1 /* epic100.c: A SMC 83c170 EPIC/100 Fast Ethernet driver for Linux. */ 2 /* 3 Written/copyright 1997-2001 by Donald Becker. 4 5 This software may be used and distributed according to the terms of 6 the GNU General Public License (GPL), incorporated herein by reference. 7 Drivers based on or derived from this code fall under the GPL and must 8 retain the authorship, copyright and license notice. This file is not 9 a complete program and may only be used when the entire operating 10 system is licensed under the GPL. 11 12 This driver is for the SMC83c170/175 "EPIC" series, as used on the 13 SMC EtherPower II 9432 PCI adapter, and several CardBus cards. 14 15 The author may be reached as becker@scyld.com, or C/O 16 Scyld Computing Corporation 17 410 Severn Ave., Suite 210 18 Annapolis MD 21403 19 20 Information and updates available at 21 http://www.scyld.com/network/epic100.html 22 [this link no longer provides anything useful -jgarzik] 23 24 --------------------------------------------------------------------- 25 26 */ 27 28 #define DRV_NAME "epic100" 29 #define DRV_VERSION "2.1" 30 #define DRV_RELDATE "Sept 11, 2006" 31 32 /* The user-configurable values. 33 These may be modified when a driver module is loaded.*/ 34 35 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */ 36 37 /* Used to pass the full-duplex flag, etc. */ 38 #define MAX_UNITS 8 /* More are supported, limit only on options */ 39 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; 40 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; 41 42 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. 43 Setting to > 1518 effectively disables this feature. */ 44 static int rx_copybreak; 45 46 /* Operational parameters that are set at compile time. */ 47 48 /* Keep the ring sizes a power of two for operational efficiency. 49 The compiler will convert <unsigned>'%'<2^N> into a bit mask. 50 Making the Tx ring too large decreases the effectiveness of channel 51 bonding and packet priority. 52 There are no ill effects from too-large receive rings. */ 53 #define TX_RING_SIZE 256 54 #define TX_QUEUE_LEN 240 /* Limit ring entries actually used. */ 55 #define RX_RING_SIZE 256 56 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct epic_tx_desc) 57 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct epic_rx_desc) 58 59 /* Operational parameters that usually are not changed. */ 60 /* Time in jiffies before concluding the transmitter is hung. */ 61 #define TX_TIMEOUT (2*HZ) 62 63 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 64 65 /* Bytes transferred to chip before transmission starts. */ 66 /* Initial threshold, increased on underflow, rounded down to 4 byte units. */ 67 #define TX_FIFO_THRESH 256 68 #define RX_FIFO_THRESH 1 /* 0-3, 0==32, 64,96, or 3==128 bytes */ 69 70 #include <linux/module.h> 71 #include <linux/kernel.h> 72 #include <linux/string.h> 73 #include <linux/timer.h> 74 #include <linux/errno.h> 75 #include <linux/ioport.h> 76 #include <linux/interrupt.h> 77 #include <linux/pci.h> 78 #include <linux/delay.h> 79 #include <linux/netdevice.h> 80 #include <linux/etherdevice.h> 81 #include <linux/skbuff.h> 82 #include <linux/init.h> 83 #include <linux/spinlock.h> 84 #include <linux/ethtool.h> 85 #include <linux/mii.h> 86 #include <linux/crc32.h> 87 #include <linux/bitops.h> 88 #include <asm/io.h> 89 #include <asm/uaccess.h> 90 #include <asm/byteorder.h> 91 92 /* These identify the driver base version and may not be removed. */ 93 static char version[] = 94 DRV_NAME ".c:v1.11 1/7/2001 Written by Donald Becker <becker@scyld.com>"; 95 static char version2[] = 96 " (unofficial 2.4.x kernel port, version " DRV_VERSION ", " DRV_RELDATE ")"; 97 98 MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); 99 MODULE_DESCRIPTION("SMC 83c170 EPIC series Ethernet driver"); 100 MODULE_LICENSE("GPL"); 101 102 module_param(debug, int, 0); 103 module_param(rx_copybreak, int, 0); 104 module_param_array(options, int, NULL, 0); 105 module_param_array(full_duplex, int, NULL, 0); 106 MODULE_PARM_DESC(debug, "EPIC/100 debug level (0-5)"); 107 MODULE_PARM_DESC(options, "EPIC/100: Bits 0-3: media type, bit 4: full duplex"); 108 MODULE_PARM_DESC(rx_copybreak, "EPIC/100 copy breakpoint for copy-only-tiny-frames"); 109 MODULE_PARM_DESC(full_duplex, "EPIC/100 full duplex setting(s) (1)"); 110 111 /* 112 Theory of Operation 113 114 I. Board Compatibility 115 116 This device driver is designed for the SMC "EPIC/100", the SMC 117 single-chip Ethernet controllers for PCI. This chip is used on 118 the SMC EtherPower II boards. 119 120 II. Board-specific settings 121 122 PCI bus devices are configured by the system at boot time, so no jumpers 123 need to be set on the board. The system BIOS will assign the 124 PCI INTA signal to a (preferably otherwise unused) system IRQ line. 125 Note: Kernel versions earlier than 1.3.73 do not support shared PCI 126 interrupt lines. 127 128 III. Driver operation 129 130 IIIa. Ring buffers 131 132 IVb. References 133 134 http://www.smsc.com/media/Downloads_Public/discontinued/83c171.pdf 135 http://www.smsc.com/media/Downloads_Public/discontinued/83c175.pdf 136 http://scyld.com/expert/NWay.html 137 http://www.national.com/pf/DP/DP83840A.html 138 139 IVc. Errata 140 141 */ 142 143 144 enum chip_capability_flags { MII_PWRDWN=1, TYPE2_INTR=2, NO_MII=4 }; 145 146 #define EPIC_TOTAL_SIZE 0x100 147 #define USE_IO_OPS 1 148 149 #ifdef USE_IO_OPS 150 #define EPIC_BAR 0 151 #else 152 #define EPIC_BAR 1 153 #endif 154 155 typedef enum { 156 SMSC_83C170_0, 157 SMSC_83C170, 158 SMSC_83C175, 159 } chip_t; 160 161 162 struct epic_chip_info { 163 const char *name; 164 int drv_flags; /* Driver use, intended as capability flags. */ 165 }; 166 167 168 /* indexed by chip_t */ 169 static const struct epic_chip_info pci_id_tbl[] = { 170 { "SMSC EPIC/100 83c170", TYPE2_INTR | NO_MII | MII_PWRDWN }, 171 { "SMSC EPIC/100 83c170", TYPE2_INTR }, 172 { "SMSC EPIC/C 83c175", TYPE2_INTR | MII_PWRDWN }, 173 }; 174 175 176 static const struct pci_device_id epic_pci_tbl[] = { 177 { 0x10B8, 0x0005, 0x1092, 0x0AB4, 0, 0, SMSC_83C170_0 }, 178 { 0x10B8, 0x0005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, SMSC_83C170 }, 179 { 0x10B8, 0x0006, PCI_ANY_ID, PCI_ANY_ID, 180 PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, SMSC_83C175 }, 181 { 0,} 182 }; 183 MODULE_DEVICE_TABLE (pci, epic_pci_tbl); 184 185 #define ew16(reg, val) iowrite16(val, ioaddr + (reg)) 186 #define ew32(reg, val) iowrite32(val, ioaddr + (reg)) 187 #define er8(reg) ioread8(ioaddr + (reg)) 188 #define er16(reg) ioread16(ioaddr + (reg)) 189 #define er32(reg) ioread32(ioaddr + (reg)) 190 191 /* Offsets to registers, using the (ugh) SMC names. */ 192 enum epic_registers { 193 COMMAND=0, INTSTAT=4, INTMASK=8, GENCTL=0x0C, NVCTL=0x10, EECTL=0x14, 194 PCIBurstCnt=0x18, 195 TEST1=0x1C, CRCCNT=0x20, ALICNT=0x24, MPCNT=0x28, /* Rx error counters. */ 196 MIICtrl=0x30, MIIData=0x34, MIICfg=0x38, 197 LAN0=64, /* MAC address. */ 198 MC0=80, /* Multicast filter table. */ 199 RxCtrl=96, TxCtrl=112, TxSTAT=0x74, 200 PRxCDAR=0x84, RxSTAT=0xA4, EarlyRx=0xB0, PTxCDAR=0xC4, TxThresh=0xDC, 201 }; 202 203 /* Interrupt register bits, using my own meaningful names. */ 204 enum IntrStatus { 205 TxIdle=0x40000, RxIdle=0x20000, IntrSummary=0x010000, 206 PCIBusErr170=0x7000, PCIBusErr175=0x1000, PhyEvent175=0x8000, 207 RxStarted=0x0800, RxEarlyWarn=0x0400, CntFull=0x0200, TxUnderrun=0x0100, 208 TxEmpty=0x0080, TxDone=0x0020, RxError=0x0010, 209 RxOverflow=0x0008, RxFull=0x0004, RxHeader=0x0002, RxDone=0x0001, 210 }; 211 enum CommandBits { 212 StopRx=1, StartRx=2, TxQueued=4, RxQueued=8, 213 StopTxDMA=0x20, StopRxDMA=0x40, RestartTx=0x80, 214 }; 215 216 #define EpicRemoved 0xffffffff /* Chip failed or removed (CardBus) */ 217 218 #define EpicNapiEvent (TxEmpty | TxDone | \ 219 RxDone | RxStarted | RxEarlyWarn | RxOverflow | RxFull) 220 #define EpicNormalEvent (0x0000ffff & ~EpicNapiEvent) 221 222 static const u16 media2miictl[16] = { 223 0, 0x0C00, 0x0C00, 0x2000, 0x0100, 0x2100, 0, 0, 224 0, 0, 0, 0, 0, 0, 0, 0 }; 225 226 /* 227 * The EPIC100 Rx and Tx buffer descriptors. Note that these 228 * really ARE host-endian; it's not a misannotation. We tell 229 * the card to byteswap them internally on big-endian hosts - 230 * look for #ifdef __BIG_ENDIAN in epic_open(). 231 */ 232 233 struct epic_tx_desc { 234 u32 txstatus; 235 u32 bufaddr; 236 u32 buflength; 237 u32 next; 238 }; 239 240 struct epic_rx_desc { 241 u32 rxstatus; 242 u32 bufaddr; 243 u32 buflength; 244 u32 next; 245 }; 246 247 enum desc_status_bits { 248 DescOwn=0x8000, 249 }; 250 251 #define PRIV_ALIGN 15 /* Required alignment mask */ 252 struct epic_private { 253 struct epic_rx_desc *rx_ring; 254 struct epic_tx_desc *tx_ring; 255 /* The saved address of a sent-in-place packet/buffer, for skfree(). */ 256 struct sk_buff* tx_skbuff[TX_RING_SIZE]; 257 /* The addresses of receive-in-place skbuffs. */ 258 struct sk_buff* rx_skbuff[RX_RING_SIZE]; 259 260 dma_addr_t tx_ring_dma; 261 dma_addr_t rx_ring_dma; 262 263 /* Ring pointers. */ 264 spinlock_t lock; /* Group with Tx control cache line. */ 265 spinlock_t napi_lock; 266 struct napi_struct napi; 267 unsigned int reschedule_in_poll; 268 unsigned int cur_tx, dirty_tx; 269 270 unsigned int cur_rx, dirty_rx; 271 u32 irq_mask; 272 unsigned int rx_buf_sz; /* Based on MTU+slack. */ 273 274 void __iomem *ioaddr; 275 struct pci_dev *pci_dev; /* PCI bus location. */ 276 int chip_id, chip_flags; 277 278 struct timer_list timer; /* Media selection timer. */ 279 int tx_threshold; 280 unsigned char mc_filter[8]; 281 signed char phys[4]; /* MII device addresses. */ 282 u16 advertising; /* NWay media advertisement */ 283 int mii_phy_cnt; 284 struct mii_if_info mii; 285 unsigned int tx_full:1; /* The Tx queue is full. */ 286 unsigned int default_port:4; /* Last dev->if_port value. */ 287 }; 288 289 static int epic_open(struct net_device *dev); 290 static int read_eeprom(struct epic_private *, int); 291 static int mdio_read(struct net_device *dev, int phy_id, int location); 292 static void mdio_write(struct net_device *dev, int phy_id, int loc, int val); 293 static void epic_restart(struct net_device *dev); 294 static void epic_timer(unsigned long data); 295 static void epic_tx_timeout(struct net_device *dev); 296 static void epic_init_ring(struct net_device *dev); 297 static netdev_tx_t epic_start_xmit(struct sk_buff *skb, 298 struct net_device *dev); 299 static int epic_rx(struct net_device *dev, int budget); 300 static int epic_poll(struct napi_struct *napi, int budget); 301 static irqreturn_t epic_interrupt(int irq, void *dev_instance); 302 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 303 static const struct ethtool_ops netdev_ethtool_ops; 304 static int epic_close(struct net_device *dev); 305 static struct net_device_stats *epic_get_stats(struct net_device *dev); 306 static void set_rx_mode(struct net_device *dev); 307 308 static const struct net_device_ops epic_netdev_ops = { 309 .ndo_open = epic_open, 310 .ndo_stop = epic_close, 311 .ndo_start_xmit = epic_start_xmit, 312 .ndo_tx_timeout = epic_tx_timeout, 313 .ndo_get_stats = epic_get_stats, 314 .ndo_set_rx_mode = set_rx_mode, 315 .ndo_do_ioctl = netdev_ioctl, 316 .ndo_change_mtu = eth_change_mtu, 317 .ndo_set_mac_address = eth_mac_addr, 318 .ndo_validate_addr = eth_validate_addr, 319 }; 320 321 static int epic_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 322 { 323 static int card_idx = -1; 324 void __iomem *ioaddr; 325 int chip_idx = (int) ent->driver_data; 326 int irq; 327 struct net_device *dev; 328 struct epic_private *ep; 329 int i, ret, option = 0, duplex = 0; 330 void *ring_space; 331 dma_addr_t ring_dma; 332 333 /* when built into the kernel, we only print version if device is found */ 334 #ifndef MODULE 335 pr_info_once("%s%s\n", version, version2); 336 #endif 337 338 card_idx++; 339 340 ret = pci_enable_device(pdev); 341 if (ret) 342 goto out; 343 irq = pdev->irq; 344 345 if (pci_resource_len(pdev, 0) < EPIC_TOTAL_SIZE) { 346 dev_err(&pdev->dev, "no PCI region space\n"); 347 ret = -ENODEV; 348 goto err_out_disable; 349 } 350 351 pci_set_master(pdev); 352 353 ret = pci_request_regions(pdev, DRV_NAME); 354 if (ret < 0) 355 goto err_out_disable; 356 357 ret = -ENOMEM; 358 359 dev = alloc_etherdev(sizeof (*ep)); 360 if (!dev) 361 goto err_out_free_res; 362 363 SET_NETDEV_DEV(dev, &pdev->dev); 364 365 ioaddr = pci_iomap(pdev, EPIC_BAR, 0); 366 if (!ioaddr) { 367 dev_err(&pdev->dev, "ioremap failed\n"); 368 goto err_out_free_netdev; 369 } 370 371 pci_set_drvdata(pdev, dev); 372 ep = netdev_priv(dev); 373 ep->ioaddr = ioaddr; 374 ep->mii.dev = dev; 375 ep->mii.mdio_read = mdio_read; 376 ep->mii.mdio_write = mdio_write; 377 ep->mii.phy_id_mask = 0x1f; 378 ep->mii.reg_num_mask = 0x1f; 379 380 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma); 381 if (!ring_space) 382 goto err_out_iounmap; 383 ep->tx_ring = ring_space; 384 ep->tx_ring_dma = ring_dma; 385 386 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma); 387 if (!ring_space) 388 goto err_out_unmap_tx; 389 ep->rx_ring = ring_space; 390 ep->rx_ring_dma = ring_dma; 391 392 if (dev->mem_start) { 393 option = dev->mem_start; 394 duplex = (dev->mem_start & 16) ? 