netdev_priv(dev);
644 	void __iomem *ioaddr = lp->base;
645 	unsigned int numPages, poll_count, status;
646 	unsigned long flags;
647 
648 	DBG(3, dev, "%s\n", __func__);
649 
650 	BUG_ON(lp->pending_tx_skb != NULL);
651 
652 	/*
653 	 * The MMU wants the number of pages to be the number of 256 bytes
654 	 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
655 	 *
656 	 * The 91C111 ignores the size bits, but earlier models don't.
657 	 *
658 	 * Pkt size for allocating is data length +6 (for additional status
659 	 * words, length and ctl)
660 	 *
661 	 * If odd size then last byte is included in ctl word.
662 	 */
663 	numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
664 	if (unlikely(numPages > 7)) {
665 		netdev_warn(dev, "Far too big packet error.\n");
666 		dev->stats.tx_errors++;
667 		dev->stats.tx_dropped++;
668 		dev_kfree_skb_any(skb);
669 		return NETDEV_TX_OK;
670 	}
671 
672 	smc_special_lock(&lp->lock, flags);
673 
674 	/* now, try to allocate the memory */
675 	SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
676 
677 	/*
678 	 * Poll the chip for a short amount of time in case the
679 	 * allocation succeeds quickly.
680 	 */
681 	poll_count = MEMORY_WAIT_TIME;
682 	do {
683 		status = SMC_GET_INT(lp);
684 		if (status & IM_ALLOC_INT) {
685 			SMC_ACK_INT(lp, IM_ALLOC_INT);
686   			break;
687 		}
688    	} while (--poll_count);
689 
690 	smc_special_unlock(&lp->lock, flags);
691 
692 	lp->pending_tx_skb = skb;
693    	if (!poll_count) {
694 		/* oh well, wait until the chip finds memory later */
695 		netif_stop_queue(dev);
696 		DBG(2, dev, "TX memory allocation deferred.\n");
697 		SMC_ENABLE_INT(lp, IM_ALLOC_INT);
698    	} else {
699 		/*
700 		 * Allocation succeeded: push packet to the chip's own memory
701 		 * immediately.
702 		 */
703 		smc_hardware_send_pkt((unsigned long)dev);
704 	}
705 
706 	return NETDEV_TX_OK;
707 }
708 
709 /*
710  * This handles a TX interrupt, which is only called when:
711  * - a TX error occurred, or
712  * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
713  */
714 static void smc_tx(struct net_device *dev)
715 {
716 	struct smc_local *lp = netdev_priv(dev);
717 	void __iomem *ioaddr = lp->base;
718 	unsigned int saved_packet, packet_no, tx_status, pkt_len;
719 
720 	DBG(3, dev, "%s\n", __func__);
721 
722 	/* If the TX FIFO is empty then nothing to do */
723 	packet_no = SMC_GET_TXFIFO(lp);
724 	if (unlikely(packet_no & TXFIFO_TEMPTY)) {
725 		PRINTK(dev, "smc_tx with nothing on FIFO.\n");
726 		return;
727 	}
728 
729 	/* select packet to read from */
730 	saved_packet = SMC_GET_PN(lp);
731 	SMC_SET_PN(lp, packet_no);
732 
733 	/* read the first word (status word) from this packet */
734 	SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
735 	SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
736 	DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n",
737 	    tx_status, packet_no);
738 
739 	if (!(tx_status & ES_TX_SUC))
740 		dev->stats.tx_errors++;
741 
742 	if (tx_status & ES_LOSTCARR)
743 		dev->stats.tx_carrier_errors++;
744 
745 	if (tx_status & (ES_LATCOL | ES_16COL)) {
746 		PRINTK(dev, "%s occurred on last xmit\n",
747 		       (tx_status & ES_LATCOL) ?
748 			"late collision" : "too many collisions");
749 		dev->stats.tx_window_errors++;
750 		if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
751 			netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n");
752 		}
753 	}
754 
755 	/* kill the packet */
756 	SMC_WAIT_MMU_BUSY(lp);
757 	SMC_SET_MMU_CMD(lp, MC_FREEPKT);
758 
759 	/* Don't restore Packet Number Reg until busy bit is cleared */
760 	SMC_WAIT_MMU_BUSY(lp);
761 	SMC_SET_PN(lp, saved_packet);
762 
763 	/* re-enable transmit */
764 	SMC_SELECT_BANK(lp, 0);
765 	SMC_SET_TCR(lp, lp->tcr_cur_mode);
766 	SMC_SELECT_BANK(lp, 2);
767 }
768 
769 
770 /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
771 
772 static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
773 {
774 	struct smc_local *lp = netdev_priv(dev);
775 	void __iomem *ioaddr = lp->base;
776 	unsigned int mii_reg, mask;
777 
778 	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
779 	mii_reg |= MII_MDOE;
780 
781 	for (mask = 1 << (bits - 1); mask; mask >>= 1) {
782 		if (val & mask)
783 			mii_reg |= MII_MDO;
784 		else
785 			mii_reg &= ~MII_MDO;
786 
787 		SMC_SET_MII(lp, mii_reg);
788 		udelay(MII_DELAY);
789 		SMC_SET_MII(lp, mii_reg | MII_MCLK);
790 		udelay(MII_DELAY);
791 	}
792 }
793 
794 static unsigned int smc_mii_in(struct net_device *dev, int bits)
795 {
796 	struct smc_local *lp = netdev_priv(dev);
797 	void __iomem *ioaddr = lp->base;
798 	unsigned int mii_reg, mask, val;
799 
800 	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
801 	SMC_SET_MII(lp, mii_reg);
802 
803 	for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
804 		if (SMC_GET_MII(lp) & MII_MDI)
805 			val |= mask;
806 
807 		SMC_SET_MII(lp, mii_reg);
808 		udelay(MII_DELAY);
809 		SMC_SET_MII(lp, mii_reg | MII_MCLK);
810 		udelay(MII_DELAY);
811 	}
812 
813 	return val;
814 }
815 
816 /*
817  * Reads a register from the MII Management serial interface
818  */
819 static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
820 {
821 	struct smc_local *lp = netdev_priv(dev);
822 	void __iomem *ioaddr = lp->base;
823 	unsigned int phydata;
824 
825 	SMC_SELECT_BANK(lp, 3);
826 
827 	/* Idle - 32 ones */
828 	smc_mii_out(dev, 0xffffffff, 32);
829 
830 	/* Start code (01) + read (10) + phyaddr + phyreg */
831 	smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
832 
833 	/* Turnaround (2bits) + phydata */
834 	phydata = smc_mii_in(dev, 18);
835 
836 	/* Return to idle state */
837 	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
838 
839 	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
840 	    __func__, phyaddr, phyreg, phydata);
841 
842 	SMC_SELECT_BANK(lp, 2);
843 	return phydata;
844 }
845 
846 /*
847  * Writes a register to the MII Management serial interface
848  */
849 static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
850 			  int phydata)
851 {
852 	struct smc_local *lp = netdev_priv(dev);
853 	void __iomem *ioaddr = lp->base;
854 
855 	SMC_SELECT_BANK(lp, 3);
856 
857 	/* Idle - 32 ones */
858 	smc_mii_out(dev, 0xffffffff, 32);
859 
860 	/* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
861 	smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
862 
863 	/* Return to idle state */
864 	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
865 
866 	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
867 	    __func__, phyaddr, phyreg, phydata);
868 
869 	SMC_SELECT_BANK(lp, 2);
870 }
871 
872 /*
873  * Finds and reports the PHY address
874  */
875 static void smc_phy_detect(struct net_device *dev)
876 {
877 	struct smc_local *lp = netdev_priv(dev);
878 	int phyaddr;
879 
880 	DBG(2, dev, "%s\n", __func__);
881 
882 	lp->phy_type = 0;
883 
884 	/*
885 	 * Scan all 32 PHY addresses if necessary, starting at
886 	 * PHY#1 to PHY#31, and then PHY#0 last.
