xref: /openbmc/linux/drivers/net/ethernet/sis/sis900.c (revision ee89bd6b)
1 /* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
2    Copyright 1999 Silicon Integrated System Corporation
3    Revision:	1.08.10 Apr. 2 2006
4 
5    Modified from the driver which is originally written by Donald Becker.
6 
7    This software may be used and distributed according to the terms
8    of the GNU General Public License (GPL), incorporated herein by reference.
9    Drivers based on this skeleton fall under the GPL and must retain
10    the authorship (implicit copyright) notice.
11 
12    References:
13    SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
14    preliminary Rev. 1.0 Jan. 14, 1998
15    SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
16    preliminary Rev. 1.0 Nov. 10, 1998
17    SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
18    preliminary Rev. 1.0 Jan. 18, 1998
19 
20    Rev 1.08.10 Apr.  2 2006 Daniele Venzano add vlan (jumbo packets) support
21    Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
22    Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
23    Rev 1.08.07 Nov.  2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
24    Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
25    Rev 1.08.05 Jun.  6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
26    Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
27    Rev 1.08.03 Feb.  1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
28    Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
29    Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
30    Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
31    Rev 1.07.11 Apr.  2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
32    Rev 1.07.10 Mar.  1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
33    Rev 1.07.09 Feb.  9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
34    Rev 1.07.08 Jan.  8 2001 Lei-Chun Chang added RTL8201 PHY support
35    Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
36    Rev 1.07.06 Nov.  7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
37    Rev 1.07.05 Nov.  6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
38    Rev 1.07.04 Sep.  6 2000 Lei-Chun Chang added ICS1893 PHY support
39    Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E equalizer workaround rule
40    Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
41    Rev 1.07    Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
42    Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
43    Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
44    Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
45    Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
46    Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
47    Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
48    Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
49    Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
50 */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/kernel.h>
55 #include <linux/sched.h>
56 #include <linux/string.h>
57 #include <linux/timer.h>
58 #include <linux/errno.h>
59 #include <linux/ioport.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/pci.h>
63 #include <linux/netdevice.h>
64 #include <linux/init.h>
65 #include <linux/mii.h>
66 #include <linux/etherdevice.h>
67 #include <linux/skbuff.h>
68 #include <linux/delay.h>
69 #include <linux/ethtool.h>
70 #include <linux/crc32.h>
71 #include <linux/bitops.h>
72 #include <linux/dma-mapping.h>
73 
74 #include <asm/processor.h>      /* Processor type for cache alignment. */
75 #include <asm/io.h>
76 #include <asm/irq.h>
77 #include <asm/uaccess.h>	/* User space memory access functions */
78 
79 #include "sis900.h"
80 
81 #define SIS900_MODULE_NAME "sis900"
82 #define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
83 
84 static const char version[] =
85 	KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
86 
87 static int max_interrupt_work = 40;
88 static int multicast_filter_limit = 128;
89 
90 static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
91 
92 #define SIS900_DEF_MSG \
93 	(NETIF_MSG_DRV		| \
94 	 NETIF_MSG_LINK		| \
95 	 NETIF_MSG_RX_ERR	| \
96 	 NETIF_MSG_TX_ERR)
97 
98 /* Time in jiffies before concluding the transmitter is hung. */
99 #define TX_TIMEOUT  (4*HZ)
100 
101 enum {
102 	SIS_900 = 0,
103 	SIS_7016
104 };
105 static const char * card_names[] = {
106 	"SiS 900 PCI Fast Ethernet",
107 	"SiS 7016 PCI Fast Ethernet"
108 };
109 static DEFINE_PCI_DEVICE_TABLE(sis900_pci_tbl) = {
110 	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
111 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
112 	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
113 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
114 	{0,}
115 };
116 MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
117 
118 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
119 
120 static const struct mii_chip_info {
121 	const char * name;
122 	u16 phy_id0;
123 	u16 phy_id1;
124 	u8  phy_types;
125 #define	HOME 	0x0001
126 #define LAN	0x0002
127 #define MIX	0x0003
128 #define UNKNOWN	0x0
129 } mii_chip_table[] = {
130 	{ "SiS 900 Internal MII PHY", 		0x001d, 0x8000, LAN },
131 	{ "SiS 7014 Physical Layer Solution", 	0x0016, 0xf830, LAN },
132 	{ "SiS 900 on Foxconn 661 7MI",         0x0143, 0xBC70, LAN },
133 	{ "Altimata AC101LF PHY",               0x0022, 0x5520, LAN },
134 	{ "ADM 7001 LAN PHY",			0x002e, 0xcc60, LAN },
135 	{ "AMD 79C901 10BASE-T PHY",  		0x0000, 0x6B70, LAN },
136 	{ "AMD 79C901 HomePNA PHY",		0x0000, 0x6B90, HOME},
137 	{ "ICS LAN PHY",			0x0015, 0xF440, LAN },
138 	{ "ICS LAN PHY",			0x0143, 0xBC70, LAN },
139 	{ "NS 83851 PHY",			0x2000, 0x5C20, MIX },
140 	{ "NS 83847 PHY",                       0x2000, 0x5C30, MIX },
141 	{ "Realtek RTL8201 PHY",		0x0000, 0x8200, LAN },
142 	{ "VIA 6103 PHY",			0x0101, 0x8f20, LAN },
143 	{NULL,},
144 };
145 
146 struct mii_phy {
147 	struct mii_phy * next;
148 	int phy_addr;
149 	u16 phy_id0;
150 	u16 phy_id1;
151 	u16 status;
152 	u8  phy_types;
153 };
154 
155 typedef struct _BufferDesc {
156 	u32 link;
157 	u32 cmdsts;
158 	u32 bufptr;
159 } BufferDesc;
160 
161 struct sis900_private {
162 	struct pci_dev * pci_dev;
163 
164 	spinlock_t lock;
165 
166 	struct mii_phy * mii;
167 	struct mii_phy * first_mii; /* record the first mii structure */
168 	unsigned int cur_phy;
169 	struct mii_if_info mii_info;
170 
171 	void __iomem	*ioaddr;
172 
173 	struct timer_list timer; /* Link status detection timer. */
174 	u8 autong_complete; /* 1: auto-negotiate complete  */
175 
176 	u32 msg_enable;
177 
178 	unsigned int cur_rx, dirty_rx; /* producer/comsumer pointers for Tx/Rx ring */
179 	unsigned int cur_tx, dirty_tx;
180 
181 	/* The saved address of a sent/receive-in-place packet buffer */
182 	struct sk_buff *tx_skbuff[NUM_TX_DESC];
183 	struct sk_buff *rx_skbuff[NUM_RX_DESC];
184 	BufferDesc *tx_ring;
185 	BufferDesc *rx_ring;
186 
187 	dma_addr_t tx_ring_dma;
188 	dma_addr_t rx_ring_dma;
189 
190 	unsigned int tx_full; /* The Tx queue is full. */
191 	u8 host_bridge_rev;
192 	u8 chipset_rev;
193 };
194 
195 MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
196 MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
197 MODULE_LICENSE("GPL");
198 
199 module_param(multicast_filter_limit, int, 0444);
200 module_param(max_interrupt_work, int, 0444);
201 module_param(sis900_debug, int, 0444);
202 MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
203 MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
204 MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
205 
206 #define sw32(reg, val)	iowrite32(val, ioaddr + (reg))
207 #define sw8(reg, val)	iowrite8(val, ioaddr + (reg))
208 #define sr32(reg)	ioread32(ioaddr + (reg))
209 #define sr16(reg)	ioread16(ioaddr + (reg))
210 
211 #ifdef CONFIG_NET_POLL_CONTROLLER
212 static void sis900_poll(struct net_device *dev);
213 #endif
214 static int sis900_open(struct net_device *net_dev);
215 static int sis900_mii_probe (struct net_device * net_dev);
216 static void sis900_init_rxfilter (struct net_device * net_dev);
217 static u16 read_eeprom(void __iomem *ioaddr, int location);
218 static int mdio_read(struct net_device *net_dev, int phy_id, int location);
219 static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
220 static void sis900_timer(unsigned long data);
221 static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
222 static void sis900_tx_timeout(struct net_device *net_dev);
223 static void sis900_init_tx_ring(struct net_device *net_dev);
224 static void sis900_init_rx_ring(struct net_device *net_dev);
225 static netdev_tx_t sis900_start_xmit(struct sk_buff *skb,
226 				     struct net_device *net_dev);
227 static int sis900_rx(struct net_device *net_dev);
228 static void sis900_finish_xmit (struct net_device *net_dev);
229 static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
230 static int sis900_close(struct net_device *net_dev);
231 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
232 static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
233 static void set_rx_mode(struct net_device *net_dev);
234 static void sis900_reset(struct net_device *net_dev);
235 static void sis630_set_eq(struct net_device *net_dev, u8 revision);
236 static int sis900_set_config(struct net_device *dev, struct ifmap *map);
237 static u16 sis900_default_phy(struct net_device * net_dev);
238 static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
239 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
240 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
241 static void sis900_set_mode(struct sis900_private *, int speed, int duplex);
242 static const struct ethtool_ops sis900_ethtool_ops;
243 
244 /**
245  *	sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
246  *	@pci_dev: the sis900 pci device
247  *	@net_dev: the net device to get address for
248  *
249  *	Older SiS900 and friends, use EEPROM to store MAC address.