1 : 0; 395 } else if (card_idx >= 0 && card_idx < MAX_UNITS) { 396 if (options[card_idx] >= 0) 397 option = options[card_idx]; 398 if (full_duplex[card_idx] >= 0) 399 duplex = full_duplex[card_idx]; 400 } 401 402 spin_lock_init(&ep->lock); 403 spin_lock_init(&ep->napi_lock); 404 ep->reschedule_in_poll = 0; 405 406 /* Bring the chip out of low-power mode. */ 407 ew32(GENCTL, 0x4200); 408 /* Magic?! If we don't set this bit the MII interface won't work. */ 409 /* This magic is documented in SMSC app note 7.15 */ 410 for (i = 16; i > 0; i--) 411 ew32(TEST1, 0x0008); 412 413 /* Turn on the MII transceiver. */ 414 ew32(MIICfg, 0x12); 415 if (chip_idx == 1) 416 ew32(NVCTL, (er32(NVCTL) & ~0x003c) | 0x4800); 417 ew32(GENCTL, 0x0200); 418 419 /* Note: the '175 does not have a serial EEPROM. */ 420 for (i = 0; i < 3; i++) 421 ((__le16 *)dev->dev_addr)[i] = cpu_to_le16(er16(LAN0 + i*4)); 422 423 if (debug > 2) { 424 dev_dbg(&pdev->dev, "EEPROM contents:\n"); 425 for (i = 0; i < 64; i++) 426 pr_cont(" %4.4x%s", read_eeprom(ep, i), 427 i % 16 == 15 ? "\n" : ""); 428 } 429 430 ep->pci_dev = pdev; 431 ep->chip_id = chip_idx; 432 ep->chip_flags = pci_id_tbl[chip_idx].drv_flags; 433 ep->irq_mask = 434 (ep->chip_flags & TYPE2_INTR ? PCIBusErr175 : PCIBusErr170) 435 | CntFull | TxUnderrun | EpicNapiEvent; 436 437 /* Find the connected MII xcvrs. 438 Doing this in open() would allow detecting external xcvrs later, but 439 takes much time and no cards have external MII. */ 440 { 441 int phy, phy_idx = 0; 442 for (phy = 1; phy < 32 && phy_idx < sizeof(ep->phys); phy++) { 443 int mii_status = mdio_read(dev, phy, MII_BMSR); 444 if (mii_status != 0xffff && mii_status != 0x0000) { 445 ep->phys[phy_idx++] = phy; 446 dev_info(&pdev->dev, 447 "MII transceiver #%d control " 448 "%4.4x status %4.4x.\n", 449 phy, mdio_read(dev, phy, 0), mii_status); 450 } 451 } 452 ep->mii_phy_cnt = phy_idx; 453 if (phy_idx != 0) { 454 phy = ep->phys[0]; 455 ep->mii.advertising = mdio_read(dev, phy, MII_ADVERTISE); 456 dev_info(&pdev->dev, 457 "Autonegotiation advertising %4.4x link " 458 "partner %4.4x.\n", 459 ep->mii.advertising, mdio_read(dev, phy, 5)); 460 } else if ( ! (ep->chip_flags & NO_MII)) { 461 dev_warn(&pdev->dev, 462 "***WARNING***: No MII transceiver found!\n"); 463 /* Use the known PHY address of the EPII. */ 464 ep->phys[0] = 3; 465 } 466 ep->mii.phy_id = ep->phys[0]; 467 } 468 469 /* Turn off the MII xcvr (175 only!), leave the chip in low-power mode. */ 470 if (ep->chip_flags & MII_PWRDWN) 471 ew32(NVCTL, er32(NVCTL) & ~0x483c); 472 ew32(GENCTL, 0x0008); 473 474 /* The lower four bits are the media type. */ 475 if (duplex) { 476 ep->mii.force_media = ep->mii.full_duplex = 1; 477 dev_info(&pdev->dev, "Forced full duplex requested.\n"); 478 } 479 dev->if_port = ep->default_port = option; 480 481 /* The Epic-specific entries in the device structure. */ 482 dev->netdev_ops = &epic_netdev_ops; 483 dev->ethtool_ops = &netdev_ethtool_ops; 484 dev->watchdog_timeo = TX_TIMEOUT; 485 netif_napi_add(dev, &ep->napi, epic_poll, 64); 486 487 ret = register_netdev(dev); 488 if (ret < 0) 489 goto err_out_unmap_rx; 490 491 netdev_info(dev, "%s at %lx, IRQ %d, %pM\n", 492 pci_id_tbl[chip_idx].name, 493 (long)pci_resource_start(pdev, EPIC_BAR), pdev->irq, 494 dev->dev_addr); 495 496 out: 497 return ret; 498 499 err_out_unmap_rx: 500 pci_free_consistent(pdev, RX_TOTAL_SIZE, ep->rx_ring, ep->rx_ring_dma); 501 err_out_unmap_tx: 502 pci_free_consistent(pdev, TX_TOTAL_SIZE, ep->tx_ring, ep->tx_ring_dma); 503 err_out_iounmap: 504 pci_iounmap(pdev, ioaddr); 505 err_out_free_netdev: 506 free_netdev(dev); 507 err_out_free_res: 508 pci_release_regions(pdev); 509 err_out_disable: 510 pci_disable_device(pdev); 511 goto out; 512 } 513 514 /* Serial EEPROM section. */ 515 516 /* EEPROM_Ctrl bits. */ 517 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */ 518 #define EE_CS 0x02 /* EEPROM chip select. */ 519 #define EE_DATA_WRITE 0x08 /* EEPROM chip data in. */ 520 #define EE_WRITE_0 0x01 521 #define EE_WRITE_1 0x09 522 #define EE_DATA_READ 0x10 /* EEPROM chip data out. */ 523 #define EE_ENB (0x0001 | EE_CS) 524 525 /* Delay between EEPROM clock transitions. 526 This serves to flush the operation to the PCI bus. 527 */ 528 529 #define eeprom_delay() er32(EECTL) 530 531 /* The EEPROM commands include the alway-set leading bit. */ 532 #define EE_WRITE_CMD (5 << 6) 533 #define EE_READ64_CMD (6 << 6) 534 #define EE_READ256_CMD (6 << 8) 535 #define EE_ERASE_CMD (7 << 6) 536 537 static void epic_disable_int(struct net_device *dev, struct epic_private *ep) 538 { 539 void __iomem *ioaddr = ep->ioaddr; 540 541 ew32(INTMASK, 0x00000000); 542 } 543 544 static inline void __epic_pci_commit(void __iomem *ioaddr) 545 { 546 #ifndef USE_IO_OPS 547 er32(INTMASK); 548 #endif 549 } 550 551 static inline void epic_napi_irq_off(struct net_device *dev, 552 struct epic_private *ep) 553 { 554 void __iomem *ioaddr = ep->ioaddr; 555 556 ew32(INTMASK, ep->irq_mask & ~EpicNapiEvent); 557 __epic_pci_commit(ioaddr); 558 } 559 560 static inline void epic_napi_irq_on(struct net_device *dev, 561 struct epic_private *ep) 562 { 563 void __iomem *ioaddr = ep->ioaddr; 564 565 /* No need to commit possible posted write */ 566 ew32(INTMASK, ep->irq_mask | EpicNapiEvent); 567 } 568 569 static int read_eeprom(struct epic_private *ep, int location) 570 { 571 void __iomem *ioaddr = ep->ioaddr; 572 int i; 573 int retval = 0; 574 int read_cmd = location | 575 (er32(EECTL) & 0x40 ? EE_READ64_CMD : EE_READ256_CMD); 576 577 ew32(EECTL, EE_ENB & ~EE_CS); 578 ew32(EECTL, EE_ENB); 579 580 /* Shift the read command bits out. */ 581 for (i = 12; i >= 0; i--) { 582 short dataval = (read_cmd & (1 << i)) ? EE_WRITE_1 : EE_WRITE_0; 583 ew32(EECTL, EE_ENB | dataval); 584 eeprom_delay(); 585 ew32(EECTL, EE_ENB | dataval | EE_SHIFT_CLK); 586 eeprom_delay(); 587 } 588 ew32(EECTL, EE_ENB); 589 590 for (i = 16; i > 0; i--) { 591 ew32(EECTL, EE_ENB | EE_SHIFT_CLK); 592 eeprom_delay(); 593 retval = (retval << 1) | ((er32(EECTL) & EE_DATA_READ) ? 