1 /* 2 * smc91x.c 3 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices. 4 * 5 * Copyright (C) 1996 by Erik Stahlman 6 * Copyright (C) 2001 Standard Microsystems Corporation 7 * Developed by Simple Network Magic Corporation 8 * Copyright (C) 2003 Monta Vista Software, Inc. 9 * Unified SMC91x driver by Nicolas Pitre 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2 of the License, or 14 * (at your option) any later version. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, see <http://www.gnu.org/licenses/>. 23 * 24 * Arguments: 25 * io = for the base address 26 * irq = for the IRQ 27 * nowait = 0 for normal wait states, 1 eliminates additional wait states 28 * 29 * original author: 30 * Erik Stahlman <erik@vt.edu> 31 * 32 * hardware multicast code: 33 * Peter Cammaert <pc@denkart.be> 34 * 35 * contributors: 36 * Daris A Nevil <dnevil@snmc.com> 37 * Nicolas Pitre <nico@fluxnic.net> 38 * Russell King <rmk@arm.linux.org.uk> 39 * 40 * History: 41 * 08/20/00 Arnaldo Melo fix kfree(skb) in smc_hardware_send_packet 42 * 12/15/00 Christian Jullien fix "Warning: kfree_skb on hard IRQ" 43 * 03/16/01 Daris A Nevil modified smc9194.c for use with LAN91C111 44 * 08/22/01 Scott Anderson merge changes from smc9194 to smc91111 45 * 08/21/01 Pramod B Bhardwaj added support for RevB of LAN91C111 46 * 12/20/01 Jeff Sutherland initial port to Xscale PXA with DMA support 47 * 04/07/03 Nicolas Pitre unified SMC91x driver, killed irq races, 48 * more bus abstraction, big cleanup, etc. 49 * 29/09/03 Russell King - add driver model support 50 * - ethtool support 51 * - convert to use generic MII interface 52 * - add link up/down notification 53 * - don't try to handle full negotiation in 54 * smc_phy_configure 55 * - clean up (and fix stack overrun) in PHY 56 * MII read/write functions 57 * 22/09/04 Nicolas Pitre big update (see commit log for details) 58 */ 59 static const char version[] = 60 "smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>"; 61 62 /* Debugging level */ 63 #ifndef SMC_DEBUG 64 #define SMC_DEBUG 0 65 #endif 66 67 68 #include <linux/module.h> 69 #include <linux/kernel.h> 70 #include <linux/sched.h> 71 #include <linux/delay.h> 72 #include <linux/interrupt.h> 73 #include <linux/irq.h> 74 #include <linux/errno.h> 75 #include <linux/ioport.h> 76 #include <linux/crc32.h> 77 #include <linux/platform_device.h> 78 #include <linux/spinlock.h> 79 #include <linux/ethtool.h> 80 #include <linux/mii.h> 81 #include <linux/workqueue.h> 82 #include <linux/of.h> 83 #include <linux/of_device.h> 84 #include <linux/of_gpio.h> 85 86 #include <linux/netdevice.h> 87 #include <linux/etherdevice.h> 88 #include <linux/skbuff.h> 89 90 #include <asm/io.h> 91 92 #include "smc91x.h" 93 94 #if defined(CONFIG_ASSABET_NEPONSET) 95 #include <mach/assabet.h> 96 #include <mach/neponset.h> 97 #endif 98 99 #ifndef SMC_NOWAIT 100 # define SMC_NOWAIT 0 101 #endif 102 static int nowait = SMC_NOWAIT; 103 module_param(nowait, int, 0400); 104 MODULE_PARM_DESC(nowait, "set to 1 for no wait state"); 105 106 /* 107 * Transmit timeout, default 5 seconds. 108 */ 109 static int watchdog = 1000; 110 module_param(watchdog, int, 0400); 111 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds"); 112 113 MODULE_LICENSE("GPL"); 114 MODULE_ALIAS("platform:smc91x"); 115 116 /* 117 * The internal workings of the driver. If you are changing anything 118 * here with the SMC stuff, you should have the datasheet and know 119 * what you are doing. 120 */ 121 #define CARDNAME "smc91x" 122 123 /* 124 * Use power-down feature of the chip 125 */ 126 #define POWER_DOWN 1 127 128 /* 129 * Wait time for memory to be free. This probably shouldn't be 130 * tuned that much, as waiting for this means nothing else happens 131 * in the system 132 */ 133 #define MEMORY_WAIT_TIME 16 134 135 /* 136 * The maximum number of processing loops allowed for each call to the 137 * IRQ handler. 138 */ 139 #define MAX_IRQ_LOOPS 8 140 141 /* 142 * This selects whether TX packets are sent one by one to the SMC91x internal 143 * memory and throttled until transmission completes. This may prevent 144 * RX overruns a litle by keeping much of the memory free for RX packets 145 * but to the expense of reduced TX throughput and increased IRQ overhead. 146 * Note this is not a cure for a too slow data bus or too high IRQ latency. 147 */ 148 #define THROTTLE_TX_PKTS 0 149 150 /* 151 * The MII clock high/low times. 2x this number gives the MII clock period 152 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!) 153 */ 154 #define MII_DELAY 1 155 156 #define DBG(n, dev, fmt, ...) \ 157 do { \ 158 if (SMC_DEBUG >= (n)) \ 159 netdev_dbg(dev, fmt, ##__VA_ARGS__); \ 160 } while (0) 161 162 #define PRINTK(dev, fmt, ...) \ 163 do { \ 164 if (SMC_DEBUG > 0) \ 165 netdev_info(dev, fmt, ##__VA_ARGS__); \ 166 else \ 167 netdev_dbg(dev, fmt, ##__VA_ARGS__); \ 168 } while (0) 169 170 #if SMC_DEBUG > 3 171 static void PRINT_PKT(u_char *buf, int length) 172 { 173 int i; 174 int remainder; 175 int lines; 176 177 lines = length / 16; 178 remainder = length % 16; 179 180 for (i = 0; i < lines ; i ++) { 181 int cur; 182 printk(KERN_DEBUG); 183 for (cur = 0; cur < 8; cur++) { 184 u_char a, b; 185 a = *buf++; 186 b = *buf++; 187 pr_cont("%02x%02x ", a, b); 188 } 189 pr_cont("\n"); 190 } 191 printk(KERN_DEBUG); 192 for (i = 0; i < remainder/2 ; i++) { 193 u_char a, b; 194 a = *buf++; 195 b = *buf++; 196 pr_cont("%02x%02x ", a, b); 197 } 198 pr_cont("\n"); 199 } 200 #else 201 static inline void PRINT_PKT(u_char *buf, int length) { } 202 #endif 203 204 205 /* this enables an interrupt in the interrupt mask register */ 206 #define SMC_ENABLE_INT(lp, x) do { \ 207 unsigned char mask; \ 208 unsigned long smc_enable_flags; \ 209 spin_lock_irqsave(&lp->lock, smc_enable_flags); \ 210 mask = SMC_GET_INT_MASK(lp); \ 211 mask |= (x); \ 212 SMC_SET_INT_MASK(lp, mask); \ 213 spin_unlock_irqrestore(&lp->lock, smc_enable_flags); \ 214 } while (0) 215 216 /* this disables an interrupt from the interrupt mask register */ 217 #define SMC_DISABLE_INT(lp, x) do { \ 218 unsigned char mask; \ 219 unsigned long smc_disable_flags; \ 220 spin_lock_irqsave(&lp->lock, smc_disable_flags); \ 221 mask = SMC_GET_INT_MASK(lp); \ 222 mask &= ~(x); \ 223 SMC_SET_INT_MASK(lp, mask); \ 224 spin_unlock_irqrestore(&lp->lock, smc_disable_flags); \ 225 } while (0) 226 227 /* 228 * Wait while MMU is busy. This is usually in the order of a few nanosecs 229 * if at all, but let's avoid deadlocking the system if the hardware 230 * decides to go south. 231 */ 232 #define SMC_WAIT_MMU_BUSY(lp) do { \ 233 if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) { \ 234 unsigned long timeout = jiffies + 2; \ 235 while (SMC_GET_MMU_CMD(lp) & MC_BUSY) { \ 236 if (time_after(jiffies, timeout)) { \ 237 netdev_dbg(dev, "timeout %s line %d\n", \ 238 __FILE__, __LINE__); \ 239 break; \ 240 } \ 241 cpu_relax(); \ 242 } \ 243 } \ 244 } while (0) 245 246 247 /* 248 * this does a soft reset on the device 249 */ 250 static void smc_reset(struct net_device *dev) 251 { 252 struct smc_local *lp = netdev_priv(dev); 253 void __iomem *ioaddr = lp->base; 254 unsigned int ctl, cfg; 255 struct sk_buff *pending_skb; 256 257 DBG(2, dev, "%s\n", __func__); 258 259 /* Disable all interrupts, block TX tasklet */ 260 spin_lock_irq(&lp->lock); 261 SMC_SELECT_BANK(lp, 2); 262 SMC_SET_INT_MASK(lp, 0); 263 pending_skb = lp->pending_tx_skb; 264 lp->pending_tx_skb = NULL; 265 spin_unlock_irq(&lp->lock); 266 267 /* free any pending tx skb */ 268 if (pending_skb) { 269 dev_kfree_skb(pending_skb); 270 dev->stats.tx_errors++; 271 dev->stats.tx_aborted_errors++; 272 } 273 274 /* 275 * This resets the registers mostly to defaults, but doesn't 276 * affect EEPROM. That seems unnecessary 277 */ 278 SMC_SELECT_BANK(lp, 0); 279 SMC_SET_RCR(lp, RCR_SOFTRST); 280 281 /* 282 * Setup the Configuration Register 283 * This is necessary because the CONFIG_REG is not affected 284 * by a soft reset 285 */ 286 SMC_SELECT_BANK(lp, 1); 287 288 cfg = CONFIG_DEFAULT; 289 290 /* 291 * Setup for fast accesses if requested. If the card/system 292 * can't handle it then there will be no recovery except for 293 * a hard reset or power cycle 294 */ 295 if (lp->cfg.flags & SMC91X_NOWAIT) 296 cfg |= CONFIG_NO_WAIT; 297 298 /* 299 * Release from possible power-down state 300 * Configuration register is not affected by Soft Reset 301 */ 302 cfg |= CONFIG_EPH_POWER_EN; 303 304 SMC_SET_CONFIG(lp, cfg); 305 306 /* this should pause enough for the chip to be happy */ 307 /* 308 * elaborate? What does the chip _need_? --jgarzik 309 * 310 * This seems to be undocumented, but something the original 311 * driver(s) have always done. Suspect undocumented timing 312 * info/determined empirically. --rmk 313 */ 314 udelay(1); 315 316 /* Disable transmit and receive functionality */ 317 SMC_SELECT_BANK(lp, 0); 318 SMC_SET_RCR(lp, RCR_CLEAR); 319 SMC_SET_TCR(lp, TCR_CLEAR); 320 321 SMC_SELECT_BANK(lp, 1); 322 ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE; 323 324 /* 325 * Set the