1 /* epic100.c: A SMC 83c170 EPIC/100 Fast Ethernet driver for Linux. */ 2 /* 3 Written/copyright 1997-2001 by Donald Becker. 4 5 This software may be used and distributed according to the terms of 6 the GNU General Public License (GPL), incorporated herein by reference. 7 Drivers based on or derived from this code fall under the GPL and must 8 retain the authorship, copyright and license notice. This file is not 9 a complete program and may only be used when the entire operating 10 system is licensed under the GPL. 11 12 This driver is for the SMC83c170/175 "EPIC" series, as used on the 13 SMC EtherPower II 9432 PCI adapter, and several CardBus cards. 14 15 The author may be reached as becker@scyld.com, or C/O 16 Scyld Computing Corporation 17 410 Severn Ave., Suite 210 18 Annapolis MD 21403 19 20 Information and updates available at 21 http://www.scyld.com/network/epic100.html 22 [this link no longer provides anything useful -jgarzik] 23 24 --------------------------------------------------------------------- 25 26 */ 27 28 #define DRV_NAME "epic100" 29 #define DRV_VERSION "2.1" 30 #define DRV_RELDATE "Sept 11, 2006" 31 32 /* The user-configurable values. 33 These may be modified when a driver module is loaded.*/ 34 35 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */ 36 37 /* Used to pass the full-duplex flag, etc. */ 38 #define MAX_UNITS 8 /* More are supported, limit only on options */ 39 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; 40 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; 41 42 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. 43 Setting to > 1518 effectively disables this feature. */ 44 static int rx_copybreak; 45 46 /* Operational parameters that are set at compile time. */ 47 48 /* Keep the ring sizes a power of two for operational efficiency. 49 The compiler will convert <unsigned>'%'<2^N> into a bit mask. 50 Making the Tx ring too large decreases the effectiveness of channel 51 bonding and packet priority. 52 There are no ill effects from too-large receive rings. */ 53 #define TX_RING_SIZE 256 54 #define TX_QUEUE_LEN 240 /* Limit ring entries actually used. */ 55 #define RX_RING_SIZE 256 56 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct epic_tx_desc) 57 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct epic_rx_desc) 58 59 /* Operational parameters that usually are not changed. */ 60 /* Time in jiffies before concluding the transmitter is hung. */ 61 #define TX_TIMEOUT (2*HZ) 62 63 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 64 65 /* Bytes transferred to chip before transmission starts. */ 66 /* Initial threshold, increased on underflow, rounded down to 4 byte units. */ 67 #define TX_FIFO_THRESH 256 68 #define RX_FIFO_THRESH 1 /* 0-3, 0==32, 64,96, or 3==128 bytes */ 69 70 #include <linux/module.h> 71 #include <linux/kernel.h> 72 #include <linux/string.h> 73 #include <linux/timer.h> 74 #include <linux/errno.h> 75 #include <linux/ioport.h> 76 #include <linux/interrupt.h> 77 #include <linux/pci.h> 78 #include <linux/delay.h> 79 #include <linux/netdevice.h> 80 #include <linux/etherdevice.h> 81 #include <linux/skbuff.h> 82 #include <linux/init.h> 83 #include <linux/spinlock.h> 84 #include <linux/ethtool.h> 85 #include <linux/mii.h> 86 #include <linux/crc32.h> 87 #include <linux/bitops.h> 88 #include <asm/io.h> 89 #include <linux/uaccess.h> 90 #include <asm/byteorder.h> 91 92 /* These identify the driver base version and may not be removed. */ 93 static char version[] = 94 DRV_NAME ".c:v1.11 1/7/2001 Written by Donald Becker <becker@scyld.com>"; 95 static char version2[] = 96 " (unofficial 2.4.x kernel port, version " DRV_VERSION ", " DRV_RELDATE ")"; 97 98 MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); 99 MODULE_DESCRIPTION("SMC 83c170 EPIC series Ethernet driver"); 100 MODULE_LICENSE("GPL"); 101 102 module_param(debug, int, 0); 103 module_param(rx_copybreak, int, 0); 104 module_param_array(options, int, NULL, 0); 105 module_param_array(full_duplex, int, NULL, 0); 106 MODULE_PARM_DESC(debug, "EPIC/100 debug level (0-5)"); 107 MODULE_PARM_DESC(options, "EPIC/100: Bits 0-3: media type, bit 4: full duplex"); 108 MODULE_PARM_DESC(rx_copybreak, "EPIC/100 copy breakpoint for copy-only-tiny-frames"); 109 MODULE_PARM_DESC(full_duplex, "EPIC/100 full duplex setting(s) (1)"); 110 111 /* 112 Theory of Operation 113 114 I. Board Compatibility 115 116 This device driver is designed for the SMC "EPIC/100", the SMC 117 single-chip Ethernet controllers for PCI. This chip is used on 118 the SMC EtherPower II boards. 119 120 II. Board-specific settings 121 122 PCI bus devices are configured by the system at boot time, so no jumpers 123 need to be set on the board. The system BIOS will assign the 124 PCI INTA signal to a (preferably otherwise unused) system IRQ line. 125 Note: Kernel versions earlier than 1.3.73 do not support shared PCI 126 interrupt lines. 127 128 III. Driver operation 129 130 IIIa. Ring buffers 131 132 IVb. References 133 134 http://www.smsc.com/media/Downloads_Public/discontinued/83c171.pdf 135 http://www.smsc.com/media/Downloads_Public/discontinued/83c175.pdf 136 http://scyld.com/expert/NWay.html 137 http://www.national.com/pf/DP/DP83840A.html 138 139 IVc. Errata 140 141 */ 142 143 144 enum chip_capability_flags { MII_PWRDWN=1, TYPE2_INTR=2, NO_MII=4 }; 145 146 #define EPIC_TOTAL_SIZE 0x100 147 #define USE_IO_OPS 1 148 149 #ifdef USE_IO_OPS 150 #define EPIC_BAR 0 151 #else 152 #define EPIC_BAR 1 153 #endif 154 155 typedef enum { 156 SMSC_83C170_0, 157 SMSC_83C170, 158 SMSC_83C175, 159 } chip_t; 160 161 162 struct epic_chip_info { 163 const char *name; 164 int drv_flags; /* Driver use, intended as capability flags. */ 165 }; 166 167 168 /* indexed by chip_t */ 169 static const struct epic_chip_info pci_id_tbl[] = { 170 { "SMSC EPIC/100 83c170", TYPE2_INTR | NO_MII | MII_PWRDWN }, 171 { "SMSC EPIC/100 83c170", TYPE2_INTR }, 172 { "SMSC EPIC/C 83c175", TYPE2_INTR | MII_PWRDWN }, 173 }; 174 175 176 static const struct pci_device_id epic_pci_tbl[] = { 177 { 0x10B8, 0x0005, 0x1092, 0x0AB4, 0, 0, SMSC_83C170_0 }, 178 { 0x10B8, 0x0005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, SMSC_83C170 }, 179 { 0x10B8, 0x0006, PCI_ANY_ID, PCI_ANY_ID, 180 PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, SMSC_83C175 }, 181 { 0,} 182 }; 183 MODULE_DEVICE_TABLE (pci, epic_pci_tbl); 184 185 #define ew16(reg, val) iowrite16(val, ioaddr + (reg)) 186 #define ew32(reg, val) iowrite32(val, ioaddr + (reg)) 187 #define er8(reg) ioread8(ioaddr + (reg)) 188 #define er16(reg) ioread16(ioaddr + (reg)) 189 #define er32(reg) ioread32(ioaddr + (reg)) 190 191 /* Offsets to registers, using the (ugh) SMC names. */ 192 enum epic_registers { 193 COMMAND=0, INTSTAT=4, INTMASK=8, GENCTL=0x0C, NVCTL=0x10, EECTL=0x14, 194 PCIBurstCnt=0x18, 195 TEST1=0x1C, CRCCNT=0x20, ALICNT=0x24, MPCNT=0x28, /* Rx error counters. */ 196 MIICtrl=0x30, MIIData=0x34, MIICfg=0x38, 197 LAN0=64, /* MAC address. */ 198 MC0=80, /* Multicast filter table. */ 199 RxCtrl=96, TxCtrl=112, TxSTAT=0x74, 200 PRxCDAR=0x84, RxSTAT=0xA4, EarlyRx=0xB0, PTxCDAR=0xC4, TxThresh=0xDC, 201 }; 202 203 /* Interrupt register bits, using my own meaningful names. */ 204 enum IntrStatus { 205 TxIdle=0x40000, RxIdle=0x20000, IntrSummary=0x010000, 206 PCIBusErr170=0x7000, PCIBusErr175=0x1000, PhyEvent175=0x8000, 207 RxStarted=0x0800, RxEarlyWarn=0x0400, CntFull=0x0200, TxUnderrun=0x0100, 208 TxEmpty=0x0080, TxDone=0x0020, RxError=0x0010, 209 RxOverflow=0x0008, RxFull=0x0004, RxHeader=0x0002, RxDone=0x0001, 210 }; 211 enum CommandBits { 212 StopRx=1, StartRx=2, TxQueued=4, RxQueued=8, 213 StopTxDMA=0x20, StopRxDMA=0x40, RestartTx=0x80, 214 }; 215 216 #define EpicRemoved 0xffffffff /* Chip failed or removed (CardBus) */ 217 218 #define EpicNapiEvent (TxEmpty | TxDone | \ 219 RxDone | RxStarted | RxEarlyWarn | RxOverflow | RxFull) 220 #define EpicNormalEvent (0x0000ffff & ~EpicNapiEvent) 221 222 static const u16 media2miictl[16] = { 223 0, 0x0C00, 0x0C00, 0x2000, 0x0100, 0x2100, 0, 0, 224 0, 0, 0, 0, 0, 0, 0, 0 }; 225 226 /* 227 * The EPIC100 Rx and Tx buffer descriptors. Note that these 228 * really ARE host-endian; it's not a misannotation. We tell 229 * the card to byteswap them internally on big-endian hosts - 230 * look for #ifdef __BIG_ENDIAN in epic_open(). 231 */ 232 233 struct epic_tx_desc { 234 u32 txstatus; 235 u32 bufaddr; 236 u32 buflength; 237 u32 next; 238 }; 239 240 struct epic_rx_desc { 241 u32 rxstatus; 242 u32 bufaddr; 243 u32 buflength; 244 u32 next; 245 }; 246 247 enum desc_status_bits { 248 DescOwn=0x8000, 249 }; 250 251 #define PRIV_ALIGN 15 /* Required alignment mask */ 252 struct epic_private { 253 struct epic_rx_desc *rx_ring; 254 struct epic_tx_desc *tx_ring; 255 /* The saved address of a sent-in-place packet/buffer, for skfree(). */ 256 struct sk_buff* tx_skbuff[TX_RING_SIZE]; 257 /* The addresses of receive-in-place skbuffs. */ 258 struct sk_buff* rx_skbuff[RX_RING_SIZE]; 259 260 dma_addr_t tx_ring_dma; 261 dma_addr_t rx_ring_dma; 262 263 /* Ring pointers. */ 264 spinlock_t lock; /* Group with Tx control cache line. */ 265 spinlock_t napi_lock; 266 struct napi_struct napi; 267 unsigned int cur_tx, dirty_tx; 268 269 unsigned int cur_rx, dirty_rx; 270 u32 irq_mask; 271 unsigned int rx_buf_sz; /* Based on MTU+slack. */ 272 273 void __iomem *ioaddr; 274 struct pci_dev *pci_dev; /* PCI bus location. */ 275 int chip_id, chip_flags; 276 277 struct timer_list timer; /* Media selection timer. */ 278 int tx_threshold; 279 unsigned char mc_filter[8]; 280 signed char phys[4]; /* MII device addresses. */ 281 u16 advertising; /* NWay media advertisement */ 282 int mii_phy_cnt; 283 u32 ethtool_ops_nesting; 284 struct mii_if_info mii; 285 unsigned int tx_full:1; /* The Tx queue is full. */ 286 unsigned int default_port:4; /* Last dev->if_port value. */ 287 }; 288 289 static int epic_open(struct net_device *dev); 290 static int read_eeprom(struct epic_private *, int); 291 static int mdio_read(struct net_device *dev, int phy_id, int location); 292 static void mdio_write(struct net_device *dev, int phy_id, int loc, int val); 293 static void epic_restart(struct net_device *dev); 294 static void epic_timer(struct timer_list *t); 295 static void epic_tx_timeout(struct net_device *dev, unsigned int txqueue); 296 static void epic_init_ring(struct net_device *dev); 297 static netdev_tx_t epic_start_xmit(struct sk_buff *skb, 298 struct net_device *dev); 299 static int epic_rx(struct net_device *dev, int budget); 300 static int epic_poll(struct napi_struct *napi, int budget); 301 static irqreturn_t epic_interrupt(int irq, void *dev_instance); 302 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 303 static const struct ethtool_ops netdev_ethtool_ops; 304 static int epic_close(struct net_device *dev); 305 static struct net_device_stats *epic_get_stats(struct net_device *dev); 306 static void set_rx_mode(struct net_device *dev); 307 308 static const struct net_device_ops epic_netdev_ops = { 309 .ndo_open = epic_open, 310 .ndo_stop = epic_close, 311 .ndo_start_xmit = epic_start_xmit, 312 .ndo_tx_timeout = epic_tx_timeout, 313 .ndo_get_stats = epic_get_stats, 314 .ndo_set_rx_mode = set_rx_mode, 315 .ndo_do_ioctl = netdev_ioctl, 316 .ndo_set_mac_address = eth_mac_addr, 317 .ndo_validate_addr = eth_validate_addr, 318 }; 319 320 static int epic_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 321 { 322 static int card_idx = -1; 323 void __iomem *ioaddr; 324 int chip_idx = (int) ent->driver_data; 325 struct net_device *dev; 326 struct epic_private *ep; 327 int i, ret, option = 0, duplex = 0; 328 void *ring_space; 329 dma_addr_t ring_dma; 330 331 /* when built into the kernel, we only print version if device is found */ 332 #ifndef MODULE 333 pr_info_once("%s%s\n", version, version2); 334 #endif 335 336 card_idx++; 337 338 ret = pci_enable_device(pdev); 339 if (ret) 340 goto out; 341 342 if (pci_resource_len(pdev, 0) < EPIC_TOTAL_SIZE) { 343 dev_err(&pdev->dev, "no PCI region space\n"); 344 ret = -ENODEV; 345 goto err_out_disable; 346 } 347 348 pci_set_master(pdev); 349 350 ret = pci_request_regions(pdev, DRV_NAME); 351 if (ret < 0) 352 goto err_out_disable; 353 354 ret = -ENOMEM; 355 356 dev = alloc_etherdev(sizeof (*ep)); 357 if (!dev) 358 goto err_out_free_res; 359 360 SET_NETDEV_DEV(dev, &pdev->dev); 361 362 ioaddr = pci_iomap(pdev, EPIC_BAR, 0); 363 if (!ioaddr) { 364 dev_err(&pdev->dev, "ioremap failed\n"); 365 goto err_out_free_netdev; 366 } 367 368 pci_set_drvdata(pdev, dev); 369 ep = netdev_priv(dev); 370 ep->ioaddr = ioaddr; 371 ep->mii.dev = dev; 372 ep->mii.mdio_read = mdio_read; 373 ep->mii.mdio_write = mdio_write; 374 ep->mii.phy_id_mask = 0x1f; 375 ep->mii.reg_num_mask = 0x1f; 376 377 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma, 378 GFP_KERNEL); 379 if (!ring_space) 380 goto err_out_iounmap; 381 ep->tx_ring = ring_space; 382 ep->tx_ring_dma = ring_dma; 383 384 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma, 385 GFP_KERNEL); 386 if (!ring_space) 387 goto err_out_unmap_tx; 388 ep->rx_ring = ring_space; 389 ep->rx_ring_dma = ring_dma; 390 391 if (dev->mem_start) { 392 option = dev->mem_start; 393 duplex = (dev->mem_start & 16) ? 