xref: /openbmc/linux/drivers/net/ethernet/smsc/smc91x.c (revision a03a8dbe20eff6d57aae3147577bf84b52aba4e6)
1 /*
2  * smc91x.c
3  * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
4  *
5  * Copyright (C) 1996 by Erik Stahlman
6  * Copyright (C) 2001 Standard Microsystems Corporation
7  *	Developed by Simple Network Magic Corporation
8  * Copyright (C) 2003 Monta Vista Software, Inc.
9  *	Unified SMC91x driver by Nicolas Pitre
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, see <http://www.gnu.org/licenses/>.
23  *
24  * Arguments:
25  * 	io	= for the base address
26  *	irq	= for the IRQ
27  *	nowait	= 0 for normal wait states, 1 eliminates additional wait states
28  *
29  * original author:
30  * 	Erik Stahlman <erik@vt.edu>
31  *
32  * hardware multicast code:
33  *    Peter Cammaert <pc@denkart.be>
34  *
35  * contributors:
36  * 	Daris A Nevil <dnevil@snmc.com>
37  *      Nicolas Pitre <nico@fluxnic.net>
38  *	Russell King <rmk@arm.linux.org.uk>
39  *
40  * History:
41  *   08/20/00  Arnaldo Melo       fix kfree(skb) in smc_hardware_send_packet
42  *   12/15/00  Christian Jullien  fix "Warning: kfree_skb on hard IRQ"
43  *   03/16/01  Daris A Nevil      modified smc9194.c for use with LAN91C111
44  *   08/22/01  Scott Anderson     merge changes from smc9194 to smc91111
45  *   08/21/01  Pramod B Bhardwaj  added support for RevB of LAN91C111
46  *   12/20/01  Jeff Sutherland    initial port to Xscale PXA with DMA support
47  *   04/07/03  Nicolas Pitre      unified SMC91x driver, killed irq races,
48  *                                more bus abstraction, big cleanup, etc.
49  *   29/09/03  Russell King       - add driver model support
50  *                                - ethtool support
51  *                                - convert to use generic MII interface
52  *                                - add link up/down notification
53  *                                - don't try to handle full negotiation in
54  *                                  smc_phy_configure
55  *                                - clean up (and fix stack overrun) in PHY
56  *                                  MII read/write functions
57  *   22/09/04  Nicolas Pitre      big update (see commit log for details)
58  */
59 static const char version[] =
60 	"smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>";
61 
62 /* Debugging level */
63 #ifndef SMC_DEBUG
64 #define SMC_DEBUG		0
65 #endif
66 
67 
68 #include <linux/module.h>
69 #include <linux/kernel.h>
70 #include <linux/sched.h>
71 #include <linux/delay.h>
72 #include <linux/interrupt.h>
73 #include <linux/irq.h>
74 #include <linux/errno.h>
75 #include <linux/ioport.h>
76 #include <linux/crc32.h>
77 #include <linux/platform_device.h>
78 #include <linux/spinlock.h>
79 #include <linux/ethtool.h>
80 #include <linux/mii.h>
81 #include <linux/workqueue.h>
82 #include <linux/of.h>
83 #include <linux/of_device.h>
84 #include <linux/of_gpio.h>
85 
86 #include <linux/netdevice.h>
87 #include <linux/etherdevice.h>
88 #include <linux/skbuff.h>
89 
90 #include <asm/io.h>
91 
92 #include "smc91x.h"
93 
94 #if defined(CONFIG_ASSABET_NEPONSET)
95 #include <mach/neponset.h>
96 #endif
97 
98 #ifndef SMC_NOWAIT
99 # define SMC_NOWAIT		0
100 #endif
101 static int nowait = SMC_NOWAIT;
102 module_param(nowait, int, 0400);
103 MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
104 
105 /*
106  * Transmit timeout, default 5 seconds.
107  */
108 static int watchdog = 1000;
109 module_param(watchdog, int, 0400);
110 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
111 
112 MODULE_LICENSE("GPL");
113 MODULE_ALIAS("platform:smc91x");
114 
115 /*
116  * The internal workings of the driver.  If you are changing anything
117  * here with the SMC stuff, you should have the datasheet and know
118  * what you are doing.
119  */
120 #define CARDNAME "smc91x"
121 
122 /*
123  * Use power-down feature of the chip
124  */
125 #define POWER_DOWN		1
126 
127 /*
128  * Wait time for memory to be free.  This probably shouldn't be
129  * tuned that much, as waiting for this means nothing else happens
130  * in the system
131  */
132 #define MEMORY_WAIT_TIME	16
133 
134 /*
135  * The maximum number of processing loops allowed for each call to the
136  * IRQ handler.
137  */
138 #define MAX_IRQ_LOOPS		8
139 
140 /*
141  * This selects whether TX packets are sent one by one to the SMC91x internal
142  * memory and throttled until transmission completes.  This may prevent
143  * RX overruns a litle by keeping much of the memory free for RX packets
144  * but to the expense of reduced TX throughput and increased IRQ overhead.
145  * Note this is not a cure for a too slow data bus or too high IRQ latency.
146  */
147 #define THROTTLE_TX_PKTS	0
148 
149 /*
150  * The MII clock high/low times.  2x this number gives the MII clock period
151  * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
152  */
153 #define MII_DELAY		1
154 
155 #define DBG(n, dev, fmt, ...)					\
156 	do {							\
157 		if (SMC_DEBUG >= (n))				\
158 			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
159 	} while (0)
160 
161 #define PRINTK(dev, fmt, ...)					\
162 	do {							\
163 		if (SMC_DEBUG > 0)				\
164 			netdev_info(dev, fmt, ##__VA_ARGS__);	\
165 		else						\
166 			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
167 	} while (0)
168 
169 #if SMC_DEBUG > 3
170 static void PRINT_PKT(u_char *buf, int length)
171 {
172 	int i;
173 	int remainder;
174 	int lines;
175 
176 	lines = length / 16;
177 	remainder = length % 16;
178 
179 	for (i = 0; i < lines ; i ++) {
180 		int cur;
181 		printk(KERN_DEBUG);
182 		for (cur = 0; cur < 8; cur++) {
183 			u_char a, b;
184 			a = *buf++;
185 			b = *buf++;
186 			pr_cont("%02x%02x ", a, b);
187 		}
188 		pr_cont("\n");
189 	}
190 	printk(KERN_DEBUG);
191 	for (i = 0; i < remainder/2 ; i++) {
192 		u_char a, b;
193 		a = *buf++;
194 		b = *buf++;
195 		pr_cont("%02x%02x ", a, b);
196 	}
197 	pr_cont("\n");
198 }
199 #else
200 static inline void PRINT_PKT(u_char *buf, int length) { }
201 #endif
202 
203 
204 /* this enables an interrupt in the interrupt mask register */
205 #define SMC_ENABLE_INT(lp, x) do {					\
206 	unsigned char mask;						\
207 	unsigned long smc_enable_flags;					\
208 	spin_lock_irqsave(&lp->lock, smc_enable_flags);			\
209 	mask = SMC_GET_INT_MASK(lp);					\
210 	mask |= (x);							\
211 	SMC_SET_INT_MASK(lp, mask);					\
212 	spin_unlock_irqrestore(&lp->lock, smc_enable_flags);		\
213 } while (0)
214 
215 /* this disables an interrupt from the interrupt mask register */
216 #define SMC_DISABLE_INT(lp, x) do {					\
217 	unsigned char mask;						\
218 	unsigned long smc_disable_flags;				\
219 	spin_lock_irqsave(&lp->lock, smc_disable_flags);		\
220 	mask = SMC_GET_INT_MASK(lp);					\
221 	mask &= ~(x);							\
222 	SMC_SET_INT_MASK(lp, mask);					\
223 	spin_unlock_irqrestore(&lp->lock, smc_disable_flags);		\
224 } while (0)
225 
226 /*
227  * Wait while MMU is busy.  This is usually in the order of a few nanosecs
228  * if at all, but let's avoid deadlocking the system if the hardware
229  * decides to go south.
230  */
231 #define SMC_WAIT_MMU_BUSY(lp) do {					\
232 	if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) {		\
233 		unsigned long timeout = jiffies + 2;			\
234 		while (SMC_GET_MMU_CMD(lp) & MC_BUSY) {		\
235 			if (time_after(jiffies, timeout)) {		\
236 				netdev_dbg(dev, "timeout %s line %d\n",	\
237 					   __FILE__, __LINE__);		\
238 				break;					\
239 			}						\
240 			cpu_relax();					\
241 		}							\
242 	}								\
243 } while (0)
244 
245 
246 /*
247  * this does a soft reset on the device
248  */
249 static void smc_reset(struct net_device *dev)
250 {
251 	struct smc_local *lp = netdev_priv(dev);
252 	void __iomem *ioaddr = lp->base;
253 	unsigned int ctl, cfg;
254 	struct sk_buff *pending_skb;
255 
256 	DBG(2, dev, "%s\n", __func__);
257 
258 	/* Disable all interrupts, block TX tasklet */
259 	spin_lock_irq(&lp->lock);
260 	SMC_SELECT_BANK(lp, 2);
261 	SMC_SET_INT_MASK(lp, 0);
262 	pending_skb = lp->pending_tx_skb;
263 	lp->pending_tx_skb = NULL;
264 	spin_unlock_irq(&lp->lock);
265 
266 	/* free any pending tx skb */
267 	if (pending_skb) {
268 		dev_kfree_skb(pending_skb);
269 		dev->stats.tx_errors++;
270 		dev->stats.tx_aborted_errors++;
271 	}
272 
273 	/*
274 	 * This resets the registers mostly to defaults, but doesn't
275 	 * affect EEPROM.  That seems unnecessary
276 	 */
277 	SMC_SELECT_BANK(lp, 0);
278 	SMC_SET_RCR(lp, RCR_SOFTRST);
279 
280 	/*
281 	 * Setup the Configuration Register
282 	 * This is necessary because the CONFIG_REG is not affected
283 	 * by a soft reset
284 	 */
285 	SMC_SELECT_BANK(lp, 1);
286 
287 	cfg = CONFIG_DEFAULT;
288 
289 	/*
290 	 * Setup for fast accesses if requested.  If the card/system
291 	 * can't handle it then there will be no recovery except for
292 	 * a hard reset or power cycle
293 	 */
294 	if (lp->cfg.flags & SMC91X_NOWAIT)
295 		cfg |= CONFIG_NO_WAIT;
296 
297 	/*
298 	 * Release from possible power-down state
299 	 * Configuration register is not affected by Soft Reset
300 	 */
301 	cfg |= CONFIG_EPH_POWER_EN;
302 
303 	SMC_SET_CONFIG(lp, cfg);
304 
305 	/* this should pause enough for the chip to be happy */
306 	/*
307 	 * elaborate?  What does the chip _need_? --jgarzik
308 	 *
309 	 * This seems to be undocumented, but something the original
310 	 * driver(s) have always done.  Suspect undocumented timing
311 	 * info/determined empirically. --rmk
312 	 */
313 	udelay(1);
314 
315 	/* Disable transmit and receive functionality */
316 	SMC_SELECT_BANK(lp, 0);
317 	SMC_SET_RCR(lp, RCR_CLEAR);
318 	SMC_SET_TCR(lp, TCR_CLEAR);
319 
320 	SMC_SELECT_BANK(lp, 1);
321 	ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
322 
323 	/*
324 	 * Set the control register to automatically release successfully
325 	 * transmitted packets, to make the best use out of our limited
326 	 * memory
327 	 */
328 	if(!THROTTLE_TX_PKTS)
329 		ctl |= CTL_AUTO_RELEASE;
330 	else
331 		ctl &= ~CTL_AUTO_RELEASE;
332 	SMC_SET_CTL(lp, ctl);
333 
334 	/* Reset the MMU */
335 	SMC_SELECT_BANK(lp, 2);
336 	SMC_SET_MMU_CMD(lp, MC_RESET);
337 	SMC_WAIT_MMU_BUSY(lp);
338 }
339 
340 /*
341  * Enable Interrupts, Receive, and Transmit
342  */
343 static void smc_enable(struct net_device *dev)
344 {
345 	struct smc_local *lp = netdev_priv(dev);
346 	void __iomem *ioaddr = lp->base;
347 	int mask;
348 
349 	DBG(2, dev, "%s\n", __func__);
350 
351 	/* see the header file for options in TCR/RCR DEFAULT */
352 	SMC_SELECT_BANK(lp, 0);
353 	SMC_SET_TCR(lp, lp->tcr_cur_mode);
354 	SMC_SET_RCR(lp, lp->rcr_cur_mode);
355 
356 	SMC_SELECT_BANK(lp, 1);
357 	SMC_SET_MAC_ADDR(lp, dev->dev_addr);
358 
359 	/* now, enable interrupts */
360 	mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
361 	if (lp->version >= (CHIP_91100 << 4))
362 		mask |= IM_MDINT;
363 	SMC_SELECT_BANK(lp, 2);
364 	SMC_SET_INT_MASK(lp, mask);
365 
366 	/*
367 	 * From this point the register bank must _NOT_ be switched away
368 	 * to something else than bank 2 without proper locking against
369 	 * races with any tasklet or interrupt handlers until smc_shutdown()
370 	 * or smc_reset() is called.