887 	 */
888 	for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
889 		unsigned int id1, id2;
890 
891 		/* Read the PHY identifiers */
892 		id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
893 		id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
894 
895 		DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n",
896 		    id1, id2);
897 
898 		/* Make sure it is a valid identifier */
899 		if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
900 		    id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
901 			/* Save the PHY's address */
902 			lp->mii.phy_id = phyaddr & 31;
903 			lp->phy_type = id1 << 16 | id2;
904 			break;
905 		}
906 	}
907 }
908 
909 /*
910  * Sets the PHY to a configuration as determined by the user
911  */
912 static int smc_phy_fixed(struct net_device *dev)
913 {
914 	struct smc_local *lp = netdev_priv(dev);
915 	void __iomem *ioaddr = lp->base;
916 	int phyaddr = lp->mii.phy_id;
917 	int bmcr, cfg1;
918 
919 	DBG(3, dev, "%s\n", __func__);
920 
921 	/* Enter Link Disable state */
922 	cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
923 	cfg1 |= PHY_CFG1_LNKDIS;
924 	smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
925 
926 	/*
927 	 * Set our fixed capabilities
928 	 * Disable auto-negotiation
929 	 */
930 	bmcr = 0;
931 
932 	if (lp->ctl_rfduplx)
933 		bmcr |= BMCR_FULLDPLX;
934 
935 	if (lp->ctl_rspeed == 100)
936 		bmcr |= BMCR_SPEED100;
937 
938 	/* Write our capabilities to the phy control register */
939 	smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
940 
941 	/* Re-Configure the Receive/Phy Control register */
942 	SMC_SELECT_BANK(lp, 0);
943 	SMC_SET_RPC(lp, lp->rpc_cur_mode);
944 	SMC_SELECT_BANK(lp, 2);
945 
946 	return 1;
947 }
948 
949 /**
950  * smc_phy_reset - reset the phy
951  * @dev: net device
952  * @phy: phy address
953  *
954  * Issue a software reset for the specified PHY and
955  * wait up to 100ms for the reset to complete.  We should
956  * not access the PHY for 50ms after issuing the reset.
957  *
958  * The time to wait appears to be dependent on the PHY.
959  *
960  * Must be called with lp->lock locked.
961  */
962 static int smc_phy_reset(struct net_device *dev, int phy)
963 {
964 	struct smc_local *lp = netdev_priv(dev);
965 	unsigned int bmcr;
966 	int timeout;
967 
968 	smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
969 
970 	for (timeout = 2; timeout; timeout--) {
971 		spin_unlock_irq(&lp->lock);
972 		msleep(50);
973 		spin_lock_irq(&lp->lock);
974 
975 		bmcr = smc_phy_read(dev, phy, MII_BMCR);
976 		if (!(bmcr & BMCR_RESET))
977 			break;
978 	}
979 
980 	return bmcr & BMCR_RESET;
981 }
982 
983 /**
984  * smc_phy_powerdown - powerdown phy
985  * @dev: net device
986  *
987  * Power down the specified PHY
988  */
989 static void smc_phy_powerdown(struct net_device *dev)
990 {
991 	struct smc_local *lp = netdev_priv(dev);
992 	unsigned int bmcr;
993 	int phy = lp->mii.phy_id;
994 
995 	if (lp->phy_type == 0)
996 		return;
997 
998 	/* We need to ensure that no calls to smc_phy_configure are
999 	   pending.
1000 	*/
1001 	cancel_work_sync(&lp->phy_configure);
1002 
1003 	bmcr = smc_phy_read(dev, phy, MII_BMCR);
1004 	smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
1005 }
1006 
1007 /**
1008  * smc_phy_check_media - check the media status and adjust TCR
1009  * @dev: net device
1010  * @init: set true for initialisation
1011  *
1012  * Select duplex mode depending on negotiation state.  This
1013  * also updates our carrier state.
1014  */
1015 static void smc_phy_check_media(struct net_device *dev, int init)
1016 {
1017 	struct smc_local *lp = netdev_priv(dev);
1018 	void __iomem *ioaddr = lp->base;
1019 
1020 	if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1021 		/* duplex state has changed */
1022 		if (lp->mii.full_duplex) {
1023 			lp->tcr_cur_mode |= TCR_SWFDUP;
1024 		} else {
1025 			lp->tcr_cur_mode &= ~TCR_SWFDUP;
1026 		}
1027 
1028 		SMC_SELECT_BANK(lp, 0);
1029 		SMC_SET_TCR(lp, lp->tcr_cur_mode);
1030 	}
1031 }
1032 
1033 /*
1034  * Configures the specified PHY through the MII management interface
1035  * using Autonegotiation.
1036  * Calls smc_phy_fixed() if the user has requested a certain config.
1037  * If RPC ANEG bit is set, the media selection is dependent purely on
1038  * the selection by the MII (either in the MII BMCR reg or the result
1039  * of autonegotiation.)  If the RPC ANEG bit is cleared, the selection
1040  * is controlled by the RPC SPEED and RPC DPLX bits.
1041  */
1042 static void smc_phy_configure(struct work_struct *work)
1043 {
1044 	struct smc_local *lp =
1045 		container_of(work, struct smc_local, phy_configure);
1046 	struct net_device *dev = lp->dev;
1047 	void __iomem *ioaddr = lp->base;
1048 	int phyaddr = lp->mii.phy_id;
1049 	int my_phy_caps; /* My PHY capabilities */
1050 	int my_ad_caps; /* My Advertised capabilities */
1051 	int status;
1052 
1053 	DBG(3, dev, "smc_program_phy()\n");
1054 
1055 	spin_lock_irq(&lp->lock);
1056 
1057 	/*
1058 	 * We should not be called if phy_type is zero.
1059 	 */
1060 	if (lp->phy_type == 0)
1061 		goto smc_phy_configure_exit;
1062 
1063 	if (smc_phy_reset(dev, phyaddr)) {
1064 		netdev_info(dev, "PHY reset timed out\n");
1065 		goto smc_phy_configure_exit;
1066 	}
1067 
1068 	/*
1069 	 * Enable PHY Interrupts (for register 18)
1070 	 * Interrupts listed here are disabled
1071 	 */
1072 	smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1073 		PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1074 		PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1075 		PHY_INT_SPDDET | PHY_INT_DPLXDET);
1076 
1077 	/* Configure the Receive/Phy Control register */
1078 	SMC_SELECT_BANK(lp, 0);
1079 	SMC_SET_RPC(lp, lp->rpc_cur_mode);
1080 
1081 	/* If the user requested no auto neg, then go set his request */
1082 	if (lp->mii.force_media) {
1083 		smc_phy_fixed(dev);
1084 		goto smc_phy_configure_exit;
1085 	}
1086 
1087 	/* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1088 	my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1089 
1090 	if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1091 		netdev_info(dev, "Auto negotiation NOT supported\n");
1092 		smc_phy_fixed(dev);
1093 		goto smc_phy_configure_exit;
1094 	}
1095 
1096 	my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1097 
1098 	if (my_phy_caps & BMSR_100BASE4)
1099 		my_ad_caps |= ADVERTISE_100BASE4;
1100 	if (my_phy_caps & BMSR_100FULL)
1101 		my_ad_caps |= ADVERTISE_100FULL;
1102 	if (my_phy_caps & BMSR_100HALF)
1103 		my_ad_caps |= ADVERTISE_100HALF;
1104 	if (my_phy_caps & BMSR_10FULL)
1105 		my_ad_caps |= ADVERTISE_10FULL;
1106 	if (my_phy_caps & BMSR_10HALF)
1107 		my_ad_caps |= ADVERTISE_10HALF;
1108 
1109 	/* Disable capabilities not selected by our user */
1110 	if (lp->ctl_rspeed != 100)
1111 		my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1112 
1113 	if (!lp->ctl_rfduplx)
1114 		my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1115 
1116 	/* Update our Auto-Neg Advertisement Register */
1117 	smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1118 	lp->mii.advertising = my_ad_caps;
1119 
1120 	/*
1121 	 * Read the register back.  Without this, it appears that when
1122 	 * auto-negotiation is restarted, sometimes it isn't ready and
1123 	 * the link does not come up.
1124 	 */
1125 	status = smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1126 
1127 	DBG(2, dev, "phy caps=%x\n", my_phy_caps);
1128 	DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps);
1129 
1130 	/* Restart auto-negotiation process in order to advertise my caps */
1131 	smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1132 
1133 	smc_phy_check_media(dev, 1);
1134 
1135 smc_phy_configure_exit:
1136 	SMC_SELECT_BANK(lp, 2);
1137 	spin_unlock_irq(&lp->lock);
1138 }
1139 
1140 /*
1141  * smc_phy_interrupt
1142  *
1143  * Purpose:  Handle interrupts relating to PHY register 18. This is
1144  *  called from the "hard" interrupt handler under our private spinlock.
