xref: /openbmc/linux/drivers/net/ethernet/smsc/smc91x.c (revision 206a81c1)
1 /*
2  * smc91x.c
3  * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
4  *
5  * Copyright (C) 1996 by Erik Stahlman
6  * Copyright (C) 2001 Standard Microsystems Corporation
7  *	Developed by Simple Network Magic Corporation
8  * Copyright (C) 2003 Monta Vista Software, Inc.
9  *	Unified SMC91x driver by Nicolas Pitre
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, see <http://www.gnu.org/licenses/>.
23  *
24  * Arguments:
25  * 	io	= for the base address
26  *	irq	= for the IRQ
27  *	nowait	= 0 for normal wait states, 1 eliminates additional wait states
28  *
29  * original author:
30  * 	Erik Stahlman <erik@vt.edu>
31  *
32  * hardware multicast code:
33  *    Peter Cammaert <pc@denkart.be>
34  *
35  * contributors:
36  * 	Daris A Nevil <dnevil@snmc.com>
37  *      Nicolas Pitre <nico@fluxnic.net>
38  *	Russell King <rmk@arm.linux.org.uk>
39  *
40  * History:
41  *   08/20/00  Arnaldo Melo       fix kfree(skb) in smc_hardware_send_packet
42  *   12/15/00  Christian Jullien  fix "Warning: kfree_skb on hard IRQ"
43  *   03/16/01  Daris A Nevil      modified smc9194.c for use with LAN91C111
44  *   08/22/01  Scott Anderson     merge changes from smc9194 to smc91111
45  *   08/21/01  Pramod B Bhardwaj  added support for RevB of LAN91C111
46  *   12/20/01  Jeff Sutherland    initial port to Xscale PXA with DMA support
47  *   04/07/03  Nicolas Pitre      unified SMC91x driver, killed irq races,
48  *                                more bus abstraction, big cleanup, etc.
49  *   29/09/03  Russell King       - add driver model support
50  *                                - ethtool support
51  *                                - convert to use generic MII interface
52  *                                - add link up/down notification
53  *                                - don't try to handle full negotiation in
54  *                                  smc_phy_configure
55  *                                - clean up (and fix stack overrun) in PHY
56  *                                  MII read/write functions
57  *   22/09/04  Nicolas Pitre      big update (see commit log for details)
58  */
59 static const char version[] =
60 	"smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>";
61 
62 /* Debugging level */
63 #ifndef SMC_DEBUG
64 #define SMC_DEBUG		0
65 #endif
66 
67 
68 #include <linux/module.h>
69 #include <linux/kernel.h>
70 #include <linux/sched.h>
71 #include <linux/delay.h>
72 #include <linux/interrupt.h>
73 #include <linux/irq.h>
74 #include <linux/errno.h>
75 #include <linux/ioport.h>
76 #include <linux/crc32.h>
77 #include <linux/platform_device.h>
78 #include <linux/spinlock.h>
79 #include <linux/ethtool.h>
80 #include <linux/mii.h>
81 #include <linux/workqueue.h>
82 #include <linux/of.h>
83 #include <linux/of_device.h>
84 
85 #include <linux/netdevice.h>
86 #include <linux/etherdevice.h>
87 #include <linux/skbuff.h>
88 
89 #include <asm/io.h>
90 
91 #include "smc91x.h"
92 
93 #ifndef SMC_NOWAIT
94 # define SMC_NOWAIT		0
95 #endif
96 static int nowait = SMC_NOWAIT;
97 module_param(nowait, int, 0400);
98 MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
99 
100 /*
101  * Transmit timeout, default 5 seconds.
102  */
103 static int watchdog = 1000;
104 module_param(watchdog, int, 0400);
105 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
106 
107 MODULE_LICENSE("GPL");
108 MODULE_ALIAS("platform:smc91x");
109 
110 /*
111  * The internal workings of the driver.  If you are changing anything
112  * here with the SMC stuff, you should have the datasheet and know
113  * what you are doing.
114  */
115 #define CARDNAME "smc91x"
116 
117 /*
118  * Use power-down feature of the chip
119  */
120 #define POWER_DOWN		1
121 
122 /*
123  * Wait time for memory to be free.  This probably shouldn't be
124  * tuned that much, as waiting for this means nothing else happens
125  * in the system
126  */
127 #define MEMORY_WAIT_TIME	16
128 
129 /*
130  * The maximum number of processing loops allowed for each call to the
131  * IRQ handler.
132  */
133 #define MAX_IRQ_LOOPS		8
134 
135 /*
136  * This selects whether TX packets are sent one by one to the SMC91x internal
137  * memory and throttled until transmission completes.  This may prevent
138  * RX overruns a litle by keeping much of the memory free for RX packets
139  * but to the expense of reduced TX throughput and increased IRQ overhead.
140  * Note this is not a cure for a too slow data bus or too high IRQ latency.
141  */
142 #define THROTTLE_TX_PKTS	0
143 
144 /*
145  * The MII clock high/low times.  2x this number gives the MII clock period
146  * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
147  */
148 #define MII_DELAY		1
149 
150 #define DBG(n, dev, fmt, ...)					\
151 	do {							\
152 		if (SMC_DEBUG >= (n))				\
153 			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
154 	} while (0)
155 
156 #define PRINTK(dev, fmt, ...)					\
157 	do {							\
158 		if (SMC_DEBUG > 0)				\
159 			netdev_info(dev, fmt, ##__VA_ARGS__);	\
160 		else						\
161 			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
162 	} while (0)
163 
164 #if SMC_DEBUG > 3
165 static void PRINT_PKT(u_char *buf, int length)
166 {
167 	int i;
168 	int remainder;
169 	int lines;
170 
171 	lines = length / 16;
172 	remainder = length % 16;
173 
174 	for (i = 0; i < lines ; i ++) {
175 		int cur;
176 		printk(KERN_DEBUG);
177 		for (cur = 0; cur < 8; cur++) {
178 			u_char a, b;
179 			a = *buf++;
180 			b = *buf++;
181 			pr_cont("%02x%02x ", a, b);
182 		}
183 		pr_cont("\n");
184 	}
185 	printk(KERN_DEBUG);
186 	for (i = 0; i < remainder/2 ; i++) {
187 		u_char a, b;
188 		a = *buf++;
189 		b = *buf++;
190 		pr_cont("%02x%02x ", a, b);
191 	}
192 	pr_cont("\n");
193 }
194 #else
195 static inline void PRINT_PKT(u_char *buf, int length) { }
196 #endif
197 
198 
199 /* this enables an interrupt in the interrupt mask register */
200 #define SMC_ENABLE_INT(lp, x) do {					\
201 	unsigned char mask;						\
202 	unsigned long smc_enable_flags;					\
203 	spin_lock_irqsave(&lp->lock, smc_enable_flags);			\
204 	mask = SMC_GET_INT_MASK(lp);					\
205 	mask |= (x);							\
206 	SMC_SET_INT_MASK(lp, mask);					\
207 	spin_unlock_irqrestore(&lp->lock, smc_enable_flags);		\
208 } while (0)
209 
210 /* this disables an interrupt from the interrupt mask register */
211 #define SMC_DISABLE_INT(lp, x) do {					\
212 	unsigned char mask;						\
213 	unsigned long smc_disable_flags;				\
214 	spin_lock_irqsave(&lp->lock, smc_disable_flags);		\
215 	mask = SMC_GET_INT_MASK(lp);					\
216 	mask &= ~(x);							\
217 	SMC_SET_INT_MASK(lp, mask);					\
218 	spin_unlock_irqrestore(&lp->lock, smc_disable_flags);		\
219 } while (0)
220 
221 /*
222  * Wait while MMU is busy.  This is usually in the order of a few nanosecs
223  * if at all, but let's avoid deadlocking the system if the hardware
224  * decides to go south.
225  */
226 #define SMC_WAIT_MMU_BUSY(lp) do {					\
227 	if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) {		\
228 		unsigned long timeout = jiffies + 2;			\
229 		while (SMC_GET_MMU_CMD(lp) & MC_BUSY) {		\
230 			if (time_after(jiffies, timeout)) {		\
231 				netdev_dbg(dev, "timeout %s line %d\n",	\
232 					   __FILE__, __LINE__);		\
233 				break;					\
234 			}						\
235 			cpu_relax();					\
236 		}							\
237 	}								\
238 } while (0)
239 
240 
241 /*
242  * this does a soft reset on the device
243  */
244 static void smc_reset(struct net_device *dev)
245 {
246 	struct smc_local *lp = netdev_priv(dev);
247 	void __iomem *ioaddr = lp->base;
248 	unsigned int ctl, cfg;
249 	struct sk_buff *pending_skb;
250 
251 	DBG(2, dev, "%s\n", __func__);
252 
253 	/* Disable all interrupts, block TX tasklet */
254 	spin_lock_irq(&lp->lock);
255 	SMC_SELECT_BANK(lp, 2);
256 	SMC_SET_INT_MASK(lp, 0);
257 	pending_skb = lp->pending_tx_skb;
258 	lp->pending_tx_skb = NULL;
259 	spin_unlock_irq(&lp->lock);
260 
261 	/* free any pending tx skb */
262 	if (pending_skb) {
263 		dev_kfree_skb(pending_skb);
264 		dev->stats.tx_errors++;
265 		dev->stats.tx_aborted_errors++;
266 	}
267 
268 	/*
269 	 * This resets the registers mostly to defaults, but doesn't
270 	 * affect EEPROM.  That seems unnecessary
271 	 */
272 	SMC_SELECT_BANK(lp, 0);
273 	SMC_SET_RCR(lp, RCR_SOFTRST);
274 
275 	/*
276 	 * Setup the Configuration Register
277 	 * This is necessary because the CONFIG_REG is not affected
278 	 * by a soft reset
279 	 */
280 	SMC_SELECT_BANK(lp, 1);
281 
282 	cfg = CONFIG_DEFAULT;
283 
284 	/*
285 	 * Setup for fast accesses if requested.  If the card/system
286 	 * can't handle it then there will be no recovery except for
287 	 * a hard reset or power cycle
288 	 */
289 	if (lp->cfg.flags & SMC91X_NOWAIT)
290 		cfg |= CONFIG_NO_WAIT;
291 
292 	/*
293 	 * Release from possible power-down state
294 	 * Configuration register is not affected by Soft Reset
295 	 */
296 	cfg |= CONFIG_EPH_POWER_EN;
297 
298 	SMC_SET_CONFIG(lp, cfg);
299 
300 	/* this should pause enough for the chip to be happy */
301 	/*
302 	 * elaborate?  What does the chip _need_? --jgarzik
303 	 *
304 	 * This seems to be undocumented, but something the original
305 	 * driver(s) have always done.  Suspect undocumented timing
306 	 * info/determined empirically. --rmk
307 	 */
308 	udelay(1);
309 
310 	/* Disable transmit and receive functionality */
311 	SMC_SELECT_BANK(lp, 0);
312 	SMC_SET_RCR(lp, RCR_CLEAR);
313 	SMC_SET_TCR(lp, TCR_CLEAR);
314 
315 	SMC_SELECT_BANK(lp, 1);
316 	ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
317 
318 	/*
319 	 * Set the control register to automatically release successfully
320 	 * transmitted packets, to make the best use out of our limited
321 	 * memory
322 	 */
323 	if(!THROTTLE_TX_PKTS)
324 		ctl |= CTL_AUTO_RELEASE;
325 	else
326 		ctl &= ~CTL_AUTO_RELEASE;
327 	SMC_SET_CTL(lp, ctl);
328 
329 	/* Reset the MMU */
330 	SMC_SELECT_BANK(lp, 2);
331 	SMC_SET_MMU_CMD(lp, MC_RESET);
332 	SMC_WAIT_MMU_BUSY(lp);
333 }
334 
335 /*
336  * Enable Interrupts, Receive, and Transmit
337  */
338 static void smc_enable(struct net_device *dev)
339 {
340 	struct smc_local *lp = netdev_priv(dev);
341 	void __iomem *ioaddr = lp->base;
342 	int mask;
343 
344 	DBG(2, dev, "%s\n", __func__);
345 
346 	/* see the header file for options in TCR/RCR DEFAULT */
347 	SMC_SELECT_BANK(lp, 0);
348 	SMC_SET_TCR(lp, lp->tcr_cur_mode);
349 	SMC_SET_RCR(lp, lp->rcr_cur_mode);
350 
351 	SMC_SELECT_BANK(lp, 1);
352 	SMC_SET_MAC_ADDR(lp, dev->dev_addr);
353 
354 	/* now, enable interrupts */
355 	mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
356 	if (lp->version >= (CHIP_91100 << 4))
357 		mask |= IM_MDINT;
358 	SMC_SELECT_BANK(lp, 2);
359 	SMC_SET_INT_MASK(lp, mask);
360 
361 	/*
362 	 * From this point the register bank must _NOT_ be switched away
363 	 * to something else than bank 2 without proper locking against
364 	 * races with any tasklet or interrupt handlers until smc_shutdown()
365 	 * or smc_reset() is called.