control register to automatically release successfully 326 * transmitted packets, to make the best use out of our limited 327 * memory 328 */ 329 if(!THROTTLE_TX_PKTS) 330 ctl |= CTL_AUTO_RELEASE; 331 else 332 ctl &= ~CTL_AUTO_RELEASE; 333 SMC_SET_CTL(lp, ctl); 334 335 /* Reset the MMU */ 336 SMC_SELECT_BANK(lp, 2); 337 SMC_SET_MMU_CMD(lp, MC_RESET); 338 SMC_WAIT_MMU_BUSY(lp); 339 } 340 341 /* 342 * Enable Interrupts, Receive, and Transmit 343 */ 344 static void smc_enable(struct net_device *dev) 345 { 346 struct smc_local *lp = netdev_priv(dev); 347 void __iomem *ioaddr = lp->base; 348 int mask; 349 350 DBG(2, dev, "%s\n", __func__); 351 352 /* see the header file for options in TCR/RCR DEFAULT */ 353 SMC_SELECT_BANK(lp, 0); 354 SMC_SET_TCR(lp, lp->tcr_cur_mode); 355 SMC_SET_RCR(lp, lp->rcr_cur_mode); 356 357 SMC_SELECT_BANK(lp, 1); 358 SMC_SET_MAC_ADDR(lp, dev->dev_addr); 359 360 /* now, enable interrupts */ 361 mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT; 362 if (lp->version >= (CHIP_91100 << 4)) 363 mask |= IM_MDINT; 364 SMC_SELECT_BANK(lp, 2); 365 SMC_SET_INT_MASK(lp, mask); 366 367 /* 368 * From this point the register bank must _NOT_ be switched away 369 * to something else than bank 2 without proper locking against 370 * races with any tasklet or interrupt handlers until smc_shutdown() 371 * or smc_reset() is called. 372 */ 373 } 374 375 /* 376 * this puts the device in an inactive state 377 */ 378 static void smc_shutdown(struct net_device *dev) 379 { 380 struct smc_local *lp = netdev_priv(dev); 381 void __iomem *ioaddr = lp->base; 382 struct sk_buff *pending_skb; 383 384 DBG(2, dev, "%s: %s\n", CARDNAME, __func__); 385 386 /* no more interrupts for me */ 387 spin_lock_irq(&lp->lock); 388 SMC_SELECT_BANK(lp, 2); 389 SMC_SET_INT_MASK(lp, 0); 390 pending_skb = lp->pending_tx_skb; 391 lp->pending_tx_skb = NULL; 392 spin_unlock_irq(&lp->lock); 393 if (pending_skb) 394 dev_kfree_skb(pending_skb); 395 396 /* and tell the card to stay away from that nasty outside world */ 397 SMC_SELECT_BANK(lp, 0); 398 SMC_SET_RCR(lp, RCR_CLEAR); 399 SMC_SET_TCR(lp, TCR_CLEAR); 400 401 #ifdef POWER_DOWN 402 /* finally, shut the chip down */ 403 SMC_SELECT_BANK(lp, 1); 404 SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN); 405 #endif 406 } 407 408 /* 409 * This is the procedure to handle the receipt of a packet. 410 */ 411 static inline void smc_rcv(struct net_device *dev) 412 { 413 struct smc_local *lp = netdev_priv(dev); 414 void __iomem *ioaddr = lp->base; 415 unsigned int packet_number, status, packet_len; 416 417 DBG(3, dev, "%s\n", __func__); 418 419 packet_number = SMC_GET_RXFIFO(lp); 420 if (unlikely(packet_number & RXFIFO_REMPTY)) { 421 PRINTK(dev, "smc_rcv with nothing on FIFO.\n"); 422 return; 423 } 424 425 /* read from start of packet */ 426 SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC); 427 428 /* First two words are status and packet length */ 429 SMC_GET_PKT_HDR(lp, status, packet_len); 430 packet_len &= 0x07ff; /* mask off top bits */ 431 DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n", 432 packet_number, status, packet_len, packet_len); 433 434 back: 435 if (unlikely(packet_len < 6 || status & RS_ERRORS)) { 436 if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) { 437 /* accept VLAN packets */ 438 status &= ~RS_TOOLONG; 439 goto back; 440 } 441 if (packet_len < 6) { 442 /* bloody hardware */ 443 netdev_err(dev, "fubar (rxlen %u status %x\n", 444 packet_len, status); 445 status |= RS_TOOSHORT; 446 } 447 SMC_WAIT_MMU_BUSY(lp); 448 SMC_SET_MMU_CMD(lp, MC_RELEASE); 449 dev->stats.rx_errors++; 450 if (status & RS_ALGNERR) 451 dev->stats.rx_frame_errors++; 452 if (status & (RS_TOOSHORT | RS_TOOLONG)) 453 dev->stats.rx_length_errors++; 454 if (status & RS_BADCRC) 455 dev->stats.rx_crc_errors++; 456 } else { 457 struct sk_buff *skb; 458 unsigned char *data; 459 unsigned int data_len; 460 461 /* set multicast stats */ 462 if (status & RS_MULTICAST) 463 dev->stats.multicast++; 464 465 /* 466 * Actual payload is packet_len - 6 (or 5 if odd byte). 467 * We want skb_reserve(2) and the final ctrl word 468 * (2 bytes, possibly containing the payload odd byte). 469 * Furthermore, we add 2 bytes to allow rounding up to 470 * multiple of 4 bytes on 32 bit buses. 471 * Hence packet_len - 6 + 2 + 2 + 2. 472 */ 473 skb = netdev_alloc_skb(dev, packet_len); 474 if (unlikely(skb == NULL)) { 475 SMC_WAIT_MMU_BUSY(lp); 476 SMC_SET_MMU_CMD(lp, MC_RELEASE); 477 dev->stats.rx_dropped++; 478 return; 479 } 480 481 /* Align IP header to 32 bits */ 482 skb_reserve(skb, 2); 483 484 /* BUG: the LAN91C111 rev A never sets this bit. Force it. */ 485 if (lp->version == 0x90) 486 status |= RS_ODDFRAME; 487 488 /* 489 * If odd length: packet_len - 5, 490 * otherwise packet_len - 6. 491 * With the trailing ctrl byte it's packet_len - 4. 492 */ 493 data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6); 494 data = skb_put(skb, data_len); 495 SMC_PULL_DATA(lp, data, packet_len - 4); 496 497 SMC_WAIT_MMU_BUSY(lp); 498 SMC_SET_MMU_CMD(lp, MC_RELEASE); 499 500 PRINT_PKT(data, packet_len - 4); 501 502 skb->protocol = eth_type_trans(skb, dev); 503 netif_rx(skb); 504 dev->stats.rx_packets++; 505 dev->stats.rx_bytes += data_len; 506 } 507 } 508 509 #ifdef CONFIG_SMP 510 /* 511 * On SMP we have the following problem: 512 * 513 * A = smc_hardware_send_pkt() 514 * B = smc_hard_start_xmit() 515 * C = smc_interrupt() 516 * 517 * A and B can never be executed simultaneously. However, at least on UP, 518 * it is possible (and even desirable) for C to interrupt execution of 519 * A or B in order to have better RX reliability and avoid overruns. 520 * C, just like A and B, must have exclusive access to the chip and 521 * each of them must lock against any other concurrent access. 522 * Unfortunately this is not possible to have C suspend execution of A or 523 * B taking place on another CPU. On UP this is no an issue since A and B 524 * are run from softirq context and C from hard IRQ context, and there is 525 * no other CPU where concurrent access can happen. 526 * If ever there is a way to force at least B and C to always be executed 527 * on the same CPU then we could use read/write locks to protect against 528 * any other concurrent access and C would always interrupt B. But life 529 * isn't that easy in a SMP world... 530 */ 531 #define smc_special_trylock(lock, flags) \ 532 ({ \ 533 int __ret; \ 534 local_irq_save(flags); \ 535 __ret = spin_trylock(lock); \ 536 if (!__ret) \ 537 local_irq_restore(flags); \ 538 __ret; \ 539 }) 540 #define smc_special_lock(lock, flags) spin_lock_irqsave(lock, flags) 541 #define smc_special_unlock(lock, flags) spin_unlock_irqrestore(lock, flags) 542 #else 543 #define smc_special_trylock(lock, flags) ((void)flags, true) 544 #define smc_special_lock(lock, flags) do { flags = 0; } while (0) 545 #define smc_special_unlock(lock, flags) do { flags = 0; } while (0) 546 #endif 547 548 /* 549 * This is called to actually send a packet to the chip. 550 */ 551 static void smc_hardware_send_pkt(unsigned long data) 552 { 553 struct net_device *dev = (struct net_device *)data; 554 struct smc_local *lp = netdev_priv(dev); 555 void __iomem *ioaddr = lp->base; 556 struct sk_buff *skb; 557 unsigned int packet_no, len; 558 unsigned char *buf; 559 unsigned long flags; 560 561 DBG(3, dev, "%s\n", __func__); 562 563 if (!smc_special_trylock(&lp->lock, flags)) { 564 netif_stop_queue(dev); 565 tasklet_schedule(&lp->tx_task); 566 return; 567 } 568 569 skb = lp->pending_tx_skb; 570 if (unlikely(!skb)) { 571 smc_special_unlock(&lp->lock, flags); 572 return; 573 } 574 lp->pending_tx_skb = NULL; 575 576 packet_no = SMC_GET_AR(lp); 577 if (unlikely(packet_no & AR_FAILED)) { 578 netdev_err(dev, "Memory allocation failed.\n"); 579 dev->stats.tx_errors++; 580 dev->stats.tx_fifo_errors++; 581 smc_special_unlock(&lp->lock, flags); 582 goto done; 583 } 584 585 /* point to the beginning of the packet */ 586 SMC_SET_PN(lp, packet_no); 587 SMC_SET_PTR(lp, PTR_AUTOINC); 588 589 buf = skb->data; 590 len = skb->len; 591 DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n", 592 packet_no, len, len, buf); 593 PRINT_PKT(buf, len); 594 595 /* 596 * Send the packet length (+6 for status words, length, and ctl. 597 * The card will pad to 64 bytes with zeroes if packet is too small. 598 */ 599 SMC_PUT_PKT_HDR(lp, 0, len + 6); 600 601 /* send the actual data */ 602 SMC_PUSH_DATA(lp, buf, len & ~1); 603 604 /* Send final ctl word with the last byte if there is one */ 605 SMC_outw(lp, ((len & 1) ? (0x2000 | buf[len - 1]) : 0), ioaddr, 606 DATA_REG(lp)); 607 608 /* 609 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will 610 * have the effect of having at most one packet queued for TX 611 * in the chip's memory at all time. 612 * 613 * If THROTTLE_TX_PKTS is not set then the queue is stopped only 614 * when memory allocation (MC_ALLOC) does not succeed right away. 615 */ 616 if (THROTTLE_TX_PKTS) 617 netif_stop_queue(dev); 618 619 /* queue the packet for TX */ 620 SMC_SET_MMU_CMD(lp, MC_ENQUEUE); 621 smc_special_unlock(&lp->lock, flags); 622 623 netif_trans_update(dev); 624 dev->stats.tx_packets++; 625 dev->stats.tx_bytes += len; 626 627 SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT); 628 629 done: if (!THROTTLE_TX_PKTS) 630 netif_wake_queue(dev); 631 632 dev_consume_skb_any(skb); 633 } 634 635 /* 636 * Since I am not sure if I will have enough room in the chip's ram 637 * to store the packet, I call this routine which either sends it 638 * now, or set the card to generates an interrupt when ready 639 * for the packet. 