1145  */
1146 static void smc_phy_interrupt(struct net_device *dev)
1147 {
1148 	struct smc_local *lp = netdev_priv(dev);
1149 	int phyaddr = lp->mii.phy_id;
1150 	int phy18;
1151 
1152 	DBG(2, dev, "%s\n", __func__);
1153 
1154 	if (lp->phy_type == 0)
1155 		return;
1156 
1157 	for(;;) {
1158 		smc_phy_check_media(dev, 0);
1159 
1160 		/* Read PHY Register 18, Status Output */
1161 		phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1162 		if ((phy18 & PHY_INT_INT) == 0)
1163 			break;
1164 	}
1165 }
1166 
1167 /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1168 
1169 static void smc_10bt_check_media(struct net_device *dev, int init)
1170 {
1171 	struct smc_local *lp = netdev_priv(dev);
1172 	void __iomem *ioaddr = lp->base;
1173 	unsigned int old_carrier, new_carrier;
1174 
1175 	old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1176 
1177 	SMC_SELECT_BANK(lp, 0);
1178 	new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1179 	SMC_SELECT_BANK(lp, 2);
1180 
1181 	if (init || (old_carrier != new_carrier)) {
1182 		if (!new_carrier) {
1183 			netif_carrier_off(dev);
1184 		} else {
1185 			netif_carrier_on(dev);
1186 		}
1187 		if (netif_msg_link(lp))
1188 			netdev_info(dev, "link %s\n",
1189 				    new_carrier ? "up" : "down");
1190 	}
1191 }
1192 
1193 static void smc_eph_interrupt(struct net_device *dev)
1194 {
1195 	struct smc_local *lp = netdev_priv(dev);
1196 	void __iomem *ioaddr = lp->base;
1197 	unsigned int ctl;
1198 
1199 	smc_10bt_check_media(dev, 0);
1200 
1201 	SMC_SELECT_BANK(lp, 1);
1202 	ctl = SMC_GET_CTL(lp);
1203 	SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1204 	SMC_SET_CTL(lp, ctl);
1205 	SMC_SELECT_BANK(lp, 2);
1206 }
1207 
1208 /*
1209  * This is the main routine of the driver, to handle the device when
1210  * it needs some attention.
1211  */
1212 static irqreturn_t smc_interrupt(int irq, void *dev_id)
1213 {
1214 	struct net_device *dev = dev_id;
1215 	struct smc_local *lp = netdev_priv(dev);
1216 	void __iomem *ioaddr = lp->base;
1217 	int status, mask, timeout, card_stats;
1218 	int saved_pointer;
1219 
1220 	DBG(3, dev, "%s\n", __func__);
1221 
1222 	spin_lock(&lp->lock);
1223 
1224 	/* A preamble may be used when there is a potential race
1225 	 * between the interruptible transmit functions and this
1226 	 * ISR. */
1227 	SMC_INTERRUPT_PREAMBLE;
1228 
1229 	saved_pointer = SMC_GET_PTR(lp);
1230 	mask = SMC_GET_INT_MASK(lp);
1231 	SMC_SET_INT_MASK(lp, 0);
1232 
1233 	/* set a timeout value, so I don't stay here forever */
1234 	timeout = MAX_IRQ_LOOPS;
1235 
1236 	do {
1237 		status = SMC_GET_INT(lp);
1238 
1239 		DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1240 		    status, mask,
1241 		    ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1242 		       meminfo = SMC_GET_MIR(lp);
1243 		       SMC_SELECT_BANK(lp, 2); meminfo; }),
1244 		    SMC_GET_FIFO(lp));
1245 
1246 		status &= mask;
1247 		if (!status)
1248 			break;
1249 
1250 		if (status & IM_TX_INT) {
1251 			/* do this before RX as it will free memory quickly */
1252 			DBG(3, dev, "TX int\n");
1253 			smc_tx(dev);
1254 			SMC_ACK_INT(lp, IM_TX_INT);
1255 			if (THROTTLE_TX_PKTS)
1256 				netif_wake_queue(dev);
1257 		} else if (status & IM_RCV_INT) {
1258 			DBG(3, dev, "RX irq\n");
1259 			smc_rcv(dev);
1260 		} else if (status & IM_ALLOC_INT) {
1261 			DBG(3, dev, "Allocation irq\n");
1262 			tasklet_hi_schedule(&lp->tx_task);
1263 			mask &= ~IM_ALLOC_INT;
1264 		} else if (status & IM_TX_EMPTY_INT) {
1265 			DBG(3, dev, "TX empty\n");
1266 			mask &= ~IM_TX_EMPTY_INT;
1267 
1268 			/* update stats */
1269 			SMC_SELECT_BANK(lp, 0);
1270 			card_stats = SMC_GET_COUNTER(lp);
1271 			SMC_SELECT_BANK(lp, 2);
1272 
1273 			/* single collisions */
1274 			dev->stats.collisions += card_stats & 0xF;
1275 			card_stats >>= 4;
1276 
1277 			/* multiple collisions */
1278 			dev->stats.collisions += card_stats & 0xF;
1279 		} else if (status & IM_RX_OVRN_INT) {
1280 			DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n",
1281 			    ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1282 			       eph_st = SMC_GET_EPH_STATUS(lp);
1283 			       SMC_SELECT_BANK(lp, 2); eph_st; }));
1284 			SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1285 			dev->stats.rx_errors++;
1286 			dev->stats.rx_fifo_errors++;
1287 		} else if (status & IM_EPH_INT) {
1288 			smc_eph_interrupt(dev);
1289 		} else if (status & IM_MDINT) {
1290 			SMC_ACK_INT(lp, IM_MDINT);
1291 			smc_phy_interrupt(dev);
1292 		} else if (status & IM_ERCV_INT) {
1293 			SMC_ACK_INT(lp, IM_ERCV_INT);
1294 			PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n");
1295 		}
1296 	} while (--timeout);
1297 
1298 	/* restore register states */
1299 	SMC_SET_PTR(lp, saved_pointer);
1300 	SMC_SET_INT_MASK(lp, mask);
1301 	spin_unlock(&lp->lock);
1302 
1303 #ifndef CONFIG_NET_POLL_CONTROLLER
1304 	if (timeout == MAX_IRQ_LOOPS)
1305 		PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n",
1306 		       mask);
1307 #endif
1308 	DBG(3, dev, "Interrupt done (%d loops)\n",
1309 	    MAX_IRQ_LOOPS - timeout);
1310 
1311 	/*
1312 	 * We return IRQ_HANDLED unconditionally here even if there was
1313 	 * nothing to do.  There is a possibility that a packet might
1314 	 * get enqueued into the chip right after TX_EMPTY_INT is raised
1315 	 * but just before the CPU acknowledges the IRQ.
1316 	 * Better take an unneeded IRQ in some occasions than complexifying
1317 	 * the code for all cases.
1318 	 */
1319 	return IRQ_HANDLED;
1320 }
1321 
1322 #ifdef CONFIG_NET_POLL_CONTROLLER
1323 /*
1324  * Polling receive - used by netconsole and other diagnostic tools
1325  * to allow network i/o with interrupts disabled.
1326  */
1327 static void smc_poll_controller(struct net_device *dev)
1328 {
1329 	disable_irq(dev->irq);
1330 	smc_interrupt(dev->irq, dev);
1331 	enable_irq(dev->irq);
1332 }
1333 #endif
1334 
1335 /* Our watchdog timed out. Called by the networking layer */
1336 static void smc_timeout(struct net_device *dev)
1337 {
1338 	struct smc_local *lp = netdev_priv(dev);
1339 	void __iomem *ioaddr = lp->base;
1340 	int status, mask, eph_st, meminfo, fifo;
1341 
1342 	DBG(2, dev, "%s\n", __func__);
1343 
1344 	spin_lock_irq(&lp->lock);
1345 	status = SMC_GET_INT(lp);
1346 	mask = SMC_GET_INT_MASK(lp);
1347 	fifo = SMC_GET_FIFO(lp);
1348 	SMC_SELECT_BANK(lp, 0);
1349 	eph_st = SMC_GET_EPH_STATUS(lp);
1350 	meminfo = SMC_GET_MIR(lp);
1351 	SMC_SELECT_BANK(lp, 2);
1352 	spin_unlock_irq(&lp->lock);
1353 	PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1354 	       status, mask, meminfo, fifo, eph_st);
1355 
1356 	smc_reset(dev);
1357 	smc_enable(dev);
1358 
1359 	/*
1360 	 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1361 	 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1362 	 * which calls schedule().  Hence we use a work queue.