371 	 */
372 }
373 
374 /*
375  * this puts the device in an inactive state
376  */
377 static void smc_shutdown(struct net_device *dev)
378 {
379 	struct smc_local *lp = netdev_priv(dev);
380 	void __iomem *ioaddr = lp->base;
381 	struct sk_buff *pending_skb;
382 
383 	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
384 
385 	/* no more interrupts for me */
386 	spin_lock_irq(&lp->lock);
387 	SMC_SELECT_BANK(lp, 2);
388 	SMC_SET_INT_MASK(lp, 0);
389 	pending_skb = lp->pending_tx_skb;
390 	lp->pending_tx_skb = NULL;
391 	spin_unlock_irq(&lp->lock);
392 	if (pending_skb)
393 		dev_kfree_skb(pending_skb);
394 
395 	/* and tell the card to stay away from that nasty outside world */
396 	SMC_SELECT_BANK(lp, 0);
397 	SMC_SET_RCR(lp, RCR_CLEAR);
398 	SMC_SET_TCR(lp, TCR_CLEAR);
399 
400 #ifdef POWER_DOWN
401 	/* finally, shut the chip down */
402 	SMC_SELECT_BANK(lp, 1);
403 	SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
404 #endif
405 }
406 
407 /*
408  * This is the procedure to handle the receipt of a packet.
409  */
410 static inline void  smc_rcv(struct net_device *dev)
411 {
412 	struct smc_local *lp = netdev_priv(dev);
413 	void __iomem *ioaddr = lp->base;
414 	unsigned int packet_number, status, packet_len;
415 
416 	DBG(3, dev, "%s\n", __func__);
417 
418 	packet_number = SMC_GET_RXFIFO(lp);
419 	if (unlikely(packet_number & RXFIFO_REMPTY)) {
420 		PRINTK(dev, "smc_rcv with nothing on FIFO.\n");
421 		return;
422 	}
423 
424 	/* read from start of packet */
425 	SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
426 
427 	/* First two words are status and packet length */
428 	SMC_GET_PKT_HDR(lp, status, packet_len);
429 	packet_len &= 0x07ff;  /* mask off top bits */
430 	DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
431 	    packet_number, status, packet_len, packet_len);
432 
433 	back:
434 	if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
435 		if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
436 			/* accept VLAN packets */
437 			status &= ~RS_TOOLONG;
438 			goto back;
439 		}
440 		if (packet_len < 6) {
441 			/* bloody hardware */
442 			netdev_err(dev, "fubar (rxlen %u status %x\n",
443 				   packet_len, status);
444 			status |= RS_TOOSHORT;
445 		}
446 		SMC_WAIT_MMU_BUSY(lp);
447 		SMC_SET_MMU_CMD(lp, MC_RELEASE);
448 		dev->stats.rx_errors++;
449 		if (status & RS_ALGNERR)
450 			dev->stats.rx_frame_errors++;
451 		if (status & (RS_TOOSHORT | RS_TOOLONG))
452 			dev->stats.rx_length_errors++;
453 		if (status & RS_BADCRC)
454 			dev->stats.rx_crc_errors++;
455 	} else {
456 		struct sk_buff *skb;
457 		unsigned char *data;
458 		unsigned int data_len;
459 
460 		/* set multicast stats */
461 		if (status & RS_MULTICAST)
462 			dev->stats.multicast++;
463 
464 		/*
465 		 * Actual payload is packet_len - 6 (or 5 if odd byte).
466 		 * We want skb_reserve(2) and the final ctrl word
467 		 * (2 bytes, possibly containing the payload odd byte).
468 		 * Furthermore, we add 2 bytes to allow rounding up to
469 		 * multiple of 4 bytes on 32 bit buses.
470 		 * Hence packet_len - 6 + 2 + 2 + 2.
471 		 */
472 		skb = netdev_alloc_skb(dev, packet_len);
473 		if (unlikely(skb == NULL)) {
474 			SMC_WAIT_MMU_BUSY(lp);
475 			SMC_SET_MMU_CMD(lp, MC_RELEASE);
476 			dev->stats.rx_dropped++;
477 			return;
478 		}
479 
480 		/* Align IP header to 32 bits */
481 		skb_reserve(skb, 2);
482 
483 		/* BUG: the LAN91C111 rev A never sets this bit. Force it. */
484 		if (lp->version == 0x90)
485 			status |= RS_ODDFRAME;
486 
487 		/*
488 		 * If odd length: packet_len - 5,
489 		 * otherwise packet_len - 6.
490 		 * With the trailing ctrl byte it's packet_len - 4.
491 		 */
492 		data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
493 		data = skb_put(skb, data_len);
494 		SMC_PULL_DATA(lp, data, packet_len - 4);
495 
496 		SMC_WAIT_MMU_BUSY(lp);
497 		SMC_SET_MMU_CMD(lp, MC_RELEASE);
498 
499 		PRINT_PKT(data, packet_len - 4);
500 
501 		skb->protocol = eth_type_trans(skb, dev);
502 		netif_rx(skb);
503 		dev->stats.rx_packets++;
504 		dev->stats.rx_bytes += data_len;
505 	}
506 }
507 
508 #ifdef CONFIG_SMP
509 /*
510  * On SMP we have the following problem:
511  *
512  * 	A = smc_hardware_send_pkt()
513  * 	B = smc_hard_start_xmit()
514  * 	C = smc_interrupt()
515  *
516  * A and B can never be executed simultaneously.  However, at least on UP,
517  * it is possible (and even desirable) for C to interrupt execution of
518  * A or B in order to have better RX reliability and avoid overruns.
519  * C, just like A and B, must have exclusive access to the chip and
520  * each of them must lock against any other concurrent access.
521  * Unfortunately this is not possible to have C suspend execution of A or
522  * B taking place on another CPU. On UP this is no an issue since A and B
523  * are run from softirq context and C from hard IRQ context, and there is
524  * no other CPU where concurrent access can happen.
525  * If ever there is a way to force at least B and C to always be executed
526  * on the same CPU then we could use read/write locks to protect against
527  * any other concurrent access and C would always interrupt B. But life
528  * isn't that easy in a SMP world...
529  */
530 #define smc_special_trylock(lock, flags)				\
531 ({									\
532 	int __ret;							\
533 	local_irq_save(flags);						\
534 	__ret = spin_trylock(lock);					\
535 	if (!__ret)							\
536 		local_irq_restore(flags);				\
537 	__ret;								\
538 })
539 #define smc_special_lock(lock, flags)		spin_lock_irqsave(lock, flags)
540 #define smc_special_unlock(lock, flags) 	spin_unlock_irqrestore(lock, flags)
541 #else
542 #define smc_special_trylock(lock, flags)	(flags == flags)
543 #define smc_special_lock(lock, flags)   	do { flags = 0; } while (0)
544 #define smc_special_unlock(lock, flags)	do { flags = 0; } while (0)
545 #endif
546 
547 /*
548  * This is called to actually send a packet to the chip.
549  */
550 static void smc_hardware_send_pkt(unsigned long data)
551 {
552 	struct net_device *dev = (struct net_device *)data;
553 	struct smc_local *lp = netdev_priv(dev);
554 	void __iomem *ioaddr = lp->base;
555 	struct sk_buff *skb;
556 	unsigned int packet_no, len;
557 	unsigned char *buf;
558 	unsigned long flags;
559 
560 	DBG(3, dev, "%s\n", __func__);
561 
562 	if (!smc_special_trylock(&lp->lock, flags)) {
563 		netif_stop_queue(dev);
564 		tasklet_schedule(&lp->tx_task);
565 		return;
566 	}
567 
568 	skb = lp->pending_tx_skb;
569 	if (unlikely(!skb)) {
570 		smc_special_unlock(&lp->lock, flags);
571 		return;
572 	}
573 	lp->pending_tx_skb = NULL;
574 
575 	packet_no = SMC_GET_AR(lp);
576 	if (unlikely(packet_no & AR_FAILED)) {
577 		netdev_err(dev, "Memory allocation failed.\n");
578 		dev->stats.tx_errors++;
579 		dev->stats.tx_fifo_errors++;
580 		smc_special_unlock(&lp->lock, flags);
581 		goto done;
582 	}
583 
584 	/* point to the beginning of the packet */
585 	SMC_SET_PN(lp, packet_no);
586 	SMC_SET_PTR(lp, PTR_AUTOINC);
587 
588 	buf = skb->data;
589 	len = skb->len;
590 	DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
591 	    packet_no, len, len, buf);
592 	PRINT_PKT(buf, len);
593 
594 	/*
595 	 * Send the packet length (+6 for status words, length, and ctl.
596 	 * The card will pad to 64 bytes with zeroes if packet is too small.
