xref: /openbmc/linux/drivers/net/ethernet/smsc/smc91x.c (revision 089a49b6)
1 /*
2  * smc91x.c
3  * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
4  *
5  * Copyright (C) 1996 by Erik Stahlman
6  * Copyright (C) 2001 Standard Microsystems Corporation
7  *	Developed by Simple Network Magic Corporation
8  * Copyright (C) 2003 Monta Vista Software, Inc.
9  *	Unified SMC91x driver by Nicolas Pitre
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
24  *
25  * Arguments:
26  * 	io	= for the base address
27  *	irq	= for the IRQ
28  *	nowait	= 0 for normal wait states, 1 eliminates additional wait states
29  *
30  * original author:
31  * 	Erik Stahlman <erik@vt.edu>
32  *
33  * hardware multicast code:
34  *    Peter Cammaert <pc@denkart.be>
35  *
36  * contributors:
37  * 	Daris A Nevil <dnevil@snmc.com>
38  *      Nicolas Pitre <nico@fluxnic.net>
39  *	Russell King <rmk@arm.linux.org.uk>
40  *
41  * History:
42  *   08/20/00  Arnaldo Melo       fix kfree(skb) in smc_hardware_send_packet
43  *   12/15/00  Christian Jullien  fix "Warning: kfree_skb on hard IRQ"
44  *   03/16/01  Daris A Nevil      modified smc9194.c for use with LAN91C111
45  *   08/22/01  Scott Anderson     merge changes from smc9194 to smc91111
46  *   08/21/01  Pramod B Bhardwaj  added support for RevB of LAN91C111
47  *   12/20/01  Jeff Sutherland    initial port to Xscale PXA with DMA support
48  *   04/07/03  Nicolas Pitre      unified SMC91x driver, killed irq races,
49  *                                more bus abstraction, big cleanup, etc.
50  *   29/09/03  Russell King       - add driver model support
51  *                                - ethtool support
52  *                                - convert to use generic MII interface
53  *                                - add link up/down notification
54  *                                - don't try to handle full negotiation in
55  *                                  smc_phy_configure
56  *                                - clean up (and fix stack overrun) in PHY
57  *                                  MII read/write functions
58  *   22/09/04  Nicolas Pitre      big update (see commit log for details)
59  */
60 static const char version[] =
61 	"smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>\n";
62 
63 /* Debugging level */
64 #ifndef SMC_DEBUG
65 #define SMC_DEBUG		0
66 #endif
67 
68 
69 #include <linux/init.h>
70 #include <linux/module.h>
71 #include <linux/kernel.h>
72 #include <linux/sched.h>
73 #include <linux/delay.h>
74 #include <linux/interrupt.h>
75 #include <linux/irq.h>
76 #include <linux/errno.h>
77 #include <linux/ioport.h>
78 #include <linux/crc32.h>
79 #include <linux/platform_device.h>
80 #include <linux/spinlock.h>
81 #include <linux/ethtool.h>
82 #include <linux/mii.h>
83 #include <linux/workqueue.h>
84 #include <linux/of.h>
85 
86 #include <linux/netdevice.h>
87 #include <linux/etherdevice.h>
88 #include <linux/skbuff.h>
89 
90 #include <asm/io.h>
91 
92 #include "smc91x.h"
93 
94 #ifndef SMC_NOWAIT
95 # define SMC_NOWAIT		0
96 #endif
97 static int nowait = SMC_NOWAIT;
98 module_param(nowait, int, 0400);
99 MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
100 
101 /*
102  * Transmit timeout, default 5 seconds.
103  */
104 static int watchdog = 1000;
105 module_param(watchdog, int, 0400);
106 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
107 
108 MODULE_LICENSE("GPL");
109 MODULE_ALIAS("platform:smc91x");
110 
111 /*
112  * The internal workings of the driver.  If you are changing anything
113  * here with the SMC stuff, you should have the datasheet and know
114  * what you are doing.
115  */
116 #define CARDNAME "smc91x"
117 
118 /*
119  * Use power-down feature of the chip
120  */
121 #define POWER_DOWN		1
122 
123 /*
124  * Wait time for memory to be free.  This probably shouldn't be
125  * tuned that much, as waiting for this means nothing else happens
126  * in the system
127  */
128 #define MEMORY_WAIT_TIME	16
129 
130 /*
131  * The maximum number of processing loops allowed for each call to the
132  * IRQ handler.
133  */
134 #define MAX_IRQ_LOOPS		8
135 
136 /*
137  * This selects whether TX packets are sent one by one to the SMC91x internal
138  * memory and throttled until transmission completes.  This may prevent
139  * RX overruns a litle by keeping much of the memory free for RX packets
140  * but to the expense of reduced TX throughput and increased IRQ overhead.
141  * Note this is not a cure for a too slow data bus or too high IRQ latency.
142  */
143 #define THROTTLE_TX_PKTS	0
144 
145 /*
146  * The MII clock high/low times.  2x this number gives the MII clock period
147  * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
148  */
149 #define MII_DELAY		1
150 
151 #if SMC_DEBUG > 0
152 #define DBG(n, args...)					\
153 	do {						\
154 		if (SMC_DEBUG >= (n))			\
155 			printk(args);	\
156 	} while (0)
157 
158 #define PRINTK(args...)   printk(args)
159 #else
160 #define DBG(n, args...)   do { } while(0)
161 #define PRINTK(args...)   printk(KERN_DEBUG args)
162 #endif
163 
164 #if SMC_DEBUG > 3
165 static void PRINT_PKT(u_char *buf, int length)
166 {
167 	int i;
168 	int remainder;
169 	int lines;
170 
171 	lines = length / 16;
172 	remainder = length % 16;
173 
174 	for (i = 0; i < lines ; i ++) {
175 		int cur;
176 		for (cur = 0; cur < 8; cur++) {
177 			u_char a, b;
178 			a = *buf++;
179 			b = *buf++;
180 			printk("%02x%02x ", a, b);
181 		}
182 		printk("\n");
183 	}
184 	for (i = 0; i < remainder/2 ; i++) {
185 		u_char a, b;
186 		a = *buf++;
187 		b = *buf++;
188 		printk("%02x%02x ", a, b);
189 	}
190 	printk("\n");
191 }
192 #else
193 #define PRINT_PKT(x...)  do { } while(0)
194 #endif
195 
196 
197 /* this enables an interrupt in the interrupt mask register */
198 #define SMC_ENABLE_INT(lp, x) do {					\
199 	unsigned char mask;						\
200 	unsigned long smc_enable_flags;					\
201 	spin_lock_irqsave(&lp->lock, smc_enable_flags);			\
202 	mask = SMC_GET_INT_MASK(lp);					\
203 	mask |= (x);							\
204 	SMC_SET_INT_MASK(lp, mask);					\
205 	spin_unlock_irqrestore(&lp->lock, smc_enable_flags);		\
206 } while (0)
207 
208 /* this disables an interrupt from the interrupt mask register */
209 #define SMC_DISABLE_INT(lp, x) do {					\
210 	unsigned char mask;						\
211 	unsigned long smc_disable_flags;				\
212 	spin_lock_irqsave(&lp->lock, smc_disable_flags);		\
213 	mask = SMC_GET_INT_MASK(lp);					\
214 	mask &= ~(x);							\
215 	SMC_SET_INT_MASK(lp, mask);					\
216 	spin_unlock_irqrestore(&lp->lock, smc_disable_flags);		\
217 } while (0)
218 
219 /*
220  * Wait while MMU is busy.  This is usually in the order of a few nanosecs
221  * if at all, but let's avoid deadlocking the system if the hardware
222  * decides to go south.
223  */
224 #define SMC_WAIT_MMU_BUSY(lp) do {					\
225 	if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) {		\
226 		unsigned long timeout = jiffies + 2;			\
227 		while (SMC_GET_MMU_CMD(lp) & MC_BUSY) {		\
228 			if (time_after(jiffies, timeout)) {		\
229 				printk("%s: timeout %s line %d\n",	\
230 					dev->name, __FILE__, __LINE__);	\
231 				break;					\
232 			}						\
233 			cpu_relax();					\
234 		}							\
235 	}								\
236 } while (0)
237 
238 
239 /*
240  * this does a soft reset on the device
241  */
242 static void smc_reset(struct net_device *dev)
243 {
244 	struct smc_local *lp = netdev_priv(dev);
245 	void __iomem *ioaddr = lp->base;
246 	unsigned int ctl, cfg;
247 	struct sk_buff *pending_skb;
248 
249 	DBG(2, "%s: %s\n", dev->name, __func__);
250 
251 	/* Disable all interrupts, block TX tasklet */
252 	spin_lock_irq(&lp->lock);
253 	SMC_SELECT_BANK(lp, 2);
254 	SMC_SET_INT_MASK(lp, 0);
255 	pending_skb = lp->pending_tx_skb;
256 	lp->pending_tx_skb = NULL;
257 	spin_unlock_irq(&lp->lock);
258 
259 	/* free any pending tx skb */
260 	if (pending_skb) {
261 		dev_kfree_skb(pending_skb);
262 		dev->stats.tx_errors++;
263 		dev->stats.tx_aborted_errors++;
264 	}
265 
266 	/*
267 	 * This resets the registers mostly to defaults, but doesn't
268 	 * affect EEPROM.  That seems unnecessary
269 	 */
270 	SMC_SELECT_BANK(lp, 0);
271 	SMC_SET_RCR(lp, RCR_SOFTRST);
272 
273 	/*
274 	 * Setup the Configuration Register
275 	 * This is necessary because the CONFIG_REG is not affected
276 	 * by a soft reset
277 	 */
278 	SMC_SELECT_BANK(lp, 1);
279 
280 	cfg = CONFIG_DEFAULT;
281 
282 	/*
283 	 * Setup for fast accesses if requested.  If the card/system
284 	 * can't handle it then there will be no recovery except for
285 	 * a hard reset or power cycle
286 	 */
287 	if (lp->cfg.flags & SMC91X_NOWAIT)
288 		cfg |= CONFIG_NO_WAIT;
289 
290 	/*
291 	 * Release from possible power-down state
292 	 * Configuration register is not affected by Soft Reset
293 	 */
294 	cfg |= CONFIG_EPH_POWER_EN;
295 
296 	SMC_SET_CONFIG(lp, cfg);
297 
298 	/* this should pause enough for the chip to be happy */
299 	/*
300 	 * elaborate?  What does the chip _need_? --jgarzik
301 	 *
302 	 * This seems to be undocumented, but something the original
303 	 * driver(s) have always done.  Suspect undocumented timing
304 	 * info/determined empirically. --rmk
305 	 */
306 	udelay(1);
307 
308 	/* Disable transmit and receive functionality */
309 	SMC_SELECT_BANK(lp, 0);
310 	SMC_SET_RCR(lp, RCR_CLEAR);
311 	SMC_SET_TCR(lp, TCR_CLEAR);
312 
313 	SMC_SELECT_BANK(lp, 1);
314 	ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
315 
316 	/*
317 	 * Set the control register to automatically release successfully
318 	 * transmitted packets, to make the best use out of our limited
319 	 * memory
320 	 */
321 	if(!THROTTLE_TX_PKTS)
322 		ctl |= CTL_AUTO_RELEASE;
323 	else
324 		ctl &= ~CTL_AUTO_RELEASE;
325 	SMC_SET_CTL(lp, ctl);
326 
327 	/* Reset the MMU */
328 	SMC_SELECT_BANK(lp, 2);
329 	SMC_SET_MMU_CMD(lp, MC_RESET);
330 	SMC_WAIT_MMU_BUSY(lp);
331 }
332 
333 /*
334  * Enable Interrupts, Receive, and Transmit
335  */
336 static void smc_enable(struct net_device *dev)
337 {
338 	struct smc_local *lp = netdev_priv(dev);
339 	void __iomem *ioaddr = lp->base;
340 	int mask;
341 
342 	DBG(2, "%s: %s\n", dev->name, __func__);
343 
344 	/* see the header file for options in TCR/RCR DEFAULT */
345 	SMC_SELECT_BANK(lp, 0);
346 	SMC_SET_TCR(lp, lp->tcr_cur_mode);
347 	SMC_SET_RCR(lp, lp->rcr_cur_mode);
348 
349 	SMC_SELECT_BANK(lp, 1);
350 	SMC_SET_MAC_ADDR(lp, dev->dev_addr);
351 
352 	/* now, enable interrupts */
353 	mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
354 	if (lp->version >= (CHIP_91100 << 4))
355 		mask |= IM_MDINT;
356 	SMC_SELECT_BANK(lp, 2);
357 	SMC_SET_INT_MASK(lp, mask);
358 
359 	/*
360 	 * From this point the register bank must _NOT_ be switched away
361 	 * to something else than bank 2 without proper locking against
362 	 * races with any tasklet or interrupt handlers until smc_shutdown()
363 	 * or smc_reset() is called.