250  *	MAC address is read from read_eeprom() into @net_dev->dev_addr.
251  */
252 
253 static int sis900_get_mac_addr(struct pci_dev *pci_dev,
254 			       struct net_device *net_dev)
255 {
256 	struct sis900_private *sis_priv = netdev_priv(net_dev);
257 	void __iomem *ioaddr = sis_priv->ioaddr;
258 	u16 signature;
259 	int i;
260 
261 	/* check to see if we have sane EEPROM */
262 	signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
263 	if (signature == 0xffff || signature == 0x0000) {
264 		printk (KERN_WARNING "%s: Error EERPOM read %x\n",
265 			pci_name(pci_dev), signature);
266 		return 0;
267 	}
268 
269 	/* get MAC address from EEPROM */
270 	for (i = 0; i < 3; i++)
271 	        ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
272 
273 	return 1;
274 }
275 
276 /**
277  *	sis630e_get_mac_addr - Get MAC address for SiS630E model
278  *	@pci_dev: the sis900 pci device
279  *	@net_dev: the net device to get address for
280  *
281  *	SiS630E model, use APC CMOS RAM to store MAC address.
282  *	APC CMOS RAM is accessed through ISA bridge.
283  *	MAC address is read into @net_dev->dev_addr.
284  */
285 
286 static int sis630e_get_mac_addr(struct pci_dev *pci_dev,
287 				struct net_device *net_dev)
288 {
289 	struct pci_dev *isa_bridge = NULL;
290 	u8 reg;
291 	int i;
292 
293 	isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
294 	if (!isa_bridge)
295 		isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
296 	if (!isa_bridge) {
297 		printk(KERN_WARNING "%s: Can not find ISA bridge\n",
298 		       pci_name(pci_dev));
299 		return 0;
300 	}
301 	pci_read_config_byte(isa_bridge, 0x48, &reg);
302 	pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
303 
304 	for (i = 0; i < 6; i++) {
305 		outb(0x09 + i, 0x70);
306 		((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
307 	}
308 
309 	pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
310 	pci_dev_put(isa_bridge);
311 
312 	return 1;
313 }
314 
315 
316 /**
317  *	sis635_get_mac_addr - Get MAC address for SIS635 model
318  *	@pci_dev: the sis900 pci device
319  *	@net_dev: the net device to get address for
320  *
321  *	SiS635 model, set MAC Reload Bit to load Mac address from APC
322  *	to rfdr. rfdr is accessed through rfcr. MAC address is read into
323  *	@net_dev->dev_addr.
324  */
325 
326 static int sis635_get_mac_addr(struct pci_dev *pci_dev,
327 			       struct net_device *net_dev)
328 {
329 	struct sis900_private *sis_priv = netdev_priv(net_dev);
330 	void __iomem *ioaddr = sis_priv->ioaddr;
331 	u32 rfcrSave;
332 	u32 i;
333 
334 	rfcrSave = sr32(rfcr);
335 
336 	sw32(cr, rfcrSave | RELOAD);
337 	sw32(cr, 0);
338 
339 	/* disable packet filtering before setting filter */
340 	sw32(rfcr, rfcrSave & ~RFEN);
341 
342 	/* load MAC addr to filter data register */
343 	for (i = 0 ; i < 3 ; i++) {
344 		sw32(rfcr, (i << RFADDR_shift));
345 		*( ((u16 *)net_dev->dev_addr) + i) = sr16(rfdr);
346 	}
347 
348 	/* enable packet filtering */
349 	sw32(rfcr, rfcrSave | RFEN);
350 
351 	return 1;
352 }
353 
354 /**
355  *	sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
356  *	@pci_dev: the sis900 pci device
357  *	@net_dev: the net device to get address for
358  *
359  *	SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
360  *	is shared by
361  *	LAN and 1394. When access EEPROM, send EEREQ signal to hardware first
362  *	and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access
363  *	by LAN, otherwise is not. After MAC address is read from EEPROM, send
364  *	EEDONE signal to refuse EEPROM access by LAN.
365  *	The EEPROM map of SiS962 or SiS963 is different to SiS900.
366  *	The signature field in SiS962 or SiS963 spec is meaningless.
367  *	MAC address is read into @net_dev->dev_addr.
368  */
369 
370 static int sis96x_get_mac_addr(struct pci_dev *pci_dev,
371 			       struct net_device *net_dev)
372 {
373 	struct sis900_private *sis_priv = netdev_priv(net_dev);
374 	void __iomem *ioaddr = sis_priv->ioaddr;
375 	int wait, rc = 0;
376 
377 	sw32(mear, EEREQ);
378 	for (wait = 0; wait < 2000; wait++) {
379 		if (sr32(mear) & EEGNT) {
380 			u16 *mac = (u16 *)net_dev->dev_addr;
381 			int i;
382 
383 			/* get MAC address from EEPROM */
384 			for (i = 0; i < 3; i++)
385 			        mac[i] = read_eeprom(ioaddr, i + EEPROMMACAddr);
386 
387 			rc = 1;
388 			break;
389 		}
390 		udelay(1);
391 	}
392 	sw32(mear, EEDONE);
393 	return rc;
394 }
395 
396 static const struct net_device_ops sis900_netdev_ops = {
397 	.ndo_open		 = sis900_open,
398 	.ndo_stop		= sis900_close,
399 	.ndo_start_xmit		= sis900_start_xmit,
400 	.ndo_set_config		= sis900_set_config,
401 	.ndo_set_rx_mode	= set_rx_mode,
402 	.ndo_change_mtu		= eth_change_mtu,
403 	.ndo_validate_addr	= eth_validate_addr,
404 	.ndo_set_mac_address 	= eth_mac_addr,
405 	.ndo_do_ioctl		= mii_ioctl,
406 	.ndo_tx_timeout		= sis900_tx_timeout,
407 #ifdef CONFIG_NET_POLL_CONTROLLER
408         .ndo_poll_controller	= sis900_poll,
409 #endif
410 };
411 
412 /**
413  *	sis900_probe - Probe for sis900 device
414  *	@pci_dev: the sis900 pci device
415  *	@pci_id: the pci device ID
416  *
417  *	Check and probe sis900 net device for @pci_dev.
418  *	Get mac address according to the chip revision,
419  *	and assign SiS900-specific entries in the device structure.