597 	 */
598 	SMC_PUT_PKT_HDR(lp, 0, len + 6);
599 
600 	/* send the actual data */
601 	SMC_PUSH_DATA(lp, buf, len & ~1);
602 
603 	/* Send final ctl word with the last byte if there is one */
604 	SMC_outw(((len & 1) ? (0x2000 | buf[len-1]) : 0), ioaddr, DATA_REG(lp));
605 
606 	/*
607 	 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
608 	 * have the effect of having at most one packet queued for TX
609 	 * in the chip's memory at all time.
610 	 *
611 	 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
612 	 * when memory allocation (MC_ALLOC) does not succeed right away.
613 	 */
614 	if (THROTTLE_TX_PKTS)
615 		netif_stop_queue(dev);
616 
617 	/* queue the packet for TX */
618 	SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
619 	smc_special_unlock(&lp->lock, flags);
620 
621 	dev->trans_start = jiffies;
622 	dev->stats.tx_packets++;
623 	dev->stats.tx_bytes += len;
624 
625 	SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
626 
627 done:	if (!THROTTLE_TX_PKTS)
628 		netif_wake_queue(dev);
629 
630 	dev_consume_skb_any(skb);
631 }
632 
633 /*
634  * Since I am not sure if I will have enough room in the chip's ram
635  * to store the packet, I call this routine which either sends it
636  * now, or set the card to generates an interrupt when ready
637  * for the packet.
638  */
639 static int smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
640 {
641 	struct smc_local *lp = netdev_priv(dev);
642 	void __iomem *ioaddr = lp->base;
643 	unsigned int numPages, poll_count, status;
644 	unsigned long flags;
645 
646 	DBG(3, dev, "%s\n", __func__);
647 
648 	BUG_ON(lp->pending_tx_skb != NULL);
649 
650 	/*
651 	 * The MMU wants the number of pages to be the number of 256 bytes
652 	 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
653 	 *
654 	 * The 91C111 ignores the size bits, but earlier models don't.
655 	 *
656 	 * Pkt size for allocating is data length +6 (for additional status
657 	 * words, length and ctl)
658 	 *
659 	 * If odd size then last byte is included in ctl word.
660 	 */
661 	numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
662 	if (unlikely(numPages > 7)) {
663 		netdev_warn(dev, "Far too big packet error.\n");
664 		dev->stats.tx_errors++;
665 		dev->stats.tx_dropped++;
666 		dev_kfree_skb_any(skb);
667 		return NETDEV_TX_OK;
668 	}
669 
670 	smc_special_lock(&lp->lock, flags);
671 
672 	/* now, try to allocate the memory */
673 	SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
674 
675 	/*
676 	 * Poll the chip for a short amount of time in case the
677 	 * allocation succeeds quickly.
678 	 */
679 	poll_count = MEMORY_WAIT_TIME;
680 	do {
681 		status = SMC_GET_INT(lp);
682 		if (status & IM_ALLOC_INT) {
683 			SMC_ACK_INT(lp, IM_ALLOC_INT);
684   			break;
685 		}
686    	} while (--poll_count);
687 
688 	smc_special_unlock(&lp->lock, flags);
689 
690 	lp->pending_tx_skb = skb;
691    	if (!poll_count) {
692 		/* oh well, wait until the chip finds memory later */
693 		netif_stop_queue(dev);
694 		DBG(2, dev, "TX memory allocation deferred.\n");
695 		SMC_ENABLE_INT(lp, IM_ALLOC_INT);
696    	} else {
697 		/*
698 		 * Allocation succeeded: push packet to the chip's own memory
699 		 * immediately.
700 		 */
701 		smc_hardware_send_pkt((unsigned long)dev);
702 	}
703 
704 	return NETDEV_TX_OK;
705 }
706 
707 /*
708  * This handles a TX interrupt, which is only called when:
709  * - a TX error occurred, or
710  * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
711  */
712 static void smc_tx(struct net_device *dev)
713 {
714 	struct smc_local *lp = netdev_priv(dev);
715 	void __iomem *ioaddr = lp->base;
716 	unsigned int saved_packet, packet_no, tx_status, pkt_len;
717 
718 	DBG(3, dev, "%s\n", __func__);
719 
720 	/* If the TX FIFO is empty then nothing to do */
721 	packet_no = SMC_GET_TXFIFO(lp);
722 	if (unlikely(packet_no & TXFIFO_TEMPTY)) {
723 		PRINTK(dev, "smc_tx with nothing on FIFO.\n");
724 		return;
725 	}
726 
727 	/* select packet to read from */
728 	saved_packet = SMC_GET_PN(lp);
729 	SMC_SET_PN(lp, packet_no);
730 
731 	/* read the first word (status word) from this packet */
732 	SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
733 	SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
734 	DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n",
735 	    tx_status, packet_no);
736 
737 	if (!(tx_status & ES_TX_SUC))
738 		dev->stats.tx_errors++;
739 
740 	if (tx_status & ES_LOSTCARR)
741 		dev->stats.tx_carrier_errors++;
742 
743 	if (tx_status & (ES_LATCOL | ES_16COL)) {
744 		PRINTK(dev, "%s occurred on last xmit\n",
745 		       (tx_status & ES_LATCOL) ?
746 			"late collision" : "too many collisions");
747 		dev->stats.tx_window_errors++;
748 		if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
749 			netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n");
750 		}
751 	}
752 
753 	/* kill the packet */
754 	SMC_WAIT_MMU_BUSY(lp);
755 	SMC_SET_MMU_CMD(lp, MC_FREEPKT);
756 
757 	/* Don't restore Packet Number Reg until busy bit is cleared */
758 	SMC_WAIT_MMU_BUSY(lp);
759 	SMC_SET_PN(lp, saved_packet);
760 
761 	/* re-enable transmit */
762 	SMC_SELECT_BANK(lp, 0);
763 	SMC_SET_TCR(lp, lp->tcr_cur_mode);
764 	SMC_SELECT_BANK(lp, 2);
765 }
766 
767 
768 /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
769 
770 static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
771 {
772 	struct smc_local *lp = netdev_priv(dev);
773 	void __iomem *ioaddr = lp->base;
774 	unsigned int mii_reg, mask;
775 
776 	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
777 	mii_reg |= MII_MDOE;
778 
779 	for (mask = 1 << (bits - 1); mask; mask >>= 1) {
780 		if (val & mask)
781 			mii_reg |= MII_MDO;
782 		else
783 			mii_reg &= ~MII_MDO;
784 
785 		SMC_SET_MII(lp, mii_reg);
786 		udelay(MII_DELAY);
787 		SMC_SET_MII(lp, mii_reg | MII_MCLK);
788 		udelay(MII_DELAY);
789 	}
790 }
791 
792 static unsigned int smc_mii_in(struct net_device *dev, int bits)
793 {
794 	struct smc_local *lp = netdev_priv(dev);
795 	void __iomem *ioaddr = lp->base;
796 	unsigned int mii_reg, mask, val;
797 
798 	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
799 	SMC_SET_MII(lp, mii_reg);
800 
801 	for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
802 		if (SMC_GET_MII(lp) & MII_MDI)
803 			val |= mask;
804 
805 		SMC_SET_MII(lp, mii_reg);
806 		udelay(MII_DELAY);
807 		SMC_SET_MII(lp, mii_reg | MII_MCLK);
808 		udelay(MII_DELAY);
809 	}
810 
811 	return val;
812 }
813 
814 /*
815  * Reads a register from the MII Management serial interface
816  */
817 static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
818 {
819 	struct smc_local *lp = netdev_priv(dev);
820 	void __iomem *ioaddr = lp->base;
821 	unsigned int phydata;
822 
823 	SMC_SELECT_BANK(lp, 3);
824 
825 	/* Idle - 32 ones */
826 	smc_mii_out(dev, 0xffffffff, 32);
827 
828 	/* Start code (01) + read (10) + phyaddr + phyreg */
829 	smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
830 
831 	/* Turnaround (2bits) + phydata */
832 	phydata = smc_mii_in(dev, 18);
833 
834 	/* Return to idle state */
835 	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
836 
837 	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
838 	    __func__, phyaddr, phyreg, phydata);
839 
840 	SMC_SELECT_BANK(lp, 2);
841 	return phydata;
842 }
843 
844 /*
845  * Writes a register to the MII Management serial interface
846  */
847 static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
848 			  int phydata)
849 {
850 	struct smc_local *lp = netdev_priv(dev);
851 	void __iomem *ioaddr = lp->base;
852 
853 	SMC_SELECT_BANK(lp, 3);
854 
855 	/* Idle - 32 ones */
856 	smc_mii_out(dev, 0xffffffff, 32);
857 
858 	/* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
859 	smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
860 
861 	/* Return to idle state */
862 	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
863 
864 	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
865 	    __func__, phyaddr, phyreg, phydata);
866 
867 	SMC_SELECT_BANK(lp, 2);
868 }
869 
870 /*
871  * Finds and reports the PHY address
872  */
873 static void smc_phy_detect(struct net_device *dev)
874 {
875 	struct smc_local *lp = netdev_priv(dev);
876 	int phyaddr;
877 
878 	DBG(2, dev, "%s\n", __func__);
879 
880 	lp->phy_type = 0;
881 
882 	/*
883 	 * Scan all 32 PHY addresses if necessary, starting at
884 	 * PHY#1 to PHY#31, and then PHY#0 last.
885 	 */
886 	for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
887 		unsigned int id1, id2;
888 
889 		/* Read the PHY identifiers */
890 		id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
891 		id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
892 
893 		DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n",
894 		    id1, id2);
895 
896 		/* Make sure it is a valid identifier */
897 		if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
898 		    id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
899 			/* Save the PHY's address */
900 			lp->mii.phy_id = phyaddr & 31;
901 			lp->phy_type = id1 << 16 | id2;
902 			break;
903 		}
904 	}
905 }
906 
907 /*
908  * Sets the PHY to a configuration as determined by the user
909  */
910 static int smc_phy_fixed(struct net_device *dev)
911 {
912 	struct smc_local *lp = netdev_priv(dev);
913 	void __iomem *ioaddr = lp->base;
914 	int phyaddr = lp->mii.phy_id;
915 	int bmcr, cfg1;
916 
917 	DBG(3, dev, "%s\n", __func__);
918 
919 	/* Enter Link Disable state */
920 	cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
921 	cfg1 |= PHY_CFG1_LNKDIS;
922 	smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
923 
924 	/*
925 	 * Set our fixed capabilities
926 	 * Disable auto-negotiation
927 	 */
928 	bmcr = 0;
929 
930 	if (lp->ctl_rfduplx)
931 		bmcr |= BMCR_FULLDPLX;
932 
933 	if (lp->ctl_rspeed == 100)
934 		bmcr |= BMCR_SPEED100;
935 
936 	/* Write our capabilities to the phy control register */
937 	smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
938 
939 	/* Re-Configure the Receive/Phy Control register */
940 	SMC_SELECT_BANK(lp, 0);
941 	SMC_SET_RPC(lp, lp->rpc_cur_mode);
942 	SMC_SELECT_BANK(lp, 2);
943 
944 	return 1;
945 }
946 
947 /**
948  * smc_phy_reset - reset the phy
949  * @dev: net device
950  * @phy: phy address
951  *
952  * Issue a software reset for the specified PHY and
953  * wait up to 100ms for the reset to complete.  We should
954  * not access the PHY for 50ms after issuing the reset.