364 	 */
365 }
366 
367 /*
368  * this puts the device in an inactive state
369  */
370 static void smc_shutdown(struct net_device *dev)
371 {
372 	struct smc_local *lp = netdev_priv(dev);
373 	void __iomem *ioaddr = lp->base;
374 	struct sk_buff *pending_skb;
375 
376 	DBG(2, "%s: %s\n", CARDNAME, __func__);
377 
378 	/* no more interrupts for me */
379 	spin_lock_irq(&lp->lock);
380 	SMC_SELECT_BANK(lp, 2);
381 	SMC_SET_INT_MASK(lp, 0);
382 	pending_skb = lp->pending_tx_skb;
383 	lp->pending_tx_skb = NULL;
384 	spin_unlock_irq(&lp->lock);
385 	if (pending_skb)
386 		dev_kfree_skb(pending_skb);
387 
388 	/* and tell the card to stay away from that nasty outside world */
389 	SMC_SELECT_BANK(lp, 0);
390 	SMC_SET_RCR(lp, RCR_CLEAR);
391 	SMC_SET_TCR(lp, TCR_CLEAR);
392 
393 #ifdef POWER_DOWN
394 	/* finally, shut the chip down */
395 	SMC_SELECT_BANK(lp, 1);
396 	SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
397 #endif
398 }
399 
400 /*
401  * This is the procedure to handle the receipt of a packet.
402  */
403 static inline void  smc_rcv(struct net_device *dev)
404 {
405 	struct smc_local *lp = netdev_priv(dev);
406 	void __iomem *ioaddr = lp->base;
407 	unsigned int packet_number, status, packet_len;
408 
409 	DBG(3, "%s: %s\n", dev->name, __func__);
410 
411 	packet_number = SMC_GET_RXFIFO(lp);
412 	if (unlikely(packet_number & RXFIFO_REMPTY)) {
413 		PRINTK("%s: smc_rcv with nothing on FIFO.\n", dev->name);
414 		return;
415 	}
416 
417 	/* read from start of packet */
418 	SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
419 
420 	/* First two words are status and packet length */
421 	SMC_GET_PKT_HDR(lp, status, packet_len);
422 	packet_len &= 0x07ff;  /* mask off top bits */
423 	DBG(2, "%s: RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
424 		dev->name, packet_number, status,
425 		packet_len, packet_len);
426 
427 	back:
428 	if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
429 		if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
430 			/* accept VLAN packets */
431 			status &= ~RS_TOOLONG;
432 			goto back;
433 		}
434 		if (packet_len < 6) {
435 			/* bloody hardware */
436 			printk(KERN_ERR "%s: fubar (rxlen %u status %x\n",
437 					dev->name, packet_len, status);
438 			status |= RS_TOOSHORT;
439 		}
440 		SMC_WAIT_MMU_BUSY(lp);
441 		SMC_SET_MMU_CMD(lp, MC_RELEASE);
442 		dev->stats.rx_errors++;
443 		if (status & RS_ALGNERR)
444 			dev->stats.rx_frame_errors++;
445 		if (status & (RS_TOOSHORT | RS_TOOLONG))
446 			dev->stats.rx_length_errors++;
447 		if (status & RS_BADCRC)
448 			dev->stats.rx_crc_errors++;
449 	} else {
450 		struct sk_buff *skb;
451 		unsigned char *data;
452 		unsigned int data_len;
453 
454 		/* set multicast stats */
455 		if (status & RS_MULTICAST)
456 			dev->stats.multicast++;
457 
458 		/*
459 		 * Actual payload is packet_len - 6 (or 5 if odd byte).
460 		 * We want skb_reserve(2) and the final ctrl word
461 		 * (2 bytes, possibly containing the payload odd byte).
462 		 * Furthermore, we add 2 bytes to allow rounding up to
463 		 * multiple of 4 bytes on 32 bit buses.
464 		 * Hence packet_len - 6 + 2 + 2 + 2.
465 		 */
466 		skb = netdev_alloc_skb(dev, packet_len);
467 		if (unlikely(skb == NULL)) {
468 			SMC_WAIT_MMU_BUSY(lp);
469 			SMC_SET_MMU_CMD(lp, MC_RELEASE);
470 			dev->stats.rx_dropped++;
471 			return;
472 		}
473 
474 		/* Align IP header to 32 bits */
475 		skb_reserve(skb, 2);
476 
477 		/* BUG: the LAN91C111 rev A never sets this bit. Force it. */
478 		if (lp->version == 0x90)
479 			status |= RS_ODDFRAME;
480 
481 		/*
482 		 * If odd length: packet_len - 5,
483 		 * otherwise packet_len - 6.
484 		 * With the trailing ctrl byte it's packet_len - 4.
485 		 */
486 		data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
487 		data = skb_put(skb, data_len);
488 		SMC_PULL_DATA(lp, data, packet_len - 4);
489 
490 		SMC_WAIT_MMU_BUSY(lp);
491 		SMC_SET_MMU_CMD(lp, MC_RELEASE);
492 
493 		PRINT_PKT(data, packet_len - 4);
494 
495 		skb->protocol = eth_type_trans(skb, dev);
496 		netif_rx(skb);
497 		dev->stats.rx_packets++;
498 		dev->stats.rx_bytes += data_len;
499 	}
500 }
501 
502 #ifdef CONFIG_SMP
503 /*
504  * On SMP we have the following problem:
505  *
506  * 	A = smc_hardware_send_pkt()
507  * 	B = smc_hard_start_xmit()
508  * 	C = smc_interrupt()
509  *
510  * A and B can never be executed simultaneously.  However, at least on UP,
511  * it is possible (and even desirable) for C to interrupt execution of
512  * A or B in order to have better RX reliability and avoid overruns.
513  * C, just like A and B, must have exclusive access to the chip and
514  * each of them must lock against any other concurrent access.
515  * Unfortunately this is not possible to have C suspend execution of A or
516  * B taking place on another CPU. On UP this is no an issue since A and B
517  * are run from softirq context and C from hard IRQ context, and there is
518  * no other CPU where concurrent access can happen.
519  * If ever there is a way to force at least B and C to always be executed
520  * on the same CPU then we could use read/write locks to protect against
521  * any other concurrent access and C would always interrupt B. But life
522  * isn't that easy in a SMP world...
523  */
524 #define smc_special_trylock(lock, flags)				\
525 ({									\
526 	int __ret;							\
527 	local_irq_save(flags);						\
528 	__ret = spin_trylock(lock);					\
529 	if (!__ret)							\
530 		local_irq_restore(flags);				\
531 	__ret;								\
532 })
533 #define smc_special_lock(lock, flags)		spin_lock_irqsave(lock, flags)
534 #define smc_special_unlock(lock, flags) 	spin_unlock_irqrestore(lock, flags)
535 #else
536 #define smc_special_trylock(lock, flags)	(flags == flags)
537 #define smc_special_lock(lock, flags)   	do { flags = 0; } while (0)
538 #define smc_special_unlock(lock, flags)	do { flags = 0; } while (0)
539 #endif
540 
541 /*
542  * This is called to actually send a packet to the chip.
543  */
544 static void smc_hardware_send_pkt(unsigned long data)
545 {
546 	struct net_device *dev = (struct net_device *)data;
547 	struct smc_local *lp = netdev_priv(dev);
548 	void __iomem *ioaddr = lp->base;
549 	struct sk_buff *skb;
550 	unsigned int packet_no, len;
551 	unsigned char *buf;
552 	unsigned long flags;
553 
554 	DBG(3, "%s: %s\n", dev->name, __func__);
555 
556 	if (!smc_special_trylock(&lp->lock, flags)) {
557 		netif_stop_queue(dev);
558 		tasklet_schedule(&lp->tx_task);
559 		return;
560 	}
561 
562 	skb = lp->pending_tx_skb;
563 	if (unlikely(!skb)) {
564 		smc_special_unlock(&lp->lock, flags);
565 		return;
566 	}
567 	lp->pending_tx_skb = NULL;
568 
569 	packet_no = SMC_GET_AR(lp);
570 	if (unlikely(packet_no & AR_FAILED)) {
571 		printk("%s: Memory allocation failed.\n", dev->name);
572 		dev->stats.tx_errors++;
573 		dev->stats.tx_fifo_errors++;
574 		smc_special_unlock(&lp->lock, flags);
575 		goto done;
576 	}
577 
578 	/* point to the beginning of the packet */
579 	SMC_SET_PN(lp, packet_no);
580 	SMC_SET_PTR(lp, PTR_AUTOINC);
581 
582 	buf = skb->data;
583 	len = skb->len;
584 	DBG(2, "%s: TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
585 		dev->name, packet_no, len, len, buf);
586 	PRINT_PKT(buf, len);
587 
588 	/*
589 	 * Send the packet length (+6 for status words, length, and ctl.
590 	 * The card will pad to 64 bytes with zeroes if packet is too small.
