xref: /openbmc/linux/drivers/net/ethernet/smsc/smc91x.c (revision 31af04cd)
1 /*
2  * smc91x.c
3  * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
4  *
5  * Copyright (C) 1996 by Erik Stahlman
6  * Copyright (C) 2001 Standard Microsystems Corporation
7  *	Developed by Simple Network Magic Corporation
8  * Copyright (C) 2003 Monta Vista Software, Inc.
9  *	Unified SMC91x driver by Nicolas Pitre
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, see <http://www.gnu.org/licenses/>.
23  *
24  * Arguments:
25  * 	io	= for the base address
26  *	irq	= for the IRQ
27  *	nowait	= 0 for normal wait states, 1 eliminates additional wait states
28  *
29  * original author:
30  * 	Erik Stahlman <erik@vt.edu>
31  *
32  * hardware multicast code:
33  *    Peter Cammaert <pc@denkart.be>
34  *
35  * contributors:
36  * 	Daris A Nevil <dnevil@snmc.com>
37  *      Nicolas Pitre <nico@fluxnic.net>
38  *	Russell King <rmk@arm.linux.org.uk>
39  *
40  * History:
41  *   08/20/00  Arnaldo Melo       fix kfree(skb) in smc_hardware_send_packet
42  *   12/15/00  Christian Jullien  fix "Warning: kfree_skb on hard IRQ"
43  *   03/16/01  Daris A Nevil      modified smc9194.c for use with LAN91C111
44  *   08/22/01  Scott Anderson     merge changes from smc9194 to smc91111
45  *   08/21/01  Pramod B Bhardwaj  added support for RevB of LAN91C111
46  *   12/20/01  Jeff Sutherland    initial port to Xscale PXA with DMA support
47  *   04/07/03  Nicolas Pitre      unified SMC91x driver, killed irq races,
48  *                                more bus abstraction, big cleanup, etc.
49  *   29/09/03  Russell King       - add driver model support
50  *                                - ethtool support
51  *                                - convert to use generic MII interface
52  *                                - add link up/down notification
53  *                                - don't try to handle full negotiation in
54  *                                  smc_phy_configure
55  *                                - clean up (and fix stack overrun) in PHY
56  *                                  MII read/write functions
57  *   22/09/04  Nicolas Pitre      big update (see commit log for details)
58  */
59 static const char version[] =
60 	"smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>";
61 
62 /* Debugging level */
63 #ifndef SMC_DEBUG
64 #define SMC_DEBUG		0
65 #endif
66 
67 
68 #include <linux/module.h>
69 #include <linux/kernel.h>
70 #include <linux/sched.h>
71 #include <linux/delay.h>
72 #include <linux/interrupt.h>
73 #include <linux/irq.h>
74 #include <linux/errno.h>
75 #include <linux/ioport.h>
76 #include <linux/crc32.h>
77 #include <linux/platform_device.h>
78 #include <linux/spinlock.h>
79 #include <linux/ethtool.h>
80 #include <linux/mii.h>
81 #include <linux/workqueue.h>
82 #include <linux/of.h>
83 #include <linux/of_device.h>
84 #include <linux/of_gpio.h>
85 
86 #include <linux/netdevice.h>
87 #include <linux/etherdevice.h>
88 #include <linux/skbuff.h>
89 
90 #include <asm/io.h>
91 
92 #include "smc91x.h"
93 
94 #if defined(CONFIG_ASSABET_NEPONSET)
95 #include <mach/assabet.h>
96 #include <mach/neponset.h>
97 #endif
98 
99 #ifndef SMC_NOWAIT
100 # define SMC_NOWAIT		0
101 #endif
102 static int nowait = SMC_NOWAIT;
103 module_param(nowait, int, 0400);
104 MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
105 
106 /*
107  * Transmit timeout, default 5 seconds.
108  */
109 static int watchdog = 1000;
110 module_param(watchdog, int, 0400);
111 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
112 
113 MODULE_LICENSE("GPL");
114 MODULE_ALIAS("platform:smc91x");
115 
116 /*
117  * The internal workings of the driver.  If you are changing anything
118  * here with the SMC stuff, you should have the datasheet and know
119  * what you are doing.
120  */
121 #define CARDNAME "smc91x"
122 
123 /*
124  * Use power-down feature of the chip
125  */
126 #define POWER_DOWN		1
127 
128 /*
129  * Wait time for memory to be free.  This probably shouldn't be
130  * tuned that much, as waiting for this means nothing else happens
131  * in the system
132  */
133 #define MEMORY_WAIT_TIME	16
134 
135 /*
136  * The maximum number of processing loops allowed for each call to the
137  * IRQ handler.
138  */
139 #define MAX_IRQ_LOOPS		8
140 
141 /*
142  * This selects whether TX packets are sent one by one to the SMC91x internal
143  * memory and throttled until transmission completes.  This may prevent
144  * RX overruns a litle by keeping much of the memory free for RX packets
145  * but to the expense of reduced TX throughput and increased IRQ overhead.
146  * Note this is not a cure for a too slow data bus or too high IRQ latency.
147  */
148 #define THROTTLE_TX_PKTS	0
149 
150 /*
151  * The MII clock high/low times.  2x this number gives the MII clock period
152  * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
153  */
154 #define MII_DELAY		1
155 
156 #define DBG(n, dev, fmt, ...)					\
157 	do {							\
158 		if (SMC_DEBUG >= (n))				\
159 			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
160 	} while (0)
161 
162 #define PRINTK(dev, fmt, ...)					\
163 	do {							\
164 		if (SMC_DEBUG > 0)				\
165 			netdev_info(dev, fmt, ##__VA_ARGS__);	\
166 		else						\
167 			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
168 	} while (0)
169 
170 #if SMC_DEBUG > 3
171 static void PRINT_PKT(u_char *buf, int length)
172 {
173 	int i;
174 	int remainder;
175 	int lines;
176 
177 	lines = length / 16;
178 	remainder = length % 16;
179 
180 	for (i = 0; i < lines ; i ++) {
181 		int cur;
182 		printk(KERN_DEBUG);
183 		for (cur = 0; cur < 8; cur++) {
184 			u_char a, b;
185 			a = *buf++;
186 			b = *buf++;
187 			pr_cont("%02x%02x ", a, b);
188 		}
189 		pr_cont("\n");
190 	}
191 	printk(KERN_DEBUG);
192 	for (i = 0; i < remainder/2 ; i++) {
193 		u_char a, b;
194 		a = *buf++;
195 		b = *buf++;
196 		pr_cont("%02x%02x ", a, b);
197 	}
198 	pr_cont("\n");
199 }
200 #else
201 static inline void PRINT_PKT(u_char *buf, int length) { }
202 #endif
203 
204 
205 /* this enables an interrupt in the interrupt mask register */
206 #define SMC_ENABLE_INT(lp, x) do {					\
207 	unsigned char mask;						\
208 	unsigned long smc_enable_flags;					\
209 	spin_lock_irqsave(&lp->lock, smc_enable_flags);			\
210 	mask = SMC_GET_INT_MASK(lp);					\
211 	mask |= (x);							\
212 	SMC_SET_INT_MASK(lp, mask);					\
213 	spin_unlock_irqrestore(&lp->lock, smc_enable_flags);		\
214 } while (0)
215 
216 /* this disables an interrupt from the interrupt mask register */
217 #define SMC_DISABLE_INT(lp, x) do {					\
218 	unsigned char mask;						\
219 	unsigned long smc_disable_flags;				\
220 	spin_lock_irqsave(&lp->lock, smc_disable_flags);		\
221 	mask = SMC_GET_INT_MASK(lp);					\
222 	mask &= ~(x);							\
223 	SMC_SET_INT_MASK(lp, mask);					\
224 	spin_unlock_irqrestore(&lp->lock, smc_disable_flags);		\
225 } while (0)
226 
227 /*
228  * Wait while MMU is busy.  This is usually in the order of a few nanosecs
229  * if at all, but let's avoid deadlocking the system if the hardware
230  * decides to go south.
231  */
232 #define SMC_WAIT_MMU_BUSY(lp) do {					\
233 	if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) {		\
234 		unsigned long timeout = jiffies + 2;			\
235 		while (SMC_GET_MMU_CMD(lp) & MC_BUSY) {		\
236 			if (time_after(jiffies, timeout)) {		\
237 				netdev_dbg(dev, "timeout %s line %d\n",	\
238 					   __FILE__, __LINE__);		\
239 				break;					\
240 			}						\
241 			cpu_relax();					\
242 		}							\
243 	}								\
244 } while (0)
245 
246 
247 /*
248  * this does a soft reset on the device
249  */
250 static void smc_reset(struct net_device *dev)
251 {
252 	struct smc_local *lp = netdev_priv(dev);
253 	void __iomem *ioaddr = lp->base;
254 	unsigned int ctl, cfg;
255 	struct sk_buff *pending_skb;
256 
257 	DBG(2, dev, "%s\n", __func__);
258 
259 	/* Disable all interrupts, block TX tasklet */
260 	spin_lock_irq(&lp->lock);
261 	SMC_SELECT_BANK(lp, 2);
262 	SMC_SET_INT_MASK(lp, 0);
263 	pending_skb = lp->pending_tx_skb;
264 	lp->pending_tx_skb = NULL;
265 	spin_unlock_irq(&lp->lock);
266 
267 	/* free any pending tx skb */
268 	if (pending_skb) {
269 		dev_kfree_skb(pending_skb);
270 		dev->stats.tx_errors++;
271 		dev->stats.tx_aborted_errors++;
272 	}
273 
274 	/*
275 	 * This resets the registers mostly to defaults, but doesn't
276 	 * affect EEPROM.  That seems unnecessary
277 	 */
278 	SMC_SELECT_BANK(lp, 0);
279 	SMC_SET_RCR(lp, RCR_SOFTRST);
280 
281 	/*
282 	 * Setup the Configuration Register
283 	 * This is necessary because the CONFIG_REG is not affected
284 	 * by a soft reset
285 	 */
286 	SMC_SELECT_BANK(lp, 1);
287 
288 	cfg = CONFIG_DEFAULT;
289 
290 	/*
291 	 * Setup for fast accesses if requested.  If the card/system
292 	 * can't handle it then there will be no recovery except for
293 	 * a hard reset or power cycle
294 	 */
295 	if (lp->cfg.flags & SMC91X_NOWAIT)
296 		cfg |= CONFIG_NO_WAIT;
297 
298 	/*
299 	 * Release from possible power-down state
300 	 * Configuration register is not affected by Soft Reset
301 	 */
302 	cfg |= CONFIG_EPH_POWER_EN;
303 
304 	SMC_SET_CONFIG(lp, cfg);
305 
306 	/* this should pause enough for the chip to be happy */
307 	/*
308 	 * elaborate?  What does the chip _need_? --jgarzik
309 	 *
310 	 * This seems to be undocumented, but something the original
311 	 * driver(s) have always done.  Suspect undocumented timing
312 	 * info/determined empirically. --rmk
313 	 */
314 	udelay(1);
315 
316 	/* Disable transmit and receive functionality */
317 	SMC_SELECT_BANK(lp, 0);
318 	SMC_SET_RCR(lp, RCR_CLEAR);
319 	SMC_SET_TCR(lp, TCR_CLEAR);
320 
321 	SMC_SELECT_BANK(lp, 1);
322 	ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
323 
324 	/*
325 	 * Set the control register to automatically release successfully
326 	 * transmitted packets, to make the best use out of our limited
327 	 * memory
328 	 */
329 	if(!THROTTLE_TX_PKTS)
330 		ctl |= CTL_AUTO_RELEASE;
331 	else
332 		ctl &= ~CTL_AUTO_RELEASE;
333 	SMC_SET_CTL(lp, ctl);
334 
335 	/* Reset the MMU */
336 	SMC_SELECT_BANK(lp, 2);
337 	SMC_SET_MMU_CMD(lp, MC_RESET);
338 	SMC_WAIT_MMU_BUSY(lp);
339 }
340 
341 /*
342  * Enable Interrupts, Receive, and Transmit
343  */
344 static void smc_enable(struct net_device *dev)
345 {
346 	struct smc_local *lp = netdev_priv(dev);
347 	void __iomem *ioaddr = lp->base;
348 	int mask;
349 
350 	DBG(2, dev, "%s\n", __func__);
351 
352 	/* see the header file for options in TCR/RCR DEFAULT */
353 	SMC_SELECT_BANK(lp, 0);
354 	SMC_SET_TCR(lp, lp->tcr_cur_mode);
355 	SMC_SET_RCR(lp, lp->rcr_cur_mode);
356 
357 	SMC_SELECT_BANK(lp, 1);
358 	SMC_SET_MAC_ADDR(lp, dev->dev_addr);
359 
360 	/* now, enable interrupts */
361 	mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
362 	if (lp->version >= (CHIP_91100 << 4))
363 		mask |= IM_MDINT;
364 	SMC_SELECT_BANK(lp, 2);
365 	SMC_SET_INT_MASK(lp, mask);
366 
367 	/*
368 	 * From this point the register bank must _NOT_ be switched away
369 	 * to something else than bank 2 without proper locking against
370 	 * races with any tasklet or interrupt handlers until smc_shutdown()
371 	 * or smc_reset() is called.