420  *	ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
421  */
422 
423 static int sis900_probe(struct pci_dev *pci_dev,
424 			const struct pci_device_id *pci_id)
425 {
426 	struct sis900_private *sis_priv;
427 	struct net_device *net_dev;
428 	struct pci_dev *dev;
429 	dma_addr_t ring_dma;
430 	void *ring_space;
431 	void __iomem *ioaddr;
432 	int i, ret;
433 	const char *card_name = card_names[pci_id->driver_data];
434 	const char *dev_name = pci_name(pci_dev);
435 
436 /* when built into the kernel, we only print version if device is found */
437 #ifndef MODULE
438 	static int printed_version;
439 	if (!printed_version++)
440 		printk(version);
441 #endif
442 
443 	/* setup various bits in PCI command register */
444 	ret = pci_enable_device(pci_dev);
445 	if(ret) return ret;
446 
447 	i = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
448 	if(i){
449 		printk(KERN_ERR "sis900.c: architecture does not support "
450 			"32bit PCI busmaster DMA\n");
451 		return i;
452 	}
453 
454 	pci_set_master(pci_dev);
455 
456 	net_dev = alloc_etherdev(sizeof(struct sis900_private));
457 	if (!net_dev)
458 		return -ENOMEM;
459 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
460 
461 	/* We do a request_region() to register /proc/ioports info. */
462 	ret = pci_request_regions(pci_dev, "sis900");
463 	if (ret)
464 		goto err_out;
465 
466 	/* IO region. */
467 	ioaddr = pci_iomap(pci_dev, 0, 0);
468 	if (!ioaddr) {
469 		ret = -ENOMEM;
470 		goto err_out_cleardev;
471 	}
472 
473 	sis_priv = netdev_priv(net_dev);
474 	sis_priv->ioaddr = ioaddr;
475 	sis_priv->pci_dev = pci_dev;
476 	spin_lock_init(&sis_priv->lock);
477 
478 	pci_set_drvdata(pci_dev, net_dev);
479 
480 	ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
481 	if (!ring_space) {
482 		ret = -ENOMEM;
483 		goto err_out_unmap;
484 	}
485 	sis_priv->tx_ring = ring_space;
486 	sis_priv->tx_ring_dma = ring_dma;
487 
488 	ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
489 	if (!ring_space) {
490 		ret = -ENOMEM;
491 		goto err_unmap_tx;
492 	}
493 	sis_priv->rx_ring = ring_space;
494 	sis_priv->rx_ring_dma = ring_dma;
495 
496 	/* The SiS900-specific entries in the device structure. */
497 	net_dev->netdev_ops = &sis900_netdev_ops;
498 	net_dev->watchdog_timeo = TX_TIMEOUT;
499 	net_dev->ethtool_ops = &sis900_ethtool_ops;
500 
501 	if (sis900_debug > 0)
502 		sis_priv->msg_enable = sis900_debug;
503 	else
504 		sis_priv->msg_enable = SIS900_DEF_MSG;
505 
506 	sis_priv->mii_info.dev = net_dev;
507 	sis_priv->mii_info.mdio_read = mdio_read;
508 	sis_priv->mii_info.mdio_write = mdio_write;
509 	sis_priv->mii_info.phy_id_mask = 0x1f;
510 	sis_priv->mii_info.reg_num_mask = 0x1f;
511 
512 	/* Get Mac address according to the chip revision */
513 	sis_priv->chipset_rev = pci_dev->revision;
514 	if(netif_msg_probe(sis_priv))
515 		printk(KERN_DEBUG "%s: detected revision %2.2x, "
516 				"trying to get MAC address...\n",
517 				dev_name, sis_priv->chipset_rev);
518 
519 	ret = 0;
520 	if (sis_priv->chipset_rev == SIS630E_900_REV)
521 		ret = sis630e_get_mac_addr(pci_dev, net_dev);
522 	else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
523 		ret = sis635_get_mac_addr(pci_dev, net_dev);
524 	else if (sis_priv->chipset_rev == SIS96x_900_REV)
525 		ret = sis96x_get_mac_addr(pci_dev, net_dev);
526 	else
527 		ret = sis900_get_mac_addr(pci_dev, net_dev);
528 
529 	if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) {
530 		eth_hw_addr_random(net_dev);
531 		printk(KERN_WARNING "%s: Unreadable or invalid MAC address,"
532 				"using random generated one\n", dev_name);
533 	}
534 
535 	/* 630ET : set the mii access mode as software-mode */
536 	if (sis_priv->chipset_rev == SIS630ET_900_REV)
537 		sw32(cr, ACCESSMODE | sr32(cr));
538 
539 	/* probe for mii transceiver */
540 	if (sis900_mii_probe(net_dev) == 0) {
541 		printk(KERN_WARNING "%s: Error probing MII device.\n",
542 		       dev_name);
543 		ret = -ENODEV;
544 		goto err_unmap_rx;
545 	}
546 
547 	/* save our host bridge revision */
548 	dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
549 	if (dev) {
550 		sis_priv->host_bridge_rev = dev->revision;
551 		pci_dev_put(dev);
552 	}
553 
554 	ret = register_netdev(net_dev);
555 	if (ret)
556 		goto err_unmap_rx;
557 
558 	/* print some information about our NIC */
559 	printk(KERN_INFO "%s: %s at 0x%p, IRQ %d, %pM\n",
560 	       net_dev->name, card_name, ioaddr, pci_dev->irq,
561 	       net_dev->dev_addr);
562 
563 	/* Detect Wake on Lan support */
564 	ret = (sr32(CFGPMC) & PMESP) >> 27;
565 	if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
566 		printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
567 
568 	return 0;
569 
570 err_unmap_rx:
571 	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
572 		sis_priv->rx_ring_dma);
573 err_unmap_tx:
574 	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
575 		sis_priv->tx_ring_dma);
576 err_out_unmap:
577 	pci_iounmap(pci_dev, ioaddr);
578 err_out_cleardev:
579 	pci_set_drvdata(pci_dev, NULL);
580 	pci_release_regions(pci_dev);
581  err_out:
582 	free_netdev(net_dev);
583 	return ret;
584 }
585 
586 /**
587  *	sis900_mii_probe - Probe MII PHY for sis900
588  *	@net_dev: the net device to probe for
589  *
590  *	Search for total of 32 possible mii phy addresses.
591  *	Identify and set current phy if found one,
592  *	return error if it failed to found.
593  */
594 
595 static int sis900_mii_probe(struct net_device *net_dev)
596 {
597 	struct sis900_private *sis_priv = netdev_priv(net_dev);
598 	const char *dev_name = pci_name(sis_priv->pci_dev);
599 	u16 poll_bit = MII_STAT_LINK, status = 0;
600 	unsigned long timeout = jiffies + 5 * HZ;
601 	int phy_addr;
602 
603 	sis_priv->mii = NULL;
604 
605 	/* search for total of 32 possible mii phy addresses */
606 	for (phy_addr = 0; phy_addr < 32; phy_addr++) {
607 		struct mii_phy * mii_phy = NULL;
608 		u16 mii_status;
609 		int i;
610 
611 		mii_phy = NULL;
612 		for(i = 0; i < 2; i++)
613 			mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
614 
615 		if (mii_status == 0xffff || mii_status == 0x0000) {
616 			if (netif_msg_probe(sis_priv))
617 				printk(KERN_DEBUG "%s: MII at address %d"
618 						" not accessible\n",
619 						dev_name, phy_addr);
620 			continue;
621 		}
622 
623 		if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
624 			mii_phy = sis_priv->first_mii;
625 			while (mii_phy) {
626 				struct mii_phy *phy;
627 				phy = mii_phy;
628 				mii_phy = mii_phy->next;
629 				kfree(phy);
630 			}
631 			return 0;
632 		}
633 
634 		mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
635 		mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
636 		mii_phy->phy_addr = phy_addr;
637 		mii_phy->status = mii_status;
638 		mii_phy->next = sis_priv->mii;
639 		sis_priv->mii = mii_phy;
640 		sis_priv->first_mii = mii_phy;
641 
642 		for (i = 0; mii_chip_table[i].phy_id1; i++)
643 			if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
644 			    ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
645 				mii_phy->phy_types = mii_chip_table[i].phy_types;
646 				if (mii_chip_table[i].phy_types == MIX)
647 					mii_phy->phy_types =
648 					    (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
649 				printk(KERN_INFO "%s: %s transceiver found "
650 							"at address %d.\n",
651 							dev_name,
652 							mii_chip_table[i].name,
653 							phy_addr);
654 				break;
655 			}
656 
657 		if( !mii_chip_table[i].phy_id1 ) {
658 			printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
659 			       dev_name, phy_addr);
660 			mii_phy->phy_types = UNKNOWN;
661 		}
662 	}
663 
664 	if (sis_priv->mii == NULL) {
665 		printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
666 		return 0;
667 	}
668 
669 	/* select default PHY for mac */
670 	sis_priv->mii = NULL;
671 	sis900_default_phy( net_dev );
672 
673 	/* Reset phy if default phy is internal sis900 */
674         if ((sis_priv->mii->phy_id0 == 0x001D) &&
675 	    ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
676         	status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
677 
678         /* workaround for ICS1893 PHY */
679         if ((sis_priv->mii->phy_id0 == 0x0015) &&
680             ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
681             	mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
682 
683 	if(status & MII_STAT_LINK){
684 		while (poll_bit) {
685 			yield();
686 
687 			poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
688 			if (time_after_eq(jiffies, timeout)) {
689 				printk(KERN_WARNING "%s: reset phy and link down now\n",
690 				       dev_name);
691 				return -ETIME;
692 			}
693 		}
694 	}
695 
696 	if (sis_priv->chipset_rev == SIS630E_900_REV) {
697 		/* SiS 630E has some bugs on default value of PHY registers */
698 		mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
699 		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
700 		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
701 		mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
702 		//mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
703 	}
704 
705 	if (sis_priv->mii->status & MII_STAT_LINK)
706 		netif_carrier_on(net_dev);
707 	else
708 		netif_carrier_off(net_dev);
709 
710 	return 1;
711 }
712 
713 /**
714  *	sis900_default_phy - Select default PHY for sis900 mac.
715  *	@net_dev: the net device to probe for
716  *
717  *	Select first detected PHY with link as default.
718  *	If no one is link on, select PHY whose types is HOME as default.
719  *	If HOME doesn't exist, select LAN.