591 	 */
592 	SMC_PUT_PKT_HDR(lp, 0, len + 6);
593 
594 	/* send the actual data */
595 	SMC_PUSH_DATA(lp, buf, len & ~1);
596 
597 	/* Send final ctl word with the last byte if there is one */
598 	SMC_outw(((len & 1) ? (0x2000 | buf[len-1]) : 0), ioaddr, DATA_REG(lp));
599 
600 	/*
601 	 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
602 	 * have the effect of having at most one packet queued for TX
603 	 * in the chip's memory at all time.
604 	 *
605 	 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
606 	 * when memory allocation (MC_ALLOC) does not succeed right away.
607 	 */
608 	if (THROTTLE_TX_PKTS)
609 		netif_stop_queue(dev);
610 
611 	/* queue the packet for TX */
612 	SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
613 	smc_special_unlock(&lp->lock, flags);
614 
615 	dev->trans_start = jiffies;
616 	dev->stats.tx_packets++;
617 	dev->stats.tx_bytes += len;
618 
619 	SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
620 
621 done:	if (!THROTTLE_TX_PKTS)
622 		netif_wake_queue(dev);
623 
624 	dev_kfree_skb(skb);
625 }
626 
627 /*
628  * Since I am not sure if I will have enough room in the chip's ram
629  * to store the packet, I call this routine which either sends it
630  * now, or set the card to generates an interrupt when ready
631  * for the packet.
632  */
633 static int smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
634 {
635 	struct smc_local *lp = netdev_priv(dev);
636 	void __iomem *ioaddr = lp->base;
637 	unsigned int numPages, poll_count, status;
638 	unsigned long flags;
639 
640 	DBG(3, "%s: %s\n", dev->name, __func__);
641 
642 	BUG_ON(lp->pending_tx_skb != NULL);
643 
644 	/*
645 	 * The MMU wants the number of pages to be the number of 256 bytes
646 	 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
647 	 *
648 	 * The 91C111 ignores the size bits, but earlier models don't.
649 	 *
650 	 * Pkt size for allocating is data length +6 (for additional status
651 	 * words, length and ctl)
652 	 *
653 	 * If odd size then last byte is included in ctl word.
654 	 */
655 	numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
656 	if (unlikely(numPages > 7)) {
657 		printk("%s: Far too big packet error.\n", dev->name);
658 		dev->stats.tx_errors++;
659 		dev->stats.tx_dropped++;
660 		dev_kfree_skb(skb);
661 		return NETDEV_TX_OK;
662 	}
663 
664 	smc_special_lock(&lp->lock, flags);
665 
666 	/* now, try to allocate the memory */
667 	SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
668 
669 	/*
670 	 * Poll the chip for a short amount of time in case the
671 	 * allocation succeeds quickly.
672 	 */
673 	poll_count = MEMORY_WAIT_TIME;
674 	do {
675 		status = SMC_GET_INT(lp);
676 		if (status & IM_ALLOC_INT) {
677 			SMC_ACK_INT(lp, IM_ALLOC_INT);
678   			break;
679 		}
680    	} while (--poll_count);
681 
682 	smc_special_unlock(&lp->lock, flags);
683 
684 	lp->pending_tx_skb = skb;
685    	if (!poll_count) {
686 		/* oh well, wait until the chip finds memory later */
687 		netif_stop_queue(dev);
688 		DBG(2, "%s: TX memory allocation deferred.\n", dev->name);
689 		SMC_ENABLE_INT(lp, IM_ALLOC_INT);
690    	} else {
691 		/*
692 		 * Allocation succeeded: push packet to the chip's own memory
693 		 * immediately.
694 		 */
695 		smc_hardware_send_pkt((unsigned long)dev);
696 	}
697 
698 	return NETDEV_TX_OK;
699 }
700 
701 /*
702  * This handles a TX interrupt, which is only called when:
703  * - a TX error occurred, or
704  * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
705  */
706 static void smc_tx(struct net_device *dev)
707 {
708 	struct smc_local *lp = netdev_priv(dev);
709 	void __iomem *ioaddr = lp->base;
710 	unsigned int saved_packet, packet_no, tx_status, pkt_len;
711 
712 	DBG(3, "%s: %s\n", dev->name, __func__);
713 
714 	/* If the TX FIFO is empty then nothing to do */
715 	packet_no = SMC_GET_TXFIFO(lp);
716 	if (unlikely(packet_no & TXFIFO_TEMPTY)) {
717 		PRINTK("%s: smc_tx with nothing on FIFO.\n", dev->name);
718 		return;
719 	}
720 
721 	/* select packet to read from */
722 	saved_packet = SMC_GET_PN(lp);
723 	SMC_SET_PN(lp, packet_no);
724 
725 	/* read the first word (status word) from this packet */
726 	SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
727 	SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
728 	DBG(2, "%s: TX STATUS 0x%04x PNR 0x%02x\n",
729 		dev->name, tx_status, packet_no);
730 
731 	if (!(tx_status & ES_TX_SUC))
732 		dev->stats.tx_errors++;
733 
734 	if (tx_status & ES_LOSTCARR)
735 		dev->stats.tx_carrier_errors++;
736 
737 	if (tx_status & (ES_LATCOL | ES_16COL)) {
738 		PRINTK("%s: %s occurred on last xmit\n", dev->name,
739 		       (tx_status & ES_LATCOL) ?
740 			"late collision" : "too many collisions");
741 		dev->stats.tx_window_errors++;
742 		if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
743 			printk(KERN_INFO "%s: unexpectedly large number of "
744 			       "bad collisions. Please check duplex "
745 			       "setting.\n", dev->name);
746 		}
747 	}
748 
749 	/* kill the packet */
750 	SMC_WAIT_MMU_BUSY(lp);
751 	SMC_SET_MMU_CMD(lp, MC_FREEPKT);
752 
753 	/* Don't restore Packet Number Reg until busy bit is cleared */
754 	SMC_WAIT_MMU_BUSY(lp);
755 	SMC_SET_PN(lp, saved_packet);
756 
757 	/* re-enable transmit */
758 	SMC_SELECT_BANK(lp, 0);
759 	SMC_SET_TCR(lp, lp->tcr_cur_mode);
760 	SMC_SELECT_BANK(lp, 2);
761 }
762 
763 
764 /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
765 
766 static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
767 {
768 	struct smc_local *lp = netdev_priv(dev);
769 	void __iomem *ioaddr = lp->base;
770 	unsigned int mii_reg, mask;
771 
772 	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
773 	mii_reg |= MII_MDOE;
774 
775 	for (mask = 1 << (bits - 1); mask; mask >>= 1) {
776 		if (val & mask)
777 			mii_reg |= MII_MDO;
778 		else
779 			mii_reg &= ~MII_MDO;
780 
781 		SMC_SET_MII(lp, mii_reg);
782 		udelay(MII_DELAY);
783 		SMC_SET_MII(lp, mii_reg | MII_MCLK);
784 		udelay(MII_DELAY);
785 	}
786 }
787 
788 static unsigned int smc_mii_in(struct net_device *dev, int bits)
789 {
790 	struct smc_local *lp = netdev_priv(dev);
791 	void __iomem *ioaddr = lp->base;
792 	unsigned int mii_reg, mask, val;
793 
794 	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
795 	SMC_SET_MII(lp, mii_reg);
796 
797 	for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
798 		if (SMC_GET_MII(lp) & MII_MDI)
799 			val |= mask;
800 
801 		SMC_SET_MII(lp, mii_reg);
802 		udelay(MII_DELAY);
803 		SMC_SET_MII(lp, mii_reg | MII_MCLK);
804 		udelay(MII_DELAY);
805 	}
806 
807 	return val;
808 }
809 
810 /*
811  * Reads a register from the MII Management serial interface
812  */
813 static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
814 {
815 	struct smc_local *lp = netdev_priv(dev);
816 	void __iomem *ioaddr = lp->base;
817 	unsigned int phydata;
818 
819 	SMC_SELECT_BANK(lp, 3);
820 
821 	/* Idle - 32 ones */
822 	smc_mii_out(dev, 0xffffffff, 32);
823 
824 	/* Start code (01) + read (10) + phyaddr + phyreg */
825 	smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
826 
827 	/* Turnaround (2bits) + phydata */
828 	phydata = smc_mii_in(dev, 18);
829 
830 	/* Return to idle state */
831 	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
832 
833 	DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
834 		__func__, phyaddr, phyreg, phydata);
835 
836 	SMC_SELECT_BANK(lp, 2);
837 	return phydata;
838 }
839 
840 /*
841  * Writes a register to the MII Management serial interface
842  */
843 static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
844 			  int phydata)
845 {
846 	struct smc_local *lp = netdev_priv(dev);
847 	void __iomem *ioaddr = lp->base;
848 
849 	SMC_SELECT_BANK(lp, 3);
850 
851 	/* Idle - 32 ones */
852 	smc_mii_out(dev, 0xffffffff, 32);
853 
854 	/* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
855 	smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
856 
857 	/* Return to idle state */
858 	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
859 
860 	DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
861 		__func__, phyaddr, phyreg, phydata);
862 
863 	SMC_SELECT_BANK(lp, 2);
864 }
865 
866 /*
867  * Finds and reports the PHY address
868  */
869 static void smc_phy_detect(struct net_device *dev)
870 {
871 	struct smc_local *lp = netdev_priv(dev);
872 	int phyaddr;
873 
874 	DBG(2, "%s: %s\n", dev->name, __func__);
875 
876 	lp->phy_type = 0;
877 
878 	/*
879 	 * Scan all 32 PHY addresses if necessary, starting at
880 	 * PHY#1 to PHY#31, and then PHY#0 last.
881 	 */
882 	for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
883 		unsigned int id1, id2;
884 
885 		/* Read the PHY identifiers */
886 		id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
887 		id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
888 
889 		DBG(3, "%s: phy_id1=0x%x, phy_id2=0x%x\n",
890 			dev->name, id1, id2);
891 
892 		/* Make sure it is a valid identifier */
893 		if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
894 		    id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
895 			/* Save the PHY's address */
896 			lp->mii.phy_id = phyaddr & 31;
897 			lp->phy_type = id1 << 16 | id2;
898 			break;
899 		}
900 	}
901 }
902 
903 /*
904  * Sets the PHY to a configuration as determined by the user
905  */
906 static int smc_phy_fixed(struct net_device *dev)
907 {
908 	struct smc_local *lp = netdev_priv(dev);
909 	void __iomem *ioaddr = lp->base;
910 	int phyaddr = lp->mii.phy_id;
911 	int bmcr, cfg1;
912 
913 	DBG(3, "%s: %s\n", dev->name, __func__);
914 
915 	/* Enter Link Disable state */
916 	cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
917 	cfg1 |= PHY_CFG1_LNKDIS;
918 	smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
919 
920 	/*
921 	 * Set our fixed capabilities
922 	 * Disable auto-negotiation
923 	 */
924 	bmcr = 0;
925 
926 	if (lp->ctl_rfduplx)
927 		bmcr |= BMCR_FULLDPLX;
928 
929 	if (lp->ctl_rspeed == 100)
930 		bmcr |= BMCR_SPEED100;
931 
932 	/* Write our capabilities to the phy control register */
933 	smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
934 
935 	/* Re-Configure the Receive/Phy Control register */
936 	SMC_SELECT_BANK(lp, 0);
937 	SMC_SET_RPC(lp, lp->rpc_cur_mode);
938 	SMC_SELECT_BANK(lp, 2);
939 
940 	return 1;
941 }
942 
943 /**
944  * smc_phy_reset - reset the phy
945  * @dev: net device
946  * @phy: phy address
947  *
948  * Issue a software reset for the specified PHY and
949  * wait up to 100ms for the reset to complete.  We should
950  * not access the PHY for 50ms after issuing the reset.