366 	 */
367 }
368 
369 /*
370  * this puts the device in an inactive state
371  */
372 static void smc_shutdown(struct net_device *dev)
373 {
374 	struct smc_local *lp = netdev_priv(dev);
375 	void __iomem *ioaddr = lp->base;
376 	struct sk_buff *pending_skb;
377 
378 	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
379 
380 	/* no more interrupts for me */
381 	spin_lock_irq(&lp->lock);
382 	SMC_SELECT_BANK(lp, 2);
383 	SMC_SET_INT_MASK(lp, 0);
384 	pending_skb = lp->pending_tx_skb;
385 	lp->pending_tx_skb = NULL;
386 	spin_unlock_irq(&lp->lock);
387 	if (pending_skb)
388 		dev_kfree_skb(pending_skb);
389 
390 	/* and tell the card to stay away from that nasty outside world */
391 	SMC_SELECT_BANK(lp, 0);
392 	SMC_SET_RCR(lp, RCR_CLEAR);
393 	SMC_SET_TCR(lp, TCR_CLEAR);
394 
395 #ifdef POWER_DOWN
396 	/* finally, shut the chip down */
397 	SMC_SELECT_BANK(lp, 1);
398 	SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
399 #endif
400 }
401 
402 /*
403  * This is the procedure to handle the receipt of a packet.
404  */
405 static inline void  smc_rcv(struct net_device *dev)
406 {
407 	struct smc_local *lp = netdev_priv(dev);
408 	void __iomem *ioaddr = lp->base;
409 	unsigned int packet_number, status, packet_len;
410 
411 	DBG(3, dev, "%s\n", __func__);
412 
413 	packet_number = SMC_GET_RXFIFO(lp);
414 	if (unlikely(packet_number & RXFIFO_REMPTY)) {
415 		PRINTK(dev, "smc_rcv with nothing on FIFO.\n");
416 		return;
417 	}
418 
419 	/* read from start of packet */
420 	SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
421 
422 	/* First two words are status and packet length */
423 	SMC_GET_PKT_HDR(lp, status, packet_len);
424 	packet_len &= 0x07ff;  /* mask off top bits */
425 	DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
426 	    packet_number, status, packet_len, packet_len);
427 
428 	back:
429 	if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
430 		if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
431 			/* accept VLAN packets */
432 			status &= ~RS_TOOLONG;
433 			goto back;
434 		}
435 		if (packet_len < 6) {
436 			/* bloody hardware */
437 			netdev_err(dev, "fubar (rxlen %u status %x\n",
438 				   packet_len, status);
439 			status |= RS_TOOSHORT;
440 		}
441 		SMC_WAIT_MMU_BUSY(lp);
442 		SMC_SET_MMU_CMD(lp, MC_RELEASE);
443 		dev->stats.rx_errors++;
444 		if (status & RS_ALGNERR)
445 			dev->stats.rx_frame_errors++;
446 		if (status & (RS_TOOSHORT | RS_TOOLONG))
447 			dev->stats.rx_length_errors++;
448 		if (status & RS_BADCRC)
449 			dev->stats.rx_crc_errors++;
450 	} else {
451 		struct sk_buff *skb;
452 		unsigned char *data;
453 		unsigned int data_len;
454 
455 		/* set multicast stats */
456 		if (status & RS_MULTICAST)
457 			dev->stats.multicast++;
458 
459 		/*
460 		 * Actual payload is packet_len - 6 (or 5 if odd byte).
461 		 * We want skb_reserve(2) and the final ctrl word
462 		 * (2 bytes, possibly containing the payload odd byte).
463 		 * Furthermore, we add 2 bytes to allow rounding up to
464 		 * multiple of 4 bytes on 32 bit buses.
465 		 * Hence packet_len - 6 + 2 + 2 + 2.
466 		 */
467 		skb = netdev_alloc_skb(dev, packet_len);
468 		if (unlikely(skb == NULL)) {
469 			SMC_WAIT_MMU_BUSY(lp);
470 			SMC_SET_MMU_CMD(lp, MC_RELEASE);
471 			dev->stats.rx_dropped++;
472 			return;
473 		}
474 
475 		/* Align IP header to 32 bits */
476 		skb_reserve(skb, 2);
477 
478 		/* BUG: the LAN91C111 rev A never sets this bit. Force it. */
479 		if (lp->version == 0x90)
480 			status |= RS_ODDFRAME;
481 
482 		/*
483 		 * If odd length: packet_len - 5,
484 		 * otherwise packet_len - 6.
485 		 * With the trailing ctrl byte it's packet_len - 4.
486 		 */
487 		data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
488 		data = skb_put(skb, data_len);
489 		SMC_PULL_DATA(lp, data, packet_len - 4);
490 
491 		SMC_WAIT_MMU_BUSY(lp);
492 		SMC_SET_MMU_CMD(lp, MC_RELEASE);
493 
494 		PRINT_PKT(data, packet_len - 4);
495 
496 		skb->protocol = eth_type_trans(skb, dev);
497 		netif_rx(skb);
498 		dev->stats.rx_packets++;
499 		dev->stats.rx_bytes += data_len;
500 	}
501 }
502 
503 #ifdef CONFIG_SMP
504 /*
505  * On SMP we have the following problem:
506  *
507  * 	A = smc_hardware_send_pkt()
508  * 	B = smc_hard_start_xmit()
509  * 	C = smc_interrupt()
510  *
511  * A and B can never be executed simultaneously.  However, at least on UP,
512  * it is possible (and even desirable) for C to interrupt execution of
513  * A or B in order to have better RX reliability and avoid overruns.
514  * C, just like A and B, must have exclusive access to the chip and
515  * each of them must lock against any other concurrent access.
516  * Unfortunately this is not possible to have C suspend execution of A or
517  * B taking place on another CPU. On UP this is no an issue since A and B
518  * are run from softirq context and C from hard IRQ context, and there is
519  * no other CPU where concurrent access can happen.
520  * If ever there is a way to force at least B and C to always be executed
521  * on the same CPU then we could use read/write locks to protect against
522  * any other concurrent access and C would always interrupt B. But life
523  * isn't that easy in a SMP world...
524  */
525 #define smc_special_trylock(lock, flags)				\
526 ({									\
527 	int __ret;							\
528 	local_irq_save(flags);						\
529 	__ret = spin_trylock(lock);					\
530 	if (!__ret)							\
531 		local_irq_restore(flags);				\
532 	__ret;								\
533 })
534 #define smc_special_lock(lock, flags)		spin_lock_irqsave(lock, flags)
535 #define smc_special_unlock(lock, flags) 	spin_unlock_irqrestore(lock, flags)
536 #else
537 #define smc_special_trylock(lock, flags)	(flags == flags)
538 #define smc_special_lock(lock, flags)   	do { flags = 0; } while (0)
539 #define smc_special_unlock(lock, flags)	do { flags = 0; } while (0)
540 #endif
541 
542 /*
543  * This is called to actually send a packet to the chip.
544  */
545 static void smc_hardware_send_pkt(unsigned long data)
546 {
547 	struct net_device *dev = (struct net_device *)data;
548 	struct smc_local *lp = netdev_priv(dev);
549 	void __iomem *ioaddr = lp->base;
550 	struct sk_buff *skb;
551 	unsigned int packet_no, len;
552 	unsigned char *buf;
553 	unsigned long flags;
554 
555 	DBG(3, dev, "%s\n", __func__);
556 
557 	if (!smc_special_trylock(&lp->lock, flags)) {
558 		netif_stop_queue(dev);
559 		tasklet_schedule(&lp->tx_task);
560 		return;
561 	}
562 
563 	skb = lp->pending_tx_skb;
564 	if (unlikely(!skb)) {
565 		smc_special_unlock(&lp->lock, flags);
566 		return;
567 	}
568 	lp->pending_tx_skb = NULL;
569 
570 	packet_no = SMC_GET_AR(lp);
571 	if (unlikely(packet_no & AR_FAILED)) {
572 		netdev_err(dev, "Memory allocation failed.\n");
573 		dev->stats.tx_errors++;
574 		dev->stats.tx_fifo_errors++;
575 		smc_special_unlock(&lp->lock, flags);
576 		goto done;
577 	}
578 
579 	/* point to the beginning of the packet */
580 	SMC_SET_PN(lp, packet_no);
581 	SMC_SET_PTR(lp, PTR_AUTOINC);
582 
583 	buf = skb->data;
584 	len = skb->len;
585 	DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
586 	    packet_no, len, len, buf);
587 	PRINT_PKT(buf, len);
588 
589 	/*
590 	 * Send the packet length (+6 for status words, length, and ctl.