372 	 */
373 }
374 
375 /*
376  * this puts the device in an inactive state
377  */
378 static void smc_shutdown(struct net_device *dev)
379 {
380 	struct smc_local *lp = netdev_priv(dev);
381 	void __iomem *ioaddr = lp->base;
382 	struct sk_buff *pending_skb;
383 
384 	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
385 
386 	/* no more interrupts for me */
387 	spin_lock_irq(&lp->lock);
388 	SMC_SELECT_BANK(lp, 2);
389 	SMC_SET_INT_MASK(lp, 0);
390 	pending_skb = lp->pending_tx_skb;
391 	lp->pending_tx_skb = NULL;
392 	spin_unlock_irq(&lp->lock);
393 	if (pending_skb)
394 		dev_kfree_skb(pending_skb);
395 
396 	/* and tell the card to stay away from that nasty outside world */
397 	SMC_SELECT_BANK(lp, 0);
398 	SMC_SET_RCR(lp, RCR_CLEAR);
399 	SMC_SET_TCR(lp, TCR_CLEAR);
400 
401 #ifdef POWER_DOWN
402 	/* finally, shut the chip down */
403 	SMC_SELECT_BANK(lp, 1);
404 	SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
405 #endif
406 }
407 
408 /*
409  * This is the procedure to handle the receipt of a packet.
410  */
411 static inline void  smc_rcv(struct net_device *dev)
412 {
413 	struct smc_local *lp = netdev_priv(dev);
414 	void __iomem *ioaddr = lp->base;
415 	unsigned int packet_number, status, packet_len;
416 
417 	DBG(3, dev, "%s\n", __func__);
418 
419 	packet_number = SMC_GET_RXFIFO(lp);
420 	if (unlikely(packet_number & RXFIFO_REMPTY)) {
421 		PRINTK(dev, "smc_rcv with nothing on FIFO.\n");
422 		return;
423 	}
424 
425 	/* read from start of packet */
426 	SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
427 
428 	/* First two words are status and packet length */
429 	SMC_GET_PKT_HDR(lp, status, packet_len);
430 	packet_len &= 0x07ff;  /* mask off top bits */
431 	DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
432 	    packet_number, status, packet_len, packet_len);
433 
434 	back:
435 	if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
436 		if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
437 			/* accept VLAN packets */
438 			status &= ~RS_TOOLONG;
439 			goto back;
440 		}
441 		if (packet_len < 6) {
442 			/* bloody hardware */
443 			netdev_err(dev, "fubar (rxlen %u status %x\n",
444 				   packet_len, status);
445 			status |= RS_TOOSHORT;
446 		}
447 		SMC_WAIT_MMU_BUSY(lp);
448 		SMC_SET_MMU_CMD(lp, MC_RELEASE);
449 		dev->stats.rx_errors++;
450 		if (status & RS_ALGNERR)
451 			dev->stats.rx_frame_errors++;
452 		if (status & (RS_TOOSHORT | RS_TOOLONG))
453 			dev->stats.rx_length_errors++;
454 		if (status & RS_BADCRC)
455 			dev->stats.rx_crc_errors++;
456 	} else {
457 		struct sk_buff *skb;
458 		unsigned char *data;
459 		unsigned int data_len;
460 
461 		/* set multicast stats */
462 		if (status & RS_MULTICAST)
463 			dev->stats.multicast++;
464 
465 		/*
466 		 * Actual payload is packet_len - 6 (or 5 if odd byte).
467 		 * We want skb_reserve(2) and the final ctrl word
468 		 * (2 bytes, possibly containing the payload odd byte).
469 		 * Furthermore, we add 2 bytes to allow rounding up to
470 		 * multiple of 4 bytes on 32 bit buses.
471 		 * Hence packet_len - 6 + 2 + 2 + 2.
472 		 */
473 		skb = netdev_alloc_skb(dev, packet_len);
474 		if (unlikely(skb == NULL)) {
475 			SMC_WAIT_MMU_BUSY(lp);
476 			SMC_SET_MMU_CMD(lp, MC_RELEASE);
477 			dev->stats.rx_dropped++;
478 			return;
479 		}
480 
481 		/* Align IP header to 32 bits */
482 		skb_reserve(skb, 2);
483 
484 		/* BUG: the LAN91C111 rev A never sets this bit. Force it. */
485 		if (lp->version == 0x90)
486 			status |= RS_ODDFRAME;
487 
488 		/*
489 		 * If odd length: packet_len - 5,
490 		 * otherwise packet_len - 6.
491 		 * With the trailing ctrl byte it's packet_len - 4.
492 		 */
493 		data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
494 		data = skb_put(skb, data_len);
495 		SMC_PULL_DATA(lp, data, packet_len - 4);
496 
497 		SMC_WAIT_MMU_BUSY(lp);
498 		SMC_SET_MMU_CMD(lp, MC_RELEASE);
499 
500 		PRINT_PKT(data, packet_len - 4);
501 
502 		skb->protocol = eth_type_trans(skb, dev);
503 		netif_rx(skb);
504 		dev->stats.rx_packets++;
505 		dev->stats.rx_bytes += data_len;
506 	}
507 }
508 
509 #ifdef CONFIG_SMP
510 /*
511  * On SMP we have the following problem:
512  *
513  * 	A = smc_hardware_send_pkt()
514  * 	B = smc_hard_start_xmit()
515  * 	C = smc_interrupt()
516  *
517  * A and B can never be executed simultaneously.  However, at least on UP,
518  * it is possible (and even desirable) for C to interrupt execution of
519  * A or B in order to have better RX reliability and avoid overruns.
520  * C, just like A and B, must have exclusive access to the chip and
521  * each of them must lock against any other concurrent access.
522  * Unfortunately this is not possible to have C suspend execution of A or
523  * B taking place on another CPU. On UP this is no an issue since A and B
524  * are run from softirq context and C from hard IRQ context, and there is
525  * no other CPU where concurrent access can happen.
526  * If ever there is a way to force at least B and C to always be executed
527  * on the same CPU then we could use read/write locks to protect against
528  * any other concurrent access and C would always interrupt B. But life
529  * isn't that easy in a SMP world...
530  */
531 #define smc_special_trylock(lock, flags)				\
532 ({									\
533 	int __ret;							\
534 	local_irq_save(flags);						\
535 	__ret = spin_trylock(lock);					\
536 	if (!__ret)							\
537 		local_irq_restore(flags);				\
538 	__ret;								\
539 })
540 #define smc_special_lock(lock, flags)		spin_lock_irqsave(lock, flags)
541 #define smc_special_unlock(lock, flags) 	spin_unlock_irqrestore(lock, flags)
542 #else
543 #define smc_special_trylock(lock, flags)	((void)flags, true)
544 #define smc_special_lock(lock, flags)   	do { flags = 0; } while (0)
545 #define smc_special_unlock(lock, flags)	do { flags = 0; } while (0)
546 #endif
547 
548 /*
549  * This is called to actually send a packet to the chip.
550  */
551 static void smc_hardware_send_pkt(unsigned long data)
552 {
553 	struct net_device *dev = (struct net_device *)data;
554 	struct smc_local *lp = netdev_priv(dev);
555 	void __iomem *ioaddr = lp->base;
556 	struct sk_buff *skb;
557 	unsigned int packet_no, len;
558 	unsigned char *buf;
559 	unsigned long flags;
560 
561 	DBG(3, dev, "%s\n", __func__);
562 
563 	if (!smc_special_trylock(&lp->lock, flags)) {
564 		netif_stop_queue(dev);
565 		tasklet_schedule(&lp->tx_task);
566 		return;
567 	}
568 
569 	skb = lp->pending_tx_skb;
570 	if (unlikely(!skb)) {
571 		smc_special_unlock(&lp->lock, flags);
572 		return;
573 	}
574 	lp->pending_tx_skb = NULL;
575 
576 	packet_no = SMC_GET_AR(lp);
577 	if (unlikely(packet_no & AR_FAILED)) {
578 		netdev_err(dev, "Memory allocation failed.\n");
579 		dev->stats.tx_errors++;
580 		dev->stats.tx_fifo_errors++;
581 		smc_special_unlock(&lp->lock, flags);
582 		goto done;
583 	}
584 
585 	/* point to the beginning of the packet */
586 	SMC_SET_PN(lp, packet_no);
587 	SMC_SET_PTR(lp, PTR_AUTOINC);
588 
589 	buf = skb->data;
590 	len = skb->len;
591 	DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
592 	    packet_no, len, len, buf);
593 	PRINT_PKT(buf, len);
594 
595 	/*
596 	 * Send the packet length (+6 for status words, length, and ctl.
597 	 * The card will pad to 64 bytes with zeroes if packet is too small.
598 	 */
599 	SMC_PUT_PKT_HDR(lp, 0, len + 6);
600 
601 	/* send the actual data */
602 	SMC_PUSH_DATA(lp, buf, len & ~1);
603 
604 	/* Send final ctl word with the last byte if there is one */
605 	SMC_outw(lp, ((len & 1) ? (0x2000 | buf[len - 1]) : 0), ioaddr,
606 		 DATA_REG(lp));
607 
608 	/*
609 	 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
610 	 * have the effect of having at most one packet queued for TX
611 	 * in the chip's memory at all time.