951  *
952  * The time to wait appears to be dependent on the PHY.
953  *
954  * Must be called with lp->lock locked.
955  */
956 static int smc_phy_reset(struct net_device *dev, int phy)
957 {
958 	struct smc_local *lp = netdev_priv(dev);
959 	unsigned int bmcr;
960 	int timeout;
961 
962 	smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
963 
964 	for (timeout = 2; timeout; timeout--) {
965 		spin_unlock_irq(&lp->lock);
966 		msleep(50);
967 		spin_lock_irq(&lp->lock);
968 
969 		bmcr = smc_phy_read(dev, phy, MII_BMCR);
970 		if (!(bmcr & BMCR_RESET))
971 			break;
972 	}
973 
974 	return bmcr & BMCR_RESET;
975 }
976 
977 /**
978  * smc_phy_powerdown - powerdown phy
979  * @dev: net device
980  *
981  * Power down the specified PHY
982  */
983 static void smc_phy_powerdown(struct net_device *dev)
984 {
985 	struct smc_local *lp = netdev_priv(dev);
986 	unsigned int bmcr;
987 	int phy = lp->mii.phy_id;
988 
989 	if (lp->phy_type == 0)
990 		return;
991 
992 	/* We need to ensure that no calls to smc_phy_configure are
993 	   pending.
994 	*/
995 	cancel_work_sync(&lp->phy_configure);
996 
997 	bmcr = smc_phy_read(dev, phy, MII_BMCR);
998 	smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
999 }
1000 
1001 /**
1002  * smc_phy_check_media - check the media status and adjust TCR
1003  * @dev: net device
1004  * @init: set true for initialisation
1005  *
1006  * Select duplex mode depending on negotiation state.  This
1007  * also updates our carrier state.
1008  */
1009 static void smc_phy_check_media(struct net_device *dev, int init)
1010 {
1011 	struct smc_local *lp = netdev_priv(dev);
1012 	void __iomem *ioaddr = lp->base;
1013 
1014 	if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1015 		/* duplex state has changed */
1016 		if (lp->mii.full_duplex) {
1017 			lp->tcr_cur_mode |= TCR_SWFDUP;
1018 		} else {
1019 			lp->tcr_cur_mode &= ~TCR_SWFDUP;
1020 		}
1021 
1022 		SMC_SELECT_BANK(lp, 0);
1023 		SMC_SET_TCR(lp, lp->tcr_cur_mode);
1024 	}
1025 }
1026 
1027 /*
1028  * Configures the specified PHY through the MII management interface
1029  * using Autonegotiation.
1030  * Calls smc_phy_fixed() if the user has requested a certain config.
1031  * If RPC ANEG bit is set, the media selection is dependent purely on
1032  * the selection by the MII (either in the MII BMCR reg or the result
1033  * of autonegotiation.)  If the RPC ANEG bit is cleared, the selection
1034  * is controlled by the RPC SPEED and RPC DPLX bits.
1035  */
1036 static void smc_phy_configure(struct work_struct *work)
1037 {
1038 	struct smc_local *lp =
1039 		container_of(work, struct smc_local, phy_configure);
1040 	struct net_device *dev = lp->dev;
1041 	void __iomem *ioaddr = lp->base;
1042 	int phyaddr = lp->mii.phy_id;
1043 	int my_phy_caps; /* My PHY capabilities */
1044 	int my_ad_caps; /* My Advertised capabilities */
1045 	int status;
1046 
1047 	DBG(3, "%s:smc_program_phy()\n", dev->name);
1048 
1049 	spin_lock_irq(&lp->lock);
1050 
1051 	/*
1052 	 * We should not be called if phy_type is zero.
1053 	 */
1054 	if (lp->phy_type == 0)
1055 		goto smc_phy_configure_exit;
1056 
1057 	if (smc_phy_reset(dev, phyaddr)) {
1058 		printk("%s: PHY reset timed out\n", dev->name);
1059 		goto smc_phy_configure_exit;
1060 	}
1061 
1062 	/*
1063 	 * Enable PHY Interrupts (for register 18)
1064 	 * Interrupts listed here are disabled
1065 	 */
1066 	smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1067 		PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1068 		PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1069 		PHY_INT_SPDDET | PHY_INT_DPLXDET);
1070 
1071 	/* Configure the Receive/Phy Control register */
1072 	SMC_SELECT_BANK(lp, 0);
1073 	SMC_SET_RPC(lp, lp->rpc_cur_mode);
1074 
1075 	/* If the user requested no auto neg, then go set his request */
1076 	if (lp->mii.force_media) {
1077 		smc_phy_fixed(dev);
1078 		goto smc_phy_configure_exit;
1079 	}
1080 
1081 	/* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1082 	my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1083 
1084 	if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1085 		printk(KERN_INFO "Auto negotiation NOT supported\n");
1086 		smc_phy_fixed(dev);
1087 		goto smc_phy_configure_exit;
1088 	}
1089 
1090 	my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1091 
1092 	if (my_phy_caps & BMSR_100BASE4)
1093 		my_ad_caps |= ADVERTISE_100BASE4;
1094 	if (my_phy_caps & BMSR_100FULL)
1095 		my_ad_caps |= ADVERTISE_100FULL;
1096 	if (my_phy_caps & BMSR_100HALF)
1097 		my_ad_caps |= ADVERTISE_100HALF;
1098 	if (my_phy_caps & BMSR_10FULL)
1099 		my_ad_caps |= ADVERTISE_10FULL;
1100 	if (my_phy_caps & BMSR_10HALF)
1101 		my_ad_caps |= ADVERTISE_10HALF;
1102 
1103 	/* Disable capabilities not selected by our user */
1104 	if (lp->ctl_rspeed != 100)
1105 		my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1106 
1107 	if (!lp->ctl_rfduplx)
1108 		my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1109 
1110 	/* Update our Auto-Neg Advertisement Register */
1111 	smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1112 	lp->mii.advertising = my_ad_caps;
1113 
1114 	/*
1115 	 * Read the register back.  Without this, it appears that when
1116 	 * auto-negotiation is restarted, sometimes it isn't ready and
1117 	 * the link does not come up.
1118 	 */
1119 	status = smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1120 
1121 	DBG(2, "%s: phy caps=%x\n", dev->name, my_phy_caps);
1122 	DBG(2, "%s: phy advertised caps=%x\n", dev->name, my_ad_caps);
1123 
1124 	/* Restart auto-negotiation process in order to advertise my caps */
1125 	smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1126 
1127 	smc_phy_check_media(dev, 1);
1128 
1129 smc_phy_configure_exit:
1130 	SMC_SELECT_BANK(lp, 2);
1131 	spin_unlock_irq(&lp->lock);
1132 }
1133 
1134 /*
1135  * smc_phy_interrupt
1136  *
1137  * Purpose:  Handle interrupts relating to PHY register 18. This is
1138  *  called from the "hard" interrupt handler under our private spinlock.
1139  */
1140 static void smc_phy_interrupt(struct net_device *dev)
1141 {
1142 	struct smc_local *lp = netdev_priv(dev);
1143 	int phyaddr = lp->mii.phy_id;
1144 	int phy18;
1145 
1146 	DBG(2, "%s: %s\n", dev->name, __func__);
1147 
1148 	if (lp->phy_type == 0)
1149 		return;
1150 
1151 	for(;;) {
1152 		smc_phy_check_media(dev, 0);
1153 
1154 		/* Read PHY Register 18, Status Output */
1155 		phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1156 		if ((phy18 & PHY_INT_INT) == 0)
1157 			break;
1158 	}
1159 }
1160 
1161 /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1162 
1163 static void smc_10bt_check_media(struct net_device *dev, int init)
1164 {
1165 	struct smc_local *lp = netdev_priv(dev);
1166 	void __iomem *ioaddr = lp->base;
1167 	unsigned int old_carrier, new_carrier;
1168 
1169 	old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1170 
1171 	SMC_SELECT_BANK(lp, 0);
1172 	new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1173 	SMC_SELECT_BANK(lp, 2);
1174 
1175 	if (init || (old_carrier != new_carrier)) {
1176 		if (!new_carrier) {
1177 			netif_carrier_off(dev);
1178 		} else {
1179 			netif_carrier_on(dev);
1180 		}
1181 		if (netif_msg_link(lp))
1182 			printk(KERN_INFO "%s: link %s\n", dev->name,
1183 			       new_carrier ? "up" : "down");
1184 	}
1185 }
1186 
1187 static void smc_eph_interrupt(struct net_device *dev)
1188 {
1189 	struct smc_local *lp = netdev_priv(dev);
1190 	void __iomem *ioaddr = lp->base;
1191 	unsigned int ctl;
1192 
1193 	smc_10bt_check_media(dev, 0);
1194 
1195 	SMC_SELECT_BANK(lp, 1);
1196 	ctl = SMC_GET_CTL(lp);
1197 	SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1198 	SMC_SET_CTL(lp, ctl);
1199 	SMC_SELECT_BANK(lp, 2);
1200 }
1201 
1202 /*
1203  * This is the main routine of the driver, to handle the device when
1204  * it needs some attention.