591 	 * The card will pad to 64 bytes with zeroes if packet is too small.
592 	 */
593 	SMC_PUT_PKT_HDR(lp, 0, len + 6);
594 
595 	/* send the actual data */
596 	SMC_PUSH_DATA(lp, buf, len & ~1);
597 
598 	/* Send final ctl word with the last byte if there is one */
599 	SMC_outw(((len & 1) ? (0x2000 | buf[len-1]) : 0), ioaddr, DATA_REG(lp));
600 
601 	/*
602 	 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
603 	 * have the effect of having at most one packet queued for TX
604 	 * in the chip's memory at all time.
605 	 *
606 	 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
607 	 * when memory allocation (MC_ALLOC) does not succeed right away.
608 	 */
609 	if (THROTTLE_TX_PKTS)
610 		netif_stop_queue(dev);
611 
612 	/* queue the packet for TX */
613 	SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
614 	smc_special_unlock(&lp->lock, flags);
615 
616 	dev->trans_start = jiffies;
617 	dev->stats.tx_packets++;
618 	dev->stats.tx_bytes += len;
619 
620 	SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
621 
622 done:	if (!THROTTLE_TX_PKTS)
623 		netif_wake_queue(dev);
624 
625 	dev_consume_skb_any(skb);
626 }
627 
628 /*
629  * Since I am not sure if I will have enough room in the chip's ram
630  * to store the packet, I call this routine which either sends it
631  * now, or set the card to generates an interrupt when ready
632  * for the packet.
633  */
634 static int smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
635 {
636 	struct smc_local *lp = netdev_priv(dev);
637 	void __iomem *ioaddr = lp->base;
638 	unsigned int numPages, poll_count, status;
639 	unsigned long flags;
640 
641 	DBG(3, dev, "%s\n", __func__);
642 
643 	BUG_ON(lp->pending_tx_skb != NULL);
644 
645 	/*
646 	 * The MMU wants the number of pages to be the number of 256 bytes
647 	 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
648 	 *
649 	 * The 91C111 ignores the size bits, but earlier models don't.
650 	 *
651 	 * Pkt size for allocating is data length +6 (for additional status
652 	 * words, length and ctl)
653 	 *
654 	 * If odd size then last byte is included in ctl word.
655 	 */
656 	numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
657 	if (unlikely(numPages > 7)) {
658 		netdev_warn(dev, "Far too big packet error.\n");
659 		dev->stats.tx_errors++;
660 		dev->stats.tx_dropped++;
661 		dev_kfree_skb_any(skb);
662 		return NETDEV_TX_OK;
663 	}
664 
665 	smc_special_lock(&lp->lock, flags);
666 
667 	/* now, try to allocate the memory */
668 	SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
669 
670 	/*
671 	 * Poll the chip for a short amount of time in case the
672 	 * allocation succeeds quickly.
673 	 */
674 	poll_count = MEMORY_WAIT_TIME;
675 	do {
676 		status = SMC_GET_INT(lp);
677 		if (status & IM_ALLOC_INT) {
678 			SMC_ACK_INT(lp, IM_ALLOC_INT);
679   			break;
680 		}
681    	} while (--poll_count);
682 
683 	smc_special_unlock(&lp->lock, flags);
684 
685 	lp->pending_tx_skb = skb;
686    	if (!poll_count) {
687 		/* oh well, wait until the chip finds memory later */
688 		netif_stop_queue(dev);
689 		DBG(2, dev, "TX memory allocation deferred.\n");
690 		SMC_ENABLE_INT(lp, IM_ALLOC_INT);
691    	} else {
692 		/*
693 		 * Allocation succeeded: push packet to the chip's own memory
694 		 * immediately.
695 		 */
696 		smc_hardware_send_pkt((unsigned long)dev);
697 	}
698 
699 	return NETDEV_TX_OK;
700 }
701 
702 /*
703  * This handles a TX interrupt, which is only called when:
704  * - a TX error occurred, or
705  * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
706  */
707 static void smc_tx(struct net_device *dev)
708 {
709 	struct smc_local *lp = netdev_priv(dev);
710 	void __iomem *ioaddr = lp->base;
711 	unsigned int saved_packet, packet_no, tx_status, pkt_len;
712 
713 	DBG(3, dev, "%s\n", __func__);
714 
715 	/* If the TX FIFO is empty then nothing to do */
716 	packet_no = SMC_GET_TXFIFO(lp);
717 	if (unlikely(packet_no & TXFIFO_TEMPTY)) {
718 		PRINTK(dev, "smc_tx with nothing on FIFO.\n");
719 		return;
720 	}
721 
722 	/* select packet to read from */
723 	saved_packet = SMC_GET_PN(lp);
724 	SMC_SET_PN(lp, packet_no);
725 
726 	/* read the first word (status word) from this packet */
727 	SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
728 	SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
729 	DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n",
730 	    tx_status, packet_no);
731 
732 	if (!(tx_status & ES_TX_SUC))
733 		dev->stats.tx_errors++;
734 
735 	if (tx_status & ES_LOSTCARR)
736 		dev->stats.tx_carrier_errors++;
737 
738 	if (tx_status & (ES_LATCOL | ES_16COL)) {
739 		PRINTK(dev, "%s occurred on last xmit\n",
740 		       (tx_status & ES_LATCOL) ?
741 			"late collision" : "too many collisions");
742 		dev->stats.tx_window_errors++;
743 		if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
744 			netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n");
745 		}
746 	}
747 
748 	/* kill the packet */
749 	SMC_WAIT_MMU_BUSY(lp);
750 	SMC_SET_MMU_CMD(lp, MC_FREEPKT);
751 
752 	/* Don't restore Packet Number Reg until busy bit is cleared */
753 	SMC_WAIT_MMU_BUSY(lp);
754 	SMC_SET_PN(lp, saved_packet);
755 
756 	/* re-enable transmit */
757 	SMC_SELECT_BANK(lp, 0);
758 	SMC_SET_TCR(lp, lp->tcr_cur_mode);
759 	SMC_SELECT_BANK(lp, 2);
760 }
761 
762 
763 /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
764 
765 static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
766 {
767 	struct smc_local *lp = netdev_priv(dev);
768 	void __iomem *ioaddr = lp->base;
769 	unsigned int mii_reg, mask;
770 
771 	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
772 	mii_reg |= MII_MDOE;
773 
774 	for (mask = 1 << (bits - 1); mask; mask >>= 1) {
775 		if (val & mask)
776 			mii_reg |= MII_MDO;
777 		else
778 			mii_reg &= ~MII_MDO;
779 
780 		SMC_SET_MII(lp, mii_reg);
781 		udelay(MII_DELAY);
782 		SMC_SET_MII(lp, mii_reg | MII_MCLK);
783 		udelay(MII_DELAY);
784 	}
785 }
786 
787 static unsigned int smc_mii_in(struct net_device *dev, int bits)
788 {
789 	struct smc_local *lp = netdev_priv(dev);
790 	void __iomem *ioaddr = lp->base;
791 	unsigned int mii_reg, mask, val;
792 
793 	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
794 	SMC_SET_MII(lp, mii_reg);
795 
796 	for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
797 		if (SMC_GET_MII(lp) & MII_MDI)
798 			val |= mask;
799 
800 		SMC_SET_MII(lp, mii_reg);
801 		udelay(MII_DELAY);
802 		SMC_SET_MII(lp, mii_reg | MII_MCLK);
803 		udelay(MII_DELAY);
804 	}
805 
806 	return val;
807 }
808 
809 /*
810  * Reads a register from the MII Management serial interface
811  */
812 static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
813 {
814 	struct smc_local *lp = netdev_priv(dev);
815 	void __iomem *ioaddr = lp->base;
816 	unsigned int phydata;
817 
818 	SMC_SELECT_BANK(lp, 3);
819 
820 	/* Idle - 32 ones */
821 	smc_mii_out(dev, 0xffffffff, 32);
822 
823 	/* Start code (01) + read (10) + phyaddr + phyreg */
824 	smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
825 
826 	/* Turnaround (2bits) + phydata */
827 	phydata = smc_mii_in(dev, 18);
828 
829 	/* Return to idle state */
830 	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
831 
832 	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
833 	    __func__, phyaddr, phyreg, phydata);
834 
835 	SMC_SELECT_BANK(lp, 2);
836 	return phydata;
837 }
838 
839 /*
840  * Writes a register to the MII Management serial interface
841  */
842 static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
843 			  int phydata)
844 {
845 	struct smc_local *lp = netdev_priv(dev);
846 	void __iomem *ioaddr = lp->base;
847 
848 	SMC_SELECT_BANK(lp, 3);
849 
850 	/* Idle - 32 ones */
851 	smc_mii_out(dev, 0xffffffff, 32);
852 
853 	/* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
854 	smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
855 
856 	/* Return to idle state */
857 	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
858 
859 	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
860 	    __func__, phyaddr, phyreg, phydata);
861 
862 	SMC_SELECT_BANK(lp, 2);
863 }
864 
865 /*
866  * Finds and reports the PHY address
867  */
868 static void smc_phy_detect(struct net_device *dev)
869 {
870 	struct smc_local *lp = netdev_priv(dev);
871 	int phyaddr;
872 
873 	DBG(2, dev, "%s\n", __func__);
874 
875 	lp->phy_type = 0;
876 
877 	/*
878 	 * Scan all 32 PHY addresses if necessary, starting at
879 	 * PHY#1 to PHY#31, and then PHY#0 last.
880 	 */
881 	for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
882 		unsigned int id1, id2;
883 
884 		/* Read the PHY identifiers */
885 		id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
886 		id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
887 
888 		DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n",
889 		    id1, id2);
890 
891 		/* Make sure it is a valid identifier */
892 		if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
893 		    id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
894 			/* Save the PHY's address */
895 			lp->mii.phy_id = phyaddr & 31;
896 			lp->phy_type = id1 << 16 | id2;
897 			break;
898 		}
899 	}
900 }
901 
902 /*
903  * Sets the PHY to a configuration as determined by the user
904  */
905 static int smc_phy_fixed(struct net_device *dev)
906 {
907 	struct smc_local *lp = netdev_priv(dev);
908 	void __iomem *ioaddr = lp->base;
909 	int phyaddr = lp->mii.phy_id;
910 	int bmcr, cfg1;
911 
912 	DBG(3, dev, "%s\n", __func__);
913 
914 	/* Enter Link Disable state */
915 	cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
916 	cfg1 |= PHY_CFG1_LNKDIS;
917 	smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
918 
919 	/*
920 	 * Set our fixed capabilities
921 	 * Disable auto-negotiation
922 	 */
923 	bmcr = 0;
924 
925 	if (lp->ctl_rfduplx)
926 		bmcr |= BMCR_FULLDPLX;
927 
928 	if (lp->ctl_rspeed == 100)
929 		bmcr |= BMCR_SPEED100;
930 
931 	/* Write our capabilities to the phy control register */
932 	smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
933 
934 	/* Re-Configure the Receive/Phy Control register */
935 	SMC_SELECT_BANK(lp, 0);
936 	SMC_SET_RPC(lp, lp->rpc_cur_mode);
937 	SMC_SELECT_BANK(lp, 2);
938 
939 	return 1;
940 }
941 
942 /**
943  * smc_phy_reset - reset the phy
944  * @dev: net device
945  * @phy: phy address
946  *
947  * Issue a software reset for the specified PHY and
948  * wait up to 100ms for the reset to complete.  We should
949  * not access the PHY for 50ms after issuing the reset.
