1 /* epic100.c: A SMC 83c170 EPIC/100 Fast Ethernet driver for Linux. */ 2 /* 3 Written/copyright 1997-2001 by Donald Becker. 4 5 This software may be used and distributed according to the terms of 6 the GNU General Public License (GPL), incorporated herein by reference. 7 Drivers based on or derived from this code fall under the GPL and must 8 retain the authorship, copyright and license notice. This file is not 9 a complete program and may only be used when the entire operating 10 system is licensed under the GPL. 11 12 This driver is for the SMC83c170/175 "EPIC" series, as used on the 13 SMC EtherPower II 9432 PCI adapter, and several CardBus cards. 14 15 The author may be reached as becker@scyld.com, or C/O 16 Scyld Computing Corporation 17 410 Severn Ave., Suite 210 18 Annapolis MD 21403 19 20 Information and updates available at 21 http://www.scyld.com/network/epic100.html 22 [this link no longer provides anything useful -jgarzik] 23 24 --------------------------------------------------------------------- 25 26 */ 27 28 #define DRV_NAME "epic100" 29 #define DRV_VERSION "2.1" 30 #define DRV_RELDATE "Sept 11, 2006" 31 32 /* The user-configurable values. 33 These may be modified when a driver module is loaded.*/ 34 35 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */ 36 37 /* Used to pass the full-duplex flag, etc. */ 38 #define MAX_UNITS 8 /* More are supported, limit only on options */ 39 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; 40 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; 41 42 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. 43 Setting to > 1518 effectively disables this feature. */ 44 static int rx_copybreak; 45 46 /* Operational parameters that are set at compile time. */ 47 48 /* Keep the ring sizes a power of two for operational efficiency. 49 The compiler will convert <unsigned>'%'<2^N> into a bit mask. 50 Making the Tx ring too large decreases the effectiveness of channel 51 bonding and packet priority. 52 There are no ill effects from too-large receive rings. */ 53 #define TX_RING_SIZE 256 54 #define TX_QUEUE_LEN 240 /* Limit ring entries actually used. */ 55 #define RX_RING_SIZE 256 56 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct epic_tx_desc) 57 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct epic_rx_desc) 58 59 /* Operational parameters that usually are not changed. */ 60 /* Time in jiffies before concluding the transmitter is hung. */ 61 #define TX_TIMEOUT (2*HZ) 62 63 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 64 65 /* Bytes transferred to chip before transmission starts. */ 66 /* Initial threshold, increased on underflow, rounded down to 4 byte units. */ 67 #define TX_FIFO_THRESH 256 68 #define RX_FIFO_THRESH 1 /* 0-3, 0==32, 64,96, or 3==128 bytes */ 69 70 #include <linux/module.h> 71 #include <linux/kernel.h> 72 #include <linux/string.h> 73 #include <linux/timer.h> 74 #include <linux/errno.h> 75 #include <linux/ioport.h> 76 #include <linux/interrupt.h> 77 #include <linux/pci.h> 78 #include <linux/delay.h> 79 #include <linux/netdevice.h> 80 #include <linux/etherdevice.h> 81 #include <linux/skbuff.h> 82 #include <linux/init.h> 83 #include <linux/spinlock.h> 84 #include <linux/ethtool.h> 85 #include <linux/mii.h> 86 #include <linux/crc32.h> 87 #include <linux/bitops.h> 88 #include <asm/io.h> 89 #include <linux/uaccess.h> 90 #include <asm/byteorder.h> 91 92 /* These identify the driver base version and may not be removed. */ 93 static char version[] = 94 DRV_NAME ".c:v1.11 1/7/2001 Written by Donald Becker <becker@scyld.com>"; 95 static char version2[] = 96 " (unofficial 2.4.x kernel port, version " DRV_VERSION ", " DRV_RELDATE ")"; 97 98 MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); 99 MODULE_DESCRIPTION("SMC 83c170 EPIC series Ethernet driver"); 100 MODULE_LICENSE("GPL"); 101 102 module_param(debug, int, 0); 103 module_param(rx_copybreak, int, 0); 104 module_param_array(options, int, NULL, 0); 105 module_param_array(full_duplex, int, NULL, 0); 106 MODULE_PARM_DESC(debug, "EPIC/100 debug level (0-5)"); 107 MODULE_PARM_DESC(options, "EPIC/100: Bits 0-3: media type, bit 4: full duplex"); 108 MODULE_PARM_DESC(rx_copybreak, "EPIC/100 copy breakpoint for copy-only-tiny-frames"); 109 MODULE_PARM_DESC(full_duplex, "EPIC/100 full duplex setting(s) (1)"); 110 111 /* 112 Theory of Operation 113 114 I. Board Compatibility 115 116 This device driver is designed for the SMC "EPIC/100", the SMC 117 single-chip Ethernet controllers for PCI. This chip is used on 118 the SMC EtherPower II boards. 119 120 II. Board-specific settings 121 122 PCI bus devices are configured by the system at boot time, so no jumpers 123 need to be set on the board. The system BIOS will assign the 124 PCI INTA signal to a (preferably otherwise unused) system IRQ line. 125 Note: Kernel versions earlier than 1.3.73 do not support shared PCI 126 interrupt lines. 127 128 III. Driver operation 129 130 IIIa. Ring buffers 131 132 IVb. References 133 134 http://www.smsc.com/media/Downloads_Public/discontinued/83c171.pdf 135 http://www.smsc.com/media/Downloads_Public/discontinued/83c175.pdf 136 http://scyld.com/expert/NWay.html 137 http://www.national.com/pf/DP/DP83840A.html 138 139 IVc. Errata 140 141 */ 142 143 144 enum chip_capability_flags { MII_PWRDWN=1, TYPE2_INTR=2, NO_MII=4 }; 145 146 #define EPIC_TOTAL_SIZE 0x100 147 #define USE_IO_OPS 1 148 149 #ifdef USE_IO_OPS 150 #define EPIC_BAR 0 151 #else 152 #define EPIC_BAR 1 153 #endif 154 155 typedef enum { 156 SMSC_83C170_0, 157 SMSC_83C170, 158 SMSC_83C175, 159 } chip_t; 160 161 162 struct epic_chip_info { 163 const char *name; 164 int drv_flags; /* Driver use, intended as capability flags. */ 165 }; 166 167 168 /* indexed by chip_t */ 169 static const struct epic_chip_info pci_id_tbl[] = { 170 { "SMSC EPIC/100 83c170", TYPE2_INTR | NO_MII | MII_PWRDWN }, 171 { "SMSC EPIC/100 83c170", TYPE2_INTR }, 172 { "SMSC EPIC/C 83c175", TYPE2_INTR | MII_PWRDWN }, 173 }; 174 175 176 static const struct pci_device_id epic_pci_tbl[] = { 177 { 0x10B8, 0x0005, 0x1092, 0x0AB4, 0, 0, SMSC_83C170_0 }, 178 { 0x10B8, 