1205  */
1206 static irqreturn_t smc_interrupt(int irq, void *dev_id)
1207 {
1208 	struct net_device *dev = dev_id;
1209 	struct smc_local *lp = netdev_priv(dev);
1210 	void __iomem *ioaddr = lp->base;
1211 	int status, mask, timeout, card_stats;
1212 	int saved_pointer;
1213 
1214 	DBG(3, "%s: %s\n", dev->name, __func__);
1215 
1216 	spin_lock(&lp->lock);
1217 
1218 	/* A preamble may be used when there is a potential race
1219 	 * between the interruptible transmit functions and this
1220 	 * ISR. */
1221 	SMC_INTERRUPT_PREAMBLE;
1222 
1223 	saved_pointer = SMC_GET_PTR(lp);
1224 	mask = SMC_GET_INT_MASK(lp);
1225 	SMC_SET_INT_MASK(lp, 0);
1226 
1227 	/* set a timeout value, so I don't stay here forever */
1228 	timeout = MAX_IRQ_LOOPS;
1229 
1230 	do {
1231 		status = SMC_GET_INT(lp);
1232 
1233 		DBG(2, "%s: INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1234 			dev->name, status, mask,
1235 			({ int meminfo; SMC_SELECT_BANK(lp, 0);
1236 			   meminfo = SMC_GET_MIR(lp);
1237 			   SMC_SELECT_BANK(lp, 2); meminfo; }),
1238 			SMC_GET_FIFO(lp));
1239 
1240 		status &= mask;
1241 		if (!status)
1242 			break;
1243 
1244 		if (status & IM_TX_INT) {
1245 			/* do this before RX as it will free memory quickly */
1246 			DBG(3, "%s: TX int\n", dev->name);
1247 			smc_tx(dev);
1248 			SMC_ACK_INT(lp, IM_TX_INT);
1249 			if (THROTTLE_TX_PKTS)
1250 				netif_wake_queue(dev);
1251 		} else if (status & IM_RCV_INT) {
1252 			DBG(3, "%s: RX irq\n", dev->name);
1253 			smc_rcv(dev);
1254 		} else if (status & IM_ALLOC_INT) {
1255 			DBG(3, "%s: Allocation irq\n", dev->name);
1256 			tasklet_hi_schedule(&lp->tx_task);
1257 			mask &= ~IM_ALLOC_INT;
1258 		} else if (status & IM_TX_EMPTY_INT) {
1259 			DBG(3, "%s: TX empty\n", dev->name);
1260 			mask &= ~IM_TX_EMPTY_INT;
1261 
1262 			/* update stats */
1263 			SMC_SELECT_BANK(lp, 0);
1264 			card_stats = SMC_GET_COUNTER(lp);
1265 			SMC_SELECT_BANK(lp, 2);
1266 
1267 			/* single collisions */
1268 			dev->stats.collisions += card_stats & 0xF;
1269 			card_stats >>= 4;
1270 
1271 			/* multiple collisions */
1272 			dev->stats.collisions += card_stats & 0xF;
1273 		} else if (status & IM_RX_OVRN_INT) {
1274 			DBG(1, "%s: RX overrun (EPH_ST 0x%04x)\n", dev->name,
1275 			       ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1276 				  eph_st = SMC_GET_EPH_STATUS(lp);
1277 				  SMC_SELECT_BANK(lp, 2); eph_st; }));
1278 			SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1279 			dev->stats.rx_errors++;
1280 			dev->stats.rx_fifo_errors++;
1281 		} else if (status & IM_EPH_INT) {
1282 			smc_eph_interrupt(dev);
1283 		} else if (status & IM_MDINT) {
1284 			SMC_ACK_INT(lp, IM_MDINT);
1285 			smc_phy_interrupt(dev);
1286 		} else if (status & IM_ERCV_INT) {
1287 			SMC_ACK_INT(lp, IM_ERCV_INT);
1288 			PRINTK("%s: UNSUPPORTED: ERCV INTERRUPT\n", dev->name);
1289 		}
1290 	} while (--timeout);
1291 
1292 	/* restore register states */
1293 	SMC_SET_PTR(lp, saved_pointer);
1294 	SMC_SET_INT_MASK(lp, mask);
1295 	spin_unlock(&lp->lock);
1296 
1297 #ifndef CONFIG_NET_POLL_CONTROLLER
1298 	if (timeout == MAX_IRQ_LOOPS)
1299 		PRINTK("%s: spurious interrupt (mask = 0x%02x)\n",
1300 		       dev->name, mask);
1301 #endif
1302 	DBG(3, "%s: Interrupt done (%d loops)\n",
1303 	       dev->name, MAX_IRQ_LOOPS - timeout);
1304 
1305 	/*
1306 	 * We return IRQ_HANDLED unconditionally here even if there was
1307 	 * nothing to do.  There is a possibility that a packet might
1308 	 * get enqueued into the chip right after TX_EMPTY_INT is raised
1309 	 * but just before the CPU acknowledges the IRQ.
1310 	 * Better take an unneeded IRQ in some occasions than complexifying
1311 	 * the code for all cases.
1312 	 */
1313 	return IRQ_HANDLED;
1314 }
1315 
1316 #ifdef CONFIG_NET_POLL_CONTROLLER
1317 /*
1318  * Polling receive - used by netconsole and other diagnostic tools
1319  * to allow network i/o with interrupts disabled.
1320  */
1321 static void smc_poll_controller(struct net_device *dev)
1322 {
1323 	disable_irq(dev->irq);
1324 	smc_interrupt(dev->irq, dev);
1325 	enable_irq(dev->irq);
1326 }
1327 #endif
1328 
1329 /* Our watchdog timed out. Called by the networking layer */
1330 static void smc_timeout(struct net_device *dev)
1331 {
1332 	struct smc_local *lp = netdev_priv(dev);
1333 	void __iomem *ioaddr = lp->base;
1334 	int status, mask, eph_st, meminfo, fifo;
1335 
1336 	DBG(2, "%s: %s\n", dev->name, __func__);
1337 
1338 	spin_lock_irq(&lp->lock);
1339 	status = SMC_GET_INT(lp);
1340 	mask = SMC_GET_INT_MASK(lp);
1341 	fifo = SMC_GET_FIFO(lp);
1342 	SMC_SELECT_BANK(lp, 0);
1343 	eph_st = SMC_GET_EPH_STATUS(lp);
1344 	meminfo = SMC_GET_MIR(lp);
1345 	SMC_SELECT_BANK(lp, 2);
1346 	spin_unlock_irq(&lp->lock);
1347 	PRINTK( "%s: TX timeout (INT 0x%02x INTMASK 0x%02x "
1348 		"MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1349 		dev->name, status, mask, meminfo, fifo, eph_st );
1350 
1351 	smc_reset(dev);
1352 	smc_enable(dev);
1353 
1354 	/*
1355 	 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1356 	 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1357 	 * which calls schedule().  Hence we use a work queue.
1358 	 */
1359 	if (lp->phy_type != 0)
1360 		schedule_work(&lp->phy_configure);
1361 
1362 	/* We can accept TX packets again */
1363 	dev->trans_start = jiffies; /* prevent tx timeout */
1364 	netif_wake_queue(dev);
1365 }
1366 
1367 /*
1368  * This routine will, depending on the values passed to it,
1369  * either make it accept multicast packets, go into
1370  * promiscuous mode (for TCPDUMP and cousins) or accept
1371  * a select set of multicast packets
1372  */
1373 static void smc_set_multicast_list(struct net_device *dev)
1374 {
1375 	struct smc_local *lp = netdev_priv(dev);
1376 	void __iomem *ioaddr = lp->base;
1377 	unsigned char multicast_table[8];
1378 	int update_multicast = 0;
1379 
1380 	DBG(2, "%s: %s\n", dev->name, __func__);
1381 
1382 	if (dev->flags & IFF_PROMISC) {
1383 		DBG(2, "%s: RCR_PRMS\n", dev->name);
1384 		lp->rcr_cur_mode |= RCR_PRMS;
1385 	}
1386 
1387 /* BUG?  I never disable promiscuous mode if multicasting was turned on.
1388    Now, I turn off promiscuous mode, but I don't do anything to multicasting
1389    when promiscuous mode is turned on.
1390 */
1391 
1392 	/*
1393 	 * Here, I am setting this to accept all multicast packets.
1394 	 * I don't need to zero the multicast table, because the flag is
1395 	 * checked before the table is
1396 	 */
1397 	else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1398 		DBG(2, "%s: RCR_ALMUL\n", dev->name);
1399 		lp->rcr_cur_mode |= RCR_ALMUL;
1400 	}
1401 
1402 	/*
1403 	 * This sets the internal hardware table to filter out unwanted
1404 	 * multicast packets before they take up memory.
1405 	 *
1406 	 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1407 	 * address are the offset into the table.  If that bit is 1, then the
1408 	 * multicast packet is accepted.  Otherwise, it's dropped silently.
1409 	 *
1410 	 * To use the 6 bits as an offset into the table, the high 3 bits are
1411 	 * the number of the 8 bit register, while the low 3 bits are the bit
1412 	 * within that register.
1413 	 */
1414 	else if (!netdev_mc_empty(dev)) {
1415 		struct netdev_hw_addr *ha;
1416 
1417 		/* table for flipping the order of 3 bits */
1418 		static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1419 
1420 		/* start with a table of all zeros: reject all */
1421 		memset(multicast_table, 0, sizeof(multicast_table));
1422 
1423 		netdev_for_each_mc_addr(ha, dev) {
1424 			int position;
1425 
1426 			/* only use the low order bits */
1427 			position = crc32_le(~0, ha->addr, 6) & 0x3f;
1428 
1429 			/* do some messy swapping to put the bit in the right spot */
1430 			multicast_table[invert3[position&7]] |=
1431 				(1<<invert3[(position>>3)&7]);
1432 		}
1433 
1434 		/* be sure I get rid of flags I might have set */
1435 		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1436 
1437 		/* now, the table can be loaded into the chipset */
1438 		update_multicast = 1;
1439 	} else  {
1440 		DBG(2, "%s: ~(RCR_PRMS|RCR_ALMUL)\n", dev->name);
1441 		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1442 
1443 		/*
1444 		 * since I'm disabling all multicast entirely, I need to
1445 		 * clear the multicast list
1446 		 */
1447 		memset(multicast_table, 0, sizeof(multicast_table));
1448 		update_multicast = 1;
1449 	}
1450 
1451 	spin_lock_irq(&lp->lock);
1452 	SMC_SELECT_BANK(lp, 0);
1453 	SMC_SET_RCR(lp, lp->rcr_cur_mode);
1454 	if (update_multicast) {
1455 		SMC_SELECT_BANK(lp, 3);
1456 		SMC_SET_MCAST(lp, multicast_table);
1457 	}
1458 	SMC_SELECT_BANK(lp, 2);
1459 	spin_unlock_irq(&lp->lock);
1460 }
1461 
1462 
1463 /*
1464  * Open and Initialize the board
1465  *
1466  * Set up everything, reset the card, etc..
1467  */
1468 static int
1469 smc_open(struct net_device *dev)
1470 {
1471 	struct smc_local *lp = netdev_priv(dev);
1472 
1473 	DBG(2, "%s: %s\n", dev->name, __func__);
1474 
1475 	/* Setup the default Register Modes */
1476 	lp->tcr_cur_mode = TCR_DEFAULT;
1477 	lp->rcr_cur_mode = RCR_DEFAULT;
1478 	lp->rpc_cur_mode = RPC_DEFAULT |
1479 				lp->cfg.leda << RPC_LSXA_SHFT |
1480 				lp->cfg.ledb << RPC_LSXB_SHFT;
1481 
1482 	/*
1483 	 * If we are not using a MII interface, we need to
1484 	 * monitor our own carrier signal to detect faults.