1 : 0; 394 } else if (card_idx >= 0 && card_idx < MAX_UNITS) { 395 if (options[card_idx] >= 0) 396 option = options[card_idx]; 397 if (full_duplex[card_idx] >= 0) 398 duplex = full_duplex[card_idx]; 399 } 400 401 spin_lock_init(&ep->lock); 402 spin_lock_init(&ep->napi_lock); 403 404 /* Bring the chip out of low-power mode. */ 405 ew32(GENCTL, 0x4200); 406 /* Magic?! If we don't set this bit the MII interface won't work. */ 407 /* This magic is documented in SMSC app note 7.15 */ 408 for (i = 16; i > 0; i--) 409 ew32(TEST1, 0x0008); 410 411 /* Turn on the MII transceiver. */ 412 ew32(MIICfg, 0x12); 413 if (chip_idx == 1) 414 ew32(NVCTL, (er32(NVCTL) & ~0x003c) | 0x4800); 415 ew32(GENCTL, 0x0200); 416 417 /* Note: the '175 does not have a serial EEPROM. */ 418 for (i = 0; i < 3; i++) 419 ((__le16 *)dev->dev_addr)[i] = cpu_to_le16(er16(LAN0 + i*4)); 420 421 if (debug > 2) { 422 dev_dbg(&pdev->dev, "EEPROM contents:\n"); 423 for (i = 0; i < 64; i++) 424 pr_cont(" %4.4x%s", read_eeprom(ep, i), 425 i % 16 == 15 ? "\n" : ""); 426 } 427 428 ep->pci_dev = pdev; 429 ep->chip_id = chip_idx; 430 ep->chip_flags = pci_id_tbl[chip_idx].drv_flags; 431 ep->irq_mask = 432 (ep->chip_flags & TYPE2_INTR ? PCIBusErr175 : PCIBusErr170) 433 | CntFull | TxUnderrun | EpicNapiEvent; 434 435 /* Find the connected MII xcvrs. 436 Doing this in open() would allow detecting external xcvrs later, but 437 takes much time and no cards have external MII. */ 438 { 439 int phy, phy_idx = 0; 440 for (phy = 1; phy < 32 && phy_idx < sizeof(ep->phys); phy++) { 441 int mii_status = mdio_read(dev, phy, MII_BMSR); 442 if (mii_status != 0xffff && mii_status != 0x0000) { 443 ep->phys[phy_idx++] = phy; 444 dev_info(&pdev->dev, 445 "MII transceiver #%d control " 446 "%4.4x status %4.4x.\n", 447 phy, mdio_read(dev, phy, 0), mii_status); 448 } 449 } 450 ep->mii_phy_cnt = phy_idx; 451 if (phy_idx != 0) { 452 phy = ep->phys[0]; 453 ep->mii.advertising = mdio_read(dev, phy, MII_ADVERTISE); 454 dev_info(&pdev->dev, 455 "Autonegotiation advertising %4.4x link " 456 "partner %4.4x.\n", 457 ep->mii.advertising, mdio_read(dev, phy, 5)); 458 } else if ( ! (ep->chip_flags & NO_MII)) { 459 dev_warn(&pdev->dev, 460 "***WARNING***: No MII transceiver found!\n"); 461 /* Use the known PHY address of the EPII. */ 462 ep->phys[0] = 3; 463 } 464 ep->mii.phy_id = ep->phys[0]; 465 } 466 467 /* Turn off the MII xcvr (175 only!), leave the chip in low-power mode. */ 468 if (ep->chip_flags & MII_PWRDWN) 469 ew32(NVCTL, er32(NVCTL) & ~0x483c); 470 ew32(GENCTL, 0x0008); 471 472 /* The lower four bits are the media type. */ 473 if (duplex) { 474 ep->mii.force_media = ep->mii.full_duplex = 1; 475 dev_info(&pdev->dev, "Forced full duplex requested.\n"); 476 } 477 dev->if_port = ep->default_port = option; 478 479 /* The Epic-specific entries in the device structure. */ 480 dev->netdev_ops = &epic_netdev_ops; 481 dev->ethtool_ops = &netdev_ethtool_ops; 482 dev->watchdog_timeo = TX_TIMEOUT; 483 netif_napi_add(dev, &ep->napi, epic_poll, 64); 484 485 ret = register_netdev(dev); 486 if (ret < 0) 487 goto err_out_unmap_rx; 488 489 netdev_info(dev, "%s at %lx, IRQ %d, %pM\n", 490 pci_id_tbl[chip_idx].name, 491 (long)pci_resource_start(pdev, EPIC_BAR), pdev->irq, 492 dev->dev_addr); 493 494 out: 495 return ret; 496 497 err_out_unmap_rx: 498 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, ep->rx_ring, 499 ep->rx_ring_dma); 500 err_out_unmap_tx: 501 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, ep->tx_ring, 502 ep->tx_ring_dma); 503 err_out_iounmap: 504 pci_iounmap(pdev, ioaddr); 505 err_out_free_netdev: 506 free_netdev(dev); 507 err_out_free_res: 508 pci_release_regions(pdev); 509 err_out_disable: 510 pci_disable_device(pdev); 511 goto out; 512 } 513 514 /* Serial EEPROM section. */ 515 516 /* EEPROM_Ctrl bits. */ 517 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */ 518 #define EE_CS 0x02 /* EEPROM chip select. */ 519 #define EE_DATA_WRITE 0x08 /* EEPROM chip data in. */ 520 #define EE_WRITE_0 0x01 521 #define EE_WRITE_1 0x09 522 #define EE_DATA_READ 0x10 /* EEPROM chip data out. */ 523 #define EE_ENB (0x0001 | EE_CS) 524 525 /* Delay between EEPROM clock transitions. 526 This serves to flush the operation to the PCI bus. 527 */ 528 529 #define eeprom_delay() er32(EECTL) 530 531 /* The EEPROM commands include the alway-set leading bit. */ 532 #define EE_WRITE_CMD (5 << 6) 533 #define EE_READ64_CMD (6 << 6) 534 #define EE_READ256_CMD (6 << 8) 535 #define EE_ERASE_CMD (7 << 6) 536 537 static void epic_disable_int(struct net_device *dev, struct epic_private *ep) 538 { 539 void __iomem *ioaddr = ep->ioaddr; 540 541 ew32(INTMASK, 0x00000000); 542 } 543 544 static inline void __epic_pci_commit(void __iomem *ioaddr) 545 { 546 #ifndef USE_IO_OPS 547 er32(INTMASK); 548 #endif 549 } 550 551 static inline void epic_napi_irq_off(struct net_device *dev, 552 struct epic_private *ep) 553 { 554 void __iomem *ioaddr = ep->ioaddr; 555 556 ew32(INTMASK, ep->irq_mask & ~EpicNapiEvent); 557 __epic_pci_commit(ioaddr); 558 } 559 560 static inline void epic_napi_irq_on(struct net_device *dev, 561 struct epic_private *ep) 562 { 563 void __iomem *ioaddr = ep->ioaddr; 564 565 /* No need to commit possible posted write */ 566 ew32(INTMASK, ep->irq_mask | EpicNapiEvent); 567 } 568 569 static int read_eeprom(struct epic_private *ep, int location) 570 { 571 void __iomem *ioaddr = ep->ioaddr; 572 int i; 573 int retval = 0; 574 int read_cmd = location | 575 (er32(EECTL) & 0x40 ? EE_READ64_CMD : EE_READ256_CMD); 576 577 ew32(EECTL, EE_ENB & ~EE_CS); 578 ew32(EECTL, EE_ENB); 579 580 /* Shift the read command bits out. */ 581 for (i = 12; i >= 0; i--) { 582 short dataval = (read_cmd & (1 << i)) ? EE_WRITE_1 : EE_WRITE_0; 583 ew32(EECTL, EE_ENB | dataval); 584 eeprom_delay(); 585 ew32(EECTL, EE_ENB | dataval | EE_SHIFT_CLK); 586 eeprom_delay(); 587 } 588 ew32(EECTL, EE_ENB); 589 590 for (i = 16; i > 0; i--) { 591 ew32(EECTL, EE_ENB | EE_SHIFT_CLK); 592 eeprom_delay(); 593 retval = (retval << 1) | ((er32(EECTL) & EE_DATA_READ) ? 