950  *
951  * The time to wait appears to be dependent on the PHY.
952  *
953  * Must be called with lp->lock locked.
954  */
955 static int smc_phy_reset(struct net_device *dev, int phy)
956 {
957 	struct smc_local *lp = netdev_priv(dev);
958 	unsigned int bmcr;
959 	int timeout;
960 
961 	smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
962 
963 	for (timeout = 2; timeout; timeout--) {
964 		spin_unlock_irq(&lp->lock);
965 		msleep(50);
966 		spin_lock_irq(&lp->lock);
967 
968 		bmcr = smc_phy_read(dev, phy, MII_BMCR);
969 		if (!(bmcr & BMCR_RESET))
970 			break;
971 	}
972 
973 	return bmcr & BMCR_RESET;
974 }
975 
976 /**
977  * smc_phy_powerdown - powerdown phy
978  * @dev: net device
979  *
980  * Power down the specified PHY
981  */
982 static void smc_phy_powerdown(struct net_device *dev)
983 {
984 	struct smc_local *lp = netdev_priv(dev);
985 	unsigned int bmcr;
986 	int phy = lp->mii.phy_id;
987 
988 	if (lp->phy_type == 0)
989 		return;
990 
991 	/* We need to ensure that no calls to smc_phy_configure are
992 	   pending.
993 	*/
994 	cancel_work_sync(&lp->phy_configure);
995 
996 	bmcr = smc_phy_read(dev, phy, MII_BMCR);
997 	smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
998 }
999 
1000 /**
1001  * smc_phy_check_media - check the media status and adjust TCR
1002  * @dev: net device
1003  * @init: set true for initialisation
1004  *
1005  * Select duplex mode depending on negotiation state.  This
1006  * also updates our carrier state.
1007  */
1008 static void smc_phy_check_media(struct net_device *dev, int init)
1009 {
1010 	struct smc_local *lp = netdev_priv(dev);
1011 	void __iomem *ioaddr = lp->base;
1012 
1013 	if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1014 		/* duplex state has changed */
1015 		if (lp->mii.full_duplex) {
1016 			lp->tcr_cur_mode |= TCR_SWFDUP;
1017 		} else {
1018 			lp->tcr_cur_mode &= ~TCR_SWFDUP;
1019 		}
1020 
1021 		SMC_SELECT_BANK(lp, 0);
1022 		SMC_SET_TCR(lp, lp->tcr_cur_mode);
1023 	}
1024 }
1025 
1026 /*
1027  * Configures the specified PHY through the MII management interface
1028  * using Autonegotiation.
1029  * Calls smc_phy_fixed() if the user has requested a certain config.
1030  * If RPC ANEG bit is set, the media selection is dependent purely on
1031  * the selection by the MII (either in the MII BMCR reg or the result
1032  * of autonegotiation.)  If the RPC ANEG bit is cleared, the selection
1033  * is controlled by the RPC SPEED and RPC DPLX bits.
1034  */
1035 static void smc_phy_configure(struct work_struct *work)
1036 {
1037 	struct smc_local *lp =
1038 		container_of(work, struct smc_local, phy_configure);
1039 	struct net_device *dev = lp->dev;
1040 	void __iomem *ioaddr = lp->base;
1041 	int phyaddr = lp->mii.phy_id;
1042 	int my_phy_caps; /* My PHY capabilities */
1043 	int my_ad_caps; /* My Advertised capabilities */
1044 	int status;
1045 
1046 	DBG(3, dev, "smc_program_phy()\n");
1047 
1048 	spin_lock_irq(&lp->lock);
1049 
1050 	/*
1051 	 * We should not be called if phy_type is zero.
1052 	 */
1053 	if (lp->phy_type == 0)
1054 		goto smc_phy_configure_exit;
1055 
1056 	if (smc_phy_reset(dev, phyaddr)) {
1057 		netdev_info(dev, "PHY reset timed out\n");
1058 		goto smc_phy_configure_exit;
1059 	}
1060 
1061 	/*
1062 	 * Enable PHY Interrupts (for register 18)
1063 	 * Interrupts listed here are disabled
1064 	 */
1065 	smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1066 		PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1067 		PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1068 		PHY_INT_SPDDET | PHY_INT_DPLXDET);
1069 
1070 	/* Configure the Receive/Phy Control register */
1071 	SMC_SELECT_BANK(lp, 0);
1072 	SMC_SET_RPC(lp, lp->rpc_cur_mode);
1073 
1074 	/* If the user requested no auto neg, then go set his request */
1075 	if (lp->mii.force_media) {
1076 		smc_phy_fixed(dev);
1077 		goto smc_phy_configure_exit;
1078 	}
1079 
1080 	/* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1081 	my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1082 
1083 	if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1084 		netdev_info(dev, "Auto negotiation NOT supported\n");
1085 		smc_phy_fixed(dev);
1086 		goto smc_phy_configure_exit;
1087 	}
1088 
1089 	my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1090 
1091 	if (my_phy_caps & BMSR_100BASE4)
1092 		my_ad_caps |= ADVERTISE_100BASE4;
1093 	if (my_phy_caps & BMSR_100FULL)
1094 		my_ad_caps |= ADVERTISE_100FULL;
1095 	if (my_phy_caps & BMSR_100HALF)
1096 		my_ad_caps |= ADVERTISE_100HALF;
1097 	if (my_phy_caps & BMSR_10FULL)
1098 		my_ad_caps |= ADVERTISE_10FULL;
1099 	if (my_phy_caps & BMSR_10HALF)
1100 		my_ad_caps |= ADVERTISE_10HALF;
1101 
1102 	/* Disable capabilities not selected by our user */
1103 	if (lp->ctl_rspeed != 100)
1104 		my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1105 
1106 	if (!lp->ctl_rfduplx)
1107 		my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1108 
1109 	/* Update our Auto-Neg Advertisement Register */
1110 	smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1111 	lp->mii.advertising = my_ad_caps;
1112 
1113 	/*
1114 	 * Read the register back.  Without this, it appears that when
1115 	 * auto-negotiation is restarted, sometimes it isn't ready and
1116 	 * the link does not come up.
1117 	 */
1118 	status = smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1119 
1120 	DBG(2, dev, "phy caps=%x\n", my_phy_caps);
1121 	DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps);
1122 
1123 	/* Restart auto-negotiation process in order to advertise my caps */
1124 	smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1125 
1126 	smc_phy_check_media(dev, 1);
1127 
1128 smc_phy_configure_exit:
1129 	SMC_SELECT_BANK(lp, 2);
1130 	spin_unlock_irq(&lp->lock);
1131 }
1132 
1133 /*
1134  * smc_phy_interrupt
1135  *
1136  * Purpose:  Handle interrupts relating to PHY register 18. This is
1137  *  called from the "hard" interrupt handler under our private spinlock.
1138  */
1139 static void smc_phy_interrupt(struct net_device *dev)
1140 {
1141 	struct smc_local *lp = netdev_priv(dev);
1142 	int phyaddr = lp->mii.phy_id;
1143 	int phy18;
1144 
1145 	DBG(2, dev, "%s\n", __func__);
1146 
1147 	if (lp->phy_type == 0)
1148 		return;
1149 
1150 	for(;;) {
1151 		smc_phy_check_media(dev, 0);
1152 
1153 		/* Read PHY Register 18, Status Output */
1154 		phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1155 		if ((phy18 & PHY_INT_INT) == 0)
1156 			break;
1157 	}
1158 }
1159 
1160 /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1161 
1162 static void smc_10bt_check_media(struct net_device *dev, int init)
1163 {
1164 	struct smc_local *lp = netdev_priv(dev);
1165 	void __iomem *ioaddr = lp->base;
1166 	unsigned int old_carrier, new_carrier;
1167 
1168 	old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1169 
1170 	SMC_SELECT_BANK(lp, 0);
1171 	new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1172 	SMC_SELECT_BANK(lp, 2);
1173 
1174 	if (init || (old_carrier != new_carrier)) {
1175 		if (!new_carrier) {
1176 			netif_carrier_off(dev);
1177 		} else {
1178 			netif_carrier_on(dev);
1179 		}
1180 		if (netif_msg_link(lp))
1181 			netdev_info(dev, "link %s\n",
1182 				    new_carrier ? "up" : "down");
1183 	}
1184 }
1185 
1186 static void smc_eph_interrupt(struct net_device *dev)
1187 {
1188 	struct smc_local *lp = netdev_priv(dev);
1189 	void __iomem *ioaddr = lp->base;
1190 	unsigned int ctl;
1191 
1192 	smc_10bt_check_media(dev, 0);
1193 
1194 	SMC_SELECT_BANK(lp, 1);
1195 	ctl = SMC_GET_CTL(lp);
1196 	SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1197 	SMC_SET_CTL(lp, ctl);
1198 	SMC_SELECT_BANK(lp, 2);
1199 }
1200 
1201 /*
1202  * This is the main routine of the driver, to handle the device when
1203  * it needs some attention.