1363 	 */
1364 	if (lp->phy_type != 0)
1365 		schedule_work(&lp->phy_configure);
1366 
1367 	/* We can accept TX packets again */
1368 	netif_trans_update(dev); /* prevent tx timeout */
1369 	netif_wake_queue(dev);
1370 }
1371 
1372 /*
1373  * This routine will, depending on the values passed to it,
1374  * either make it accept multicast packets, go into
1375  * promiscuous mode (for TCPDUMP and cousins) or accept
1376  * a select set of multicast packets
1377  */
1378 static void smc_set_multicast_list(struct net_device *dev)
1379 {
1380 	struct smc_local *lp = netdev_priv(dev);
1381 	void __iomem *ioaddr = lp->base;
1382 	unsigned char multicast_table[8];
1383 	int update_multicast = 0;
1384 
1385 	DBG(2, dev, "%s\n", __func__);
1386 
1387 	if (dev->flags & IFF_PROMISC) {
1388 		DBG(2, dev, "RCR_PRMS\n");
1389 		lp->rcr_cur_mode |= RCR_PRMS;
1390 	}
1391 
1392 /* BUG?  I never disable promiscuous mode if multicasting was turned on.
1393    Now, I turn off promiscuous mode, but I don't do anything to multicasting
1394    when promiscuous mode is turned on.
1395 */
1396 
1397 	/*
1398 	 * Here, I am setting this to accept all multicast packets.
1399 	 * I don't need to zero the multicast table, because the flag is
1400 	 * checked before the table is
1401 	 */
1402 	else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1403 		DBG(2, dev, "RCR_ALMUL\n");
1404 		lp->rcr_cur_mode |= RCR_ALMUL;
1405 	}
1406 
1407 	/*
1408 	 * This sets the internal hardware table to filter out unwanted
1409 	 * multicast packets before they take up memory.
1410 	 *
1411 	 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1412 	 * address are the offset into the table.  If that bit is 1, then the
1413 	 * multicast packet is accepted.  Otherwise, it's dropped silently.
1414 	 *
1415 	 * To use the 6 bits as an offset into the table, the high 3 bits are
1416 	 * the number of the 8 bit register, while the low 3 bits are the bit
1417 	 * within that register.
1418 	 */
1419 	else if (!netdev_mc_empty(dev)) {
1420 		struct netdev_hw_addr *ha;
1421 
1422 		/* table for flipping the order of 3 bits */
1423 		static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1424 
1425 		/* start with a table of all zeros: reject all */
1426 		memset(multicast_table, 0, sizeof(multicast_table));
1427 
1428 		netdev_for_each_mc_addr(ha, dev) {
1429 			int position;
1430 
1431 			/* only use the low order bits */
1432 			position = crc32_le(~0, ha->addr, 6) & 0x3f;
1433 
1434 			/* do some messy swapping to put the bit in the right spot */
1435 			multicast_table[invert3[position&7]] |=
1436 				(1<<invert3[(position>>3)&7]);
1437 		}
1438 
1439 		/* be sure I get rid of flags I might have set */
1440 		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1441 
1442 		/* now, the table can be loaded into the chipset */
1443 		update_multicast = 1;
1444 	} else  {
1445 		DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n");
1446 		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1447 
1448 		/*
1449 		 * since I'm disabling all multicast entirely, I need to
1450 		 * clear the multicast list
1451 		 */
1452 		memset(multicast_table, 0, sizeof(multicast_table));
1453 		update_multicast = 1;
1454 	}
1455 
1456 	spin_lock_irq(&lp->lock);
1457 	SMC_SELECT_BANK(lp, 0);
1458 	SMC_SET_RCR(lp, lp->rcr_cur_mode);
1459 	if (update_multicast) {
1460 		SMC_SELECT_BANK(lp, 3);
1461 		SMC_SET_MCAST(lp, multicast_table);
1462 	}
1463 	SMC_SELECT_BANK(lp, 2);
1464 	spin_unlock_irq(&lp->lock);
1465 }
1466 
1467 
1468 /*
1469  * Open and Initialize the board
1470  *
1471  * Set up everything, reset the card, etc..
1472  */
1473 static int
1474 smc_open(struct net_device *dev)
1475 {
1476 	struct smc_local *lp = netdev_priv(dev);
1477 
1478 	DBG(2, dev, "%s\n", __func__);
1479 
1480 	/* Setup the default Register Modes */
1481 	lp->tcr_cur_mode = TCR_DEFAULT;
1482 	lp->rcr_cur_mode = RCR_DEFAULT;
1483 	lp->rpc_cur_mode = RPC_DEFAULT |
1484 				lp->cfg.leda << RPC_LSXA_SHFT |
1485 				lp->cfg.ledb << RPC_LSXB_SHFT;
1486 
1487 	/*
1488 	 * If we are not using a MII interface, we need to
1489 	 * monitor our own carrier signal to detect faults.
1490 	 */
1491 	if (lp->phy_type == 0)
1492 		lp->tcr_cur_mode |= TCR_MON_CSN;
1493 
1494 	/* reset the hardware */
1495 	smc_reset(dev);
1496 	smc_enable(dev);
1497 
1498 	/* Configure the PHY, initialize the link state */
1499 	if (lp->phy_type != 0)
1500 		smc_phy_configure(&lp->phy_configure);
1501 	else {
1502 		spin_lock_irq(&lp->lock);
1503 		smc_10bt_check_media(dev, 1);
1504 		spin_unlock_irq(&lp->lock);
1505 	}
1506 
1507 	netif_start_queue(dev);
1508 	return 0;
1509 }
1510 
1511 /*
1512  * smc_close
1513  *
1514  * this makes the board clean up everything that it can
1515  * and not talk to the outside world.   Caused by
1516  * an 'ifconfig ethX down'
1517  */
1518 static int smc_close(struct net_device *dev)
1519 {
1520 	struct smc_local *lp = netdev_priv(dev);
1521 
1522 	DBG(2, dev, "%s\n", __func__);
1523 
1524 	netif_stop_queue(dev);
1525 	netif_carrier_off(dev);
1526 
1527 	/* clear everything */
1528 	smc_shutdown(dev);
1529 	tasklet_kill(&lp->tx_task);
1530 	smc_phy_powerdown(dev);
1531 	return 0;
1532 }
1533 
1534 /*
1535  * Ethtool support
1536  */
1537 static int
1538 smc_ethtool_get_link_ksettings(struct net_device *dev,
1539 			       struct ethtool_link_ksettings *cmd)
1540 {
1541 	struct smc_local *lp = netdev_priv(dev);
1542 	int ret;
1543 
1544 	if (lp->phy_type != 0) {
1545 		spin_lock_irq(&lp->lock);
1546 		ret = mii_ethtool_get_link_ksettings(&lp->mii, cmd);
1547 		spin_unlock_irq(&lp->lock);
1548 	} else {
1549 		u32 supported = SUPPORTED_10baseT_Half |
1550 				 SUPPORTED_10baseT_Full |
1551 				 SUPPORTED_TP | SUPPORTED_AUI;
1552 
1553 		if (lp->ctl_rspeed == 10)
1554 			cmd->base.speed = SPEED_10;
1555 		else if (lp->ctl_rspeed == 100)
1556 			cmd->base.speed = SPEED_100;
1557 
1558 		cmd->base.autoneg = AUTONEG_DISABLE;
1559 		cmd->base.port = 0;
1560 		cmd->base.duplex = lp->tcr_cur_mode & TCR_SWFDUP ?