0x0005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, SMSC_83C170 }, 179 { 0x10B8, 0x0006, PCI_ANY_ID, PCI_ANY_ID, 180 PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, SMSC_83C175 }, 181 { 0,} 182 }; 183 MODULE_DEVICE_TABLE (pci, epic_pci_tbl); 184 185 #define ew16(reg, val) iowrite16(val, ioaddr + (reg)) 186 #define ew32(reg, val) iowrite32(val, ioaddr + (reg)) 187 #define er8(reg) ioread8(ioaddr + (reg)) 188 #define er16(reg) ioread16(ioaddr + (reg)) 189 #define er32(reg) ioread32(ioaddr + (reg)) 190 191 /* Offsets to registers, using the (ugh) SMC names. */ 192 enum epic_registers { 193 COMMAND=0, INTSTAT=4, INTMASK=8, GENCTL=0x0C, NVCTL=0x10, EECTL=0x14, 194 PCIBurstCnt=0x18, 195 TEST1=0x1C, CRCCNT=0x20, ALICNT=0x24, MPCNT=0x28, /* Rx error counters. */ 196 MIICtrl=0x30, MIIData=0x34, MIICfg=0x38, 197 LAN0=64, /* MAC address. */ 198 MC0=80, /* Multicast filter table. */ 199 RxCtrl=96, TxCtrl=112, TxSTAT=0x74, 200 PRxCDAR=0x84, RxSTAT=0xA4, EarlyRx=0xB0, PTxCDAR=0xC4, TxThresh=0xDC, 201 }; 202 203 /* Interrupt register bits, using my own meaningful names. */ 204 enum IntrStatus { 205 TxIdle=0x40000, RxIdle=0x20000, IntrSummary=0x010000, 206 PCIBusErr170=0x7000, PCIBusErr175=0x1000, PhyEvent175=0x8000, 207 RxStarted=0x0800, RxEarlyWarn=0x0400, CntFull=0x0200, TxUnderrun=0x0100, 208 TxEmpty=0x0080, TxDone=0x0020, RxError=0x0010, 209 RxOverflow=0x0008, RxFull=0x0004, RxHeader=0x0002, RxDone=0x0001, 210 }; 211 enum CommandBits { 212 StopRx=1, StartRx=2, TxQueued=4, RxQueued=8, 213 StopTxDMA=0x20, StopRxDMA=0x40, RestartTx=0x80, 214 }; 215 216 #define EpicRemoved 0xffffffff /* Chip failed or removed (CardBus) */ 217 218 #define EpicNapiEvent (TxEmpty | TxDone | \ 219 RxDone | RxStarted | RxEarlyWarn | RxOverflow | RxFull) 220 #define EpicNormalEvent (0x0000ffff & ~EpicNapiEvent) 221 222 static const u16 media2miictl[16] = { 223 0, 0x0C00, 0x0C00, 0x2000, 0x0100, 0x2100, 0, 0, 224 0, 0, 0, 0, 0, 0, 0, 0 }; 225 226 /* 227 * The EPIC100 Rx and Tx buffer descriptors. Note that these 228 * really ARE host-endian; it's not a misannotation. We tell 229 * the card to byteswap them internally on big-endian hosts - 230 * look for #ifdef __BIG_ENDIAN in epic_open(). 231 */ 232 233 struct epic_tx_desc { 234 u32 txstatus; 235 u32 bufaddr; 236 u32 buflength; 237 u32 next; 238 }; 239 240 struct epic_rx_desc { 241 u32 rxstatus; 242 u32 bufaddr; 243 u32 buflength; 244 u32 next; 245 }; 246 247 enum desc_status_bits { 248 DescOwn=0x8000, 249 }; 250 251 #define PRIV_ALIGN 15 /* Required alignment mask */ 252 struct epic_private { 253 struct epic_rx_desc *rx_ring; 254 struct epic_tx_desc *tx_ring; 255 /* The saved address of a sent-in-place packet/buffer, for skfree(). */ 256 struct sk_buff* tx_skbuff[TX_RING_SIZE]; 257 /* The addresses of receive-in-place skbuffs. */ 258 struct sk_buff* rx_skbuff[RX_RING_SIZE]; 259 260 dma_addr_t tx_ring_dma; 261 dma_addr_t rx_ring_dma; 262 263 /* Ring pointers. */ 264 spinlock_t lock; /* Group with Tx control cache line. */ 265 spinlock_t napi_lock; 266 struct napi_struct napi; 267 unsigned int cur_tx, dirty_tx; 268 269 unsigned int cur_rx, dirty_rx; 270 u32 irq_mask; 271 unsigned int rx_buf_sz; /* Based on MTU+slack. */ 272 273 void __iomem *ioaddr; 274 struct pci_dev *pci_dev; /* PCI bus location. */ 275 int chip_id, chip_flags; 276 277 struct timer_list timer; /* Media selection timer. */ 278 int tx_threshold; 279 unsigned char mc_filter[8]; 280 signed char phys[4]; /* MII device addresses. */ 281 u16 advertising; /* NWay media advertisement */ 282 int mii_phy_cnt; 283 u32 ethtool_ops_nesting; 284 struct mii_if_info mii; 285 unsigned int tx_full:1; /* The Tx queue is full. */ 286 unsigned int default_port:4; /* Last dev->if_port value. */ 287 }; 288 289 static int epic_open(struct net_device *dev); 290 static int read_eeprom(struct epic_private *, int); 291 static int mdio_read(struct net_device *dev, int phy_id, int location); 292 static void mdio_write(struct net_device *dev, int phy_id, int loc, int val); 293 static void epic_restart(struct net_device *dev); 294 static void epic_timer(struct timer_list *t); 295 static void epic_tx_timeout(struct net_device *dev, unsigned int txqueue); 296 static void epic_init_ring(struct net_device *dev); 297 static netdev_tx_t epic_start_xmit(struct sk_buff *skb, 298 struct net_device *dev); 299 static int epic_rx(struct net_device *dev, int budget); 300 static int epic_poll(struct napi_struct *napi, int budget); 301 static irqreturn_t epic_interrupt(int irq, void *dev_instance); 302 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 303 static const struct ethtool_ops netdev_ethtool_ops; 304 static int epic_close(struct net_device *dev); 305 static struct net_device_stats *epic_get_stats(struct net_device *dev); 306 static void set_rx_mode(struct net_device *dev); 307 308 static const struct net_device_ops epic_netdev_ops = { 309 .ndo_open = epic_open, 310 .ndo_stop = epic_close, 311 .ndo_start_xmit = epic_start_xmit, 312 .ndo_tx_timeout = epic_tx_timeout, 313 .ndo_get_stats = epic_get_stats, 314 .ndo_set_rx_mode = set_rx_mode, 315 .ndo_do_ioctl = netdev_ioctl, 316 .ndo_set_mac_address = eth_mac_addr, 317 .ndo_validate_addr = eth_validate_addr, 318 }; 319 320 static int epic_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 321 { 322 static int card_idx = -1; 323 void __iomem *ioaddr; 324 int chip_idx = (int) ent->driver_data; 325 struct net_device *dev; 326 struct epic_private *ep; 327 int i, ret, option = 0, duplex = 0; 328 void *ring_space; 329 dma_addr_t ring_dma; 330 331 /* when built into the kernel, we only print version if device is found */ 332 #ifndef MODULE 333 pr_info_once("%s%s\n", version, version2); 334 #endif 335 336 card_idx++; 337 338 ret = pci_enable_device(pdev); 339 if (ret) 340 goto out; 341 342 if (pci_resource_len(pdev, 0) < EPIC_TOTAL_SIZE) { 343 dev_err(&pdev->dev, "no PCI region space\n"); 344 ret = -ENODEV; 345 goto err_out_disable; 346 } 347 348 pci_set_master(pdev); 349 350 ret = pci_request_regions(pdev, DRV_NAME); 351 if (ret < 0) 352 goto err_out_disable; 353 354 ret = -ENOMEM; 355 356 dev = alloc_etherdev(sizeof (*ep)); 357 if (!dev) 358 goto err_out_free_res; 359 360 SET_NETDEV_DEV(dev, &pdev->dev); 361 362 ioaddr = pci_iomap(pdev, EPIC_BAR, 0); 363 if (!ioaddr) { 364 dev_err(&pdev->dev, "ioremap failed\n"); 365 goto err_out_free_netdev; 366 } 367 368 pci_set_drvdata(pdev, dev); 369 ep = netdev_priv(dev); 370 ep->ioaddr = ioaddr; 371 ep->mii.dev = dev; 372 ep->mii.mdio_read = mdio_read; 373 ep->mii.mdio_write = mdio_write; 374 ep->mii.phy_id_mask = 0x1f; 375 ep->mii.reg_num_mask = 0x1f; 376 377 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma); 378 if (!ring_space) 379 goto err_out_iounmap; 380 ep->tx_ring = ring_space; 381 ep->tx_ring_dma = ring_dma; 382 383 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma); 384 if (!ring_space) 385 goto err_out_unmap_tx; 386 ep->rx_ring = ring_space; 387 ep->rx_ring_dma = ring_dma; 388 389 if (dev->mem_start) { 390 option = dev->mem_start; 391 duplex = (dev->mem_start & 16) ? 