1 : 0); 594 ew32(EECTL, EE_ENB); 595 eeprom_delay(); 596 } 597 598 /* Terminate the EEPROM access. */ 599 ew32(EECTL, EE_ENB & ~EE_CS); 600 return retval; 601 } 602 603 #define MII_READOP 1 604 #define MII_WRITEOP 2 605 static int mdio_read(struct net_device *dev, int phy_id, int location) 606 { 607 struct epic_private *ep = netdev_priv(dev); 608 void __iomem *ioaddr = ep->ioaddr; 609 int read_cmd = (phy_id << 9) | (location << 4) | MII_READOP; 610 int i; 611 612 ew32(MIICtrl, read_cmd); 613 /* Typical operation takes 25 loops. */ 614 for (i = 400; i > 0; i--) { 615 barrier(); 616 if ((er32(MIICtrl) & MII_READOP) == 0) { 617 /* Work around read failure bug. */ 618 if (phy_id == 1 && location < 6 && 619 er16(MIIData) == 0xffff) { 620 ew32(MIICtrl, read_cmd); 621 continue; 622 } 623 return er16(MIIData); 624 } 625 } 626 return 0xffff; 627 } 628 629 static void mdio_write(struct net_device *dev, int phy_id, int loc, int value) 630 { 631 struct epic_private *ep = netdev_priv(dev); 632 void __iomem *ioaddr = ep->ioaddr; 633 int i; 634 635 ew16(MIIData, value); 636 ew32(MIICtrl, (phy_id << 9) | (loc << 4) | MII_WRITEOP); 637 for (i = 10000; i > 0; i--) { 638 barrier(); 639 if ((er32(MIICtrl) & MII_WRITEOP) == 0) 640 break; 641 } 642 } 643 644 645 static int epic_open(struct net_device *dev) 646 { 647 struct epic_private *ep = netdev_priv(dev); 648 void __iomem *ioaddr = ep->ioaddr; 649 const int irq = ep->pci_dev->irq; 650 int rc, i; 651 652 /* Soft reset the chip. */ 653 ew32(GENCTL, 0x4001); 654 655 napi_enable(&ep->napi); 656 rc = request_irq(irq, epic_interrupt, IRQF_SHARED, dev->name, dev); 657 if (rc) { 658 napi_disable(&ep->napi); 659 return rc; 660 } 661 662 epic_init_ring(dev); 663 664 ew32(GENCTL, 0x4000); 665 /* This magic is documented in SMSC app note 7.15 */ 666 for (i = 16; i > 0; i--) 667 ew32(TEST1, 0x0008); 668 669 /* Pull the chip out of low-power mode, enable interrupts, and set for 670 PCI read multiple. The MIIcfg setting and strange write order are 671 required by the details of which bits are reset and the transceiver 672 wiring on the Ositech CardBus card. 673 */ 674 #if 0 675 ew32(MIICfg, dev->if_port == 1 ? 0x13 : 0x12); 676 #endif 677 if (ep->chip_flags & MII_PWRDWN) 678 ew32(NVCTL, (er32(NVCTL) & ~0x003c) | 0x4800); 679 680 /* Tell the chip to byteswap descriptors on big-endian hosts */ 681 #ifdef __BIG_ENDIAN 682 ew32(GENCTL, 0x4432 | (RX_FIFO_THRESH << 8)); 683 er32(GENCTL); 684 ew32(GENCTL, 0x0432 | (RX_FIFO_THRESH << 8)); 685 #else 686 ew32(GENCTL, 0x4412 | (RX_FIFO_THRESH << 8)); 687 er32(GENCTL); 688 ew32(GENCTL, 0x0412 | (RX_FIFO_THRESH << 8)); 689 #endif 690 691 udelay(20); /* Looks like EPII needs that if you want reliable RX init. FIXME: pci posting bug? */ 692 693 for (i = 0; i < 3; i++) 694 ew32(LAN0 + i*4, le16_to_cpu(((__le16*)dev->dev_addr)[i])); 695 696 ep->tx_threshold = TX_FIFO_THRESH; 697 ew32(TxThresh, ep->tx_threshold); 698 699 if (media2miictl[dev->if_port & 15]) { 700 if (ep->mii_phy_cnt) 701 mdio_write(dev, ep->phys[0], MII_BMCR, media2miictl[dev->if_port&15]); 702 if (dev->if_port == 1) { 703 if (debug > 1) 704 netdev_info(dev, "Using the 10base2 transceiver, MII status %4.4x.\n", 705 mdio_read(dev, ep->phys[0], MII_BMSR)); 706 } 707 } else { 708 int mii_lpa = mdio_read(dev, ep->phys[0], MII_LPA); 709 if (mii_lpa != 0xffff) { 710 if ((mii_lpa & LPA_100FULL) || (mii_lpa & 0x01C0) == LPA_10FULL) 711 ep->mii.full_duplex = 1; 712 else if (! (mii_lpa & LPA_LPACK)) 713 mdio_write(dev, ep->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART); 714 if (debug > 1) 715 netdev_info(dev, "Setting %s-duplex based on MII xcvr %d register read of %4.4x.\n", 716 ep->mii.full_duplex ? "full" 717 : "half", 718 ep->phys[0], mii_lpa); 719 } 720 } 721 722 ew32(TxCtrl, ep->mii.full_duplex ? 0x7f : 0x79); 723 ew32(PRxCDAR, ep->rx_ring_dma); 724 ew32(PTxCDAR, ep->tx_ring_dma); 725 726 /* Start the chip's Rx process. */ 727 set_rx_mode(dev); 728 ew32(COMMAND, StartRx | RxQueued); 729 730 netif_start_queue(dev); 731 732 /* Enable interrupts by setting the interrupt mask. */ 733 ew32(INTMASK, RxError | RxHeader | EpicNapiEvent | CntFull | 734 ((ep->chip_flags & TYPE2_INTR) ? PCIBusErr175 : PCIBusErr170) | 735 TxUnderrun); 736 737 if (debug > 1) { 738 netdev_dbg(dev, "epic_open() ioaddr %p IRQ %d status %4.4x %s-duplex.\n", 739 ioaddr, irq, er32(GENCTL), 740 ep->mii.full_duplex ? "full" : "half"); 741 } 742 743 /* Set the timer to switch to check for link beat and perhaps switch 744 to an alternate media type. */ 745 init_timer(&ep->timer); 746 ep->timer.expires = jiffies + 3*HZ; 747 ep->timer.data = (unsigned long)dev; 748 ep->timer.function = epic_timer; /* timer handler */ 749 add_timer(&ep->timer); 750 751 return rc; 752 } 753 754 /* Reset the chip to recover from a PCI transaction error. 755 This may occur at interrupt time. */ 756 static void epic_pause(struct net_device *dev) 757 { 758 struct net_device_stats *stats = &dev->stats; 759 struct epic_private *ep = netdev_priv(dev); 760 void __iomem *ioaddr = ep->ioaddr; 761 762 netif_stop_queue (dev); 763 764 /* Disable interrupts by clearing the interrupt mask. */ 765 ew32(INTMASK, 0x00000000); 766 /* Stop the chip's Tx and Rx DMA processes. */ 767 ew16(COMMAND, StopRx | StopTxDMA | StopRxDMA); 768 769 /* Update the error counts. */ 770 if (er16(COMMAND) != 0xffff) { 771 stats->rx_missed_errors += er8(MPCNT); 772 stats->rx_frame_errors += er8(ALICNT); 773 stats->rx_crc_errors += er8(CRCCNT); 774 } 775 776 /* Remove the packets on the Rx queue. */ 777 epic_rx(dev, RX_RING_SIZE); 778 } 779 780 static void epic_restart(struct net_device *dev) 781 { 782 struct epic_private *ep = netdev_priv(dev); 783 void __iomem *ioaddr = ep->ioaddr; 784 int i; 785 786 /* Soft reset the chip. */ 787 ew32(GENCTL, 0x4001); 788 789 netdev_dbg(dev, "Restarting the EPIC chip, Rx %d/%d Tx %d/%d.