1561 			DUPLEX_FULL : DUPLEX_HALF;
1562 
1563 		ethtool_convert_legacy_u32_to_link_mode(
1564 			cmd->link_modes.supported, supported);
1565 
1566 		ret = 0;
1567 	}
1568 
1569 	return ret;
1570 }
1571 
1572 static int
1573 smc_ethtool_set_link_ksettings(struct net_device *dev,
1574 			       const struct ethtool_link_ksettings *cmd)
1575 {
1576 	struct smc_local *lp = netdev_priv(dev);
1577 	int ret;
1578 
1579 	if (lp->phy_type != 0) {
1580 		spin_lock_irq(&lp->lock);
1581 		ret = mii_ethtool_set_link_ksettings(&lp->mii, cmd);
1582 		spin_unlock_irq(&lp->lock);
1583 	} else {
1584 		if (cmd->base.autoneg != AUTONEG_DISABLE ||
1585 		    cmd->base.speed != SPEED_10 ||
1586 		    (cmd->base.duplex != DUPLEX_HALF &&
1587 		     cmd->base.duplex != DUPLEX_FULL) ||
1588 		    (cmd->base.port != PORT_TP && cmd->base.port != PORT_AUI))
1589 			return -EINVAL;
1590 
1591 //		lp->port = cmd->base.port;
1592 		lp->ctl_rfduplx = cmd->base.duplex == DUPLEX_FULL;
1593 
1594 //		if (netif_running(dev))
1595 //			smc_set_port(dev);
1596 
1597 		ret = 0;
1598 	}
1599 
1600 	return ret;
1601 }
1602 
1603 static void
1604 smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1605 {
1606 	strlcpy(info->driver, CARDNAME, sizeof(info->driver));
1607 	strlcpy(info->version, version, sizeof(info->version));
1608 	strlcpy(info->bus_info, dev_name(dev->dev.parent),
1609 		sizeof(info->bus_info));
1610 }
1611 
1612 static int smc_ethtool_nwayreset(struct net_device *dev)
1613 {
1614 	struct smc_local *lp = netdev_priv(dev);
1615 	int ret = -EINVAL;
1616 
1617 	if (lp->phy_type != 0) {
1618 		spin_lock_irq(&lp->lock);
1619 		ret = mii_nway_restart(&lp->mii);
1620 		spin_unlock_irq(&lp->lock);
1621 	}
1622 
1623 	return ret;
1624 }
1625 
1626 static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1627 {
1628 	struct smc_local *lp = netdev_priv(dev);
1629 	return lp->msg_enable;
1630 }
1631 
1632 static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1633 {
1634 	struct smc_local *lp = netdev_priv(dev);
1635 	lp->msg_enable = level;
1636 }
1637 
1638 static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1639 {
1640 	u16 ctl;
1641 	struct smc_local *lp = netdev_priv(dev);
1642 	void __iomem *ioaddr = lp->base;
1643 
1644 	spin_lock_irq(&lp->lock);
1645 	/* load word into GP register */
1646 	SMC_SELECT_BANK(lp, 1);
1647 	SMC_SET_GP(lp, word);
1648 	/* set the address to put the data in EEPROM */
1649 	SMC_SELECT_BANK(lp, 2);
1650 	SMC_SET_PTR(lp, addr);
1651 	/* tell it to write */
1652 	SMC_SELECT_BANK(lp, 1);
1653 	ctl = SMC_GET_CTL(lp);
1654 	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1655 	/* wait for it to finish */
1656 	do {
1657 		udelay(1);
1658 	} while (SMC_GET_CTL(lp) & CTL_STORE);
1659 	/* clean up */
1660 	SMC_SET_CTL(lp, ctl);
1661 	SMC_SELECT_BANK(lp, 2);
1662 	spin_unlock_irq(&lp->lock);
1663 	return 0;
1664 }
1665 
1666 static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1667 {
1668 	u16 ctl;
1669 	struct smc_local *lp = netdev_priv(dev);
1670 	void __iomem *ioaddr = lp->base;
1671 
1672 	spin_lock_irq(&lp->lock);
1673 	/* set the EEPROM address to get the data from */
1674 	SMC_SELECT_BANK(lp, 2);
1675 	SMC_SET_PTR(lp, addr | PTR_READ);
1676 	/* tell it to load */
1677 	SMC_SELECT_BANK(lp, 1);
1678 	SMC_SET_GP(lp, 0xffff);	/* init to known */
1679 	ctl = SMC_GET_CTL(lp);
1680 	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1681 	/* wait for it to finish */
1682 	do {
1683 		udelay(1);
1684 	} while (SMC_GET_CTL(lp) & CTL_RELOAD);
1685 	/* read word from GP register */
1686 	*word = SMC_GET_GP(lp);
1687 	/* clean up */
1688 	SMC_SET_CTL(lp, ctl);
1689 	SMC_SELECT_BANK(lp, 2);
1690 	spin_unlock_irq(&lp->lock);
1691 	return 0;
1692 }
1693 
1694 static int smc_ethtool_geteeprom_len(struct net_device *dev)
1695 {
1696 	return 0x23 * 2;
1697 }
1698 
1699 static int smc_ethtool_geteeprom(struct net_device *dev,
1700 		struct ethtool_eeprom *eeprom, u8 *data)
1701 {
1702 	int i;
1703 	int imax;
1704 
1705 	DBG(1, dev, "Reading %d bytes at %d(0x%x)\n",
1706 		eeprom->len, eeprom->offset, eeprom->offset);
1707 	imax = smc_ethtool_geteeprom_len(dev);
1708 	for (i = 0; i < eeprom->len; i += 2) {
1709 		int ret;
1710 		u16 wbuf;
1711 		int offset = i + eeprom->offset;
1712 		if (offset > imax)
1713 			break;
1714 		ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1715 		if (ret != 0)
1716 			return ret;
1717 		DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1718 		data[i] = (wbuf >> 8) & 0xff;
1719 		data[i+1] = wbuf & 0xff;
1720 	}
1721 	return 0;
1722 }
1723 
1724 static int smc_ethtool_seteeprom(struct net_device *dev,
1725 		struct ethtool_eeprom *eeprom, u8 *data)
1726 {
1727 	int i;
1728 	int imax;
1729 
1730 	DBG(1, dev, "Writing %d bytes to %d(0x%x)\n",
1731 	    eeprom->len, eeprom->offset, eeprom->offset);
1732 	imax = smc_ethtool_geteeprom_len(dev);
1733 	for (i = 0; i < eeprom->len; i += 2) {
1734 		int ret;
1735 		u16 wbuf;
1736 		int offset = i + eeprom->offset;
1737 		if (offset > imax)
1738 			break;
1739 		wbuf = (data[i] << 8) | data[i + 1];
1740 		DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1741 		ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1742 		if (ret != 0)
1743 			return ret;
1744 	}
1745 	return 0;
1746 }
1747 
1748 
1749 static const struct ethtool_ops smc_ethtool_ops = {
1750 	.get_drvinfo	= smc_ethtool_getdrvinfo,
1751 
1752 	.get_msglevel	= smc_ethtool_getmsglevel,
1753 	.set_msglevel	= smc_ethtool_setmsglevel,
1754 	.nway_reset	= smc_ethtool_nwayreset,
1755 	.get_link	= ethtool_op_get_link,
1756 	.get_eeprom_len = smc_ethtool_geteeprom_len,
1757 	.get_eeprom	= smc_ethtool_geteeprom,
1758 	.set_eeprom	= smc_ethtool_seteeprom,
1759 	.get_link_ksettings	= smc_ethtool_get_link_ksettings,
1760 	.set_link_ksettings	= smc_ethtool_set_link_ksettings,
1761 };
1762 
1763 static const struct net_device_ops smc_netdev_ops = {
1764 	.ndo_open		= smc_open,
1765 	.ndo_stop		= smc_close,
1766 	.ndo_start_xmit		= smc_hard_start_xmit,
1767 	.ndo_tx_timeout		= smc_timeout,
1768 	.ndo_set_rx_mode	= smc_set_multicast_list,
1769 	.ndo_validate_addr	= eth_validate_addr,
1770 	.ndo_set_mac_address 	= eth_mac_addr,
1771 #ifdef CONFIG_NET_POLL_CONTROLLER
1772 	.ndo_poll_controller	= smc_poll_controller,
1773 #endif
1774 };
1775 
1776 /*
1777  * smc_findirq
1778  *
1779  * This routine has a simple purpose -- make the SMC chip generate an
1780  * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1781  */
1782 /*
1783  * does this still work?
1784  *
1785  * I just deleted auto_irq.c, since it was never built...
1786  *   --jgarzik
1787  */
1788 static int smc_findirq(struct smc_local *lp)
1789 {
1790 	void __iomem *ioaddr = lp->base;
1791 	int timeout = 20;
1792 	unsigned long cookie;
1793 
1794 	DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__);
1795 
1796 	cookie = probe_irq_on();
1797 
1798 	/*
1799 	 * What I try to do here is trigger an ALLOC_INT. This is done
1800 	 * by allocating a small chunk of memory, which will give an interrupt
1801 	 * when done.