1204  */
1205 static irqreturn_t smc_interrupt(int irq, void *dev_id)
1206 {
1207 	struct net_device *dev = dev_id;
1208 	struct smc_local *lp = netdev_priv(dev);
1209 	void __iomem *ioaddr = lp->base;
1210 	int status, mask, timeout, card_stats;
1211 	int saved_pointer;
1212 
1213 	DBG(3, dev, "%s\n", __func__);
1214 
1215 	spin_lock(&lp->lock);
1216 
1217 	/* A preamble may be used when there is a potential race
1218 	 * between the interruptible transmit functions and this
1219 	 * ISR. */
1220 	SMC_INTERRUPT_PREAMBLE;
1221 
1222 	saved_pointer = SMC_GET_PTR(lp);
1223 	mask = SMC_GET_INT_MASK(lp);
1224 	SMC_SET_INT_MASK(lp, 0);
1225 
1226 	/* set a timeout value, so I don't stay here forever */
1227 	timeout = MAX_IRQ_LOOPS;
1228 
1229 	do {
1230 		status = SMC_GET_INT(lp);
1231 
1232 		DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1233 		    status, mask,
1234 		    ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1235 		       meminfo = SMC_GET_MIR(lp);
1236 		       SMC_SELECT_BANK(lp, 2); meminfo; }),
1237 		    SMC_GET_FIFO(lp));
1238 
1239 		status &= mask;
1240 		if (!status)
1241 			break;
1242 
1243 		if (status & IM_TX_INT) {
1244 			/* do this before RX as it will free memory quickly */
1245 			DBG(3, dev, "TX int\n");
1246 			smc_tx(dev);
1247 			SMC_ACK_INT(lp, IM_TX_INT);
1248 			if (THROTTLE_TX_PKTS)
1249 				netif_wake_queue(dev);
1250 		} else if (status & IM_RCV_INT) {
1251 			DBG(3, dev, "RX irq\n");
1252 			smc_rcv(dev);
1253 		} else if (status & IM_ALLOC_INT) {
1254 			DBG(3, dev, "Allocation irq\n");
1255 			tasklet_hi_schedule(&lp->tx_task);
1256 			mask &= ~IM_ALLOC_INT;
1257 		} else if (status & IM_TX_EMPTY_INT) {
1258 			DBG(3, dev, "TX empty\n");
1259 			mask &= ~IM_TX_EMPTY_INT;
1260 
1261 			/* update stats */
1262 			SMC_SELECT_BANK(lp, 0);
1263 			card_stats = SMC_GET_COUNTER(lp);
1264 			SMC_SELECT_BANK(lp, 2);
1265 
1266 			/* single collisions */
1267 			dev->stats.collisions += card_stats & 0xF;
1268 			card_stats >>= 4;
1269 
1270 			/* multiple collisions */
1271 			dev->stats.collisions += card_stats & 0xF;
1272 		} else if (status & IM_RX_OVRN_INT) {
1273 			DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n",
1274 			    ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1275 			       eph_st = SMC_GET_EPH_STATUS(lp);
1276 			       SMC_SELECT_BANK(lp, 2); eph_st; }));
1277 			SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1278 			dev->stats.rx_errors++;
1279 			dev->stats.rx_fifo_errors++;
1280 		} else if (status & IM_EPH_INT) {
1281 			smc_eph_interrupt(dev);
1282 		} else if (status & IM_MDINT) {
1283 			SMC_ACK_INT(lp, IM_MDINT);
1284 			smc_phy_interrupt(dev);
1285 		} else if (status & IM_ERCV_INT) {
1286 			SMC_ACK_INT(lp, IM_ERCV_INT);
1287 			PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n");
1288 		}
1289 	} while (--timeout);
1290 
1291 	/* restore register states */
1292 	SMC_SET_PTR(lp, saved_pointer);
1293 	SMC_SET_INT_MASK(lp, mask);
1294 	spin_unlock(&lp->lock);
1295 
1296 #ifndef CONFIG_NET_POLL_CONTROLLER
1297 	if (timeout == MAX_IRQ_LOOPS)
1298 		PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n",
1299 		       mask);
1300 #endif
1301 	DBG(3, dev, "Interrupt done (%d loops)\n",
1302 	    MAX_IRQ_LOOPS - timeout);
1303 
1304 	/*
1305 	 * We return IRQ_HANDLED unconditionally here even if there was
1306 	 * nothing to do.  There is a possibility that a packet might
1307 	 * get enqueued into the chip right after TX_EMPTY_INT is raised
1308 	 * but just before the CPU acknowledges the IRQ.
1309 	 * Better take an unneeded IRQ in some occasions than complexifying
1310 	 * the code for all cases.
1311 	 */
1312 	return IRQ_HANDLED;
1313 }
1314 
1315 #ifdef CONFIG_NET_POLL_CONTROLLER
1316 /*
1317  * Polling receive - used by netconsole and other diagnostic tools
1318  * to allow network i/o with interrupts disabled.
1319  */
1320 static void smc_poll_controller(struct net_device *dev)
1321 {
1322 	disable_irq(dev->irq);
1323 	smc_interrupt(dev->irq, dev);
1324 	enable_irq(dev->irq);
1325 }
1326 #endif
1327 
1328 /* Our watchdog timed out. Called by the networking layer */
1329 static void smc_timeout(struct net_device *dev)
1330 {
1331 	struct smc_local *lp = netdev_priv(dev);
1332 	void __iomem *ioaddr = lp->base;
1333 	int status, mask, eph_st, meminfo, fifo;
1334 
1335 	DBG(2, dev, "%s\n", __func__);
1336 
1337 	spin_lock_irq(&lp->lock);
1338 	status = SMC_GET_INT(lp);
1339 	mask = SMC_GET_INT_MASK(lp);
1340 	fifo = SMC_GET_FIFO(lp);
1341 	SMC_SELECT_BANK(lp, 0);
1342 	eph_st = SMC_GET_EPH_STATUS(lp);
1343 	meminfo = SMC_GET_MIR(lp);
1344 	SMC_SELECT_BANK(lp, 2);
1345 	spin_unlock_irq(&lp->lock);
1346 	PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1347 	       status, mask, meminfo, fifo, eph_st);
1348 
1349 	smc_reset(dev);
1350 	smc_enable(dev);
1351 
1352 	/*
1353 	 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1354 	 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1355 	 * which calls schedule().  Hence we use a work queue.
1356 	 */
1357 	if (lp->phy_type != 0)
1358 		schedule_work(&lp->phy_configure);
1359 
1360 	/* We can accept TX packets again */
1361 	dev->trans_start = jiffies; /* prevent tx timeout */
1362 	netif_wake_queue(dev);
1363 }
1364 
1365 /*
1366  * This routine will, depending on the values passed to it,
1367  * either make it accept multicast packets, go into
1368  * promiscuous mode (for TCPDUMP and cousins) or accept
1369  * a select set of multicast packets
1370  */
1371 static void smc_set_multicast_list(struct net_device *dev)
1372 {
1373 	struct smc_local *lp = netdev_priv(dev);
1374 	void __iomem *ioaddr = lp->base;
1375 	unsigned char multicast_table[8];
1376 	int update_multicast = 0;
1377 
1378 	DBG(2, dev, "%s\n", __func__);
1379 
1380 	if (dev->flags & IFF_PROMISC) {
1381 		DBG(2, dev, "RCR_PRMS\n");
1382 		lp->rcr_cur_mode |= RCR_PRMS;
1383 	}
1384 
1385 /* BUG?  I never disable promiscuous mode if multicasting was turned on.
1386    Now, I turn off promiscuous mode, but I don't do anything to multicasting
1387    when promiscuous mode is turned on.
1388 */
1389 
1390 	/*
1391 	 * Here, I am setting this to accept all multicast packets.
1392 	 * I don't need to zero the multicast table, because the flag is
1393 	 * checked before the table is
1394 	 */
1395 	else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1396 		DBG(2, dev, "RCR_ALMUL\n");
1397 		lp->rcr_cur_mode |= RCR_ALMUL;
1398 	}
1399 
1400 	/*
1401 	 * This sets the internal hardware table to filter out unwanted
1402 	 * multicast packets before they take up memory.
1403 	 *
1404 	 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1405 	 * address are the offset into the table.  If that bit is 1, then the
1406 	 * multicast packet is accepted.  Otherwise, it's dropped silently.
1407 	 *
1408 	 * To use the 6 bits as an offset into the table, the high 3 bits are
1409 	 * the number of the 8 bit register, while the low 3 bits are the bit
1410 	 * within that register.
1411 	 */
1412 	else if (!netdev_mc_empty(dev)) {
1413 		struct netdev_hw_addr *ha;
1414 
1415 		/* table for flipping the order of 3 bits */
1416 		static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1417 
1418 		/* start with a table of all zeros: reject all */
1419 		memset(multicast_table, 0, sizeof(multicast_table));
1420 
1421 		netdev_for_each_mc_addr(ha, dev) {
1422 			int position;
1423 
1424 			/* only use the low order bits */
1425 			position = crc32_le(~0, ha->addr, 6) & 0x3f;
1426 
1427 			/* do some messy swapping to put the bit in the right spot */
1428 			multicast_table[invert3[position&7]] |=
1429 				(1<<invert3[(position>>3)&7]);
1430 		}
1431 
1432 		/* be sure I get rid of flags I might have set */
1433 		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1434 
1435 		/* now, the table can be loaded into the chipset */
1436 		update_multicast = 1;
1437 	} else  {
1438 		DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n");
1439 		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1440 
1441 		/*
1442 		 * since I'm disabling all multicast entirely, I need to
1443 		 * clear the multicast list
1444 		 */
1445 		memset(multicast_table, 0, sizeof(multicast_table));
1446 		update_multicast = 1;
1447 	}
1448 
1449 	spin_lock_irq(&lp->lock);
1450 	SMC_SELECT_BANK(lp, 0);
1451 	SMC_SET_RCR(lp, lp->rcr_cur_mode);
1452 	if (update_multicast) {
1453 		SMC_SELECT_BANK(lp, 3);
1454 		SMC_SET_MCAST(lp, multicast_table);
1455 	}
1456 	SMC_SELECT_BANK(lp, 2);
1457 	spin_unlock_irq(&lp->lock);
1458 }
1459 
1460 
1461 /*
1462  * Open and Initialize the board
1463  *
1464  * Set up everything, reset the card, etc..
1465  */
1466 static int
1467 smc_open(struct net_device *dev)
1468 {
1469 	struct smc_local *lp = netdev_priv(dev);
1470 
1471 	DBG(2, dev, "%s\n", __func__);
1472 
1473 	/* Setup the default Register Modes */
1474 	lp->tcr_cur_mode = TCR_DEFAULT;
1475 	lp->rcr_cur_mode = RCR_DEFAULT;
1476 	lp->rpc_cur_mode = RPC_DEFAULT |
1477 				lp->cfg.leda << RPC_LSXA_SHFT |
1478 				lp->cfg.ledb << RPC_LSXB_SHFT;
1479 
1480 	/*
1481 	 * If we are not using a MII interface, we need to
1482 	 * monitor our own carrier signal to detect faults.