640 */ 641 static int smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) 642 { 643 struct smc_local *lp = netdev_priv(dev); 644 void __iomem *ioaddr = lp->base; 645 unsigned int numPages, poll_count, status; 646 unsigned long flags; 647 648 DBG(3, dev, "%s\n", __func__); 649 650 BUG_ON(lp->pending_tx_skb != NULL); 651 652 /* 653 * The MMU wants the number of pages to be the number of 256 bytes 654 * 'pages', minus 1 (since a packet can't ever have 0 pages :)) 655 * 656 * The 91C111 ignores the size bits, but earlier models don't. 657 * 658 * Pkt size for allocating is data length +6 (for additional status 659 * words, length and ctl) 660 * 661 * If odd size then last byte is included in ctl word. 662 */ 663 numPages = ((skb->len & ~1) + (6 - 1)) >> 8; 664 if (unlikely(numPages > 7)) { 665 netdev_warn(dev, "Far too big packet error.\n"); 666 dev->stats.tx_errors++; 667 dev->stats.tx_dropped++; 668 dev_kfree_skb_any(skb); 669 return NETDEV_TX_OK; 670 } 671 672 smc_special_lock(&lp->lock, flags); 673 674 /* now, try to allocate the memory */ 675 SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages); 676 677 /* 678 * Poll the chip for a short amount of time in case the 679 * allocation succeeds quickly. 680 */ 681 poll_count = MEMORY_WAIT_TIME; 682 do { 683 status = SMC_GET_INT(lp); 684 if (status & IM_ALLOC_INT) { 685 SMC_ACK_INT(lp, IM_ALLOC_INT); 686 break; 687 } 688 } while (--poll_count); 689 690 smc_special_unlock(&lp->lock, flags); 691 692 lp->pending_tx_skb = skb; 693 if (!poll_count) { 694 /* oh well, wait until the chip finds memory later */ 695 netif_stop_queue(dev); 696 DBG(2, dev, "TX memory allocation deferred.\n"); 697 SMC_ENABLE_INT(lp, IM_ALLOC_INT); 698 } else { 699 /* 700 * Allocation succeeded: push packet to the chip's own memory 701 * immediately. 702 */ 703 smc_hardware_send_pkt((unsigned long)dev); 704 } 705 706 return NETDEV_TX_OK; 707 } 708 709 /* 710 * This handles a TX interrupt, which is only called when: 711 * - a TX error occurred, or 712 * - CTL_AUTO_RELEASE is not set and TX of a packet completed. 713 */ 714 static void smc_tx(struct net_device *dev) 715 { 716 struct smc_local *lp = netdev_priv(dev); 717 void __iomem *ioaddr = lp->base; 718 unsigned int saved_packet, packet_no, tx_status, pkt_len; 719 720 DBG(3, dev, "%s\n", __func__); 721 722 /* If the TX FIFO is empty then nothing to do */ 723 packet_no = SMC_GET_TXFIFO(lp); 724 if (unlikely(packet_no & TXFIFO_TEMPTY)) { 725 PRINTK(dev, "smc_tx with nothing on FIFO.\n"); 726 return; 727 } 728 729 /* select packet to read from */ 730 saved_packet = SMC_GET_PN(lp); 731 SMC_SET_PN(lp, packet_no); 732 733 /* read the first word (status word) from this packet */ 734 SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ); 735 SMC_GET_PKT_HDR(lp, tx_status, pkt_len); 736 DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n", 737 tx_status, packet_no); 738 739 if (!(tx_status & ES_TX_SUC)) 740 dev->stats.tx_errors++; 741 742 if (tx_status & ES_LOSTCARR) 743 dev->stats.tx_carrier_errors++; 744 745 if (tx_status & (ES_LATCOL | ES_16COL)) { 746 PRINTK(dev, "%s occurred on last xmit\n", 747 (tx_status & ES_LATCOL) ? 748 "late collision" : "too many collisions"); 749 dev->stats.tx_window_errors++; 750 if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) { 751 netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n"); 752 } 753 } 754 755 /* kill the packet */ 756 SMC_WAIT_MMU_BUSY(lp); 757 SMC_SET_MMU_CMD(lp, MC_FREEPKT); 758 759 /* Don't restore Packet Number Reg until busy bit is cleared */ 760 SMC_WAIT_MMU_BUSY(lp); 761 SMC_SET_PN(lp, saved_packet); 762 763 /* re-enable transmit */ 764 SMC_SELECT_BANK(lp, 0); 765 SMC_SET_TCR(lp, lp->tcr_cur_mode); 766 SMC_SELECT_BANK(lp, 2); 767 } 768 769 770 /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/ 771 772 static void smc_mii_out(struct net_device *dev, unsigned int val, int bits) 773 { 774 struct smc_local *lp = netdev_priv(dev); 775 void __iomem *ioaddr = lp->base; 776 unsigned int mii_reg, mask; 777 778 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO); 779 mii_reg |= MII_MDOE; 780 781 for (mask = 1 << (bits - 1); mask; mask >>= 1) { 782 if (val & mask) 783 mii_reg |= MII_MDO; 784 else 785 mii_reg &= ~MII_MDO; 786 787 SMC_SET_MII(lp, mii_reg); 788 udelay(MII_DELAY); 789 SMC_SET_MII(lp, mii_reg | MII_MCLK); 790 udelay(MII_DELAY); 791 } 792 } 793 794 static unsigned int smc_mii_in(struct net_device *dev, int bits) 795 { 796 struct smc_local *lp = netdev_priv(dev); 797 void __iomem *ioaddr = lp->base; 798 unsigned int mii_reg, mask, val; 799 800 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO); 801 SMC_SET_MII(lp, mii_reg); 802 803 for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) { 804 if (SMC_GET_MII(lp) & MII_MDI) 805 val |= mask; 806 807 SMC_SET_MII(lp, mii_reg); 808 udelay(MII_DELAY); 809 SMC_SET_MII(lp, mii_reg | MII_MCLK); 810 udelay(MII_DELAY); 811 } 812 813 return val; 814 } 815 816 /* 817 * Reads a register from the MII Management serial interface 818 */ 819 static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg) 820 { 821 struct smc_local *lp = netdev_priv(dev); 822 void __iomem *ioaddr = lp->base; 823 unsigned int phydata; 824 825 SMC_SELECT_BANK(lp, 3); 826 827 /* Idle - 32 ones */ 828 smc_mii_out(dev, 0xffffffff, 32); 829 830 /* Start code (01) + read (10) + phyaddr + phyreg */ 831 smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14); 832 833 /* Turnaround (2bits) + phydata */ 834 phydata = smc_mii_in(dev, 18); 835 836 /* Return to idle state */ 837 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO)); 838 839 DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n", 840 __func__, phyaddr, phyreg, phydata); 841 842 SMC_SELECT_BANK(lp, 2); 843 return phydata; 844 } 845 846 /* 847 * Writes a register to the MII Management serial interface 848 */ 849 static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg, 850 int phydata) 851 { 852 struct smc_local *lp = netdev_priv(dev); 853 void __iomem *ioaddr = lp->base; 854 855 SMC_SELECT_BANK(lp, 3); 856 857 /* Idle - 32 ones */ 858 smc_mii_out(dev, 0xffffffff, 32); 859 860 /* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */ 861 smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32); 862 863 /* Return to idle state */ 864 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO)); 865 866 DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n", 867 __func__, phyaddr, phyreg, phydata); 868 869 SMC_SELECT_BANK(lp, 2); 870 } 871 872 /* 873 * Finds and reports the PHY address 874 */ 875 static void smc_phy_detect(struct net_device *dev) 876 { 877 struct smc_local *lp = netdev_priv(dev); 878 int phyaddr; 879 880 DBG(2, dev, "%s\n", __func__); 881 882 lp->phy_type = 0; 883 884 /* 885 * Scan all 32 PHY addresses if necessary, starting at 886 * PHY#1 to PHY#31, and then PHY#0 last. 887 */ 888 for (phyaddr = 1; phyaddr < 33; ++phyaddr) { 889 unsigned int id1, id2; 890 891 /* Read the PHY identifiers */ 892 id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1); 893 id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2); 894 895 DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n", 896 id1, id2); 897 898 /* Make sure it is a valid identifier */ 899 if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 && 900 id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) { 901 /* Save the PHY's address */ 902 lp->mii.phy_id = phyaddr & 31; 903 lp->phy_type = id1 << 16 | id2; 904 break; 905 } 906 } 907 } 908 909 /* 910 * Sets the PHY to a configuration as determined by the user 911 */ 912 static int smc_phy_fixed(struct net_device *dev) 913 { 914 struct smc_local *lp = netdev_priv(dev); 915 void __iomem *ioaddr = lp->base; 916 int phyaddr = lp->mii.phy_id; 917 int bmcr, cfg1; 918 919 DBG(3, dev, "%s\n", __func__); 920 921 /* Enter Link Disable state */ 922 cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG); 923 cfg1 |= PHY_CFG1_LNKDIS; 924 smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1); 925 926 /* 927 * Set our fixed capabilities 928 * Disable auto-negotiation 929 */ 930 bmcr = 0; 931 932 if (lp->ctl_rfduplx) 933 bmcr |= BMCR_FULLDPLX; 934 935 if (lp->ctl_rspeed == 100) 936 bmcr |= BMCR_SPEED100; 937 938 /* Write our capabilities to the phy control register */ 939 smc_phy_write(dev, phyaddr, MII_BMCR, bmcr); 940 941 /* Re-Configure the Receive/Phy Control register */ 942 SMC_SELECT_BANK(lp, 0); 943 SMC_SET_RPC(lp, lp->rpc_cur_mode); 944 SMC_SELECT_BANK(lp, 2); 945 946 return 1; 947 } 948 949 /** 950 * smc_phy_reset - reset the phy 951 * @dev: net device 952 * @phy: phy address 953 * 954 * Issue a software reset for the specified PHY and 955 * wait up to 100ms for the reset to complete. We should 956 * not access the PHY for 50ms after issuing the reset. 