1802 	 */
1803 	/* enable ALLOCation interrupts ONLY */
1804 	SMC_SELECT_BANK(lp, 2);
1805 	SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1806 
1807 	/*
1808  	 * Allocate 512 bytes of memory.  Note that the chip was just
1809 	 * reset so all the memory is available
1810 	 */
1811 	SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1812 
1813 	/*
1814 	 * Wait until positive that the interrupt has been generated
1815 	 */
1816 	do {
1817 		int int_status;
1818 		udelay(10);
1819 		int_status = SMC_GET_INT(lp);
1820 		if (int_status & IM_ALLOC_INT)
1821 			break;		/* got the interrupt */
1822 	} while (--timeout);
1823 
1824 	/*
1825 	 * there is really nothing that I can do here if timeout fails,
1826 	 * as autoirq_report will return a 0 anyway, which is what I
1827 	 * want in this case.   Plus, the clean up is needed in both
1828 	 * cases.
1829 	 */
1830 
1831 	/* and disable all interrupts again */
1832 	SMC_SET_INT_MASK(lp, 0);
1833 
1834 	/* and return what I found */
1835 	return probe_irq_off(cookie);
1836 }
1837 
1838 /*
1839  * Function: smc_probe(unsigned long ioaddr)
1840  *
1841  * Purpose:
1842  *	Tests to see if a given ioaddr points to an SMC91x chip.
1843  *	Returns a 0 on success
1844  *
1845  * Algorithm:
1846  *	(1) see if the high byte of BANK_SELECT is 0x33
1847  * 	(2) compare the ioaddr with the base register's address
1848  *	(3) see if I recognize the chip ID in the appropriate register
1849  *
1850  * Here I do typical initialization tasks.
1851  *
1852  * o  Initialize the structure if needed
1853  * o  print out my vanity message if not done so already
1854  * o  print out what type of hardware is detected
1855  * o  print out the ethernet address
1856  * o  find the IRQ
1857  * o  set up my private data
1858  * o  configure the dev structure with my subroutines
1859  * o  actually GRAB the irq.
1860  * o  GRAB the region
1861  */
1862 static int smc_probe(struct net_device *dev, void __iomem *ioaddr,
1863 		     unsigned long irq_flags)
1864 {
1865 	struct smc_local *lp = netdev_priv(dev);
1866 	int retval;
1867 	unsigned int val, revision_register;
1868 	const char *version_string;
1869 
1870 	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
1871 
1872 	/* First, see if the high byte is 0x33 */
1873 	val = SMC_CURRENT_BANK(lp);
1874 	DBG(2, dev, "%s: bank signature probe returned 0x%04x\n",
1875 	    CARDNAME, val);
1876 	if ((val & 0xFF00) != 0x3300) {
1877 		if ((val & 0xFF) == 0x33) {
1878 			netdev_warn(dev,
1879 				    "%s: Detected possible byte-swapped interface at IOADDR %p\n",
1880 				    CARDNAME, ioaddr);
1881 		}
1882 		retval = -ENODEV;
1883 		goto err_out;
1884 	}
1885 
1886 	/*
1887 	 * The above MIGHT indicate a device, but I need to write to
1888 	 * further test this.
1889 	 */
1890 	SMC_SELECT_BANK(lp, 0);
1891 	val = SMC_CURRENT_BANK(lp);
1892 	if ((val & 0xFF00) != 0x3300) {
1893 		retval = -ENODEV;
1894 		goto err_out;
1895 	}
1896 
1897 	/*
1898 	 * well, we've already written once, so hopefully another
1899 	 * time won't hurt.  This time, I need to switch the bank
1900 	 * register to bank 1, so I can access the base address
1901 	 * register
1902 	 */
1903 	SMC_SELECT_BANK(lp, 1);
1904 	val = SMC_GET_BASE(lp);
1905 	val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1906 	if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1907 		netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n",
1908 			    CARDNAME, ioaddr, val);
1909 	}
1910 
1911 	/*
1912 	 * check if the revision register is something that I
1913 	 * recognize.  These might need to be added to later,
1914 	 * as future revisions could be added.
1915 	 */
1916 	SMC_SELECT_BANK(lp, 3);
1917 	revision_register = SMC_GET_REV(lp);
1918 	DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1919 	version_string = chip_ids[ (revision_register >> 4) & 0xF];
1920 	if (!version_string || (revision_register & 0xff00) != 0x3300) {
1921 		/* I don't recognize this chip, so... */
1922 		netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n",
1923 			    CARDNAME, ioaddr, revision_register);
1924 
1925 		retval = -ENODEV;
1926 		goto err_out;
1927 	}
1928 
1929 	/* At this point I'll assume that the chip is an SMC91x. */
1930 	pr_info_once("%s\n", version);
1931 
1932 	/* fill in some of the fields */
1933 	dev->base_addr = (unsigned long)ioaddr;
1934 	lp->base = ioaddr;
1935 	lp->version = revision_register & 0xff;
1936 	spin_lock_init(&lp->lock);
1937 
1938 	/* Get the MAC address */
1939 	SMC_SELECT_BANK(lp, 1);
1940 	SMC_GET_MAC_ADDR(lp, dev->dev_addr);
1941 
1942 	/* now, reset the chip, and put it into a known state */
1943 	smc_reset(dev);
1944 
1945 	/*
1946 	 * If dev->irq is 0, then the device has to be banged on to see
1947 	 * what the IRQ is.
1948 	 *
1949 	 * This banging doesn't always detect the IRQ, for unknown reasons.
1950 	 * a workaround is to reset the chip and try again.
1951 	 *
1952 	 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1953 	 * be what is requested on the command line.   I don't do that, mostly
1954 	 * because the card that I have uses a non-standard method of accessing
1955 	 * the IRQs, and because this _should_ work in most configurations.
1956 	 *
1957 	 * Specifying an IRQ is done with the assumption that the user knows
1958 	 * what (s)he is doing.  No checking is done!!!!
1959 	 */
1960 	if (dev->irq < 1) {
1961 		int trials;
1962 
1963 		trials = 3;
1964 		while (trials--) {
1965 			dev->irq = smc_findirq(lp);
1966 			if (dev->irq)
1967 				break;
1968 			/* kick the card and try again */
1969 			smc_reset(dev);
1970 		}
1971 	}
1972 	if (dev->irq == 0) {
1973 		netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n");
1974 		retval = -ENODEV;
1975 		goto err_out;
1976 	}
1977 	dev->irq = irq_canonicalize(dev->irq);
1978 
1979 	dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1980 	dev->netdev_ops = &smc_netdev_ops;
1981 	dev->ethtool_ops = &smc_ethtool_ops;
1982 
1983 	tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev);
1984 	INIT_WORK(&lp->phy_configure, smc_phy_configure);
1985 	lp->dev = dev;
1986 	lp->mii.phy_id_mask = 0x1f;
1987 	lp->mii.reg_num_mask = 0x1f;
1988 	lp->mii.force_media = 0;
1989 	lp->mii.full_duplex = 0;
1990 	lp->mii.dev = dev;
1991 	lp->mii.mdio_read = smc_phy_read;
1992 	lp->mii.mdio_write = smc_phy_write;
1993 
1994 	/*
1995 	 * Locate the phy, if any.