1483 	 */
1484 	if (lp->phy_type == 0)
1485 		lp->tcr_cur_mode |= TCR_MON_CSN;
1486 
1487 	/* reset the hardware */
1488 	smc_reset(dev);
1489 	smc_enable(dev);
1490 
1491 	/* Configure the PHY, initialize the link state */
1492 	if (lp->phy_type != 0)
1493 		smc_phy_configure(&lp->phy_configure);
1494 	else {
1495 		spin_lock_irq(&lp->lock);
1496 		smc_10bt_check_media(dev, 1);
1497 		spin_unlock_irq(&lp->lock);
1498 	}
1499 
1500 	netif_start_queue(dev);
1501 	return 0;
1502 }
1503 
1504 /*
1505  * smc_close
1506  *
1507  * this makes the board clean up everything that it can
1508  * and not talk to the outside world.   Caused by
1509  * an 'ifconfig ethX down'
1510  */
1511 static int smc_close(struct net_device *dev)
1512 {
1513 	struct smc_local *lp = netdev_priv(dev);
1514 
1515 	DBG(2, dev, "%s\n", __func__);
1516 
1517 	netif_stop_queue(dev);
1518 	netif_carrier_off(dev);
1519 
1520 	/* clear everything */
1521 	smc_shutdown(dev);
1522 	tasklet_kill(&lp->tx_task);
1523 	smc_phy_powerdown(dev);
1524 	return 0;
1525 }
1526 
1527 /*
1528  * Ethtool support
1529  */
1530 static int
1531 smc_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1532 {
1533 	struct smc_local *lp = netdev_priv(dev);
1534 	int ret;
1535 
1536 	cmd->maxtxpkt = 1;
1537 	cmd->maxrxpkt = 1;
1538 
1539 	if (lp->phy_type != 0) {
1540 		spin_lock_irq(&lp->lock);
1541 		ret = mii_ethtool_gset(&lp->mii, cmd);
1542 		spin_unlock_irq(&lp->lock);
1543 	} else {
1544 		cmd->supported = SUPPORTED_10baseT_Half |
1545 				 SUPPORTED_10baseT_Full |
1546 				 SUPPORTED_TP | SUPPORTED_AUI;
1547 
1548 		if (lp->ctl_rspeed == 10)
1549 			ethtool_cmd_speed_set(cmd, SPEED_10);
1550 		else if (lp->ctl_rspeed == 100)
1551 			ethtool_cmd_speed_set(cmd, SPEED_100);
1552 
1553 		cmd->autoneg = AUTONEG_DISABLE;
1554 		cmd->transceiver = XCVR_INTERNAL;
1555 		cmd->port = 0;
1556 		cmd->duplex = lp->tcr_cur_mode & TCR_SWFDUP ? DUPLEX_FULL : DUPLEX_HALF;
1557 
1558 		ret = 0;
1559 	}
1560 
1561 	return ret;
1562 }
1563 
1564 static int
1565 smc_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1566 {
1567 	struct smc_local *lp = netdev_priv(dev);
1568 	int ret;
1569 
1570 	if (lp->phy_type != 0) {
1571 		spin_lock_irq(&lp->lock);
1572 		ret = mii_ethtool_sset(&lp->mii, cmd);
1573 		spin_unlock_irq(&lp->lock);
1574 	} else {
1575 		if (cmd->autoneg != AUTONEG_DISABLE ||
1576 		    cmd->speed != SPEED_10 ||
1577 		    (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) ||
1578 		    (cmd->port != PORT_TP && cmd->port != PORT_AUI))
1579 			return -EINVAL;
1580 
1581 //		lp->port = cmd->port;
1582 		lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL;
1583 
1584 //		if (netif_running(dev))
1585 //			smc_set_port(dev);
1586 
1587 		ret = 0;
1588 	}
1589 
1590 	return ret;
1591 }
1592 
1593 static void
1594 smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1595 {
1596 	strlcpy(info->driver, CARDNAME, sizeof(info->driver));
1597 	strlcpy(info->version, version, sizeof(info->version));
1598 	strlcpy(info->bus_info, dev_name(dev->dev.parent),
1599 		sizeof(info->bus_info));
1600 }
1601 
1602 static int smc_ethtool_nwayreset(struct net_device *dev)
1603 {
1604 	struct smc_local *lp = netdev_priv(dev);
1605 	int ret = -EINVAL;
1606 
1607 	if (lp->phy_type != 0) {
1608 		spin_lock_irq(&lp->lock);
1609 		ret = mii_nway_restart(&lp->mii);
1610 		spin_unlock_irq(&lp->lock);
1611 	}
1612 
1613 	return ret;
1614 }
1615 
1616 static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1617 {
1618 	struct smc_local *lp = netdev_priv(dev);
1619 	return lp->msg_enable;
1620 }
1621 
1622 static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1623 {
1624 	struct smc_local *lp = netdev_priv(dev);
1625 	lp->msg_enable = level;
1626 }
1627 
1628 static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1629 {
1630 	u16 ctl;
1631 	struct smc_local *lp = netdev_priv(dev);
1632 	void __iomem *ioaddr = lp->base;
1633 
1634 	spin_lock_irq(&lp->lock);
1635 	/* load word into GP register */
1636 	SMC_SELECT_BANK(lp, 1);
1637 	SMC_SET_GP(lp, word);
1638 	/* set the address to put the data in EEPROM */
1639 	SMC_SELECT_BANK(lp, 2);
1640 	SMC_SET_PTR(lp, addr);
1641 	/* tell it to write */
1642 	SMC_SELECT_BANK(lp, 1);
1643 	ctl = SMC_GET_CTL(lp);
1644 	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1645 	/* wait for it to finish */
1646 	do {
1647 		udelay(1);
1648 	} while (SMC_GET_CTL(lp) & CTL_STORE);
1649 	/* clean up */
1650 	SMC_SET_CTL(lp, ctl);
1651 	SMC_SELECT_BANK(lp, 2);
1652 	spin_unlock_irq(&lp->lock);
1653 	return 0;
1654 }
1655 
1656 static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1657 {
1658 	u16 ctl;
1659 	struct smc_local *lp = netdev_priv(dev);
1660 	void __iomem *ioaddr = lp->base;
1661 
1662 	spin_lock_irq(&lp->lock);
1663 	/* set the EEPROM address to get the data from */
1664 	SMC_SELECT_BANK(lp, 2);
1665 	SMC_SET_PTR(lp, addr | PTR_READ);
1666 	/* tell it to load */
1667 	SMC_SELECT_BANK(lp, 1);
1668 	SMC_SET_GP(lp, 0xffff);	/* init to known */
1669 	ctl = SMC_GET_CTL(lp);
1670 	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1671 	/* wait for it to finish */
1672 	do {
1673 		udelay(1);
1674 	} while (SMC_GET_CTL(lp) & CTL_RELOAD);
1675 	/* read word from GP register */
1676 	*word = SMC_GET_GP(lp);
1677 	/* clean up */
1678 	SMC_SET_CTL(lp, ctl);
1679 	SMC_SELECT_BANK(lp, 2);
1680 	spin_unlock_irq(&lp->lock);
1681 	return 0;
1682 }
1683 
1684 static int smc_ethtool_geteeprom_len(struct net_device *dev)
1685 {
1686 	return 0x23 * 2;
1687 }
1688 
1689 static int smc_ethtool_geteeprom(struct net_device *dev,
1690 		struct ethtool_eeprom *eeprom, u8 *data)
1691 {
1692 	int i;
1693 	int imax;
1694 
1695 	DBG(1, dev, "Reading %d bytes at %d(0x%x)\n",
1696 		eeprom->len, eeprom->offset, eeprom->offset);
1697 	imax = smc_ethtool_geteeprom_len(dev);
1698 	for (i = 0; i < eeprom->len; i += 2) {
1699 		int ret;
1700 		u16 wbuf;
1701 		int offset = i + eeprom->offset;
1702 		if (offset > imax)
1703 			break;
1704 		ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1705 		if (ret != 0)
1706 			return ret;
1707 		DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1708 		data[i] = (wbuf >> 8) & 0xff;
1709 		data[i+1] = wbuf & 0xff;
1710 	}
1711 	return 0;
1712 }
1713 
1714 static int smc_ethtool_seteeprom(struct net_device *dev,
1715 		struct ethtool_eeprom *eeprom, u8 *data)
1716 {
1717 	int i;
1718 	int imax;
1719 
1720 	DBG(1, dev, "Writing %d bytes to %d(0x%x)\n",
1721 	    eeprom->len, eeprom->offset, eeprom->offset);
1722 	imax = smc_ethtool_geteeprom_len(dev);
1723 	for (i = 0; i < eeprom->len; i += 2) {
1724 		int ret;
1725 		u16 wbuf;
1726 		int offset = i + eeprom->offset;
1727 		if (offset > imax)
1728 			break;
1729 		wbuf = (data[i] << 8) | data[i + 1];
1730 		DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1731 		ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1732 		if (ret != 0)
1733 			return ret;
1734 	}
1735 	return 0;
1736 }
1737 
1738 
1739 static const struct ethtool_ops smc_ethtool_ops = {
1740 	.get_settings	= smc_ethtool_getsettings,
1741 	.set_settings	= smc_ethtool_setsettings,
1742 	.get_drvinfo	= smc_ethtool_getdrvinfo,
1743 
1744 	.get_msglevel	= smc_ethtool_getmsglevel,
1745 	.set_msglevel	= smc_ethtool_setmsglevel,
1746 	.nway_reset	= smc_ethtool_nwayreset,
1747 	.get_link	= ethtool_op_get_link,
1748 	.get_eeprom_len = smc_ethtool_geteeprom_len,
1749 	.get_eeprom	= smc_ethtool_geteeprom,
1750 	.set_eeprom	= smc_ethtool_seteeprom,
1751 };
1752 
1753 static const struct net_device_ops smc_netdev_ops = {
1754 	.ndo_open		= smc_open,
1755 	.ndo_stop		= smc_close,
1756 	.ndo_start_xmit		= smc_hard_start_xmit,
1757 	.ndo_tx_timeout		= smc_timeout,
1758 	.ndo_set_rx_mode	= smc_set_multicast_list,
1759 	.ndo_change_mtu		= eth_change_mtu,
1760 	.ndo_validate_addr	= eth_validate_addr,
1761 	.ndo_set_mac_address 	= eth_mac_addr,
1762 #ifdef CONFIG_NET_POLL_CONTROLLER
1763 	.ndo_poll_controller	= smc_poll_controller,
1764 #endif
1765 };
1766 
1767 /*
1768  * smc_findirq
1769  *
1770  * This routine has a simple purpose -- make the SMC chip generate an
1771  * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1772  */
1773 /*
1774  * does this still work?
1775  *
1776  * I just deleted auto_irq.c, since it was never built...
1777  *   --jgarzik
1778  */
1779 static int smc_findirq(struct smc_local *lp)
1780 {
1781 	void __iomem *ioaddr = lp->base;
1782 	int timeout = 20;
1783 	unsigned long cookie;
1784 
1785 	DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__);
1786 
1787 	cookie = probe_irq_on();
1788 
1789 	/*
1790 	 * What I try to do here is trigger an ALLOC_INT. This is done
1791 	 * by allocating a small chunk of memory, which will give an interrupt
1792 	 * when done.
