1 /* 2 * smc91x.c 3 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices. 4 * 5 * Copyright (C) 1996 by Erik Stahlman 6 * Copyright (C) 2001 Standard Microsystems Corporation 7 * Developed by Simple Network Magic Corporation 8 * Copyright (C) 2003 Monta Vista Software, Inc. 9 * Unified SMC91x driver by Nicolas Pitre 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2 of the License, or 14 * (at your option) any later version. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, see <http://www.gnu.org/licenses/>. 23 * 24 * Arguments: 25 * io = for the base address 26 * irq = for the IRQ 27 * nowait = 0 for normal wait states, 1 eliminates additional wait states 28 * 29 * original author: 30 * Erik Stahlman <erik@vt.edu> 31 * 32 * hardware multicast code: 33 * Peter Cammaert <pc@denkart.be> 34 * 35 * contributors: 36 * Daris A Nevil <dnevil@snmc.com> 37 * Nicolas Pitre <nico@fluxnic.net> 38 * Russell King <rmk@arm.linux.org.uk> 39 * 40 * History: 41 * 08/20/00 Arnaldo Melo fix kfree(skb) in smc_hardware_send_packet 42 * 12/15/00 Christian Jullien fix "Warning: kfree_skb on hard IRQ" 43 * 03/16/01 Daris A Nevil modified smc9194.c for use with LAN91C111 44 * 08/22/01 Scott Anderson merge changes from smc9194 to smc91111 45 * 08/21/01 Pramod B Bhardwaj added support for RevB of LAN91C111 46 * 12/20/01 Jeff Sutherland initial port to Xscale PXA with DMA support 47 * 04/07/03 Nicolas Pitre unified SMC91x driver, killed irq races, 48 * more bus abstraction, big cleanup, etc. 49 * 29/09/03 Russell King - add driver model support 50 * - ethtool support 51 * - convert to use generic MII interface 52 * - add link up/down notification 53 * - don't try to handle full negotiation in 54 * smc_phy_configure 55 * - clean up (and fix stack overrun) in PHY 56 * MII read/write functions 57 * 22/09/04 Nicolas Pitre big update (see commit log for details) 58 */ 59 static const char version[] = 60 "smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>"; 61 62 /* Debugging level */ 63 #ifndef SMC_DEBUG 64 #define SMC_DEBUG 0 65 #endif 66 67 68 #include <linux/module.h> 69 #include <linux/kernel.h> 70 #include <linux/sched.h> 71 #include <linux/delay.h> 72 #include <linux/interrupt.h> 73 #include <linux/irq.h> 74 #include <linux/errno.h> 75 #include <linux/ioport.h> 76 #include <linux/crc32.h> 77 #include <linux/platform_device.h> 78 #include <linux/spinlock.h> 79 #include <linux/ethtool.h> 80 #include <linux/mii.h> 81 #include <linux/workqueue.h> 82 #include <linux/of.h> 83 #include <linux/of_device.h> 84 #include <linux/of_gpio.h> 85 86 #include <linux/netdevice.h> 87 #include <linux/etherdevice.h> 88 #include <linux/skbuff.h> 89 90 #include <asm/io.h> 91 92 #include "smc91x.h" 93 94 #if defined(CONFIG_ASSABET_NEPONSET) 95 #include <mach/assabet.h> 96 #include <mach/neponset.h> 97 #endif 98 99 #ifndef SMC_NOWAIT 100 # define SMC_NOWAIT 0 101 #endif 102 static int nowait = SMC_NOWAIT; 103 module_param(nowait, int, 0400); 104 MODULE_PARM_DESC(nowait, "set to 1 for no wait state"); 105 106 /* 107 * Transmit timeout, default 5 seconds. 108 */ 109 static int watchdog = 1000; 110 module_param(watchdog, int, 0400); 111 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds"); 112 113 MODULE_LICENSE("GPL"); 114 MODULE_ALIAS("platform:smc91x"); 115 116 /* 117 * The internal workings of the driver. If you are changing anything 118 * here with the SMC stuff, you should have the datasheet and know 119 * what you are doing. 120 */ 121 #define CARDNAME "smc91x" 122 123 /* 124 * Use power-down feature of the chip 125 */ 126 #define POWER_DOWN 1 127 128 /* 129 * Wait time for memory to be free. This probably shouldn't be 130 * tuned that much, as waiting for this means nothing else happens 131 * in the system 132 */ 133 #define MEMORY_WAIT_TIME 16 134 135 /* 136 * The maximum number of processing loops allowed for each call to the 137 * IRQ handler. 138 */ 139 #define MAX_IRQ_LOOPS 8 140 141 /* 142 * This selects whether TX packets are sent one by one to the SMC91x internal 143 * memory and throttled until transmission completes. This may prevent 144 * RX overruns a litle by keeping much of the memory free for RX packets 145 * but to the expense of reduced TX throughput and increased IRQ overhead. 146 * Note this is not a cure for a too slow data bus or too high IRQ latency. 147 */ 148 #define THROTTLE_TX_PKTS 0 149 150 /* 151 * The MII clock high/low times. 2x this number gives the MII clock period 152 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!) 153 */ 154 #define MII_DELAY 1 155 156 #define DBG(n, dev, fmt, ...) \ 157 do { \ 158 if (SMC_DEBUG >= (n)) \ 159 netdev_dbg(dev, fmt, ##__VA_ARGS__); \ 160 } while (0) 161 162 #define PRINTK(dev, fmt, ...) \ 163 do { \ 164 if (SMC_DEBUG > 0) \ 165 netdev_info(dev, fmt, ##__VA_ARGS__); \ 166 else \ 167 netdev_dbg(dev, fmt, ##__VA_ARGS__); \ 168 } while (0) 169 170 #if SMC_DEBUG > 3 171 static void PRINT_PKT(u_char *buf, int length) 172 { 173 int i; 174 int remainder; 175 int lines; 176 177 lines = length / 16; 178 remainder = length % 16; 179 180 for (i = 0; i < lines ; i ++) { 181 int cur; 182 printk(KERN_DEBUG); 183 for (cur = 0; cur < 8; cur++) { 184 u_char a, b; 185 a = *buf++; 186 b = *buf++; 187 pr_cont("%02x%02x ", a, b); 188 } 189 pr_cont("\n"); 190 } 191 printk(KERN_DEBUG); 192 for (i = 0; i < remainder/2 ; i++) { 193 u_char a, b; 194 a = *buf++; 195 b = *buf++; 196 pr_cont("%02x%02x ", a, b); 197 } 198 pr_cont("\n"); 199 } 200 #else 201 static inline void PRINT_PKT(u_char *buf, int length) { } 202 #endif 203 204 205 /* this enables an interrupt in the interrupt mask register */ 206 #define SMC_ENABLE_INT(lp, x) do { \ 207 unsigned char mask; \ 208 unsigned long smc_enable_flags; \ 209 spin_lock_irqsave(&lp->lock, smc_enable_flags); \ 210 mask = SMC_GET_INT_MASK(lp); \ 211 mask |= (x); \ 212 SMC_SET_INT_MASK(lp, mask); \ 213 spin_unlock_irqrestore(&lp->lock, smc_enable_flags); \ 214 } while (0) 215 216 /* this disables an interrupt from the interrupt mask register */ 217 #define SMC_DISABLE_INT(lp, x) do { \ 218 unsigned char mask; \ 219 unsigned long smc_disable_flags; \ 220 spin_lock_irqsave(&lp->lock, smc_disable_flags); \ 221 mask = SMC_GET_INT_MASK(lp); \ 222 mask &= ~(x); \ 223 SMC_SET_INT_MASK(lp, mask); \ 224 spin_unlock_irqrestore(&lp->lock, smc_disable_flags); \ 225 } while (0) 226 227 /* 228 * Wait while MMU is busy. This is usually in the order of a few nanosecs 229 * if at all, but let's avoid deadlocking the system if the hardware 230 * decides to go south. 231 */ 232 #define SMC_WAIT_MMU_BUSY(lp) do { \ 233 if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) { \ 234 unsigned long timeout = jiffies + 2; \ 235 while (SMC_GET_MMU_CMD(lp) & MC_BUSY) { \ 236 if (time_after(jiffies, timeout)) { \ 237 netdev_dbg(dev, "timeout %s line %d\n", \ 238 __FILE__, __LINE__); \ 239 break; \ 240 } \ 241 cpu_relax(); \ 242 } \ 243 } \ 244 } while (0) 245 246 247 /* 248 * this does a soft reset on the device 249 */ 250 static void smc_reset(struct net_device *dev) 251 { 252 struct smc_local *lp = netdev_priv(dev); 253 void __iomem *ioaddr = lp->base; 254 unsigned int ctl, cfg; 255 struct sk_buff *pending_skb; 256 257 DBG(2, dev, "%s\n", __func__); 258 259 /* Disable all interrupts, block TX tasklet */ 260 spin_lock_irq(&lp->lock); 261 SMC_SELECT_BANK(lp, 2); 262 SMC_SET_INT_MASK(lp, 0); 263 pending_skb = lp->pending_tx_skb; 264 lp->pending_tx_skb = NULL; 265 spin_unlock_irq(&lp->lock); 266 267 /* free any pending tx skb */ 268 if (pending_skb) { 269 dev_kfree_skb(pending_skb); 270 dev->stats.tx_errors++; 271 dev->stats.tx_aborted_errors++; 272 } 273 274 /* 275 * This resets the registers mostly to defaults, but doesn't 276 * affect EEPROM. That seems unnecessary 277 */ 278 SMC_SELECT_BANK(lp, 0); 279 SMC_SET_RCR(lp, RCR_SOFTRST); 280 281 /* 282 * Setup the Configuration Register 283 * This is necessary because the CONFIG_REG is not affected 284 * by a soft reset 285 */ 286 SMC_SELECT_BANK(lp, 1); 287 288 cfg = CONFIG_DEFAULT; 289 290 /* 291 * Setup for fast accesses if requested. If the card/system 292 * can't handle it then there will be no recovery except for 293 * a hard reset or power cycle 294 */ 295 if (lp->cfg.flags & SMC91X_NOWAIT) 296 cfg |= CONFIG_NO_WAIT; 297 298 /* 299 * Release from possible power-down state 300 * Configuration register is not affected by Soft Reset 301 */ 302 cfg |= CONFIG_EPH_POWER_EN; 303 304 SMC_SET_CONFIG(lp, cfg); 305 306 /* this should pause enough for the chip to be happy */ 307 /* 308 * elaborate? What does the chip _need_? --jgarzik 309 * 310 * This seems to be undocumented, but something the original 311 * driver(s) have always done. Suspect undocumented timing 312 * info/determined empirically. --rmk 313 */ 314 udelay(1); 315 316 /* Disable transmit and receive functionality */ 317 SMC_SELECT_BANK(lp, 0); 318 SMC_SET_RCR(lp, RCR_CLEAR); 319 SMC_SET_TCR(lp, TCR_CLEAR); 320 321 SMC_SELECT_BANK(lp, 1); 322 ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE; 323 324 /* 325 * Set the control register to automatically release successfully 326 * transmitted packets, to make the best use out of our limited 327 * memory 328 */ 329 if(!THROTTLE_TX_PKTS) 330 ctl |= CTL_AUTO_RELEASE; 331 else 332 ctl &= ~CTL_AUTO_RELEASE; 333 SMC_SET_CTL(lp, ctl); 334 335 /* Reset the MMU */ 336 SMC_SELECT_BANK(lp, 2); 337 SMC_SET_MMU_CMD(lp, MC_RESET); 338 SMC_WAIT_MMU_BUSY(lp); 339 } 340 341 /* 342 * Enable Interrupts, Receive, and Transmit 343 */ 344 static void smc_enable(struct net_device *dev) 345 { 346 struct smc_local *lp = netdev_priv(dev); 347 void __iomem *ioaddr = lp->base; 348 int mask; 349 350 DBG(2, dev, "%s\n", __func__); 351 352 /* see the header file for options in TCR/RCR DEFAULT */ 353 SMC_SELECT_BANK(lp, 0); 354 SMC_SET_TCR(lp, lp->tcr_cur_mode); 355 SMC_SET_RCR(lp, lp->rcr_cur_mode); 356 357 SMC_SELECT_BANK(lp, 1); 358 SMC_SET_MAC_ADDR(lp, dev->dev_addr); 359 360 /* now, enable interrupts */ 361 mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT; 362 if (lp->version >= (CHIP_91100 << 4)) 363 mask |= IM_MDINT; 364 SMC_SELECT_BANK(lp, 2); 365 SMC_SET_INT_MASK(lp, mask); 366 367 /* 368 * From this point the register bank must _NOT_ be switched away 369 * to something else than bank 2 without proper locking against 370 * races with any tasklet or interrupt handlers until smc_shutdown() 371 * or smc_reset() is called. 372 */ 373 } 374 375 /* 376 * this puts the device in an inactive state 377 */ 378 static void smc_shutdown(struct net_device *dev) 379 { 380 struct smc_local *lp = netdev_priv(dev); 381 void __iomem *ioaddr = lp->base; 382 struct sk_buff *pending_skb; 383 384 DBG(2, dev, "%s: %s\n", CARDNAME, __func__); 385 386 /* no more interrupts for me */ 387 spin_lock_irq(&lp->lock); 388 SMC_SELECT_BANK(lp, 2); 389 SMC_SET_INT_MASK(lp, 0); 390 pending_skb = lp->pending_tx_skb; 391 lp->pending_tx_skb = NULL; 392 spin_unlock_irq(&lp->lock); 393 if (pending_skb) 394 dev_kfree_skb(pending_skb); 395 396 /* and tell the card to stay away from that nasty outside world */ 397 SMC_SELECT_BANK(lp, 0); 398 SMC_SET_RCR(lp, RCR_CLEAR); 399 SMC_SET_TCR(lp, TCR_CLEAR); 400 401 #ifdef POWER_DOWN 402 /* finally, shut the chip down */ 403 SMC_SELECT_BANK(lp, 1); 404 SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN); 405 #endif 406 } 407 408 /* 409 * This is the procedure to handle the receipt of a packet. 410 */ 411 static inline void smc_rcv(struct net_device *dev) 412 { 413 struct smc_local *lp = netdev_priv(dev); 414 void __iomem *ioaddr = lp->base; 415 unsigned int packet_number, status, packet_len; 416 417 DBG(3, dev, "%s\n", __func__); 418 419 packet_number = SMC_GET_RXFIFO(lp); 420 if (unlikely(packet_number & RXFIFO_REMPTY)) { 421 PRINTK(dev, "smc_rcv with nothing on FIFO.\n"); 422 return; 423 } 424 425 /* read from start of packet */ 426 SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC); 427 428 /* First two words are status and packet length */ 429 SMC_GET_PKT_HDR(lp, status, packet_len); 430 packet_len &= 0x07ff; /* mask off top bits */ 431 DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n", 432 packet_number, status, packet_len, packet_len); 433 434 back: 435 if (unlikely(packet_len < 6 || status & RS_ERRORS)) { 436 if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) { 437 /* accept VLAN packets */ 438 status &= ~RS_TOOLONG; 439 goto back; 440 } 441 if (packet_len < 6) { 442 /* bloody hardware */ 443 netdev_err(dev, "fubar (rxlen %u status %x\n", 444 packet_len, status); 445 status |= RS_TOOSHORT; 446 } 447 SMC_WAIT_MMU_BUSY(lp); 448 SMC_SET_MMU_CMD(lp, MC_RELEASE); 449 dev->stats.rx_errors++; 450 if (status & RS_ALGNERR) 451 dev->stats.rx_frame_errors++; 452 if (status & (RS_TOOSHORT | RS_TOOLONG)) 453 dev->stats.rx_length_errors++; 454 if (status & RS_BADCRC) 455 dev->stats.rx_crc_errors++; 456 } else { 457 struct sk_buff *skb; 458 unsigned char *data; 459 unsigned int data_len; 460 461 /* set multicast stats */ 462 if (status & RS_MULTICAST) 463 dev->stats.multicast++; 464 465 /* 466 * Actual payload is packet_len - 6 (or 5 if odd byte). 467 * We want skb_reserve(2) and the final ctrl word 468 * (2 bytes, possibly containing the payload odd byte). 469 * Furthermore, we add 2 bytes to allow rounding up to 470 * multiple of 4 bytes on 32 bit buses. 471 * Hence packet_len - 6 + 2 + 2 + 2. 472 */ 473 skb = netdev_alloc_skb(dev, packet_len); 474 if (unlikely(skb == NULL)) { 475 SMC_WAIT_MMU_BUSY(lp); 476 SMC_SET_MMU_CMD(lp, MC_RELEASE); 477 dev->stats.rx_dropped++; 478 return; 479 } 480 481 /* Align IP header to 32 bits */ 482 skb_reserve(skb, 2); 483 484 /* BUG: the LAN91C111 rev A never sets this bit. Force it. */ 485 if (lp->version == 0x90) 486 status |= RS_ODDFRAME; 487 488 /* 489 * If odd length: packet_len - 5, 490 * otherwise packet_len - 6. 491 * With the trailing ctrl byte it's packet_len - 4. 492 */ 493 data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6); 494 data = skb_put(skb, data_len); 495 SMC_PULL_DATA(lp, data, packet_len - 4); 496 497 SMC_WAIT_MMU_BUSY(lp); 498 SMC_SET_MMU_CMD(lp, MC_RELEASE); 499 500 PRINT_PKT(data, packet_len - 4); 501 502 skb->protocol = eth_type_trans(skb, dev); 503 netif_rx(skb); 504 dev->stats.rx_packets++; 505 dev->stats.rx_bytes += data_len; 506 } 507 } 508 509 #ifdef CONFIG_SMP 510 /* 511 * On SMP we have the following problem: 512 * 513 * A = smc_hardware_send_pkt() 514 * B = smc_hard_start_xmit() 515 * C = smc_interrupt() 516 * 517 * A and B can never be executed simultaneously. However, at least on UP, 518 * it is possible (and even desirable) for C to interrupt execution of 519 * A or B in order to have better RX reliability and avoid overruns. 520 * C, just like A and B, must have exclusive access to the chip and 521 * each of them must lock against any other concurrent access. 522 * Unfortunately this is not possible to have C suspend execution of A or 523 * B taking place on another CPU. On UP this is no an issue since A and B 524 * are run from softirq context and C from hard IRQ context, and there is 525 * no other CPU where concurrent access can happen. 526 * If ever there is a way to force at least B and C to always be executed 527 * on the same CPU then we could use read/write locks to protect against 528 * any other concurrent access and C would always interrupt B. But life 529 * isn't that easy in a SMP world... 530 */ 531 #define smc_special_trylock(lock, flags) \ 532 ({ \ 533 int __ret; \ 534 local_irq_save(flags); \ 535 __ret = spin_trylock(lock); \ 536 if (!__ret) \ 537 local_irq_restore(flags); \ 538 __ret; \ 539 }) 540 #define smc_special_lock(lock, flags) spin_lock_irqsave(lock, flags) 541 #define smc_special_unlock(lock, flags) spin_unlock_irqrestore(lock, flags) 542 #else 543 #define smc_special_trylock(lock, flags) ((void)flags, true) 544 #define smc_special_lock(lock, flags) do { flags = 0; } while (0) 545 #define smc_special_unlock(lock, flags) do { flags = 0; } while (0) 546 #endif 547 548 /* 549 * This is called to actually send a packet to the chip. 550 */ 551 static void smc_hardware_send_pkt(unsigned long data) 552 { 553 struct net_device *dev = (struct net_device *)data; 554 struct smc_local *lp = netdev_priv(dev); 555 void __iomem *ioaddr = lp->base; 556 struct sk_buff *skb; 557 unsigned int packet_no, len; 558 unsigned char *buf; 559 unsigned long flags; 560 561 DBG(3, dev, "%s\n", __func__); 562 563 if (!smc_special_trylock(&lp->lock, flags)) { 564 netif_stop_queue(dev); 565 tasklet_schedule(&lp->tx_task); 566 return; 567 } 568 569 skb = lp->pending_tx_skb; 570 if (unlikely(!skb)) { 571 smc_special_unlock(&lp->lock, flags); 572 return; 573 } 574 lp->pending_tx_skb = NULL; 575 576 packet_no = SMC_GET_AR(lp); 577 if (unlikely(packet_no & AR_FAILED)) { 578 netdev_err(dev, "Memory allocation failed.\n"); 579 dev->stats.tx_errors++; 580 dev->stats.tx_fifo_errors++; 581 smc_special_unlock(&lp->lock, flags); 582 goto done; 583 } 584 585 /* point to the beginning of the packet */ 586 SMC_SET_PN(lp, packet_no); 587 SMC_SET_PTR(lp, PTR_AUTOINC); 588 589 buf = skb->data; 590 len = skb->len; 591 DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n", 592 packet_no, len, len, buf); 593 PRINT_PKT(buf, len); 594 595 /* 596 * Send the packet length (+6 for status words, length, and ctl. 597 * The card will pad to 64 bytes with zeroes if packet is too small. 