955  *
956  * The time to wait appears to be dependent on the PHY.
957  *
958  * Must be called with lp->lock locked.
959  */
960 static int smc_phy_reset(struct net_device *dev, int phy)
961 {
962 	struct smc_local *lp = netdev_priv(dev);
963 	unsigned int bmcr;
964 	int timeout;
965 
966 	smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
967 
968 	for (timeout = 2; timeout; timeout--) {
969 		spin_unlock_irq(&lp->lock);
970 		msleep(50);
971 		spin_lock_irq(&lp->lock);
972 
973 		bmcr = smc_phy_read(dev, phy, MII_BMCR);
974 		if (!(bmcr & BMCR_RESET))
975 			break;
976 	}
977 
978 	return bmcr & BMCR_RESET;
979 }
980 
981 /**
982  * smc_phy_powerdown - powerdown phy
983  * @dev: net device
984  *
985  * Power down the specified PHY
986  */
987 static void smc_phy_powerdown(struct net_device *dev)
988 {
989 	struct smc_local *lp = netdev_priv(dev);
990 	unsigned int bmcr;
991 	int phy = lp->mii.phy_id;
992 
993 	if (lp->phy_type == 0)
994 		return;
995 
996 	/* We need to ensure that no calls to smc_phy_configure are
997 	   pending.
998 	*/
999 	cancel_work_sync(&lp->phy_configure);
1000 
1001 	bmcr = smc_phy_read(dev, phy, MII_BMCR);
1002 	smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
1003 }
1004 
1005 /**
1006  * smc_phy_check_media - check the media status and adjust TCR
1007  * @dev: net device
1008  * @init: set true for initialisation
1009  *
1010  * Select duplex mode depending on negotiation state.  This
1011  * also updates our carrier state.
1012  */
1013 static void smc_phy_check_media(struct net_device *dev, int init)
1014 {
1015 	struct smc_local *lp = netdev_priv(dev);
1016 	void __iomem *ioaddr = lp->base;
1017 
1018 	if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1019 		/* duplex state has changed */
1020 		if (lp->mii.full_duplex) {
1021 			lp->tcr_cur_mode |= TCR_SWFDUP;
1022 		} else {
1023 			lp->tcr_cur_mode &= ~TCR_SWFDUP;
1024 		}
1025 
1026 		SMC_SELECT_BANK(lp, 0);
1027 		SMC_SET_TCR(lp, lp->tcr_cur_mode);
1028 	}
1029 }
1030 
1031 /*
1032  * Configures the specified PHY through the MII management interface
1033  * using Autonegotiation.
1034  * Calls smc_phy_fixed() if the user has requested a certain config.
1035  * If RPC ANEG bit is set, the media selection is dependent purely on
1036  * the selection by the MII (either in the MII BMCR reg or the result
1037  * of autonegotiation.)  If the RPC ANEG bit is cleared, the selection
1038  * is controlled by the RPC SPEED and RPC DPLX bits.
1039  */
1040 static void smc_phy_configure(struct work_struct *work)
1041 {
1042 	struct smc_local *lp =
1043 		container_of(work, struct smc_local, phy_configure);
1044 	struct net_device *dev = lp->dev;
1045 	void __iomem *ioaddr = lp->base;
1046 	int phyaddr = lp->mii.phy_id;
1047 	int my_phy_caps; /* My PHY capabilities */
1048 	int my_ad_caps; /* My Advertised capabilities */
1049 	int status;
1050 
1051 	DBG(3, dev, "smc_program_phy()\n");
1052 
1053 	spin_lock_irq(&lp->lock);
1054 
1055 	/*
1056 	 * We should not be called if phy_type is zero.
1057 	 */
1058 	if (lp->phy_type == 0)
1059 		goto smc_phy_configure_exit;
1060 
1061 	if (smc_phy_reset(dev, phyaddr)) {
1062 		netdev_info(dev, "PHY reset timed out\n");
1063 		goto smc_phy_configure_exit;
1064 	}
1065 
1066 	/*
1067 	 * Enable PHY Interrupts (for register 18)
1068 	 * Interrupts listed here are disabled
1069 	 */
1070 	smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1071 		PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1072 		PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1073 		PHY_INT_SPDDET | PHY_INT_DPLXDET);
1074 
1075 	/* Configure the Receive/Phy Control register */
1076 	SMC_SELECT_BANK(lp, 0);
1077 	SMC_SET_RPC(lp, lp->rpc_cur_mode);
1078 
1079 	/* If the user requested no auto neg, then go set his request */
1080 	if (lp->mii.force_media) {
1081 		smc_phy_fixed(dev);
1082 		goto smc_phy_configure_exit;
1083 	}
1084 
1085 	/* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1086 	my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1087 
1088 	if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1089 		netdev_info(dev, "Auto negotiation NOT supported\n");
1090 		smc_phy_fixed(dev);
1091 		goto smc_phy_configure_exit;
1092 	}
1093 
1094 	my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1095 
1096 	if (my_phy_caps & BMSR_100BASE4)
1097 		my_ad_caps |= ADVERTISE_100BASE4;
1098 	if (my_phy_caps & BMSR_100FULL)
1099 		my_ad_caps |= ADVERTISE_100FULL;
1100 	if (my_phy_caps & BMSR_100HALF)
1101 		my_ad_caps |= ADVERTISE_100HALF;
1102 	if (my_phy_caps & BMSR_10FULL)
1103 		my_ad_caps |= ADVERTISE_10FULL;
1104 	if (my_phy_caps & BMSR_10HALF)
1105 		my_ad_caps |= ADVERTISE_10HALF;
1106 
1107 	/* Disable capabilities not selected by our user */
1108 	if (lp->ctl_rspeed != 100)
1109 		my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1110 
1111 	if (!lp->ctl_rfduplx)
1112 		my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1113 
1114 	/* Update our Auto-Neg Advertisement Register */
1115 	smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1116 	lp->mii.advertising = my_ad_caps;
1117 
1118 	/*
1119 	 * Read the register back.  Without this, it appears that when
1120 	 * auto-negotiation is restarted, sometimes it isn't ready and
1121 	 * the link does not come up.
1122 	 */
1123 	status = smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1124 
1125 	DBG(2, dev, "phy caps=%x\n", my_phy_caps);
1126 	DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps);
1127 
1128 	/* Restart auto-negotiation process in order to advertise my caps */
1129 	smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1130 
1131 	smc_phy_check_media(dev, 1);
1132 
1133 smc_phy_configure_exit:
1134 	SMC_SELECT_BANK(lp, 2);
1135 	spin_unlock_irq(&lp->lock);
1136 }
1137 
1138 /*
1139  * smc_phy_interrupt
1140  *
1141  * Purpose:  Handle interrupts relating to PHY register 18. This is
1142  *  called from the "hard" interrupt handler under our private spinlock.
1143  */
1144 static void smc_phy_interrupt(struct net_device *dev)
1145 {
1146 	struct smc_local *lp = netdev_priv(dev);
1147 	int phyaddr = lp->mii.phy_id;
1148 	int phy18;
1149 
1150 	DBG(2, dev, "%s\n", __func__);
1151 
1152 	if (lp->phy_type == 0)
1153 		return;
1154 
1155 	for(;;) {
1156 		smc_phy_check_media(dev, 0);
1157 
1158 		/* Read PHY Register 18, Status Output */
1159 		phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1160 		if ((phy18 & PHY_INT_INT) == 0)
1161 			break;
1162 	}
1163 }
1164 
1165 /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1166 
1167 static void smc_10bt_check_media(struct net_device *dev, int init)
1168 {
1169 	struct smc_local *lp = netdev_priv(dev);
1170 	void __iomem *ioaddr = lp->base;
1171 	unsigned int old_carrier, new_carrier;
1172 
1173 	old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1174 
1175 	SMC_SELECT_BANK(lp, 0);
1176 	new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1177 	SMC_SELECT_BANK(lp, 2);
1178 
1179 	if (init || (old_carrier != new_carrier)) {
1180 		if (!new_carrier) {
1181 			netif_carrier_off(dev);
1182 		} else {
1183 			netif_carrier_on(dev);
1184 		}
1185 		if (netif_msg_link(lp))
1186 			netdev_info(dev, "link %s\n",
1187 				    new_carrier ? "up" : "down");
1188 	}
1189 }
1190 
1191 static void smc_eph_interrupt(struct net_device *dev)
1192 {
1193 	struct smc_local *lp = netdev_priv(dev);
1194 	void __iomem *ioaddr = lp->base;
1195 	unsigned int ctl;
1196 
1197 	smc_10bt_check_media(dev, 0);
1198 
1199 	SMC_SELECT_BANK(lp, 1);
1200 	ctl = SMC_GET_CTL(lp);
1201 	SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1202 	SMC_SET_CTL(lp, ctl);
1203 	SMC_SELECT_BANK(lp, 2);
1204 }
1205 
1206 /*
1207  * This is the main routine of the driver, to handle the device when
1208  * it needs some attention.