612 	 *
613 	 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
614 	 * when memory allocation (MC_ALLOC) does not succeed right away.
615 	 */
616 	if (THROTTLE_TX_PKTS)
617 		netif_stop_queue(dev);
618 
619 	/* queue the packet for TX */
620 	SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
621 	smc_special_unlock(&lp->lock, flags);
622 
623 	netif_trans_update(dev);
624 	dev->stats.tx_packets++;
625 	dev->stats.tx_bytes += len;
626 
627 	SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
628 
629 done:	if (!THROTTLE_TX_PKTS)
630 		netif_wake_queue(dev);
631 
632 	dev_consume_skb_any(skb);
633 }
634 
635 /*
636  * Since I am not sure if I will have enough room in the chip's ram
637  * to store the packet, I call this routine which either sends it
638  * now, or set the card to generates an interrupt when ready
639  * for the packet.
640  */
641 static netdev_tx_t
642 smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
643 {
644 	struct smc_local *lp = netdev_priv(dev);
645 	void __iomem *ioaddr = lp->base;
646 	unsigned int numPages, poll_count, status;
647 	unsigned long flags;
648 
649 	DBG(3, dev, "%s\n", __func__);
650 
651 	BUG_ON(lp->pending_tx_skb != NULL);
652 
653 	/*
654 	 * The MMU wants the number of pages to be the number of 256 bytes
655 	 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
656 	 *
657 	 * The 91C111 ignores the size bits, but earlier models don't.
658 	 *
659 	 * Pkt size for allocating is data length +6 (for additional status
660 	 * words, length and ctl)
661 	 *
662 	 * If odd size then last byte is included in ctl word.
663 	 */
664 	numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
665 	if (unlikely(numPages > 7)) {
666 		netdev_warn(dev, "Far too big packet error.\n");
667 		dev->stats.tx_errors++;
668 		dev->stats.tx_dropped++;
669 		dev_kfree_skb_any(skb);
670 		return NETDEV_TX_OK;
671 	}
672 
673 	smc_special_lock(&lp->lock, flags);
674 
675 	/* now, try to allocate the memory */
676 	SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
677 
678 	/*
679 	 * Poll the chip for a short amount of time in case the
680 	 * allocation succeeds quickly.
681 	 */
682 	poll_count = MEMORY_WAIT_TIME;
683 	do {
684 		status = SMC_GET_INT(lp);
685 		if (status & IM_ALLOC_INT) {
686 			SMC_ACK_INT(lp, IM_ALLOC_INT);
687   			break;
688 		}
689    	} while (--poll_count);
690 
691 	smc_special_unlock(&lp->lock, flags);
692 
693 	lp->pending_tx_skb = skb;
694    	if (!poll_count) {
695 		/* oh well, wait until the chip finds memory later */
696 		netif_stop_queue(dev);
697 		DBG(2, dev, "TX memory allocation deferred.\n");
698 		SMC_ENABLE_INT(lp, IM_ALLOC_INT);
699    	} else {
700 		/*
701 		 * Allocation succeeded: push packet to the chip's own memory
702 		 * immediately.
703 		 */
704 		smc_hardware_send_pkt((unsigned long)dev);
705 	}
706 
707 	return NETDEV_TX_OK;
708 }
709 
710 /*
711  * This handles a TX interrupt, which is only called when:
712  * - a TX error occurred, or
713  * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
714  */
715 static void smc_tx(struct net_device *dev)
716 {
717 	struct smc_local *lp = netdev_priv(dev);
718 	void __iomem *ioaddr = lp->base;
719 	unsigned int saved_packet, packet_no, tx_status, pkt_len;
720 
721 	DBG(3, dev, "%s\n", __func__);
722 
723 	/* If the TX FIFO is empty then nothing to do */
724 	packet_no = SMC_GET_TXFIFO(lp);
725 	if (unlikely(packet_no & TXFIFO_TEMPTY)) {
726 		PRINTK(dev, "smc_tx with nothing on FIFO.\n");
727 		return;
728 	}
729 
730 	/* select packet to read from */
731 	saved_packet = SMC_GET_PN(lp);
732 	SMC_SET_PN(lp, packet_no);
733 
734 	/* read the first word (status word) from this packet */
735 	SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
736 	SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
737 	DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n",
738 	    tx_status, packet_no);
739 
740 	if (!(tx_status & ES_TX_SUC))
741 		dev->stats.tx_errors++;
742 
743 	if (tx_status & ES_LOSTCARR)
744 		dev->stats.tx_carrier_errors++;
745 
746 	if (tx_status & (ES_LATCOL | ES_16COL)) {
747 		PRINTK(dev, "%s occurred on last xmit\n",
748 		       (tx_status & ES_LATCOL) ?
749 			"late collision" : "too many collisions");
750 		dev->stats.tx_window_errors++;
751 		if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
752 			netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n");
753 		}
754 	}
755 
756 	/* kill the packet */
757 	SMC_WAIT_MMU_BUSY(lp);
758 	SMC_SET_MMU_CMD(lp, MC_FREEPKT);
759 
760 	/* Don't restore Packet Number Reg until busy bit is cleared */
761 	SMC_WAIT_MMU_BUSY(lp);
762 	SMC_SET_PN(lp, saved_packet);
763 
764 	/* re-enable transmit */
765 	SMC_SELECT_BANK(lp, 0);
766 	SMC_SET_TCR(lp, lp->tcr_cur_mode);
767 	SMC_SELECT_BANK(lp, 2);
768 }
769 
770 
771 /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
772 
773 static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
774 {
775 	struct smc_local *lp = netdev_priv(dev);
776 	void __iomem *ioaddr = lp->base;
777 	unsigned int mii_reg, mask;
778 
779 	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
780 	mii_reg |= MII_MDOE;
781 
782 	for (mask = 1 << (bits - 1); mask; mask >>= 1) {
783 		if (val & mask)
784 			mii_reg |= MII_MDO;
785 		else
786 			mii_reg &= ~MII_MDO;
787 
788 		SMC_SET_MII(lp, mii_reg);
789 		udelay(MII_DELAY);
790 		SMC_SET_MII(lp, mii_reg | MII_MCLK);
791 		udelay(MII_DELAY);
792 	}
793 }
794 
795 static unsigned int smc_mii_in(struct net_device *dev, int bits)
796 {
797 	struct smc_local *lp = netdev_priv(dev);
798 	void __iomem *ioaddr = lp->base;
799 	unsigned int mii_reg, mask, val;
800 
801 	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
802 	SMC_SET_MII(lp, mii_reg);
803 
804 	for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
805 		if (SMC_GET_MII(lp) & MII_MDI)
806 			val |= mask;
807 
808 		SMC_SET_MII(lp, mii_reg);
809 		udelay(MII_DELAY);
810 		SMC_SET_MII(lp, mii_reg | MII_MCLK);
811 		udelay(MII_DELAY);
812 	}
813 
814 	return val;
815 }
816 
817 /*
818  * Reads a register from the MII Management serial interface
819  */
820 static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
821 {
822 	struct smc_local *lp = netdev_priv(dev);
823 	void __iomem *ioaddr = lp->base;
824 	unsigned int phydata;
825 
826 	SMC_SELECT_BANK(lp, 3);
827 
828 	/* Idle - 32 ones */
829 	smc_mii_out(dev, 0xffffffff, 32);
830 
831 	/* Start code (01) + read (10) + phyaddr + phyreg */
832 	smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
833 
834 	/* Turnaround (2bits) + phydata */
835 	phydata = smc_mii_in(dev, 18);
836 
837 	/* Return to idle state */
838 	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
839 
840 	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
841 	    __func__, phyaddr, phyreg, phydata);
842 
843 	SMC_SELECT_BANK(lp, 2);
844 	return phydata;
845 }
846 
847 /*
848  * Writes a register to the MII Management serial interface
849  */
850 static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
851 			  int phydata)
852 {
853 	struct smc_local *lp = netdev_priv(dev);
854 	void __iomem *ioaddr = lp->base;
855 
856 	SMC_SELECT_BANK(lp, 3);
857 
858 	/* Idle - 32 ones */
859 	smc_mii_out(dev, 0xffffffff, 32);
860 
861 	/* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
862 	smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
863 
864 	/* Return to idle state */
865 	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
866 
867 	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
868 	    __func__, phyaddr, phyreg, phydata);
869 
870 	SMC_SELECT_BANK(lp, 2);
871 }
872 
873 /*
874  * Finds and reports the PHY address
875  */
876 static void smc_phy_detect(struct net_device *dev)
877 {
878 	struct smc_local *lp = netdev_priv(dev);
879 	int phyaddr;
880 
881 	DBG(2, dev, "%s\n", __func__);
882 
883 	lp->phy_type = 0;
884 
885 	/*
886 	 * Scan all 32 PHY addresses if necessary, starting at
887 	 * PHY#1 to PHY#31, and then PHY#0 last.
888 	 */
889 	for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
890 		unsigned int id1, id2;
891 
892 		/* Read the PHY identifiers */
893 		id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
894 		id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
895 
896 		DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n",
897 		    id1, id2);
898 
899 		/* Make sure it is a valid identifier */
900 		if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
901 		    id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
902 			/* Save the PHY's address */
903 			lp->mii.phy_id = phyaddr & 31;
904 			lp->phy_type = id1 << 16 | id2;
905 			break;
906 		}
907 	}
908 }
909 
910 /*
911  * Sets the PHY to a configuration as determined by the user
912  */
913 static int smc_phy_fixed(struct net_device *dev)
914 {
915 	struct smc_local *lp = netdev_priv(dev);
916 	void __iomem *ioaddr = lp->base;
917 	int phyaddr = lp->mii.phy_id;
918 	int bmcr, cfg1;
919 
920 	DBG(3, dev, "%s\n", __func__);
921 
922 	/* Enter Link Disable state */
923 	cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
924 	cfg1 |= PHY_CFG1_LNKDIS;
925 	smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
926 
927 	/*
928 	 * Set our fixed capabilities
929 	 * Disable auto-negotiation
930 	 */
931 	bmcr = 0;
932 
933 	if (lp->ctl_rfduplx)
934 		bmcr |= BMCR_FULLDPLX;
935 
936 	if (lp->ctl_rspeed == 100)
937 		bmcr |= BMCR_SPEED100;
938 
939 	/* Write our capabilities to the phy control register */
940 	smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
941 
942 	/* Re-Configure the Receive/Phy Control register */
943 	SMC_SELECT_BANK(lp, 0);
944 	SMC_SET_RPC(lp, lp->rpc_cur_mode);
945 	SMC_SELECT_BANK(lp, 2);
946 
947 	return 1;
948 }
949 
950 /**
951  * smc_phy_reset - reset the phy
952  * @dev: net device
953  * @phy: phy address
954  *
955  * Issue a software reset for the specified PHY and
956  * wait up to 100ms for the reset to complete.  We should
957  * not access the PHY for 50ms after issuing the reset.
958  *
959  * The time to wait appears to be dependent on the PHY.
960  *
961  * Must be called with lp->lock locked.