1793 	 */
1794 	/* enable ALLOCation interrupts ONLY */
1795 	SMC_SELECT_BANK(lp, 2);
1796 	SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1797 
1798 	/*
1799  	 * Allocate 512 bytes of memory.  Note that the chip was just
1800 	 * reset so all the memory is available
1801 	 */
1802 	SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1803 
1804 	/*
1805 	 * Wait until positive that the interrupt has been generated
1806 	 */
1807 	do {
1808 		int int_status;
1809 		udelay(10);
1810 		int_status = SMC_GET_INT(lp);
1811 		if (int_status & IM_ALLOC_INT)
1812 			break;		/* got the interrupt */
1813 	} while (--timeout);
1814 
1815 	/*
1816 	 * there is really nothing that I can do here if timeout fails,
1817 	 * as autoirq_report will return a 0 anyway, which is what I
1818 	 * want in this case.   Plus, the clean up is needed in both
1819 	 * cases.
1820 	 */
1821 
1822 	/* and disable all interrupts again */
1823 	SMC_SET_INT_MASK(lp, 0);
1824 
1825 	/* and return what I found */
1826 	return probe_irq_off(cookie);
1827 }
1828 
1829 /*
1830  * Function: smc_probe(unsigned long ioaddr)
1831  *
1832  * Purpose:
1833  *	Tests to see if a given ioaddr points to an SMC91x chip.
1834  *	Returns a 0 on success
1835  *
1836  * Algorithm:
1837  *	(1) see if the high byte of BANK_SELECT is 0x33
1838  * 	(2) compare the ioaddr with the base register's address
1839  *	(3) see if I recognize the chip ID in the appropriate register
1840  *
1841  * Here I do typical initialization tasks.
1842  *
1843  * o  Initialize the structure if needed
1844  * o  print out my vanity message if not done so already
1845  * o  print out what type of hardware is detected
1846  * o  print out the ethernet address
1847  * o  find the IRQ
1848  * o  set up my private data
1849  * o  configure the dev structure with my subroutines
1850  * o  actually GRAB the irq.
1851  * o  GRAB the region
1852  */
1853 static int smc_probe(struct net_device *dev, void __iomem *ioaddr,
1854 		     unsigned long irq_flags)
1855 {
1856 	struct smc_local *lp = netdev_priv(dev);
1857 	int retval;
1858 	unsigned int val, revision_register;
1859 	const char *version_string;
1860 
1861 	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
1862 
1863 	/* First, see if the high byte is 0x33 */
1864 	val = SMC_CURRENT_BANK(lp);
1865 	DBG(2, dev, "%s: bank signature probe returned 0x%04x\n",
1866 	    CARDNAME, val);
1867 	if ((val & 0xFF00) != 0x3300) {
1868 		if ((val & 0xFF) == 0x33) {
1869 			netdev_warn(dev,
1870 				    "%s: Detected possible byte-swapped interface at IOADDR %p\n",
1871 				    CARDNAME, ioaddr);
1872 		}
1873 		retval = -ENODEV;
1874 		goto err_out;
1875 	}
1876 
1877 	/*
1878 	 * The above MIGHT indicate a device, but I need to write to
1879 	 * further test this.
1880 	 */
1881 	SMC_SELECT_BANK(lp, 0);
1882 	val = SMC_CURRENT_BANK(lp);
1883 	if ((val & 0xFF00) != 0x3300) {
1884 		retval = -ENODEV;
1885 		goto err_out;
1886 	}
1887 
1888 	/*
1889 	 * well, we've already written once, so hopefully another
1890 	 * time won't hurt.  This time, I need to switch the bank
1891 	 * register to bank 1, so I can access the base address
1892 	 * register
1893 	 */
1894 	SMC_SELECT_BANK(lp, 1);
1895 	val = SMC_GET_BASE(lp);
1896 	val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1897 	if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1898 		netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n",
1899 			    CARDNAME, ioaddr, val);
1900 	}
1901 
1902 	/*
1903 	 * check if the revision register is something that I
1904 	 * recognize.  These might need to be added to later,
1905 	 * as future revisions could be added.
1906 	 */
1907 	SMC_SELECT_BANK(lp, 3);
1908 	revision_register = SMC_GET_REV(lp);
1909 	DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1910 	version_string = chip_ids[ (revision_register >> 4) & 0xF];
1911 	if (!version_string || (revision_register & 0xff00) != 0x3300) {
1912 		/* I don't recognize this chip, so... */
1913 		netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n",
1914 			    CARDNAME, ioaddr, revision_register);
1915 
1916 		retval = -ENODEV;
1917 		goto err_out;
1918 	}
1919 
1920 	/* At this point I'll assume that the chip is an SMC91x. */
1921 	pr_info_once("%s\n", version);
1922 
1923 	/* fill in some of the fields */
1924 	dev->base_addr = (unsigned long)ioaddr;
1925 	lp->base = ioaddr;
1926 	lp->version = revision_register & 0xff;
1927 	spin_lock_init(&lp->lock);
1928 
1929 	/* Get the MAC address */
1930 	SMC_SELECT_BANK(lp, 1);
1931 	SMC_GET_MAC_ADDR(lp, dev->dev_addr);
1932 
1933 	/* now, reset the chip, and put it into a known state */
1934 	smc_reset(dev);
1935 
1936 	/*
1937 	 * If dev->irq is 0, then the device has to be banged on to see
1938 	 * what the IRQ is.
1939 	 *
1940 	 * This banging doesn't always detect the IRQ, for unknown reasons.
1941 	 * a workaround is to reset the chip and try again.
1942 	 *
1943 	 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1944 	 * be what is requested on the command line.   I don't do that, mostly
1945 	 * because the card that I have uses a non-standard method of accessing
1946 	 * the IRQs, and because this _should_ work in most configurations.
1947 	 *
1948 	 * Specifying an IRQ is done with the assumption that the user knows
1949 	 * what (s)he is doing.  No checking is done!!!!
1950 	 */
1951 	if (dev->irq < 1) {
1952 		int trials;
1953 
1954 		trials = 3;
1955 		while (trials--) {
1956 			dev->irq = smc_findirq(lp);
1957 			if (dev->irq)
1958 				break;
1959 			/* kick the card and try again */
1960 			smc_reset(dev);
1961 		}
1962 	}
1963 	if (dev->irq == 0) {
1964 		netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n");
1965 		retval = -ENODEV;
1966 		goto err_out;
1967 	}
1968 	dev->irq = irq_canonicalize(dev->irq);
1969 
1970 	/* Fill in the fields of the device structure with ethernet values. */
1971 	ether_setup(dev);
1972 
1973 	dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1974 	dev->netdev_ops = &smc_netdev_ops;
1975 	dev->ethtool_ops = &smc_ethtool_ops;
1976 
1977 	tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev);
1978 	INIT_WORK(&lp->phy_configure, smc_phy_configure);
1979 	lp->dev = dev;
1980 	lp->mii.phy_id_mask = 0x1f;
1981 	lp->mii.reg_num_mask = 0x1f;
1982 	lp->mii.force_media = 0;
1983 	lp->mii.full_duplex = 0;
1984 	lp->mii.dev = dev;
1985 	lp->mii.mdio_read = smc_phy_read;
1986 	lp->mii.mdio_write = smc_phy_write;
1987 
1988 	/*
1989 	 * Locate the phy, if any.
1990 	 */
1991 	if (lp->version >= (CHIP_91100 << 4))
1992 		smc_phy_detect(dev);
1993 
1994 	/* then shut everything down to save power */
1995 	smc_shutdown(dev);
1996 	smc_phy_powerdown(dev);
1997 
1998 	/* Set default parameters */
1999 	lp->msg_enable = NETIF_MSG_LINK;
2000 	lp->ctl_rfduplx = 0;
2001 	lp->ctl_rspeed = 10;
2002 
2003 	if (lp->version >= (CHIP_91100 << 4)) {
2004 		lp->ctl_rfduplx = 1;
2005 		lp->ctl_rspeed = 100;
2006 	}
2007 
2008 	/* Grab the IRQ */
2009 	retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
2010       	if (retval)
2011       		goto err_out;
2012 
2013 #ifdef CONFIG_ARCH_PXA
2014 #  ifdef SMC_USE_PXA_DMA
2015 	lp->cfg.flags |= SMC91X_USE_DMA;
2016 #  endif
2017 	if (lp->cfg.flags & SMC91X_USE_DMA) {
2018 		int dma = pxa_request_dma(dev->name, DMA_PRIO_LOW,
2019 					  smc_pxa_dma_irq, NULL);
2020 		if (dma >= 0)
2021 			dev->dma = dma;
2022 	}
2023 #endif
2024 
2025 	retval = register_netdev(dev);
2026 	if (retval == 0) {
2027 		/* now, print out the card info, in a short format.. */
2028 		netdev_info(dev, "%s (rev %d) at %p IRQ %d",
2029 			    version_string, revision_register & 0x0f,
2030 			    lp->base, dev->irq);
2031 
2032 		if (dev->dma != (unsigned char)-1)
2033 			pr_cont(" DMA %d", dev->dma);
2034 
2035 		pr_cont("%s%s\n",
2036 			lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2037 			THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2038 
2039 		if (!is_valid_ether_addr(dev->dev_addr)) {
2040 			netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n");
2041 		} else {
2042 			/* Print the Ethernet address */
2043 			netdev_info(dev, "Ethernet addr: %pM\n",
2044 				    dev->dev_addr);
2045 		}
2046 
2047 		if (lp->phy_type == 0) {
2048 			PRINTK(dev, "No PHY found\n");
2049 		} else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2050 			PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n");
2051 		} else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2052 			PRINTK(dev, "PHY LAN83C180\n");
2053 		}
2054 	}
2055 
2056 err_out:
2057 #ifdef CONFIG_ARCH_PXA
2058 	if (retval && dev->dma != (unsigned char)-1)
2059 		pxa_free_dma(dev->dma);
2060 #endif
2061 	return retval;
2062 }
2063 
2064 static int smc_enable_device(struct platform_device *pdev)
2065 {
2066 	struct net_device *ndev = platform_get_drvdata(pdev);
2067 	struct smc_local *lp = netdev_priv(ndev);
2068 	unsigned long flags;
2069 	unsigned char ecor, ecsr;
2070 	void __iomem *addr;
2071 	struct resource * res;
2072 
2073 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2074 	if (!res)
2075 		return 0;
2076 
2077 	/*
2078 	 * Map the attribute space.  This is overkill, but clean.
2079 	 */
2080 	addr = ioremap(res->start, ATTRIB_SIZE);
2081 	if (!addr)
2082 		return -ENOMEM;
2083 
2084 	/*
2085 	 * Reset the device.  We must disable IRQs around this
2086 	 * since a reset causes the IRQ line become active.