1209  */
1210 static irqreturn_t smc_interrupt(int irq, void *dev_id)
1211 {
1212 	struct net_device *dev = dev_id;
1213 	struct smc_local *lp = netdev_priv(dev);
1214 	void __iomem *ioaddr = lp->base;
1215 	int status, mask, timeout, card_stats;
1216 	int saved_pointer;
1217 
1218 	DBG(3, dev, "%s\n", __func__);
1219 
1220 	spin_lock(&lp->lock);
1221 
1222 	/* A preamble may be used when there is a potential race
1223 	 * between the interruptible transmit functions and this
1224 	 * ISR. */
1225 	SMC_INTERRUPT_PREAMBLE;
1226 
1227 	saved_pointer = SMC_GET_PTR(lp);
1228 	mask = SMC_GET_INT_MASK(lp);
1229 	SMC_SET_INT_MASK(lp, 0);
1230 
1231 	/* set a timeout value, so I don't stay here forever */
1232 	timeout = MAX_IRQ_LOOPS;
1233 
1234 	do {
1235 		status = SMC_GET_INT(lp);
1236 
1237 		DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1238 		    status, mask,
1239 		    ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1240 		       meminfo = SMC_GET_MIR(lp);
1241 		       SMC_SELECT_BANK(lp, 2); meminfo; }),
1242 		    SMC_GET_FIFO(lp));
1243 
1244 		status &= mask;
1245 		if (!status)
1246 			break;
1247 
1248 		if (status & IM_TX_INT) {
1249 			/* do this before RX as it will free memory quickly */
1250 			DBG(3, dev, "TX int\n");
1251 			smc_tx(dev);
1252 			SMC_ACK_INT(lp, IM_TX_INT);
1253 			if (THROTTLE_TX_PKTS)
1254 				netif_wake_queue(dev);
1255 		} else if (status & IM_RCV_INT) {
1256 			DBG(3, dev, "RX irq\n");
1257 			smc_rcv(dev);
1258 		} else if (status & IM_ALLOC_INT) {
1259 			DBG(3, dev, "Allocation irq\n");
1260 			tasklet_hi_schedule(&lp->tx_task);
1261 			mask &= ~IM_ALLOC_INT;
1262 		} else if (status & IM_TX_EMPTY_INT) {
1263 			DBG(3, dev, "TX empty\n");
1264 			mask &= ~IM_TX_EMPTY_INT;
1265 
1266 			/* update stats */
1267 			SMC_SELECT_BANK(lp, 0);
1268 			card_stats = SMC_GET_COUNTER(lp);
1269 			SMC_SELECT_BANK(lp, 2);
1270 
1271 			/* single collisions */
1272 			dev->stats.collisions += card_stats & 0xF;
1273 			card_stats >>= 4;
1274 
1275 			/* multiple collisions */
1276 			dev->stats.collisions += card_stats & 0xF;
1277 		} else if (status & IM_RX_OVRN_INT) {
1278 			DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n",
1279 			    ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1280 			       eph_st = SMC_GET_EPH_STATUS(lp);
1281 			       SMC_SELECT_BANK(lp, 2); eph_st; }));
1282 			SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1283 			dev->stats.rx_errors++;
1284 			dev->stats.rx_fifo_errors++;
1285 		} else if (status & IM_EPH_INT) {
1286 			smc_eph_interrupt(dev);
1287 		} else if (status & IM_MDINT) {
1288 			SMC_ACK_INT(lp, IM_MDINT);
1289 			smc_phy_interrupt(dev);
1290 		} else if (status & IM_ERCV_INT) {
1291 			SMC_ACK_INT(lp, IM_ERCV_INT);
1292 			PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n");
1293 		}
1294 	} while (--timeout);
1295 
1296 	/* restore register states */
1297 	SMC_SET_PTR(lp, saved_pointer);
1298 	SMC_SET_INT_MASK(lp, mask);
1299 	spin_unlock(&lp->lock);
1300 
1301 #ifndef CONFIG_NET_POLL_CONTROLLER
1302 	if (timeout == MAX_IRQ_LOOPS)
1303 		PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n",
1304 		       mask);
1305 #endif
1306 	DBG(3, dev, "Interrupt done (%d loops)\n",
1307 	    MAX_IRQ_LOOPS - timeout);
1308 
1309 	/*
1310 	 * We return IRQ_HANDLED unconditionally here even if there was
1311 	 * nothing to do.  There is a possibility that a packet might
1312 	 * get enqueued into the chip right after TX_EMPTY_INT is raised
1313 	 * but just before the CPU acknowledges the IRQ.
1314 	 * Better take an unneeded IRQ in some occasions than complexifying
1315 	 * the code for all cases.
1316 	 */
1317 	return IRQ_HANDLED;
1318 }
1319 
1320 #ifdef CONFIG_NET_POLL_CONTROLLER
1321 /*
1322  * Polling receive - used by netconsole and other diagnostic tools
1323  * to allow network i/o with interrupts disabled.
1324  */
1325 static void smc_poll_controller(struct net_device *dev)
1326 {
1327 	disable_irq(dev->irq);
1328 	smc_interrupt(dev->irq, dev);
1329 	enable_irq(dev->irq);
1330 }
1331 #endif
1332 
1333 /* Our watchdog timed out. Called by the networking layer */
1334 static void smc_timeout(struct net_device *dev)
1335 {
1336 	struct smc_local *lp = netdev_priv(dev);
1337 	void __iomem *ioaddr = lp->base;
1338 	int status, mask, eph_st, meminfo, fifo;
1339 
1340 	DBG(2, dev, "%s\n", __func__);
1341 
1342 	spin_lock_irq(&lp->lock);
1343 	status = SMC_GET_INT(lp);
1344 	mask = SMC_GET_INT_MASK(lp);
1345 	fifo = SMC_GET_FIFO(lp);
1346 	SMC_SELECT_BANK(lp, 0);
1347 	eph_st = SMC_GET_EPH_STATUS(lp);
1348 	meminfo = SMC_GET_MIR(lp);
1349 	SMC_SELECT_BANK(lp, 2);
1350 	spin_unlock_irq(&lp->lock);
1351 	PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1352 	       status, mask, meminfo, fifo, eph_st);
1353 
1354 	smc_reset(dev);
1355 	smc_enable(dev);
1356 
1357 	/*
1358 	 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1359 	 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1360 	 * which calls schedule().  Hence we use a work queue.
1361 	 */
1362 	if (lp->phy_type != 0)
1363 		schedule_work(&lp->phy_configure);
1364 
1365 	/* We can accept TX packets again */
1366 	dev->trans_start = jiffies; /* prevent tx timeout */
1367 	netif_wake_queue(dev);
1368 }
1369 
1370 /*
1371  * This routine will, depending on the values passed to it,
1372  * either make it accept multicast packets, go into
1373  * promiscuous mode (for TCPDUMP and cousins) or accept
1374  * a select set of multicast packets
1375  */
1376 static void smc_set_multicast_list(struct net_device *dev)
1377 {
1378 	struct smc_local *lp = netdev_priv(dev);
1379 	void __iomem *ioaddr = lp->base;
1380 	unsigned char multicast_table[8];
1381 	int update_multicast = 0;
1382 
1383 	DBG(2, dev, "%s\n", __func__);
1384 
1385 	if (dev->flags & IFF_PROMISC) {
1386 		DBG(2, dev, "RCR_PRMS\n");
1387 		lp->rcr_cur_mode |= RCR_PRMS;
1388 	}
1389 
1390 /* BUG?  I never disable promiscuous mode if multicasting was turned on.
1391    Now, I turn off promiscuous mode, but I don't do anything to multicasting
1392    when promiscuous mode is turned on.
1393 */
1394 
1395 	/*
1396 	 * Here, I am setting this to accept all multicast packets.
1397 	 * I don't need to zero the multicast table, because the flag is
1398 	 * checked before the table is
1399 	 */
1400 	else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1401 		DBG(2, dev, "RCR_ALMUL\n");
1402 		lp->rcr_cur_mode |= RCR_ALMUL;
1403 	}
1404 
1405 	/*
1406 	 * This sets the internal hardware table to filter out unwanted
1407 	 * multicast packets before they take up memory.
1408 	 *
1409 	 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1410 	 * address are the offset into the table.  If that bit is 1, then the
1411 	 * multicast packet is accepted.  Otherwise, it's dropped silently.
1412 	 *
1413 	 * To use the 6 bits as an offset into the table, the high 3 bits are
1414 	 * the number of the 8 bit register, while the low 3 bits are the bit
1415 	 * within that register.
1416 	 */
1417 	else if (!netdev_mc_empty(dev)) {
1418 		struct netdev_hw_addr *ha;
1419 
1420 		/* table for flipping the order of 3 bits */
1421 		static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1422 
1423 		/* start with a table of all zeros: reject all */
1424 		memset(multicast_table, 0, sizeof(multicast_table));
1425 
1426 		netdev_for_each_mc_addr(ha, dev) {
1427 			int position;
1428 
1429 			/* only use the low order bits */
1430 			position = crc32_le(~0, ha->addr, 6) & 0x3f;
1431 
1432 			/* do some messy swapping to put the bit in the right spot */
1433 			multicast_table[invert3[position&7]] |=
1434 				(1<<invert3[(position>>3)&7]);
1435 		}
1436 
1437 		/* be sure I get rid of flags I might have set */
1438 		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1439 
1440 		/* now, the table can be loaded into the chipset */
1441 		update_multicast = 1;
1442 	} else  {
1443 		DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n");
1444 		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1445 
1446 		/*
1447 		 * since I'm disabling all multicast entirely, I need to
1448 		 * clear the multicast list
1449 		 */
1450 		memset(multicast_table, 0, sizeof(multicast_table));
1451 		update_multicast = 1;
1452 	}
1453 
1454 	spin_lock_irq(&lp->lock);
1455 	SMC_SELECT_BANK(lp, 0);
1456 	SMC_SET_RCR(lp, lp->rcr_cur_mode);
1457 	if (update_multicast) {
1458 		SMC_SELECT_BANK(lp, 3);
1459 		SMC_SET_MCAST(lp, multicast_table);
1460 	}
1461 	SMC_SELECT_BANK(lp, 2);
1462 	spin_unlock_irq(&lp->lock);
1463 }
1464 
1465 
1466 /*
1467  * Open and Initialize the board
1468  *
1469  * Set up everything, reset the card, etc..
1470  */
1471 static int
1472 smc_open(struct net_device *dev)
1473 {
1474 	struct smc_local *lp = netdev_priv(dev);
1475 
1476 	DBG(2, dev, "%s\n", __func__);
1477 
1478 	/* Setup the default Register Modes */
1479 	lp->tcr_cur_mode = TCR_DEFAULT;
1480 	lp->rcr_cur_mode = RCR_DEFAULT;
1481 	lp->rpc_cur_mode = RPC_DEFAULT |
1482 				lp->cfg.leda << RPC_LSXA_SHFT |
1483 				lp->cfg.ledb << RPC_LSXB_SHFT;
1484 
1485 	/*
1486 	 * If we are not using a MII interface, we need to
1487 	 * monitor our own carrier signal to detect faults.