720  */
721 
722 static u16 sis900_default_phy(struct net_device * net_dev)
723 {
724 	struct sis900_private *sis_priv = netdev_priv(net_dev);
725  	struct mii_phy *phy = NULL, *phy_home = NULL,
726 		*default_phy = NULL, *phy_lan = NULL;
727 	u16 status;
728 
729         for (phy=sis_priv->first_mii; phy; phy=phy->next) {
730 		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
731 		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
732 
733 		/* Link ON & Not select default PHY & not ghost PHY */
734 		 if ((status & MII_STAT_LINK) && !default_phy &&
735 					(phy->phy_types != UNKNOWN))
736 		 	default_phy = phy;
737 		 else {
738 			status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
739 			mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
740 				status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
741 			if (phy->phy_types == HOME)
742 				phy_home = phy;
743 			else if(phy->phy_types == LAN)
744 				phy_lan = phy;
745 		 }
746 	}
747 
748 	if (!default_phy && phy_home)
749 		default_phy = phy_home;
750 	else if (!default_phy && phy_lan)
751 		default_phy = phy_lan;
752 	else if (!default_phy)
753 		default_phy = sis_priv->first_mii;
754 
755 	if (sis_priv->mii != default_phy) {
756 		sis_priv->mii = default_phy;
757 		sis_priv->cur_phy = default_phy->phy_addr;
758 		printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
759 		       pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
760 	}
761 
762 	sis_priv->mii_info.phy_id = sis_priv->cur_phy;
763 
764 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
765 	status &= (~MII_CNTL_ISOLATE);
766 
767 	mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
768 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
769 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
770 
771 	return status;
772 }
773 
774 
775 /**
776  * 	sis900_set_capability - set the media capability of network adapter.
777  *	@net_dev : the net device to probe for
778  *	@phy : default PHY
779  *
780  *	Set the media capability of network adapter according to
781  *	mii status register. It's necessary before auto-negotiate.
782  */
783 
784 static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
785 {
786 	u16 cap;
787 	u16 status;
788 
789 	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
790 	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
791 
792 	cap = MII_NWAY_CSMA_CD |
793 		((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
794 		((phy->status & MII_STAT_CAN_TX)    ? MII_NWAY_TX:0) |
795 		((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
796 		((phy->status & MII_STAT_CAN_T)     ? MII_NWAY_T:0);
797 
798 	mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
799 }
800 
801 
802 /* Delay between EEPROM clock transitions. */
803 #define eeprom_delay()	sr32(mear)
804 
805 /**
806  *	read_eeprom - Read Serial EEPROM
807  *	@ioaddr: base i/o address
808  *	@location: the EEPROM location to read
809  *
810  *	Read Serial EEPROM through EEPROM Access Register.
811  *	Note that location is in word (16 bits) unit
812  */
813 
814 static u16 read_eeprom(void __iomem *ioaddr, int location)
815 {
816 	u32 read_cmd = location | EEread;
817 	int i;
818 	u16 retval = 0;
819 
820 	sw32(mear, 0);
821 	eeprom_delay();
822 	sw32(mear, EECS);
823 	eeprom_delay();
824 
825 	/* Shift the read command (9) bits out. */
826 	for (i = 8; i >= 0; i--) {
827 		u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
828 
829 		sw32(mear, dataval);
830 		eeprom_delay();
831 		sw32(mear, dataval | EECLK);
832 		eeprom_delay();
833 	}
834 	sw32(mear, EECS);
835 	eeprom_delay();
836 
837 	/* read the 16-bits data in */
838 	for (i = 16; i > 0; i--) {
839 		sw32(mear, EECS);
840 		eeprom_delay();
841 		sw32(mear, EECS | EECLK);
842 		eeprom_delay();
843 		retval = (retval << 1) | ((sr32(mear) & EEDO) ? 1 : 0);
844 		eeprom_delay();
845 	}
846 
847 	/* Terminate the EEPROM access. */
848 	sw32(mear, 0);
849 	eeprom_delay();
850 
851 	return retval;
852 }
853 
854 /* Read and write the MII management registers using software-generated
855    serial MDIO protocol. Note that the command bits and data bits are
856    send out separately */
857 #define mdio_delay()	sr32(mear)
858 
859 static void mdio_idle(struct sis900_private *sp)
860 {
861 	void __iomem *ioaddr = sp->ioaddr;
862 
863 	sw32(mear, MDIO | MDDIR);
864 	mdio_delay();
865 	sw32(mear, MDIO | MDDIR | MDC);
866 }
867 
868 /* Synchronize the MII management interface by shifting 32 one bits out. */
869 static void mdio_reset(struct sis900_private *sp)
870 {
871 	void __iomem *ioaddr = sp->ioaddr;
872 	int i;
873 
874 	for (i = 31; i >= 0; i--) {
875 		sw32(mear, MDDIR | MDIO);
876 		mdio_delay();
877 		sw32(mear, MDDIR | MDIO | MDC);
878 		mdio_delay();
879 	}
880 }
881 
882 /**
883  *	mdio_read - read MII PHY register
884  *	@net_dev: the net device to read
885  *	@phy_id: the phy address to read
886  *	@location: the phy regiester id to read
887  *
888  *	Read MII registers through MDIO and MDC
889  *	using MDIO management frame structure and protocol(defined by ISO/IEC).
890  *	Please see SiS7014 or ICS spec
891  */
892 
893 static int mdio_read(struct net_device *net_dev, int phy_id, int location)
894 {
895 	int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
896 	struct sis900_private *sp = netdev_priv(net_dev);
897 	void __iomem *ioaddr = sp->ioaddr;
898 	u16 retval = 0;
899 	int i;
900 
901 	mdio_reset(sp);
902 	mdio_idle(sp);
903 
904 	for (i = 15; i >= 0; i--) {
905 		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
906 
907 		sw32(mear, dataval);
908 		mdio_delay();
909 		sw32(mear, dataval | MDC);
910 		mdio_delay();
911 	}
912 
913 	/* Read the 16 data bits. */
914 	for (i = 16; i > 0; i--) {
915 		sw32(mear, 0);
916 		mdio_delay();
917 		retval = (retval << 1) | ((sr32(mear) & MDIO) ? 1 : 0);
918 		sw32(mear, MDC);
919 		mdio_delay();
920 	}
921 	sw32(mear, 0x00);
922 
923 	return retval;
924 }
925 
926 /**
927  *	mdio_write - write MII PHY register
928  *	@net_dev: the net device to write
929  *	@phy_id: the phy address to write
930  *	@location: the phy regiester id to write
931  *	@value: the register value to write with
932  *
933  *	Write MII registers with @value through MDIO and MDC
934  *	using MDIO management frame structure and protocol(defined by ISO/IEC)
935  *	please see SiS7014 or ICS spec
936  */
937 
938 static void mdio_write(struct net_device *net_dev, int phy_id, int location,
939 			int value)
940 {
941 	int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
942 	struct sis900_private *sp = netdev_priv(net_dev);
943 	void __iomem *ioaddr = sp->ioaddr;
944 	int i;
945 
946 	mdio_reset(sp);
947 	mdio_idle(sp);
948 
949 	/* Shift the command bits out. */
950 	for (i = 15; i >= 0; i--) {
951 		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
952 
953 		sw8(mear, dataval);
954 		mdio_delay();
955 		sw8(mear, dataval | MDC);
956 		mdio_delay();
957 	}
958 	mdio_delay();
959 
960 	/* Shift the value bits out. */
961 	for (i = 15; i >= 0; i--) {
962 		int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
963 
964 		sw32(mear, dataval);
965 		mdio_delay();
966 		sw32(mear, dataval | MDC);
967 		mdio_delay();
968 	}
969 	mdio_delay();
970 
971 	/* Clear out extra bits. */
972 	for (i = 2; i > 0; i--) {
973 		sw8(mear, 0);
974 		mdio_delay();
975 		sw8(mear, MDC);
976 		mdio_delay();
977 	}
978 	sw32(mear, 0x00);
979 }
980 
981 
982 /**
983  *	sis900_reset_phy - reset sis900 mii phy.
984  *	@net_dev: the net device to write
985  *	@phy_addr: default phy address
986  *
987  *	Some specific phy can't work properly without reset.
988  *	This function will be called during initialization and
989  *	link status change from ON to DOWN.
990  */
991 
992 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
993 {
994 	int i;
995 	u16 status;
996 
997 	for (i = 0; i < 2; i++)
998 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
999 
1000 	mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
1001 
1002 	return status;
1003 }
1004 
1005 #ifdef CONFIG_NET_POLL_CONTROLLER
1006 /*
1007  * Polling 'interrupt' - used by things like netconsole to send skbs
1008  * without having to re-enable interrupts. It's not called while
1009  * the interrupt routine is executing.
1010 */
1011 static void sis900_poll(struct net_device *dev)
1012 {
1013 	struct sis900_private *sp = netdev_priv(dev);
1014 	const int irq = sp->pci_dev->irq;
1015 
1016 	disable_irq(irq);
1017 	sis900_interrupt(irq, dev);
1018 	enable_irq(irq);
1019 }
1020 #endif
1021 
1022 /**
1023  *	sis900_open - open sis900 device
1024  *	@net_dev: the net device to open
1025  *
1026  *	Do some initialization and start net interface.
1027  *	enable interrupts and set sis900 timer.