1 : 0; 392 } else if (card_idx >= 0 && card_idx < MAX_UNITS) { 393 if (options[card_idx] >= 0) 394 option = options[card_idx]; 395 if (full_duplex[card_idx] >= 0) 396 duplex = full_duplex[card_idx]; 397 } 398 399 spin_lock_init(&ep->lock); 400 spin_lock_init(&ep->napi_lock); 401 402 /* Bring the chip out of low-power mode. */ 403 ew32(GENCTL, 0x4200); 404 /* Magic?! If we don't set this bit the MII interface won't work. */ 405 /* This magic is documented in SMSC app note 7.15 */ 406 for (i = 16; i > 0; i--) 407 ew32(TEST1, 0x0008); 408 409 /* Turn on the MII transceiver. */ 410 ew32(MIICfg, 0x12); 411 if (chip_idx == 1) 412 ew32(NVCTL, (er32(NVCTL) & ~0x003c) | 0x4800); 413 ew32(GENCTL, 0x0200); 414 415 /* Note: the '175 does not have a serial EEPROM. */ 416 for (i = 0; i < 3; i++) 417 ((__le16 *)dev->dev_addr)[i] = cpu_to_le16(er16(LAN0 + i*4)); 418 419 if (debug > 2) { 420 dev_dbg(&pdev->dev, "EEPROM contents:\n"); 421 for (i = 0; i < 64; i++) 422 pr_cont(" %4.4x%s", read_eeprom(ep, i), 423 i % 16 == 15 ? "\n" : ""); 424 } 425 426 ep->pci_dev = pdev; 427 ep->chip_id = chip_idx; 428 ep->chip_flags = pci_id_tbl[chip_idx].drv_flags; 429 ep->irq_mask = 430 (ep->chip_flags & TYPE2_INTR ? PCIBusErr175 : PCIBusErr170) 431 | CntFull | TxUnderrun | EpicNapiEvent; 432 433 /* Find the connected MII xcvrs. 434 Doing this in open() would allow detecting external xcvrs later, but 435 takes much time and no cards have external MII. */ 436 { 437 int phy, phy_idx = 0; 438 for (phy = 1; phy < 32 && phy_idx < sizeof(ep->phys); phy++) { 439 int mii_status = mdio_read(dev, phy, MII_BMSR); 440 if (mii_status != 0xffff && mii_status != 0x0000) { 441 ep->phys[phy_idx++] = phy; 442 dev_info(&pdev->dev, 443 "MII transceiver #%d control " 444 "%4.4x status %4.4x.\n", 445 phy, mdio_read(dev, phy, 0), mii_status); 446 } 447 } 448 ep->mii_phy_cnt = phy_idx; 449 if (phy_idx != 0) { 450 phy = ep->phys[0]; 451 ep->mii.advertising = mdio_read(dev, phy, MII_ADVERTISE); 452 dev_info(&pdev->dev, 453 "Autonegotiation advertising %4.4x link " 454 "partner %4.4x.\n", 455 ep->mii.advertising, mdio_read(dev, phy, 5)); 456 } else if ( ! (ep->chip_flags & NO_MII)) { 457 dev_warn(&pdev->dev, 458 "***WARNING***: No MII transceiver found!\n"); 459 /* Use the known PHY address of the EPII. */ 460 ep->phys[0] = 3; 461 } 462 ep->mii.phy_id = ep->phys[0]; 463 } 464 465 /* Turn off the MII xcvr (175 only!), leave the chip in low-power mode. */ 466 if (ep->chip_flags & MII_PWRDWN) 467 ew32(NVCTL, er32(NVCTL) & ~0x483c); 468 ew32(GENCTL, 0x0008); 469 470 /* The lower four bits are the media type. */ 471 if (duplex) { 472 ep->mii.force_media = ep->mii.full_duplex = 1; 473 dev_info(&pdev->dev, "Forced full duplex requested.\n"); 474 } 475 dev->if_port = ep->default_port = option; 476 477 /* The Epic-specific entries in the device structure. */ 478 dev->netdev_ops = &epic_netdev_ops; 479 dev->ethtool_ops = &netdev_ethtool_ops; 480 dev->watchdog_timeo = TX_TIMEOUT; 481 netif_napi_add(dev, &ep->napi, epic_poll, 64); 482 483 ret = register_netdev(dev); 484 if (ret < 0) 485 goto err_out_unmap_rx; 486 487 netdev_info(dev, "%s at %lx, IRQ %d, %pM\n", 488 pci_id_tbl[chip_idx].name, 489 (long)pci_resource_start(pdev, EPIC_BAR), pdev->irq, 490 dev->dev_addr); 491 492 out: 493 return ret; 494 495 err_out_unmap_rx: 496 pci_free_consistent(pdev, RX_TOTAL_SIZE, ep->rx_ring, ep->rx_ring_dma); 497 err_out_unmap_tx: 498 pci_free_consistent(pdev, TX_TOTAL_SIZE, ep->tx_ring, ep->tx_ring_dma); 499 err_out_iounmap: 500 pci_iounmap(pdev, ioaddr); 501 err_out_free_netdev: 502 free_netdev(dev); 503 err_out_free_res: 504 pci_release_regions(pdev); 505 err_out_disable: 506 pci_disable_device(pdev); 507 goto out; 508 } 509 510 /* Serial EEPROM section. */ 511 512 /* EEPROM_Ctrl bits. */ 513 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */ 514 #define EE_CS 0x02 /* EEPROM chip select. */ 515 #define EE_DATA_WRITE 0x08 /* EEPROM chip data in. */ 516 #define EE_WRITE_0 0x01 517 #define EE_WRITE_1 0x09 518 #define EE_DATA_READ 0x10 /* EEPROM chip data out. */ 519 #define EE_ENB (0x0001 | EE_CS) 520 521 /* Delay between EEPROM clock transitions. 522 This serves to flush the operation to the PCI bus. 523 */ 524 525 #define eeprom_delay() er32(EECTL) 526 527 /* The EEPROM commands include the alway-set leading bit. */ 528 #define EE_WRITE_CMD (5 << 6) 529 #define EE_READ64_CMD (6 << 6) 530 #define EE_READ256_CMD (6 << 8) 531 #define EE_ERASE_CMD (7 << 6) 532 533 static void epic_disable_int(struct net_device *dev, struct epic_private *ep) 534 { 535 void __iomem *ioaddr = ep->ioaddr; 536 537 ew32(INTMASK, 0x00000000); 538 } 539 540 static inline void __epic_pci_commit(void __iomem *ioaddr) 541 { 542 #ifndef USE_IO_OPS 543 er32(INTMASK); 544 #endif 545 } 546 547 static inline void epic_napi_irq_off(struct net_device *dev, 548 struct epic_private *ep) 549 { 550 void __iomem *ioaddr = ep->ioaddr; 551 552 ew32(INTMASK, ep->irq_mask & ~EpicNapiEvent); 553 __epic_pci_commit(ioaddr); 554 } 555 556 static inline void epic_napi_irq_on(struct net_device *dev, 557 struct epic_private *ep) 558 { 559 void __iomem *ioaddr = ep->ioaddr; 560 561 /* No need to commit possible posted write */ 562 ew32(INTMASK, ep->irq_mask | EpicNapiEvent); 563 } 564 565 static int read_eeprom(struct epic_private *ep, int location) 566 { 567 void __iomem *ioaddr = ep->ioaddr; 568 int i; 569 int retval = 0; 570 int read_cmd = location | 571 (er32(EECTL) & 0x40 ? EE_READ64_CMD : EE_READ256_CMD); 572 573 ew32(EECTL, EE_ENB & ~EE_CS); 574 ew32(EECTL, EE_ENB); 575 576 /* Shift the read command bits out. */ 577 for (i = 12; i >= 0; i--) { 578 short dataval = (read_cmd & (1 << i)) ? EE_WRITE_1 : EE_WRITE_0; 579 ew32(EECTL, EE_ENB | dataval); 580 eeprom_delay(); 581 ew32(EECTL, EE_ENB | dataval | EE_SHIFT_CLK); 582 eeprom_delay(); 583 } 584 ew32(EECTL, EE_ENB); 585 586 for (i = 16; i > 0; i--) { 587 ew32(EECTL, EE_ENB | EE_SHIFT_CLK); 588 eeprom_delay(); 589 retval = (retval << 1) | ((er32(EECTL) & EE_DATA_READ) ? 