\n", 790 ep->cur_rx, ep->dirty_rx, ep->dirty_tx, ep->cur_tx); 791 udelay(1); 792 793 /* This magic is documented in SMSC app note 7.15 */ 794 for (i = 16; i > 0; i--) 795 ew32(TEST1, 0x0008); 796 797 #ifdef __BIG_ENDIAN 798 ew32(GENCTL, 0x0432 | (RX_FIFO_THRESH << 8)); 799 #else 800 ew32(GENCTL, 0x0412 | (RX_FIFO_THRESH << 8)); 801 #endif 802 ew32(MIICfg, dev->if_port == 1 ? 0x13 : 0x12); 803 if (ep->chip_flags & MII_PWRDWN) 804 ew32(NVCTL, (er32(NVCTL) & ~0x003c) | 0x4800); 805 806 for (i = 0; i < 3; i++) 807 ew32(LAN0 + i*4, le16_to_cpu(((__le16*)dev->dev_addr)[i])); 808 809 ep->tx_threshold = TX_FIFO_THRESH; 810 ew32(TxThresh, ep->tx_threshold); 811 ew32(TxCtrl, ep->mii.full_duplex ? 0x7f : 0x79); 812 ew32(PRxCDAR, ep->rx_ring_dma + 813 (ep->cur_rx % RX_RING_SIZE) * sizeof(struct epic_rx_desc)); 814 ew32(PTxCDAR, ep->tx_ring_dma + 815 (ep->dirty_tx % TX_RING_SIZE) * sizeof(struct epic_tx_desc)); 816 817 /* Start the chip's Rx process. */ 818 set_rx_mode(dev); 819 ew32(COMMAND, StartRx | RxQueued); 820 821 /* Enable interrupts by setting the interrupt mask. */ 822 ew32(INTMASK, RxError | RxHeader | EpicNapiEvent | CntFull | 823 ((ep->chip_flags & TYPE2_INTR) ? PCIBusErr175 : PCIBusErr170) | 824 TxUnderrun); 825 826 netdev_dbg(dev, "epic_restart() done, cmd status %4.4x, ctl %4.4x interrupt %4.4x.\n", 827 er32(COMMAND), er32(GENCTL), er32(INTSTAT)); 828 } 829 830 static void check_media(struct net_device *dev) 831 { 832 struct epic_private *ep = netdev_priv(dev); 833 void __iomem *ioaddr = ep->ioaddr; 834 int mii_lpa = ep->mii_phy_cnt ? mdio_read(dev, ep->phys[0], MII_LPA) : 0; 835 int negotiated = mii_lpa & ep->mii.advertising; 836 int duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040; 837 838 if (ep->mii.force_media) 839 return; 840 if (mii_lpa == 0xffff) /* Bogus read */ 841 return; 842 if (ep->mii.full_duplex != duplex) { 843 ep->mii.full_duplex = duplex; 844 netdev_info(dev, "Setting %s-duplex based on MII #%d link partner capability of %4.4x.\n", 845 ep->mii.full_duplex ? "full" : "half", 846 ep->phys[0], mii_lpa); 847 ew32(TxCtrl, ep->mii.full_duplex ? 0x7F : 0x79); 848 } 849 } 850 851 static void epic_timer(unsigned long data) 852 { 853 struct net_device *dev = (struct net_device *)data; 854 struct epic_private *ep = netdev_priv(dev); 855 void __iomem *ioaddr = ep->ioaddr; 856 int next_tick = 5*HZ; 857 858 if (debug > 3) { 859 netdev_dbg(dev, "Media monitor tick, Tx status %8.8x.\n", 860 er32(TxSTAT)); 861 netdev_dbg(dev, "Other registers are IntMask %4.4x IntStatus %4.4x RxStatus %4.4x.\n", 862 er32(INTMASK), er32(INTSTAT), er32(RxSTAT)); 863 } 864 865 check_media(dev); 866 867 ep->timer.expires = jiffies + next_tick; 868 add_timer(&ep->timer); 869 } 870 871 static void epic_tx_timeout(struct net_device *dev) 872 { 873 struct epic_private *ep = netdev_priv(dev); 874 void __iomem *ioaddr = ep->ioaddr; 875 876 if (debug > 0) { 877 netdev_warn(dev, "Transmit timeout using MII device, Tx status %4.4x.\n", 878 er16(TxSTAT)); 879 if (debug > 1) { 880 netdev_dbg(dev, "Tx indices: dirty_tx %d, cur_tx %d.\n", 881 ep->dirty_tx, ep->cur_tx); 882 } 883 } 884 if (er16(TxSTAT) & 0x10) { /* Tx FIFO underflow. */ 885 dev->stats.tx_fifo_errors++; 886 ew32(COMMAND, RestartTx); 887 } else { 888 epic_restart(dev); 889 ew32(COMMAND, TxQueued); 890 } 891 892 netif_trans_update(dev); /* prevent tx timeout */ 893 dev->stats.tx_errors++; 894 if (!ep->tx_full) 895 netif_wake_queue(dev); 896 } 897 898 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ 899 static void epic_init_ring(struct net_device *dev) 900 { 901 struct epic_private *ep = netdev_priv(dev); 902 int i; 903 904 ep->tx_full = 0; 905 ep->dirty_tx = ep->cur_tx = 0; 906 ep->cur_rx = ep->dirty_rx = 0; 907 ep->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32); 908 909 /* Initialize all Rx descriptors. */ 910 for (i = 0; i < RX_RING_SIZE; i++) { 911 ep->rx_ring[i].rxstatus = 0; 912 ep->rx_ring[i].buflength = ep->rx_buf_sz; 913 ep->rx_ring[i].next = ep->rx_ring_dma + 914 (i+1)*sizeof(struct epic_rx_desc); 915 ep->rx_skbuff[i] = NULL; 916 } 917 /* Mark the last entry as wrapping the ring. */ 918 ep->rx_ring[i-1].next = ep->rx_ring_dma; 919 920 /* Fill in the Rx buffers. Handle allocation failure gracefully. */ 921 for (i = 0; i < RX_RING_SIZE; i++) { 922 struct sk_buff *skb = netdev_alloc_skb(dev, ep->rx_buf_sz + 2); 923 ep->rx_skbuff[i] = skb; 924 if (skb == NULL) 925 break; 926 skb_reserve(skb, 2); /* 16 byte align the IP header. */ 927 ep->rx_ring[i].bufaddr = pci_map_single(ep->pci_dev, 928 skb->data, ep->rx_buf_sz, PCI_DMA_FROMDEVICE); 929 ep->rx_ring[i].rxstatus = DescOwn; 930 } 931 ep->dirty_rx = (unsigned int)(i - RX_RING_SIZE); 932 933 /* The Tx buffer descriptor is filled in as needed, but we 934 do need to clear the ownership bit. */ 935 for (i = 0; i < TX_RING_SIZE; i++) { 936 ep->tx_skbuff[i] = NULL; 937 ep->tx_ring[i].txstatus = 0x0000; 938 ep->tx_ring[i].next = ep->tx_ring_dma + 939 (i+1)*sizeof(struct epic_tx_desc); 940 } 941 ep->tx_ring[i-1].next = ep->tx_ring_dma; 942 } 943 944 static netdev_tx_t epic_start_xmit(struct sk_buff *skb, struct net_device *dev) 945 { 946 struct epic_private *ep = netdev_priv(dev); 947 void __iomem *ioaddr = ep->ioaddr; 948 int entry, free_count; 949 u32 ctrl_word; 950 unsigned long flags; 951 952 if (skb_padto(skb, ETH_ZLEN)) 953 return NETDEV_TX_OK; 954 955 /* Caution: the write order is important here, set the field with the 956 "ownership" bit last. */ 957 958 /* Calculate the next Tx descriptor entry. */ 959 spin_lock_irqsave(&ep->lock, flags); 960 free_count = ep->cur_tx - ep->dirty_tx; 961 entry = ep->cur_tx % TX_RING_SIZE; 962 963 ep->tx_skbuff[entry] = skb; 964 ep->tx_ring[entry].bufaddr = pci_map_single(ep->pci_dev, skb->data, 