1 : 0); 594 ew32(EECTL, EE_ENB); 595 eeprom_delay(); 596 } 597 598 /* Terminate the EEPROM access. */ 599 ew32(EECTL, EE_ENB & ~EE_CS); 600 return retval; 601 } 602 603 #define MII_READOP 1 604 #define MII_WRITEOP 2 605 static int mdio_read(struct net_device *dev, int phy_id, int location) 606 { 607 struct epic_private *ep = netdev_priv(dev); 608 void __iomem *ioaddr = ep->ioaddr; 609 int read_cmd = (phy_id << 9) | (location << 4) | MII_READOP; 610 int i; 611 612 ew32(MIICtrl, read_cmd); 613 /* Typical operation takes 25 loops. */ 614 for (i = 400; i > 0; i--) { 615 barrier(); 616 if ((er32(MIICtrl) & MII_READOP) == 0) { 617 /* Work around read failure bug. */ 618 if (phy_id == 1 && location < 6 && 619 er16(MIIData) == 0xffff) { 620 ew32(MIICtrl, read_cmd); 621 continue; 622 } 623 return er16(MIIData); 624 } 625 } 626 return 0xffff; 627 } 628 629 static void mdio_write(struct net_device *dev, int phy_id, int loc, int value) 630 { 631 struct epic_private *ep = netdev_priv(dev); 632 void __iomem *ioaddr = ep->ioaddr; 633 int i; 634 635 ew16(MIIData, value); 636 ew32(MIICtrl, (phy_id << 9) | (loc << 4) | MII_WRITEOP); 637 for (i = 10000; i > 0; i--) { 638 barrier(); 639 if ((er32(MIICtrl) & MII_WRITEOP) == 0) 640 break; 641 } 642 } 643 644 645 static int epic_open(struct net_device *dev) 646 { 647 struct epic_private *ep = netdev_priv(dev); 648 void __iomem *ioaddr = ep->ioaddr; 649 const int irq = ep->pci_dev->irq; 650 int rc, i; 651 652 /* Soft reset the chip. */ 653 ew32(GENCTL, 0x4001); 654 655 napi_enable(&ep->napi); 656 rc = request_irq(irq, epic_interrupt, IRQF_SHARED, dev->name, dev); 657 if (rc) { 658 napi_disable(&ep->napi); 659 return rc; 660 } 661 662 epic_init_ring(dev); 663 664 ew32(GENCTL, 0x4000); 665 /* This magic is documented in SMSC app note 7.15 */ 666 for (i = 16; i > 0; i--) 667 ew32(TEST1, 0x0008); 668 669 /* Pull the chip out of low-power mode, enable interrupts, and set for 670 PCI read multiple. The MIIcfg setting and strange write order are 671 required by the details of which bits are reset and the transceiver 672 wiring on the Ositech CardBus card. 673 */ 674 #if 0 675 ew32(MIICfg, dev->if_port == 1 ? 0x13 : 0x12); 676 #endif 677 if (ep->chip_flags & MII_PWRDWN) 678 ew32(NVCTL, (er32(NVCTL) & ~0x003c) | 0x4800); 679 680 /* Tell the chip to byteswap descriptors on big-endian hosts */ 681 #ifdef __BIG_ENDIAN 682 ew32(GENCTL, 0x4432 | (RX_FIFO_THRESH << 8)); 683 er32(GENCTL); 684 ew32(GENCTL, 0x0432 | (RX_FIFO_THRESH << 8)); 685 #else 686 ew32(GENCTL, 0x4412 | (RX_FIFO_THRESH << 8)); 687 er32(GENCTL); 688 ew32(GENCTL, 0x0412 | (RX_FIFO_THRESH << 8)); 689 #endif 690 691 udelay(20); /* Looks like EPII needs that if you want reliable RX init. FIXME: pci posting bug? */ 692 693 for (i = 0; i < 3; i++) 694 ew32(LAN0 + i*4, le16_to_cpu(((__le16*)dev->dev_addr)[i])); 695 696 ep->tx_threshold = TX_FIFO_THRESH; 697 ew32(TxThresh, ep->tx_threshold); 698 699 if (media2miictl[dev->if_port & 15]) { 700 if (ep->mii_phy_cnt) 701 mdio_write(dev, ep->phys[0], MII_BMCR, media2miictl[dev->if_port&15]); 702 if (dev->if_port == 1) { 703 if (debug > 1) 704 netdev_info(dev, "Using the 10base2 transceiver, MII status %4.4x.\n", 705 mdio_read(dev, ep->phys[0], MII_BMSR)); 706 } 707 } else { 708 int mii_lpa = mdio_read(dev, ep->phys[0], MII_LPA); 709 if (mii_lpa != 0xffff) { 710 if ((mii_lpa & LPA_100FULL) || (mii_lpa & 0x01C0) == LPA_10FULL) 711 ep->mii.full_duplex = 1; 712 else if (! (mii_lpa & LPA_LPACK)) 713 mdio_write(dev, ep->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART); 714 if (debug > 1) 715 netdev_info(dev, "Setting %s-duplex based on MII xcvr %d register read of %4.4x.\n", 716 ep->mii.full_duplex ? "full" 717 : "half", 718 ep->phys[0], mii_lpa); 719 } 720 } 721 722 ew32(TxCtrl, ep->mii.full_duplex ? 0x7f : 0x79); 723 ew32(PRxCDAR, ep->rx_ring_dma); 724 ew32(PTxCDAR, ep->tx_ring_dma); 725 726 /* Start the chip's Rx process. */ 727 set_rx_mode(dev); 728 ew32(COMMAND, StartRx | RxQueued); 729 730 netif_start_queue(dev); 731 732 /* Enable interrupts by setting the interrupt mask. */ 733 ew32(INTMASK, RxError | RxHeader | EpicNapiEvent | CntFull | 734 ((ep->chip_flags & TYPE2_INTR) ? PCIBusErr175 : PCIBusErr170) | 735 TxUnderrun); 736 737 if (debug > 1) { 738 netdev_dbg(dev, "epic_open() ioaddr %p IRQ %d status %4.4x %s-duplex.\n", 739 ioaddr, irq, er32(GENCTL), 740 ep->mii.full_duplex ? "full" : "half"); 741 } 742 743 /* Set the timer to switch to check for link beat and perhaps switch 744 to an alternate media type. */ 745 timer_setup(&ep->timer, epic_timer, 0); 746 ep->timer.expires = jiffies + 3*HZ; 747 add_timer(&ep->timer); 748 749 return rc; 750 } 751 752 /* Reset the chip to recover from a PCI transaction error. 753 This may occur at interrupt time. */ 754 static void epic_pause(struct net_device *dev) 755 { 756 struct net_device_stats *stats = &dev->stats; 757 struct epic_private *ep = netdev_priv(dev); 758 void __iomem *ioaddr = ep->ioaddr; 759 760 netif_stop_queue (dev); 761 762 /* Disable interrupts by clearing the interrupt mask. */ 763 ew32(INTMASK, 0x00000000); 764 /* Stop the chip's Tx and Rx DMA processes. */ 765 ew16(COMMAND, StopRx | StopTxDMA | StopRxDMA); 766 767 /* Update the error counts. */ 768 if (er16(COMMAND) != 0xffff) { 769 stats->rx_missed_errors += er8(MPCNT); 770 stats->rx_frame_errors += er8(ALICNT); 771 stats->rx_crc_errors += er8(CRCCNT); 772 } 773 774 /* Remove the packets on the Rx queue. */ 775 epic_rx(dev, RX_RING_SIZE); 776 } 777 778 static void epic_restart(struct net_device *dev) 779 { 780 struct epic_private *ep = netdev_priv(dev); 781 void __iomem *ioaddr = ep->ioaddr; 782 int i; 783 784 /* Soft reset the chip. */ 785 ew32(GENCTL, 0x4001); 786 787 netdev_dbg(dev, "Restarting the EPIC chip, Rx %d/%d Tx %d/%d.