1996 	 */
1997 	if (lp->version >= (CHIP_91100 << 4))
1998 		smc_phy_detect(dev);
1999 
2000 	/* then shut everything down to save power */
2001 	smc_shutdown(dev);
2002 	smc_phy_powerdown(dev);
2003 
2004 	/* Set default parameters */
2005 	lp->msg_enable = NETIF_MSG_LINK;
2006 	lp->ctl_rfduplx = 0;
2007 	lp->ctl_rspeed = 10;
2008 
2009 	if (lp->version >= (CHIP_91100 << 4)) {
2010 		lp->ctl_rfduplx = 1;
2011 		lp->ctl_rspeed = 100;
2012 	}
2013 
2014 	/* Grab the IRQ */
2015 	retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
2016       	if (retval)
2017       		goto err_out;
2018 
2019 #ifdef CONFIG_ARCH_PXA
2020 #  ifdef SMC_USE_PXA_DMA
2021 	lp->cfg.flags |= SMC91X_USE_DMA;
2022 #  endif
2023 	if (lp->cfg.flags & SMC91X_USE_DMA) {
2024 		dma_cap_mask_t mask;
2025 		struct pxad_param param;
2026 
2027 		dma_cap_zero(mask);
2028 		dma_cap_set(DMA_SLAVE, mask);
2029 		param.prio = PXAD_PRIO_LOWEST;
2030 		param.drcmr = -1UL;
2031 
2032 		lp->dma_chan =
2033 			dma_request_slave_channel_compat(mask, pxad_filter_fn,
2034 							 &param, &dev->dev,
2035 							 "data");
2036 	}
2037 #endif
2038 
2039 	retval = register_netdev(dev);
2040 	if (retval == 0) {
2041 		/* now, print out the card info, in a short format.. */
2042 		netdev_info(dev, "%s (rev %d) at %p IRQ %d",
2043 			    version_string, revision_register & 0x0f,
2044 			    lp->base, dev->irq);
2045 
2046 		if (lp->dma_chan)
2047 			pr_cont(" DMA %p", lp->dma_chan);
2048 
2049 		pr_cont("%s%s\n",
2050 			lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2051 			THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2052 
2053 		if (!is_valid_ether_addr(dev->dev_addr)) {
2054 			netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n");
2055 		} else {
2056 			/* Print the Ethernet address */
2057 			netdev_info(dev, "Ethernet addr: %pM\n",
2058 				    dev->dev_addr);
2059 		}
2060 
2061 		if (lp->phy_type == 0) {
2062 			PRINTK(dev, "No PHY found\n");
2063 		} else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2064 			PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n");
2065 		} else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2066 			PRINTK(dev, "PHY LAN83C180\n");
2067 		}
2068 	}
2069 
2070 err_out:
2071 #ifdef CONFIG_ARCH_PXA
2072 	if (retval && lp->dma_chan)
2073 		dma_release_channel(lp->dma_chan);
2074 #endif
2075 	return retval;
2076 }
2077 
2078 static int smc_enable_device(struct platform_device *pdev)
2079 {
2080 	struct net_device *ndev = platform_get_drvdata(pdev);
2081 	struct smc_local *lp = netdev_priv(ndev);
2082 	unsigned long flags;
2083 	unsigned char ecor, ecsr;
2084 	void __iomem *addr;
2085 	struct resource * res;
2086 
2087 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2088 	if (!res)
2089 		return 0;
2090 
2091 	/*
2092 	 * Map the attribute space.  This is overkill, but clean.
2093 	 */
2094 	addr = ioremap(res->start, ATTRIB_SIZE);
2095 	if (!addr)
2096 		return -ENOMEM;
2097 
2098 	/*
2099 	 * Reset the device.  We must disable IRQs around this
2100 	 * since a reset causes the IRQ line become active.
2101 	 */
2102 	local_irq_save(flags);
2103 	ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2104 	writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2105 	readb(addr + (ECOR << SMC_IO_SHIFT));
2106 
2107 	/*
2108 	 * Wait 100us for the chip to reset.
2109 	 */
2110 	udelay(100);
2111 
2112 	/*
2113 	 * The device will ignore all writes to the enable bit while
2114 	 * reset is asserted, even if the reset bit is cleared in the
2115 	 * same write.  Must clear reset first, then enable the device.
2116 	 */
2117 	writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2118 	writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2119 
2120 	/*
2121 	 * Set the appropriate byte/word mode.
2122 	 */
2123 	ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2124 	if (!SMC_16BIT(lp))
2125 		ecsr |= ECSR_IOIS8;
2126 	writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2127 	local_irq_restore(flags);
2128 
2129 	iounmap(addr);
2130 
2131 	/*
2132 	 * Wait for the chip to wake up.  We could poll the control
2133 	 * register in the main register space, but that isn't mapped
2134 	 * yet.  We know this is going to take 750us.
2135 	 */
2136 	msleep(1);
2137 
2138 	return 0;
2139 }
2140 
2141 static int smc_request_attrib(struct platform_device *pdev,
2142 			      struct net_device *ndev)
2143 {
2144 	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2145 	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2146 
2147 	if (!res)
2148 		return 0;
2149 
2150 	if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2151 		return -EBUSY;
2152 
2153 	return 0;
2154 }
2155 
2156 static void smc_release_attrib(struct platform_device *pdev,
2157 			       struct net_device *ndev)
2158 {
2159 	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2160 	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2161 
2162 	if (res)
2163 		release_mem_region(res->start, ATTRIB_SIZE);
2164 }
2165 
2166 static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2167 {
2168 	if (SMC_CAN_USE_DATACS) {
2169 		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2170 		struct smc_local *lp = netdev_priv(ndev);
2171 
2172 		if (!res)
2173 			return;
2174 
2175 		if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2176 			netdev_info(ndev, "%s: failed to request datacs memory region.\n",
2177 				    CARDNAME);
2178 			return;
2179 		}
2180 
2181 		lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2182 	}
2183 }
2184 
2185 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2186 {
2187 	if (SMC_CAN_USE_DATACS) {
2188 		struct smc_local *lp = netdev_priv(ndev);
2189 		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2190 
2191 		if (lp->datacs)
2192 			iounmap(lp->datacs);
2193 
2194 		lp->datacs = NULL;
2195 
2196 		if (res)
2197 			release_mem_region(res->start, SMC_DATA_EXTENT);
2198 	}
2199 }
2200 
2201 static const struct acpi_device_id smc91x_acpi_match[] = {
2202 	{ "LNRO0003", 0 },
2203 	{ }
2204 };
2205 MODULE_DEVICE_TABLE(acpi, smc91x_acpi_match);
2206 
2207 #if IS_BUILTIN(CONFIG_OF)
2208 static const struct of_device_id smc91x_match[] = {
2209 	{ .compatible = "smsc,lan91c94", },
2210 	{ .compatible = "smsc,lan91c111", },
2211 	{},
2212 };
2213 MODULE_DEVICE_TABLE(of, smc91x_match);
2214 
2215 /**
2216  * of_try_set_control_gpio - configure a gpio if it exists
2217  */
2218 static int try_toggle_control_gpio(struct device *dev,
2219 				   struct gpio_desc **desc,
2220 				   const char *name, int index,
2221 				   int value, unsigned int nsdelay)
2222 {
2223 	struct gpio_desc *gpio = *desc;
2224 	enum gpiod_flags flags = value ? GPIOD_OUT_LOW : GPIOD_OUT_HIGH;
2225 
2226 	gpio = devm_gpiod_get_index_optional(dev, name, index, flags);
2227 	if (IS_ERR(gpio))
2228 		return PTR_ERR(gpio);
2229 
2230 	if (gpio) {
2231 		if (nsdelay)
2232 			usleep_range(nsdelay, 2 * nsdelay);
2233 		gpiod_set_value_cansleep(gpio, value);
2234 	}
2235 	*desc = gpio;
2236 
2237 	return 0;
2238 }
2239 #endif
2240 
2241 /*
2242  * smc_init(void)
2243  *   Input parameters:
2244  *	dev->base_addr == 0, try to find all possible locations
2245  *	dev->base_addr > 0x1ff, this is the address to check
2246  *	dev->base_addr == <anything else>, return failure code
2247  *
2248  *   Output:
2249  *	0 --> there is a device
2250  *	anything else, error
2251  */
2252 static int smc_drv_probe(struct platform_device *pdev)
2253 {
2254 	struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev);
2255 	const struct of_device_id *match = NULL;
2256 	struct smc_local *lp;
2257 	struct net_device *ndev;
2258 	struct resource *res;
2259 	unsigned int __iomem *addr;
2260 	unsigned long irq_flags = SMC_IRQ_FLAGS;
2261 	unsigned long irq_resflags;
2262 	int ret;
2263 
2264 	ndev = alloc_etherdev(sizeof(struct smc_local));
2265 	if (!ndev) {
2266 		ret = -ENOMEM;
2267 		goto out;
2268 	}
2269 	SET_NETDEV_DEV(ndev, &pdev->dev);
2270 
2271 	/* get configuration from platform data, only allow use of
2272 	 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2273 	 */
2274 
2275 	lp = netdev_priv(ndev);
2276 	lp->cfg.flags = 0;
2277 
2278 	if (pd) {
2279 		memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2280 		lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2281 
2282 		if (!SMC_8BIT(lp) && !SMC_16BIT(lp)) {
2283 			dev_err(&pdev->dev,
2284 				"at least one of 8-bit or 16-bit access support is required.\n");
2285 			ret = -ENXIO;
2286 			goto out_free_netdev;
2287 		}
2288 	}
2289 
2290 #if IS_BUILTIN(CONFIG_OF)
2291 	match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev);
2292 	if (match) {
2293 		u32 val;
2294 
2295 		/* Optional pwrdwn GPIO configured? */
2296 		ret = try_toggle_control_gpio(&pdev->dev, &lp->power_gpio,
2297 					      "power", 0, 0, 100);
2298 		if (ret)
2299 			return ret;
2300 
2301 		/*
2302 		 * Optional reset GPIO configured? Minimum 100 ns reset needed
2303 		 * according to LAN91C96 datasheet page 14.