1 : 0); 590 ew32(EECTL, EE_ENB); 591 eeprom_delay(); 592 } 593 594 /* Terminate the EEPROM access. */ 595 ew32(EECTL, EE_ENB & ~EE_CS); 596 return retval; 597 } 598 599 #define MII_READOP 1 600 #define MII_WRITEOP 2 601 static int mdio_read(struct net_device *dev, int phy_id, int location) 602 { 603 struct epic_private *ep = netdev_priv(dev); 604 void __iomem *ioaddr = ep->ioaddr; 605 int read_cmd = (phy_id << 9) | (location << 4) | MII_READOP; 606 int i; 607 608 ew32(MIICtrl, read_cmd); 609 /* Typical operation takes 25 loops. */ 610 for (i = 400; i > 0; i--) { 611 barrier(); 612 if ((er32(MIICtrl) & MII_READOP) == 0) { 613 /* Work around read failure bug. */ 614 if (phy_id == 1 && location < 6 && 615 er16(MIIData) == 0xffff) { 616 ew32(MIICtrl, read_cmd); 617 continue; 618 } 619 return er16(MIIData); 620 } 621 } 622 return 0xffff; 623 } 624 625 static void mdio_write(struct net_device *dev, int phy_id, int loc, int value) 626 { 627 struct epic_private *ep = netdev_priv(dev); 628 void __iomem *ioaddr = ep->ioaddr; 629 int i; 630 631 ew16(MIIData, value); 632 ew32(MIICtrl, (phy_id << 9) | (loc << 4) | MII_WRITEOP); 633 for (i = 10000; i > 0; i--) { 634 barrier(); 635 if ((er32(MIICtrl) & MII_WRITEOP) == 0) 636 break; 637 } 638 } 639 640 641 static int epic_open(struct net_device *dev) 642 { 643 struct epic_private *ep = netdev_priv(dev); 644 void __iomem *ioaddr = ep->ioaddr; 645 const int irq = ep->pci_dev->irq; 646 int rc, i; 647 648 /* Soft reset the chip. */ 649 ew32(GENCTL, 0x4001); 650 651 napi_enable(&ep->napi); 652 rc = request_irq(irq, epic_interrupt, IRQF_SHARED, dev->name, dev); 653 if (rc) { 654 napi_disable(&ep->napi); 655 return rc; 656 } 657 658 epic_init_ring(dev); 659 660 ew32(GENCTL, 0x4000); 661 /* This magic is documented in SMSC app note 7.15 */ 662 for (i = 16; i > 0; i--) 663 ew32(TEST1, 0x0008); 664 665 /* Pull the chip out of low-power mode, enable interrupts, and set for 666 PCI read multiple. The MIIcfg setting and strange write order are 667 required by the details of which bits are reset and the transceiver 668 wiring on the Ositech CardBus card. 669 */ 670 #if 0 671 ew32(MIICfg, dev->if_port == 1 ? 0x13 : 0x12); 672 #endif 673 if (ep->chip_flags & MII_PWRDWN) 674 ew32(NVCTL, (er32(NVCTL) & ~0x003c) | 0x4800); 675 676 /* Tell the chip to byteswap descriptors on big-endian hosts */ 677 #ifdef __BIG_ENDIAN 678 ew32(GENCTL, 0x4432 | (RX_FIFO_THRESH << 8)); 679 er32(GENCTL); 680 ew32(GENCTL, 0x0432 | (RX_FIFO_THRESH << 8)); 681 #else 682 ew32(GENCTL, 0x4412 | (RX_FIFO_THRESH << 8)); 683 er32(GENCTL); 684 ew32(GENCTL, 0x0412 | (RX_FIFO_THRESH << 8)); 685 #endif 686 687 udelay(20); /* Looks like EPII needs that if you want reliable RX init. FIXME: pci posting bug? */ 688 689 for (i = 0; i < 3; i++) 690 ew32(LAN0 + i*4, le16_to_cpu(((__le16*)dev->dev_addr)[i])); 691 692 ep->tx_threshold = TX_FIFO_THRESH; 693 ew32(TxThresh, ep->tx_threshold); 694 695 if (media2miictl[dev->if_port & 15]) { 696 if (ep->mii_phy_cnt) 697 mdio_write(dev, ep->phys[0], MII_BMCR, media2miictl[dev->if_port&15]); 698 if (dev->if_port == 1) { 699 if (debug > 1) 700 netdev_info(dev, "Using the 10base2 transceiver, MII status %4.4x.\n", 701 mdio_read(dev, ep->phys[0], MII_BMSR)); 702 } 703 } else { 704 int mii_lpa = mdio_read(dev, ep->phys[0], MII_LPA); 705 if (mii_lpa != 0xffff) { 706 if ((mii_lpa & LPA_100FULL) || (mii_lpa & 0x01C0) == LPA_10FULL) 707 ep->mii.full_duplex = 1; 708 else if (! (mii_lpa & LPA_LPACK)) 709 mdio_write(dev, ep->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART); 710 if (debug > 1) 711 netdev_info(dev, "Setting %s-duplex based on MII xcvr %d register read of %4.4x.\n", 712 ep->mii.full_duplex ? "full" 713 : "half", 714 ep->phys[0], mii_lpa); 715 } 716 } 717 718 ew32(TxCtrl, ep->mii.full_duplex ? 0x7f : 0x79); 719 ew32(PRxCDAR, ep->rx_ring_dma); 720 ew32(PTxCDAR, ep->tx_ring_dma); 721 722 /* Start the chip's Rx process. */ 723 set_rx_mode(dev); 724 ew32(COMMAND, StartRx | RxQueued); 725 726 netif_start_queue(dev); 727 728 /* Enable interrupts by setting the interrupt mask. */ 729 ew32(INTMASK, RxError | RxHeader | EpicNapiEvent | CntFull | 730 ((ep->chip_flags & TYPE2_INTR) ? PCIBusErr175 : PCIBusErr170) | 731 TxUnderrun); 732 733 if (debug > 1) { 734 netdev_dbg(dev, "epic_open() ioaddr %p IRQ %d status %4.4x %s-duplex.\n", 735 ioaddr, irq, er32(GENCTL), 736 ep->mii.full_duplex ? "full" : "half"); 737 } 738 739 /* Set the timer to switch to check for link beat and perhaps switch 740 to an alternate media type. */ 741 timer_setup(&ep->timer, epic_timer, 0); 742 ep->timer.expires = jiffies + 3*HZ; 743 add_timer(&ep->timer); 744 745 return rc; 746 } 747 748 /* Reset the chip to recover from a PCI transaction error. 749 This may occur at interrupt time. */ 750 static void epic_pause(struct net_device *dev) 751 { 752 struct net_device_stats *stats = &dev->stats; 753 struct epic_private *ep = netdev_priv(dev); 754 void __iomem *ioaddr = ep->ioaddr; 755 756 netif_stop_queue (dev); 757 758 /* Disable interrupts by clearing the interrupt mask. */ 759 ew32(INTMASK, 0x00000000); 760 /* Stop the chip's Tx and Rx DMA processes. */ 761 ew16(COMMAND, StopRx | StopTxDMA | StopRxDMA); 762 763 /* Update the error counts. */ 764 if (er16(COMMAND) != 0xffff) { 765 stats->rx_missed_errors += er8(MPCNT); 766 stats->rx_frame_errors += er8(ALICNT); 767 stats->rx_crc_errors += er8(CRCCNT); 768 } 769 770 /* Remove the packets on the Rx queue. */ 771 epic_rx(dev, RX_RING_SIZE); 772 } 773 774 static void epic_restart(struct net_device *dev) 775 { 776 struct epic_private *ep = netdev_priv(dev); 777 void __iomem *ioaddr = ep->ioaddr; 778 int i; 779 780 /* Soft reset the chip. */ 781 ew32(GENCTL, 0x4001); 782 783 netdev_dbg(dev, "Restarting the EPIC chip, Rx %d/%d Tx %d/%d.