598 */ 599 SMC_PUT_PKT_HDR(lp, 0, len + 6); 600 601 /* send the actual data */ 602 SMC_PUSH_DATA(lp, buf, len & ~1); 603 604 /* Send final ctl word with the last byte if there is one */ 605 SMC_outw(((len & 1) ? (0x2000 | buf[len-1]) : 0), ioaddr, DATA_REG(lp)); 606 607 /* 608 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will 609 * have the effect of having at most one packet queued for TX 610 * in the chip's memory at all time. 611 * 612 * If THROTTLE_TX_PKTS is not set then the queue is stopped only 613 * when memory allocation (MC_ALLOC) does not succeed right away. 614 */ 615 if (THROTTLE_TX_PKTS) 616 netif_stop_queue(dev); 617 618 /* queue the packet for TX */ 619 SMC_SET_MMU_CMD(lp, MC_ENQUEUE); 620 smc_special_unlock(&lp->lock, flags); 621 622 netif_trans_update(dev); 623 dev->stats.tx_packets++; 624 dev->stats.tx_bytes += len; 625 626 SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT); 627 628 done: if (!THROTTLE_TX_PKTS) 629 netif_wake_queue(dev); 630 631 dev_consume_skb_any(skb); 632 } 633 634 /* 635 * Since I am not sure if I will have enough room in the chip's ram 636 * to store the packet, I call this routine which either sends it 637 * now, or set the card to generates an interrupt when ready 638 * for the packet. 639 */ 640 static int smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) 641 { 642 struct smc_local *lp = netdev_priv(dev); 643 void __iomem *ioaddr = lp->base; 644 unsigned int numPages, poll_count, status; 645 unsigned long flags; 646 647 DBG(3, dev, "%s\n", __func__); 648 649 BUG_ON(lp->pending_tx_skb != NULL); 650 651 /* 652 * The MMU wants the number of pages to be the number of 256 bytes 653 * 'pages', minus 1 (since a packet can't ever have 0 pages :)) 654 * 655 * The 91C111 ignores the size bits, but earlier models don't. 656 * 657 * Pkt size for allocating is data length +6 (for additional status 658 * words, length and ctl) 659 * 660 * If odd size then last byte is included in ctl word. 661 */ 662 numPages = ((skb->len & ~1) + (6 - 1)) >> 8; 663 if (unlikely(numPages > 7)) { 664 netdev_warn(dev, "Far too big packet error.\n"); 665 dev->stats.tx_errors++; 666 dev->stats.tx_dropped++; 667 dev_kfree_skb_any(skb); 668 return NETDEV_TX_OK; 669 } 670 671 smc_special_lock(&lp->lock, flags); 672 673 /* now, try to allocate the memory */ 674 SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages); 675 676 /* 677 * Poll the chip for a short amount of time in case the 678 * allocation succeeds quickly. 679 */ 680 poll_count = MEMORY_WAIT_TIME; 681 do { 682 status = SMC_GET_INT(lp); 683 if (status & IM_ALLOC_INT) { 684 SMC_ACK_INT(lp, IM_ALLOC_INT); 685 break; 686 } 687 } while (--poll_count); 688 689 smc_special_unlock(&lp->lock, flags); 690 691 lp->pending_tx_skb = skb; 692 if (!poll_count) { 693 /* oh well, wait until the chip finds memory later */ 694 netif_stop_queue(dev); 695 DBG(2, dev, "TX memory allocation deferred.\n"); 696 SMC_ENABLE_INT(lp, IM_ALLOC_INT); 697 } else { 698 /* 699 * Allocation succeeded: push packet to the chip's own memory 700 * immediately. 701 */ 702 smc_hardware_send_pkt((unsigned long)dev); 703 } 704 705 return NETDEV_TX_OK; 706 } 707 708 /* 709 * This handles a TX interrupt, which is only called when: 710 * - a TX error occurred, or 711 * - CTL_AUTO_RELEASE is not set and TX of a packet completed. 712 */ 713 static void smc_tx(struct net_device *dev) 714 { 715 struct smc_local *lp = netdev_priv(dev); 716 void __iomem *ioaddr = lp->base; 717 unsigned int saved_packet, packet_no, tx_status, pkt_len; 718 719 DBG(3, dev, "%s\n", __func__); 720 721 /* If the TX FIFO is empty then nothing to do */ 722 packet_no = SMC_GET_TXFIFO(lp); 723 if (unlikely(packet_no & TXFIFO_TEMPTY)) { 724 PRINTK(dev, "smc_tx with nothing on FIFO.\n"); 725 return; 726 } 727 728 /* select packet to read from */ 729 saved_packet = SMC_GET_PN(lp); 730 SMC_SET_PN(lp, packet_no); 731 732 /* read the first word (status word) from this packet */ 733 SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ); 734 SMC_GET_PKT_HDR(lp, tx_status, pkt_len); 735 DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n", 736 tx_status, packet_no); 737 738 if (!(tx_status & ES_TX_SUC)) 739 dev->stats.tx_errors++; 740 741 if (tx_status & ES_LOSTCARR) 742 dev->stats.tx_carrier_errors++; 743 744 if (tx_status & (ES_LATCOL | ES_16COL)) { 745 PRINTK(dev, "%s occurred on last xmit\n", 746 (tx_status & ES_LATCOL) ? 747 "late collision" : "too many collisions"); 748 dev->stats.tx_window_errors++; 749 if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) { 750 netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n"); 751 } 752 } 753 754 /* kill the packet */ 755 SMC_WAIT_MMU_BUSY(lp); 756 SMC_SET_MMU_CMD(lp, MC_FREEPKT); 757 758 /* Don't restore Packet Number Reg until busy bit is cleared */ 759 SMC_WAIT_MMU_BUSY(lp); 760 SMC_SET_PN(lp, saved_packet); 761 762 /* re-enable transmit */ 763 SMC_SELECT_BANK(lp, 0); 764 SMC_SET_TCR(lp, lp->tcr_cur_mode); 765 SMC_SELECT_BANK(lp, 2); 766 } 767 768 769 /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/ 770 771 static void smc_mii_out(struct net_device *dev, unsigned int val, int bits) 772 { 773 struct smc_local *lp = netdev_priv(dev); 774 void __iomem *ioaddr = lp->base; 775 unsigned int mii_reg, mask; 776 777 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO); 778 mii_reg |= MII_MDOE; 779 780 for (mask = 1 << (bits - 1); mask; mask >>= 1) { 781 if (val & mask) 782 mii_reg |= MII_MDO; 783 else 784 mii_reg &= ~MII_MDO; 785 786 SMC_SET_MII(lp, mii_reg); 787 udelay(MII_DELAY); 788 SMC_SET_MII(lp, mii_reg | MII_MCLK); 789 udelay(MII_DELAY); 790 } 791 } 792 793 static unsigned int smc_mii_in(struct net_device *dev, int bits) 794 { 795 struct smc_local *lp = netdev_priv(dev); 796 void __iomem *ioaddr = lp->base; 797 unsigned int mii_reg, mask, val; 798 799 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO); 800 SMC_SET_MII(lp, mii_reg); 801 802 for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) { 803 if (SMC_GET_MII(lp) & MII_MDI) 804 val |= mask; 805 806 SMC_SET_MII(lp, mii_reg); 807 udelay(MII_DELAY); 808 SMC_SET_MII(lp, mii_reg | MII_MCLK); 809 udelay(MII_DELAY); 810 } 811 812 return val; 813 } 814 815 /* 816 * Reads a register from the MII Management serial interface 817 */ 818 static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg) 819 { 820 struct smc_local *lp = netdev_priv(dev); 821 void __iomem *ioaddr = lp->base; 822 unsigned int phydata; 823 824 SMC_SELECT_BANK(lp, 3); 825 826 /* Idle - 32 ones */ 827 smc_mii_out(dev, 0xffffffff, 32); 828 829 /* Start code (01) + read (10) + phyaddr + phyreg */ 830 smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14); 831 832 /* Turnaround (2bits) + phydata */ 833 phydata = smc_mii_in(dev, 18); 834 835 /* Return to idle state */ 836 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO)); 837 838 DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n", 839 __func__, phyaddr, phyreg, phydata); 840 841 SMC_SELECT_BANK(lp, 2); 842 return phydata; 843 } 844 845 /* 846 * Writes a register to the MII Management serial interface 847 */ 848 static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg, 849 int phydata) 850 { 851 struct smc_local *lp = netdev_priv(dev); 852 void __iomem *ioaddr = lp->base; 853 854 SMC_SELECT_BANK(lp, 3); 855 856 /* Idle - 32 ones */ 857 smc_mii_out(dev, 0xffffffff, 32); 858 859 /* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */ 860 smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32); 861 862 /* Return to idle state */ 863 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO)); 864 865 DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n", 866 __func__, phyaddr, phyreg, phydata); 867 868 SMC_SELECT_BANK(lp, 2); 869 } 870 871 /* 872 * Finds and reports the PHY address 873 */ 874 static void smc_phy_detect(struct net_device *dev) 875 { 876 struct smc_local *lp = netdev_priv(dev); 877 int phyaddr; 878 879 DBG(2, dev, "%s\n", __func__); 880 881 lp->phy_type = 0; 882 883 /* 884 * Scan all 32 PHY addresses if necessary, starting at 885 * PHY#1 to PHY#31, and then PHY#0 last. 886 */ 887 for (phyaddr = 1; phyaddr < 33; ++phyaddr) { 888 unsigned int id1, id2; 889 890 /* Read the PHY identifiers */ 891 id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1); 892 id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2); 893 894 DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n", 895 id1, id2); 896 897 /* Make sure it is a valid identifier */ 898 if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 && 899 id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) { 900 /* Save the PHY's address */ 901 lp->mii.phy_id = phyaddr & 31; 902 lp->phy_type = id1 << 16 | id2; 903 break; 904 } 905 } 906 } 907 908 /* 909 * Sets the PHY to a configuration as determined by the user 910 */ 911 static int smc_phy_fixed(struct net_device *dev) 912 { 913 struct smc_local *lp = netdev_priv(dev); 914 void __iomem *ioaddr = lp->base; 915 int phyaddr = lp->mii.phy_id; 916 int bmcr, cfg1; 917 918 DBG(3, dev, "%s\n", __func__); 919 920 /* Enter Link Disable state */ 921 cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG); 922 cfg1 |= PHY_CFG1_LNKDIS; 923 smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1); 924 925 /* 926 * Set our fixed capabilities 927 * Disable auto-negotiation 928 */ 929 bmcr = 0; 930 931 if (lp->ctl_rfduplx) 932 bmcr |= BMCR_FULLDPLX; 933 934 if (lp->ctl_rspeed == 100) 935 bmcr |= BMCR_SPEED100; 936 937 /* Write our capabilities to the phy control register */ 938 smc_phy_write(dev, phyaddr, MII_BMCR, bmcr); 939 940 /* Re-Configure the Receive/Phy Control register */ 941 SMC_SELECT_BANK(lp, 0); 942 SMC_SET_RPC(lp, lp->rpc_cur_mode); 943 SMC_SELECT_BANK(lp, 2); 944 945 return 1; 946 } 947 948 /** 949 * smc_phy_reset - reset the phy 950 * @dev: net device 951 * @phy: phy address 952 * 953 * Issue a software reset for the specified PHY and 954 * wait up to 100ms for the reset to complete. We should 955 * not access the PHY for 50ms after issuing the reset. 