962  */
963 static int smc_phy_reset(struct net_device *dev, int phy)
964 {
965 	struct smc_local *lp = netdev_priv(dev);
966 	unsigned int bmcr;
967 	int timeout;
968 
969 	smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
970 
971 	for (timeout = 2; timeout; timeout--) {
972 		spin_unlock_irq(&lp->lock);
973 		msleep(50);
974 		spin_lock_irq(&lp->lock);
975 
976 		bmcr = smc_phy_read(dev, phy, MII_BMCR);
977 		if (!(bmcr & BMCR_RESET))
978 			break;
979 	}
980 
981 	return bmcr & BMCR_RESET;
982 }
983 
984 /**
985  * smc_phy_powerdown - powerdown phy
986  * @dev: net device
987  *
988  * Power down the specified PHY
989  */
990 static void smc_phy_powerdown(struct net_device *dev)
991 {
992 	struct smc_local *lp = netdev_priv(dev);
993 	unsigned int bmcr;
994 	int phy = lp->mii.phy_id;
995 
996 	if (lp->phy_type == 0)
997 		return;
998 
999 	/* We need to ensure that no calls to smc_phy_configure are
1000 	   pending.
1001 	*/
1002 	cancel_work_sync(&lp->phy_configure);
1003 
1004 	bmcr = smc_phy_read(dev, phy, MII_BMCR);
1005 	smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
1006 }
1007 
1008 /**
1009  * smc_phy_check_media - check the media status and adjust TCR
1010  * @dev: net device
1011  * @init: set true for initialisation
1012  *
1013  * Select duplex mode depending on negotiation state.  This
1014  * also updates our carrier state.
1015  */
1016 static void smc_phy_check_media(struct net_device *dev, int init)
1017 {
1018 	struct smc_local *lp = netdev_priv(dev);
1019 	void __iomem *ioaddr = lp->base;
1020 
1021 	if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1022 		/* duplex state has changed */
1023 		if (lp->mii.full_duplex) {
1024 			lp->tcr_cur_mode |= TCR_SWFDUP;
1025 		} else {
1026 			lp->tcr_cur_mode &= ~TCR_SWFDUP;
1027 		}
1028 
1029 		SMC_SELECT_BANK(lp, 0);
1030 		SMC_SET_TCR(lp, lp->tcr_cur_mode);
1031 	}
1032 }
1033 
1034 /*
1035  * Configures the specified PHY through the MII management interface
1036  * using Autonegotiation.
1037  * Calls smc_phy_fixed() if the user has requested a certain config.
1038  * If RPC ANEG bit is set, the media selection is dependent purely on
1039  * the selection by the MII (either in the MII BMCR reg or the result
1040  * of autonegotiation.)  If the RPC ANEG bit is cleared, the selection
1041  * is controlled by the RPC SPEED and RPC DPLX bits.
1042  */
1043 static void smc_phy_configure(struct work_struct *work)
1044 {
1045 	struct smc_local *lp =
1046 		container_of(work, struct smc_local, phy_configure);
1047 	struct net_device *dev = lp->dev;
1048 	void __iomem *ioaddr = lp->base;
1049 	int phyaddr = lp->mii.phy_id;
1050 	int my_phy_caps; /* My PHY capabilities */
1051 	int my_ad_caps; /* My Advertised capabilities */
1052 	int status;
1053 
1054 	DBG(3, dev, "smc_program_phy()\n");
1055 
1056 	spin_lock_irq(&lp->lock);
1057 
1058 	/*
1059 	 * We should not be called if phy_type is zero.
1060 	 */
1061 	if (lp->phy_type == 0)
1062 		goto smc_phy_configure_exit;
1063 
1064 	if (smc_phy_reset(dev, phyaddr)) {
1065 		netdev_info(dev, "PHY reset timed out\n");
1066 		goto smc_phy_configure_exit;
1067 	}
1068 
1069 	/*
1070 	 * Enable PHY Interrupts (for register 18)
1071 	 * Interrupts listed here are disabled
1072 	 */
1073 	smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1074 		PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1075 		PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1076 		PHY_INT_SPDDET | PHY_INT_DPLXDET);
1077 
1078 	/* Configure the Receive/Phy Control register */
1079 	SMC_SELECT_BANK(lp, 0);
1080 	SMC_SET_RPC(lp, lp->rpc_cur_mode);
1081 
1082 	/* If the user requested no auto neg, then go set his request */
1083 	if (lp->mii.force_media) {
1084 		smc_phy_fixed(dev);
1085 		goto smc_phy_configure_exit;
1086 	}
1087 
1088 	/* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1089 	my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1090 
1091 	if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1092 		netdev_info(dev, "Auto negotiation NOT supported\n");
1093 		smc_phy_fixed(dev);
1094 		goto smc_phy_configure_exit;
1095 	}
1096 
1097 	my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1098 
1099 	if (my_phy_caps & BMSR_100BASE4)
1100 		my_ad_caps |= ADVERTISE_100BASE4;
1101 	if (my_phy_caps & BMSR_100FULL)
1102 		my_ad_caps |= ADVERTISE_100FULL;
1103 	if (my_phy_caps & BMSR_100HALF)
1104 		my_ad_caps |= ADVERTISE_100HALF;
1105 	if (my_phy_caps & BMSR_10FULL)
1106 		my_ad_caps |= ADVERTISE_10FULL;
1107 	if (my_phy_caps & BMSR_10HALF)
1108 		my_ad_caps |= ADVERTISE_10HALF;
1109 
1110 	/* Disable capabilities not selected by our user */
1111 	if (lp->ctl_rspeed != 100)
1112 		my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1113 
1114 	if (!lp->ctl_rfduplx)
1115 		my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1116 
1117 	/* Update our Auto-Neg Advertisement Register */
1118 	smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1119 	lp->mii.advertising = my_ad_caps;
1120 
1121 	/*
1122 	 * Read the register back.  Without this, it appears that when
1123 	 * auto-negotiation is restarted, sometimes it isn't ready and
1124 	 * the link does not come up.
1125 	 */
1126 	status = smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1127 
1128 	DBG(2, dev, "phy caps=%x\n", my_phy_caps);
1129 	DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps);
1130 
1131 	/* Restart auto-negotiation process in order to advertise my caps */
1132 	smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1133 
1134 	smc_phy_check_media(dev, 1);
1135 
1136 smc_phy_configure_exit:
1137 	SMC_SELECT_BANK(lp, 2);
1138 	spin_unlock_irq(&lp->lock);
1139 }
1140 
1141 /*
1142  * smc_phy_interrupt
1143  *
1144  * Purpose:  Handle interrupts relating to PHY register 18. This is
1145  *  called from the "hard" interrupt handler under our private spinlock.
1146  */
1147 static void smc_phy_interrupt(struct net_device *dev)
1148 {
1149 	struct smc_local *lp = netdev_priv(dev);
1150 	int phyaddr = lp->mii.phy_id;
1151 	int phy18;
1152 
1153 	DBG(2, dev, "%s\n", __func__);
1154 
1155 	if (lp->phy_type == 0)
1156 		return;
1157 
1158 	for(;;) {
1159 		smc_phy_check_media(dev, 0);
1160 
1161 		/* Read PHY Register 18, Status Output */
1162 		phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1163 		if ((phy18 & PHY_INT_INT) == 0)
1164 			break;
1165 	}
1166 }
1167 
1168 /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1169 
1170 static void smc_10bt_check_media(struct net_device *dev, int init)
1171 {
1172 	struct smc_local *lp = netdev_priv(dev);
1173 	void __iomem *ioaddr = lp->base;
1174 	unsigned int old_carrier, new_carrier;
1175 
1176 	old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1177 
1178 	SMC_SELECT_BANK(lp, 0);
1179 	new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1180 	SMC_SELECT_BANK(lp, 2);
1181 
1182 	if (init || (old_carrier != new_carrier)) {
1183 		if (!new_carrier) {
1184 			netif_carrier_off(dev);
1185 		} else {
1186 			netif_carrier_on(dev);
1187 		}
1188 		if (netif_msg_link(lp))
1189 			netdev_info(dev, "link %s\n",
1190 				    new_carrier ? "up" : "down");
1191 	}
1192 }
1193 
1194 static void smc_eph_interrupt(struct net_device *dev)
1195 {
1196 	struct smc_local *lp = netdev_priv(dev);
1197 	void __iomem *ioaddr = lp->base;
1198 	unsigned int ctl;
1199 
1200 	smc_10bt_check_media(dev, 0);
1201 
1202 	SMC_SELECT_BANK(lp, 1);
1203 	ctl = SMC_GET_CTL(lp);
1204 	SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1205 	SMC_SET_CTL(lp, ctl);
1206 	SMC_SELECT_BANK(lp, 2);
1207 }
1208 
1209 /*
1210  * This is the main routine of the driver, to handle the device when
1211  * it needs some attention.
1212  */
1213 static irqreturn_t smc_interrupt(int irq, void *dev_id)
1214 {
1215 	struct net_device *dev = dev_id;
1216 	struct smc_local *lp = netdev_priv(dev);
1217 	void __iomem *ioaddr = lp->base;
1218 	int status, mask, timeout, card_stats;
1219 	int saved_pointer;
1220 
1221 	DBG(3, dev, "%s\n", __func__);
1222 
1223 	spin_lock(&lp->lock);
1224 
1225 	/* A preamble may be used when there is a potential race
1226 	 * between the interruptible transmit functions and this
1227 	 * ISR. */
1228 	SMC_INTERRUPT_PREAMBLE;
1229 
1230 	saved_pointer = SMC_GET_PTR(lp);
1231 	mask = SMC_GET_INT_MASK(lp);
1232 	SMC_SET_INT_MASK(lp, 0);
1233 
1234 	/* set a timeout value, so I don't stay here forever */
1235 	timeout = MAX_IRQ_LOOPS;
1236 
1237 	do {
1238 		status = SMC_GET_INT(lp);
1239 
1240 		DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1241 		    status, mask,
1242 		    ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1243 		       meminfo = SMC_GET_MIR(lp);
1244 		       SMC_SELECT_BANK(lp, 2); meminfo; }),
1245 		    SMC_GET_FIFO(lp));
1246 
1247 		status &= mask;
1248 		if (!status)
1249 			break;
1250 
1251 		if (status & IM_TX_INT) {
1252 			/* do this before RX as it will free memory quickly */
1253 			DBG(3, dev, "TX int\n");
1254 			smc_tx(dev);
1255 			SMC_ACK_INT(lp, IM_TX_INT);
1256 			if (THROTTLE_TX_PKTS)
1257 				netif_wake_queue(dev);
1258 		} else if (status & IM_RCV_INT) {
1259 			DBG(3, dev, "RX irq\n");
1260 			smc_rcv(dev);
1261 		} else if (status & IM_ALLOC_INT) {
1262 			DBG(3, dev, "Allocation irq\n");
1263 			tasklet_hi_schedule(&lp->tx_task);
1264 			mask &= ~IM_ALLOC_INT;
1265 		} else if (status & IM_TX_EMPTY_INT) {
1266 			DBG(3, dev, "TX empty\n");
1267 			mask &= ~IM_TX_EMPTY_INT;
1268 
1269 			/* update stats */
1270 			SMC_SELECT_BANK(lp, 0);
1271 			card_stats = SMC_GET_COUNTER(lp);
1272 			SMC_SELECT_BANK(lp, 2);
1273 
1274 			/* single collisions */
1275 			dev->stats.collisions += card_stats & 0xF;
1276 			card_stats >>= 4;
1277 
1278 			/* multiple collisions */
1279 			dev->stats.collisions += card_stats & 0xF;
1280 		} else if (status & IM_RX_OVRN_INT) {
1281 			DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n",
1282 			    ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1283 			       eph_st = SMC_GET_EPH_STATUS(lp);
1284 			       SMC_SELECT_BANK(lp, 2); eph_st; }));
1285 			SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1286 			dev->stats.rx_errors++;
1287 			dev->stats.rx_fifo_errors++;
1288 		} else if (status & IM_EPH_INT) {
1289 			smc_eph_interrupt(dev);
1290 		} else if (status & IM_MDINT) {
1291 			SMC_ACK_INT(lp, IM_MDINT);
1292 			smc_phy_interrupt(dev);
1293 		} else if (status & IM_ERCV_INT) {
1294 			SMC_ACK_INT(lp, IM_ERCV_INT);
1295 			PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n");
1296 		}
1297 	} while (--timeout);
1298 
1299 	/* restore register states */
1300 	SMC_SET_PTR(lp, saved_pointer);
1301 	SMC_SET_INT_MASK(lp, mask);
1302 	spin_unlock(&lp->lock);
1303 
1304 #ifndef CONFIG_NET_POLL_CONTROLLER
1305 	if (timeout == MAX_IRQ_LOOPS)
1306 		PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n",
1307 		       mask);
1308 #endif
1309 	DBG(3, dev, "Interrupt done (%d loops)\n",
1310 	    MAX_IRQ_LOOPS - timeout);
1311 
1312 	/*
1313 	 * We return IRQ_HANDLED unconditionally here even if there was
1314 	 * nothing to do.  There is a possibility that a packet might
1315 	 * get enqueued into the chip right after TX_EMPTY_INT is raised
1316 	 * but just before the CPU acknowledges the IRQ.