\n", 788 ep->cur_rx, ep->dirty_rx, ep->dirty_tx, ep->cur_tx); 789 udelay(1); 790 791 /* This magic is documented in SMSC app note 7.15 */ 792 for (i = 16; i > 0; i--) 793 ew32(TEST1, 0x0008); 794 795 #ifdef __BIG_ENDIAN 796 ew32(GENCTL, 0x0432 | (RX_FIFO_THRESH << 8)); 797 #else 798 ew32(GENCTL, 0x0412 | (RX_FIFO_THRESH << 8)); 799 #endif 800 ew32(MIICfg, dev->if_port == 1 ? 0x13 : 0x12); 801 if (ep->chip_flags & MII_PWRDWN) 802 ew32(NVCTL, (er32(NVCTL) & ~0x003c) | 0x4800); 803 804 for (i = 0; i < 3; i++) 805 ew32(LAN0 + i*4, le16_to_cpu(((__le16*)dev->dev_addr)[i])); 806 807 ep->tx_threshold = TX_FIFO_THRESH; 808 ew32(TxThresh, ep->tx_threshold); 809 ew32(TxCtrl, ep->mii.full_duplex ? 0x7f : 0x79); 810 ew32(PRxCDAR, ep->rx_ring_dma + 811 (ep->cur_rx % RX_RING_SIZE) * sizeof(struct epic_rx_desc)); 812 ew32(PTxCDAR, ep->tx_ring_dma + 813 (ep->dirty_tx % TX_RING_SIZE) * sizeof(struct epic_tx_desc)); 814 815 /* Start the chip's Rx process. */ 816 set_rx_mode(dev); 817 ew32(COMMAND, StartRx | RxQueued); 818 819 /* Enable interrupts by setting the interrupt mask. */ 820 ew32(INTMASK, RxError | RxHeader | EpicNapiEvent | CntFull | 821 ((ep->chip_flags & TYPE2_INTR) ? PCIBusErr175 : PCIBusErr170) | 822 TxUnderrun); 823 824 netdev_dbg(dev, "epic_restart() done, cmd status %4.4x, ctl %4.4x interrupt %4.4x.\n", 825 er32(COMMAND), er32(GENCTL), er32(INTSTAT)); 826 } 827 828 static void check_media(struct net_device *dev) 829 { 830 struct epic_private *ep = netdev_priv(dev); 831 void __iomem *ioaddr = ep->ioaddr; 832 int mii_lpa = ep->mii_phy_cnt ? mdio_read(dev, ep->phys[0], MII_LPA) : 0; 833 int negotiated = mii_lpa & ep->mii.advertising; 834 int duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040; 835 836 if (ep->mii.force_media) 837 return; 838 if (mii_lpa == 0xffff) /* Bogus read */ 839 return; 840 if (ep->mii.full_duplex != duplex) { 841 ep->mii.full_duplex = duplex; 842 netdev_info(dev, "Setting %s-duplex based on MII #%d link partner capability of %4.4x.\n", 843 ep->mii.full_duplex ? "full" : "half", 844 ep->phys[0], mii_lpa); 845 ew32(TxCtrl, ep->mii.full_duplex ? 0x7F : 0x79); 846 } 847 } 848 849 static void epic_timer(struct timer_list *t) 850 { 851 struct epic_private *ep = from_timer(ep, t, timer); 852 struct net_device *dev = ep->mii.dev; 853 void __iomem *ioaddr = ep->ioaddr; 854 int next_tick = 5*HZ; 855 856 if (debug > 3) { 857 netdev_dbg(dev, "Media monitor tick, Tx status %8.8x.\n", 858 er32(TxSTAT)); 859 netdev_dbg(dev, "Other registers are IntMask %4.4x IntStatus %4.4x RxStatus %4.4x.\n", 860 er32(INTMASK), er32(INTSTAT), er32(RxSTAT)); 861 } 862 863 check_media(dev); 864 865 ep->timer.expires = jiffies + next_tick; 866 add_timer(&ep->timer); 867 } 868 869 static void epic_tx_timeout(struct net_device *dev, unsigned int txqueue) 870 { 871 struct epic_private *ep = netdev_priv(dev); 872 void __iomem *ioaddr = ep->ioaddr; 873 874 if (debug > 0) { 875 netdev_warn(dev, "Transmit timeout using MII device, Tx status %4.4x.\n", 876 er16(TxSTAT)); 877 if (debug > 1) { 878 netdev_dbg(dev, "Tx indices: dirty_tx %d, cur_tx %d.\n", 879 ep->dirty_tx, ep->cur_tx); 880 } 881 } 882 if (er16(TxSTAT) & 0x10) { /* Tx FIFO underflow. */ 883 dev->stats.tx_fifo_errors++; 884 ew32(COMMAND, RestartTx); 885 } else { 886 epic_restart(dev); 887 ew32(COMMAND, TxQueued); 888 } 889 890 netif_trans_update(dev); /* prevent tx timeout */ 891 dev->stats.tx_errors++; 892 if (!ep->tx_full) 893 netif_wake_queue(dev); 894 } 895 896 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ 897 static void epic_init_ring(struct net_device *dev) 898 { 899 struct epic_private *ep = netdev_priv(dev); 900 int i; 901 902 ep->tx_full = 0; 903 ep->dirty_tx = ep->cur_tx = 0; 904 ep->cur_rx = ep->dirty_rx = 0; 905 ep->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32); 906 907 /* Initialize all Rx descriptors. */ 908 for (i = 0; i < RX_RING_SIZE; i++) { 909 ep->rx_ring[i].rxstatus = 0; 910 ep->rx_ring[i].buflength = ep->rx_buf_sz; 911 ep->rx_ring[i].next = ep->rx_ring_dma + 912 (i+1)*sizeof(struct epic_rx_desc); 913 ep->rx_skbuff[i] = NULL; 914 } 915 /* Mark the last entry as wrapping the ring. */ 916 ep->rx_ring[i-1].next = ep->rx_ring_dma; 917 918 /* Fill in the Rx buffers. Handle allocation failure gracefully. */ 919 for (i = 0; i < RX_RING_SIZE; i++) { 920 struct sk_buff *skb = netdev_alloc_skb(dev, ep->rx_buf_sz + 2); 921 ep->rx_skbuff[i] = skb; 922 if (skb == NULL) 923 break; 924 skb_reserve(skb, 2); /* 16 byte align the IP header. */ 925 ep->rx_ring[i].bufaddr = dma_map_single(&ep->pci_dev->dev, 926 skb->data, 927 ep->rx_buf_sz, 928 DMA_FROM_DEVICE); 929 ep->rx_ring[i].rxstatus = DescOwn; 930 } 931 ep->dirty_rx = (unsigned int)(i - RX_RING_SIZE); 932 933 /* The Tx buffer descriptor is filled in as needed, but we 934 do need to clear the ownership bit. */ 935 for (i = 0; i < TX_RING_SIZE; i++) { 936 ep->tx_skbuff[i] = NULL; 937 ep->tx_ring[i].txstatus = 0x0000; 938 ep->tx_ring[i].next = ep->tx_ring_dma + 939 (i+1)*sizeof(struct epic_tx_desc); 940 } 941 ep->tx_ring[i-1].next = ep->tx_ring_dma; 942 } 943 944 static netdev_tx_t epic_start_xmit(struct sk_buff *skb, struct net_device *dev) 945 { 946 struct epic_private *ep = netdev_priv(dev); 947 void __iomem *ioaddr = ep->ioaddr; 948 int entry, free_count; 949 u32 ctrl_word; 950 unsigned long flags; 951 952 if (skb_padto(skb, ETH_ZLEN)) 953 return NETDEV_TX_OK; 954 955 /* Caution: the write order is important here, set the field with the 956 "ownership" bit last. */ 957 958 /* Calculate the next Tx descriptor entry. */ 959 spin_lock_irqsave(&ep->lock, flags); 960 free_count = ep->cur_tx - ep->dirty_tx; 961 entry = ep->cur_tx % TX_RING_SIZE; 962 963 ep->tx_skbuff[entry] = skb; 964 ep->tx_ring[entry].bufaddr = dma_map_single(&ep->pci_dev->dev, 