956 * 957 * The time to wait appears to be dependent on the PHY. 958 * 959 * Must be called with lp->lock locked. 960 */ 961 static int smc_phy_reset(struct net_device *dev, int phy) 962 { 963 struct smc_local *lp = netdev_priv(dev); 964 unsigned int bmcr; 965 int timeout; 966 967 smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET); 968 969 for (timeout = 2; timeout; timeout--) { 970 spin_unlock_irq(&lp->lock); 971 msleep(50); 972 spin_lock_irq(&lp->lock); 973 974 bmcr = smc_phy_read(dev, phy, MII_BMCR); 975 if (!(bmcr & BMCR_RESET)) 976 break; 977 } 978 979 return bmcr & BMCR_RESET; 980 } 981 982 /** 983 * smc_phy_powerdown - powerdown phy 984 * @dev: net device 985 * 986 * Power down the specified PHY 987 */ 988 static void smc_phy_powerdown(struct net_device *dev) 989 { 990 struct smc_local *lp = netdev_priv(dev); 991 unsigned int bmcr; 992 int phy = lp->mii.phy_id; 993 994 if (lp->phy_type == 0) 995 return; 996 997 /* We need to ensure that no calls to smc_phy_configure are 998 pending. 999 */ 1000 cancel_work_sync(&lp->phy_configure); 1001 1002 bmcr = smc_phy_read(dev, phy, MII_BMCR); 1003 smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN); 1004 } 1005 1006 /** 1007 * smc_phy_check_media - check the media status and adjust TCR 1008 * @dev: net device 1009 * @init: set true for initialisation 1010 * 1011 * Select duplex mode depending on negotiation state. This 1012 * also updates our carrier state. 1013 */ 1014 static void smc_phy_check_media(struct net_device *dev, int init) 1015 { 1016 struct smc_local *lp = netdev_priv(dev); 1017 void __iomem *ioaddr = lp->base; 1018 1019 if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) { 1020 /* duplex state has changed */ 1021 if (lp->mii.full_duplex) { 1022 lp->tcr_cur_mode |= TCR_SWFDUP; 1023 } else { 1024 lp->tcr_cur_mode &= ~TCR_SWFDUP; 1025 } 1026 1027 SMC_SELECT_BANK(lp, 0); 1028 SMC_SET_TCR(lp, lp->tcr_cur_mode); 1029 } 1030 } 1031 1032 /* 1033 * Configures the specified PHY through the MII management interface 1034 * using Autonegotiation. 1035 * Calls smc_phy_fixed() if the user has requested a certain config. 1036 * If RPC ANEG bit is set, the media selection is dependent purely on 1037 * the selection by the MII (either in the MII BMCR reg or the result 1038 * of autonegotiation.) If the RPC ANEG bit is cleared, the selection 1039 * is controlled by the RPC SPEED and RPC DPLX bits. 1040 */ 1041 static void smc_phy_configure(struct work_struct *work) 1042 { 1043 struct smc_local *lp = 1044 container_of(work, struct smc_local, phy_configure); 1045 struct net_device *dev = lp->dev; 1046 void __iomem *ioaddr = lp->base; 1047 int phyaddr = lp->mii.phy_id; 1048 int my_phy_caps; /* My PHY capabilities */ 1049 int my_ad_caps; /* My Advertised capabilities */ 1050 int status; 1051 1052 DBG(3, dev, "smc_program_phy()\n"); 1053 1054 spin_lock_irq(&lp->lock); 1055 1056 /* 1057 * We should not be called if phy_type is zero. 1058 */ 1059 if (lp->phy_type == 0) 1060 goto smc_phy_configure_exit; 1061 1062 if (smc_phy_reset(dev, phyaddr)) { 1063 netdev_info(dev, "PHY reset timed out\n"); 1064 goto smc_phy_configure_exit; 1065 } 1066 1067 /* 1068 * Enable PHY Interrupts (for register 18) 1069 * Interrupts listed here are disabled 1070 */ 1071 smc_phy_write(dev, phyaddr, PHY_MASK_REG, 1072 PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD | 1073 PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB | 1074 PHY_INT_SPDDET | PHY_INT_DPLXDET); 1075 1076 /* Configure the Receive/Phy Control register */ 1077 SMC_SELECT_BANK(lp, 0); 1078 SMC_SET_RPC(lp, lp->rpc_cur_mode); 1079 1080 /* If the user requested no auto neg, then go set his request */ 1081 if (lp->mii.force_media) { 1082 smc_phy_fixed(dev); 1083 goto smc_phy_configure_exit; 1084 } 1085 1086 /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */ 1087 my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR); 1088 1089 if (!(my_phy_caps & BMSR_ANEGCAPABLE)) { 1090 netdev_info(dev, "Auto negotiation NOT supported\n"); 1091 smc_phy_fixed(dev); 1092 goto smc_phy_configure_exit; 1093 } 1094 1095 my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */ 1096 1097 if (my_phy_caps & BMSR_100BASE4) 1098 my_ad_caps |= ADVERTISE_100BASE4; 1099 if (my_phy_caps & BMSR_100FULL) 1100 my_ad_caps |= ADVERTISE_100FULL; 1101 if (my_phy_caps & BMSR_100HALF) 1102 my_ad_caps |= ADVERTISE_100HALF; 1103 if (my_phy_caps & BMSR_10FULL) 1104 my_ad_caps |= ADVERTISE_10FULL; 1105 if (my_phy_caps & BMSR_10HALF) 1106 my_ad_caps |= ADVERTISE_10HALF; 1107 1108 /* Disable capabilities not selected by our user */ 1109 if (lp->ctl_rspeed != 100) 1110 my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF); 1111 1112 if (!lp->ctl_rfduplx) 1113 my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL); 1114 1115 /* Update our Auto-Neg Advertisement Register */ 1116 smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps); 1117 lp->mii.advertising = my_ad_caps; 1118 1119 /* 1120 * Read the register back. Without this, it appears that when 1121 * auto-negotiation is restarted, sometimes it isn't ready and 1122 * the link does not come up. 1123 */ 1124 status = smc_phy_read(dev, phyaddr, MII_ADVERTISE); 1125 1126 DBG(2, dev, "phy caps=%x\n", my_phy_caps); 1127 DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps); 1128 1129 /* Restart auto-negotiation process in order to advertise my caps */ 1130 smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART); 1131 1132 smc_phy_check_media(dev, 1); 1133 1134 smc_phy_configure_exit: 1135 SMC_SELECT_BANK(lp, 2); 1136 spin_unlock_irq(&lp->lock); 1137 } 1138 1139 /* 1140 * smc_phy_interrupt 1141 * 1142 * Purpose: Handle interrupts relating to PHY register 18. This is 1143 * called from the "hard" interrupt handler under our private spinlock. 1144 */ 1145 static void smc_phy_interrupt(struct net_device *dev) 1146 { 1147 struct smc_local *lp = netdev_priv(dev); 1148 int phyaddr = lp->mii.phy_id; 1149 int phy18; 1150 1151 DBG(2, dev, "%s\n", __func__); 1152 1153 if (lp->phy_type == 0) 1154 return; 1155 1156 for(;;) { 1157 smc_phy_check_media(dev, 0); 1158 1159 /* Read PHY Register 18, Status Output */ 1160 phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG); 1161 if ((phy18 & PHY_INT_INT) == 0) 1162 break; 1163 } 1164 } 1165 1166 /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/ 1167 1168 static void smc_10bt_check_media(struct net_device *dev, int init) 1169 { 1170 struct smc_local *lp = netdev_priv(dev); 1171 void __iomem *ioaddr = lp->base; 1172 unsigned int old_carrier, new_carrier; 1173 1174 old_carrier = netif_carrier_ok(dev) ? 1 : 0; 1175 1176 SMC_SELECT_BANK(lp, 0); 1177 new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0; 1178 SMC_SELECT_BANK(lp, 2); 1179 1180 if (init || (old_carrier != new_carrier)) { 1181 if (!new_carrier) { 1182 netif_carrier_off(dev); 1183 } else { 1184 netif_carrier_on(dev); 1185 } 1186 if (netif_msg_link(lp)) 1187 netdev_info(dev, "link %s\n", 1188 new_carrier ? "up" : "down"); 1189 } 1190 } 1191 1192 static void smc_eph_interrupt(struct net_device *dev) 1193 { 1194 struct smc_local *lp = netdev_priv(dev); 1195 void __iomem *ioaddr = lp->base; 1196 unsigned int ctl; 1197 1198 smc_10bt_check_media(dev, 0); 1199 1200 SMC_SELECT_BANK(lp, 1); 1201 ctl = SMC_GET_CTL(lp); 1202 SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE); 1203 SMC_SET_CTL(lp, ctl); 1204 SMC_SELECT_BANK(lp, 2); 1205 } 1206 1207 /* 1208 * This is the main routine of the driver, to handle the device when 1209 * it needs some attention. 