1317 	 * Better take an unneeded IRQ in some occasions than complexifying
1318 	 * the code for all cases.
1319 	 */
1320 	return IRQ_HANDLED;
1321 }
1322 
1323 #ifdef CONFIG_NET_POLL_CONTROLLER
1324 /*
1325  * Polling receive - used by netconsole and other diagnostic tools
1326  * to allow network i/o with interrupts disabled.
1327  */
1328 static void smc_poll_controller(struct net_device *dev)
1329 {
1330 	disable_irq(dev->irq);
1331 	smc_interrupt(dev->irq, dev);
1332 	enable_irq(dev->irq);
1333 }
1334 #endif
1335 
1336 /* Our watchdog timed out. Called by the networking layer */
1337 static void smc_timeout(struct net_device *dev)
1338 {
1339 	struct smc_local *lp = netdev_priv(dev);
1340 	void __iomem *ioaddr = lp->base;
1341 	int status, mask, eph_st, meminfo, fifo;
1342 
1343 	DBG(2, dev, "%s\n", __func__);
1344 
1345 	spin_lock_irq(&lp->lock);
1346 	status = SMC_GET_INT(lp);
1347 	mask = SMC_GET_INT_MASK(lp);
1348 	fifo = SMC_GET_FIFO(lp);
1349 	SMC_SELECT_BANK(lp, 0);
1350 	eph_st = SMC_GET_EPH_STATUS(lp);
1351 	meminfo = SMC_GET_MIR(lp);
1352 	SMC_SELECT_BANK(lp, 2);
1353 	spin_unlock_irq(&lp->lock);
1354 	PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1355 	       status, mask, meminfo, fifo, eph_st);
1356 
1357 	smc_reset(dev);
1358 	smc_enable(dev);
1359 
1360 	/*
1361 	 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1362 	 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1363 	 * which calls schedule().  Hence we use a work queue.
1364 	 */
1365 	if (lp->phy_type != 0)
1366 		schedule_work(&lp->phy_configure);
1367 
1368 	/* We can accept TX packets again */
1369 	netif_trans_update(dev); /* prevent tx timeout */
1370 	netif_wake_queue(dev);
1371 }
1372 
1373 /*
1374  * This routine will, depending on the values passed to it,
1375  * either make it accept multicast packets, go into
1376  * promiscuous mode (for TCPDUMP and cousins) or accept
1377  * a select set of multicast packets
1378  */
1379 static void smc_set_multicast_list(struct net_device *dev)
1380 {
1381 	struct smc_local *lp = netdev_priv(dev);
1382 	void __iomem *ioaddr = lp->base;
1383 	unsigned char multicast_table[8];
1384 	int update_multicast = 0;
1385 
1386 	DBG(2, dev, "%s\n", __func__);
1387 
1388 	if (dev->flags & IFF_PROMISC) {
1389 		DBG(2, dev, "RCR_PRMS\n");
1390 		lp->rcr_cur_mode |= RCR_PRMS;
1391 	}
1392 
1393 /* BUG?  I never disable promiscuous mode if multicasting was turned on.
1394    Now, I turn off promiscuous mode, but I don't do anything to multicasting
1395    when promiscuous mode is turned on.
1396 */
1397 
1398 	/*
1399 	 * Here, I am setting this to accept all multicast packets.
1400 	 * I don't need to zero the multicast table, because the flag is
1401 	 * checked before the table is
1402 	 */
1403 	else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1404 		DBG(2, dev, "RCR_ALMUL\n");
1405 		lp->rcr_cur_mode |= RCR_ALMUL;
1406 	}
1407 
1408 	/*
1409 	 * This sets the internal hardware table to filter out unwanted
1410 	 * multicast packets before they take up memory.
1411 	 *
1412 	 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1413 	 * address are the offset into the table.  If that bit is 1, then the
1414 	 * multicast packet is accepted.  Otherwise, it's dropped silently.
1415 	 *
1416 	 * To use the 6 bits as an offset into the table, the high 3 bits are
1417 	 * the number of the 8 bit register, while the low 3 bits are the bit
1418 	 * within that register.
1419 	 */
1420 	else if (!netdev_mc_empty(dev)) {
1421 		struct netdev_hw_addr *ha;
1422 
1423 		/* table for flipping the order of 3 bits */
1424 		static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1425 
1426 		/* start with a table of all zeros: reject all */
1427 		memset(multicast_table, 0, sizeof(multicast_table));
1428 
1429 		netdev_for_each_mc_addr(ha, dev) {
1430 			int position;
1431 
1432 			/* only use the low order bits */
1433 			position = crc32_le(~0, ha->addr, 6) & 0x3f;
1434 
1435 			/* do some messy swapping to put the bit in the right spot */
1436 			multicast_table[invert3[position&7]] |=
1437 				(1<<invert3[(position>>3)&7]);
1438 		}
1439 
1440 		/* be sure I get rid of flags I might have set */
1441 		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1442 
1443 		/* now, the table can be loaded into the chipset */
1444 		update_multicast = 1;
1445 	} else  {
1446 		DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n");
1447 		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1448 
1449 		/*
1450 		 * since I'm disabling all multicast entirely, I need to
1451 		 * clear the multicast list
1452 		 */
1453 		memset(multicast_table, 0, sizeof(multicast_table));
1454 		update_multicast = 1;
1455 	}
1456 
1457 	spin_lock_irq(&lp->lock);
1458 	SMC_SELECT_BANK(lp, 0);
1459 	SMC_SET_RCR(lp, lp->rcr_cur_mode);
1460 	if (update_multicast) {
1461 		SMC_SELECT_BANK(lp, 3);
1462 		SMC_SET_MCAST(lp, multicast_table);
1463 	}
1464 	SMC_SELECT_BANK(lp, 2);
1465 	spin_unlock_irq(&lp->lock);
1466 }
1467 
1468 
1469 /*
1470  * Open and Initialize the board
1471  *
1472  * Set up everything, reset the card, etc..
1473  */
1474 static int
1475 smc_open(struct net_device *dev)
1476 {
1477 	struct smc_local *lp = netdev_priv(dev);
1478 
1479 	DBG(2, dev, "%s\n", __func__);
1480 
1481 	/* Setup the default Register Modes */
1482 	lp->tcr_cur_mode = TCR_DEFAULT;
1483 	lp->rcr_cur_mode = RCR_DEFAULT;
1484 	lp->rpc_cur_mode = RPC_DEFAULT |
1485 				lp->cfg.leda << RPC_LSXA_SHFT |
1486 				lp->cfg.ledb << RPC_LSXB_SHFT;
1487 
1488 	/*
1489 	 * If we are not using a MII interface, we need to
1490 	 * monitor our own carrier signal to detect faults.
1491 	 */
1492 	if (lp->phy_type == 0)
1493 		lp->tcr_cur_mode |= TCR_MON_CSN;
1494 
1495 	/* reset the hardware */
1496 	smc_reset(dev);
1497 	smc_enable(dev);
1498 
1499 	/* Configure the PHY, initialize the link state */
1500 	if (lp->phy_type != 0)
1501 		smc_phy_configure(&lp->phy_configure);
1502 	else {
1503 		spin_lock_irq(&lp->lock);
1504 		smc_10bt_check_media(dev, 1);
1505 		spin_unlock_irq(&lp->lock);
1506 	}
1507 
1508 	netif_start_queue(dev);
1509 	return 0;
1510 }
1511 
1512 /*
1513  * smc_close
1514  *
1515  * this makes the board clean up everything that it can
1516  * and not talk to the outside world.   Caused by
1517  * an 'ifconfig ethX down'
1518  */
1519 static int smc_close(struct net_device *dev)
1520 {
1521 	struct smc_local *lp = netdev_priv(dev);
1522 
1523 	DBG(2, dev, "%s\n", __func__);
1524 
1525 	netif_stop_queue(dev);
1526 	netif_carrier_off(dev);
1527 
1528 	/* clear everything */
1529 	smc_shutdown(dev);
1530 	tasklet_kill(&lp->tx_task);
1531 	smc_phy_powerdown(dev);
1532 	return 0;
1533 }
1534 
1535 /*
1536  * Ethtool support
1537  */
1538 static int
1539 smc_ethtool_get_link_ksettings(struct net_device *dev,
1540 			       struct ethtool_link_ksettings *cmd)
1541 {
1542 	struct smc_local *lp = netdev_priv(dev);
1543 
1544 	if (lp->phy_type != 0) {
1545 		spin_lock_irq(&lp->lock);
1546 		mii_ethtool_get_link_ksettings(&lp->mii, cmd);
1547 		spin_unlock_irq(&lp->lock);
1548 	} else {
1549 		u32 supported = SUPPORTED_10baseT_Half |
1550 				 SUPPORTED_10baseT_Full |
1551 				 SUPPORTED_TP | SUPPORTED_AUI;
1552 
1553 		if (lp->ctl_rspeed == 10)
1554 			cmd->base.speed = SPEED_10;
1555 		else if (lp->ctl_rspeed == 100)
1556 			cmd->base.speed = SPEED_100;
1557 
1558 		cmd->base.autoneg = AUTONEG_DISABLE;
1559 		cmd->base.port = 0;
1560 		cmd->base.duplex = lp->tcr_cur_mode & TCR_SWFDUP ?