965 skb->data, skb->len, 966 DMA_TO_DEVICE); 967 if (free_count < TX_QUEUE_LEN/2) {/* Typical path */ 968 ctrl_word = 0x100000; /* No interrupt */ 969 } else if (free_count == TX_QUEUE_LEN/2) { 970 ctrl_word = 0x140000; /* Tx-done intr. */ 971 } else if (free_count < TX_QUEUE_LEN - 1) { 972 ctrl_word = 0x100000; /* No Tx-done intr. */ 973 } else { 974 /* Leave room for an additional entry. */ 975 ctrl_word = 0x140000; /* Tx-done intr. */ 976 ep->tx_full = 1; 977 } 978 ep->tx_ring[entry].buflength = ctrl_word | skb->len; 979 ep->tx_ring[entry].txstatus = 980 ((skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN) << 16) 981 | DescOwn; 982 983 ep->cur_tx++; 984 if (ep->tx_full) 985 netif_stop_queue(dev); 986 987 spin_unlock_irqrestore(&ep->lock, flags); 988 /* Trigger an immediate transmit demand. */ 989 ew32(COMMAND, TxQueued); 990 991 if (debug > 4) 992 netdev_dbg(dev, "Queued Tx packet size %d to slot %d, flag %2.2x Tx status %8.8x.\n", 993 skb->len, entry, ctrl_word, er32(TxSTAT)); 994 995 return NETDEV_TX_OK; 996 } 997 998 static void epic_tx_error(struct net_device *dev, struct epic_private *ep, 999 int status) 1000 { 1001 struct net_device_stats *stats = &dev->stats; 1002 1003 #ifndef final_version 1004 /* There was an major error, log it. */ 1005 if (debug > 1) 1006 netdev_dbg(dev, "Transmit error, Tx status %8.8x.\n", 1007 status); 1008 #endif 1009 stats->tx_errors++; 1010 if (status & 0x1050) 1011 stats->tx_aborted_errors++; 1012 if (status & 0x0008) 1013 stats->tx_carrier_errors++; 1014 if (status & 0x0040) 1015 stats->tx_window_errors++; 1016 if (status & 0x0010) 1017 stats->tx_fifo_errors++; 1018 } 1019 1020 static void epic_tx(struct net_device *dev, struct epic_private *ep) 1021 { 1022 unsigned int dirty_tx, cur_tx; 1023 1024 /* 1025 * Note: if this lock becomes a problem we can narrow the locked 1026 * region at the cost of occasionally grabbing the lock more times. 1027 */ 1028 cur_tx = ep->cur_tx; 1029 for (dirty_tx = ep->dirty_tx; cur_tx - dirty_tx > 0; dirty_tx++) { 1030 struct sk_buff *skb; 1031 int entry = dirty_tx % TX_RING_SIZE; 1032 int txstatus = ep->tx_ring[entry].txstatus; 1033 1034 if (txstatus & DescOwn) 1035 break; /* It still hasn't been Txed */ 1036 1037 if (likely(txstatus & 0x0001)) { 1038 dev->stats.collisions += (txstatus >> 8) & 15; 1039 dev->stats.tx_packets++; 1040 dev->stats.tx_bytes += ep->tx_skbuff[entry]->len; 1041 } else 1042 epic_tx_error(dev, ep, txstatus); 1043 1044 /* Free the original skb. */ 1045 skb = ep->tx_skbuff[entry]; 1046 dma_unmap_single(&ep->pci_dev->dev, 1047 ep->tx_ring[entry].bufaddr, skb->len, 1048 DMA_TO_DEVICE); 1049 dev_consume_skb_irq(skb); 1050 ep->tx_skbuff[entry] = NULL; 1051 } 1052 1053 #ifndef final_version 1054 if (cur_tx - dirty_tx > TX_RING_SIZE) { 1055 netdev_warn(dev, "Out-of-sync dirty pointer, %d vs. %d, full=%d.\n", 1056 dirty_tx, cur_tx, ep->tx_full); 1057 dirty_tx += TX_RING_SIZE; 1058 } 1059 #endif 1060 ep->dirty_tx = dirty_tx; 1061 if (ep->tx_full && cur_tx - dirty_tx < TX_QUEUE_LEN - 4) { 1062 /* The ring is no longer full, allow new TX entries. */ 1063 ep->tx_full = 0; 1064 netif_wake_queue(dev); 1065 } 1066 } 1067 1068 /* The interrupt handler does all of the Rx thread work and cleans up 1069 after the Tx thread. */ 1070 static irqreturn_t epic_interrupt(int irq, void *dev_instance) 1071 { 1072 struct net_device *dev = dev_instance; 1073 struct epic_private *ep = netdev_priv(dev); 1074 void __iomem *ioaddr = ep->ioaddr; 1075 unsigned int handled = 0; 1076 int status; 1077 1078 status = er32(INTSTAT); 1079 /* Acknowledge all of the current interrupt sources ASAP. */ 1080 ew32(INTSTAT, status & EpicNormalEvent); 1081 1082 if (debug > 4) { 1083 netdev_dbg(dev, "Interrupt, status=%#8.8x new intstat=%#8.8x.\n", 1084 status, er32(INTSTAT)); 1085 } 1086 1087 if ((status & IntrSummary) == 0) 1088 goto out; 1089 1090 handled = 1; 1091 1092 if (status & EpicNapiEvent) { 1093 spin_lock(&ep->napi_lock); 1094 if (napi_schedule_prep(&ep->napi)) { 1095 epic_napi_irq_off(dev, ep); 1096 __napi_schedule(&ep->napi); 1097 } 1098 spin_unlock(&ep->napi_lock); 1099 } 1100 status &= ~EpicNapiEvent; 1101 1102 /* Check uncommon events all at once. */ 1103 if (status & (CntFull | TxUnderrun | PCIBusErr170 | PCIBusErr175)) { 1104 struct net_device_stats *stats = &dev->stats; 1105 1106 if (status == EpicRemoved) 1107 goto out; 1108 1109 /* Always update the error counts to avoid overhead later. */ 1110 stats->rx_missed_errors += er8(MPCNT); 1111 stats->rx_frame_errors += er8(ALICNT); 1112 stats->rx_crc_errors += er8(CRCCNT); 1113 1114 if (status & TxUnderrun) { /* Tx FIFO underflow. */ 1115 stats->tx_fifo_errors++; 1116 ew32(TxThresh, ep->tx_threshold += 128); 1117 /* Restart the transmit process. */ 1118 ew32(COMMAND, RestartTx); 1119 } 1120 if (status & PCIBusErr170) { 1121 netdev_err(dev, "PCI Bus Error! status %4.4x.\n", 1122 status); 1123 epic_pause(dev); 1124 epic_restart(dev); 1125 } 1126 /* Clear all error sources. */ 1127 ew32(INTSTAT, status & 0x7f18); 1128 } 1129 1130 out: 1131 if (debug > 3) { 1132 netdev_dbg(dev, "exit interrupt, intr_status=%#4.4x.\n", 1133 status); 1134 } 1135 1136 return IRQ_RETVAL(handled); 1137 } 1138 1139 static int epic_rx(struct net_device *dev, int budget) 1140 { 1141 struct epic_private *ep = netdev_priv(dev); 1142 int entry = ep->cur_rx % RX_RING_SIZE; 1143 int rx_work_limit = ep->dirty_rx + RX_RING_SIZE - ep->cur_rx; 1144 int work_done = 0; 1145 1146 if (debug > 4) 1147 netdev_dbg(dev, " In epic_rx(), entry %d %8.8x.\n", entry, 1148 ep->rx_ring[entry].rxstatus); 1149 1150 if (rx_work_limit > budget) 1151 rx_work_limit = budget; 1152 1153 /* If we own the next entry, it's a new packet. Send it up. */ 1154 while ((ep->rx_ring[entry].rxstatus & DescOwn) == 0) { 1155 int status = ep->rx_ring[entry].rxstatus; 1156 1157 if (debug > 4) 1158 netdev_dbg(dev, " epic_rx() status was %8.8x.\n", 1159 status); 1160 if (--rx_work_limit < 0) 1161 break; 1162 if (status & 0x2006) { 1163 if (debug > 2) 1164 netdev_dbg(dev, "epic_rx() error status was %8.8x.\n", 1165 status); 1166 if (status & 0x2000) { 1167 netdev_warn(dev, "Oversized Ethernet frame spanned multiple buffers, status %4.4x!