1485 	 */
1486 	if (lp->phy_type == 0)
1487 		lp->tcr_cur_mode |= TCR_MON_CSN;
1488 
1489 	/* reset the hardware */
1490 	smc_reset(dev);
1491 	smc_enable(dev);
1492 
1493 	/* Configure the PHY, initialize the link state */
1494 	if (lp->phy_type != 0)
1495 		smc_phy_configure(&lp->phy_configure);
1496 	else {
1497 		spin_lock_irq(&lp->lock);
1498 		smc_10bt_check_media(dev, 1);
1499 		spin_unlock_irq(&lp->lock);
1500 	}
1501 
1502 	netif_start_queue(dev);
1503 	return 0;
1504 }
1505 
1506 /*
1507  * smc_close
1508  *
1509  * this makes the board clean up everything that it can
1510  * and not talk to the outside world.   Caused by
1511  * an 'ifconfig ethX down'
1512  */
1513 static int smc_close(struct net_device *dev)
1514 {
1515 	struct smc_local *lp = netdev_priv(dev);
1516 
1517 	DBG(2, "%s: %s\n", dev->name, __func__);
1518 
1519 	netif_stop_queue(dev);
1520 	netif_carrier_off(dev);
1521 
1522 	/* clear everything */
1523 	smc_shutdown(dev);
1524 	tasklet_kill(&lp->tx_task);
1525 	smc_phy_powerdown(dev);
1526 	return 0;
1527 }
1528 
1529 /*
1530  * Ethtool support
1531  */
1532 static int
1533 smc_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1534 {
1535 	struct smc_local *lp = netdev_priv(dev);
1536 	int ret;
1537 
1538 	cmd->maxtxpkt = 1;
1539 	cmd->maxrxpkt = 1;
1540 
1541 	if (lp->phy_type != 0) {
1542 		spin_lock_irq(&lp->lock);
1543 		ret = mii_ethtool_gset(&lp->mii, cmd);
1544 		spin_unlock_irq(&lp->lock);
1545 	} else {
1546 		cmd->supported = SUPPORTED_10baseT_Half |
1547 				 SUPPORTED_10baseT_Full |
1548 				 SUPPORTED_TP | SUPPORTED_AUI;
1549 
1550 		if (lp->ctl_rspeed == 10)
1551 			ethtool_cmd_speed_set(cmd, SPEED_10);
1552 		else if (lp->ctl_rspeed == 100)
1553 			ethtool_cmd_speed_set(cmd, SPEED_100);
1554 
1555 		cmd->autoneg = AUTONEG_DISABLE;
1556 		cmd->transceiver = XCVR_INTERNAL;
1557 		cmd->port = 0;
1558 		cmd->duplex = lp->tcr_cur_mode & TCR_SWFDUP ? DUPLEX_FULL : DUPLEX_HALF;
1559 
1560 		ret = 0;
1561 	}
1562 
1563 	return ret;
1564 }
1565 
1566 static int
1567 smc_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1568 {
1569 	struct smc_local *lp = netdev_priv(dev);
1570 	int ret;
1571 
1572 	if (lp->phy_type != 0) {
1573 		spin_lock_irq(&lp->lock);
1574 		ret = mii_ethtool_sset(&lp->mii, cmd);
1575 		spin_unlock_irq(&lp->lock);
1576 	} else {
1577 		if (cmd->autoneg != AUTONEG_DISABLE ||
1578 		    cmd->speed != SPEED_10 ||
1579 		    (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) ||
1580 		    (cmd->port != PORT_TP && cmd->port != PORT_AUI))
1581 			return -EINVAL;
1582 
1583 //		lp->port = cmd->port;
1584 		lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL;
1585 
1586 //		if (netif_running(dev))
1587 //			smc_set_port(dev);
1588 
1589 		ret = 0;
1590 	}
1591 
1592 	return ret;
1593 }
1594 
1595 static void
1596 smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1597 {
1598 	strlcpy(info->driver, CARDNAME, sizeof(info->driver));
1599 	strlcpy(info->version, version, sizeof(info->version));
1600 	strlcpy(info->bus_info, dev_name(dev->dev.parent),
1601 		sizeof(info->bus_info));
1602 }
1603 
1604 static int smc_ethtool_nwayreset(struct net_device *dev)
1605 {
1606 	struct smc_local *lp = netdev_priv(dev);
1607 	int ret = -EINVAL;
1608 
1609 	if (lp->phy_type != 0) {
1610 		spin_lock_irq(&lp->lock);
1611 		ret = mii_nway_restart(&lp->mii);
1612 		spin_unlock_irq(&lp->lock);
1613 	}
1614 
1615 	return ret;
1616 }
1617 
1618 static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1619 {
1620 	struct smc_local *lp = netdev_priv(dev);
1621 	return lp->msg_enable;
1622 }
1623 
1624 static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1625 {
1626 	struct smc_local *lp = netdev_priv(dev);
1627 	lp->msg_enable = level;
1628 }
1629 
1630 static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1631 {
1632 	u16 ctl;
1633 	struct smc_local *lp = netdev_priv(dev);
1634 	void __iomem *ioaddr = lp->base;
1635 
1636 	spin_lock_irq(&lp->lock);
1637 	/* load word into GP register */
1638 	SMC_SELECT_BANK(lp, 1);
1639 	SMC_SET_GP(lp, word);
1640 	/* set the address to put the data in EEPROM */
1641 	SMC_SELECT_BANK(lp, 2);
1642 	SMC_SET_PTR(lp, addr);
1643 	/* tell it to write */
1644 	SMC_SELECT_BANK(lp, 1);
1645 	ctl = SMC_GET_CTL(lp);
1646 	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1647 	/* wait for it to finish */
1648 	do {
1649 		udelay(1);
1650 	} while (SMC_GET_CTL(lp) & CTL_STORE);
1651 	/* clean up */
1652 	SMC_SET_CTL(lp, ctl);
1653 	SMC_SELECT_BANK(lp, 2);
1654 	spin_unlock_irq(&lp->lock);
1655 	return 0;
1656 }
1657 
1658 static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1659 {
1660 	u16 ctl;
1661 	struct smc_local *lp = netdev_priv(dev);
1662 	void __iomem *ioaddr = lp->base;
1663 
1664 	spin_lock_irq(&lp->lock);
1665 	/* set the EEPROM address to get the data from */
1666 	SMC_SELECT_BANK(lp, 2);
1667 	SMC_SET_PTR(lp, addr | PTR_READ);
1668 	/* tell it to load */
1669 	SMC_SELECT_BANK(lp, 1);
1670 	SMC_SET_GP(lp, 0xffff);	/* init to known */
1671 	ctl = SMC_GET_CTL(lp);
1672 	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1673 	/* wait for it to finish */
1674 	do {
1675 		udelay(1);
1676 	} while (SMC_GET_CTL(lp) & CTL_RELOAD);
1677 	/* read word from GP register */
1678 	*word = SMC_GET_GP(lp);
1679 	/* clean up */
1680 	SMC_SET_CTL(lp, ctl);
1681 	SMC_SELECT_BANK(lp, 2);
1682 	spin_unlock_irq(&lp->lock);
1683 	return 0;
1684 }
1685 
1686 static int smc_ethtool_geteeprom_len(struct net_device *dev)
1687 {
1688 	return 0x23 * 2;
1689 }
1690 
1691 static int smc_ethtool_geteeprom(struct net_device *dev,
1692 		struct ethtool_eeprom *eeprom, u8 *data)
1693 {
1694 	int i;
1695 	int imax;
1696 
1697 	DBG(1, "Reading %d bytes at %d(0x%x)\n",
1698 		eeprom->len, eeprom->offset, eeprom->offset);
1699 	imax = smc_ethtool_geteeprom_len(dev);
1700 	for (i = 0; i < eeprom->len; i += 2) {
1701 		int ret;
1702 		u16 wbuf;
1703 		int offset = i + eeprom->offset;
1704 		if (offset > imax)
1705 			break;
1706 		ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1707 		if (ret != 0)
1708 			return ret;
1709 		DBG(2, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1710 		data[i] = (wbuf >> 8) & 0xff;
1711 		data[i+1] = wbuf & 0xff;
1712 	}
1713 	return 0;
1714 }
1715 
1716 static int smc_ethtool_seteeprom(struct net_device *dev,
1717 		struct ethtool_eeprom *eeprom, u8 *data)
1718 {
1719 	int i;
1720 	int imax;
1721 
1722 	DBG(1, "Writing %d bytes to %d(0x%x)\n",
1723 			eeprom->len, eeprom->offset, eeprom->offset);
1724 	imax = smc_ethtool_geteeprom_len(dev);
1725 	for (i = 0; i < eeprom->len; i += 2) {
1726 		int ret;
1727 		u16 wbuf;
1728 		int offset = i + eeprom->offset;
1729 		if (offset > imax)
1730 			break;
1731 		wbuf = (data[i] << 8) | data[i + 1];
1732 		DBG(2, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1733 		ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1734 		if (ret != 0)
1735 			return ret;
1736 	}
1737 	return 0;
1738 }
1739 
1740 
1741 static const struct ethtool_ops smc_ethtool_ops = {
1742 	.get_settings	= smc_ethtool_getsettings,
1743 	.set_settings	= smc_ethtool_setsettings,
1744 	.get_drvinfo	= smc_ethtool_getdrvinfo,
1745 
1746 	.get_msglevel	= smc_ethtool_getmsglevel,
1747 	.set_msglevel	= smc_ethtool_setmsglevel,
1748 	.nway_reset	= smc_ethtool_nwayreset,
1749 	.get_link	= ethtool_op_get_link,
1750 	.get_eeprom_len = smc_ethtool_geteeprom_len,
1751 	.get_eeprom	= smc_ethtool_geteeprom,
1752 	.set_eeprom	= smc_ethtool_seteeprom,
1753 };
1754 
1755 static const struct net_device_ops smc_netdev_ops = {
1756 	.ndo_open		= smc_open,
1757 	.ndo_stop		= smc_close,
1758 	.ndo_start_xmit		= smc_hard_start_xmit,
1759 	.ndo_tx_timeout		= smc_timeout,
1760 	.ndo_set_rx_mode	= smc_set_multicast_list,
1761 	.ndo_change_mtu		= eth_change_mtu,
1762 	.ndo_validate_addr	= eth_validate_addr,
1763 	.ndo_set_mac_address 	= eth_mac_addr,
1764 #ifdef CONFIG_NET_POLL_CONTROLLER
1765 	.ndo_poll_controller	= smc_poll_controller,
1766 #endif
1767 };
1768 
1769 /*
1770  * smc_findirq
1771  *
1772  * This routine has a simple purpose -- make the SMC chip generate an
1773  * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1774  */
1775 /*
1776  * does this still work?