1561 			DUPLEX_FULL : DUPLEX_HALF;
1562 
1563 		ethtool_convert_legacy_u32_to_link_mode(
1564 			cmd->link_modes.supported, supported);
1565 	}
1566 
1567 	return 0;
1568 }
1569 
1570 static int
1571 smc_ethtool_set_link_ksettings(struct net_device *dev,
1572 			       const struct ethtool_link_ksettings *cmd)
1573 {
1574 	struct smc_local *lp = netdev_priv(dev);
1575 	int ret;
1576 
1577 	if (lp->phy_type != 0) {
1578 		spin_lock_irq(&lp->lock);
1579 		ret = mii_ethtool_set_link_ksettings(&lp->mii, cmd);
1580 		spin_unlock_irq(&lp->lock);
1581 	} else {
1582 		if (cmd->base.autoneg != AUTONEG_DISABLE ||
1583 		    cmd->base.speed != SPEED_10 ||
1584 		    (cmd->base.duplex != DUPLEX_HALF &&
1585 		     cmd->base.duplex != DUPLEX_FULL) ||
1586 		    (cmd->base.port != PORT_TP && cmd->base.port != PORT_AUI))
1587 			return -EINVAL;
1588 
1589 //		lp->port = cmd->base.port;
1590 		lp->ctl_rfduplx = cmd->base.duplex == DUPLEX_FULL;
1591 
1592 //		if (netif_running(dev))
1593 //			smc_set_port(dev);
1594 
1595 		ret = 0;
1596 	}
1597 
1598 	return ret;
1599 }
1600 
1601 static void
1602 smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1603 {
1604 	strlcpy(info->driver, CARDNAME, sizeof(info->driver));
1605 	strlcpy(info->version, version, sizeof(info->version));
1606 	strlcpy(info->bus_info, dev_name(dev->dev.parent),
1607 		sizeof(info->bus_info));
1608 }
1609 
1610 static int smc_ethtool_nwayreset(struct net_device *dev)
1611 {
1612 	struct smc_local *lp = netdev_priv(dev);
1613 	int ret = -EINVAL;
1614 
1615 	if (lp->phy_type != 0) {
1616 		spin_lock_irq(&lp->lock);
1617 		ret = mii_nway_restart(&lp->mii);
1618 		spin_unlock_irq(&lp->lock);
1619 	}
1620 
1621 	return ret;
1622 }
1623 
1624 static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1625 {
1626 	struct smc_local *lp = netdev_priv(dev);
1627 	return lp->msg_enable;
1628 }
1629 
1630 static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1631 {
1632 	struct smc_local *lp = netdev_priv(dev);
1633 	lp->msg_enable = level;
1634 }
1635 
1636 static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1637 {
1638 	u16 ctl;
1639 	struct smc_local *lp = netdev_priv(dev);
1640 	void __iomem *ioaddr = lp->base;
1641 
1642 	spin_lock_irq(&lp->lock);
1643 	/* load word into GP register */
1644 	SMC_SELECT_BANK(lp, 1);
1645 	SMC_SET_GP(lp, word);
1646 	/* set the address to put the data in EEPROM */
1647 	SMC_SELECT_BANK(lp, 2);
1648 	SMC_SET_PTR(lp, addr);
1649 	/* tell it to write */
1650 	SMC_SELECT_BANK(lp, 1);
1651 	ctl = SMC_GET_CTL(lp);
1652 	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1653 	/* wait for it to finish */
1654 	do {
1655 		udelay(1);
1656 	} while (SMC_GET_CTL(lp) & CTL_STORE);
1657 	/* clean up */
1658 	SMC_SET_CTL(lp, ctl);
1659 	SMC_SELECT_BANK(lp, 2);
1660 	spin_unlock_irq(&lp->lock);
1661 	return 0;
1662 }
1663 
1664 static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1665 {
1666 	u16 ctl;
1667 	struct smc_local *lp = netdev_priv(dev);
1668 	void __iomem *ioaddr = lp->base;
1669 
1670 	spin_lock_irq(&lp->lock);
1671 	/* set the EEPROM address to get the data from */
1672 	SMC_SELECT_BANK(lp, 2);
1673 	SMC_SET_PTR(lp, addr | PTR_READ);
1674 	/* tell it to load */
1675 	SMC_SELECT_BANK(lp, 1);
1676 	SMC_SET_GP(lp, 0xffff);	/* init to known */
1677 	ctl = SMC_GET_CTL(lp);
1678 	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1679 	/* wait for it to finish */
1680 	do {
1681 		udelay(1);
1682 	} while (SMC_GET_CTL(lp) & CTL_RELOAD);
1683 	/* read word from GP register */
1684 	*word = SMC_GET_GP(lp);
1685 	/* clean up */
1686 	SMC_SET_CTL(lp, ctl);
1687 	SMC_SELECT_BANK(lp, 2);
1688 	spin_unlock_irq(&lp->lock);
1689 	return 0;
1690 }
1691 
1692 static int smc_ethtool_geteeprom_len(struct net_device *dev)
1693 {
1694 	return 0x23 * 2;
1695 }
1696 
1697 static int smc_ethtool_geteeprom(struct net_device *dev,
1698 		struct ethtool_eeprom *eeprom, u8 *data)
1699 {
1700 	int i;
1701 	int imax;
1702 
1703 	DBG(1, dev, "Reading %d bytes at %d(0x%x)\n",
1704 		eeprom->len, eeprom->offset, eeprom->offset);
1705 	imax = smc_ethtool_geteeprom_len(dev);
1706 	for (i = 0; i < eeprom->len; i += 2) {
1707 		int ret;
1708 		u16 wbuf;
1709 		int offset = i + eeprom->offset;
1710 		if (offset > imax)
1711 			break;
1712 		ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1713 		if (ret != 0)
1714 			return ret;
1715 		DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1716 		data[i] = (wbuf >> 8) & 0xff;
1717 		data[i+1] = wbuf & 0xff;
1718 	}
1719 	return 0;
1720 }
1721 
1722 static int smc_ethtool_seteeprom(struct net_device *dev,
1723 		struct ethtool_eeprom *eeprom, u8 *data)
1724 {
1725 	int i;
1726 	int imax;
1727 
1728 	DBG(1, dev, "Writing %d bytes to %d(0x%x)\n",
1729 	    eeprom->len, eeprom->offset, eeprom->offset);
1730 	imax = smc_ethtool_geteeprom_len(dev);
1731 	for (i = 0; i < eeprom->len; i += 2) {
1732 		int ret;
1733 		u16 wbuf;
1734 		int offset = i + eeprom->offset;
1735 		if (offset > imax)
1736 			break;
1737 		wbuf = (data[i] << 8) | data[i + 1];
1738 		DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1739 		ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1740 		if (ret != 0)
1741 			return ret;
1742 	}
1743 	return 0;
1744 }
1745 
1746 
1747 static const struct ethtool_ops smc_ethtool_ops = {
1748 	.get_drvinfo	= smc_ethtool_getdrvinfo,
1749 
1750 	.get_msglevel	= smc_ethtool_getmsglevel,
1751 	.set_msglevel	= smc_ethtool_setmsglevel,
1752 	.nway_reset	= smc_ethtool_nwayreset,
1753 	.get_link	= ethtool_op_get_link,
1754 	.get_eeprom_len = smc_ethtool_geteeprom_len,
1755 	.get_eeprom	= smc_ethtool_geteeprom,
1756 	.set_eeprom	= smc_ethtool_seteeprom,
1757 	.get_link_ksettings	= smc_ethtool_get_link_ksettings,
1758 	.set_link_ksettings	= smc_ethtool_set_link_ksettings,
1759 };
1760 
1761 static const struct net_device_ops smc_netdev_ops = {
1762 	.ndo_open		= smc_open,
1763 	.ndo_stop		= smc_close,
1764 	.ndo_start_xmit		= smc_hard_start_xmit,
1765 	.ndo_tx_timeout		= smc_timeout,
1766 	.ndo_set_rx_mode	= smc_set_multicast_list,
1767 	.ndo_validate_addr	= eth_validate_addr,
1768 	.ndo_set_mac_address 	= eth_mac_addr,
1769 #ifdef CONFIG_NET_POLL_CONTROLLER
1770 	.ndo_poll_controller	= smc_poll_controller,
1771 #endif
1772 };
1773 
1774 /*
1775  * smc_findirq
1776  *
1777  * This routine has a simple purpose -- make the SMC chip generate an
1778  * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1779  */
1780 /*
1781  * does this still work?
1782  *
1783  * I just deleted auto_irq.c, since it was never built...
1784  *   --jgarzik
1785  */
1786 static int smc_findirq(struct smc_local *lp)
1787 {
1788 	void __iomem *ioaddr = lp->base;
1789 	int timeout = 20;
1790 	unsigned long cookie;
1791 
1792 	DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__);
1793 
1794 	cookie = probe_irq_on();
1795 
1796 	/*
1797 	 * What I try to do here is trigger an ALLOC_INT. This is done
1798 	 * by allocating a small chunk of memory, which will give an interrupt
1799 	 * when done.
1800 	 */
1801 	/* enable ALLOCation interrupts ONLY */
1802 	SMC_SELECT_BANK(lp, 2);
1803 	SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1804 
1805 	/*
1806  	 * Allocate 512 bytes of memory.  Note that the chip was just
1807 	 * reset so all the memory is available
1808 	 */
1809 	SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1810 
1811 	/*
1812 	 * Wait until positive that the interrupt has been generated
1813 	 */
1814 	do {
1815 		int int_status;
1816 		udelay(10);
1817 		int_status = SMC_GET_INT(lp);
1818 		if (int_status & IM_ALLOC_INT)
1819 			break;		/* got the interrupt */
1820 	} while (--timeout);
1821 
1822 	/*
1823 	 * there is really nothing that I can do here if timeout fails,
1824 	 * as autoirq_report will return a 0 anyway, which is what I
1825 	 * want in this case.   Plus, the clean up is needed in both
1826 	 * cases.
1827 	 */
1828 
1829 	/* and disable all interrupts again */
1830 	SMC_SET_INT_MASK(lp, 0);
1831 
1832 	/* and return what I found */
1833 	return probe_irq_off(cookie);
1834 }
1835 
1836 /*
1837  * Function: smc_probe(unsigned long ioaddr)
1838  *
1839  * Purpose:
1840  *	Tests to see if a given ioaddr points to an SMC91x chip.
1841  *	Returns a 0 on success
1842  *
1843  * Algorithm:
1844  *	(1) see if the high byte of BANK_SELECT is 0x33
1845  * 	(2) compare the ioaddr with the base register's address
1846  *	(3) see if I recognize the chip ID in the appropriate register
1847  *
1848  * Here I do typical initialization tasks.
1849  *
1850  * o  Initialize the structure if needed
1851  * o  print out my vanity message if not done so already
1852  * o  print out what type of hardware is detected
1853  * o  print out the ethernet address
1854  * o  find the IRQ
1855  * o  set up my private data
1856  * o  configure the dev structure with my subroutines
1857  * o  actually GRAB the irq.