957 * 958 * The time to wait appears to be dependent on the PHY. 959 * 960 * Must be called with lp->lock locked. 961 */ 962 static int smc_phy_reset(struct net_device *dev, int phy) 963 { 964 struct smc_local *lp = netdev_priv(dev); 965 unsigned int bmcr; 966 int timeout; 967 968 smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET); 969 970 for (timeout = 2; timeout; timeout--) { 971 spin_unlock_irq(&lp->lock); 972 msleep(50); 973 spin_lock_irq(&lp->lock); 974 975 bmcr = smc_phy_read(dev, phy, MII_BMCR); 976 if (!(bmcr & BMCR_RESET)) 977 break; 978 } 979 980 return bmcr & BMCR_RESET; 981 } 982 983 /** 984 * smc_phy_powerdown - powerdown phy 985 * @dev: net device 986 * 987 * Power down the specified PHY 988 */ 989 static void smc_phy_powerdown(struct net_device *dev) 990 { 991 struct smc_local *lp = netdev_priv(dev); 992 unsigned int bmcr; 993 int phy = lp->mii.phy_id; 994 995 if (lp->phy_type == 0) 996 return; 997 998 /* We need to ensure that no calls to smc_phy_configure are 999 pending. 1000 */ 1001 cancel_work_sync(&lp->phy_configure); 1002 1003 bmcr = smc_phy_read(dev, phy, MII_BMCR); 1004 smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN); 1005 } 1006 1007 /** 1008 * smc_phy_check_media - check the media status and adjust TCR 1009 * @dev: net device 1010 * @init: set true for initialisation 1011 * 1012 * Select duplex mode depending on negotiation state. This 1013 * also updates our carrier state. 1014 */ 1015 static void smc_phy_check_media(struct net_device *dev, int init) 1016 { 1017 struct smc_local *lp = netdev_priv(dev); 1018 void __iomem *ioaddr = lp->base; 1019 1020 if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) { 1021 /* duplex state has changed */ 1022 if (lp->mii.full_duplex) { 1023 lp->tcr_cur_mode |= TCR_SWFDUP; 1024 } else { 1025 lp->tcr_cur_mode &= ~TCR_SWFDUP; 1026 } 1027 1028 SMC_SELECT_BANK(lp, 0); 1029 SMC_SET_TCR(lp, lp->tcr_cur_mode); 1030 } 1031 } 1032 1033 /* 1034 * Configures the specified PHY through the MII management interface 1035 * using Autonegotiation. 1036 * Calls smc_phy_fixed() if the user has requested a certain config. 1037 * If RPC ANEG bit is set, the media selection is dependent purely on 1038 * the selection by the MII (either in the MII BMCR reg or the result 1039 * of autonegotiation.) If the RPC ANEG bit is cleared, the selection 1040 * is controlled by the RPC SPEED and RPC DPLX bits. 1041 */ 1042 static void smc_phy_configure(struct work_struct *work) 1043 { 1044 struct smc_local *lp = 1045 container_of(work, struct smc_local, phy_configure); 1046 struct net_device *dev = lp->dev; 1047 void __iomem *ioaddr = lp->base; 1048 int phyaddr = lp->mii.phy_id; 1049 int my_phy_caps; /* My PHY capabilities */ 1050 int my_ad_caps; /* My Advertised capabilities */ 1051 int status; 1052 1053 DBG(3, dev, "smc_program_phy()\n"); 1054 1055 spin_lock_irq(&lp->lock); 1056 1057 /* 1058 * We should not be called if phy_type is zero. 1059 */ 1060 if (lp->phy_type == 0) 1061 goto smc_phy_configure_exit; 1062 1063 if (smc_phy_reset(dev, phyaddr)) { 1064 netdev_info(dev, "PHY reset timed out\n"); 1065 goto smc_phy_configure_exit; 1066 } 1067 1068 /* 1069 * Enable PHY Interrupts (for register 18) 1070 * Interrupts listed here are disabled 1071 */ 1072 smc_phy_write(dev, phyaddr, PHY_MASK_REG, 1073 PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD | 1074 PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB | 1075 PHY_INT_SPDDET | PHY_INT_DPLXDET); 1076 1077 /* Configure the Receive/Phy Control register */ 1078 SMC_SELECT_BANK(lp, 0); 1079 SMC_SET_RPC(lp, lp->rpc_cur_mode); 1080 1081 /* If the user requested no auto neg, then go set his request */ 1082 if (lp->mii.force_media) { 1083 smc_phy_fixed(dev); 1084 goto smc_phy_configure_exit; 1085 } 1086 1087 /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */ 1088 my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR); 1089 1090 if (!(my_phy_caps & BMSR_ANEGCAPABLE)) { 1091 netdev_info(dev, "Auto negotiation NOT supported\n"); 1092 smc_phy_fixed(dev); 1093 goto smc_phy_configure_exit; 1094 } 1095 1096 my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */ 1097 1098 if (my_phy_caps & BMSR_100BASE4) 1099 my_ad_caps |= ADVERTISE_100BASE4; 1100 if (my_phy_caps & BMSR_100FULL) 1101 my_ad_caps |= ADVERTISE_100FULL; 1102 if (my_phy_caps & BMSR_100HALF) 1103 my_ad_caps |= ADVERTISE_100HALF; 1104 if (my_phy_caps & BMSR_10FULL) 1105 my_ad_caps |= ADVERTISE_10FULL; 1106 if (my_phy_caps & BMSR_10HALF) 1107 my_ad_caps |= ADVERTISE_10HALF; 1108 1109 /* Disable capabilities not selected by our user */ 1110 if (lp->ctl_rspeed != 100) 1111 my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF); 1112 1113 if (!lp->ctl_rfduplx) 1114 my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL); 1115 1116 /* Update our Auto-Neg Advertisement Register */ 1117 smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps); 1118 lp->mii.advertising = my_ad_caps; 1119 1120 /* 1121 * Read the register back. Without this, it appears that when 1122 * auto-negotiation is restarted, sometimes it isn't ready and 1123 * the link does not come up. 1124 */ 1125 status = smc_phy_read(dev, phyaddr, MII_ADVERTISE); 1126 1127 DBG(2, dev, "phy caps=%x\n", my_phy_caps); 1128 DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps); 1129 1130 /* Restart auto-negotiation process in order to advertise my caps */ 1131 smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART); 1132 1133 smc_phy_check_media(dev, 1); 1134 1135 smc_phy_configure_exit: 1136 SMC_SELECT_BANK(lp, 2); 1137 spin_unlock_irq(&lp->lock); 1138 } 1139 1140 /* 1141 * smc_phy_interrupt 1142 * 1143 * Purpose: Handle interrupts relating to PHY register 18. This is 1144 * called from the "hard" interrupt handler under our private spinlock. 1145 */ 1146 static void smc_phy_interrupt(struct net_device *dev) 1147 { 1148 struct smc_local *lp = netdev_priv(dev); 1149 int phyaddr = lp->mii.phy_id; 1150 int phy18; 1151 1152 DBG(2, dev, "%s\n", __func__); 1153 1154 if (lp->phy_type == 0) 1155 return; 1156 1157 for(;;) { 1158 smc_phy_check_media(dev, 0); 1159 1160 /* Read PHY Register 18, Status Output */ 1161 phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG); 1162 if ((phy18 & PHY_INT_INT) == 0) 1163 break; 1164 } 1165 } 1166 1167 /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/ 1168 1169 static void smc_10bt_check_media(struct net_device *dev, int init) 1170 { 1171 struct smc_local *lp = netdev_priv(dev); 1172 void __iomem *ioaddr = lp->base; 1173 unsigned int old_carrier, new_carrier; 1174 1175 old_carrier = netif_carrier_ok(dev) ? 1 : 0; 1176 1177 SMC_SELECT_BANK(lp, 0); 1178 new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0; 1179 SMC_SELECT_BANK(lp, 2); 1180 1181 if (init || (old_carrier != new_carrier)) { 1182 if (!new_carrier) { 1183 netif_carrier_off(dev); 1184 } else { 1185 netif_carrier_on(dev); 1186 } 1187 if (netif_msg_link(lp)) 1188 netdev_info(dev, "link %s\n", 1189 new_carrier ? "up" : "down"); 1190 } 1191 } 1192 1193 static void smc_eph_interrupt(struct net_device *dev) 1194 { 1195 struct smc_local *lp = netdev_priv(dev); 1196 void __iomem *ioaddr = lp->base; 1197 unsigned int ctl; 1198 1199 smc_10bt_check_media(dev, 0); 1200 1201 SMC_SELECT_BANK(lp, 1); 1202 ctl = SMC_GET_CTL(lp); 1203 SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE); 1204 SMC_SET_CTL(lp, ctl); 1205 SMC_SELECT_BANK(lp, 2); 1206 } 1207 1208 /* 1209 * This is the main routine of the driver, to handle the device when 1210 * it needs some attention. 