\n", 784 ep->cur_rx, ep->dirty_rx, ep->dirty_tx, ep->cur_tx); 785 udelay(1); 786 787 /* This magic is documented in SMSC app note 7.15 */ 788 for (i = 16; i > 0; i--) 789 ew32(TEST1, 0x0008); 790 791 #ifdef __BIG_ENDIAN 792 ew32(GENCTL, 0x0432 | (RX_FIFO_THRESH << 8)); 793 #else 794 ew32(GENCTL, 0x0412 | (RX_FIFO_THRESH << 8)); 795 #endif 796 ew32(MIICfg, dev->if_port == 1 ? 0x13 : 0x12); 797 if (ep->chip_flags & MII_PWRDWN) 798 ew32(NVCTL, (er32(NVCTL) & ~0x003c) | 0x4800); 799 800 for (i = 0; i < 3; i++) 801 ew32(LAN0 + i*4, le16_to_cpu(((__le16*)dev->dev_addr)[i])); 802 803 ep->tx_threshold = TX_FIFO_THRESH; 804 ew32(TxThresh, ep->tx_threshold); 805 ew32(TxCtrl, ep->mii.full_duplex ? 0x7f : 0x79); 806 ew32(PRxCDAR, ep->rx_ring_dma + 807 (ep->cur_rx % RX_RING_SIZE) * sizeof(struct epic_rx_desc)); 808 ew32(PTxCDAR, ep->tx_ring_dma + 809 (ep->dirty_tx % TX_RING_SIZE) * sizeof(struct epic_tx_desc)); 810 811 /* Start the chip's Rx process. */ 812 set_rx_mode(dev); 813 ew32(COMMAND, StartRx | RxQueued); 814 815 /* Enable interrupts by setting the interrupt mask. */ 816 ew32(INTMASK, RxError | RxHeader | EpicNapiEvent | CntFull | 817 ((ep->chip_flags & TYPE2_INTR) ? PCIBusErr175 : PCIBusErr170) | 818 TxUnderrun); 819 820 netdev_dbg(dev, "epic_restart() done, cmd status %4.4x, ctl %4.4x interrupt %4.4x.\n", 821 er32(COMMAND), er32(GENCTL), er32(INTSTAT)); 822 } 823 824 static void check_media(struct net_device *dev) 825 { 826 struct epic_private *ep = netdev_priv(dev); 827 void __iomem *ioaddr = ep->ioaddr; 828 int mii_lpa = ep->mii_phy_cnt ? mdio_read(dev, ep->phys[0], MII_LPA) : 0; 829 int negotiated = mii_lpa & ep->mii.advertising; 830 int duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040; 831 832 if (ep->mii.force_media) 833 return; 834 if (mii_lpa == 0xffff) /* Bogus read */ 835 return; 836 if (ep->mii.full_duplex != duplex) { 837 ep->mii.full_duplex = duplex; 838 netdev_info(dev, "Setting %s-duplex based on MII #%d link partner capability of %4.4x.\n", 839 ep->mii.full_duplex ? "full" : "half", 840 ep->phys[0], mii_lpa); 841 ew32(TxCtrl, ep->mii.full_duplex ? 0x7F : 0x79); 842 } 843 } 844 845 static void epic_timer(struct timer_list *t) 846 { 847 struct epic_private *ep = from_timer(ep, t, timer); 848 struct net_device *dev = ep->mii.dev; 849 void __iomem *ioaddr = ep->ioaddr; 850 int next_tick = 5*HZ; 851 852 if (debug > 3) { 853 netdev_dbg(dev, "Media monitor tick, Tx status %8.8x.\n", 854 er32(TxSTAT)); 855 netdev_dbg(dev, "Other registers are IntMask %4.4x IntStatus %4.4x RxStatus %4.4x.\n", 856 er32(INTMASK), er32(INTSTAT), er32(RxSTAT)); 857 } 858 859 check_media(dev); 860 861 ep->timer.expires = jiffies + next_tick; 862 add_timer(&ep->timer); 863 } 864 865 static void epic_tx_timeout(struct net_device *dev, unsigned int txqueue) 866 { 867 struct epic_private *ep = netdev_priv(dev); 868 void __iomem *ioaddr = ep->ioaddr; 869 870 if (debug > 0) { 871 netdev_warn(dev, "Transmit timeout using MII device, Tx status %4.4x.\n", 872 er16(TxSTAT)); 873 if (debug > 1) { 874 netdev_dbg(dev, "Tx indices: dirty_tx %d, cur_tx %d.\n", 875 ep->dirty_tx, ep->cur_tx); 876 } 877 } 878 if (er16(TxSTAT) & 0x10) { /* Tx FIFO underflow. */ 879 dev->stats.tx_fifo_errors++; 880 ew32(COMMAND, RestartTx); 881 } else { 882 epic_restart(dev); 883 ew32(COMMAND, TxQueued); 884 } 885 886 netif_trans_update(dev); /* prevent tx timeout */ 887 dev->stats.tx_errors++; 888 if (!ep->tx_full) 889 netif_wake_queue(dev); 890 } 891 892 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ 893 static void epic_init_ring(struct net_device *dev) 894 { 895 struct epic_private *ep = netdev_priv(dev); 896 int i; 897 898 ep->tx_full = 0; 899 ep->dirty_tx = ep->cur_tx = 0; 900 ep->cur_rx = ep->dirty_rx = 0; 901 ep->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32); 902 903 /* Initialize all Rx descriptors. */ 904 for (i = 0; i < RX_RING_SIZE; i++) { 905 ep->rx_ring[i].rxstatus = 0; 906 ep->rx_ring[i].buflength = ep->rx_buf_sz; 907 ep->rx_ring[i].next = ep->rx_ring_dma + 908 (i+1)*sizeof(struct epic_rx_desc); 909 ep->rx_skbuff[i] = NULL; 910 } 911 /* Mark the last entry as wrapping the ring. */ 912 ep->rx_ring[i-1].next = ep->rx_ring_dma; 913 914 /* Fill in the Rx buffers. Handle allocation failure gracefully. */ 915 for (i = 0; i < RX_RING_SIZE; i++) { 916 struct sk_buff *skb = netdev_alloc_skb(dev, ep->rx_buf_sz + 2); 917 ep->rx_skbuff[i] = skb; 918 if (skb == NULL) 919 break; 920 skb_reserve(skb, 2); /* 16 byte align the IP header. */ 921 ep->rx_ring[i].bufaddr = pci_map_single(ep->pci_dev, 922 skb->data, ep->rx_buf_sz, PCI_DMA_FROMDEVICE); 923 ep->rx_ring[i].rxstatus = DescOwn; 924 } 925 ep->dirty_rx = (unsigned int)(i - RX_RING_SIZE); 926 927 /* The Tx buffer descriptor is filled in as needed, but we 928 do need to clear the ownership bit. */ 929 for (i = 0; i < TX_RING_SIZE; i++) { 930 ep->tx_skbuff[i] = NULL; 931 ep->tx_ring[i].txstatus = 0x0000; 932 ep->tx_ring[i].next = ep->tx_ring_dma + 933 (i+1)*sizeof(struct epic_tx_desc); 934 } 935 ep->tx_ring[i-1].next = ep->tx_ring_dma; 936 } 937 938 static netdev_tx_t epic_start_xmit(struct sk_buff *skb, struct net_device *dev) 939 { 940 struct epic_private *ep = netdev_priv(dev); 941 void __iomem *ioaddr = ep->ioaddr; 942 int entry, free_count; 943 u32 ctrl_word; 944 unsigned long flags; 945 946 if (skb_padto(skb, ETH_ZLEN)) 947 return NETDEV_TX_OK; 948 949 /* Caution: the write order is important here, set the field with the 950 "ownership" bit last. */ 951 952 /* Calculate the next Tx descriptor entry. */ 953 spin_lock_irqsave(&ep->lock, flags); 954 free_count = ep->cur_tx - ep->dirty_tx; 955 entry = ep->cur_tx % TX_RING_SIZE; 956 957 ep->tx_skbuff[entry] = skb; 958 ep->tx_ring[entry].bufaddr = pci_map_single(ep->pci_dev, skb->data, 959 skb->len, PCI_DMA_TODEVICE); 960 if (free_count < TX_QUEUE_LEN/2) {/* Typical path */ 961 ctrl_word = 0x100000; /* No interrupt */ 962 } else if (free_count == TX_QUEUE_LEN/2) { 963 ctrl_word = 0x140000; /* Tx-done intr. */ 964 } else if (free_count < TX_QUEUE_LEN - 1) { 965 ctrl_word = 0x100000; /* No Tx-done intr. */ 966 } else { 967 /* Leave room for an additional entry. */ 968 ctrl_word = 0x140000; /* Tx-done intr. */ 969 ep->tx_full = 1; 970 } 971 ep->tx_ring[entry].buflength = ctrl_word | skb->len; 972 ep->tx_ring[entry].txstatus = 973 ((skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN) << 16) 974 | DescOwn; 975 976 ep->cur_tx++; 977 if (ep->tx_full) 978 netif_stop_queue(dev); 979 980 spin_unlock_irqrestore(&ep->lock, flags); 981 /* Trigger an immediate transmit demand. */ 982 ew32(COMMAND, TxQueued); 983 984 if (debug > 4) 985 netdev_dbg(dev, "Queued Tx packet size %d to slot %d, flag %2.2x Tx status %8.8x.\n", 986 skb->len, entry, ctrl_word, er32(TxSTAT)); 987 988 return NETDEV_TX_OK; 989 } 990 991 static void epic_tx_error(struct net_device *dev, struct epic_private *ep, 992 int status) 993 { 994 struct net_device_stats *stats = &dev->stats; 995 996 #ifndef final_version 997 /* There was an major error, log it. */ 998 if (debug > 1) 999 netdev_dbg(dev, "Transmit error, Tx status %8.8x.\n", 1000 status); 1001 #endif 1002 stats->tx_errors++; 1003 if (status & 0x1050) 1004 stats->tx_aborted_errors++; 1005 if (status & 0x0008) 1006 stats->tx_carrier_errors++; 1007 if (status & 0x0040) 1008 stats->tx_window_errors++; 1009 if (status & 0x0010) 1010 stats->tx_fifo_errors++; 1011 } 1012 1013 static void epic_tx(struct net_device *dev, struct epic_private *ep) 1014 { 1015 unsigned int dirty_tx, cur_tx; 1016 1017 /* 1018 * Note: if this lock becomes a problem we can narrow the locked 1019 * region at the cost of occasionally grabbing the lock more times. 1020 */ 1021 cur_tx = ep->cur_tx; 1022 for (dirty_tx = ep->dirty_tx; cur_tx - dirty_tx > 0; dirty_tx++) { 1023 struct sk_buff *skb; 1024 int entry = dirty_tx % TX_RING_SIZE; 1025 int txstatus = ep->tx_ring[entry].txstatus; 1026 1027 if (txstatus & DescOwn) 1028 break; /* It still hasn't been Txed */ 1029 1030 if (likely(txstatus & 0x0001)) { 1031 dev->stats.collisions += (txstatus >> 8) & 15; 1032 dev->stats.tx_packets++; 1033 dev->stats.tx_bytes += ep->tx_skbuff[entry]->len; 1034 } else 1035 epic_tx_error(dev, ep, txstatus); 1036 1037 /* Free the original skb. */ 1038 skb = ep->tx_skbuff[entry]; 1039 pci_unmap_single(ep->pci_dev, ep->tx_ring[entry].bufaddr, 1040 skb->len, PCI_DMA_TODEVICE); 1041 dev_consume_skb_irq(skb); 1042 ep->tx_skbuff[entry] = NULL; 1043 } 1044 1045 #ifndef final_version 1046 if (cur_tx - dirty_tx > TX_RING_SIZE) { 1047 netdev_warn(dev, "Out-of-sync dirty pointer, %d vs. %d, full=%d.\n", 1048 dirty_tx, cur_tx, ep->tx_full); 1049 dirty_tx += TX_RING_SIZE; 1050 } 1051 #endif 1052 ep->dirty_tx = dirty_tx; 1053 if (ep->tx_full && cur_tx - dirty_tx < TX_QUEUE_LEN - 4) { 1054 /* The ring is no longer full, allow new TX entries. */ 1055 ep->tx_full = 0; 1056 netif_wake_queue(dev); 1057 } 1058 } 1059 1060 /* The interrupt handler does all of the Rx thread work and cleans up 1061 after the Tx thread. */ 1062 static irqreturn_t epic_interrupt(int irq, void *dev_instance) 1063 { 1064 struct net_device *dev = dev_instance; 1065 struct epic_private *ep = netdev_priv(dev); 1066 void __iomem *ioaddr = ep->ioaddr; 1067 unsigned int handled = 0; 1068 int status; 1069 1070 status = er32(INTSTAT); 1071 /* Acknowledge all of the current interrupt sources ASAP. */ 1072 ew32(INTSTAT, status & EpicNormalEvent); 1073 1074 if (debug > 4) { 1075 netdev_dbg(dev, "Interrupt, status=%#8.8x new intstat=%#8.8x.\n", 1076 status, er32(INTSTAT)); 1077 } 1078 1079 if ((status & IntrSummary) == 0) 1080 goto out; 1081 1082 handled = 1; 1083 1084 if (status & EpicNapiEvent) { 1085 spin_lock(&ep->napi_lock); 1086 if (napi_schedule_prep(&ep->napi)) { 1087 epic_napi_irq_off(dev, ep); 1088 __napi_schedule(&ep->napi); 1089 } 1090 spin_unlock(&ep->napi_lock); 1091 } 1092 status &= ~EpicNapiEvent; 1093 1094 /* Check uncommon events all at once. */ 1095 if (status & (CntFull | TxUnderrun | PCIBusErr170 | PCIBusErr175)) { 1096 struct net_device_stats *stats = &dev->stats; 1097 1098 if (status == EpicRemoved) 1099 goto out; 1100 1101 /* Always update the error counts to avoid overhead later. */ 1102 stats->rx_missed_errors += er8(MPCNT); 1103 stats->rx_frame_errors += er8(ALICNT); 1104 stats->rx_crc_errors += er8(CRCCNT); 1105 1106 if (status & TxUnderrun) { /* Tx FIFO underflow. */ 1107 stats->tx_fifo_errors++; 1108 ew32(TxThresh, ep->tx_threshold += 128); 1109 /* Restart the transmit process. */ 1110 ew32(COMMAND, RestartTx); 1111 } 1112 if (status & PCIBusErr170) { 1113 netdev_err(dev, "PCI Bus Error! status %4.4x.\n", 1114 status); 1115 epic_pause(dev); 1116 epic_restart(dev); 1117 } 1118 /* Clear all error sources. */ 1119 ew32(INTSTAT, status & 0x7f18); 1120 } 1121 1122 out: 1123 if (debug > 3) { 1124 netdev_dbg(dev, "exit interrupt, intr_status=%#4.4x.\n", 1125 status); 1126 } 1127 1128 return IRQ_RETVAL(handled); 1129 } 1130 1131 static int epic_rx(struct net_device *dev, int budget) 1132 { 1133 struct epic_private *ep = netdev_priv(dev); 1134 int entry = ep->cur_rx % RX_RING_SIZE; 1135 int rx_work_limit = ep->dirty_rx + RX_RING_SIZE - ep->cur_rx; 1136 int work_done = 0; 1137 1138 if (debug > 4) 1139 netdev_dbg(dev, " In epic_rx(), entry %d %8.8x.\n", entry, 1140 ep->rx_ring[entry].rxstatus); 1141 1142 if (rx_work_limit > budget) 1143 rx_work_limit = budget; 1144 1145 /* If we own the next entry, it's a new packet. Send it up. */ 1146 while ((ep->rx_ring[entry].rxstatus & DescOwn) == 0) { 1147 int status = ep->rx_ring[entry].rxstatus; 1148 1149 if (debug > 4) 1150 netdev_dbg(dev, " epic_rx() status was %8.8x.\n", 1151 status); 1152 if (--rx_work_limit < 0) 1153 break; 1154 if (status & 0x2006) { 1155 if (debug > 2) 1156 netdev_dbg(dev, "epic_rx() error status was %8.8x.\n", 1157 status); 1158 if (status & 0x2000) { 1159 netdev_warn(dev, "Oversized Ethernet frame spanned multiple buffers, status %4.4x!