1858  * o  GRAB the region
1859  */
1860 static int smc_probe(struct net_device *dev, void __iomem *ioaddr,
1861 		     unsigned long irq_flags)
1862 {
1863 	struct smc_local *lp = netdev_priv(dev);
1864 	int retval;
1865 	unsigned int val, revision_register;
1866 	const char *version_string;
1867 
1868 	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
1869 
1870 	/* First, see if the high byte is 0x33 */
1871 	val = SMC_CURRENT_BANK(lp);
1872 	DBG(2, dev, "%s: bank signature probe returned 0x%04x\n",
1873 	    CARDNAME, val);
1874 	if ((val & 0xFF00) != 0x3300) {
1875 		if ((val & 0xFF) == 0x33) {
1876 			netdev_warn(dev,
1877 				    "%s: Detected possible byte-swapped interface at IOADDR %p\n",
1878 				    CARDNAME, ioaddr);
1879 		}
1880 		retval = -ENODEV;
1881 		goto err_out;
1882 	}
1883 
1884 	/*
1885 	 * The above MIGHT indicate a device, but I need to write to
1886 	 * further test this.
1887 	 */
1888 	SMC_SELECT_BANK(lp, 0);
1889 	val = SMC_CURRENT_BANK(lp);
1890 	if ((val & 0xFF00) != 0x3300) {
1891 		retval = -ENODEV;
1892 		goto err_out;
1893 	}
1894 
1895 	/*
1896 	 * well, we've already written once, so hopefully another
1897 	 * time won't hurt.  This time, I need to switch the bank
1898 	 * register to bank 1, so I can access the base address
1899 	 * register
1900 	 */
1901 	SMC_SELECT_BANK(lp, 1);
1902 	val = SMC_GET_BASE(lp);
1903 	val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1904 	if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1905 		netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n",
1906 			    CARDNAME, ioaddr, val);
1907 	}
1908 
1909 	/*
1910 	 * check if the revision register is something that I
1911 	 * recognize.  These might need to be added to later,
1912 	 * as future revisions could be added.
1913 	 */
1914 	SMC_SELECT_BANK(lp, 3);
1915 	revision_register = SMC_GET_REV(lp);
1916 	DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1917 	version_string = chip_ids[ (revision_register >> 4) & 0xF];
1918 	if (!version_string || (revision_register & 0xff00) != 0x3300) {
1919 		/* I don't recognize this chip, so... */
1920 		netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n",
1921 			    CARDNAME, ioaddr, revision_register);
1922 
1923 		retval = -ENODEV;
1924 		goto err_out;
1925 	}
1926 
1927 	/* At this point I'll assume that the chip is an SMC91x. */
1928 	pr_info_once("%s\n", version);
1929 
1930 	/* fill in some of the fields */
1931 	dev->base_addr = (unsigned long)ioaddr;
1932 	lp->base = ioaddr;
1933 	lp->version = revision_register & 0xff;
1934 	spin_lock_init(&lp->lock);
1935 
1936 	/* Get the MAC address */
1937 	SMC_SELECT_BANK(lp, 1);
1938 	SMC_GET_MAC_ADDR(lp, dev->dev_addr);
1939 
1940 	/* now, reset the chip, and put it into a known state */
1941 	smc_reset(dev);
1942 
1943 	/*
1944 	 * If dev->irq is 0, then the device has to be banged on to see
1945 	 * what the IRQ is.
1946 	 *
1947 	 * This banging doesn't always detect the IRQ, for unknown reasons.
1948 	 * a workaround is to reset the chip and try again.
1949 	 *
1950 	 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1951 	 * be what is requested on the command line.   I don't do that, mostly
1952 	 * because the card that I have uses a non-standard method of accessing
1953 	 * the IRQs, and because this _should_ work in most configurations.
1954 	 *
1955 	 * Specifying an IRQ is done with the assumption that the user knows
1956 	 * what (s)he is doing.  No checking is done!!!!
1957 	 */
1958 	if (dev->irq < 1) {
1959 		int trials;
1960 
1961 		trials = 3;
1962 		while (trials--) {
1963 			dev->irq = smc_findirq(lp);
1964 			if (dev->irq)
1965 				break;
1966 			/* kick the card and try again */
1967 			smc_reset(dev);
1968 		}
1969 	}
1970 	if (dev->irq == 0) {
1971 		netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n");
1972 		retval = -ENODEV;
1973 		goto err_out;
1974 	}
1975 	dev->irq = irq_canonicalize(dev->irq);
1976 
1977 	dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1978 	dev->netdev_ops = &smc_netdev_ops;
1979 	dev->ethtool_ops = &smc_ethtool_ops;
1980 
1981 	tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev);
1982 	INIT_WORK(&lp->phy_configure, smc_phy_configure);
1983 	lp->dev = dev;
1984 	lp->mii.phy_id_mask = 0x1f;
1985 	lp->mii.reg_num_mask = 0x1f;
1986 	lp->mii.force_media = 0;
1987 	lp->mii.full_duplex = 0;
1988 	lp->mii.dev = dev;
1989 	lp->mii.mdio_read = smc_phy_read;
1990 	lp->mii.mdio_write = smc_phy_write;
1991 
1992 	/*
1993 	 * Locate the phy, if any.
1994 	 */
1995 	if (lp->version >= (CHIP_91100 << 4))
1996 		smc_phy_detect(dev);
1997 
1998 	/* then shut everything down to save power */
1999 	smc_shutdown(dev);
2000 	smc_phy_powerdown(dev);
2001 
2002 	/* Set default parameters */
2003 	lp->msg_enable = NETIF_MSG_LINK;
2004 	lp->ctl_rfduplx = 0;
2005 	lp->ctl_rspeed = 10;
2006 
2007 	if (lp->version >= (CHIP_91100 << 4)) {
2008 		lp->ctl_rfduplx = 1;
2009 		lp->ctl_rspeed = 100;
2010 	}
2011 
2012 	/* Grab the IRQ */
2013 	retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
2014       	if (retval)
2015       		goto err_out;
2016 
2017 #ifdef CONFIG_ARCH_PXA
2018 #  ifdef SMC_USE_PXA_DMA
2019 	lp->cfg.flags |= SMC91X_USE_DMA;
2020 #  endif
2021 	if (lp->cfg.flags & SMC91X_USE_DMA) {
2022 		dma_cap_mask_t mask;
2023 
2024 		dma_cap_zero(mask);
2025 		dma_cap_set(DMA_SLAVE, mask);
2026 		lp->dma_chan = dma_request_channel(mask, NULL, NULL);
2027 	}
2028 #endif
2029 
2030 	retval = register_netdev(dev);
2031 	if (retval == 0) {
2032 		/* now, print out the card info, in a short format.. */
2033 		netdev_info(dev, "%s (rev %d) at %p IRQ %d",
2034 			    version_string, revision_register & 0x0f,
2035 			    lp->base, dev->irq);
2036 
2037 		if (lp->dma_chan)
2038 			pr_cont(" DMA %p", lp->dma_chan);
2039 
2040 		pr_cont("%s%s\n",
2041 			lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2042 			THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2043 
2044 		if (!is_valid_ether_addr(dev->dev_addr)) {
2045 			netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n");
2046 		} else {
2047 			/* Print the Ethernet address */
2048 			netdev_info(dev, "Ethernet addr: %pM\n",
2049 				    dev->dev_addr);
2050 		}
2051 
2052 		if (lp->phy_type == 0) {
2053 			PRINTK(dev, "No PHY found\n");
2054 		} else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2055 			PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n");
2056 		} else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2057 			PRINTK(dev, "PHY LAN83C180\n");
2058 		}
2059 	}
2060 
2061 err_out:
2062 #ifdef CONFIG_ARCH_PXA
2063 	if (retval && lp->dma_chan)
2064 		dma_release_channel(lp->dma_chan);
2065 #endif
2066 	return retval;
2067 }
2068 
2069 static int smc_enable_device(struct platform_device *pdev)
2070 {
2071 	struct net_device *ndev = platform_get_drvdata(pdev);
2072 	struct smc_local *lp = netdev_priv(ndev);
2073 	unsigned long flags;
2074 	unsigned char ecor, ecsr;
2075 	void __iomem *addr;
2076 	struct resource * res;
2077 
2078 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2079 	if (!res)
2080 		return 0;
2081 
2082 	/*
2083 	 * Map the attribute space.  This is overkill, but clean.
2084 	 */
2085 	addr = ioremap(res->start, ATTRIB_SIZE);
2086 	if (!addr)
2087 		return -ENOMEM;
2088 
2089 	/*
2090 	 * Reset the device.  We must disable IRQs around this
2091 	 * since a reset causes the IRQ line become active.
2092 	 */
2093 	local_irq_save(flags);
2094 	ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2095 	writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2096 	readb(addr + (ECOR << SMC_IO_SHIFT));
2097 
2098 	/*
2099 	 * Wait 100us for the chip to reset.
2100 	 */
2101 	udelay(100);
2102 
2103 	/*
2104 	 * The device will ignore all writes to the enable bit while
2105 	 * reset is asserted, even if the reset bit is cleared in the
2106 	 * same write.  Must clear reset first, then enable the device.
2107 	 */
2108 	writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2109 	writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2110 
2111 	/*
2112 	 * Set the appropriate byte/word mode.
2113 	 */
2114 	ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2115 	if (!SMC_16BIT(lp))
2116 		ecsr |= ECSR_IOIS8;
2117 	writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2118 	local_irq_restore(flags);
2119 
2120 	iounmap(addr);
2121 
2122 	/*
2123 	 * Wait for the chip to wake up.  We could poll the control
2124 	 * register in the main register space, but that isn't mapped
2125 	 * yet.  We know this is going to take 750us.