1211 */ 1212 static irqreturn_t smc_interrupt(int irq, void *dev_id) 1213 { 1214 struct net_device *dev = dev_id; 1215 struct smc_local *lp = netdev_priv(dev); 1216 void __iomem *ioaddr = lp->base; 1217 int status, mask, timeout, card_stats; 1218 int saved_pointer; 1219 1220 DBG(3, dev, "%s\n", __func__); 1221 1222 spin_lock(&lp->lock); 1223 1224 /* A preamble may be used when there is a potential race 1225 * between the interruptible transmit functions and this 1226 * ISR. */ 1227 SMC_INTERRUPT_PREAMBLE; 1228 1229 saved_pointer = SMC_GET_PTR(lp); 1230 mask = SMC_GET_INT_MASK(lp); 1231 SMC_SET_INT_MASK(lp, 0); 1232 1233 /* set a timeout value, so I don't stay here forever */ 1234 timeout = MAX_IRQ_LOOPS; 1235 1236 do { 1237 status = SMC_GET_INT(lp); 1238 1239 DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n", 1240 status, mask, 1241 ({ int meminfo; SMC_SELECT_BANK(lp, 0); 1242 meminfo = SMC_GET_MIR(lp); 1243 SMC_SELECT_BANK(lp, 2); meminfo; }), 1244 SMC_GET_FIFO(lp)); 1245 1246 status &= mask; 1247 if (!status) 1248 break; 1249 1250 if (status & IM_TX_INT) { 1251 /* do this before RX as it will free memory quickly */ 1252 DBG(3, dev, "TX int\n"); 1253 smc_tx(dev); 1254 SMC_ACK_INT(lp, IM_TX_INT); 1255 if (THROTTLE_TX_PKTS) 1256 netif_wake_queue(dev); 1257 } else if (status & IM_RCV_INT) { 1258 DBG(3, dev, "RX irq\n"); 1259 smc_rcv(dev); 1260 } else if (status & IM_ALLOC_INT) { 1261 DBG(3, dev, "Allocation irq\n"); 1262 tasklet_hi_schedule(&lp->tx_task); 1263 mask &= ~IM_ALLOC_INT; 1264 } else if (status & IM_TX_EMPTY_INT) { 1265 DBG(3, dev, "TX empty\n"); 1266 mask &= ~IM_TX_EMPTY_INT; 1267 1268 /* update stats */ 1269 SMC_SELECT_BANK(lp, 0); 1270 card_stats = SMC_GET_COUNTER(lp); 1271 SMC_SELECT_BANK(lp, 2); 1272 1273 /* single collisions */ 1274 dev->stats.collisions += card_stats & 0xF; 1275 card_stats >>= 4; 1276 1277 /* multiple collisions */ 1278 dev->stats.collisions += card_stats & 0xF; 1279 } else if (status & IM_RX_OVRN_INT) { 1280 DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n", 1281 ({ int eph_st; SMC_SELECT_BANK(lp, 0); 1282 eph_st = SMC_GET_EPH_STATUS(lp); 1283 SMC_SELECT_BANK(lp, 2); eph_st; })); 1284 SMC_ACK_INT(lp, IM_RX_OVRN_INT); 1285 dev->stats.rx_errors++; 1286 dev->stats.rx_fifo_errors++; 1287 } else if (status & IM_EPH_INT) { 1288 smc_eph_interrupt(dev); 1289 } else if (status & IM_MDINT) { 1290 SMC_ACK_INT(lp, IM_MDINT); 1291 smc_phy_interrupt(dev); 1292 } else if (status & IM_ERCV_INT) { 1293 SMC_ACK_INT(lp, IM_ERCV_INT); 1294 PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n"); 1295 } 1296 } while (--timeout); 1297 1298 /* restore register states */ 1299 SMC_SET_PTR(lp, saved_pointer); 1300 SMC_SET_INT_MASK(lp, mask); 1301 spin_unlock(&lp->lock); 1302 1303 #ifndef CONFIG_NET_POLL_CONTROLLER 1304 if (timeout == MAX_IRQ_LOOPS) 1305 PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n", 1306 mask); 1307 #endif 1308 DBG(3, dev, "Interrupt done (%d loops)\n", 1309 MAX_IRQ_LOOPS - timeout); 1310 1311 /* 1312 * We return IRQ_HANDLED unconditionally here even if there was 1313 * nothing to do. There is a possibility that a packet might 1314 * get enqueued into the chip right after TX_EMPTY_INT is raised 1315 * but just before the CPU acknowledges the IRQ. 1316 * Better take an unneeded IRQ in some occasions than complexifying 1317 * the code for all cases. 1318 */ 1319 return IRQ_HANDLED; 1320 } 1321 1322 #ifdef CONFIG_NET_POLL_CONTROLLER 1323 /* 1324 * Polling receive - used by netconsole and other diagnostic tools 1325 * to allow network i/o with interrupts disabled. 1326 */ 1327 static void smc_poll_controller(struct net_device *dev) 1328 { 1329 disable_irq(dev->irq); 1330 smc_interrupt(dev->irq, dev); 1331 enable_irq(dev->irq); 1332 } 1333 #endif 1334 1335 /* Our watchdog timed out. Called by the networking layer */ 1336 static void smc_timeout(struct net_device *dev) 1337 { 1338 struct smc_local *lp = netdev_priv(dev); 1339 void __iomem *ioaddr = lp->base; 1340 int status, mask, eph_st, meminfo, fifo; 1341 1342 DBG(2, dev, "%s\n", __func__); 1343 1344 spin_lock_irq(&lp->lock); 1345 status = SMC_GET_INT(lp); 1346 mask = SMC_GET_INT_MASK(lp); 1347 fifo = SMC_GET_FIFO(lp); 1348 SMC_SELECT_BANK(lp, 0); 1349 eph_st = SMC_GET_EPH_STATUS(lp); 1350 meminfo = SMC_GET_MIR(lp); 1351 SMC_SELECT_BANK(lp, 2); 1352 spin_unlock_irq(&lp->lock); 1353 PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n", 1354 status, mask, meminfo, fifo, eph_st); 1355 1356 smc_reset(dev); 1357 smc_enable(dev); 1358 1359 /* 1360 * Reconfiguring the PHY doesn't seem like a bad idea here, but 1361 * smc_phy_configure() calls msleep() which calls schedule_timeout() 1362 * which calls schedule(). Hence we use a work queue. 1363 */ 1364 if (lp->phy_type != 0) 1365 schedule_work(&lp->phy_configure); 1366 1367 /* We can accept TX packets again */ 1368 netif_trans_update(dev); /* prevent tx timeout */ 1369 netif_wake_queue(dev); 1370 } 1371 1372 /* 1373 * This routine will, depending on the values passed to it, 1374 * either make it accept multicast packets, go into 1375 * promiscuous mode (for TCPDUMP and cousins) or accept 1376 * a select set of multicast packets 1377 */ 1378 static void smc_set_multicast_list(struct net_device *dev) 1379 { 1380 struct smc_local *lp = netdev_priv(dev); 1381 void __iomem *ioaddr = lp->base; 1382 unsigned char multicast_table[8]; 1383 int update_multicast = 0; 1384 1385 DBG(2, dev, "%s\n", __func__); 1386 1387 if (dev->flags & IFF_PROMISC) { 1388 DBG(2, dev, "RCR_PRMS\n"); 1389 lp->rcr_cur_mode |= RCR_PRMS; 1390 } 1391 1392 /* BUG? I never disable promiscuous mode if multicasting was turned on. 1393 Now, I turn off promiscuous mode, but I don't do anything to multicasting 1394 when promiscuous mode is turned on. 1395 */ 1396 1397 /* 1398 * Here, I am setting this to accept all multicast packets. 1399 * I don't need to zero the multicast table, because the flag is 1400 * checked before the table is 1401 */ 1402 else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) { 1403 DBG(2, dev, "RCR_ALMUL\n"); 1404 lp->rcr_cur_mode |= RCR_ALMUL; 1405 } 1406 1407 /* 1408 * This sets the internal hardware table to filter out unwanted 1409 * multicast packets before they take up memory. 1410 * 1411 * The SMC chip uses a hash table where the high 6 bits of the CRC of 1412 * address are the offset into the table. If that bit is 1, then the 1413 * multicast packet is accepted. Otherwise, it's dropped silently. 1414 * 1415 * To use the 6 bits as an offset into the table, the high 3 bits are 1416 * the number of the 8 bit register, while the low 3 bits are the bit 1417 * within that register. 1418 */ 1419 else if (!netdev_mc_empty(dev)) { 1420 struct netdev_hw_addr *ha; 1421 1422 /* table for flipping the order of 3 bits */ 1423 static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7}; 1424 1425 /* start with a table of all zeros: reject all */ 1426 memset(multicast_table, 0, sizeof(multicast_table)); 1427 1428 netdev_for_each_mc_addr(ha, dev) { 1429 int position; 1430 1431 /* only use the low order bits */ 1432 position = crc32_le(~0, ha->addr, 6) & 0x3f; 1433 1434 /* do some messy swapping to put the bit in the right spot */ 1435 multicast_table[invert3[position&7]] |= 1436 (1<<invert3[(position>>3)&7]); 1437 } 1438 1439 /* be sure I get rid of flags I might have set */ 1440 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL); 1441 1442 /* now, the table can be loaded into the chipset */ 1443 update_multicast = 1; 1444 } else { 1445 DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n"); 1446 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL); 1447 1448 /* 1449 * since I'm disabling all multicast entirely, I need to 1450 * clear the multicast list 1451 */ 1452 memset(multicast_table, 0, sizeof(multicast_table)); 1453 update_multicast = 1; 1454 } 1455 1456 spin_lock_irq(&lp->lock); 1457 SMC_SELECT_BANK(lp, 0); 1458 SMC_SET_RCR(lp, lp->rcr_cur_mode); 1459 if (update_multicast) { 1460 SMC_SELECT_BANK(lp, 3); 1461 SMC_SET_MCAST(lp, multicast_table); 1462 } 1463 SMC_SELECT_BANK(lp, 2); 1464 spin_unlock_irq(&lp->lock); 1465 } 1466 1467 1468 /* 1469 * Open and Initialize the board 1470 * 1471 * Set up everything, reset the card, etc.. 1472 */ 1473 static int 1474 smc_open(struct net_device *dev) 1475 { 1476 struct smc_local *lp = netdev_priv(dev); 1477 1478 DBG(2, dev, "%s\n", __func__); 1479 1480 /* Setup the default Register Modes */ 1481 lp->tcr_cur_mode = TCR_DEFAULT; 1482 lp->rcr_cur_mode = RCR_DEFAULT; 1483 lp->rpc_cur_mode = RPC_DEFAULT | 1484 lp->cfg.leda << RPC_LSXA_SHFT | 1485 lp->cfg.ledb << RPC_LSXB_SHFT; 1486 1487 /* 1488 * If we are not using a MII interface, we need to 1489 * monitor our own carrier signal to detect faults. 1490 */ 1491 if (lp->phy_type == 0) 1492 lp->tcr_cur_mode |= TCR_MON_CSN; 1493 1494 /* reset the hardware */ 1495 smc_reset(dev); 1496 smc_enable(dev); 1497 1498 /* Configure the PHY, initialize the link state */ 1499 if (lp->phy_type != 0) 1500 smc_phy_configure(&lp->phy_configure); 1501 else { 1502 spin_lock_irq(&lp->lock); 1503 smc_10bt_check_media(dev, 1); 1504 spin_unlock_irq(&lp->lock); 1505 } 1506 1507 netif_start_queue(dev); 1508 return 0; 1509 } 1510 1511 /* 1512 * smc_close 1513 * 1514 * this makes the board clean up everything that it can 1515 * and not talk to the outside world. Caused by 1516 * an 'ifconfig ethX down' 1517 */ 1518 static int smc_close(struct net_device *dev) 1519 { 1520 struct smc_local *lp = netdev_priv(dev); 1521 1522 DBG(2, dev, "%s\n", __func__); 1523 1524 netif_stop_queue(dev); 1525 netif_carrier_off(dev); 1526 1527 /* clear everything */ 1528 smc_shutdown(dev); 1529 tasklet_kill(&lp->tx_task); 1530 smc_phy_powerdown(dev); 1531 return 0; 1532 } 1533 1534 /* 1535 * Ethtool support 1536 */ 1537 static int 1538 smc_ethtool_get_link_ksettings(struct net_device *dev, 1539 struct ethtool_link_ksettings *cmd) 1540 { 1541 struct smc_local *lp = netdev_priv(dev); 1542 1543 if (lp->phy_type != 0) { 1544 spin_lock_irq(&lp->lock); 1545 mii_ethtool_get_link_ksettings(&lp->mii, cmd); 1546 spin_unlock_irq(&lp->lock); 1547 } else { 1548 u32 supported = SUPPORTED_10baseT_Half | 1549 SUPPORTED_10baseT_Full | 1550 SUPPORTED_TP | SUPPORTED_AUI; 1551 1552 if (lp->ctl_rspeed == 10) 1553 cmd->base.speed = SPEED_10; 1554 else if (lp->ctl_rspeed == 100) 1555 cmd->base.speed = SPEED_100; 1556 1557 cmd->base.autoneg = AUTONEG_DISABLE; 1558 cmd->base.port = 0; 1559 cmd->base.duplex = lp->tcr_cur_mode & TCR_SWFDUP ? 