1777  *
1778  * I just deleted auto_irq.c, since it was never built...
1779  *   --jgarzik
1780  */
1781 static int smc_findirq(struct smc_local *lp)
1782 {
1783 	void __iomem *ioaddr = lp->base;
1784 	int timeout = 20;
1785 	unsigned long cookie;
1786 
1787 	DBG(2, "%s: %s\n", CARDNAME, __func__);
1788 
1789 	cookie = probe_irq_on();
1790 
1791 	/*
1792 	 * What I try to do here is trigger an ALLOC_INT. This is done
1793 	 * by allocating a small chunk of memory, which will give an interrupt
1794 	 * when done.
1795 	 */
1796 	/* enable ALLOCation interrupts ONLY */
1797 	SMC_SELECT_BANK(lp, 2);
1798 	SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1799 
1800 	/*
1801  	 * Allocate 512 bytes of memory.  Note that the chip was just
1802 	 * reset so all the memory is available
1803 	 */
1804 	SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1805 
1806 	/*
1807 	 * Wait until positive that the interrupt has been generated
1808 	 */
1809 	do {
1810 		int int_status;
1811 		udelay(10);
1812 		int_status = SMC_GET_INT(lp);
1813 		if (int_status & IM_ALLOC_INT)
1814 			break;		/* got the interrupt */
1815 	} while (--timeout);
1816 
1817 	/*
1818 	 * there is really nothing that I can do here if timeout fails,
1819 	 * as autoirq_report will return a 0 anyway, which is what I
1820 	 * want in this case.   Plus, the clean up is needed in both
1821 	 * cases.
1822 	 */
1823 
1824 	/* and disable all interrupts again */
1825 	SMC_SET_INT_MASK(lp, 0);
1826 
1827 	/* and return what I found */
1828 	return probe_irq_off(cookie);
1829 }
1830 
1831 /*
1832  * Function: smc_probe(unsigned long ioaddr)
1833  *
1834  * Purpose:
1835  *	Tests to see if a given ioaddr points to an SMC91x chip.
1836  *	Returns a 0 on success
1837  *
1838  * Algorithm:
1839  *	(1) see if the high byte of BANK_SELECT is 0x33
1840  * 	(2) compare the ioaddr with the base register's address
1841  *	(3) see if I recognize the chip ID in the appropriate register
1842  *
1843  * Here I do typical initialization tasks.
1844  *
1845  * o  Initialize the structure if needed
1846  * o  print out my vanity message if not done so already
1847  * o  print out what type of hardware is detected
1848  * o  print out the ethernet address
1849  * o  find the IRQ
1850  * o  set up my private data
1851  * o  configure the dev structure with my subroutines
1852  * o  actually GRAB the irq.
1853  * o  GRAB the region
1854  */
1855 static int smc_probe(struct net_device *dev, void __iomem *ioaddr,
1856 		     unsigned long irq_flags)
1857 {
1858 	struct smc_local *lp = netdev_priv(dev);
1859 	static int version_printed = 0;
1860 	int retval;
1861 	unsigned int val, revision_register;
1862 	const char *version_string;
1863 
1864 	DBG(2, "%s: %s\n", CARDNAME, __func__);
1865 
1866 	/* First, see if the high byte is 0x33 */
1867 	val = SMC_CURRENT_BANK(lp);
1868 	DBG(2, "%s: bank signature probe returned 0x%04x\n", CARDNAME, val);
1869 	if ((val & 0xFF00) != 0x3300) {
1870 		if ((val & 0xFF) == 0x33) {
1871 			printk(KERN_WARNING
1872 				"%s: Detected possible byte-swapped interface"
1873 				" at IOADDR %p\n", CARDNAME, ioaddr);
1874 		}
1875 		retval = -ENODEV;
1876 		goto err_out;
1877 	}
1878 
1879 	/*
1880 	 * The above MIGHT indicate a device, but I need to write to
1881 	 * further test this.
1882 	 */
1883 	SMC_SELECT_BANK(lp, 0);
1884 	val = SMC_CURRENT_BANK(lp);
1885 	if ((val & 0xFF00) != 0x3300) {
1886 		retval = -ENODEV;
1887 		goto err_out;
1888 	}
1889 
1890 	/*
1891 	 * well, we've already written once, so hopefully another
1892 	 * time won't hurt.  This time, I need to switch the bank
1893 	 * register to bank 1, so I can access the base address
1894 	 * register
1895 	 */
1896 	SMC_SELECT_BANK(lp, 1);
1897 	val = SMC_GET_BASE(lp);
1898 	val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1899 	if (((unsigned int)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1900 		printk("%s: IOADDR %p doesn't match configuration (%x).\n",
1901 			CARDNAME, ioaddr, val);
1902 	}
1903 
1904 	/*
1905 	 * check if the revision register is something that I
1906 	 * recognize.  These might need to be added to later,
1907 	 * as future revisions could be added.
1908 	 */
1909 	SMC_SELECT_BANK(lp, 3);
1910 	revision_register = SMC_GET_REV(lp);
1911 	DBG(2, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1912 	version_string = chip_ids[ (revision_register >> 4) & 0xF];
1913 	if (!version_string || (revision_register & 0xff00) != 0x3300) {
1914 		/* I don't recognize this chip, so... */
1915 		printk("%s: IO %p: Unrecognized revision register 0x%04x"
1916 			", Contact author.\n", CARDNAME,
1917 			ioaddr, revision_register);
1918 
1919 		retval = -ENODEV;
1920 		goto err_out;
1921 	}
1922 
1923 	/* At this point I'll assume that the chip is an SMC91x. */
1924 	if (version_printed++ == 0)
1925 		printk("%s", version);
1926 
1927 	/* fill in some of the fields */
1928 	dev->base_addr = (unsigned long)ioaddr;
1929 	lp->base = ioaddr;
1930 	lp->version = revision_register & 0xff;
1931 	spin_lock_init(&lp->lock);
1932 
1933 	/* Get the MAC address */
1934 	SMC_SELECT_BANK(lp, 1);
1935 	SMC_GET_MAC_ADDR(lp, dev->dev_addr);
1936 
1937 	/* now, reset the chip, and put it into a known state */
1938 	smc_reset(dev);
1939 
1940 	/*
1941 	 * If dev->irq is 0, then the device has to be banged on to see
1942 	 * what the IRQ is.
1943  	 *
1944 	 * This banging doesn't always detect the IRQ, for unknown reasons.
1945 	 * a workaround is to reset the chip and try again.
1946 	 *
1947 	 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1948 	 * be what is requested on the command line.   I don't do that, mostly
1949 	 * because the card that I have uses a non-standard method of accessing
1950 	 * the IRQs, and because this _should_ work in most configurations.
1951 	 *
1952 	 * Specifying an IRQ is done with the assumption that the user knows
1953 	 * what (s)he is doing.  No checking is done!!!!
1954 	 */
1955 	if (dev->irq < 1) {
1956 		int trials;
1957 
1958 		trials = 3;
1959 		while (trials--) {
1960 			dev->irq = smc_findirq(lp);
1961 			if (dev->irq)
1962 				break;
1963 			/* kick the card and try again */
1964 			smc_reset(dev);
1965 		}
1966 	}
1967 	if (dev->irq == 0) {
1968 		printk("%s: Couldn't autodetect your IRQ. Use irq=xx.\n",
1969 			dev->name);
1970 		retval = -ENODEV;
1971 		goto err_out;
1972 	}
1973 	dev->irq = irq_canonicalize(dev->irq);
1974 
1975 	/* Fill in the fields of the device structure with ethernet values. */
1976 	ether_setup(dev);
1977 
1978 	dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1979 	dev->netdev_ops = &smc_netdev_ops;
1980 	dev->ethtool_ops = &smc_ethtool_ops;
1981 
1982 	tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev);
1983 	INIT_WORK(&lp->phy_configure, smc_phy_configure);
1984 	lp->dev = dev;
1985 	lp->mii.phy_id_mask = 0x1f;
1986 	lp->mii.reg_num_mask = 0x1f;
1987 	lp->mii.force_media = 0;
1988 	lp->mii.full_duplex = 0;
1989 	lp->mii.dev = dev;
1990 	lp->mii.mdio_read = smc_phy_read;
1991 	lp->mii.mdio_write = smc_phy_write;
1992 
1993 	/*
1994 	 * Locate the phy, if any.
1995 	 */
1996 	if (lp->version >= (CHIP_91100 << 4))
1997 		smc_phy_detect(dev);
1998 
1999 	/* then shut everything down to save power */
2000 	smc_shutdown(dev);
2001 	smc_phy_powerdown(dev);
2002 
2003 	/* Set default parameters */
2004 	lp->msg_enable = NETIF_MSG_LINK;
2005 	lp->ctl_rfduplx = 0;
2006 	lp->ctl_rspeed = 10;
2007 
2008 	if (lp->version >= (CHIP_91100 << 4)) {
2009 		lp->ctl_rfduplx = 1;
2010 		lp->ctl_rspeed = 100;
2011 	}
2012 
2013 	/* Grab the IRQ */
2014 	retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
2015       	if (retval)
2016       		goto err_out;
2017 
2018 #ifdef CONFIG_ARCH_PXA
2019 #  ifdef SMC_USE_PXA_DMA
2020 	lp->cfg.flags |= SMC91X_USE_DMA;
2021 #  endif
2022 	if (lp->cfg.flags & SMC91X_USE_DMA) {
2023 		int dma = pxa_request_dma(dev->name, DMA_PRIO_LOW,
2024 					  smc_pxa_dma_irq, NULL);
2025 		if (dma >= 0)
2026 			dev->dma = dma;
2027 	}
2028 #endif
2029 
2030 	retval = register_netdev(dev);
2031 	if (retval == 0) {
2032 		/* now, print out the card info, in a short format.. */
2033 		printk("%s: %s (rev %d) at %p IRQ %d",
2034 			dev->name, version_string, revision_register & 0x0f,
2035 			lp->base, dev->irq);
2036 
2037 		if (dev->dma != (unsigned char)-1)
2038 			printk(" DMA %d", dev->dma);
2039 
2040 		printk("%s%s\n",
2041 			lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2042 			THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2043 
2044 		if (!is_valid_ether_addr(dev->dev_addr)) {
2045 			printk("%s: Invalid ethernet MAC address.  Please "
2046 			       "set using ifconfig\n", dev->name);
2047 		} else {
2048 			/* Print the Ethernet address */
2049 			printk("%s: Ethernet addr: %pM\n",
2050 			       dev->name, dev->dev_addr);
2051 		}
2052 
2053 		if (lp->phy_type == 0) {
2054 			PRINTK("%s: No PHY found\n", dev->name);
2055 		} else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2056 			PRINTK("%s: PHY LAN83C183 (LAN91C111 Internal)\n", dev->name);
2057 		} else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2058 			PRINTK("%s: PHY LAN83C180\n", dev->name);
2059 		}
2060 	}
2061 
2062 err_out:
2063 #ifdef CONFIG_ARCH_PXA
2064 	if (retval && dev->dma != (unsigned char)-1)
2065 		pxa_free_dma(dev->dma);
2066 #endif
2067 	return retval;
2068 }
2069 
2070 static int smc_enable_device(struct platform_device *pdev)
2071 {
2072 	struct net_device *ndev = platform_get_drvdata(pdev);
2073 	struct smc_local *lp = netdev_priv(ndev);
2074 	unsigned long flags;
2075 	unsigned char ecor, ecsr;
2076 	void __iomem *addr;
2077 	struct resource * res;
2078 
2079 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2080 	if (!res)
2081 		return 0;
2082 
2083 	/*
2084 	 * Map the attribute space.  This is overkill, but clean.