1028  */
1029 
1030 static int
1031 sis900_open(struct net_device *net_dev)
1032 {
1033 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1034 	void __iomem *ioaddr = sis_priv->ioaddr;
1035 	int ret;
1036 
1037 	/* Soft reset the chip. */
1038 	sis900_reset(net_dev);
1039 
1040 	/* Equalizer workaround Rule */
1041 	sis630_set_eq(net_dev, sis_priv->chipset_rev);
1042 
1043 	ret = request_irq(sis_priv->pci_dev->irq, sis900_interrupt, IRQF_SHARED,
1044 			  net_dev->name, net_dev);
1045 	if (ret)
1046 		return ret;
1047 
1048 	sis900_init_rxfilter(net_dev);
1049 
1050 	sis900_init_tx_ring(net_dev);
1051 	sis900_init_rx_ring(net_dev);
1052 
1053 	set_rx_mode(net_dev);
1054 
1055 	netif_start_queue(net_dev);
1056 
1057 	/* Workaround for EDB */
1058 	sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1059 
1060 	/* Enable all known interrupts by setting the interrupt mask. */
1061 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
1062 	sw32(cr, RxENA | sr32(cr));
1063 	sw32(ier, IE);
1064 
1065 	sis900_check_mode(net_dev, sis_priv->mii);
1066 
1067 	/* Set the timer to switch to check for link beat and perhaps switch
1068 	   to an alternate media type. */
1069 	init_timer(&sis_priv->timer);
1070 	sis_priv->timer.expires = jiffies + HZ;
1071 	sis_priv->timer.data = (unsigned long)net_dev;
1072 	sis_priv->timer.function = sis900_timer;
1073 	add_timer(&sis_priv->timer);
1074 
1075 	return 0;
1076 }
1077 
1078 /**
1079  *	sis900_init_rxfilter - Initialize the Rx filter
1080  *	@net_dev: the net device to initialize for
1081  *
1082  *	Set receive filter address to our MAC address
1083  *	and enable packet filtering.
1084  */
1085 
1086 static void
1087 sis900_init_rxfilter (struct net_device * net_dev)
1088 {
1089 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1090 	void __iomem *ioaddr = sis_priv->ioaddr;
1091 	u32 rfcrSave;
1092 	u32 i;
1093 
1094 	rfcrSave = sr32(rfcr);
1095 
1096 	/* disable packet filtering before setting filter */
1097 	sw32(rfcr, rfcrSave & ~RFEN);
1098 
1099 	/* load MAC addr to filter data register */
1100 	for (i = 0 ; i < 3 ; i++) {
1101 		u32 w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1102 
1103 		sw32(rfcr, i << RFADDR_shift);
1104 		sw32(rfdr, w);
1105 
1106 		if (netif_msg_hw(sis_priv)) {
1107 			printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n",
1108 			       net_dev->name, i, sr32(rfdr));
1109 		}
1110 	}
1111 
1112 	/* enable packet filtering */
1113 	sw32(rfcr, rfcrSave | RFEN);
1114 }
1115 
1116 /**
1117  *	sis900_init_tx_ring - Initialize the Tx descriptor ring
1118  *	@net_dev: the net device to initialize for
1119  *
1120  *	Initialize the Tx descriptor ring,
1121  */
1122 
1123 static void
1124 sis900_init_tx_ring(struct net_device *net_dev)
1125 {
1126 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1127 	void __iomem *ioaddr = sis_priv->ioaddr;
1128 	int i;
1129 
1130 	sis_priv->tx_full = 0;
1131 	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1132 
1133 	for (i = 0; i < NUM_TX_DESC; i++) {
1134 		sis_priv->tx_skbuff[i] = NULL;
1135 
1136 		sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1137 			((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1138 		sis_priv->tx_ring[i].cmdsts = 0;
1139 		sis_priv->tx_ring[i].bufptr = 0;
1140 	}
1141 
1142 	/* load Transmit Descriptor Register */
1143 	sw32(txdp, sis_priv->tx_ring_dma);
1144 	if (netif_msg_hw(sis_priv))
1145 		printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1146 		       net_dev->name, sr32(txdp));
1147 }
1148 
1149 /**
1150  *	sis900_init_rx_ring - Initialize the Rx descriptor ring
1151  *	@net_dev: the net device to initialize for
1152  *
1153  *	Initialize the Rx descriptor ring,
1154  *	and pre-allocate recevie buffers (socket buffer)
1155  */
1156 
1157 static void
1158 sis900_init_rx_ring(struct net_device *net_dev)
1159 {
1160 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1161 	void __iomem *ioaddr = sis_priv->ioaddr;
1162 	int i;
1163 
1164 	sis_priv->cur_rx = 0;
1165 	sis_priv->dirty_rx = 0;
1166 
1167 	/* init RX descriptor */
1168 	for (i = 0; i < NUM_RX_DESC; i++) {
1169 		sis_priv->rx_skbuff[i] = NULL;
1170 
1171 		sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1172 			((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1173 		sis_priv->rx_ring[i].cmdsts = 0;
1174 		sis_priv->rx_ring[i].bufptr = 0;
1175 	}
1176 
1177 	/* allocate sock buffers */
1178 	for (i = 0; i < NUM_RX_DESC; i++) {
1179 		struct sk_buff *skb;
1180 
1181 		if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1182 			/* not enough memory for skbuff, this makes a "hole"
1183 			   on the buffer ring, it is not clear how the
1184 			   hardware will react to this kind of degenerated
1185 			   buffer */
1186 			break;
1187 		}
1188 		sis_priv->rx_skbuff[i] = skb;
1189 		sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1190 		sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1191 				skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1192 		if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1193 				sis_priv->rx_ring[i].bufptr))) {
1194 			dev_kfree_skb(skb);
1195 			sis_priv->rx_skbuff[i] = NULL;
1196 			break;
1197 		}
1198 	}
1199 	sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1200 
1201 	/* load Receive Descriptor Register */
1202 	sw32(rxdp, sis_priv->rx_ring_dma);
1203 	if (netif_msg_hw(sis_priv))
1204 		printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1205 		       net_dev->name, sr32(rxdp));
1206 }
1207 
1208 /**
1209  *	sis630_set_eq - set phy equalizer value for 630 LAN
1210  *	@net_dev: the net device to set equalizer value
1211  *	@revision: 630 LAN revision number
1212  *
1213  *	630E equalizer workaround rule(Cyrus Huang 08/15)
1214  *	PHY register 14h(Test)
1215  *	Bit 14: 0 -- Automatically detect (default)
1216  *		1 -- Manually set Equalizer filter
1217  *	Bit 13: 0 -- (Default)
1218  *		1 -- Speed up convergence of equalizer setting
1219  *	Bit 9 : 0 -- (Default)
1220  *		1 -- Disable Baseline Wander
1221  *	Bit 3~7   -- Equalizer filter setting
1222  *	Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1223  *	Then calculate equalizer value
1224  *	Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1225  *	Link Off:Set Bit 13 to 1, Bit 14 to 0
1226  *	Calculate Equalizer value:
1227  *	When Link is ON and Bit 14 is 0, SIS900PHY will auto-detect proper equalizer value.
1228  *	When the equalizer is stable, this value is not a fixed value. It will be within
1229  *	a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1230  *	0 <= max <= 4  --> set equalizer to max
1231  *	5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1232  *	max >= 15      --> set equalizer to max+5 or set equalizer to max+6 if max == min
1233  */
1234 
1235 static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1236 {
1237 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1238 	u16 reg14h, eq_value=0, max_value=0, min_value=0;
1239 	int i, maxcount=10;
1240 
1241 	if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1242 	       revision == SIS630A_900_REV || revision ==  SIS630ET_900_REV) )
1243 		return;
1244 
1245 	if (netif_carrier_ok(net_dev)) {
1246 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1247 		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1248 					(0x2200 | reg14h) & 0xBFFF);
1249 		for (i=0; i < maxcount; i++) {
1250 			eq_value = (0x00F8 & mdio_read(net_dev,
1251 					sis_priv->cur_phy, MII_RESV)) >> 3;
1252 			if (i == 0)
1253 				max_value=min_value=eq_value;
1254 			max_value = (eq_value > max_value) ?
1255 						eq_value : max_value;
1256 			min_value = (eq_value < min_value) ?
1257 						eq_value : min_value;
1258 		}
1259 		/* 630E rule to determine the equalizer value */
1260 		if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1261 		    revision == SIS630ET_900_REV) {
1262 			if (max_value < 5)
1263 				eq_value = max_value;
1264 			else if (max_value >= 5 && max_value < 15)
1265 				eq_value = (max_value == min_value) ?
1266 						max_value+2 : max_value+1;
1267 			else if (max_value >= 15)
1268 				eq_value=(max_value == min_value) ?