1560 DUPLEX_FULL : DUPLEX_HALF; 1561 1562 ethtool_convert_legacy_u32_to_link_mode( 1563 cmd->link_modes.supported, supported); 1564 } 1565 1566 return 0; 1567 } 1568 1569 static int 1570 smc_ethtool_set_link_ksettings(struct net_device *dev, 1571 const struct ethtool_link_ksettings *cmd) 1572 { 1573 struct smc_local *lp = netdev_priv(dev); 1574 int ret; 1575 1576 if (lp->phy_type != 0) { 1577 spin_lock_irq(&lp->lock); 1578 ret = mii_ethtool_set_link_ksettings(&lp->mii, cmd); 1579 spin_unlock_irq(&lp->lock); 1580 } else { 1581 if (cmd->base.autoneg != AUTONEG_DISABLE || 1582 cmd->base.speed != SPEED_10 || 1583 (cmd->base.duplex != DUPLEX_HALF && 1584 cmd->base.duplex != DUPLEX_FULL) || 1585 (cmd->base.port != PORT_TP && cmd->base.port != PORT_AUI)) 1586 return -EINVAL; 1587 1588 // lp->port = cmd->base.port; 1589 lp->ctl_rfduplx = cmd->base.duplex == DUPLEX_FULL; 1590 1591 // if (netif_running(dev)) 1592 // smc_set_port(dev); 1593 1594 ret = 0; 1595 } 1596 1597 return ret; 1598 } 1599 1600 static void 1601 smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1602 { 1603 strlcpy(info->driver, CARDNAME, sizeof(info->driver)); 1604 strlcpy(info->version, version, sizeof(info->version)); 1605 strlcpy(info->bus_info, dev_name(dev->dev.parent), 1606 sizeof(info->bus_info)); 1607 } 1608 1609 static int smc_ethtool_nwayreset(struct net_device *dev) 1610 { 1611 struct smc_local *lp = netdev_priv(dev); 1612 int ret = -EINVAL; 1613 1614 if (lp->phy_type != 0) { 1615 spin_lock_irq(&lp->lock); 1616 ret = mii_nway_restart(&lp->mii); 1617 spin_unlock_irq(&lp->lock); 1618 } 1619 1620 return ret; 1621 } 1622 1623 static u32 smc_ethtool_getmsglevel(struct net_device *dev) 1624 { 1625 struct smc_local *lp = netdev_priv(dev); 1626 return lp->msg_enable; 1627 } 1628 1629 static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level) 1630 { 1631 struct smc_local *lp = netdev_priv(dev); 1632 lp->msg_enable = level; 1633 } 1634 1635 static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word) 1636 { 1637 u16 ctl; 1638 struct smc_local *lp = netdev_priv(dev); 1639 void __iomem *ioaddr = lp->base; 1640 1641 spin_lock_irq(&lp->lock); 1642 /* load word into GP register */ 1643 SMC_SELECT_BANK(lp, 1); 1644 SMC_SET_GP(lp, word); 1645 /* set the address to put the data in EEPROM */ 1646 SMC_SELECT_BANK(lp, 2); 1647 SMC_SET_PTR(lp, addr); 1648 /* tell it to write */ 1649 SMC_SELECT_BANK(lp, 1); 1650 ctl = SMC_GET_CTL(lp); 1651 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE)); 1652 /* wait for it to finish */ 1653 do { 1654 udelay(1); 1655 } while (SMC_GET_CTL(lp) & CTL_STORE); 1656 /* clean up */ 1657 SMC_SET_CTL(lp, ctl); 1658 SMC_SELECT_BANK(lp, 2); 1659 spin_unlock_irq(&lp->lock); 1660 return 0; 1661 } 1662 1663 static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word) 1664 { 1665 u16 ctl; 1666 struct smc_local *lp = netdev_priv(dev); 1667 void __iomem *ioaddr = lp->base; 1668 1669 spin_lock_irq(&lp->lock); 1670 /* set the EEPROM address to get the data from */ 1671 SMC_SELECT_BANK(lp, 2); 1672 SMC_SET_PTR(lp, addr | PTR_READ); 1673 /* tell it to load */ 1674 SMC_SELECT_BANK(lp, 1); 1675 SMC_SET_GP(lp, 0xffff); /* init to known */ 1676 ctl = SMC_GET_CTL(lp); 1677 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD)); 1678 /* wait for it to finish */ 1679 do { 1680 udelay(1); 1681 } while (SMC_GET_CTL(lp) & CTL_RELOAD); 1682 /* read word from GP register */ 1683 *word = SMC_GET_GP(lp); 1684 /* clean up */ 1685 SMC_SET_CTL(lp, ctl); 1686 SMC_SELECT_BANK(lp, 2); 1687 spin_unlock_irq(&lp->lock); 1688 return 0; 1689 } 1690 1691 static int smc_ethtool_geteeprom_len(struct net_device *dev) 1692 { 1693 return 0x23 * 2; 1694 } 1695 1696 static int smc_ethtool_geteeprom(struct net_device *dev, 1697 struct ethtool_eeprom *eeprom, u8 *data) 1698 { 1699 int i; 1700 int imax; 1701 1702 DBG(1, dev, "Reading %d bytes at %d(0x%x)\n", 1703 eeprom->len, eeprom->offset, eeprom->offset); 1704 imax = smc_ethtool_geteeprom_len(dev); 1705 for (i = 0; i < eeprom->len; i += 2) { 1706 int ret; 1707 u16 wbuf; 1708 int offset = i + eeprom->offset; 1709 if (offset > imax) 1710 break; 1711 ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf); 1712 if (ret != 0) 1713 return ret; 1714 DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1); 1715 data[i] = (wbuf >> 8) & 0xff; 1716 data[i+1] = wbuf & 0xff; 1717 } 1718 return 0; 1719 } 1720 1721 static int smc_ethtool_seteeprom(struct net_device *dev, 1722 struct ethtool_eeprom *eeprom, u8 *data) 1723 { 1724 int i; 1725 int imax; 1726 1727 DBG(1, dev, "Writing %d bytes to %d(0x%x)\n", 1728 eeprom->len, eeprom->offset, eeprom->offset); 1729 imax = smc_ethtool_geteeprom_len(dev); 1730 for (i = 0; i < eeprom->len; i += 2) { 1731 int ret; 1732 u16 wbuf; 1733 int offset = i + eeprom->offset; 1734 if (offset > imax) 1735 break; 1736 wbuf = (data[i] << 8) | data[i + 1]; 1737 DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1); 1738 ret = smc_write_eeprom_word(dev, offset >> 1, wbuf); 1739 if (ret != 0) 1740 return ret; 1741 } 1742 return 0; 1743 } 1744 1745 1746 static const struct ethtool_ops smc_ethtool_ops = { 1747 .get_drvinfo = smc_ethtool_getdrvinfo, 1748 1749 .get_msglevel = smc_ethtool_getmsglevel, 1750 .set_msglevel = smc_ethtool_setmsglevel, 1751 .nway_reset = smc_ethtool_nwayreset, 1752 .get_link = ethtool_op_get_link, 1753 .get_eeprom_len = smc_ethtool_geteeprom_len, 1754 .get_eeprom = smc_ethtool_geteeprom, 1755 .set_eeprom = smc_ethtool_seteeprom, 1756 .get_link_ksettings = smc_ethtool_get_link_ksettings, 1757 .set_link_ksettings = smc_ethtool_set_link_ksettings, 1758 }; 1759 1760 static const struct net_device_ops smc_netdev_ops = { 1761 .ndo_open = smc_open, 1762 .ndo_stop = smc_close, 1763 .ndo_start_xmit = smc_hard_start_xmit, 1764 .ndo_tx_timeout = smc_timeout, 1765 .ndo_set_rx_mode = smc_set_multicast_list, 1766 .ndo_validate_addr = eth_validate_addr, 1767 .ndo_set_mac_address = eth_mac_addr, 1768 #ifdef CONFIG_NET_POLL_CONTROLLER 1769 .ndo_poll_controller = smc_poll_controller, 1770 #endif 1771 }; 1772 1773 /* 1774 * smc_findirq 1775 * 1776 * This routine has a simple purpose -- make the SMC chip generate an 1777 * interrupt, so an auto-detect routine can detect it, and find the IRQ, 1778 */ 1779 /* 1780 * does this still work? 1781 * 1782 * I just deleted auto_irq.c, since it was never built... 1783 * --jgarzik 1784 */ 1785 static int smc_findirq(struct smc_local *lp) 1786 { 1787 void __iomem *ioaddr = lp->base; 1788 int timeout = 20; 1789 unsigned long cookie; 1790 1791 DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__); 1792 1793 cookie = probe_irq_on(); 1794 1795 /* 1796 * What I try to do here is trigger an ALLOC_INT. This is done 1797 * by allocating a small chunk of memory, which will give an interrupt 1798 * when done. 1799 */ 1800 /* enable ALLOCation interrupts ONLY */ 1801 SMC_SELECT_BANK(lp, 2); 1802 SMC_SET_INT_MASK(lp, IM_ALLOC_INT); 1803 1804 /* 1805 * Allocate 512 bytes of memory. Note that the chip was just 1806 * reset so all the memory is available 1807 */ 1808 SMC_SET_MMU_CMD(lp, MC_ALLOC | 1); 1809 1810 /* 1811 * Wait until positive that the interrupt has been generated 1812 */ 1813 do { 1814 int int_status; 1815 udelay(10); 1816 int_status = SMC_GET_INT(lp); 1817 if (int_status & IM_ALLOC_INT) 1818 break; /* got the interrupt */ 1819 } while (--timeout); 1820 1821 /* 1822 * there is really nothing that I can do here if timeout fails, 1823 * as autoirq_report will return a 0 anyway, which is what I 1824 * want in this case. Plus, the clean up is needed in both 1825 * cases. 1826 */ 1827 1828 /* and disable all interrupts again */ 1829 SMC_SET_INT_MASK(lp, 0); 1830 1831 /* and return what I found */ 1832 return probe_irq_off(cookie); 1833 } 1834 1835 /* 1836 * Function: smc_probe(unsigned long ioaddr) 1837 * 1838 * Purpose: 1839 * Tests to see if a given ioaddr points to an SMC91x chip. 1840 * Returns a 0 on success 1841 * 1842 * Algorithm: 1843 * (1) see if the high byte of BANK_SELECT is 0x33 1844 * (2) compare the ioaddr with the base register's address 1845 * (3) see if I recognize the chip ID in the appropriate register 1846 * 1847 * Here I do typical initialization tasks. 