2085 	 */
2086 	addr = ioremap(res->start, ATTRIB_SIZE);
2087 	if (!addr)
2088 		return -ENOMEM;
2089 
2090 	/*
2091 	 * Reset the device.  We must disable IRQs around this
2092 	 * since a reset causes the IRQ line become active.
2093 	 */
2094 	local_irq_save(flags);
2095 	ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2096 	writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2097 	readb(addr + (ECOR << SMC_IO_SHIFT));
2098 
2099 	/*
2100 	 * Wait 100us for the chip to reset.
2101 	 */
2102 	udelay(100);
2103 
2104 	/*
2105 	 * The device will ignore all writes to the enable bit while
2106 	 * reset is asserted, even if the reset bit is cleared in the
2107 	 * same write.  Must clear reset first, then enable the device.
2108 	 */
2109 	writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2110 	writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2111 
2112 	/*
2113 	 * Set the appropriate byte/word mode.
2114 	 */
2115 	ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2116 	if (!SMC_16BIT(lp))
2117 		ecsr |= ECSR_IOIS8;
2118 	writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2119 	local_irq_restore(flags);
2120 
2121 	iounmap(addr);
2122 
2123 	/*
2124 	 * Wait for the chip to wake up.  We could poll the control
2125 	 * register in the main register space, but that isn't mapped
2126 	 * yet.  We know this is going to take 750us.
2127 	 */
2128 	msleep(1);
2129 
2130 	return 0;
2131 }
2132 
2133 static int smc_request_attrib(struct platform_device *pdev,
2134 			      struct net_device *ndev)
2135 {
2136 	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2137 	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2138 
2139 	if (!res)
2140 		return 0;
2141 
2142 	if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2143 		return -EBUSY;
2144 
2145 	return 0;
2146 }
2147 
2148 static void smc_release_attrib(struct platform_device *pdev,
2149 			       struct net_device *ndev)
2150 {
2151 	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2152 	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2153 
2154 	if (res)
2155 		release_mem_region(res->start, ATTRIB_SIZE);
2156 }
2157 
2158 static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2159 {
2160 	if (SMC_CAN_USE_DATACS) {
2161 		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2162 		struct smc_local *lp = netdev_priv(ndev);
2163 
2164 		if (!res)
2165 			return;
2166 
2167 		if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2168 			printk(KERN_INFO "%s: failed to request datacs memory region.\n", CARDNAME);
2169 			return;
2170 		}
2171 
2172 		lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2173 	}
2174 }
2175 
2176 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2177 {
2178 	if (SMC_CAN_USE_DATACS) {
2179 		struct smc_local *lp = netdev_priv(ndev);
2180 		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2181 
2182 		if (lp->datacs)
2183 			iounmap(lp->datacs);
2184 
2185 		lp->datacs = NULL;
2186 
2187 		if (res)
2188 			release_mem_region(res->start, SMC_DATA_EXTENT);
2189 	}
2190 }
2191 
2192 /*
2193  * smc_init(void)
2194  *   Input parameters:
2195  *	dev->base_addr == 0, try to find all possible locations
2196  *	dev->base_addr > 0x1ff, this is the address to check
2197  *	dev->base_addr == <anything else>, return failure code
2198  *
2199  *   Output:
2200  *	0 --> there is a device
2201  *	anything else, error
2202  */
2203 static int smc_drv_probe(struct platform_device *pdev)
2204 {
2205 	struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev);
2206 	struct smc_local *lp;
2207 	struct net_device *ndev;
2208 	struct resource *res, *ires;
2209 	unsigned int __iomem *addr;
2210 	unsigned long irq_flags = SMC_IRQ_FLAGS;
2211 	int ret;
2212 
2213 	ndev = alloc_etherdev(sizeof(struct smc_local));
2214 	if (!ndev) {
2215 		ret = -ENOMEM;
2216 		goto out;
2217 	}
2218 	SET_NETDEV_DEV(ndev, &pdev->dev);
2219 
2220 	/* get configuration from platform data, only allow use of
2221 	 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2222 	 */
2223 
2224 	lp = netdev_priv(ndev);
2225 
2226 	if (pd) {
2227 		memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2228 		lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2229 	} else {
2230 		lp->cfg.flags |= (SMC_CAN_USE_8BIT)  ? SMC91X_USE_8BIT  : 0;
2231 		lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2232 		lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2233 		lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2234 	}
2235 
2236 	if (!lp->cfg.leda && !lp->cfg.ledb) {
2237 		lp->cfg.leda = RPC_LSA_DEFAULT;
2238 		lp->cfg.ledb = RPC_LSB_DEFAULT;
2239 	}
2240 
2241 	ndev->dma = (unsigned char)-1;
2242 
2243 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2244 	if (!res)
2245 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2246 	if (!res) {
2247 		ret = -ENODEV;
2248 		goto out_free_netdev;
2249 	}
2250 
2251 
2252 	if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2253 		ret = -EBUSY;
2254 		goto out_free_netdev;
2255 	}
2256 
2257 	ires = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
2258 	if (!ires) {
2259 		ret = -ENODEV;
2260 		goto out_release_io;
2261 	}
2262 
2263 	ndev->irq = ires->start;
2264 
2265 	if (irq_flags == -1 || ires->flags & IRQF_TRIGGER_MASK)
2266 		irq_flags = ires->flags & IRQF_TRIGGER_MASK;
2267 
2268 	ret = smc_request_attrib(pdev, ndev);
2269 	if (ret)
2270 		goto out_release_io;
2271 #if defined(CONFIG_SA1100_ASSABET)
2272 	neponset_ncr_set(NCR_ENET_OSC_EN);
2273 #endif
2274 	platform_set_drvdata(pdev, ndev);
2275 	ret = smc_enable_device(pdev);
2276 	if (ret)
2277 		goto out_release_attrib;
2278 
2279 	addr = ioremap(res->start, SMC_IO_EXTENT);
2280 	if (!addr) {
2281 		ret = -ENOMEM;
2282 		goto out_release_attrib;
2283 	}
2284 
2285 #ifdef CONFIG_ARCH_PXA
2286 	{
2287 		struct smc_local *lp = netdev_priv(ndev);
2288 		lp->device = &pdev->dev;
2289 		lp->physaddr = res->start;
2290 	}
2291 #endif
2292 
2293 	ret = smc_probe(ndev, addr, irq_flags);
2294 	if (ret != 0)
2295 		goto out_iounmap;
2296 
2297 	smc_request_datacs(pdev, ndev);
2298 
2299 	return 0;
2300 
2301  out_iounmap:
2302 	iounmap(addr);
2303  out_release_attrib:
2304 	smc_release_attrib(pdev, ndev);
2305  out_release_io:
2306 	release_mem_region(res->start, SMC_IO_EXTENT);
2307  out_free_netdev:
2308 	free_netdev(ndev);
2309  out:
2310 	printk("%s: not found (%d).\n", CARDNAME, ret);
2311 
2312 	return ret;
2313 }
2314 
2315 static int smc_drv_remove(struct platform_device *pdev)
2316 {
2317 	struct net_device *ndev = platform_get_drvdata(pdev);
2318 	struct smc_local *lp = netdev_priv(ndev);
2319 	struct resource *res;
2320 
2321 	unregister_netdev(ndev);
2322 
2323 	free_irq(ndev->irq, ndev);
2324 
2325 #ifdef CONFIG_ARCH_PXA
2326 	if (ndev->dma != (unsigned char)-1)
2327 		pxa_free_dma(ndev->dma);
2328 #endif
2329 	iounmap(lp->base);
2330 
2331 	smc_release_datacs(pdev,ndev);
2332 	smc_release_attrib(pdev,ndev);
2333 
2334 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2335 	if (!res)
2336 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2337 	release_mem_region(res->start, SMC_IO_EXTENT);
2338 
2339 	free_netdev(ndev);
2340 
2341 	return 0;
2342 }
2343 
2344 static int smc_drv_suspend(struct device *dev)
2345 {
2346 	struct platform_device *pdev = to_platform_device(dev);
2347 	struct net_device *ndev = platform_get_drvdata(pdev);
2348 
2349 	if (ndev) {
2350 		if (netif_running(ndev)) {
2351 			netif_device_detach(ndev);
2352 			smc_shutdown(ndev);
2353 			smc_phy_powerdown(ndev);
2354 		}
2355 	}
2356 	return 0;
2357 }
2358 
2359 static int smc_drv_resume(struct device *dev)
2360 {
2361 	struct platform_device *pdev = to_platform_device(dev);
2362 	struct net_device *ndev = platform_get_drvdata(pdev);
2363 
2364 	if (ndev) {
2365 		struct smc_local *lp = netdev_priv(ndev);
2366 		smc_enable_device(pdev);
2367 		if (netif_running(ndev)) {
2368 			smc_reset(ndev);
2369 			smc_enable(ndev);
2370 			if (lp->phy_type != 0)
2371 				smc_phy_configure(&lp->phy_configure);
2372 			netif_device_attach(ndev);
2373 		}
2374 	}
2375 	return 0;
2376 }
2377 
2378 #ifdef CONFIG_OF
2379 static const struct of_device_id smc91x_match[] = {
2380 	{ .compatible = "smsc,lan91c94", },
2381 	{ .compatible = "smsc,lan91c111", },
2382 	{},
2383 };
2384 MODULE_DEVICE_TABLE(of, smc91x_match);
2385 #endif
2386 
2387 static struct dev_pm_ops smc_drv_pm_ops = {
2388 	.suspend	= smc_drv_suspend,
2389 	.resume		= smc_drv_resume,
2390 };
2391 
2392 static struct platform_driver smc_driver = {
2393 	.probe		= smc_drv_probe,
2394 	.remove		= smc_drv_remove,
2395 	.driver		= {
2396 		.name	= CARDNAME,
2397 		.owner	= THIS_MODULE,
2398 		.pm	= &smc_drv_pm_ops,
2399 		.of_match_table = of_match_ptr(smc91x_match),
2400 	},
2401 };
2402 
2403 module_platform_driver(smc_driver);
2404