1269 						max_value+6 : max_value+5;
1270 		}
1271 		/* 630B0&B1 rule to determine the equalizer value */
1272 		if (revision == SIS630A_900_REV &&
1273 		    (sis_priv->host_bridge_rev == SIS630B0 ||
1274 		     sis_priv->host_bridge_rev == SIS630B1)) {
1275 			if (max_value == 0)
1276 				eq_value = 3;
1277 			else
1278 				eq_value = (max_value + min_value + 1)/2;
1279 		}
1280 		/* write equalizer value and setting */
1281 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1282 		reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1283 		reg14h = (reg14h | 0x6000) & 0xFDFF;
1284 		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1285 	} else {
1286 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1287 		if (revision == SIS630A_900_REV &&
1288 		    (sis_priv->host_bridge_rev == SIS630B0 ||
1289 		     sis_priv->host_bridge_rev == SIS630B1))
1290 			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1291 						(reg14h | 0x2200) & 0xBFFF);
1292 		else
1293 			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1294 						(reg14h | 0x2000) & 0xBFFF);
1295 	}
1296 }
1297 
1298 /**
1299  *	sis900_timer - sis900 timer routine
1300  *	@data: pointer to sis900 net device
1301  *
1302  *	On each timer ticks we check two things,
1303  *	link status (ON/OFF) and link mode (10/100/Full/Half)
1304  */
1305 
1306 static void sis900_timer(unsigned long data)
1307 {
1308 	struct net_device *net_dev = (struct net_device *)data;
1309 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1310 	struct mii_phy *mii_phy = sis_priv->mii;
1311 	static const int next_tick = 5*HZ;
1312 	u16 status;
1313 
1314 	if (!sis_priv->autong_complete){
1315 		int uninitialized_var(speed), duplex = 0;
1316 
1317 		sis900_read_mode(net_dev, &speed, &duplex);
1318 		if (duplex){
1319 			sis900_set_mode(sis_priv, speed, duplex);
1320 			sis630_set_eq(net_dev, sis_priv->chipset_rev);
1321 			netif_start_queue(net_dev);
1322 		}
1323 
1324 		sis_priv->timer.expires = jiffies + HZ;
1325 		add_timer(&sis_priv->timer);
1326 		return;
1327 	}
1328 
1329 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1330 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1331 
1332 	/* Link OFF -> ON */
1333 	if (!netif_carrier_ok(net_dev)) {
1334 	LookForLink:
1335 		/* Search for new PHY */
1336 		status = sis900_default_phy(net_dev);
1337 		mii_phy = sis_priv->mii;
1338 
1339 		if (status & MII_STAT_LINK){
1340 			sis900_check_mode(net_dev, mii_phy);
1341 			netif_carrier_on(net_dev);
1342 		}
1343 	} else {
1344 	/* Link ON -> OFF */
1345                 if (!(status & MII_STAT_LINK)){
1346                 	netif_carrier_off(net_dev);
1347 			if(netif_msg_link(sis_priv))
1348                 		printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1349 
1350                 	/* Change mode issue */
1351                 	if ((mii_phy->phy_id0 == 0x001D) &&
1352 			    ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1353                			sis900_reset_phy(net_dev,  sis_priv->cur_phy);
1354 
1355 			sis630_set_eq(net_dev, sis_priv->chipset_rev);
1356 
1357                 	goto LookForLink;
1358                 }
1359 	}
1360 
1361 	sis_priv->timer.expires = jiffies + next_tick;
1362 	add_timer(&sis_priv->timer);
1363 }
1364 
1365 /**
1366  *	sis900_check_mode - check the media mode for sis900
1367  *	@net_dev: the net device to be checked
1368  *	@mii_phy: the mii phy
1369  *
1370  *	Older driver gets the media mode from mii status output
1371  *	register. Now we set our media capability and auto-negotiate
1372  *	to get the upper bound of speed and duplex between two ends.
1373  *	If the types of mii phy is HOME, it doesn't need to auto-negotiate
1374  *	and autong_complete should be set to 1.
1375  */
1376 
1377 static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1378 {
1379 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1380 	void __iomem *ioaddr = sis_priv->ioaddr;
1381 	int speed, duplex;
1382 
1383 	if (mii_phy->phy_types == LAN) {
1384 		sw32(cfg, ~EXD & sr32(cfg));
1385 		sis900_set_capability(net_dev , mii_phy);
1386 		sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1387 	} else {
1388 		sw32(cfg, EXD | sr32(cfg));
1389 		speed = HW_SPEED_HOME;
1390 		duplex = FDX_CAPABLE_HALF_SELECTED;
1391 		sis900_set_mode(sis_priv, speed, duplex);
1392 		sis_priv->autong_complete = 1;
1393 	}
1394 }
1395 
1396 /**
1397  *	sis900_set_mode - Set the media mode of mac register.
1398  *	@sp:     the device private data
1399  *	@speed : the transmit speed to be determined
1400  *	@duplex: the duplex mode to be determined
1401  *
1402  *	Set the media mode of mac register txcfg/rxcfg according to
1403  *	speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1404  *	bus is used instead of PCI bus. When this bit is set 1, the
1405  *	Max DMA Burst Size for TX/RX DMA should be no larger than 16
1406  *	double words.
1407  */
1408 
1409 static void sis900_set_mode(struct sis900_private *sp, int speed, int duplex)
1410 {
1411 	void __iomem *ioaddr = sp->ioaddr;
1412 	u32 tx_flags = 0, rx_flags = 0;
1413 
1414 	if (sr32( cfg) & EDB_MASTER_EN) {
1415 		tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1416 					(TX_FILL_THRESH << TxFILLT_shift);
1417 		rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1418 	} else {
1419 		tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1420 					(TX_FILL_THRESH << TxFILLT_shift);
1421 		rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1422 	}
1423 
1424 	if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1425 		rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1426 		tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1427 	} else {
1428 		rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1429 		tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1430 	}
1431 
1432 	if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1433 		tx_flags |= (TxCSI | TxHBI);
1434 		rx_flags |= RxATX;
1435 	}
1436 
1437 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1438 	/* Can accept Jumbo packet */
1439 	rx_flags |= RxAJAB;
1440 #endif
1441 
1442 	sw32(txcfg, tx_flags);
1443 	sw32(rxcfg, rx_flags);
1444 }
1445 
1446 /**
1447  *	sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1448  *	@net_dev: the net device to read mode for
1449  *	@phy_addr: mii phy address
1450  *
1451  *	If the adapter is link-on, set the auto-negotiate enable/reset bit.
1452  *	autong_complete should be set to 0 when starting auto-negotiation.
1453  *	autong_complete should be set to 1 if we didn't start auto-negotiation.
1454  *	sis900_timer will wait for link on again if autong_complete = 0.
1455  */
1456 
1457 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1458 {
1459 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1460 	int i = 0;
1461 	u32 status;
1462 
1463 	for (i = 0; i < 2; i++)
1464 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1465 
1466 	if (!(status & MII_STAT_LINK)){
1467 		if(netif_msg_link(sis_priv))
1468 			printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1469 		sis_priv->autong_complete = 1;
1470 		netif_carrier_off(net_dev);
1471 		return;
1472 	}
1473 
1474 	/* (Re)start AutoNegotiate */
1475 	mdio_write(net_dev, phy_addr, MII_CONTROL,
1476 		   MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1477 	sis_priv->autong_complete = 0;
1478 }
1479 
1480 
1481 /**
1482  *	sis900_read_mode - read media mode for sis900 internal phy
1483  *	@net_dev: the net device to read mode for
1484  *	@speed  : the transmit speed to be determined
1485  *	@duplex : the duplex mode to be determined
1486  *
1487  *	The capability of remote end will be put in mii register autorec
1488  *	after auto-negotiation. Use AND operation to get the upper bound
1489  *	of speed and duplex between two ends.
1490  */
1491 
1492 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1493 {
1494 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1495 	struct mii_phy *phy = sis_priv->mii;
1496 	int phy_addr = sis_priv->cur_phy;
1497 	u32 status;
1498 	u16 autoadv, autorec;
1499 	int i;
1500 
1501 	for (i = 0; i < 2; i++)
1502 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1503 
1504 	if (!(status & MII_STAT_LINK))
1505 		return;
1506 
1507 	/* AutoNegotiate completed */
1508 	autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1509 	autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1510 	status = autoadv & autorec;
1511 
1512 	*speed = HW_SPEED_10_MBPS;
1513 	*duplex = FDX_CAPABLE_HALF_SELECTED;
1514 
1515 	if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1516 		*speed = HW_SPEED_100_MBPS;
1517 	if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1518 		*duplex = FDX_CAPABLE_FULL_SELECTED;
1519 
1520 	sis_priv->autong_complete = 1;
1521 
1522 	/* Workaround for Realtek RTL8201 PHY issue */
1523 	if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1524 		if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1525 			*duplex = FDX_CAPABLE_FULL_SELECTED;
1526 		if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1527 			*speed = HW_SPEED_100_MBPS;
1528 	}
1529 
1530 	if(netif_msg_link(sis_priv))
1531 		printk(KERN_INFO "%s: Media Link On %s %s-duplex\n",
1532 	       				net_dev->name,
1533 	       				*speed == HW_SPEED_100_MBPS ?