1848 * 1849 * o Initialize the structure if needed 1850 * o print out my vanity message if not done so already 1851 * o print out what type of hardware is detected 1852 * o print out the ethernet address 1853 * o find the IRQ 1854 * o set up my private data 1855 * o configure the dev structure with my subroutines 1856 * o actually GRAB the irq. 1857 * o GRAB the region 1858 */ 1859 static int smc_probe(struct net_device *dev, void __iomem *ioaddr, 1860 unsigned long irq_flags) 1861 { 1862 struct smc_local *lp = netdev_priv(dev); 1863 int retval; 1864 unsigned int val, revision_register; 1865 const char *version_string; 1866 1867 DBG(2, dev, "%s: %s\n", CARDNAME, __func__); 1868 1869 /* First, see if the high byte is 0x33 */ 1870 val = SMC_CURRENT_BANK(lp); 1871 DBG(2, dev, "%s: bank signature probe returned 0x%04x\n", 1872 CARDNAME, val); 1873 if ((val & 0xFF00) != 0x3300) { 1874 if ((val & 0xFF) == 0x33) { 1875 netdev_warn(dev, 1876 "%s: Detected possible byte-swapped interface at IOADDR %p\n", 1877 CARDNAME, ioaddr); 1878 } 1879 retval = -ENODEV; 1880 goto err_out; 1881 } 1882 1883 /* 1884 * The above MIGHT indicate a device, but I need to write to 1885 * further test this. 1886 */ 1887 SMC_SELECT_BANK(lp, 0); 1888 val = SMC_CURRENT_BANK(lp); 1889 if ((val & 0xFF00) != 0x3300) { 1890 retval = -ENODEV; 1891 goto err_out; 1892 } 1893 1894 /* 1895 * well, we've already written once, so hopefully another 1896 * time won't hurt. This time, I need to switch the bank 1897 * register to bank 1, so I can access the base address 1898 * register 1899 */ 1900 SMC_SELECT_BANK(lp, 1); 1901 val = SMC_GET_BASE(lp); 1902 val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT; 1903 if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) { 1904 netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n", 1905 CARDNAME, ioaddr, val); 1906 } 1907 1908 /* 1909 * check if the revision register is something that I 1910 * recognize. These might need to be added to later, 1911 * as future revisions could be added. 1912 */ 1913 SMC_SELECT_BANK(lp, 3); 1914 revision_register = SMC_GET_REV(lp); 1915 DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register); 1916 version_string = chip_ids[ (revision_register >> 4) & 0xF]; 1917 if (!version_string || (revision_register & 0xff00) != 0x3300) { 1918 /* I don't recognize this chip, so... */ 1919 netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n", 1920 CARDNAME, ioaddr, revision_register); 1921 1922 retval = -ENODEV; 1923 goto err_out; 1924 } 1925 1926 /* At this point I'll assume that the chip is an SMC91x. */ 1927 pr_info_once("%s\n", version); 1928 1929 /* fill in some of the fields */ 1930 dev->base_addr = (unsigned long)ioaddr; 1931 lp->base = ioaddr; 1932 lp->version = revision_register & 0xff; 1933 spin_lock_init(&lp->lock); 1934 1935 /* Get the MAC address */ 1936 SMC_SELECT_BANK(lp, 1); 1937 SMC_GET_MAC_ADDR(lp, dev->dev_addr); 1938 1939 /* now, reset the chip, and put it into a known state */ 1940 smc_reset(dev); 1941 1942 /* 1943 * If dev->irq is 0, then the device has to be banged on to see 1944 * what the IRQ is. 1945 * 1946 * This banging doesn't always detect the IRQ, for unknown reasons. 1947 * a workaround is to reset the chip and try again. 1948 * 1949 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to 1950 * be what is requested on the command line. I don't do that, mostly 1951 * because the card that I have uses a non-standard method of accessing 1952 * the IRQs, and because this _should_ work in most configurations. 1953 * 1954 * Specifying an IRQ is done with the assumption that the user knows 1955 * what (s)he is doing. No checking is done!!!! 1956 */ 1957 if (dev->irq < 1) { 1958 int trials; 1959 1960 trials = 3; 1961 while (trials--) { 1962 dev->irq = smc_findirq(lp); 1963 if (dev->irq) 1964 break; 1965 /* kick the card and try again */ 1966 smc_reset(dev); 1967 } 1968 } 1969 if (dev->irq == 0) { 1970 netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n"); 1971 retval = -ENODEV; 1972 goto err_out; 1973 } 1974 dev->irq = irq_canonicalize(dev->irq); 1975 1976 dev->watchdog_timeo = msecs_to_jiffies(watchdog); 1977 dev->netdev_ops = &smc_netdev_ops; 1978 dev->ethtool_ops = &smc_ethtool_ops; 1979 1980 tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev); 1981 INIT_WORK(&lp->phy_configure, smc_phy_configure); 1982 lp->dev = dev; 1983 lp->mii.phy_id_mask = 0x1f; 1984 lp->mii.reg_num_mask = 0x1f; 1985 lp->mii.force_media = 0; 1986 lp->mii.full_duplex = 0; 1987 lp->mii.dev = dev; 1988 lp->mii.mdio_read = smc_phy_read; 1989 lp->mii.mdio_write = smc_phy_write; 1990 1991 /* 1992 * Locate the phy, if any. 1993 */ 1994 if (lp->version >= (CHIP_91100 << 4)) 1995 smc_phy_detect(dev); 1996 1997 /* then shut everything down to save power */ 1998 smc_shutdown(dev); 1999 smc_phy_powerdown(dev); 2000 2001 /* Set default parameters */ 2002 lp->msg_enable = NETIF_MSG_LINK; 2003 lp->ctl_rfduplx = 0; 2004 lp->ctl_rspeed = 10; 2005 2006 if (lp->version >= (CHIP_91100 << 4)) { 2007 lp->ctl_rfduplx = 1; 2008 lp->ctl_rspeed = 100; 2009 } 2010 2011 /* Grab the IRQ */ 2012 retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev); 2013 if (retval) 2014 goto err_out; 2015 2016 #ifdef CONFIG_ARCH_PXA 2017 # ifdef SMC_USE_PXA_DMA 2018 lp->cfg.flags |= SMC91X_USE_DMA; 2019 # endif 2020 if (lp->cfg.flags & SMC91X_USE_DMA) { 2021 dma_cap_mask_t mask; 2022 struct pxad_param param; 2023 2024 dma_cap_zero(mask); 2025 dma_cap_set(DMA_SLAVE, mask); 2026 param.prio = PXAD_PRIO_LOWEST; 2027 param.drcmr = -1UL; 2028 2029 lp->dma_chan = 2030 dma_request_slave_channel_compat(mask, pxad_filter_fn, 2031 ¶m, &dev->dev, 2032 "data"); 2033 } 2034 #endif 2035 2036 retval = register_netdev(dev); 2037 if (retval == 0) { 2038 /* now, print out the card info, in a short format.. */ 2039 netdev_info(dev, "%s (rev %d) at %p IRQ %d", 2040 version_string, revision_register & 0x0f, 2041 lp->base, dev->irq); 2042 2043 if (lp->dma_chan) 2044 pr_cont(" DMA %p", lp->dma_chan); 2045 2046 pr_cont("%s%s\n", 2047 lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "", 2048 THROTTLE_TX_PKTS ? " [throttle_tx]" : ""); 2049 2050 if (!is_valid_ether_addr(dev->dev_addr)) { 2051 netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n"); 2052 } else { 2053 /* Print the Ethernet address */ 2054 netdev_info(dev, "Ethernet addr: %pM\n", 2055 dev->dev_addr); 2056 } 2057 2058 if (lp->phy_type == 0) { 2059 PRINTK(dev, "No PHY found\n"); 2060 } else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) { 2061 PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n"); 2062 } else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) { 2063 PRINTK(dev, "PHY LAN83C180\n"); 2064 } 2065 } 2066 2067 err_out: 2068 #ifdef CONFIG_ARCH_PXA 2069 if (retval && lp->dma_chan) 2070 dma_release_channel(lp->dma_chan); 2071 #endif 2072 return retval; 2073 } 2074 2075 static int smc_enable_device(struct platform_device *pdev) 2076 { 2077 struct net_device *ndev = platform_get_drvdata(pdev); 2078 struct smc_local *lp = netdev_priv(ndev); 2079 unsigned long flags; 2080 unsigned char ecor, ecsr; 2081 void __iomem *addr; 2082 struct resource * res; 2083 2084 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib"); 2085 if (!res) 2086 return 0; 2087 2088 /* 2089 * Map the attribute space. This is overkill, but clean. 2090 */ 2091 addr = ioremap(res->start, ATTRIB_SIZE); 2092 if (!addr) 2093 return -ENOMEM; 2094 2095 /* 2096 * Reset the device. We must disable IRQs around this 2097 * since a reset causes the IRQ line become active. 2098 */ 2099 local_irq_save(flags); 2100 ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET; 2101 writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT)); 2102 readb(addr + (ECOR << SMC_IO_SHIFT)); 2103 2104 /* 2105 * Wait 100us for the chip to reset. 2106 */ 2107 udelay(100); 2108 2109 /* 2110 * The device will ignore all writes to the enable bit while 2111 * reset is asserted, even if the reset bit is cleared in the 2112 * same write. Must clear reset first, then enable the device. 2113 */ 2114 writeb(ecor, addr + (ECOR << SMC_IO_SHIFT)); 2115 writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT)); 2116 2117 /* 2118 * Set the appropriate byte/word mode. 2119 */ 2120 ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8; 2121 if (!SMC_16BIT(lp)) 2122 ecsr |= ECSR_IOIS8; 2123 writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT)); 2124 local_irq_restore(flags); 2125 2126 iounmap(addr); 2127 2128 /* 2129 * Wait for the chip to wake up. We could poll the control 2130 * register in the main register space, but that isn't mapped 2131 * yet. We know this is going to take 750us. 2132 */ 2133 msleep(1); 2134 2135 return 0; 2136 } 2137 2138 static int smc_request_attrib(struct platform_device *pdev, 2139 struct net_device *ndev) 2140 { 2141 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib"); 2142 struct smc_local *lp __maybe_unused = netdev_priv(ndev); 2143 2144 if (!res) 2145 return 0; 2146 2147 if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME)) 2148 return -EBUSY; 2149 2150 return 0; 2151 } 2152 2153 static void smc_release_attrib(struct platform_device *pdev, 2154 struct net_device *ndev) 2155 { 2156 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib"); 2157 struct smc_local *lp __maybe_unused = netdev_priv(ndev); 2158 2159 if (res) 2160 release_mem_region(res->start, ATTRIB_SIZE); 2161 } 2162 2163 static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev) 2164 { 2165 if (SMC_CAN_USE_DATACS) { 2166 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32"); 2167 struct smc_local *lp = netdev_priv(ndev); 2168 2169 if (!res) 2170 return; 2171 2172 if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) { 2173 netdev_info(ndev, "%s: failed to request datacs memory region.