\n", 1160 status); 1161 dev->stats.rx_length_errors++; 1162 } else if (status & 0x0006) 1163 /* Rx Frame errors are counted in hardware. */ 1164 dev->stats.rx_errors++; 1165 } else { 1166 /* Malloc up new buffer, compatible with net-2e. */ 1167 /* Omit the four octet CRC from the length. */ 1168 short pkt_len = (status >> 16) - 4; 1169 struct sk_buff *skb; 1170 1171 if (pkt_len > PKT_BUF_SZ - 4) { 1172 netdev_err(dev, "Oversized Ethernet frame, status %x %d bytes.\n", 1173 status, pkt_len); 1174 pkt_len = 1514; 1175 } 1176 /* Check if the packet is long enough to accept without copying 1177 to a minimally-sized skbuff. */ 1178 if (pkt_len < rx_copybreak && 1179 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) { 1180 skb_reserve(skb, 2); /* 16 byte align the IP header */ 1181 pci_dma_sync_single_for_cpu(ep->pci_dev, 1182 ep->rx_ring[entry].bufaddr, 1183 ep->rx_buf_sz, 1184 PCI_DMA_FROMDEVICE); 1185 skb_copy_to_linear_data(skb, ep->rx_skbuff[entry]->data, pkt_len); 1186 skb_put(skb, pkt_len); 1187 pci_dma_sync_single_for_device(ep->pci_dev, 1188 ep->rx_ring[entry].bufaddr, 1189 ep->rx_buf_sz, 1190 PCI_DMA_FROMDEVICE); 1191 } else { 1192 pci_unmap_single(ep->pci_dev, 1193 ep->rx_ring[entry].bufaddr, 1194 ep->rx_buf_sz, PCI_DMA_FROMDEVICE); 1195 skb_put(skb = ep->rx_skbuff[entry], pkt_len); 1196 ep->rx_skbuff[entry] = NULL; 1197 } 1198 skb->protocol = eth_type_trans(skb, dev); 1199 netif_receive_skb(skb); 1200 dev->stats.rx_packets++; 1201 dev->stats.rx_bytes += pkt_len; 1202 } 1203 work_done++; 1204 entry = (++ep->cur_rx) % RX_RING_SIZE; 1205 } 1206 1207 /* Refill the Rx ring buffers. */ 1208 for (; ep->cur_rx - ep->dirty_rx > 0; ep->dirty_rx++) { 1209 entry = ep->dirty_rx % RX_RING_SIZE; 1210 if (ep->rx_skbuff[entry] == NULL) { 1211 struct sk_buff *skb; 1212 skb = ep->rx_skbuff[entry] = netdev_alloc_skb(dev, ep->rx_buf_sz + 2); 1213 if (skb == NULL) 1214 break; 1215 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ 1216 ep->rx_ring[entry].bufaddr = pci_map_single(ep->pci_dev, 1217 skb->data, ep->rx_buf_sz, PCI_DMA_FROMDEVICE); 1218 work_done++; 1219 } 1220 /* AV: shouldn't we add a barrier here? */ 1221 ep->rx_ring[entry].rxstatus = DescOwn; 1222 } 1223 return work_done; 1224 } 1225 1226 static void epic_rx_err(struct net_device *dev, struct epic_private *ep) 1227 { 1228 void __iomem *ioaddr = ep->ioaddr; 1229 int status; 1230 1231 status = er32(INTSTAT); 1232 1233 if (status == EpicRemoved) 1234 return; 1235 if (status & RxOverflow) /* Missed a Rx frame. */ 1236 dev->stats.rx_errors++; 1237 if (status & (RxOverflow | RxFull)) 1238 ew16(COMMAND, RxQueued); 1239 } 1240 1241 static int epic_poll(struct napi_struct *napi, int budget) 1242 { 1243 struct epic_private *ep = container_of(napi, struct epic_private, napi); 1244 struct net_device *dev = ep->mii.dev; 1245 void __iomem *ioaddr = ep->ioaddr; 1246 int work_done; 1247 1248 epic_tx(dev, ep); 1249 1250 work_done = epic_rx(dev, budget); 1251 1252 epic_rx_err(dev, ep); 1253 1254 if (work_done < budget && napi_complete_done(napi, work_done)) { 1255 unsigned long flags; 1256 1257 spin_lock_irqsave(&ep->napi_lock, flags); 1258 1259 ew32(INTSTAT, EpicNapiEvent); 1260 epic_napi_irq_on(dev, ep); 1261 spin_unlock_irqrestore(&ep->napi_lock, flags); 1262 } 1263 1264 return work_done; 1265 } 1266 1267 static int epic_close(struct net_device *dev) 1268 { 1269 struct epic_private *ep = netdev_priv(dev); 1270 struct pci_dev *pdev = ep->pci_dev; 1271 void __iomem *ioaddr = ep->ioaddr; 1272 struct sk_buff *skb; 1273 int i; 1274 1275 netif_stop_queue(dev); 1276 napi_disable(&ep->napi); 1277 1278 if (debug > 1) 1279 netdev_dbg(dev, "Shutting down ethercard, status was %2.2x.\n", 1280 er32(INTSTAT)); 1281 1282 del_timer_sync(&ep->timer); 1283 1284 epic_disable_int(dev, ep); 1285 1286 free_irq(pdev->irq, dev); 1287 1288 epic_pause(dev); 1289 1290 /* Free all the skbuffs in the Rx queue. */ 1291 for (i = 0; i < RX_RING_SIZE; i++) { 1292 skb = ep->rx_skbuff[i]; 1293 ep->rx_skbuff[i] = NULL; 1294 ep->rx_ring[i].rxstatus = 0; /* Not owned by Epic chip. */ 1295 ep->rx_ring[i].buflength = 0; 1296 if (skb) { 1297 pci_unmap_single(pdev, ep->rx_ring[i].bufaddr, 1298 ep->rx_buf_sz, PCI_DMA_FROMDEVICE); 1299 dev_kfree_skb(skb); 1300 } 1301 ep->rx_ring[i].bufaddr = 0xBADF00D0; /* An invalid address. */ 1302 } 1303 for (i = 0; i < TX_RING_SIZE; i++) { 1304 skb = ep->tx_skbuff[i]; 1305 ep->tx_skbuff[i] = NULL; 1306 if (!skb) 1307 continue; 1308 pci_unmap_single(pdev, ep->tx_ring[i].bufaddr, skb->len, 1309 PCI_DMA_TODEVICE); 1310 dev_kfree_skb(skb); 1311 } 1312 1313 /* Green! Leave the chip in low-power mode. */ 1314 ew32(GENCTL, 0x0008); 1315 1316 return 0; 1317 } 1318 1319 static struct net_device_stats *epic_get_stats(struct net_device *dev) 1320 { 1321 struct epic_private *ep = netdev_priv(dev); 1322 void __iomem *ioaddr = ep->ioaddr; 1323 1324 if (netif_running(dev)) { 1325 struct net_device_stats *stats = &dev->stats; 1326 1327 stats->rx_missed_errors += er8(MPCNT); 1328 stats->rx_frame_errors += er8(ALICNT); 1329 stats->rx_crc_errors += er8(CRCCNT); 1330 } 1331 1332 return &dev->stats; 1333 } 1334 1335 /* Set or clear the multicast filter for this adaptor. 