\n", 1168 status); 1169 dev->stats.rx_length_errors++; 1170 } else if (status & 0x0006) 1171 /* Rx Frame errors are counted in hardware. */ 1172 dev->stats.rx_errors++; 1173 } else { 1174 /* Malloc up new buffer, compatible with net-2e. */ 1175 /* Omit the four octet CRC from the length. */ 1176 short pkt_len = (status >> 16) - 4; 1177 struct sk_buff *skb; 1178 1179 if (pkt_len > PKT_BUF_SZ - 4) { 1180 netdev_err(dev, "Oversized Ethernet frame, status %x %d bytes.\n", 1181 status, pkt_len); 1182 pkt_len = 1514; 1183 } 1184 /* Check if the packet is long enough to accept without copying 1185 to a minimally-sized skbuff. */ 1186 if (pkt_len < rx_copybreak && 1187 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) { 1188 skb_reserve(skb, 2); /* 16 byte align the IP header */ 1189 dma_sync_single_for_cpu(&ep->pci_dev->dev, 1190 ep->rx_ring[entry].bufaddr, 1191 ep->rx_buf_sz, 1192 DMA_FROM_DEVICE); 1193 skb_copy_to_linear_data(skb, ep->rx_skbuff[entry]->data, pkt_len); 1194 skb_put(skb, pkt_len); 1195 dma_sync_single_for_device(&ep->pci_dev->dev, 1196 ep->rx_ring[entry].bufaddr, 1197 ep->rx_buf_sz, 1198 DMA_FROM_DEVICE); 1199 } else { 1200 dma_unmap_single(&ep->pci_dev->dev, 1201 ep->rx_ring[entry].bufaddr, 1202 ep->rx_buf_sz, 1203 DMA_FROM_DEVICE); 1204 skb_put(skb = ep->rx_skbuff[entry], pkt_len); 1205 ep->rx_skbuff[entry] = NULL; 1206 } 1207 skb->protocol = eth_type_trans(skb, dev); 1208 netif_receive_skb(skb); 1209 dev->stats.rx_packets++; 1210 dev->stats.rx_bytes += pkt_len; 1211 } 1212 work_done++; 1213 entry = (++ep->cur_rx) % RX_RING_SIZE; 1214 } 1215 1216 /* Refill the Rx ring buffers. */ 1217 for (; ep->cur_rx - ep->dirty_rx > 0; ep->dirty_rx++) { 1218 entry = ep->dirty_rx % RX_RING_SIZE; 1219 if (ep->rx_skbuff[entry] == NULL) { 1220 struct sk_buff *skb; 1221 skb = ep->rx_skbuff[entry] = netdev_alloc_skb(dev, ep->rx_buf_sz + 2); 1222 if (skb == NULL) 1223 break; 1224 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ 1225 ep->rx_ring[entry].bufaddr = dma_map_single(&ep->pci_dev->dev, 1226 skb->data, 1227 ep->rx_buf_sz, 1228 DMA_FROM_DEVICE); 1229 work_done++; 1230 } 1231 /* AV: shouldn't we add a barrier here? */ 1232 ep->rx_ring[entry].rxstatus = DescOwn; 1233 } 1234 return work_done; 1235 } 1236 1237 static void epic_rx_err(struct net_device *dev, struct epic_private *ep) 1238 { 1239 void __iomem *ioaddr = ep->ioaddr; 1240 int status; 1241 1242 status = er32(INTSTAT); 1243 1244 if (status == EpicRemoved) 1245 return; 1246 if (status & RxOverflow) /* Missed a Rx frame. */ 1247 dev->stats.rx_errors++; 1248 if (status & (RxOverflow | RxFull)) 1249 ew16(COMMAND, RxQueued); 1250 } 1251 1252 static int epic_poll(struct napi_struct *napi, int budget) 1253 { 1254 struct epic_private *ep = container_of(napi, struct epic_private, napi); 1255 struct net_device *dev = ep->mii.dev; 1256 void __iomem *ioaddr = ep->ioaddr; 1257 int work_done; 1258 1259 epic_tx(dev, ep); 1260 1261 work_done = epic_rx(dev, budget); 1262 1263 epic_rx_err(dev, ep); 1264 1265 if (work_done < budget && napi_complete_done(napi, work_done)) { 1266 unsigned long flags; 1267 1268 spin_lock_irqsave(&ep->napi_lock, flags); 1269 1270 ew32(INTSTAT, EpicNapiEvent); 1271 epic_napi_irq_on(dev, ep); 1272 spin_unlock_irqrestore(&ep->napi_lock, flags); 1273 } 1274 1275 return work_done; 1276 } 1277 1278 static int epic_close(struct net_device *dev) 1279 { 1280 struct epic_private *ep = netdev_priv(dev); 1281 struct pci_dev *pdev = ep->pci_dev; 1282 void __iomem *ioaddr = ep->ioaddr; 1283 struct sk_buff *skb; 1284 int i; 1285 1286 netif_stop_queue(dev); 1287 napi_disable(&ep->napi); 1288 1289 if (debug > 1) 1290 netdev_dbg(dev, "Shutting down ethercard, status was %2.2x.\n", 1291 er32(INTSTAT)); 1292 1293 del_timer_sync(&ep->timer); 1294 1295 epic_disable_int(dev, ep); 1296 1297 free_irq(pdev->irq, dev); 1298 1299 epic_pause(dev); 1300 1301 /* Free all the skbuffs in the Rx queue. */ 1302 for (i = 0; i < RX_RING_SIZE; i++) { 1303 skb = ep->rx_skbuff[i]; 1304 ep->rx_skbuff[i] = NULL; 1305 ep->rx_ring[i].rxstatus = 0; /* Not owned by Epic chip. */ 1306 ep->rx_ring[i].buflength = 0; 1307 if (skb) { 1308 dma_unmap_single(&pdev->dev, ep->rx_ring[i].bufaddr, 1309 ep->rx_buf_sz, DMA_FROM_DEVICE); 1310 dev_kfree_skb(skb); 1311 } 1312 ep->rx_ring[i].bufaddr = 0xBADF00D0; /* An invalid address. */ 1313 } 1314 for (i = 0; i < TX_RING_SIZE; i++) { 1315 skb = ep->tx_skbuff[i]; 1316 ep->tx_skbuff[i] = NULL; 1317 if (!skb) 1318 continue; 1319 dma_unmap_single(&pdev->dev, ep->tx_ring[i].bufaddr, skb->len, 1320 DMA_TO_DEVICE); 1321 dev_kfree_skb(skb); 1322 } 1323 1324 /* Green! Leave the chip in low-power mode. */ 1325 ew32(GENCTL, 0x0008); 1326 1327 return 0; 1328 } 1329 1330 static struct net_device_stats *epic_get_stats(struct net_device *dev) 1331 { 1332 struct epic_private *ep = netdev_priv(dev); 1333 void __iomem *ioaddr = ep->ioaddr; 1334 1335 if (netif_running(dev)) { 1336 struct net_device_stats *stats = &dev->stats; 1337 1338 stats->rx_missed_errors += er8(MPCNT); 1339 stats->rx_frame_errors += er8(ALICNT); 1340 stats->rx_crc_errors += er8(CRCCNT); 1341 } 1342 1343 return &dev->stats; 1344 } 1345 1346 /* Set or clear the multicast filter for this adaptor. 1347 Note that we only use exclusion around actually queueing the 1348 new frame, not around filling ep->setup_frame. This is non-deterministic 1349 when re-entered but still correct. */ 1350 1351 static void set_rx_mode(struct net_device *dev) 1352 { 1353 struct epic_private *ep = netdev_priv(dev); 1354 void __iomem *ioaddr = ep->ioaddr; 1355 unsigned char mc_filter[8]; /* Multicast hash filter */ 1356 int i; 1357 1358 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1359 ew32(RxCtrl, 0x002c); 1360 /* Unconditionally log net taps. */ 1361 memset(mc_filter, 0xff, sizeof(mc_filter)); 1362 } else if ((!netdev_mc_empty(dev)) || (dev->flags & IFF_ALLMULTI)) { 1363 /* There is apparently a chip bug, so the multicast filter 1364 is never enabled. */ 1365 /* Too many to filter perfectly -- accept all multicasts. */ 1366 memset(mc_filter, 0xff, sizeof(mc_filter)); 1367 ew32(RxCtrl, 0x000c); 1368 } else if (netdev_mc_empty(dev)) { 1369 ew32(RxCtrl, 0x0004); 1370 return; 1371 } else { /* Never executed, for now. */ 1372 struct netdev_hw_addr *ha; 1373 1374 memset(mc_filter, 0, sizeof(mc_filter)); 1375 netdev_for_each_mc_addr(ha, dev) { 1376 unsigned int bit_nr = 1377 ether_crc_le(ETH_ALEN, ha->addr) & 0x3f; 1378 mc_filter[bit_nr >> 3] |= (1 << bit_nr); 1379 } 1380 } 1381 /* ToDo: perhaps we need to stop the Tx and Rx process here? */ 1382 if (memcmp(mc_filter, ep->mc_filter, sizeof(mc_filter))) { 1383 for (i = 0; i < 4; i++) 1384 ew16(MC0 + i*4, ((u16 *)mc_filter)[i]); 1385 memcpy(ep->mc_filter, mc_filter, sizeof(mc_filter)); 1386 } 1387 } 1388 1389 static void netdev_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info) 1390 { 1391 struct epic_private *np = netdev_priv(dev); 1392 1393 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1394 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1395 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info)); 1396 } 1397 1398 static int netdev_get_link_ksettings(struct net_device *dev, 1399 struct ethtool_link_ksettings *cmd) 1400 { 1401 struct epic_private *np = netdev_priv(dev); 1402 1403 spin_lock_irq(&np->lock); 1404 mii_ethtool_get_link_ksettings(&np->mii, cmd); 1405 spin_unlock_irq(&np->lock); 1406 1407 return 0; 1408 } 1409 1410 static int netdev_set_link_ksettings(struct net_device *dev, 1411 const struct ethtool_link_ksettings *cmd) 1412 { 1413 struct epic_private *np = netdev_priv(dev); 1414 int rc; 1415 1416 spin_lock_irq(&np->lock); 1417 rc = mii_ethtool_set_link_ksettings(&np->mii, cmd); 1418 spin_unlock_irq(&np->lock); 1419 1420 return rc; 1421 } 1422 1423 static int netdev_nway_reset(struct net_device *dev) 1424 { 1425 struct epic_private *np = netdev_priv(dev); 1426 return mii_nway_restart(&np->mii); 1427 } 1428 1429 static u32 netdev_get_link(struct net_device *dev) 1430 { 1431 struct epic_private *np = netdev_priv(dev); 1432 return mii_link_ok(&np->mii); 1433 } 1434 1435 static u32 netdev_get_msglevel(struct net_device *dev) 1436 { 1437 return debug; 1438 } 1439 1440 static void netdev_set_msglevel(struct net_device *dev, u32 value) 1441 { 1442 debug = value; 1443 } 1444 1445 static int ethtool_begin(struct net_device *dev) 1446 { 1447 struct epic_private *ep = netdev_priv(dev); 1448 void __iomem *ioaddr = ep->ioaddr; 1449 1450 if (ep->ethtool_ops_nesting == U32_MAX) 1451 return -EBUSY; 1452 /* power-up, if interface is down */ 1453 if (!ep->ethtool_ops_nesting++ && !netif_running(dev)) { 1454 ew32(GENCTL, 0x0200); 1455 ew32(NVCTL, (er32(NVCTL) & ~0x003c) | 0x4800); 1456 } 1457 return 0; 1458 } 1459 1460 static void ethtool_complete(struct net_device *dev) 1461 { 1462 struct epic_private *ep = netdev_priv(dev); 1463 void __iomem *ioaddr = ep->ioaddr; 1464 1465 /* power-down, if interface is down */ 1466 if (!--ep->ethtool_ops_nesting && !netif_running(dev)) { 1467 ew32(GENCTL, 0x0008); 1468 ew32(NVCTL, (er32(NVCTL) & ~0x483c) | 0x0000); 1469 } 1470 } 1471 1472 static const struct ethtool_ops netdev_ethtool_ops = { 1473 .get_drvinfo = netdev_get_drvinfo, 1474 .nway_reset = netdev_nway_reset, 1475 .get_link = netdev_get_link, 1476 .get_msglevel = netdev_get_msglevel, 1477 .set_msglevel = netdev_set_msglevel, 1478 .begin = ethtool_begin, 1479 .complete = ethtool_complete, 1480 .get_link_ksettings = netdev_get_link_ksettings, 1481 .set_link_ksettings = netdev_set_link_ksettings, 1482 }; 1483 1484 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1485 { 1486 struct epic_private *np = netdev_priv(dev); 1487 void __iomem *ioaddr = np->ioaddr; 1488 struct mii_ioctl_data *data = if_mii(rq); 1489 int rc; 1490 1491 /* power-up, if interface is down */ 1492 if (! netif_running(dev)) { 1493 ew32(GENCTL, 0x0200); 1494 ew32(NVCTL, (er32(NVCTL) & ~0x003c) | 0x4800); 1495 } 1496 1497 /* all non-ethtool ioctls (the SIOC[GS]MIIxxx ioctls) */ 1498 spin_lock_irq(&np->lock); 1499 rc = generic_mii_ioctl(&np->mii, data, cmd, NULL); 1500 spin_unlock_irq(&np->lock); 1501 1502 /* power-down, if interface is down */ 1503 if (! netif_running(dev)) { 1504 ew32(GENCTL, 0x0008); 1505 ew32(NVCTL, (er32(NVCTL) & ~0x483c) | 0x0000); 1506 } 1507 return rc; 1508 } 1509 1510 1511 static void epic_remove_one(struct pci_dev *pdev) 1512 { 1513 struct net_device *dev = pci_get_drvdata(pdev); 1514 struct epic_private *ep = netdev_priv(dev); 1515 1516 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, ep->tx_ring, 1517 ep->tx_ring_dma); 1518 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, ep->rx_ring, 1519 ep->rx_ring_dma); 1520 unregister_netdev(dev); 1521 pci_iounmap(pdev, ep->ioaddr); 1522 pci_release_regions(pdev); 1523 free_netdev(dev); 1524 pci_disable_device(pdev); 1525 /* pci_power_off(pdev, -1); */ 1526 } 1527 1528 static int __maybe_unused epic_suspend(struct device *dev_d) 1529 { 1530 struct net_device *dev = dev_get_drvdata(dev_d); 1531 struct epic_private *ep = netdev_priv(dev); 1532 void __iomem *ioaddr = ep->ioaddr; 1533 1534 if (!netif_running(dev)) 1535 return 0; 1536 epic_pause(dev); 1537 /* Put the chip into low-power mode. */ 1538 ew32(GENCTL, 0x0008); 1539 /* pci_power_off(pdev, -1); */ 1540 return 0; 1541 } 1542 1543 1544 static int __maybe_unused epic_resume(struct device *dev_d) 1545 { 1546 struct net_device *dev = dev_get_drvdata(dev_d); 1547 1548 if (!netif_running(dev)) 1549 return 0; 1550 epic_restart(dev); 1551 /* pci_power_on(pdev); */ 1552 return 0; 1553 } 1554 1555 static SIMPLE_DEV_PM_OPS(epic_pm_ops, epic_suspend, epic_resume); 1556 1557 static struct pci_driver epic_driver = { 1558 .name = DRV_NAME, 1559 .id_table = epic_pci_tbl, 1560 .probe = epic_init_one, 1561 .remove = epic_remove_one, 1562 .driver.pm = &epic_pm_ops, 1563 }; 1564 1565 1566 static int __init epic_init (void) 1567 { 1568 /* when a module, this is printed whether or not devices are found in probe */ 1569 #ifdef MODULE 1570 pr_info("%s%s\n", version, version2); 1571 #endif 1572 1573 return pci_register_driver(&epic_driver); 1574 } 1575 1576 1577 static void __exit epic_cleanup (void) 1578 { 1579 pci_unregister_driver (&epic_driver); 1580 } 1581 1582 1583 module_init(epic_init); 1584 module_exit(epic_cleanup); 1585