965 skb->len, PCI_DMA_TODEVICE); 966 if (free_count < TX_QUEUE_LEN/2) {/* Typical path */ 967 ctrl_word = 0x100000; /* No interrupt */ 968 } else if (free_count == TX_QUEUE_LEN/2) { 969 ctrl_word = 0x140000; /* Tx-done intr. */ 970 } else if (free_count < TX_QUEUE_LEN - 1) { 971 ctrl_word = 0x100000; /* No Tx-done intr. */ 972 } else { 973 /* Leave room for an additional entry. */ 974 ctrl_word = 0x140000; /* Tx-done intr. */ 975 ep->tx_full = 1; 976 } 977 ep->tx_ring[entry].buflength = ctrl_word | skb->len; 978 ep->tx_ring[entry].txstatus = 979 ((skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN) << 16) 980 | DescOwn; 981 982 ep->cur_tx++; 983 if (ep->tx_full) 984 netif_stop_queue(dev); 985 986 spin_unlock_irqrestore(&ep->lock, flags); 987 /* Trigger an immediate transmit demand. */ 988 ew32(COMMAND, TxQueued); 989 990 if (debug > 4) 991 netdev_dbg(dev, "Queued Tx packet size %d to slot %d, flag %2.2x Tx status %8.8x.\n", 992 skb->len, entry, ctrl_word, er32(TxSTAT)); 993 994 return NETDEV_TX_OK; 995 } 996 997 static void epic_tx_error(struct net_device *dev, struct epic_private *ep, 998 int status) 999 { 1000 struct net_device_stats *stats = &dev->stats; 1001 1002 #ifndef final_version 1003 /* There was an major error, log it. */ 1004 if (debug > 1) 1005 netdev_dbg(dev, "Transmit error, Tx status %8.8x.\n", 1006 status); 1007 #endif 1008 stats->tx_errors++; 1009 if (status & 0x1050) 1010 stats->tx_aborted_errors++; 1011 if (status & 0x0008) 1012 stats->tx_carrier_errors++; 1013 if (status & 0x0040) 1014 stats->tx_window_errors++; 1015 if (status & 0x0010) 1016 stats->tx_fifo_errors++; 1017 } 1018 1019 static void epic_tx(struct net_device *dev, struct epic_private *ep) 1020 { 1021 unsigned int dirty_tx, cur_tx; 1022 1023 /* 1024 * Note: if this lock becomes a problem we can narrow the locked 1025 * region at the cost of occasionally grabbing the lock more times. 1026 */ 1027 cur_tx = ep->cur_tx; 1028 for (dirty_tx = ep->dirty_tx; cur_tx - dirty_tx > 0; dirty_tx++) { 1029 struct sk_buff *skb; 1030 int entry = dirty_tx % TX_RING_SIZE; 1031 int txstatus = ep->tx_ring[entry].txstatus; 1032 1033 if (txstatus & DescOwn) 1034 break; /* It still hasn't been Txed */ 1035 1036 if (likely(txstatus & 0x0001)) { 1037 dev->stats.collisions += (txstatus >> 8) & 15; 1038 dev->stats.tx_packets++; 1039 dev->stats.tx_bytes += ep->tx_skbuff[entry]->len; 1040 } else 1041 epic_tx_error(dev, ep, txstatus); 1042 1043 /* Free the original skb. */ 1044 skb = ep->tx_skbuff[entry]; 1045 pci_unmap_single(ep->pci_dev, ep->tx_ring[entry].bufaddr, 1046 skb->len, PCI_DMA_TODEVICE); 1047 dev_kfree_skb_irq(skb); 1048 ep->tx_skbuff[entry] = NULL; 1049 } 1050 1051 #ifndef final_version 1052 if (cur_tx - dirty_tx > TX_RING_SIZE) { 1053 netdev_warn(dev, "Out-of-sync dirty pointer, %d vs. %d, full=%d.\n", 1054 dirty_tx, cur_tx, ep->tx_full); 1055 dirty_tx += TX_RING_SIZE; 1056 } 1057 #endif 1058 ep->dirty_tx = dirty_tx; 1059 if (ep->tx_full && cur_tx - dirty_tx < TX_QUEUE_LEN - 4) { 1060 /* The ring is no longer full, allow new TX entries. */ 1061 ep->tx_full = 0; 1062 netif_wake_queue(dev); 1063 } 1064 } 1065 1066 /* The interrupt handler does all of the Rx thread work and cleans up 1067 after the Tx thread. */ 1068 static irqreturn_t epic_interrupt(int irq, void *dev_instance) 1069 { 1070 struct net_device *dev = dev_instance; 1071 struct epic_private *ep = netdev_priv(dev); 1072 void __iomem *ioaddr = ep->ioaddr; 1073 unsigned int handled = 0; 1074 int status; 1075 1076 status = er32(INTSTAT); 1077 /* Acknowledge all of the current interrupt sources ASAP. */ 1078 ew32(INTSTAT, status & EpicNormalEvent); 1079 1080 if (debug > 4) { 1081 netdev_dbg(dev, "Interrupt, status=%#8.8x new intstat=%#8.8x.\n", 1082 status, er32(INTSTAT)); 1083 } 1084 1085 if ((status & IntrSummary) == 0) 1086 goto out; 1087 1088 handled = 1; 1089 1090 if ((status & EpicNapiEvent) && !ep->reschedule_in_poll) { 1091 spin_lock(&ep->napi_lock); 1092 if (napi_schedule_prep(&ep->napi)) { 1093 epic_napi_irq_off(dev, ep); 1094 __napi_schedule(&ep->napi); 1095 } else 1096 ep->reschedule_in_poll++; 1097 spin_unlock(&ep->napi_lock); 1098 } 1099 status &= ~EpicNapiEvent; 1100 1101 /* Check uncommon events all at once. */ 1102 if (status & (CntFull | TxUnderrun | PCIBusErr170 | PCIBusErr175)) { 1103 struct net_device_stats *stats = &dev->stats; 1104 1105 if (status == EpicRemoved) 1106 goto out; 1107 1108 /* Always update the error counts to avoid overhead later. */ 1109 stats->rx_missed_errors += er8(MPCNT); 1110 stats->rx_frame_errors += er8(ALICNT); 1111 stats->rx_crc_errors += er8(CRCCNT); 1112 1113 if (status & TxUnderrun) { /* Tx FIFO underflow. */ 1114 stats->tx_fifo_errors++; 1115 ew32(TxThresh, ep->tx_threshold += 128); 1116 /* Restart the transmit process. */ 1117 ew32(COMMAND, RestartTx); 1118 } 1119 if (status & PCIBusErr170) { 1120 netdev_err(dev, "PCI Bus Error! status %4.4x.\n", 1121 status); 1122 epic_pause(dev); 1123 epic_restart(dev); 1124 } 1125 /* Clear all error sources. */ 1126 ew32(INTSTAT, status & 0x7f18); 1127 } 1128 1129 out: 1130 if (debug > 3) { 1131 netdev_dbg(dev, "exit interrupt, intr_status=%#4.4x.\n", 1132 status); 1133 } 1134 1135 return IRQ_RETVAL(handled); 1136 } 1137 1138 static int epic_rx(struct net_device *dev, int budget) 1139 { 1140 struct epic_private *ep = netdev_priv(dev); 1141 int entry = ep->cur_rx % RX_RING_SIZE; 1142 int rx_work_limit = ep->dirty_rx + RX_RING_SIZE - ep->cur_rx; 1143 int work_done = 0; 1144 1145 if (debug > 4) 1146 netdev_dbg(dev, " In epic_rx(), entry %d %8.8x.\n", entry, 1147 ep->rx_ring[entry].rxstatus); 1148 1149 if (rx_work_limit > budget) 1150 rx_work_limit = budget; 1151 1152 /* If we own the next entry, it's a new packet. Send it up. */ 1153 while ((ep->rx_ring[entry].rxstatus & DescOwn) == 0) { 1154 int status = ep->rx_ring[entry].rxstatus; 1155 1156 if (debug > 4) 1157 netdev_dbg(dev, " epic_rx() status was %8.8x.\n", 1158 status); 1159 if (--rx_work_limit < 0) 1160 break; 1161 if (status & 0x2006) { 1162 if (debug > 2) 1163 netdev_dbg(dev, "epic_rx() error status was %8.8x.