1488 	 */
1489 	if (lp->phy_type == 0)
1490 		lp->tcr_cur_mode |= TCR_MON_CSN;
1491 
1492 	/* reset the hardware */
1493 	smc_reset(dev);
1494 	smc_enable(dev);
1495 
1496 	/* Configure the PHY, initialize the link state */
1497 	if (lp->phy_type != 0)
1498 		smc_phy_configure(&lp->phy_configure);
1499 	else {
1500 		spin_lock_irq(&lp->lock);
1501 		smc_10bt_check_media(dev, 1);
1502 		spin_unlock_irq(&lp->lock);
1503 	}
1504 
1505 	netif_start_queue(dev);
1506 	return 0;
1507 }
1508 
1509 /*
1510  * smc_close
1511  *
1512  * this makes the board clean up everything that it can
1513  * and not talk to the outside world.   Caused by
1514  * an 'ifconfig ethX down'
1515  */
1516 static int smc_close(struct net_device *dev)
1517 {
1518 	struct smc_local *lp = netdev_priv(dev);
1519 
1520 	DBG(2, dev, "%s\n", __func__);
1521 
1522 	netif_stop_queue(dev);
1523 	netif_carrier_off(dev);
1524 
1525 	/* clear everything */
1526 	smc_shutdown(dev);
1527 	tasklet_kill(&lp->tx_task);
1528 	smc_phy_powerdown(dev);
1529 	return 0;
1530 }
1531 
1532 /*
1533  * Ethtool support
1534  */
1535 static int
1536 smc_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1537 {
1538 	struct smc_local *lp = netdev_priv(dev);
1539 	int ret;
1540 
1541 	cmd->maxtxpkt = 1;
1542 	cmd->maxrxpkt = 1;
1543 
1544 	if (lp->phy_type != 0) {
1545 		spin_lock_irq(&lp->lock);
1546 		ret = mii_ethtool_gset(&lp->mii, cmd);
1547 		spin_unlock_irq(&lp->lock);
1548 	} else {
1549 		cmd->supported = SUPPORTED_10baseT_Half |
1550 				 SUPPORTED_10baseT_Full |
1551 				 SUPPORTED_TP | SUPPORTED_AUI;
1552 
1553 		if (lp->ctl_rspeed == 10)
1554 			ethtool_cmd_speed_set(cmd, SPEED_10);
1555 		else if (lp->ctl_rspeed == 100)
1556 			ethtool_cmd_speed_set(cmd, SPEED_100);
1557 
1558 		cmd->autoneg = AUTONEG_DISABLE;
1559 		cmd->transceiver = XCVR_INTERNAL;
1560 		cmd->port = 0;
1561 		cmd->duplex = lp->tcr_cur_mode & TCR_SWFDUP ? DUPLEX_FULL : DUPLEX_HALF;
1562 
1563 		ret = 0;
1564 	}
1565 
1566 	return ret;
1567 }
1568 
1569 static int
1570 smc_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1571 {
1572 	struct smc_local *lp = netdev_priv(dev);
1573 	int ret;
1574 
1575 	if (lp->phy_type != 0) {
1576 		spin_lock_irq(&lp->lock);
1577 		ret = mii_ethtool_sset(&lp->mii, cmd);
1578 		spin_unlock_irq(&lp->lock);
1579 	} else {
1580 		if (cmd->autoneg != AUTONEG_DISABLE ||
1581 		    cmd->speed != SPEED_10 ||
1582 		    (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) ||
1583 		    (cmd->port != PORT_TP && cmd->port != PORT_AUI))
1584 			return -EINVAL;
1585 
1586 //		lp->port = cmd->port;
1587 		lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL;
1588 
1589 //		if (netif_running(dev))
1590 //			smc_set_port(dev);
1591 
1592 		ret = 0;
1593 	}
1594 
1595 	return ret;
1596 }
1597 
1598 static void
1599 smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1600 {
1601 	strlcpy(info->driver, CARDNAME, sizeof(info->driver));
1602 	strlcpy(info->version, version, sizeof(info->version));
1603 	strlcpy(info->bus_info, dev_name(dev->dev.parent),
1604 		sizeof(info->bus_info));
1605 }
1606 
1607 static int smc_ethtool_nwayreset(struct net_device *dev)
1608 {
1609 	struct smc_local *lp = netdev_priv(dev);
1610 	int ret = -EINVAL;
1611 
1612 	if (lp->phy_type != 0) {
1613 		spin_lock_irq(&lp->lock);
1614 		ret = mii_nway_restart(&lp->mii);
1615 		spin_unlock_irq(&lp->lock);
1616 	}
1617 
1618 	return ret;
1619 }
1620 
1621 static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1622 {
1623 	struct smc_local *lp = netdev_priv(dev);
1624 	return lp->msg_enable;
1625 }
1626 
1627 static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1628 {
1629 	struct smc_local *lp = netdev_priv(dev);
1630 	lp->msg_enable = level;
1631 }
1632 
1633 static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1634 {
1635 	u16 ctl;
1636 	struct smc_local *lp = netdev_priv(dev);
1637 	void __iomem *ioaddr = lp->base;
1638 
1639 	spin_lock_irq(&lp->lock);
1640 	/* load word into GP register */
1641 	SMC_SELECT_BANK(lp, 1);
1642 	SMC_SET_GP(lp, word);
1643 	/* set the address to put the data in EEPROM */
1644 	SMC_SELECT_BANK(lp, 2);
1645 	SMC_SET_PTR(lp, addr);
1646 	/* tell it to write */
1647 	SMC_SELECT_BANK(lp, 1);
1648 	ctl = SMC_GET_CTL(lp);
1649 	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1650 	/* wait for it to finish */
1651 	do {
1652 		udelay(1);
1653 	} while (SMC_GET_CTL(lp) & CTL_STORE);
1654 	/* clean up */
1655 	SMC_SET_CTL(lp, ctl);
1656 	SMC_SELECT_BANK(lp, 2);
1657 	spin_unlock_irq(&lp->lock);
1658 	return 0;
1659 }
1660 
1661 static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1662 {
1663 	u16 ctl;
1664 	struct smc_local *lp = netdev_priv(dev);
1665 	void __iomem *ioaddr = lp->base;
1666 
1667 	spin_lock_irq(&lp->lock);
1668 	/* set the EEPROM address to get the data from */
1669 	SMC_SELECT_BANK(lp, 2);
1670 	SMC_SET_PTR(lp, addr | PTR_READ);
1671 	/* tell it to load */
1672 	SMC_SELECT_BANK(lp, 1);
1673 	SMC_SET_GP(lp, 0xffff);	/* init to known */
1674 	ctl = SMC_GET_CTL(lp);
1675 	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1676 	/* wait for it to finish */
1677 	do {
1678 		udelay(1);
1679 	} while (SMC_GET_CTL(lp) & CTL_RELOAD);
1680 	/* read word from GP register */
1681 	*word = SMC_GET_GP(lp);
1682 	/* clean up */
1683 	SMC_SET_CTL(lp, ctl);
1684 	SMC_SELECT_BANK(lp, 2);
1685 	spin_unlock_irq(&lp->lock);
1686 	return 0;
1687 }
1688 
1689 static int smc_ethtool_geteeprom_len(struct net_device *dev)
1690 {
1691 	return 0x23 * 2;
1692 }
1693 
1694 static int smc_ethtool_geteeprom(struct net_device *dev,
1695 		struct ethtool_eeprom *eeprom, u8 *data)
1696 {
1697 	int i;
1698 	int imax;
1699 
1700 	DBG(1, dev, "Reading %d bytes at %d(0x%x)\n",
1701 		eeprom->len, eeprom->offset, eeprom->offset);
1702 	imax = smc_ethtool_geteeprom_len(dev);
1703 	for (i = 0; i < eeprom->len; i += 2) {
1704 		int ret;
1705 		u16 wbuf;
1706 		int offset = i + eeprom->offset;
1707 		if (offset > imax)
1708 			break;
1709 		ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1710 		if (ret != 0)
1711 			return ret;
1712 		DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1713 		data[i] = (wbuf >> 8) & 0xff;
1714 		data[i+1] = wbuf & 0xff;
1715 	}
1716 	return 0;
1717 }
1718 
1719 static int smc_ethtool_seteeprom(struct net_device *dev,
1720 		struct ethtool_eeprom *eeprom, u8 *data)
1721 {
1722 	int i;
1723 	int imax;
1724 
1725 	DBG(1, dev, "Writing %d bytes to %d(0x%x)\n",
1726 	    eeprom->len, eeprom->offset, eeprom->offset);
1727 	imax = smc_ethtool_geteeprom_len(dev);
1728 	for (i = 0; i < eeprom->len; i += 2) {
1729 		int ret;
1730 		u16 wbuf;
1731 		int offset = i + eeprom->offset;
1732 		if (offset > imax)
1733 			break;
1734 		wbuf = (data[i] << 8) | data[i + 1];
1735 		DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1736 		ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1737 		if (ret != 0)
1738 			return ret;
1739 	}
1740 	return 0;
1741 }
1742 
1743 
1744 static const struct ethtool_ops smc_ethtool_ops = {
1745 	.get_settings	= smc_ethtool_getsettings,
1746 	.set_settings	= smc_ethtool_setsettings,
1747 	.get_drvinfo	= smc_ethtool_getdrvinfo,
1748 
1749 	.get_msglevel	= smc_ethtool_getmsglevel,
1750 	.set_msglevel	= smc_ethtool_setmsglevel,
1751 	.nway_reset	= smc_ethtool_nwayreset,
1752 	.get_link	= ethtool_op_get_link,
1753 	.get_eeprom_len = smc_ethtool_geteeprom_len,
1754 	.get_eeprom	= smc_ethtool_geteeprom,
1755 	.set_eeprom	= smc_ethtool_seteeprom,
1756 };
1757 
1758 static const struct net_device_ops smc_netdev_ops = {
1759 	.ndo_open		= smc_open,
1760 	.ndo_stop		= smc_close,
1761 	.ndo_start_xmit		= smc_hard_start_xmit,
1762 	.ndo_tx_timeout		= smc_timeout,
1763 	.ndo_set_rx_mode	= smc_set_multicast_list,
1764 	.ndo_change_mtu		= eth_change_mtu,
1765 	.ndo_validate_addr	= eth_validate_addr,
1766 	.ndo_set_mac_address 	= eth_mac_addr,
1767 #ifdef CONFIG_NET_POLL_CONTROLLER
1768 	.ndo_poll_controller	= smc_poll_controller,
1769 #endif
1770 };
1771 
1772 /*
1773  * smc_findirq
1774  *
1775  * This routine has a simple purpose -- make the SMC chip generate an
1776  * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1777  */
1778 /*
1779  * does this still work?
1780  *
1781  * I just deleted auto_irq.c, since it was never built...
1782  *   --jgarzik
1783  */
1784 static int smc_findirq(struct smc_local *lp)
1785 {
1786 	void __iomem *ioaddr = lp->base;
1787 	int timeout = 20;
1788 	unsigned long cookie;
1789 
1790 	DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__);
1791 
1792 	cookie = probe_irq_on();
1793 
1794 	/*
1795 	 * What I try to do here is trigger an ALLOC_INT. This is done
1796 	 * by allocating a small chunk of memory, which will give an interrupt
1797 	 * when done.
1798 	 */
1799 	/* enable ALLOCation interrupts ONLY */
1800 	SMC_SELECT_BANK(lp, 2);
1801 	SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1802 
1803 	/*
1804  	 * Allocate 512 bytes of memory.  Note that the chip was just
1805 	 * reset so all the memory is available
1806 	 */
1807 	SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1808 
1809 	/*
1810 	 * Wait until positive that the interrupt has been generated
1811 	 */
1812 	do {
1813 		int int_status;
1814 		udelay(10);
1815 		int_status = SMC_GET_INT(lp);
1816 		if (int_status & IM_ALLOC_INT)
1817 			break;		/* got the interrupt */
1818 	} while (--timeout);
1819 
1820 	/*
1821 	 * there is really nothing that I can do here if timeout fails,
1822 	 * as autoirq_report will return a 0 anyway, which is what I
1823 	 * want in this case.   Plus, the clean up is needed in both
1824 	 * cases.
1825 	 */
1826 
1827 	/* and disable all interrupts again */
1828 	SMC_SET_INT_MASK(lp, 0);
1829 
1830 	/* and return what I found */
1831 	return probe_irq_off(cookie);
1832 }
1833 
1834 /*
1835  * Function: smc_probe(unsigned long ioaddr)
1836  *
1837  * Purpose:
1838  *	Tests to see if a given ioaddr points to an SMC91x chip.
1839  *	Returns a 0 on success
1840  *
1841  * Algorithm:
1842  *	(1) see if the high byte of BANK_SELECT is 0x33
1843  * 	(2) compare the ioaddr with the base register's address
1844  *	(3) see if I recognize the chip ID in the appropriate register
1845  *
1846  * Here I do typical initialization tasks.