1336 Note that we only use exclusion around actually queueing the 1337 new frame, not around filling ep->setup_frame. This is non-deterministic 1338 when re-entered but still correct. */ 1339 1340 static void set_rx_mode(struct net_device *dev) 1341 { 1342 struct epic_private *ep = netdev_priv(dev); 1343 void __iomem *ioaddr = ep->ioaddr; 1344 unsigned char mc_filter[8]; /* Multicast hash filter */ 1345 int i; 1346 1347 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1348 ew32(RxCtrl, 0x002c); 1349 /* Unconditionally log net taps. */ 1350 memset(mc_filter, 0xff, sizeof(mc_filter)); 1351 } else if ((!netdev_mc_empty(dev)) || (dev->flags & IFF_ALLMULTI)) { 1352 /* There is apparently a chip bug, so the multicast filter 1353 is never enabled. */ 1354 /* Too many to filter perfectly -- accept all multicasts. */ 1355 memset(mc_filter, 0xff, sizeof(mc_filter)); 1356 ew32(RxCtrl, 0x000c); 1357 } else if (netdev_mc_empty(dev)) { 1358 ew32(RxCtrl, 0x0004); 1359 return; 1360 } else { /* Never executed, for now. */ 1361 struct netdev_hw_addr *ha; 1362 1363 memset(mc_filter, 0, sizeof(mc_filter)); 1364 netdev_for_each_mc_addr(ha, dev) { 1365 unsigned int bit_nr = 1366 ether_crc_le(ETH_ALEN, ha->addr) & 0x3f; 1367 mc_filter[bit_nr >> 3] |= (1 << bit_nr); 1368 } 1369 } 1370 /* ToDo: perhaps we need to stop the Tx and Rx process here? */ 1371 if (memcmp(mc_filter, ep->mc_filter, sizeof(mc_filter))) { 1372 for (i = 0; i < 4; i++) 1373 ew16(MC0 + i*4, ((u16 *)mc_filter)[i]); 1374 memcpy(ep->mc_filter, mc_filter, sizeof(mc_filter)); 1375 } 1376 } 1377 1378 static void netdev_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info) 1379 { 1380 struct epic_private *np = netdev_priv(dev); 1381 1382 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1383 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1384 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info)); 1385 } 1386 1387 static int netdev_get_link_ksettings(struct net_device *dev, 1388 struct ethtool_link_ksettings *cmd) 1389 { 1390 struct epic_private *np = netdev_priv(dev); 1391 1392 spin_lock_irq(&np->lock); 1393 mii_ethtool_get_link_ksettings(&np->mii, cmd); 1394 spin_unlock_irq(&np->lock); 1395 1396 return 0; 1397 } 1398 1399 static int netdev_set_link_ksettings(struct net_device *dev, 1400 const struct ethtool_link_ksettings *cmd) 1401 { 1402 struct epic_private *np = netdev_priv(dev); 1403 int rc; 1404 1405 spin_lock_irq(&np->lock); 1406 rc = mii_ethtool_set_link_ksettings(&np->mii, cmd); 1407 spin_unlock_irq(&np->lock); 1408 1409 return rc; 1410 } 1411 1412 static int netdev_nway_reset(struct net_device *dev) 1413 { 1414 struct epic_private *np = netdev_priv(dev); 1415 return mii_nway_restart(&np->mii); 1416 } 1417 1418 static u32 netdev_get_link(struct net_device *dev) 1419 { 1420 struct epic_private *np = netdev_priv(dev); 1421 return mii_link_ok(&np->mii); 1422 } 1423 1424 static u32 netdev_get_msglevel(struct net_device *dev) 1425 { 1426 return debug; 1427 } 1428 1429 static void netdev_set_msglevel(struct net_device *dev, u32 value) 1430 { 1431 debug = value; 1432 } 1433 1434 static int ethtool_begin(struct net_device *dev) 1435 { 1436 struct epic_private *ep = netdev_priv(dev); 1437 void __iomem *ioaddr = ep->ioaddr; 1438 1439 if (ep->ethtool_ops_nesting == U32_MAX) 1440 return -EBUSY; 1441 /* power-up, if interface is down */ 1442 if (!ep->ethtool_ops_nesting++ && !netif_running(dev)) { 1443 ew32(GENCTL, 0x0200); 1444 ew32(NVCTL, (er32(NVCTL) & ~0x003c) | 0x4800); 1445 } 1446 return 0; 1447 } 1448 1449 static void ethtool_complete(struct net_device *dev) 1450 { 1451 struct epic_private *ep = netdev_priv(dev); 1452 void __iomem *ioaddr = ep->ioaddr; 1453 1454 /* power-down, if interface is down */ 1455 if (!--ep->ethtool_ops_nesting && !netif_running(dev)) { 1456 ew32(GENCTL, 0x0008); 1457 ew32(NVCTL, (er32(NVCTL) & ~0x483c) | 0x0000); 1458 } 1459 } 1460 1461 static const struct ethtool_ops netdev_ethtool_ops = { 1462 .get_drvinfo = netdev_get_drvinfo, 1463 .nway_reset = netdev_nway_reset, 1464 .get_link = netdev_get_link, 1465 .get_msglevel = netdev_get_msglevel, 1466 .set_msglevel = netdev_set_msglevel, 1467 .begin = ethtool_begin, 1468 .complete = ethtool_complete, 1469 .get_link_ksettings = netdev_get_link_ksettings, 1470 .set_link_ksettings = netdev_set_link_ksettings, 1471 }; 1472 1473 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1474 { 1475 struct epic_private *np = netdev_priv(dev); 1476 void __iomem *ioaddr = np->ioaddr; 1477 struct mii_ioctl_data *data = if_mii(rq); 1478 int rc; 1479 1480 /* power-up, if interface is down */ 1481 if (! netif_running(dev)) { 1482 ew32(GENCTL, 0x0200); 1483 ew32(NVCTL, (er32(NVCTL) & ~0x003c) | 0x4800); 1484 } 1485 1486 /* all non-ethtool ioctls (the SIOC[GS]MIIxxx ioctls) */ 1487 spin_lock_irq(&np->lock); 1488 rc = generic_mii_ioctl(&np->mii, data, cmd, NULL); 1489 spin_unlock_irq(&np->lock); 1490 1491 /* power-down, if interface is down */ 1492 if (! netif_running(dev)) { 1493 ew32(GENCTL, 0x0008); 1494 ew32(NVCTL, (er32(NVCTL) & ~0x483c) | 0x0000); 1495 } 1496 return rc; 1497 } 1498 1499 1500 static void epic_remove_one(struct pci_dev *pdev) 1501 { 1502 struct net_device *dev = pci_get_drvdata(pdev); 1503 struct epic_private *ep = netdev_priv(dev); 1504 1505 pci_free_consistent(pdev, TX_TOTAL_SIZE, ep->tx_ring, ep->tx_ring_dma); 1506 pci_free_consistent(pdev, RX_TOTAL_SIZE, ep->rx_ring, ep->rx_ring_dma); 1507 unregister_netdev(dev); 1508 pci_iounmap(pdev, ep->ioaddr); 1509 pci_release_regions(pdev); 1510 free_netdev(dev); 1511 pci_disable_device(pdev); 1512 /* pci_power_off(pdev, -1); */ 1513 } 1514 1515 static int __maybe_unused epic_suspend(struct device *dev_d) 1516 { 1517 struct net_device *dev = dev_get_drvdata(dev_d); 1518 struct epic_private *ep = netdev_priv(dev); 1519 void __iomem *ioaddr = ep->ioaddr; 1520 1521 if (!netif_running(dev)) 1522 return 0; 1523 epic_pause(dev); 1524 /* Put the chip into low-power mode. */ 1525 ew32(GENCTL, 0x0008); 1526 /* pci_power_off(pdev, -1); */ 1527 return 0; 1528 } 1529 1530 1531 static int __maybe_unused epic_resume(struct device *dev_d) 1532 { 1533 struct net_device *dev = dev_get_drvdata(dev_d); 1534 1535 if (!netif_running(dev)) 1536 return 0; 1537 epic_restart(dev); 1538 /* pci_power_on(pdev); */ 1539 return 0; 1540 } 1541 1542 static SIMPLE_DEV_PM_OPS(epic_pm_ops, epic_suspend, epic_resume); 1543 1544 static struct pci_driver epic_driver = { 1545 .name = DRV_NAME, 1546 .id_table = epic_pci_tbl, 1547 .probe = epic_init_one, 1548 .remove = epic_remove_one, 1549 .driver.pm = &epic_pm_ops, 1550 }; 1551 1552 1553 static int __init epic_init (void) 1554 { 1555 /* when a module, this is printed whether or not devices are found in probe */ 1556 #ifdef MODULE 1557 pr_info("%s%s\n", version, version2); 1558 #endif 1559 1560 return pci_register_driver(&epic_driver); 1561 } 1562 1563 1564 static void __exit epic_cleanup (void) 1565 { 1566 pci_unregister_driver (&epic_driver); 1567 } 1568 1569 1570 module_init(epic_init); 1571 module_exit(epic_cleanup); 1572