\n", 1164 status); 1165 if (status & 0x2000) { 1166 netdev_warn(dev, "Oversized Ethernet frame spanned multiple buffers, status %4.4x!\n", 1167 status); 1168 dev->stats.rx_length_errors++; 1169 } else if (status & 0x0006) 1170 /* Rx Frame errors are counted in hardware. */ 1171 dev->stats.rx_errors++; 1172 } else { 1173 /* Malloc up new buffer, compatible with net-2e. */ 1174 /* Omit the four octet CRC from the length. */ 1175 short pkt_len = (status >> 16) - 4; 1176 struct sk_buff *skb; 1177 1178 if (pkt_len > PKT_BUF_SZ - 4) { 1179 netdev_err(dev, "Oversized Ethernet frame, status %x %d bytes.\n", 1180 status, pkt_len); 1181 pkt_len = 1514; 1182 } 1183 /* Check if the packet is long enough to accept without copying 1184 to a minimally-sized skbuff. */ 1185 if (pkt_len < rx_copybreak && 1186 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) { 1187 skb_reserve(skb, 2); /* 16 byte align the IP header */ 1188 pci_dma_sync_single_for_cpu(ep->pci_dev, 1189 ep->rx_ring[entry].bufaddr, 1190 ep->rx_buf_sz, 1191 PCI_DMA_FROMDEVICE); 1192 skb_copy_to_linear_data(skb, ep->rx_skbuff[entry]->data, pkt_len); 1193 skb_put(skb, pkt_len); 1194 pci_dma_sync_single_for_device(ep->pci_dev, 1195 ep->rx_ring[entry].bufaddr, 1196 ep->rx_buf_sz, 1197 PCI_DMA_FROMDEVICE); 1198 } else { 1199 pci_unmap_single(ep->pci_dev, 1200 ep->rx_ring[entry].bufaddr, 1201 ep->rx_buf_sz, PCI_DMA_FROMDEVICE); 1202 skb_put(skb = ep->rx_skbuff[entry], pkt_len); 1203 ep->rx_skbuff[entry] = NULL; 1204 } 1205 skb->protocol = eth_type_trans(skb, dev); 1206 netif_receive_skb(skb); 1207 dev->stats.rx_packets++; 1208 dev->stats.rx_bytes += pkt_len; 1209 } 1210 work_done++; 1211 entry = (++ep->cur_rx) % RX_RING_SIZE; 1212 } 1213 1214 /* Refill the Rx ring buffers. */ 1215 for (; ep->cur_rx - ep->dirty_rx > 0; ep->dirty_rx++) { 1216 entry = ep->dirty_rx % RX_RING_SIZE; 1217 if (ep->rx_skbuff[entry] == NULL) { 1218 struct sk_buff *skb; 1219 skb = ep->rx_skbuff[entry] = netdev_alloc_skb(dev, ep->rx_buf_sz + 2); 1220 if (skb == NULL) 1221 break; 1222 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ 1223 ep->rx_ring[entry].bufaddr = pci_map_single(ep->pci_dev, 1224 skb->data, ep->rx_buf_sz, PCI_DMA_FROMDEVICE); 1225 work_done++; 1226 } 1227 /* AV: shouldn't we add a barrier here? */ 1228 ep->rx_ring[entry].rxstatus = DescOwn; 1229 } 1230 return work_done; 1231 } 1232 1233 static void epic_rx_err(struct net_device *dev, struct epic_private *ep) 1234 { 1235 void __iomem *ioaddr = ep->ioaddr; 1236 int status; 1237 1238 status = er32(INTSTAT); 1239 1240 if (status == EpicRemoved) 1241 return; 1242 if (status & RxOverflow) /* Missed a Rx frame. */ 1243 dev->stats.rx_errors++; 1244 if (status & (RxOverflow | RxFull)) 1245 ew16(COMMAND, RxQueued); 1246 } 1247 1248 static int epic_poll(struct napi_struct *napi, int budget) 1249 { 1250 struct epic_private *ep = container_of(napi, struct epic_private, napi); 1251 struct net_device *dev = ep->mii.dev; 1252 int work_done = 0; 1253 void __iomem *ioaddr = ep->ioaddr; 1254 1255 rx_action: 1256 1257 epic_tx(dev, ep); 1258 1259 work_done += epic_rx(dev, budget); 1260 1261 epic_rx_err(dev, ep); 1262 1263 if (work_done < budget) { 1264 unsigned long flags; 1265 int more; 1266 1267 /* A bit baroque but it avoids a (space hungry) spin_unlock */ 1268 1269 spin_lock_irqsave(&ep->napi_lock, flags); 1270 1271 more = ep->reschedule_in_poll; 1272 if (!more) { 1273 __napi_complete(napi); 1274 ew32(INTSTAT, EpicNapiEvent); 1275 epic_napi_irq_on(dev, ep); 1276 } else 1277 ep->reschedule_in_poll--; 1278 1279 spin_unlock_irqrestore(&ep->napi_lock, flags); 1280 1281 if (more) 1282 goto rx_action; 1283 } 1284 1285 return work_done; 1286 } 1287 1288 static int epic_close(struct net_device *dev) 1289 { 1290 struct epic_private *ep = netdev_priv(dev); 1291 struct pci_dev *pdev = ep->pci_dev; 1292 void __iomem *ioaddr = ep->ioaddr; 1293 struct sk_buff *skb; 1294 int i; 1295 1296 netif_stop_queue(dev); 1297 napi_disable(&ep->napi); 1298 1299 if (debug > 1) 1300 netdev_dbg(dev, "Shutting down ethercard, status was %2.2x.\n", 1301 er32(INTSTAT)); 1302 1303 del_timer_sync(&ep->timer); 1304 1305 epic_disable_int(dev, ep); 1306 1307 free_irq(pdev->irq, dev); 1308 1309 epic_pause(dev); 1310 1311 /* Free all the skbuffs in the Rx queue. */ 1312 for (i = 0; i < RX_RING_SIZE; i++) { 1313 skb = ep->rx_skbuff[i]; 1314 ep->rx_skbuff[i] = NULL; 1315 ep->rx_ring[i].rxstatus = 0; /* Not owned by Epic chip. */ 1316 ep->rx_ring[i].buflength = 0; 1317 if (skb) { 1318 pci_unmap_single(pdev, ep->rx_ring[i].bufaddr, 1319 ep->rx_buf_sz, PCI_DMA_FROMDEVICE); 1320 dev_kfree_skb(skb); 1321 } 1322 ep->rx_ring[i].bufaddr = 0xBADF00D0; /* An invalid address. */ 1323 } 1324 for (i = 0; i < TX_RING_SIZE; i++) { 1325 skb = ep->tx_skbuff[i]; 1326 ep->tx_skbuff[i] = NULL; 1327 if (!skb) 1328 continue; 1329 pci_unmap_single(pdev, ep->tx_ring[i].bufaddr, skb->len, 1330 PCI_DMA_TODEVICE); 1331 dev_kfree_skb(skb); 1332 } 1333 1334 /* Green! Leave the chip in low-power mode. */ 1335 ew32(GENCTL, 0x0008); 1336 1337 return 0; 1338 } 1339 1340 static struct net_device_stats *epic_get_stats(struct net_device *dev) 1341 { 1342 struct epic_private *ep = netdev_priv(dev); 1343 void __iomem *ioaddr = ep->ioaddr; 1344 1345 if (netif_running(dev)) { 1346 struct net_device_stats *stats = &dev->stats; 1347 1348 stats->rx_missed_errors += er8(MPCNT); 1349 stats->rx_frame_errors += er8(ALICNT); 1350 stats->rx_crc_errors += er8(CRCCNT); 1351 } 1352 1353 return &dev->stats; 1354 } 1355 1356 /* Set or clear the multicast filter for this adaptor. 