1847  *
1848  * o  Initialize the structure if needed
1849  * o  print out my vanity message if not done so already
1850  * o  print out what type of hardware is detected
1851  * o  print out the ethernet address
1852  * o  find the IRQ
1853  * o  set up my private data
1854  * o  configure the dev structure with my subroutines
1855  * o  actually GRAB the irq.
1856  * o  GRAB the region
1857  */
1858 static int smc_probe(struct net_device *dev, void __iomem *ioaddr,
1859 		     unsigned long irq_flags)
1860 {
1861 	struct smc_local *lp = netdev_priv(dev);
1862 	int retval;
1863 	unsigned int val, revision_register;
1864 	const char *version_string;
1865 
1866 	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
1867 
1868 	/* First, see if the high byte is 0x33 */
1869 	val = SMC_CURRENT_BANK(lp);
1870 	DBG(2, dev, "%s: bank signature probe returned 0x%04x\n",
1871 	    CARDNAME, val);
1872 	if ((val & 0xFF00) != 0x3300) {
1873 		if ((val & 0xFF) == 0x33) {
1874 			netdev_warn(dev,
1875 				    "%s: Detected possible byte-swapped interface at IOADDR %p\n",
1876 				    CARDNAME, ioaddr);
1877 		}
1878 		retval = -ENODEV;
1879 		goto err_out;
1880 	}
1881 
1882 	/*
1883 	 * The above MIGHT indicate a device, but I need to write to
1884 	 * further test this.
1885 	 */
1886 	SMC_SELECT_BANK(lp, 0);
1887 	val = SMC_CURRENT_BANK(lp);
1888 	if ((val & 0xFF00) != 0x3300) {
1889 		retval = -ENODEV;
1890 		goto err_out;
1891 	}
1892 
1893 	/*
1894 	 * well, we've already written once, so hopefully another
1895 	 * time won't hurt.  This time, I need to switch the bank
1896 	 * register to bank 1, so I can access the base address
1897 	 * register
1898 	 */
1899 	SMC_SELECT_BANK(lp, 1);
1900 	val = SMC_GET_BASE(lp);
1901 	val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1902 	if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1903 		netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n",
1904 			    CARDNAME, ioaddr, val);
1905 	}
1906 
1907 	/*
1908 	 * check if the revision register is something that I
1909 	 * recognize.  These might need to be added to later,
1910 	 * as future revisions could be added.
1911 	 */
1912 	SMC_SELECT_BANK(lp, 3);
1913 	revision_register = SMC_GET_REV(lp);
1914 	DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1915 	version_string = chip_ids[ (revision_register >> 4) & 0xF];
1916 	if (!version_string || (revision_register & 0xff00) != 0x3300) {
1917 		/* I don't recognize this chip, so... */
1918 		netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n",
1919 			    CARDNAME, ioaddr, revision_register);
1920 
1921 		retval = -ENODEV;
1922 		goto err_out;
1923 	}
1924 
1925 	/* At this point I'll assume that the chip is an SMC91x. */
1926 	pr_info_once("%s\n", version);
1927 
1928 	/* fill in some of the fields */
1929 	dev->base_addr = (unsigned long)ioaddr;
1930 	lp->base = ioaddr;
1931 	lp->version = revision_register & 0xff;
1932 	spin_lock_init(&lp->lock);
1933 
1934 	/* Get the MAC address */
1935 	SMC_SELECT_BANK(lp, 1);
1936 	SMC_GET_MAC_ADDR(lp, dev->dev_addr);
1937 
1938 	/* now, reset the chip, and put it into a known state */
1939 	smc_reset(dev);
1940 
1941 	/*
1942 	 * If dev->irq is 0, then the device has to be banged on to see
1943 	 * what the IRQ is.
1944 	 *
1945 	 * This banging doesn't always detect the IRQ, for unknown reasons.
1946 	 * a workaround is to reset the chip and try again.
1947 	 *
1948 	 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1949 	 * be what is requested on the command line.   I don't do that, mostly
1950 	 * because the card that I have uses a non-standard method of accessing
1951 	 * the IRQs, and because this _should_ work in most configurations.
1952 	 *
1953 	 * Specifying an IRQ is done with the assumption that the user knows
1954 	 * what (s)he is doing.  No checking is done!!!!
1955 	 */
1956 	if (dev->irq < 1) {
1957 		int trials;
1958 
1959 		trials = 3;
1960 		while (trials--) {
1961 			dev->irq = smc_findirq(lp);
1962 			if (dev->irq)
1963 				break;
1964 			/* kick the card and try again */
1965 			smc_reset(dev);
1966 		}
1967 	}
1968 	if (dev->irq == 0) {
1969 		netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n");
1970 		retval = -ENODEV;
1971 		goto err_out;
1972 	}
1973 	dev->irq = irq_canonicalize(dev->irq);
1974 
1975 	dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1976 	dev->netdev_ops = &smc_netdev_ops;
1977 	dev->ethtool_ops = &smc_ethtool_ops;
1978 
1979 	tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev);
1980 	INIT_WORK(&lp->phy_configure, smc_phy_configure);
1981 	lp->dev = dev;
1982 	lp->mii.phy_id_mask = 0x1f;
1983 	lp->mii.reg_num_mask = 0x1f;
1984 	lp->mii.force_media = 0;
1985 	lp->mii.full_duplex = 0;
1986 	lp->mii.dev = dev;
1987 	lp->mii.mdio_read = smc_phy_read;
1988 	lp->mii.mdio_write = smc_phy_write;
1989 
1990 	/*
1991 	 * Locate the phy, if any.
1992 	 */
1993 	if (lp->version >= (CHIP_91100 << 4))
1994 		smc_phy_detect(dev);
1995 
1996 	/* then shut everything down to save power */
1997 	smc_shutdown(dev);
1998 	smc_phy_powerdown(dev);
1999 
2000 	/* Set default parameters */
2001 	lp->msg_enable = NETIF_MSG_LINK;
2002 	lp->ctl_rfduplx = 0;
2003 	lp->ctl_rspeed = 10;
2004 
2005 	if (lp->version >= (CHIP_91100 << 4)) {
2006 		lp->ctl_rfduplx = 1;
2007 		lp->ctl_rspeed = 100;
2008 	}
2009 
2010 	/* Grab the IRQ */
2011 	retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
2012       	if (retval)
2013       		goto err_out;
2014 
2015 #ifdef CONFIG_ARCH_PXA
2016 #  ifdef SMC_USE_PXA_DMA
2017 	lp->cfg.flags |= SMC91X_USE_DMA;
2018 #  endif
2019 	if (lp->cfg.flags & SMC91X_USE_DMA) {
2020 		int dma = pxa_request_dma(dev->name, DMA_PRIO_LOW,
2021 					  smc_pxa_dma_irq, NULL);
2022 		if (dma >= 0)
2023 			dev->dma = dma;
2024 	}
2025 #endif
2026 
2027 	retval = register_netdev(dev);
2028 	if (retval == 0) {
2029 		/* now, print out the card info, in a short format.. */
2030 		netdev_info(dev, "%s (rev %d) at %p IRQ %d",
2031 			    version_string, revision_register & 0x0f,
2032 			    lp->base, dev->irq);
2033 
2034 		if (dev->dma != (unsigned char)-1)
2035 			pr_cont(" DMA %d", dev->dma);
2036 
2037 		pr_cont("%s%s\n",
2038 			lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2039 			THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2040 
2041 		if (!is_valid_ether_addr(dev->dev_addr)) {
2042 			netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n");
2043 		} else {
2044 			/* Print the Ethernet address */
2045 			netdev_info(dev, "Ethernet addr: %pM\n",
2046 				    dev->dev_addr);
2047 		}
2048 
2049 		if (lp->phy_type == 0) {
2050 			PRINTK(dev, "No PHY found\n");
2051 		} else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2052 			PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n");
2053 		} else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2054 			PRINTK(dev, "PHY LAN83C180\n");
2055 		}
2056 	}
2057 
2058 err_out:
2059 #ifdef CONFIG_ARCH_PXA
2060 	if (retval && dev->dma != (unsigned char)-1)
2061 		pxa_free_dma(dev->dma);
2062 #endif
2063 	return retval;
2064 }
2065 
2066 static int smc_enable_device(struct platform_device *pdev)
2067 {
2068 	struct net_device *ndev = platform_get_drvdata(pdev);
2069 	struct smc_local *lp = netdev_priv(ndev);
2070 	unsigned long flags;
2071 	unsigned char ecor, ecsr;
2072 	void __iomem *addr;
2073 	struct resource * res;
2074 
2075 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2076 	if (!res)
2077 		return 0;
2078 
2079 	/*
2080 	 * Map the attribute space.  This is overkill, but clean.
2081 	 */
2082 	addr = ioremap(res->start, ATTRIB_SIZE);
2083 	if (!addr)
2084 		return -ENOMEM;
2085 
2086 	/*
2087 	 * Reset the device.  We must disable IRQs around this
2088 	 * since a reset causes the IRQ line become active.
2089 	 */
2090 	local_irq_save(flags);
2091 	ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2092 	writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2093 	readb(addr + (ECOR << SMC_IO_SHIFT));
2094 
2095 	/*
2096 	 * Wait 100us for the chip to reset.
2097 	 */
2098 	udelay(100);
2099 
2100 	/*
2101 	 * The device will ignore all writes to the enable bit while
2102 	 * reset is asserted, even if the reset bit is cleared in the
2103 	 * same write.  Must clear reset first, then enable the device.
2104 	 */
2105 	writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2106 	writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2107 
2108 	/*
2109 	 * Set the appropriate byte/word mode.
2110 	 */
2111 	ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2112 	if (!SMC_16BIT(lp))
2113 		ecsr |= ECSR_IOIS8;
2114 	writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2115 	local_irq_restore(flags);
2116 
2117 	iounmap(addr);
2118 
2119 	/*
2120 	 * Wait for the chip to wake up.  We could poll the control
2121 	 * register in the main register space, but that isn't mapped
2122 	 * yet.  We know this is going to take 750us.