1210 */ 1211 static irqreturn_t smc_interrupt(int irq, void *dev_id) 1212 { 1213 struct net_device *dev = dev_id; 1214 struct smc_local *lp = netdev_priv(dev); 1215 void __iomem *ioaddr = lp->base; 1216 int status, mask, timeout, card_stats; 1217 int saved_pointer; 1218 1219 DBG(3, dev, "%s\n", __func__); 1220 1221 spin_lock(&lp->lock); 1222 1223 /* A preamble may be used when there is a potential race 1224 * between the interruptible transmit functions and this 1225 * ISR. */ 1226 SMC_INTERRUPT_PREAMBLE; 1227 1228 saved_pointer = SMC_GET_PTR(lp); 1229 mask = SMC_GET_INT_MASK(lp); 1230 SMC_SET_INT_MASK(lp, 0); 1231 1232 /* set a timeout value, so I don't stay here forever */ 1233 timeout = MAX_IRQ_LOOPS; 1234 1235 do { 1236 status = SMC_GET_INT(lp); 1237 1238 DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n", 1239 status, mask, 1240 ({ int meminfo; SMC_SELECT_BANK(lp, 0); 1241 meminfo = SMC_GET_MIR(lp); 1242 SMC_SELECT_BANK(lp, 2); meminfo; }), 1243 SMC_GET_FIFO(lp)); 1244 1245 status &= mask; 1246 if (!status) 1247 break; 1248 1249 if (status & IM_TX_INT) { 1250 /* do this before RX as it will free memory quickly */ 1251 DBG(3, dev, "TX int\n"); 1252 smc_tx(dev); 1253 SMC_ACK_INT(lp, IM_TX_INT); 1254 if (THROTTLE_TX_PKTS) 1255 netif_wake_queue(dev); 1256 } else if (status & IM_RCV_INT) { 1257 DBG(3, dev, "RX irq\n"); 1258 smc_rcv(dev); 1259 } else if (status & IM_ALLOC_INT) { 1260 DBG(3, dev, "Allocation irq\n"); 1261 tasklet_hi_schedule(&lp->tx_task); 1262 mask &= ~IM_ALLOC_INT; 1263 } else if (status & IM_TX_EMPTY_INT) { 1264 DBG(3, dev, "TX empty\n"); 1265 mask &= ~IM_TX_EMPTY_INT; 1266 1267 /* update stats */ 1268 SMC_SELECT_BANK(lp, 0); 1269 card_stats = SMC_GET_COUNTER(lp); 1270 SMC_SELECT_BANK(lp, 2); 1271 1272 /* single collisions */ 1273 dev->stats.collisions += card_stats & 0xF; 1274 card_stats >>= 4; 1275 1276 /* multiple collisions */ 1277 dev->stats.collisions += card_stats & 0xF; 1278 } else if (status & IM_RX_OVRN_INT) { 1279 DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n", 1280 ({ int eph_st; SMC_SELECT_BANK(lp, 0); 1281 eph_st = SMC_GET_EPH_STATUS(lp); 1282 SMC_SELECT_BANK(lp, 2); eph_st; })); 1283 SMC_ACK_INT(lp, IM_RX_OVRN_INT); 1284 dev->stats.rx_errors++; 1285 dev->stats.rx_fifo_errors++; 1286 } else if (status & IM_EPH_INT) { 1287 smc_eph_interrupt(dev); 1288 } else if (status & IM_MDINT) { 1289 SMC_ACK_INT(lp, IM_MDINT); 1290 smc_phy_interrupt(dev); 1291 } else if (status & IM_ERCV_INT) { 1292 SMC_ACK_INT(lp, IM_ERCV_INT); 1293 PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n"); 1294 } 1295 } while (--timeout); 1296 1297 /* restore register states */ 1298 SMC_SET_PTR(lp, saved_pointer); 1299 SMC_SET_INT_MASK(lp, mask); 1300 spin_unlock(&lp->lock); 1301 1302 #ifndef CONFIG_NET_POLL_CONTROLLER 1303 if (timeout == MAX_IRQ_LOOPS) 1304 PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n", 1305 mask); 1306 #endif 1307 DBG(3, dev, "Interrupt done (%d loops)\n", 1308 MAX_IRQ_LOOPS - timeout); 1309 1310 /* 1311 * We return IRQ_HANDLED unconditionally here even if there was 1312 * nothing to do. There is a possibility that a packet might 1313 * get enqueued into the chip right after TX_EMPTY_INT is raised 1314 * but just before the CPU acknowledges the IRQ. 1315 * Better take an unneeded IRQ in some occasions than complexifying 1316 * the code for all cases. 1317 */ 1318 return IRQ_HANDLED; 1319 } 1320 1321 #ifdef CONFIG_NET_POLL_CONTROLLER 1322 /* 1323 * Polling receive - used by netconsole and other diagnostic tools 1324 * to allow network i/o with interrupts disabled. 1325 */ 1326 static void smc_poll_controller(struct net_device *dev) 1327 { 1328 disable_irq(dev->irq); 1329 smc_interrupt(dev->irq, dev); 1330 enable_irq(dev->irq); 1331 } 1332 #endif 1333 1334 /* Our watchdog timed out. Called by the networking layer */ 1335 static void smc_timeout(struct net_device *dev) 1336 { 1337 struct smc_local *lp = netdev_priv(dev); 1338 void __iomem *ioaddr = lp->base; 1339 int status, mask, eph_st, meminfo, fifo; 1340 1341 DBG(2, dev, "%s\n", __func__); 1342 1343 spin_lock_irq(&lp->lock); 1344 status = SMC_GET_INT(lp); 1345 mask = SMC_GET_INT_MASK(lp); 1346 fifo = SMC_GET_FIFO(lp); 1347 SMC_SELECT_BANK(lp, 0); 1348 eph_st = SMC_GET_EPH_STATUS(lp); 1349 meminfo = SMC_GET_MIR(lp); 1350 SMC_SELECT_BANK(lp, 2); 1351 spin_unlock_irq(&lp->lock); 1352 PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n", 1353 status, mask, meminfo, fifo, eph_st); 1354 1355 smc_reset(dev); 1356 smc_enable(dev); 1357 1358 /* 1359 * Reconfiguring the PHY doesn't seem like a bad idea here, but 1360 * smc_phy_configure() calls msleep() which calls schedule_timeout() 1361 * which calls schedule(). Hence we use a work queue. 1362 */ 1363 if (lp->phy_type != 0) 1364 schedule_work(&lp->phy_configure); 1365 1366 /* We can accept TX packets again */ 1367 netif_trans_update(dev); /* prevent tx timeout */ 1368 netif_wake_queue(dev); 1369 } 1370 1371 /* 1372 * This routine will, depending on the values passed to it, 1373 * either make it accept multicast packets, go into 1374 * promiscuous mode (for TCPDUMP and cousins) or accept 1375 * a select set of multicast packets 1376 */ 1377 static void smc_set_multicast_list(struct net_device *dev) 1378 { 1379 struct smc_local *lp = netdev_priv(dev); 1380 void __iomem *ioaddr = lp->base; 1381 unsigned char multicast_table[8]; 1382 int update_multicast = 0; 1383 1384 DBG(2, dev, "%s\n", __func__); 1385 1386 if (dev->flags & IFF_PROMISC) { 1387 DBG(2, dev, "RCR_PRMS\n"); 1388 lp->rcr_cur_mode |= RCR_PRMS; 1389 } 1390 1391 /* BUG? I never disable promiscuous mode if multicasting was turned on. 1392 Now, I turn off promiscuous mode, but I don't do anything to multicasting 1393 when promiscuous mode is turned on. 1394 */ 1395 1396 /* 1397 * Here, I am setting this to accept all multicast packets. 1398 * I don't need to zero the multicast table, because the flag is 1399 * checked before the table is 1400 */ 1401 else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) { 1402 DBG(2, dev, "RCR_ALMUL\n"); 1403 lp->rcr_cur_mode |= RCR_ALMUL; 1404 } 1405 1406 /* 1407 * This sets the internal hardware table to filter out unwanted 1408 * multicast packets before they take up memory. 1409 * 1410 * The SMC chip uses a hash table where the high 6 bits of the CRC of 1411 * address are the offset into the table. If that bit is 1, then the 1412 * multicast packet is accepted. Otherwise, it's dropped silently. 1413 * 1414 * To use the 6 bits as an offset into the table, the high 3 bits are 1415 * the number of the 8 bit register, while the low 3 bits are the bit 1416 * within that register. 1417 */ 1418 else if (!netdev_mc_empty(dev)) { 1419 struct netdev_hw_addr *ha; 1420 1421 /* table for flipping the order of 3 bits */ 1422 static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7}; 1423 1424 /* start with a table of all zeros: reject all */ 1425 memset(multicast_table, 0, sizeof(multicast_table)); 1426 1427 netdev_for_each_mc_addr(ha, dev) { 1428 int position; 1429 1430 /* only use the low order bits */ 1431 position = crc32_le(~0, ha->addr, 6) & 0x3f; 1432 1433 /* do some messy swapping to put the bit in the right spot */ 1434 multicast_table[invert3[position&7]] |= 1435 (1<<invert3[(position>>3)&7]); 1436 } 1437 1438 /* be sure I get rid of flags I might have set */ 1439 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL); 1440 1441 /* now, the table can be loaded into the chipset */ 1442 update_multicast = 1; 1443 } else { 1444 DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n"); 1445 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL); 1446 1447 /* 1448 * since I'm disabling all multicast entirely, I need to 1449 * clear the multicast list 1450 */ 1451 memset(multicast_table, 0, sizeof(multicast_table)); 1452 update_multicast = 1; 1453 } 1454 1455 spin_lock_irq(&lp->lock); 1456 SMC_SELECT_BANK(lp, 0); 1457 SMC_SET_RCR(lp, lp->rcr_cur_mode); 1458 if (update_multicast) { 1459 SMC_SELECT_BANK(lp, 3); 1460 SMC_SET_MCAST(lp, multicast_table); 1461 } 1462 SMC_SELECT_BANK(lp, 2); 1463 spin_unlock_irq(&lp->lock); 1464 } 1465 1466 1467 /* 1468 * Open and Initialize the board 1469 * 1470 * Set up everything, reset the card, etc.. 1471 */ 1472 static int 1473 smc_open(struct net_device *dev) 1474 { 1475 struct smc_local *lp = netdev_priv(dev); 1476 1477 DBG(2, dev, "%s\n", __func__); 1478 1479 /* Setup the default Register Modes */ 1480 lp->tcr_cur_mode = TCR_DEFAULT; 1481 lp->rcr_cur_mode = RCR_DEFAULT; 1482 lp->rpc_cur_mode = RPC_DEFAULT | 1483 lp->cfg.leda << RPC_LSXA_SHFT | 1484 lp->cfg.ledb << RPC_LSXB_SHFT; 1485 1486 /* 1487 * If we are not using a MII interface, we need to 1488 * monitor our own carrier signal to detect faults. 