2126 	 */
2127 	msleep(1);
2128 
2129 	return 0;
2130 }
2131 
2132 static int smc_request_attrib(struct platform_device *pdev,
2133 			      struct net_device *ndev)
2134 {
2135 	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2136 	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2137 
2138 	if (!res)
2139 		return 0;
2140 
2141 	if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2142 		return -EBUSY;
2143 
2144 	return 0;
2145 }
2146 
2147 static void smc_release_attrib(struct platform_device *pdev,
2148 			       struct net_device *ndev)
2149 {
2150 	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2151 	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2152 
2153 	if (res)
2154 		release_mem_region(res->start, ATTRIB_SIZE);
2155 }
2156 
2157 static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2158 {
2159 	if (SMC_CAN_USE_DATACS) {
2160 		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2161 		struct smc_local *lp = netdev_priv(ndev);
2162 
2163 		if (!res)
2164 			return;
2165 
2166 		if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2167 			netdev_info(ndev, "%s: failed to request datacs memory region.\n",
2168 				    CARDNAME);
2169 			return;
2170 		}
2171 
2172 		lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2173 	}
2174 }
2175 
2176 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2177 {
2178 	if (SMC_CAN_USE_DATACS) {
2179 		struct smc_local *lp = netdev_priv(ndev);
2180 		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2181 
2182 		if (lp->datacs)
2183 			iounmap(lp->datacs);
2184 
2185 		lp->datacs = NULL;
2186 
2187 		if (res)
2188 			release_mem_region(res->start, SMC_DATA_EXTENT);
2189 	}
2190 }
2191 
2192 static const struct acpi_device_id smc91x_acpi_match[] = {
2193 	{ "LNRO0003", 0 },
2194 	{ }
2195 };
2196 MODULE_DEVICE_TABLE(acpi, smc91x_acpi_match);
2197 
2198 #if IS_BUILTIN(CONFIG_OF)
2199 static const struct of_device_id smc91x_match[] = {
2200 	{ .compatible = "smsc,lan91c94", },
2201 	{ .compatible = "smsc,lan91c111", },
2202 	{},
2203 };
2204 MODULE_DEVICE_TABLE(of, smc91x_match);
2205 
2206 /**
2207  * of_try_set_control_gpio - configure a gpio if it exists
2208  */
2209 static int try_toggle_control_gpio(struct device *dev,
2210 				   struct gpio_desc **desc,
2211 				   const char *name, int index,
2212 				   int value, unsigned int nsdelay)
2213 {
2214 	struct gpio_desc *gpio = *desc;
2215 	enum gpiod_flags flags = value ? GPIOD_OUT_LOW : GPIOD_OUT_HIGH;
2216 
2217 	gpio = devm_gpiod_get_index_optional(dev, name, index, flags);
2218 	if (IS_ERR(gpio))
2219 		return PTR_ERR(gpio);
2220 
2221 	if (gpio) {
2222 		if (nsdelay)
2223 			usleep_range(nsdelay, 2 * nsdelay);
2224 		gpiod_set_value_cansleep(gpio, value);
2225 	}
2226 	*desc = gpio;
2227 
2228 	return 0;
2229 }
2230 #endif
2231 
2232 /*
2233  * smc_init(void)
2234  *   Input parameters:
2235  *	dev->base_addr == 0, try to find all possible locations
2236  *	dev->base_addr > 0x1ff, this is the address to check
2237  *	dev->base_addr == <anything else>, return failure code
2238  *
2239  *   Output:
2240  *	0 --> there is a device
2241  *	anything else, error
2242  */
2243 static int smc_drv_probe(struct platform_device *pdev)
2244 {
2245 	struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev);
2246 	const struct of_device_id *match = NULL;
2247 	struct smc_local *lp;
2248 	struct net_device *ndev;
2249 	struct resource *res;
2250 	unsigned int __iomem *addr;
2251 	unsigned long irq_flags = SMC_IRQ_FLAGS;
2252 	unsigned long irq_resflags;
2253 	int ret;
2254 
2255 	ndev = alloc_etherdev(sizeof(struct smc_local));
2256 	if (!ndev) {
2257 		ret = -ENOMEM;
2258 		goto out;
2259 	}
2260 	SET_NETDEV_DEV(ndev, &pdev->dev);
2261 
2262 	/* get configuration from platform data, only allow use of
2263 	 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2264 	 */
2265 
2266 	lp = netdev_priv(ndev);
2267 	lp->cfg.flags = 0;
2268 
2269 	if (pd) {
2270 		memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2271 		lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2272 
2273 		if (!SMC_8BIT(lp) && !SMC_16BIT(lp)) {
2274 			dev_err(&pdev->dev,
2275 				"at least one of 8-bit or 16-bit access support is required.\n");
2276 			ret = -ENXIO;
2277 			goto out_free_netdev;
2278 		}
2279 	}
2280 
2281 #if IS_BUILTIN(CONFIG_OF)
2282 	match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev);
2283 	if (match) {
2284 		u32 val;
2285 
2286 		/* Optional pwrdwn GPIO configured? */
2287 		ret = try_toggle_control_gpio(&pdev->dev, &lp->power_gpio,
2288 					      "power", 0, 0, 100);
2289 		if (ret)
2290 			return ret;
2291 
2292 		/*
2293 		 * Optional reset GPIO configured? Minimum 100 ns reset needed
2294 		 * according to LAN91C96 datasheet page 14.
2295 		 */
2296 		ret = try_toggle_control_gpio(&pdev->dev, &lp->reset_gpio,
2297 					      "reset", 0, 0, 100);
2298 		if (ret)
2299 			return ret;
2300 
2301 		/*
2302 		 * Need to wait for optional EEPROM to load, max 750 us according
2303 		 * to LAN91C96 datasheet page 55.
2304 		 */
2305 		if (lp->reset_gpio)
2306 			usleep_range(750, 1000);
2307 
2308 		/* Combination of IO widths supported, default to 16-bit */
2309 		if (!device_property_read_u32(&pdev->dev, "reg-io-width",
2310 					      &val)) {
2311 			if (val & 1)
2312 				lp->cfg.flags |= SMC91X_USE_8BIT;
2313 			if ((val == 0) || (val & 2))
2314 				lp->cfg.flags |= SMC91X_USE_16BIT;
2315 			if (val & 4)
2316 				lp->cfg.flags |= SMC91X_USE_32BIT;
2317 		} else {
2318 			lp->cfg.flags |= SMC91X_USE_16BIT;
2319 		}
2320 		if (!device_property_read_u32(&pdev->dev, "reg-shift",
2321 					      &val))
2322 			lp->io_shift = val;
2323 		lp->cfg.pxa_u16_align4 =
2324 			device_property_read_bool(&pdev->dev, "pxa-u16-align4");
2325 	}
2326 #endif
2327 
2328 	if (!pd && !match) {
2329 		lp->cfg.flags |= (SMC_CAN_USE_8BIT)  ? SMC91X_USE_8BIT  : 0;
2330 		lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2331 		lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2332 		lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2333 	}
2334 
2335 	if (!lp->cfg.leda && !lp->cfg.ledb) {
2336 		lp->cfg.leda = RPC_LSA_DEFAULT;
2337 		lp->cfg.ledb = RPC_LSB_DEFAULT;
2338 	}
2339 
2340 	ndev->dma = (unsigned char)-1;
2341 
2342 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2343 	if (!res)
2344 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2345 	if (!res) {
2346 		ret = -ENODEV;
2347 		goto out_free_netdev;
2348 	}
2349 
2350 
2351 	if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2352 		ret = -EBUSY;
2353 		goto out_free_netdev;
2354 	}
2355 
2356 	ndev->irq = platform_get_irq(pdev, 0);
2357 	if (ndev->irq < 0) {
2358 		ret = ndev->irq;
2359 		goto out_release_io;
2360 	}
2361 	/*
2362 	 * If this platform does not specify any special irqflags, or if
2363 	 * the resource supplies a trigger, override the irqflags with
2364 	 * the trigger flags from the resource.
2365 	 */
2366 	irq_resflags = irqd_get_trigger_type(irq_get_irq_data(ndev->irq));
2367 	if (irq_flags == -1 || irq_resflags & IRQF_TRIGGER_MASK)
2368 		irq_flags = irq_resflags & IRQF_TRIGGER_MASK;
2369 
2370 	ret = smc_request_attrib(pdev, ndev);
2371 	if (ret)
2372 		goto out_release_io;
2373 #if defined(CONFIG_ASSABET_NEPONSET)
2374 	if (machine_is_assabet() && machine_has_neponset())
2375 		neponset_ncr_set(NCR_ENET_OSC_EN);
2376 #endif
2377 	platform_set_drvdata(pdev, ndev);
2378 	ret = smc_enable_device(pdev);
2379 	if (ret)
2380 		goto out_release_attrib;
2381 
2382 	addr = ioremap(res->start, SMC_IO_EXTENT);
2383 	if (!addr) {
2384 		ret = -ENOMEM;
2385 		goto out_release_attrib;
2386 	}
2387 
2388 #ifdef CONFIG_ARCH_PXA
2389 	{
2390 		struct smc_local *lp = netdev_priv(ndev);
2391 		lp->device = &pdev->dev;
2392 		lp->physaddr = res->start;
2393 
2394 	}
2395 #endif
2396 
2397 	ret = smc_probe(ndev, addr, irq_flags);
2398 	if (ret != 0)
2399 		goto out_iounmap;
2400 
2401 	smc_request_datacs(pdev, ndev);
2402 
2403 	return 0;
2404 
2405  out_iounmap:
2406 	iounmap(addr);
2407  out_release_attrib:
2408 	smc_release_attrib(pdev, ndev);
2409  out_release_io:
2410 	release_mem_region(res->start, SMC_IO_EXTENT);
2411  out_free_netdev:
2412 	free_netdev(ndev);
2413  out:
2414 	pr_info("%s: not found (%d).\n", CARDNAME, ret);
2415 
2416 	return ret;
2417 }
2418 
2419 static int smc_drv_remove(struct platform_device *pdev)
2420 {
2421 	struct net_device *ndev = platform_get_drvdata(pdev);
2422 	struct smc_local *lp = netdev_priv(ndev);
2423 	struct resource *res;
2424 
2425 	unregister_netdev(ndev);
2426 
2427 	free_irq(ndev->irq, ndev);
2428 
2429 #ifdef CONFIG_ARCH_PXA
2430 	if (lp->dma_chan)
2431 		dma_release_channel(lp->dma_chan);
2432 #endif
2433 	iounmap(lp->base);
2434 
2435 	smc_release_datacs(pdev,ndev);
2436 	smc_release_attrib(pdev,ndev);
2437 
2438 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2439 	if (!res)
2440 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2441 	release_mem_region(res->start, SMC_IO_EXTENT);
2442 
2443 	free_netdev(ndev);
2444 
2445 	return 0;
2446 }
2447 
2448 static int smc_drv_suspend(struct device *dev)
2449 {
2450 	struct net_device *ndev = dev_get_drvdata(dev);
2451 
2452 	if (ndev) {
2453 		if (netif_running(ndev)) {
2454 			netif_device_detach(ndev);
2455 			smc_shutdown(ndev);
2456 			smc_phy_powerdown(ndev);
2457 		}
2458 	}
2459 	return 0;
2460 }
2461 
2462 static int smc_drv_resume(struct device *dev)
2463 {
2464 	struct platform_device *pdev = to_platform_device(dev);
2465 	struct net_device *ndev = platform_get_drvdata(pdev);
2466 
2467 	if (ndev) {
2468 		struct smc_local *lp = netdev_priv(ndev);
2469 		smc_enable_device(pdev);
2470 		if (netif_running(ndev)) {
2471 			smc_reset(ndev);
2472 			smc_enable(ndev);
2473 			if (lp->phy_type != 0)
2474 				smc_phy_configure(&lp->phy_configure);
2475 			netif_device_attach(ndev);
2476 		}
2477 	}
2478 	return 0;
2479 }
2480 
2481 static const struct dev_pm_ops smc_drv_pm_ops = {
2482 	.suspend	= smc_drv_suspend,
2483 	.resume		= smc_drv_resume,
2484 };
2485 
2486 static struct platform_driver smc_driver = {
2487 	.probe		= smc_drv_probe,
2488 	.remove		= smc_drv_remove,
2489 	.driver		= {
2490 		.name	= CARDNAME,
2491 		.pm	= &smc_drv_pm_ops,
2492 		.of_match_table   = of_match_ptr(smc91x_match),
2493 		.acpi_match_table = smc91x_acpi_match,
2494 	},
2495 };
2496 
2497 module_platform_driver(smc_driver);
2498