1357 Note that we only use exclusion around actually queueing the 1358 new frame, not around filling ep->setup_frame. This is non-deterministic 1359 when re-entered but still correct. */ 1360 1361 static void set_rx_mode(struct net_device *dev) 1362 { 1363 struct epic_private *ep = netdev_priv(dev); 1364 void __iomem *ioaddr = ep->ioaddr; 1365 unsigned char mc_filter[8]; /* Multicast hash filter */ 1366 int i; 1367 1368 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1369 ew32(RxCtrl, 0x002c); 1370 /* Unconditionally log net taps. */ 1371 memset(mc_filter, 0xff, sizeof(mc_filter)); 1372 } else if ((!netdev_mc_empty(dev)) || (dev->flags & IFF_ALLMULTI)) { 1373 /* There is apparently a chip bug, so the multicast filter 1374 is never enabled. */ 1375 /* Too many to filter perfectly -- accept all multicasts. */ 1376 memset(mc_filter, 0xff, sizeof(mc_filter)); 1377 ew32(RxCtrl, 0x000c); 1378 } else if (netdev_mc_empty(dev)) { 1379 ew32(RxCtrl, 0x0004); 1380 return; 1381 } else { /* Never executed, for now. */ 1382 struct netdev_hw_addr *ha; 1383 1384 memset(mc_filter, 0, sizeof(mc_filter)); 1385 netdev_for_each_mc_addr(ha, dev) { 1386 unsigned int bit_nr = 1387 ether_crc_le(ETH_ALEN, ha->addr) & 0x3f; 1388 mc_filter[bit_nr >> 3] |= (1 << bit_nr); 1389 } 1390 } 1391 /* ToDo: perhaps we need to stop the Tx and Rx process here? */ 1392 if (memcmp(mc_filter, ep->mc_filter, sizeof(mc_filter))) { 1393 for (i = 0; i < 4; i++) 1394 ew16(MC0 + i*4, ((u16 *)mc_filter)[i]); 1395 memcpy(ep->mc_filter, mc_filter, sizeof(mc_filter)); 1396 } 1397 } 1398 1399 static void netdev_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info) 1400 { 1401 struct epic_private *np = netdev_priv(dev); 1402 1403 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1404 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1405 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info)); 1406 } 1407 1408 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1409 { 1410 struct epic_private *np = netdev_priv(dev); 1411 int rc; 1412 1413 spin_lock_irq(&np->lock); 1414 rc = mii_ethtool_gset(&np->mii, cmd); 1415 spin_unlock_irq(&np->lock); 1416 1417 return rc; 1418 } 1419 1420 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1421 { 1422 struct epic_private *np = netdev_priv(dev); 1423 int rc; 1424 1425 spin_lock_irq(&np->lock); 1426 rc = mii_ethtool_sset(&np->mii, cmd); 1427 spin_unlock_irq(&np->lock); 1428 1429 return rc; 1430 } 1431 1432 static int netdev_nway_reset(struct net_device *dev) 1433 { 1434 struct epic_private *np = netdev_priv(dev); 1435 return mii_nway_restart(&np->mii); 1436 } 1437 1438 static u32 netdev_get_link(struct net_device *dev) 1439 { 1440 struct epic_private *np = netdev_priv(dev); 1441 return mii_link_ok(&np->mii); 1442 } 1443 1444 static u32 netdev_get_msglevel(struct net_device *dev) 1445 { 1446 return debug; 1447 } 1448 1449 static void netdev_set_msglevel(struct net_device *dev, u32 value) 1450 { 1451 debug = value; 1452 } 1453 1454 static int ethtool_begin(struct net_device *dev) 1455 { 1456 struct epic_private *ep = netdev_priv(dev); 1457 void __iomem *ioaddr = ep->ioaddr; 1458 1459 /* power-up, if interface is down */ 1460 if (!netif_running(dev)) { 1461 ew32(GENCTL, 0x0200); 1462 ew32(NVCTL, (er32(NVCTL) & ~0x003c) | 0x4800); 1463 } 1464 return 0; 1465 } 1466 1467 static void ethtool_complete(struct net_device *dev) 1468 { 1469 struct epic_private *ep = netdev_priv(dev); 1470 void __iomem *ioaddr = ep->ioaddr; 1471 1472 /* power-down, if interface is down */ 1473 if (!netif_running(dev)) { 1474 ew32(GENCTL, 0x0008); 1475 ew32(NVCTL, (er32(NVCTL) & ~0x483c) | 0x0000); 1476 } 1477 } 1478 1479 static const struct ethtool_ops netdev_ethtool_ops = { 1480 .get_drvinfo = netdev_get_drvinfo, 1481 .get_settings = netdev_get_settings, 1482 .set_settings = netdev_set_settings, 1483 .nway_reset = netdev_nway_reset, 1484 .get_link = netdev_get_link, 1485 .get_msglevel = netdev_get_msglevel, 1486 .set_msglevel = netdev_set_msglevel, 1487 .begin = ethtool_begin, 1488 .complete = ethtool_complete 1489 }; 1490 1491 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1492 { 1493 struct epic_private *np = netdev_priv(dev); 1494 void __iomem *ioaddr = np->ioaddr; 1495 struct mii_ioctl_data *data = if_mii(rq); 1496 int rc; 1497 1498 /* power-up, if interface is down */ 1499 if (! netif_running(dev)) { 1500 ew32(GENCTL, 0x0200); 1501 ew32(NVCTL, (er32(NVCTL) & ~0x003c) | 0x4800); 1502 } 1503 1504 /* all non-ethtool ioctls (the SIOC[GS]MIIxxx ioctls) */ 1505 spin_lock_irq(&np->lock); 1506 rc = generic_mii_ioctl(&np->mii, data, cmd, NULL); 1507 spin_unlock_irq(&np->lock); 1508 1509 /* power-down, if interface is down */ 1510 if (! netif_running(dev)) { 1511 ew32(GENCTL, 0x0008); 1512 ew32(NVCTL, (er32(NVCTL) & ~0x483c) | 0x0000); 1513 } 1514 return rc; 1515 } 1516 1517 1518 static void epic_remove_one(struct pci_dev *pdev) 1519 { 1520 struct net_device *dev = pci_get_drvdata(pdev); 1521 struct epic_private *ep = netdev_priv(dev); 1522 1523 pci_free_consistent(pdev, TX_TOTAL_SIZE, ep->tx_ring, ep->tx_ring_dma); 1524 pci_free_consistent(pdev, RX_TOTAL_SIZE, ep->rx_ring, ep->rx_ring_dma); 1525 unregister_netdev(dev); 1526 pci_iounmap(pdev, ep->ioaddr); 1527 pci_release_regions(pdev); 1528 free_netdev(dev); 1529 pci_disable_device(pdev); 1530 /* pci_power_off(pdev, -1); */ 1531 } 1532 1533 1534 #ifdef CONFIG_PM 1535 1536 static int epic_suspend (struct pci_dev *pdev, pm_message_t state) 1537 { 1538 struct net_device *dev = pci_get_drvdata(pdev); 1539 struct epic_private *ep = netdev_priv(dev); 1540 void __iomem *ioaddr = ep->ioaddr; 1541 1542 if (!netif_running(dev)) 1543 return 0; 1544 epic_pause(dev); 1545 /* Put the chip into low-power mode. */ 1546 ew32(GENCTL, 0x0008); 1547 /* pci_power_off(pdev, -1); */ 1548 return 0; 1549 } 1550 1551 1552 static int epic_resume (struct pci_dev *pdev) 1553 { 1554 struct net_device *dev = pci_get_drvdata(pdev); 1555 1556 if (!netif_running(dev)) 1557 return 0; 1558 epic_restart(dev); 1559 /* pci_power_on(pdev); */ 1560 return 0; 1561 } 1562 1563 #endif /* CONFIG_PM */ 1564 1565 1566 static struct pci_driver epic_driver = { 1567 .name = DRV_NAME, 1568 .id_table = epic_pci_tbl, 1569 .probe = epic_init_one, 1570 .remove = epic_remove_one, 1571 #ifdef CONFIG_PM 1572 .suspend = epic_suspend, 1573 .resume = epic_resume, 1574 #endif /* CONFIG_PM */ 1575 }; 1576 1577 1578 static int __init epic_init (void) 1579 { 1580 /* when a module, this is printed whether or not devices are found in probe */ 1581 #ifdef MODULE 1582 pr_info("%s%s\n", version, version2); 1583 #endif 1584 1585 return pci_register_driver(&epic_driver); 1586 } 1587 1588 1589 static void __exit epic_cleanup (void) 1590 { 1591 pci_unregister_driver (&epic_driver); 1592 } 1593 1594 1595 module_init(epic_init); 1596 module_exit(epic_cleanup); 1597