1489 */ 1490 if (lp->phy_type == 0) 1491 lp->tcr_cur_mode |= TCR_MON_CSN; 1492 1493 /* reset the hardware */ 1494 smc_reset(dev); 1495 smc_enable(dev); 1496 1497 /* Configure the PHY, initialize the link state */ 1498 if (lp->phy_type != 0) 1499 smc_phy_configure(&lp->phy_configure); 1500 else { 1501 spin_lock_irq(&lp->lock); 1502 smc_10bt_check_media(dev, 1); 1503 spin_unlock_irq(&lp->lock); 1504 } 1505 1506 netif_start_queue(dev); 1507 return 0; 1508 } 1509 1510 /* 1511 * smc_close 1512 * 1513 * this makes the board clean up everything that it can 1514 * and not talk to the outside world. Caused by 1515 * an 'ifconfig ethX down' 1516 */ 1517 static int smc_close(struct net_device *dev) 1518 { 1519 struct smc_local *lp = netdev_priv(dev); 1520 1521 DBG(2, dev, "%s\n", __func__); 1522 1523 netif_stop_queue(dev); 1524 netif_carrier_off(dev); 1525 1526 /* clear everything */ 1527 smc_shutdown(dev); 1528 tasklet_kill(&lp->tx_task); 1529 smc_phy_powerdown(dev); 1530 return 0; 1531 } 1532 1533 /* 1534 * Ethtool support 1535 */ 1536 static int 1537 smc_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd) 1538 { 1539 struct smc_local *lp = netdev_priv(dev); 1540 int ret; 1541 1542 cmd->maxtxpkt = 1; 1543 cmd->maxrxpkt = 1; 1544 1545 if (lp->phy_type != 0) { 1546 spin_lock_irq(&lp->lock); 1547 ret = mii_ethtool_gset(&lp->mii, cmd); 1548 spin_unlock_irq(&lp->lock); 1549 } else { 1550 cmd->supported = SUPPORTED_10baseT_Half | 1551 SUPPORTED_10baseT_Full | 1552 SUPPORTED_TP | SUPPORTED_AUI; 1553 1554 if (lp->ctl_rspeed == 10) 1555 ethtool_cmd_speed_set(cmd, SPEED_10); 1556 else if (lp->ctl_rspeed == 100) 1557 ethtool_cmd_speed_set(cmd, SPEED_100); 1558 1559 cmd->autoneg = AUTONEG_DISABLE; 1560 cmd->transceiver = XCVR_INTERNAL; 1561 cmd->port = 0; 1562 cmd->duplex = lp->tcr_cur_mode & TCR_SWFDUP ? DUPLEX_FULL : DUPLEX_HALF; 1563 1564 ret = 0; 1565 } 1566 1567 return ret; 1568 } 1569 1570 static int 1571 smc_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd) 1572 { 1573 struct smc_local *lp = netdev_priv(dev); 1574 int ret; 1575 1576 if (lp->phy_type != 0) { 1577 spin_lock_irq(&lp->lock); 1578 ret = mii_ethtool_sset(&lp->mii, cmd); 1579 spin_unlock_irq(&lp->lock); 1580 } else { 1581 if (cmd->autoneg != AUTONEG_DISABLE || 1582 cmd->speed != SPEED_10 || 1583 (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) || 1584 (cmd->port != PORT_TP && cmd->port != PORT_AUI)) 1585 return -EINVAL; 1586 1587 // lp->port = cmd->port; 1588 lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL; 1589 1590 // if (netif_running(dev)) 1591 // smc_set_port(dev); 1592 1593 ret = 0; 1594 } 1595 1596 return ret; 1597 } 1598 1599 static void 1600 smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1601 { 1602 strlcpy(info->driver, CARDNAME, sizeof(info->driver)); 1603 strlcpy(info->version, version, sizeof(info->version)); 1604 strlcpy(info->bus_info, dev_name(dev->dev.parent), 1605 sizeof(info->bus_info)); 1606 } 1607 1608 static int smc_ethtool_nwayreset(struct net_device *dev) 1609 { 1610 struct smc_local *lp = netdev_priv(dev); 1611 int ret = -EINVAL; 1612 1613 if (lp->phy_type != 0) { 1614 spin_lock_irq(&lp->lock); 1615 ret = mii_nway_restart(&lp->mii); 1616 spin_unlock_irq(&lp->lock); 1617 } 1618 1619 return ret; 1620 } 1621 1622 static u32 smc_ethtool_getmsglevel(struct net_device *dev) 1623 { 1624 struct smc_local *lp = netdev_priv(dev); 1625 return lp->msg_enable; 1626 } 1627 1628 static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level) 1629 { 1630 struct smc_local *lp = netdev_priv(dev); 1631 lp->msg_enable = level; 1632 } 1633 1634 static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word) 1635 { 1636 u16 ctl; 1637 struct smc_local *lp = netdev_priv(dev); 1638 void __iomem *ioaddr = lp->base; 1639 1640 spin_lock_irq(&lp->lock); 1641 /* load word into GP register */ 1642 SMC_SELECT_BANK(lp, 1); 1643 SMC_SET_GP(lp, word); 1644 /* set the address to put the data in EEPROM */ 1645 SMC_SELECT_BANK(lp, 2); 1646 SMC_SET_PTR(lp, addr); 1647 /* tell it to write */ 1648 SMC_SELECT_BANK(lp, 1); 1649 ctl = SMC_GET_CTL(lp); 1650 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE)); 1651 /* wait for it to finish */ 1652 do { 1653 udelay(1); 1654 } while (SMC_GET_CTL(lp) & CTL_STORE); 1655 /* clean up */ 1656 SMC_SET_CTL(lp, ctl); 1657 SMC_SELECT_BANK(lp, 2); 1658 spin_unlock_irq(&lp->lock); 1659 return 0; 1660 } 1661 1662 static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word) 1663 { 1664 u16 ctl; 1665 struct smc_local *lp = netdev_priv(dev); 1666 void __iomem *ioaddr = lp->base; 1667 1668 spin_lock_irq(&lp->lock); 1669 /* set the EEPROM address to get the data from */ 1670 SMC_SELECT_BANK(lp, 2); 1671 SMC_SET_PTR(lp, addr | PTR_READ); 1672 /* tell it to load */ 1673 SMC_SELECT_BANK(lp, 1); 1674 SMC_SET_GP(lp, 0xffff); /* init to known */ 1675 ctl = SMC_GET_CTL(lp); 1676 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD)); 1677 /* wait for it to finish */ 1678 do { 1679 udelay(1); 1680 } while (SMC_GET_CTL(lp) & CTL_RELOAD); 1681 /* read word from GP register */ 1682 *word = SMC_GET_GP(lp); 1683 /* clean up */ 1684 SMC_SET_CTL(lp, ctl); 1685 SMC_SELECT_BANK(lp, 2); 1686 spin_unlock_irq(&lp->lock); 1687 return 0; 1688 } 1689 1690 static int smc_ethtool_geteeprom_len(struct net_device *dev) 1691 { 1692 return 0x23 * 2; 1693 } 1694 1695 static int smc_ethtool_geteeprom(struct net_device *dev, 1696 struct ethtool_eeprom *eeprom, u8 *data) 1697 { 1698 int i; 1699 int imax; 1700 1701 DBG(1, dev, "Reading %d bytes at %d(0x%x)\n", 1702 eeprom->len, eeprom->offset, eeprom->offset); 1703 imax = smc_ethtool_geteeprom_len(dev); 1704 for (i = 0; i < eeprom->len; i += 2) { 1705 int ret; 1706 u16 wbuf; 1707 int offset = i + eeprom->offset; 1708 if (offset > imax) 1709 break; 1710 ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf); 1711 if (ret != 0) 1712 return ret; 1713 DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1); 1714 data[i] = (wbuf >> 8) & 0xff; 1715 data[i+1] = wbuf & 0xff; 1716 } 1717 return 0; 1718 } 1719 1720 static int smc_ethtool_seteeprom(struct net_device *dev, 1721 struct ethtool_eeprom *eeprom, u8 *data) 1722 { 1723 int i; 1724 int imax; 1725 1726 DBG(1, dev, "Writing %d bytes to %d(0x%x)\n", 1727 eeprom->len, eeprom->offset, eeprom->offset); 1728 imax = smc_ethtool_geteeprom_len(dev); 1729 for (i = 0; i < eeprom->len; i += 2) { 1730 int ret; 1731 u16 wbuf; 1732 int offset = i + eeprom->offset; 1733 if (offset > imax) 1734 break; 1735 wbuf = (data[i] << 8) | data[i + 1]; 1736 DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1); 1737 ret = smc_write_eeprom_word(dev, offset >> 1, wbuf); 1738 if (ret != 0) 1739 return ret; 1740 } 1741 return 0; 1742 } 1743 1744 1745 static const struct ethtool_ops smc_ethtool_ops = { 1746 .get_settings = smc_ethtool_getsettings, 1747 .set_settings = smc_ethtool_setsettings, 1748 .get_drvinfo = smc_ethtool_getdrvinfo, 1749 1750 .get_msglevel = smc_ethtool_getmsglevel, 1751 .set_msglevel = smc_ethtool_setmsglevel, 1752 .nway_reset = smc_ethtool_nwayreset, 1753 .get_link = ethtool_op_get_link, 1754 .get_eeprom_len = smc_ethtool_geteeprom_len, 1755 .get_eeprom = smc_ethtool_geteeprom, 1756 .set_eeprom = smc_ethtool_seteeprom, 1757 }; 1758 1759 static const struct net_device_ops smc_netdev_ops = { 1760 .ndo_open = smc_open, 1761 .ndo_stop = smc_close, 1762 .ndo_start_xmit = smc_hard_start_xmit, 1763 .ndo_tx_timeout = smc_timeout, 1764 .ndo_set_rx_mode = smc_set_multicast_list, 1765 .ndo_change_mtu = eth_change_mtu, 1766 .ndo_validate_addr = eth_validate_addr, 1767 .ndo_set_mac_address = eth_mac_addr, 1768 #ifdef CONFIG_NET_POLL_CONTROLLER 1769 .ndo_poll_controller = smc_poll_controller, 1770 #endif 1771 }; 1772 1773 /* 1774 * smc_findirq 1775 * 1776 * This routine has a simple purpose -- make the SMC chip generate an 1777 * interrupt, so an auto-detect routine can detect it, and find the IRQ, 1778 */ 1779 /* 1780 * does this still work? 1781 * 1782 * I just deleted auto_irq.c, since it was never built... 1783 * --jgarzik 1784 */ 1785 static int smc_findirq(struct smc_local *lp) 1786 { 1787 void __iomem *ioaddr = lp->base; 1788 int timeout = 20; 1789 unsigned long cookie; 1790 1791 DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__); 1792 1793 cookie = probe_irq_on(); 1794 1795 /* 1796 * What I try to do here is trigger an ALLOC_INT. This is done 1797 * by allocating a small chunk of memory, which will give an interrupt 1798 * when done. 1799 */ 1800 /* enable ALLOCation interrupts ONLY */ 1801 SMC_SELECT_BANK(lp, 2); 1802 SMC_SET_INT_MASK(lp, IM_ALLOC_INT); 1803 1804 /* 1805 * Allocate 512 bytes of memory. Note that the chip was just 1806 * reset so all the memory is available 1807 */ 1808 SMC_SET_MMU_CMD(lp, MC_ALLOC | 1); 1809 1810 /* 1811 * Wait until positive that the interrupt has been generated 1812 */ 1813 do { 1814 int int_status; 1815 udelay(10); 1816 int_status = SMC_GET_INT(lp); 1817 if (int_status & IM_ALLOC_INT) 1818 break; /* got the interrupt */ 1819 } while (--timeout); 1820 1821 /* 1822 * there is really nothing that I can do here if timeout fails, 1823 * as autoirq_report will return a 0 anyway, which is what I 1824 * want in this case. Plus, the clean up is needed in both 1825 * cases. 1826 */ 1827 1828 /* and disable all interrupts again */ 1829 SMC_SET_INT_MASK(lp, 0); 1830 1831 /* and return what I found */ 1832 return probe_irq_off(cookie); 1833 } 1834 1835 /* 1836 * Function: smc_probe(unsigned long ioaddr) 1837 * 1838 * Purpose: 1839 * Tests to see if a given ioaddr points to an SMC91x chip. 1840 * Returns a 0 on success 1841 * 1842 * Algorithm: 1843 * (1) see if the high byte of BANK_SELECT is 0x33 1844 * (2) compare the ioaddr with the base register's address 1845 * (3) see if I recognize the chip ID in the appropriate register 1846 * 1847 * Here I do typical initialization tasks. 