1534 	       					"100mbps" : "10mbps",
1535 	       				*duplex == FDX_CAPABLE_FULL_SELECTED ?
1536 	       					"full" : "half");
1537 }
1538 
1539 /**
1540  *	sis900_tx_timeout - sis900 transmit timeout routine
1541  *	@net_dev: the net device to transmit
1542  *
1543  *	print transmit timeout status
1544  *	disable interrupts and do some tasks
1545  */
1546 
1547 static void sis900_tx_timeout(struct net_device *net_dev)
1548 {
1549 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1550 	void __iomem *ioaddr = sis_priv->ioaddr;
1551 	unsigned long flags;
1552 	int i;
1553 
1554 	if (netif_msg_tx_err(sis_priv)) {
1555 		printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n",
1556 			net_dev->name, sr32(cr), sr32(isr));
1557 	}
1558 
1559 	/* Disable interrupts by clearing the interrupt mask. */
1560 	sw32(imr, 0x0000);
1561 
1562 	/* use spinlock to prevent interrupt handler accessing buffer ring */
1563 	spin_lock_irqsave(&sis_priv->lock, flags);
1564 
1565 	/* discard unsent packets */
1566 	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1567 	for (i = 0; i < NUM_TX_DESC; i++) {
1568 		struct sk_buff *skb = sis_priv->tx_skbuff[i];
1569 
1570 		if (skb) {
1571 			pci_unmap_single(sis_priv->pci_dev,
1572 				sis_priv->tx_ring[i].bufptr, skb->len,
1573 				PCI_DMA_TODEVICE);
1574 			dev_kfree_skb_irq(skb);
1575 			sis_priv->tx_skbuff[i] = NULL;
1576 			sis_priv->tx_ring[i].cmdsts = 0;
1577 			sis_priv->tx_ring[i].bufptr = 0;
1578 			net_dev->stats.tx_dropped++;
1579 		}
1580 	}
1581 	sis_priv->tx_full = 0;
1582 	netif_wake_queue(net_dev);
1583 
1584 	spin_unlock_irqrestore(&sis_priv->lock, flags);
1585 
1586 	net_dev->trans_start = jiffies; /* prevent tx timeout */
1587 
1588 	/* load Transmit Descriptor Register */
1589 	sw32(txdp, sis_priv->tx_ring_dma);
1590 
1591 	/* Enable all known interrupts by setting the interrupt mask. */
1592 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
1593 }
1594 
1595 /**
1596  *	sis900_start_xmit - sis900 start transmit routine
1597  *	@skb: socket buffer pointer to put the data being transmitted
1598  *	@net_dev: the net device to transmit with
1599  *
1600  *	Set the transmit buffer descriptor,
1601  *	and write TxENA to enable transmit state machine.
1602  *	tell upper layer if the buffer is full
1603  */
1604 
1605 static netdev_tx_t
1606 sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1607 {
1608 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1609 	void __iomem *ioaddr = sis_priv->ioaddr;
1610 	unsigned int  entry;
1611 	unsigned long flags;
1612 	unsigned int  index_cur_tx, index_dirty_tx;
1613 	unsigned int  count_dirty_tx;
1614 
1615 	/* Don't transmit data before the complete of auto-negotiation */
1616 	if(!sis_priv->autong_complete){
1617 		netif_stop_queue(net_dev);
1618 		return NETDEV_TX_BUSY;
1619 	}
1620 
1621 	spin_lock_irqsave(&sis_priv->lock, flags);
1622 
1623 	/* Calculate the next Tx descriptor entry. */
1624 	entry = sis_priv->cur_tx % NUM_TX_DESC;
1625 	sis_priv->tx_skbuff[entry] = skb;
1626 
1627 	/* set the transmit buffer descriptor and enable Transmit State Machine */
1628 	sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1629 		skb->data, skb->len, PCI_DMA_TODEVICE);
1630 	if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1631 		sis_priv->tx_ring[entry].bufptr))) {
1632 			dev_kfree_skb(skb);
1633 			sis_priv->tx_skbuff[entry] = NULL;
1634 			net_dev->stats.tx_dropped++;
1635 			spin_unlock_irqrestore(&sis_priv->lock, flags);
1636 			return NETDEV_TX_OK;
1637 	}
1638 	sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len);
1639 	sw32(cr, TxENA | sr32(cr));
1640 
1641 	sis_priv->cur_tx ++;
1642 	index_cur_tx = sis_priv->cur_tx;
1643 	index_dirty_tx = sis_priv->dirty_tx;
1644 
1645 	for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1646 		count_dirty_tx ++;
1647 
1648 	if (index_cur_tx == index_dirty_tx) {
1649 		/* dirty_tx is met in the cycle of cur_tx, buffer full */
1650 		sis_priv->tx_full = 1;
1651 		netif_stop_queue(net_dev);
1652 	} else if (count_dirty_tx < NUM_TX_DESC) {
1653 		/* Typical path, tell upper layer that more transmission is possible */
1654 		netif_start_queue(net_dev);
1655 	} else {
1656 		/* buffer full, tell upper layer no more transmission */
1657 		sis_priv->tx_full = 1;
1658 		netif_stop_queue(net_dev);
1659 	}
1660 
1661 	spin_unlock_irqrestore(&sis_priv->lock, flags);
1662 
1663 	if (netif_msg_tx_queued(sis_priv))
1664 		printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1665 		       "to slot %d.\n",
1666 		       net_dev->name, skb->data, (int)skb->len, entry);
1667 
1668 	return NETDEV_TX_OK;
1669 }
1670 
1671 /**
1672  *	sis900_interrupt - sis900 interrupt handler
1673  *	@irq: the irq number
1674  *	@dev_instance: the client data object
1675  *
1676  *	The interrupt handler does all of the Rx thread work,
1677  *	and cleans up after the Tx thread
1678  */
1679 
1680 static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1681 {
1682 	struct net_device *net_dev = dev_instance;
1683 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1684 	int boguscnt = max_interrupt_work;
1685 	void __iomem *ioaddr = sis_priv->ioaddr;
1686 	u32 status;
1687 	unsigned int handled = 0;
1688 
1689 	spin_lock (&sis_priv->lock);
1690 
1691 	do {
1692 		status = sr32(isr);
1693 
1694 		if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0)
1695 			/* nothing intresting happened */
1696 			break;
1697 		handled = 1;
1698 
1699 		/* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1700 		if (status & (RxORN | RxERR | RxOK))
1701 			/* Rx interrupt */
1702 			sis900_rx(net_dev);
1703 
1704 		if (status & (TxURN | TxERR | TxIDLE))
1705 			/* Tx interrupt */
1706 			sis900_finish_xmit(net_dev);
1707 
1708 		/* something strange happened !!! */
1709 		if (status & HIBERR) {
1710 			if(netif_msg_intr(sis_priv))
1711 				printk(KERN_INFO "%s: Abnormal interrupt, "
1712 					"status %#8.8x.\n", net_dev->name, status);
1713 			break;
1714 		}
1715 		if (--boguscnt < 0) {
1716 			if(netif_msg_intr(sis_priv))
1717 				printk(KERN_INFO "%s: Too much work at interrupt, "
1718 					"interrupt status = %#8.8x.\n",
1719 					net_dev->name, status);
1720 			break;
1721 		}
1722 	} while (1);
1723 
1724 	if(netif_msg_intr(sis_priv))
1725 		printk(KERN_DEBUG "%s: exiting interrupt, "
1726 		       "interrupt status = 0x%#8.8x.\n",
1727 		       net_dev->name, sr32(isr));
1728 
1729 	spin_unlock (&sis_priv->lock);
1730 	return IRQ_RETVAL(handled);
1731 }
1732 
1733 /**
1734  *	sis900_rx - sis900 receive routine
1735  *	@net_dev: the net device which receives data
1736  *
1737  *	Process receive interrupt events,
1738  *	put buffer to higher layer and refill buffer pool
1739  *	Note: This function is called by interrupt handler,
1740  *	don't do "too much" work here
1741  */
1742 
1743 static int sis900_rx(struct net_device *net_dev)
1744 {
1745 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1746 	void __iomem *ioaddr = sis_priv->ioaddr;
1747 	unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1748 	u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1749 	int rx_work_limit;
1750 
1751 	if (netif_msg_rx_status(sis_priv))
1752 		printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1753 		       "status:0x%8.8x\n",
1754 		       sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1755 	rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1756 
1757 	while (rx_status & OWN) {
1758 		unsigned int rx_size;
1759 		unsigned int data_size;
1760 
1761 		if (--rx_work_limit < 0)
1762 			break;
1763 
1764 		data_size = rx_status & DSIZE;
1765 		rx_size = data_size - CRC_SIZE;
1766 
1767 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1768 		/* ``TOOLONG'' flag means jumbo packet received. */