2123 	 */
2124 	msleep(1);
2125 
2126 	return 0;
2127 }
2128 
2129 static int smc_request_attrib(struct platform_device *pdev,
2130 			      struct net_device *ndev)
2131 {
2132 	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2133 	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2134 
2135 	if (!res)
2136 		return 0;
2137 
2138 	if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2139 		return -EBUSY;
2140 
2141 	return 0;
2142 }
2143 
2144 static void smc_release_attrib(struct platform_device *pdev,
2145 			       struct net_device *ndev)
2146 {
2147 	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2148 	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2149 
2150 	if (res)
2151 		release_mem_region(res->start, ATTRIB_SIZE);
2152 }
2153 
2154 static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2155 {
2156 	if (SMC_CAN_USE_DATACS) {
2157 		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2158 		struct smc_local *lp = netdev_priv(ndev);
2159 
2160 		if (!res)
2161 			return;
2162 
2163 		if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2164 			netdev_info(ndev, "%s: failed to request datacs memory region.\n",
2165 				    CARDNAME);
2166 			return;
2167 		}
2168 
2169 		lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2170 	}
2171 }
2172 
2173 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2174 {
2175 	if (SMC_CAN_USE_DATACS) {
2176 		struct smc_local *lp = netdev_priv(ndev);
2177 		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2178 
2179 		if (lp->datacs)
2180 			iounmap(lp->datacs);
2181 
2182 		lp->datacs = NULL;
2183 
2184 		if (res)
2185 			release_mem_region(res->start, SMC_DATA_EXTENT);
2186 	}
2187 }
2188 
2189 #if IS_BUILTIN(CONFIG_OF)
2190 static const struct of_device_id smc91x_match[] = {
2191 	{ .compatible = "smsc,lan91c94", },
2192 	{ .compatible = "smsc,lan91c111", },
2193 	{},
2194 };
2195 MODULE_DEVICE_TABLE(of, smc91x_match);
2196 
2197 /**
2198  * of_try_set_control_gpio - configure a gpio if it exists
2199  */
2200 static int try_toggle_control_gpio(struct device *dev,
2201 				   struct gpio_desc **desc,
2202 				   const char *name, int index,
2203 				   int value, unsigned int nsdelay)
2204 {
2205 	struct gpio_desc *gpio = *desc;
2206 	int res;
2207 
2208 	gpio = devm_gpiod_get_index(dev, name, index);
2209 	if (IS_ERR(gpio)) {
2210 		if (PTR_ERR(gpio) == -ENOENT) {
2211 			*desc = NULL;
2212 			return 0;
2213 		}
2214 
2215 		return PTR_ERR(gpio);
2216 	}
2217 	res = gpiod_direction_output(gpio, !value);
2218 	if (res) {
2219 		dev_err(dev, "unable to toggle gpio %s: %i\n", name, res);
2220 		devm_gpiod_put(dev, gpio);
2221 		gpio = NULL;
2222 		return res;
2223 	}
2224 	if (nsdelay)
2225 		usleep_range(nsdelay, 2 * nsdelay);
2226 	gpiod_set_value_cansleep(gpio, value);
2227 	*desc = gpio;
2228 
2229 	return 0;
2230 }
2231 #endif
2232 
2233 /*
2234  * smc_init(void)
2235  *   Input parameters:
2236  *	dev->base_addr == 0, try to find all possible locations
2237  *	dev->base_addr > 0x1ff, this is the address to check
2238  *	dev->base_addr == <anything else>, return failure code
2239  *
2240  *   Output:
2241  *	0 --> there is a device
2242  *	anything else, error
2243  */
2244 static int smc_drv_probe(struct platform_device *pdev)
2245 {
2246 	struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev);
2247 	const struct of_device_id *match = NULL;
2248 	struct smc_local *lp;
2249 	struct net_device *ndev;
2250 	struct resource *res;
2251 	unsigned int __iomem *addr;
2252 	unsigned long irq_flags = SMC_IRQ_FLAGS;
2253 	unsigned long irq_resflags;
2254 	int ret;
2255 
2256 	ndev = alloc_etherdev(sizeof(struct smc_local));
2257 	if (!ndev) {
2258 		ret = -ENOMEM;
2259 		goto out;
2260 	}
2261 	SET_NETDEV_DEV(ndev, &pdev->dev);
2262 
2263 	/* get configuration from platform data, only allow use of
2264 	 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2265 	 */
2266 
2267 	lp = netdev_priv(ndev);
2268 	lp->cfg.flags = 0;
2269 
2270 	if (pd) {
2271 		memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2272 		lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2273 	}
2274 
2275 #if IS_BUILTIN(CONFIG_OF)
2276 	match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev);
2277 	if (match) {
2278 		struct device_node *np = pdev->dev.of_node;
2279 		u32 val;
2280 
2281 		/* Optional pwrdwn GPIO configured? */
2282 		ret = try_toggle_control_gpio(&pdev->dev, &lp->power_gpio,
2283 					      "power", 0, 0, 100);
2284 		if (ret)
2285 			return ret;
2286 
2287 		/*
2288 		 * Optional reset GPIO configured? Minimum 100 ns reset needed
2289 		 * according to LAN91C96 datasheet page 14.
2290 		 */
2291 		ret = try_toggle_control_gpio(&pdev->dev, &lp->reset_gpio,
2292 					      "reset", 0, 0, 100);
2293 		if (ret)
2294 			return ret;
2295 
2296 		/*
2297 		 * Need to wait for optional EEPROM to load, max 750 us according
2298 		 * to LAN91C96 datasheet page 55.
2299 		 */
2300 		if (lp->reset_gpio)
2301 			usleep_range(750, 1000);
2302 
2303 		/* Combination of IO widths supported, default to 16-bit */
2304 		if (!of_property_read_u32(np, "reg-io-width", &val)) {
2305 			if (val & 1)
2306 				lp->cfg.flags |= SMC91X_USE_8BIT;
2307 			if ((val == 0) || (val & 2))
2308 				lp->cfg.flags |= SMC91X_USE_16BIT;
2309 			if (val & 4)
2310 				lp->cfg.flags |= SMC91X_USE_32BIT;
2311 		} else {
2312 			lp->cfg.flags |= SMC91X_USE_16BIT;
2313 		}
2314 	}
2315 #endif
2316 
2317 	if (!pd && !match) {
2318 		lp->cfg.flags |= (SMC_CAN_USE_8BIT)  ? SMC91X_USE_8BIT  : 0;
2319 		lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2320 		lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2321 		lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2322 	}
2323 
2324 	if (!lp->cfg.leda && !lp->cfg.ledb) {
2325 		lp->cfg.leda = RPC_LSA_DEFAULT;
2326 		lp->cfg.ledb = RPC_LSB_DEFAULT;
2327 	}
2328 
2329 	ndev->dma = (unsigned char)-1;
2330 
2331 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2332 	if (!res)
2333 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2334 	if (!res) {
2335 		ret = -ENODEV;
2336 		goto out_free_netdev;
2337 	}
2338 
2339 
2340 	if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2341 		ret = -EBUSY;
2342 		goto out_free_netdev;
2343 	}
2344 
2345 	ndev->irq = platform_get_irq(pdev, 0);
2346 	if (ndev->irq <= 0) {
2347 		ret = -ENODEV;
2348 		goto out_release_io;
2349 	}
2350 	/*
2351 	 * If this platform does not specify any special irqflags, or if
2352 	 * the resource supplies a trigger, override the irqflags with
2353 	 * the trigger flags from the resource.
2354 	 */
2355 	irq_resflags = irqd_get_trigger_type(irq_get_irq_data(ndev->irq));
2356 	if (irq_flags == -1 || irq_resflags & IRQF_TRIGGER_MASK)
2357 		irq_flags = irq_resflags & IRQF_TRIGGER_MASK;
2358 
2359 	ret = smc_request_attrib(pdev, ndev);
2360 	if (ret)
2361 		goto out_release_io;
2362 #if defined(CONFIG_ASSABET_NEPONSET)
2363 	if (machine_is_assabet() && machine_has_neponset())
2364 		neponset_ncr_set(NCR_ENET_OSC_EN);
2365 #endif
2366 	platform_set_drvdata(pdev, ndev);
2367 	ret = smc_enable_device(pdev);
2368 	if (ret)
2369 		goto out_release_attrib;
2370 
2371 	addr = ioremap(res->start, SMC_IO_EXTENT);
2372 	if (!addr) {
2373 		ret = -ENOMEM;
2374 		goto out_release_attrib;
2375 	}
2376 
2377 #ifdef CONFIG_ARCH_PXA
2378 	{
2379 		struct smc_local *lp = netdev_priv(ndev);
2380 		lp->device = &pdev->dev;
2381 		lp->physaddr = res->start;
2382 	}
2383 #endif
2384 
2385 	ret = smc_probe(ndev, addr, irq_flags);
2386 	if (ret != 0)
2387 		goto out_iounmap;
2388 
2389 	smc_request_datacs(pdev, ndev);
2390 
2391 	return 0;
2392 
2393  out_iounmap:
2394 	iounmap(addr);
2395  out_release_attrib:
2396 	smc_release_attrib(pdev, ndev);
2397  out_release_io:
2398 	release_mem_region(res->start, SMC_IO_EXTENT);
2399  out_free_netdev:
2400 	free_netdev(ndev);
2401  out:
2402 	pr_info("%s: not found (%d).\n", CARDNAME, ret);
2403 
2404 	return ret;
2405 }
2406 
2407 static int smc_drv_remove(struct platform_device *pdev)
2408 {
2409 	struct net_device *ndev = platform_get_drvdata(pdev);
2410 	struct smc_local *lp = netdev_priv(ndev);
2411 	struct resource *res;
2412 
2413 	unregister_netdev(ndev);
2414 
2415 	free_irq(ndev->irq, ndev);
2416 
2417 #ifdef CONFIG_ARCH_PXA
2418 	if (ndev->dma != (unsigned char)-1)
2419 		pxa_free_dma(ndev->dma);
2420 #endif
2421 	iounmap(lp->base);
2422 
2423 	smc_release_datacs(pdev,ndev);
2424 	smc_release_attrib(pdev,ndev);
2425 
2426 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2427 	if (!res)
2428 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2429 	release_mem_region(res->start, SMC_IO_EXTENT);
2430 
2431 	free_netdev(ndev);
2432 
2433 	return 0;
2434 }
2435 
2436 static int smc_drv_suspend(struct device *dev)
2437 {
2438 	struct platform_device *pdev = to_platform_device(dev);
2439 	struct net_device *ndev = platform_get_drvdata(pdev);
2440 
2441 	if (ndev) {
2442 		if (netif_running(ndev)) {
2443 			netif_device_detach(ndev);
2444 			smc_shutdown(ndev);
2445 			smc_phy_powerdown(ndev);
2446 		}
2447 	}
2448 	return 0;
2449 }
2450 
2451 static int smc_drv_resume(struct device *dev)
2452 {
2453 	struct platform_device *pdev = to_platform_device(dev);
2454 	struct net_device *ndev = platform_get_drvdata(pdev);
2455 
2456 	if (ndev) {
2457 		struct smc_local *lp = netdev_priv(ndev);
2458 		smc_enable_device(pdev);
2459 		if (netif_running(ndev)) {
2460 			smc_reset(ndev);
2461 			smc_enable(ndev);
2462 			if (lp->phy_type != 0)
2463 				smc_phy_configure(&lp->phy_configure);
2464 			netif_device_attach(ndev);
2465 		}
2466 	}
2467 	return 0;
2468 }
2469 
2470 static struct dev_pm_ops smc_drv_pm_ops = {
2471 	.suspend	= smc_drv_suspend,
2472 	.resume		= smc_drv_resume,
2473 };
2474 
2475 static struct platform_driver smc_driver = {
2476 	.probe		= smc_drv_probe,
2477 	.remove		= smc_drv_remove,
2478 	.driver		= {
2479 		.name	= CARDNAME,
2480 		.pm	= &smc_drv_pm_ops,
2481 		.of_match_table = of_match_ptr(smc91x_match),
2482 	},
2483 };
2484 
2485 module_platform_driver(smc_driver);
2486