1848 * 1849 * o Initialize the structure if needed 1850 * o print out my vanity message if not done so already 1851 * o print out what type of hardware is detected 1852 * o print out the ethernet address 1853 * o find the IRQ 1854 * o set up my private data 1855 * o configure the dev structure with my subroutines 1856 * o actually GRAB the irq. 1857 * o GRAB the region 1858 */ 1859 static int smc_probe(struct net_device *dev, void __iomem *ioaddr, 1860 unsigned long irq_flags) 1861 { 1862 struct smc_local *lp = netdev_priv(dev); 1863 int retval; 1864 unsigned int val, revision_register; 1865 const char *version_string; 1866 1867 DBG(2, dev, "%s: %s\n", CARDNAME, __func__); 1868 1869 /* First, see if the high byte is 0x33 */ 1870 val = SMC_CURRENT_BANK(lp); 1871 DBG(2, dev, "%s: bank signature probe returned 0x%04x\n", 1872 CARDNAME, val); 1873 if ((val & 0xFF00) != 0x3300) { 1874 if ((val & 0xFF) == 0x33) { 1875 netdev_warn(dev, 1876 "%s: Detected possible byte-swapped interface at IOADDR %p\n", 1877 CARDNAME, ioaddr); 1878 } 1879 retval = -ENODEV; 1880 goto err_out; 1881 } 1882 1883 /* 1884 * The above MIGHT indicate a device, but I need to write to 1885 * further test this. 1886 */ 1887 SMC_SELECT_BANK(lp, 0); 1888 val = SMC_CURRENT_BANK(lp); 1889 if ((val & 0xFF00) != 0x3300) { 1890 retval = -ENODEV; 1891 goto err_out; 1892 } 1893 1894 /* 1895 * well, we've already written once, so hopefully another 1896 * time won't hurt. This time, I need to switch the bank 1897 * register to bank 1, so I can access the base address 1898 * register 1899 */ 1900 SMC_SELECT_BANK(lp, 1); 1901 val = SMC_GET_BASE(lp); 1902 val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT; 1903 if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) { 1904 netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n", 1905 CARDNAME, ioaddr, val); 1906 } 1907 1908 /* 1909 * check if the revision register is something that I 1910 * recognize. These might need to be added to later, 1911 * as future revisions could be added. 1912 */ 1913 SMC_SELECT_BANK(lp, 3); 1914 revision_register = SMC_GET_REV(lp); 1915 DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register); 1916 version_string = chip_ids[ (revision_register >> 4) & 0xF]; 1917 if (!version_string || (revision_register & 0xff00) != 0x3300) { 1918 /* I don't recognize this chip, so... */ 1919 netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n", 1920 CARDNAME, ioaddr, revision_register); 1921 1922 retval = -ENODEV; 1923 goto err_out; 1924 } 1925 1926 /* At this point I'll assume that the chip is an SMC91x. */ 1927 pr_info_once("%s\n", version); 1928 1929 /* fill in some of the fields */ 1930 dev->base_addr = (unsigned long)ioaddr; 1931 lp->base = ioaddr; 1932 lp->version = revision_register & 0xff; 1933 spin_lock_init(&lp->lock); 1934 1935 /* Get the MAC address */ 1936 SMC_SELECT_BANK(lp, 1); 1937 SMC_GET_MAC_ADDR(lp, dev->dev_addr); 1938 1939 /* now, reset the chip, and put it into a known state */ 1940 smc_reset(dev); 1941 1942 /* 1943 * If dev->irq is 0, then the device has to be banged on to see 1944 * what the IRQ is. 1945 * 1946 * This banging doesn't always detect the IRQ, for unknown reasons. 1947 * a workaround is to reset the chip and try again. 1948 * 1949 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to 1950 * be what is requested on the command line. I don't do that, mostly 1951 * because the card that I have uses a non-standard method of accessing 1952 * the IRQs, and because this _should_ work in most configurations. 1953 * 1954 * Specifying an IRQ is done with the assumption that the user knows 1955 * what (s)he is doing. No checking is done!!!! 1956 */ 1957 if (dev->irq < 1) { 1958 int trials; 1959 1960 trials = 3; 1961 while (trials--) { 1962 dev->irq = smc_findirq(lp); 1963 if (dev->irq) 1964 break; 1965 /* kick the card and try again */ 1966 smc_reset(dev); 1967 } 1968 } 1969 if (dev->irq == 0) { 1970 netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n"); 1971 retval = -ENODEV; 1972 goto err_out; 1973 } 1974 dev->irq = irq_canonicalize(dev->irq); 1975 1976 dev->watchdog_timeo = msecs_to_jiffies(watchdog); 1977 dev->netdev_ops = &smc_netdev_ops; 1978 dev->ethtool_ops = &smc_ethtool_ops; 1979 1980 tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev); 1981 INIT_WORK(&lp->phy_configure, smc_phy_configure); 1982 lp->dev = dev; 1983 lp->mii.phy_id_mask = 0x1f; 1984 lp->mii.reg_num_mask = 0x1f; 1985 lp->mii.force_media = 0; 1986 lp->mii.full_duplex = 0; 1987 lp->mii.dev = dev; 1988 lp->mii.mdio_read = smc_phy_read; 1989 lp->mii.mdio_write = smc_phy_write; 1990 1991 /* 1992 * Locate the phy, if any. 1993 */ 1994 if (lp->version >= (CHIP_91100 << 4)) 1995 smc_phy_detect(dev); 1996 1997 /* then shut everything down to save power */ 1998 smc_shutdown(dev); 1999 smc_phy_powerdown(dev); 2000 2001 /* Set default parameters */ 2002 lp->msg_enable = NETIF_MSG_LINK; 2003 lp->ctl_rfduplx = 0; 2004 lp->ctl_rspeed = 10; 2005 2006 if (lp->version >= (CHIP_91100 << 4)) { 2007 lp->ctl_rfduplx = 1; 2008 lp->ctl_rspeed = 100; 2009 } 2010 2011 /* Grab the IRQ */ 2012 retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev); 2013 if (retval) 2014 goto err_out; 2015 2016 #ifdef CONFIG_ARCH_PXA 2017 # ifdef SMC_USE_PXA_DMA 2018 lp->cfg.flags |= SMC91X_USE_DMA; 2019 # endif 2020 if (lp->cfg.flags & SMC91X_USE_DMA) { 2021 dma_cap_mask_t mask; 2022 struct pxad_param param; 2023 2024 dma_cap_zero(mask); 2025 dma_cap_set(DMA_SLAVE, mask); 2026 param.prio = PXAD_PRIO_LOWEST; 2027 param.drcmr = -1UL; 2028 2029 lp->dma_chan = 2030 dma_request_slave_channel_compat(mask, pxad_filter_fn, 2031 ¶m, &dev->dev, 2032 "data"); 2033 } 2034 #endif 2035 2036 retval = register_netdev(dev); 2037 if (retval == 0) { 2038 /* now, print out the card info, in a short format.. */ 2039 netdev_info(dev, "%s (rev %d) at %p IRQ %d", 2040 version_string, revision_register & 0x0f, 2041 lp->base, dev->irq); 2042 2043 if (lp->dma_chan) 2044 pr_cont(" DMA %p", lp->dma_chan); 2045 2046 pr_cont("%s%s\n", 2047 lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "", 2048 THROTTLE_TX_PKTS ? " [throttle_tx]" : ""); 2049 2050 if (!is_valid_ether_addr(dev->dev_addr)) { 2051 netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n"); 2052 } else { 2053 /* Print the Ethernet address */ 2054 netdev_info(dev, "Ethernet addr: %pM\n", 2055 dev->dev_addr); 2056 } 2057 2058 if (lp->phy_type == 0) { 2059 PRINTK(dev, "No PHY found\n"); 2060 } else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) { 2061 PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n"); 2062 } else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) { 2063 PRINTK(dev, "PHY LAN83C180\n"); 2064 } 2065 } 2066 2067 err_out: 2068 #ifdef CONFIG_ARCH_PXA 2069 if (retval && lp->dma_chan) 2070 dma_release_channel(lp->dma_chan); 2071 #endif 2072 return retval; 2073 } 2074 2075 static int smc_enable_device(struct platform_device *pdev) 2076 { 2077 struct net_device *ndev = platform_get_drvdata(pdev); 2078 struct smc_local *lp = netdev_priv(ndev); 2079 unsigned long flags; 2080 unsigned char ecor, ecsr; 2081 void __iomem *addr; 2082 struct resource * res; 2083 2084 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib"); 2085 if (!res) 2086 return 0; 2087 2088 /* 2089 * Map the attribute space. This is overkill, but clean. 2090 */ 2091 addr = ioremap(res->start, ATTRIB_SIZE); 2092 if (!addr) 2093 return -ENOMEM; 2094 2095 /* 2096 * Reset the device. We must disable IRQs around this 2097 * since a reset causes the IRQ line become active. 2098 */ 2099 local_irq_save(flags); 2100 ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET; 2101 writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT)); 2102 readb(addr + (ECOR << SMC_IO_SHIFT)); 2103 2104 /* 2105 * Wait 100us for the chip to reset. 2106 */ 2107 udelay(100); 2108 2109 /* 2110 * The device will ignore all writes to the enable bit while 2111 * reset is asserted, even if the reset bit is cleared in the 2112 * same write. Must clear reset first, then enable the device. 2113 */ 2114 writeb(ecor, addr + (ECOR << SMC_IO_SHIFT)); 2115 writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT)); 2116 2117 /* 2118 * Set the appropriate byte/word mode. 2119 */ 2120 ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8; 2121 if (!SMC_16BIT(lp)) 2122 ecsr |= ECSR_IOIS8; 2123 writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT)); 2124 local_irq_restore(flags); 2125 2126 iounmap(addr); 2127 2128 /* 2129 * Wait for the chip to wake up. We could poll the control 2130 * register in the main register space, but that isn't mapped 2131 * yet. We know this is going to take 750us. 2132 */ 2133 msleep(1); 2134 2135 return 0; 2136 } 2137 2138 static int smc_request_attrib(struct platform_device *pdev, 2139 struct net_device *ndev) 2140 { 2141 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib"); 2142 struct smc_local *lp __maybe_unused = netdev_priv(ndev); 2143 2144 if (!res) 2145 return 0; 2146 2147 if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME)) 2148 return -EBUSY; 2149 2150 return 0; 2151 } 2152 2153 static void smc_release_attrib(struct platform_device *pdev, 2154 struct net_device *ndev) 2155 { 2156 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib"); 2157 struct smc_local *lp __maybe_unused = netdev_priv(ndev); 2158 2159 if (res) 2160 release_mem_region(res->start, ATTRIB_SIZE); 2161 } 2162 2163 static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev) 2164 { 2165 if (SMC_CAN_USE_DATACS) { 2166 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32"); 2167 struct smc_local *lp = netdev_priv(ndev); 2168 2169 if (!res) 2170 return; 2171 2172 if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) { 2173 netdev_info(ndev, "%s: failed to request datacs memory region.