\n", 2174 CARDNAME); 2175 return; 2176 } 2177 2178 lp->datacs = ioremap(res->start, SMC_DATA_EXTENT); 2179 } 2180 } 2181 2182 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev) 2183 { 2184 if (SMC_CAN_USE_DATACS) { 2185 struct smc_local *lp = netdev_priv(ndev); 2186 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32"); 2187 2188 if (lp->datacs) 2189 iounmap(lp->datacs); 2190 2191 lp->datacs = NULL; 2192 2193 if (res) 2194 release_mem_region(res->start, SMC_DATA_EXTENT); 2195 } 2196 } 2197 2198 static const struct acpi_device_id smc91x_acpi_match[] = { 2199 { "LNRO0003", 0 }, 2200 { } 2201 }; 2202 MODULE_DEVICE_TABLE(acpi, smc91x_acpi_match); 2203 2204 #if IS_BUILTIN(CONFIG_OF) 2205 static const struct of_device_id smc91x_match[] = { 2206 { .compatible = "smsc,lan91c94", }, 2207 { .compatible = "smsc,lan91c111", }, 2208 {}, 2209 }; 2210 MODULE_DEVICE_TABLE(of, smc91x_match); 2211 2212 /** 2213 * of_try_set_control_gpio - configure a gpio if it exists 2214 */ 2215 static int try_toggle_control_gpio(struct device *dev, 2216 struct gpio_desc **desc, 2217 const char *name, int index, 2218 int value, unsigned int nsdelay) 2219 { 2220 struct gpio_desc *gpio = *desc; 2221 enum gpiod_flags flags = value ? GPIOD_OUT_LOW : GPIOD_OUT_HIGH; 2222 2223 gpio = devm_gpiod_get_index_optional(dev, name, index, flags); 2224 if (IS_ERR(gpio)) 2225 return PTR_ERR(gpio); 2226 2227 if (gpio) { 2228 if (nsdelay) 2229 usleep_range(nsdelay, 2 * nsdelay); 2230 gpiod_set_value_cansleep(gpio, value); 2231 } 2232 *desc = gpio; 2233 2234 return 0; 2235 } 2236 #endif 2237 2238 /* 2239 * smc_init(void) 2240 * Input parameters: 2241 * dev->base_addr == 0, try to find all possible locations 2242 * dev->base_addr > 0x1ff, this is the address to check 2243 * dev->base_addr == <anything else>, return failure code 2244 * 2245 * Output: 2246 * 0 --> there is a device 2247 * anything else, error 2248 */ 2249 static int smc_drv_probe(struct platform_device *pdev) 2250 { 2251 struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev); 2252 const struct of_device_id *match = NULL; 2253 struct smc_local *lp; 2254 struct net_device *ndev; 2255 struct resource *res; 2256 unsigned int __iomem *addr; 2257 unsigned long irq_flags = SMC_IRQ_FLAGS; 2258 unsigned long irq_resflags; 2259 int ret; 2260 2261 ndev = alloc_etherdev(sizeof(struct smc_local)); 2262 if (!ndev) { 2263 ret = -ENOMEM; 2264 goto out; 2265 } 2266 SET_NETDEV_DEV(ndev, &pdev->dev); 2267 2268 /* get configuration from platform data, only allow use of 2269 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set. 2270 */ 2271 2272 lp = netdev_priv(ndev); 2273 lp->cfg.flags = 0; 2274 2275 if (pd) { 2276 memcpy(&lp->cfg, pd, sizeof(lp->cfg)); 2277 lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags); 2278 2279 if (!SMC_8BIT(lp) && !SMC_16BIT(lp)) { 2280 dev_err(&pdev->dev, 2281 "at least one of 8-bit or 16-bit access support is required.\n"); 2282 ret = -ENXIO; 2283 goto out_free_netdev; 2284 } 2285 } 2286 2287 #if IS_BUILTIN(CONFIG_OF) 2288 match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev); 2289 if (match) { 2290 u32 val; 2291 2292 /* Optional pwrdwn GPIO configured? */ 2293 ret = try_toggle_control_gpio(&pdev->dev, &lp->power_gpio, 2294 "power", 0, 0, 100); 2295 if (ret) 2296 return ret; 2297 2298 /* 2299 * Optional reset GPIO configured? Minimum 100 ns reset needed 2300 * according to LAN91C96 datasheet page 14. 2301 */ 2302 ret = try_toggle_control_gpio(&pdev->dev, &lp->reset_gpio, 2303 "reset", 0, 0, 100); 2304 if (ret) 2305 return ret; 2306 2307 /* 2308 * Need to wait for optional EEPROM to load, max 750 us according 2309 * to LAN91C96 datasheet page 55. 2310 */ 2311 if (lp->reset_gpio) 2312 usleep_range(750, 1000); 2313 2314 /* Combination of IO widths supported, default to 16-bit */ 2315 if (!device_property_read_u32(&pdev->dev, "reg-io-width", 2316 &val)) { 2317 if (val & 1) 2318 lp->cfg.flags |= SMC91X_USE_8BIT; 2319 if ((val == 0) || (val & 2)) 2320 lp->cfg.flags |= SMC91X_USE_16BIT; 2321 if (val & 4) 2322 lp->cfg.flags |= SMC91X_USE_32BIT; 2323 } else { 2324 lp->cfg.flags |= SMC91X_USE_16BIT; 2325 } 2326 if (!device_property_read_u32(&pdev->dev, "reg-shift", 2327 &val)) 2328 lp->io_shift = val; 2329 lp->cfg.pxa_u16_align4 = 2330 device_property_read_bool(&pdev->dev, "pxa-u16-align4"); 2331 } 2332 #endif 2333 2334 if (!pd && !match) { 2335 lp->cfg.flags |= (SMC_CAN_USE_8BIT) ? SMC91X_USE_8BIT : 0; 2336 lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0; 2337 lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0; 2338 lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0; 2339 } 2340 2341 if (!lp->cfg.leda && !lp->cfg.ledb) { 2342 lp->cfg.leda = RPC_LSA_DEFAULT; 2343 lp->cfg.ledb = RPC_LSB_DEFAULT; 2344 } 2345 2346 ndev->dma = (unsigned char)-1; 2347 2348 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs"); 2349 if (!res) 2350 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2351 if (!res) { 2352 ret = -ENODEV; 2353 goto out_free_netdev; 2354 } 2355 2356 2357 if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) { 2358 ret = -EBUSY; 2359 goto out_free_netdev; 2360 } 2361 2362 ndev->irq = platform_get_irq(pdev, 0); 2363 if (ndev->irq < 0) { 2364 ret = ndev->irq; 2365 goto out_release_io; 2366 } 2367 /* 2368 * If this platform does not specify any special irqflags, or if 2369 * the resource supplies a trigger, override the irqflags with 2370 * the trigger flags from the resource. 2371 */ 2372 irq_resflags = irqd_get_trigger_type(irq_get_irq_data(ndev->irq)); 2373 if (irq_flags == -1 || irq_resflags & IRQF_TRIGGER_MASK) 2374 irq_flags = irq_resflags & IRQF_TRIGGER_MASK; 2375 2376 ret = smc_request_attrib(pdev, ndev); 2377 if (ret) 2378 goto out_release_io; 2379 #if defined(CONFIG_ASSABET_NEPONSET) 2380 if (machine_is_assabet() && machine_has_neponset()) 2381 neponset_ncr_set(NCR_ENET_OSC_EN); 2382 #endif 2383 platform_set_drvdata(pdev, ndev); 2384 ret = smc_enable_device(pdev); 2385 if (ret) 2386 goto out_release_attrib; 2387 2388 addr = ioremap(res->start, SMC_IO_EXTENT); 2389 if (!addr) { 2390 ret = -ENOMEM; 2391 goto out_release_attrib; 2392 } 2393 2394 #ifdef CONFIG_ARCH_PXA 2395 { 2396 struct smc_local *lp = netdev_priv(ndev); 2397 lp->device = &pdev->dev; 2398 lp->physaddr = res->start; 2399 2400 } 2401 #endif 2402 2403 ret = smc_probe(ndev, addr, irq_flags); 2404 if (ret != 0) 2405 goto out_iounmap; 2406 2407 smc_request_datacs(pdev, ndev); 2408 2409 return 0; 2410 2411 out_iounmap: 2412 iounmap(addr); 2413 out_release_attrib: 2414 smc_release_attrib(pdev, ndev); 2415 out_release_io: 2416 release_mem_region(res->start, SMC_IO_EXTENT); 2417 out_free_netdev: 2418 free_netdev(ndev); 2419 out: 2420 pr_info("%s: not found (%d).\n", CARDNAME, ret); 2421 2422 return ret; 2423 } 2424 2425 static int smc_drv_remove(struct platform_device *pdev) 2426 { 2427 struct net_device *ndev = platform_get_drvdata(pdev); 2428 struct smc_local *lp = netdev_priv(ndev); 2429 struct resource *res; 2430 2431 unregister_netdev(ndev); 2432 2433 free_irq(ndev->irq, ndev); 2434 2435 #ifdef CONFIG_ARCH_PXA 2436 if (lp->dma_chan) 2437 dma_release_channel(lp->dma_chan); 2438 #endif 2439 iounmap(lp->base); 2440 2441 smc_release_datacs(pdev,ndev); 2442 smc_release_attrib(pdev,ndev); 2443 2444 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs"); 2445 if (!res) 2446 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2447 release_mem_region(res->start, SMC_IO_EXTENT); 2448 2449 free_netdev(ndev); 2450 2451 return 0; 2452 } 2453 2454 static int smc_drv_suspend(struct device *dev) 2455 { 2456 struct platform_device *pdev = to_platform_device(dev); 2457 struct net_device *ndev = platform_get_drvdata(pdev); 2458 2459 if (ndev) { 2460 if (netif_running(ndev)) { 2461 netif_device_detach(ndev); 2462 smc_shutdown(ndev); 2463 smc_phy_powerdown(ndev); 2464 } 2465 } 2466 return 0; 2467 } 2468 2469 static int smc_drv_resume(struct device *dev) 2470 { 2471 struct platform_device *pdev = to_platform_device(dev); 2472 struct net_device *ndev = platform_get_drvdata(pdev); 2473 2474 if (ndev) { 2475 struct smc_local *lp = netdev_priv(ndev); 2476 smc_enable_device(pdev); 2477 if (netif_running(ndev)) { 2478 smc_reset(ndev); 2479 smc_enable(ndev); 2480 if (lp->phy_type != 0) 2481 smc_phy_configure(&lp->phy_configure); 2482 netif_device_attach(ndev); 2483 } 2484 } 2485 return 0; 2486 } 2487 2488 static const struct dev_pm_ops smc_drv_pm_ops = { 2489 .suspend = smc_drv_suspend, 2490 .resume = smc_drv_resume, 2491 }; 2492 2493 static struct platform_driver smc_driver = { 2494 .probe = smc_drv_probe, 2495 .remove = smc_drv_remove, 2496 .driver = { 2497 .name = CARDNAME, 2498 .pm = &smc_drv_pm_ops, 2499 .of_match_table = of_match_ptr(smc91x_match), 2500 .acpi_match_table = smc91x_acpi_match, 2501 }, 2502 }; 2503 2504 module_platform_driver(smc_driver); 2505