2087 	 */
2088 	local_irq_save(flags);
2089 	ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2090 	writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2091 	readb(addr + (ECOR << SMC_IO_SHIFT));
2092 
2093 	/*
2094 	 * Wait 100us for the chip to reset.
2095 	 */
2096 	udelay(100);
2097 
2098 	/*
2099 	 * The device will ignore all writes to the enable bit while
2100 	 * reset is asserted, even if the reset bit is cleared in the
2101 	 * same write.  Must clear reset first, then enable the device.
2102 	 */
2103 	writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2104 	writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2105 
2106 	/*
2107 	 * Set the appropriate byte/word mode.
2108 	 */
2109 	ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2110 	if (!SMC_16BIT(lp))
2111 		ecsr |= ECSR_IOIS8;
2112 	writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2113 	local_irq_restore(flags);
2114 
2115 	iounmap(addr);
2116 
2117 	/*
2118 	 * Wait for the chip to wake up.  We could poll the control
2119 	 * register in the main register space, but that isn't mapped
2120 	 * yet.  We know this is going to take 750us.
2121 	 */
2122 	msleep(1);
2123 
2124 	return 0;
2125 }
2126 
2127 static int smc_request_attrib(struct platform_device *pdev,
2128 			      struct net_device *ndev)
2129 {
2130 	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2131 	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2132 
2133 	if (!res)
2134 		return 0;
2135 
2136 	if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2137 		return -EBUSY;
2138 
2139 	return 0;
2140 }
2141 
2142 static void smc_release_attrib(struct platform_device *pdev,
2143 			       struct net_device *ndev)
2144 {
2145 	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2146 	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2147 
2148 	if (res)
2149 		release_mem_region(res->start, ATTRIB_SIZE);
2150 }
2151 
2152 static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2153 {
2154 	if (SMC_CAN_USE_DATACS) {
2155 		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2156 		struct smc_local *lp = netdev_priv(ndev);
2157 
2158 		if (!res)
2159 			return;
2160 
2161 		if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2162 			netdev_info(ndev, "%s: failed to request datacs memory region.\n",
2163 				    CARDNAME);
2164 			return;
2165 		}
2166 
2167 		lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2168 	}
2169 }
2170 
2171 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2172 {
2173 	if (SMC_CAN_USE_DATACS) {
2174 		struct smc_local *lp = netdev_priv(ndev);
2175 		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2176 
2177 		if (lp->datacs)
2178 			iounmap(lp->datacs);
2179 
2180 		lp->datacs = NULL;
2181 
2182 		if (res)
2183 			release_mem_region(res->start, SMC_DATA_EXTENT);
2184 	}
2185 }
2186 
2187 #if IS_BUILTIN(CONFIG_OF)
2188 static const struct of_device_id smc91x_match[] = {
2189 	{ .compatible = "smsc,lan91c94", },
2190 	{ .compatible = "smsc,lan91c111", },
2191 	{},
2192 };
2193 MODULE_DEVICE_TABLE(of, smc91x_match);
2194 #endif
2195 
2196 /*
2197  * smc_init(void)
2198  *   Input parameters:
2199  *	dev->base_addr == 0, try to find all possible locations
2200  *	dev->base_addr > 0x1ff, this is the address to check
2201  *	dev->base_addr == <anything else>, return failure code
2202  *
2203  *   Output:
2204  *	0 --> there is a device
2205  *	anything else, error
2206  */
2207 static int smc_drv_probe(struct platform_device *pdev)
2208 {
2209 	struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev);
2210 	const struct of_device_id *match = NULL;
2211 	struct smc_local *lp;
2212 	struct net_device *ndev;
2213 	struct resource *res, *ires;
2214 	unsigned int __iomem *addr;
2215 	unsigned long irq_flags = SMC_IRQ_FLAGS;
2216 	int ret;
2217 
2218 	ndev = alloc_etherdev(sizeof(struct smc_local));
2219 	if (!ndev) {
2220 		ret = -ENOMEM;
2221 		goto out;
2222 	}
2223 	SET_NETDEV_DEV(ndev, &pdev->dev);
2224 
2225 	/* get configuration from platform data, only allow use of
2226 	 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2227 	 */
2228 
2229 	lp = netdev_priv(ndev);
2230 	lp->cfg.flags = 0;
2231 
2232 	if (pd) {
2233 		memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2234 		lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2235 	}
2236 
2237 #if IS_BUILTIN(CONFIG_OF)
2238 	match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev);
2239 	if (match) {
2240 		struct device_node *np = pdev->dev.of_node;
2241 		u32 val;
2242 
2243 		/* Combination of IO widths supported, default to 16-bit */
2244 		if (!of_property_read_u32(np, "reg-io-width", &val)) {
2245 			if (val & 1)
2246 				lp->cfg.flags |= SMC91X_USE_8BIT;
2247 			if ((val == 0) || (val & 2))
2248 				lp->cfg.flags |= SMC91X_USE_16BIT;
2249 			if (val & 4)
2250 				lp->cfg.flags |= SMC91X_USE_32BIT;
2251 		} else {
2252 			lp->cfg.flags |= SMC91X_USE_16BIT;
2253 		}
2254 	}
2255 #endif
2256 
2257 	if (!pd && !match) {
2258 		lp->cfg.flags |= (SMC_CAN_USE_8BIT)  ? SMC91X_USE_8BIT  : 0;
2259 		lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2260 		lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2261 		lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2262 	}
2263 
2264 	if (!lp->cfg.leda && !lp->cfg.ledb) {
2265 		lp->cfg.leda = RPC_LSA_DEFAULT;
2266 		lp->cfg.ledb = RPC_LSB_DEFAULT;
2267 	}
2268 
2269 	ndev->dma = (unsigned char)-1;
2270 
2271 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2272 	if (!res)
2273 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2274 	if (!res) {
2275 		ret = -ENODEV;
2276 		goto out_free_netdev;
2277 	}
2278 
2279 
2280 	if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2281 		ret = -EBUSY;
2282 		goto out_free_netdev;
2283 	}
2284 
2285 	ires = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
2286 	if (!ires) {
2287 		ret = -ENODEV;
2288 		goto out_release_io;
2289 	}
2290 
2291 	ndev->irq = ires->start;
2292 
2293 	if (irq_flags == -1 || ires->flags & IRQF_TRIGGER_MASK)
2294 		irq_flags = ires->flags & IRQF_TRIGGER_MASK;
2295 
2296 	ret = smc_request_attrib(pdev, ndev);
2297 	if (ret)
2298 		goto out_release_io;
2299 #if defined(CONFIG_SA1100_ASSABET)
2300 	neponset_ncr_set(NCR_ENET_OSC_EN);
2301 #endif
2302 	platform_set_drvdata(pdev, ndev);
2303 	ret = smc_enable_device(pdev);
2304 	if (ret)
2305 		goto out_release_attrib;
2306 
2307 	addr = ioremap(res->start, SMC_IO_EXTENT);
2308 	if (!addr) {
2309 		ret = -ENOMEM;
2310 		goto out_release_attrib;
2311 	}
2312 
2313 #ifdef CONFIG_ARCH_PXA
2314 	{
2315 		struct smc_local *lp = netdev_priv(ndev);
2316 		lp->device = &pdev->dev;
2317 		lp->physaddr = res->start;
2318 	}
2319 #endif
2320 
2321 	ret = smc_probe(ndev, addr, irq_flags);
2322 	if (ret != 0)
2323 		goto out_iounmap;
2324 
2325 	smc_request_datacs(pdev, ndev);
2326 
2327 	return 0;
2328 
2329  out_iounmap:
2330 	iounmap(addr);
2331  out_release_attrib:
2332 	smc_release_attrib(pdev, ndev);
2333  out_release_io:
2334 	release_mem_region(res->start, SMC_IO_EXTENT);
2335  out_free_netdev:
2336 	free_netdev(ndev);
2337  out:
2338 	pr_info("%s: not found (%d).\n", CARDNAME, ret);
2339 
2340 	return ret;
2341 }
2342 
2343 static int smc_drv_remove(struct platform_device *pdev)
2344 {
2345 	struct net_device *ndev = platform_get_drvdata(pdev);
2346 	struct smc_local *lp = netdev_priv(ndev);
2347 	struct resource *res;
2348 
2349 	unregister_netdev(ndev);
2350 
2351 	free_irq(ndev->irq, ndev);
2352 
2353 #ifdef CONFIG_ARCH_PXA
2354 	if (ndev->dma != (unsigned char)-1)
2355 		pxa_free_dma(ndev->dma);
2356 #endif
2357 	iounmap(lp->base);
2358 
2359 	smc_release_datacs(pdev,ndev);
2360 	smc_release_attrib(pdev,ndev);
2361 
2362 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2363 	if (!res)
2364 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2365 	release_mem_region(res->start, SMC_IO_EXTENT);
2366 
2367 	free_netdev(ndev);
2368 
2369 	return 0;
2370 }
2371 
2372 static int smc_drv_suspend(struct device *dev)
2373 {
2374 	struct platform_device *pdev = to_platform_device(dev);
2375 	struct net_device *ndev = platform_get_drvdata(pdev);
2376 
2377 	if (ndev) {
2378 		if (netif_running(ndev)) {
2379 			netif_device_detach(ndev);
2380 			smc_shutdown(ndev);
2381 			smc_phy_powerdown(ndev);
2382 		}
2383 	}
2384 	return 0;
2385 }
2386 
2387 static int smc_drv_resume(struct device *dev)
2388 {
2389 	struct platform_device *pdev = to_platform_device(dev);
2390 	struct net_device *ndev = platform_get_drvdata(pdev);
2391 
2392 	if (ndev) {
2393 		struct smc_local *lp = netdev_priv(ndev);
2394 		smc_enable_device(pdev);
2395 		if (netif_running(ndev)) {
2396 			smc_reset(ndev);
2397 			smc_enable(ndev);
2398 			if (lp->phy_type != 0)
2399 				smc_phy_configure(&lp->phy_configure);
2400 			netif_device_attach(ndev);
2401 		}
2402 	}
2403 	return 0;
2404 }
2405 
2406 static struct dev_pm_ops smc_drv_pm_ops = {
2407 	.suspend	= smc_drv_suspend,
2408 	.resume		= smc_drv_resume,
2409 };
2410 
2411 static struct platform_driver smc_driver = {
2412 	.probe		= smc_drv_probe,
2413 	.remove		= smc_drv_remove,
2414 	.driver		= {
2415 		.name	= CARDNAME,
2416 		.owner	= THIS_MODULE,
2417 		.pm	= &smc_drv_pm_ops,
2418 		.of_match_table = of_match_ptr(smc91x_match),
2419 	},
2420 };
2421 
2422 module_platform_driver(smc_driver);
2423