\n", 2174 CARDNAME); 2175 return; 2176 } 2177 2178 lp->datacs = ioremap(res->start, SMC_DATA_EXTENT); 2179 } 2180 } 2181 2182 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev) 2183 { 2184 if (SMC_CAN_USE_DATACS) { 2185 struct smc_local *lp = netdev_priv(ndev); 2186 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32"); 2187 2188 if (lp->datacs) 2189 iounmap(lp->datacs); 2190 2191 lp->datacs = NULL; 2192 2193 if (res) 2194 release_mem_region(res->start, SMC_DATA_EXTENT); 2195 } 2196 } 2197 2198 static const struct acpi_device_id smc91x_acpi_match[] = { 2199 { "LNRO0003", 0 }, 2200 { } 2201 }; 2202 MODULE_DEVICE_TABLE(acpi, smc91x_acpi_match); 2203 2204 #if IS_BUILTIN(CONFIG_OF) 2205 static const struct of_device_id smc91x_match[] = { 2206 { .compatible = "smsc,lan91c94", }, 2207 { .compatible = "smsc,lan91c111", }, 2208 {}, 2209 }; 2210 MODULE_DEVICE_TABLE(of, smc91x_match); 2211 2212 /** 2213 * of_try_set_control_gpio - configure a gpio if it exists 2214 */ 2215 static int try_toggle_control_gpio(struct device *dev, 2216 struct gpio_desc **desc, 2217 const char *name, int index, 2218 int value, unsigned int nsdelay) 2219 { 2220 struct gpio_desc *gpio = *desc; 2221 enum gpiod_flags flags = value ? GPIOD_OUT_LOW : GPIOD_OUT_HIGH; 2222 2223 gpio = devm_gpiod_get_index_optional(dev, name, index, flags); 2224 if (IS_ERR(gpio)) 2225 return PTR_ERR(gpio); 2226 2227 if (gpio) { 2228 if (nsdelay) 2229 usleep_range(nsdelay, 2 * nsdelay); 2230 gpiod_set_value_cansleep(gpio, value); 2231 } 2232 *desc = gpio; 2233 2234 return 0; 2235 } 2236 #endif 2237 2238 /* 2239 * smc_init(void) 2240 * Input parameters: 2241 * dev->base_addr == 0, try to find all possible locations 2242 * dev->base_addr > 0x1ff, this is the address to check 2243 * dev->base_addr == <anything else>, return failure code 2244 * 2245 * Output: 2246 * 0 --> there is a device 2247 * anything else, error 2248 */ 2249 static int smc_drv_probe(struct platform_device *pdev) 2250 { 2251 struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev); 2252 const struct of_device_id *match = NULL; 2253 struct smc_local *lp; 2254 struct net_device *ndev; 2255 struct resource *res; 2256 unsigned int __iomem *addr; 2257 unsigned long irq_flags = SMC_IRQ_FLAGS; 2258 unsigned long irq_resflags; 2259 int ret; 2260 2261 ndev = alloc_etherdev(sizeof(struct smc_local)); 2262 if (!ndev) { 2263 ret = -ENOMEM; 2264 goto out; 2265 } 2266 SET_NETDEV_DEV(ndev, &pdev->dev); 2267 2268 /* get configuration from platform data, only allow use of 2269 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set. 2270 */ 2271 2272 lp = netdev_priv(ndev); 2273 lp->cfg.flags = 0; 2274 2275 if (pd) { 2276 memcpy(&lp->cfg, pd, sizeof(lp->cfg)); 2277 lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags); 2278 } 2279 2280 #if IS_BUILTIN(CONFIG_OF) 2281 match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev); 2282 if (match) { 2283 u32 val; 2284 2285 /* Optional pwrdwn GPIO configured? */ 2286 ret = try_toggle_control_gpio(&pdev->dev, &lp->power_gpio, 2287 "power", 0, 0, 100); 2288 if (ret) 2289 return ret; 2290 2291 /* 2292 * Optional reset GPIO configured? Minimum 100 ns reset needed 2293 * according to LAN91C96 datasheet page 14. 2294 */ 2295 ret = try_toggle_control_gpio(&pdev->dev, &lp->reset_gpio, 2296 "reset", 0, 0, 100); 2297 if (ret) 2298 return ret; 2299 2300 /* 2301 * Need to wait for optional EEPROM to load, max 750 us according 2302 * to LAN91C96 datasheet page 55. 2303 */ 2304 if (lp->reset_gpio) 2305 usleep_range(750, 1000); 2306 2307 /* Combination of IO widths supported, default to 16-bit */ 2308 if (!device_property_read_u32(&pdev->dev, "reg-io-width", 2309 &val)) { 2310 if (val & 1) 2311 lp->cfg.flags |= SMC91X_USE_8BIT; 2312 if ((val == 0) || (val & 2)) 2313 lp->cfg.flags |= SMC91X_USE_16BIT; 2314 if (val & 4) 2315 lp->cfg.flags |= SMC91X_USE_32BIT; 2316 } else { 2317 lp->cfg.flags |= SMC91X_USE_16BIT; 2318 } 2319 } 2320 #endif 2321 2322 if (!pd && !match) { 2323 lp->cfg.flags |= (SMC_CAN_USE_8BIT) ? SMC91X_USE_8BIT : 0; 2324 lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0; 2325 lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0; 2326 lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0; 2327 } 2328 2329 if (!lp->cfg.leda && !lp->cfg.ledb) { 2330 lp->cfg.leda = RPC_LSA_DEFAULT; 2331 lp->cfg.ledb = RPC_LSB_DEFAULT; 2332 } 2333 2334 ndev->dma = (unsigned char)-1; 2335 2336 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs"); 2337 if (!res) 2338 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2339 if (!res) { 2340 ret = -ENODEV; 2341 goto out_free_netdev; 2342 } 2343 2344 2345 if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) { 2346 ret = -EBUSY; 2347 goto out_free_netdev; 2348 } 2349 2350 ndev->irq = platform_get_irq(pdev, 0); 2351 if (ndev->irq < 0) { 2352 ret = ndev->irq; 2353 goto out_release_io; 2354 } 2355 /* 2356 * If this platform does not specify any special irqflags, or if 2357 * the resource supplies a trigger, override the irqflags with 2358 * the trigger flags from the resource. 2359 */ 2360 irq_resflags = irqd_get_trigger_type(irq_get_irq_data(ndev->irq)); 2361 if (irq_flags == -1 || irq_resflags & IRQF_TRIGGER_MASK) 2362 irq_flags = irq_resflags & IRQF_TRIGGER_MASK; 2363 2364 ret = smc_request_attrib(pdev, ndev); 2365 if (ret) 2366 goto out_release_io; 2367 #if defined(CONFIG_ASSABET_NEPONSET) 2368 if (machine_is_assabet() && machine_has_neponset()) 2369 neponset_ncr_set(NCR_ENET_OSC_EN); 2370 #endif 2371 platform_set_drvdata(pdev, ndev); 2372 ret = smc_enable_device(pdev); 2373 if (ret) 2374 goto out_release_attrib; 2375 2376 addr = ioremap(res->start, SMC_IO_EXTENT); 2377 if (!addr) { 2378 ret = -ENOMEM; 2379 goto out_release_attrib; 2380 } 2381 2382 #ifdef CONFIG_ARCH_PXA 2383 { 2384 struct smc_local *lp = netdev_priv(ndev); 2385 lp->device = &pdev->dev; 2386 lp->physaddr = res->start; 2387 2388 } 2389 #endif 2390 2391 ret = smc_probe(ndev, addr, irq_flags); 2392 if (ret != 0) 2393 goto out_iounmap; 2394 2395 smc_request_datacs(pdev, ndev); 2396 2397 return 0; 2398 2399 out_iounmap: 2400 iounmap(addr); 2401 out_release_attrib: 2402 smc_release_attrib(pdev, ndev); 2403 out_release_io: 2404 release_mem_region(res->start, SMC_IO_EXTENT); 2405 out_free_netdev: 2406 free_netdev(ndev); 2407 out: 2408 pr_info("%s: not found (%d).\n", CARDNAME, ret); 2409 2410 return ret; 2411 } 2412 2413 static int smc_drv_remove(struct platform_device *pdev) 2414 { 2415 struct net_device *ndev = platform_get_drvdata(pdev); 2416 struct smc_local *lp = netdev_priv(ndev); 2417 struct resource *res; 2418 2419 unregister_netdev(ndev); 2420 2421 free_irq(ndev->irq, ndev); 2422 2423 #ifdef CONFIG_ARCH_PXA 2424 if (lp->dma_chan) 2425 dma_release_channel(lp->dma_chan); 2426 #endif 2427 iounmap(lp->base); 2428 2429 smc_release_datacs(pdev,ndev); 2430 smc_release_attrib(pdev,ndev); 2431 2432 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs"); 2433 if (!res) 2434 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2435 release_mem_region(res->start, SMC_IO_EXTENT); 2436 2437 free_netdev(ndev); 2438 2439 return 0; 2440 } 2441 2442 static int smc_drv_suspend(struct device *dev) 2443 { 2444 struct platform_device *pdev = to_platform_device(dev); 2445 struct net_device *ndev = platform_get_drvdata(pdev); 2446 2447 if (ndev) { 2448 if (netif_running(ndev)) { 2449 netif_device_detach(ndev); 2450 smc_shutdown(ndev); 2451 smc_phy_powerdown(ndev); 2452 } 2453 } 2454 return 0; 2455 } 2456 2457 static int smc_drv_resume(struct device *dev) 2458 { 2459 struct platform_device *pdev = to_platform_device(dev); 2460 struct net_device *ndev = platform_get_drvdata(pdev); 2461 2462 if (ndev) { 2463 struct smc_local *lp = netdev_priv(ndev); 2464 smc_enable_device(pdev); 2465 if (netif_running(ndev)) { 2466 smc_reset(ndev); 2467 smc_enable(ndev); 2468 if (lp->phy_type != 0) 2469 smc_phy_configure(&lp->phy_configure); 2470 netif_device_attach(ndev); 2471 } 2472 } 2473 return 0; 2474 } 2475 2476 static struct dev_pm_ops smc_drv_pm_ops = { 2477 .suspend = smc_drv_suspend, 2478 .resume = smc_drv_resume, 2479 }; 2480 2481 static struct platform_driver smc_driver = { 2482 .probe = smc_drv_probe, 2483 .remove = smc_drv_remove, 2484 .driver = { 2485 .name = CARDNAME, 2486 .pm = &smc_drv_pm_ops, 2487 .of_match_table = of_match_ptr(smc91x_match), 2488 .acpi_match_table = smc91x_acpi_match, 2489 }, 2490 }; 2491 2492 module_platform_driver(smc_driver); 2493