2304 		 */
2305 		ret = try_toggle_control_gpio(&pdev->dev, &lp->reset_gpio,
2306 					      "reset", 0, 0, 100);
2307 		if (ret)
2308 			return ret;
2309 
2310 		/*
2311 		 * Need to wait for optional EEPROM to load, max 750 us according
2312 		 * to LAN91C96 datasheet page 55.
2313 		 */
2314 		if (lp->reset_gpio)
2315 			usleep_range(750, 1000);
2316 
2317 		/* Combination of IO widths supported, default to 16-bit */
2318 		if (!device_property_read_u32(&pdev->dev, "reg-io-width",
2319 					      &val)) {
2320 			if (val & 1)
2321 				lp->cfg.flags |= SMC91X_USE_8BIT;
2322 			if ((val == 0) || (val & 2))
2323 				lp->cfg.flags |= SMC91X_USE_16BIT;
2324 			if (val & 4)
2325 				lp->cfg.flags |= SMC91X_USE_32BIT;
2326 		} else {
2327 			lp->cfg.flags |= SMC91X_USE_16BIT;
2328 		}
2329 		if (!device_property_read_u32(&pdev->dev, "reg-shift",
2330 					      &val))
2331 			lp->io_shift = val;
2332 		lp->cfg.pxa_u16_align4 =
2333 			device_property_read_bool(&pdev->dev, "pxa-u16-align4");
2334 	}
2335 #endif
2336 
2337 	if (!pd && !match) {
2338 		lp->cfg.flags |= (SMC_CAN_USE_8BIT)  ? SMC91X_USE_8BIT  : 0;
2339 		lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2340 		lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2341 		lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2342 	}
2343 
2344 	if (!lp->cfg.leda && !lp->cfg.ledb) {
2345 		lp->cfg.leda = RPC_LSA_DEFAULT;
2346 		lp->cfg.ledb = RPC_LSB_DEFAULT;
2347 	}
2348 
2349 	ndev->dma = (unsigned char)-1;
2350 
2351 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2352 	if (!res)
2353 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2354 	if (!res) {
2355 		ret = -ENODEV;
2356 		goto out_free_netdev;
2357 	}
2358 
2359 
2360 	if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2361 		ret = -EBUSY;
2362 		goto out_free_netdev;
2363 	}
2364 
2365 	ndev->irq = platform_get_irq(pdev, 0);
2366 	if (ndev->irq < 0) {
2367 		ret = ndev->irq;
2368 		goto out_release_io;
2369 	}
2370 	/*
2371 	 * If this platform does not specify any special irqflags, or if
2372 	 * the resource supplies a trigger, override the irqflags with
2373 	 * the trigger flags from the resource.
2374 	 */
2375 	irq_resflags = irqd_get_trigger_type(irq_get_irq_data(ndev->irq));
2376 	if (irq_flags == -1 || irq_resflags & IRQF_TRIGGER_MASK)
2377 		irq_flags = irq_resflags & IRQF_TRIGGER_MASK;
2378 
2379 	ret = smc_request_attrib(pdev, ndev);
2380 	if (ret)
2381 		goto out_release_io;
2382 #if defined(CONFIG_ASSABET_NEPONSET)
2383 	if (machine_is_assabet() && machine_has_neponset())
2384 		neponset_ncr_set(NCR_ENET_OSC_EN);
2385 #endif
2386 	platform_set_drvdata(pdev, ndev);
2387 	ret = smc_enable_device(pdev);
2388 	if (ret)
2389 		goto out_release_attrib;
2390 
2391 	addr = ioremap(res->start, SMC_IO_EXTENT);
2392 	if (!addr) {
2393 		ret = -ENOMEM;
2394 		goto out_release_attrib;
2395 	}
2396 
2397 #ifdef CONFIG_ARCH_PXA
2398 	{
2399 		struct smc_local *lp = netdev_priv(ndev);
2400 		lp->device = &pdev->dev;
2401 		lp->physaddr = res->start;
2402 
2403 	}
2404 #endif
2405 
2406 	ret = smc_probe(ndev, addr, irq_flags);
2407 	if (ret != 0)
2408 		goto out_iounmap;
2409 
2410 	smc_request_datacs(pdev, ndev);
2411 
2412 	return 0;
2413 
2414  out_iounmap:
2415 	iounmap(addr);
2416  out_release_attrib:
2417 	smc_release_attrib(pdev, ndev);
2418  out_release_io:
2419 	release_mem_region(res->start, SMC_IO_EXTENT);
2420  out_free_netdev:
2421 	free_netdev(ndev);
2422  out:
2423 	pr_info("%s: not found (%d).\n", CARDNAME, ret);
2424 
2425 	return ret;
2426 }
2427 
2428 static int smc_drv_remove(struct platform_device *pdev)
2429 {
2430 	struct net_device *ndev = platform_get_drvdata(pdev);
2431 	struct smc_local *lp = netdev_priv(ndev);
2432 	struct resource *res;
2433 
2434 	unregister_netdev(ndev);
2435 
2436 	free_irq(ndev->irq, ndev);
2437 
2438 #ifdef CONFIG_ARCH_PXA
2439 	if (lp->dma_chan)
2440 		dma_release_channel(lp->dma_chan);
2441 #endif
2442 	iounmap(lp->base);
2443 
2444 	smc_release_datacs(pdev,ndev);
2445 	smc_release_attrib(pdev,ndev);
2446 
2447 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2448 	if (!res)
2449 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2450 	release_mem_region(res->start, SMC_IO_EXTENT);
2451 
2452 	free_netdev(ndev);
2453 
2454 	return 0;
2455 }
2456 
2457 static int smc_drv_suspend(struct device *dev)
2458 {
2459 	struct platform_device *pdev = to_platform_device(dev);
2460 	struct net_device *ndev = platform_get_drvdata(pdev);
2461 
2462 	if (ndev) {
2463 		if (netif_running(ndev)) {
2464 			netif_device_detach(ndev);
2465 			smc_shutdown(ndev);
2466 			smc_phy_powerdown(ndev);
2467 		}
2468 	}
2469 	return 0;
2470 }
2471 
2472 static int smc_drv_resume(struct device *dev)
2473 {
2474 	struct platform_device *pdev = to_platform_device(dev);
2475 	struct net_device *ndev = platform_get_drvdata(pdev);
2476 
2477 	if (ndev) {
2478 		struct smc_local *lp = netdev_priv(ndev);
2479 		smc_enable_device(pdev);
2480 		if (netif_running(ndev)) {
2481 			smc_reset(ndev);
2482 			smc_enable(ndev);
2483 			if (lp->phy_type != 0)
2484 				smc_phy_configure(&lp->phy_configure);
2485 			netif_device_attach(ndev);
2486 		}
2487 	}
2488 	return 0;
2489 }
2490 
2491 static struct dev_pm_ops smc_drv_pm_ops = {
2492 	.suspend	= smc_drv_suspend,
2493 	.resume		= smc_drv_resume,
2494 };
2495 
2496 static struct platform_driver smc_driver = {
2497 	.probe		= smc_drv_probe,
2498 	.remove		= smc_drv_remove,
2499 	.driver		= {
2500 		.name	= CARDNAME,
2501 		.pm	= &smc_drv_pm_ops,
2502 		.of_match_table   = of_match_ptr(smc91x_match),
2503 		.acpi_match_table = smc91x_acpi_match,
2504 	},
2505 };
2506 
2507 module_platform_driver(smc_driver);
2508