1769 		if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1770 			rx_status &= (~ ((unsigned int)TOOLONG));
1771 #endif
1772 
1773 		if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1774 			/* corrupted packet received */
1775 			if (netif_msg_rx_err(sis_priv))
1776 				printk(KERN_DEBUG "%s: Corrupted packet "
1777 				       "received, buffer status = 0x%8.8x/%d.\n",
1778 				       net_dev->name, rx_status, data_size);
1779 			net_dev->stats.rx_errors++;
1780 			if (rx_status & OVERRUN)
1781 				net_dev->stats.rx_over_errors++;
1782 			if (rx_status & (TOOLONG|RUNT))
1783 				net_dev->stats.rx_length_errors++;
1784 			if (rx_status & (RXISERR | FAERR))
1785 				net_dev->stats.rx_frame_errors++;
1786 			if (rx_status & CRCERR)
1787 				net_dev->stats.rx_crc_errors++;
1788 			/* reset buffer descriptor state */
1789 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1790 		} else {
1791 			struct sk_buff * skb;
1792 			struct sk_buff * rx_skb;
1793 
1794 			pci_unmap_single(sis_priv->pci_dev,
1795 				sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1796 				PCI_DMA_FROMDEVICE);
1797 
1798 			/* refill the Rx buffer, what if there is not enough
1799 			 * memory for new socket buffer ?? */
1800 			if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1801 				/*
1802 				 * Not enough memory to refill the buffer
1803 				 * so we need to recycle the old one so
1804 				 * as to avoid creating a memory hole
1805 				 * in the rx ring
1806 				 */
1807 				skb = sis_priv->rx_skbuff[entry];
1808 				net_dev->stats.rx_dropped++;
1809 				goto refill_rx_ring;
1810 			}
1811 
1812 			/* This situation should never happen, but due to
1813 			   some unknown bugs, it is possible that
1814 			   we are working on NULL sk_buff :-( */
1815 			if (sis_priv->rx_skbuff[entry] == NULL) {
1816 				if (netif_msg_rx_err(sis_priv))
1817 					printk(KERN_WARNING "%s: NULL pointer "
1818 					      "encountered in Rx ring\n"
1819 					      "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1820 					      net_dev->name, sis_priv->cur_rx,
1821 					      sis_priv->dirty_rx);
1822 				dev_kfree_skb(skb);
1823 				break;
1824 			}
1825 
1826 			/* give the socket buffer to upper layers */
1827 			rx_skb = sis_priv->rx_skbuff[entry];
1828 			skb_put(rx_skb, rx_size);
1829 			rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1830 			netif_rx(rx_skb);
1831 
1832 			/* some network statistics */
1833 			if ((rx_status & BCAST) == MCAST)
1834 				net_dev->stats.multicast++;
1835 			net_dev->stats.rx_bytes += rx_size;
1836 			net_dev->stats.rx_packets++;
1837 			sis_priv->dirty_rx++;
1838 refill_rx_ring:
1839 			sis_priv->rx_skbuff[entry] = skb;
1840 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1841 			sis_priv->rx_ring[entry].bufptr =
1842 				pci_map_single(sis_priv->pci_dev, skb->data,
1843 					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1844 			if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1845 				sis_priv->rx_ring[entry].bufptr))) {
1846 				dev_kfree_skb_irq(skb);
1847 				sis_priv->rx_skbuff[entry] = NULL;
1848 				break;
1849 			}
1850 		}
1851 		sis_priv->cur_rx++;
1852 		entry = sis_priv->cur_rx % NUM_RX_DESC;
1853 		rx_status = sis_priv->rx_ring[entry].cmdsts;
1854 	} // while
1855 
1856 	/* refill the Rx buffer, what if the rate of refilling is slower
1857 	 * than consuming ?? */
1858 	for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1859 		struct sk_buff *skb;
1860 
1861 		entry = sis_priv->dirty_rx % NUM_RX_DESC;
1862 
1863 		if (sis_priv->rx_skbuff[entry] == NULL) {
1864 			skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE);
1865 			if (skb == NULL) {
1866 				/* not enough memory for skbuff, this makes a
1867 				 * "hole" on the buffer ring, it is not clear
1868 				 * how the hardware will react to this kind
1869 				 * of degenerated buffer */
1870 				net_dev->stats.rx_dropped++;
1871 				break;
1872 			}
1873 			sis_priv->rx_skbuff[entry] = skb;
1874 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1875 			sis_priv->rx_ring[entry].bufptr =
1876 				pci_map_single(sis_priv->pci_dev, skb->data,
1877 					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1878 			if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1879 					sis_priv->rx_ring[entry].bufptr))) {
1880 				dev_kfree_skb_irq(skb);
1881 				sis_priv->rx_skbuff[entry] = NULL;
1882 				break;
1883 			}
1884 		}
1885 	}
1886 	/* re-enable the potentially idle receive state matchine */
1887 	sw32(cr , RxENA | sr32(cr));
1888 
1889 	return 0;
1890 }
1891 
1892 /**
1893  *	sis900_finish_xmit - finish up transmission of packets
1894  *	@net_dev: the net device to be transmitted on
1895  *
1896  *	Check for error condition and free socket buffer etc
1897  *	schedule for more transmission as needed
1898  *	Note: This function is called by interrupt handler,
1899  *	don't do "too much" work here
1900  */
1901 
1902 static void sis900_finish_xmit (struct net_device *net_dev)
1903 {
1904 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1905 
1906 	for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1907 		struct sk_buff *skb;
1908 		unsigned int entry;
1909 		u32 tx_status;
1910 
1911 		entry = sis_priv->dirty_tx % NUM_TX_DESC;
1912 		tx_status = sis_priv->tx_ring[entry].cmdsts;
1913 
1914 		if (tx_status & OWN) {
1915 			/* The packet is not transmitted yet (owned by hardware) !
1916 			 * Note: the interrupt is generated only when Tx Machine
1917 			 * is idle, so this is an almost impossible case */
1918 			break;
1919 		}
1920 
1921 		if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1922 			/* packet unsuccessfully transmitted */
1923 			if (netif_msg_tx_err(sis_priv))
1924 				printk(KERN_DEBUG "%s: Transmit "
1925 				       "error, Tx status %8.8x.\n",
1926 				       net_dev->name, tx_status);
1927 			net_dev->stats.tx_errors++;
1928 			if (tx_status & UNDERRUN)
1929 				net_dev->stats.tx_fifo_errors++;
1930 			if (tx_status & ABORT)
1931 				net_dev->stats.tx_aborted_errors++;
1932 			if (tx_status & NOCARRIER)
1933 				net_dev->stats.tx_carrier_errors++;
1934 			if (tx_status & OWCOLL)
1935 				net_dev->stats.tx_window_errors++;
1936 		} else {
1937 			/* packet successfully transmitted */
1938 			net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1939 			net_dev->stats.tx_bytes += tx_status & DSIZE;
1940 			net_dev->stats.tx_packets++;
1941 		}
1942 		/* Free the original skb. */
1943 		skb = sis_priv->tx_skbuff[entry];
1944 		pci_unmap_single(sis_priv->pci_dev,
1945 			sis_priv->tx_ring[entry].bufptr, skb->len,
1946 			PCI_DMA_TODEVICE);
1947 		dev_kfree_skb_irq(skb);
1948 		sis_priv->tx_skbuff[entry] = NULL;
1949 		sis_priv->tx_ring[entry].bufptr = 0;
1950 		sis_priv->tx_ring[entry].cmdsts = 0;
1951 	}
1952 
1953 	if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1954 	    sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1955 		/* The ring is no longer full, clear tx_full and schedule
1956 		 * more transmission by netif_wake_queue(net_dev) */
1957 		sis_priv->tx_full = 0;
1958 		netif_wake_queue (net_dev);
1959 	}
1960 }
1961 
1962 /**
1963  *	sis900_close - close sis900 device
1964  *	@net_dev: the net device to be closed
1965  *
1966  *	Disable interrupts, stop the Tx and Rx Status Machine
1967  *	free Tx and RX socket buffer
1968  */
1969 
1970 static int sis900_close(struct net_device *net_dev)
1971 {
1972 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1973 	struct pci_dev *pdev = sis_priv->pci_dev;
1974 	void __iomem *ioaddr = sis_priv->ioaddr;
1975 	struct sk_buff *skb;
1976 	int i;
1977 
1978 	netif_stop_queue(net_dev);
1979 
1980 	/* Disable interrupts by clearing the interrupt mask. */
1981 	sw32(imr, 0x0000);
1982 	sw32(ier, 0x0000);
1983 
1984 	/* Stop the chip's Tx and Rx Status Machine */
1985 	sw32(cr, RxDIS | TxDIS | sr32(cr));
1986 
1987 	del_timer(&sis_priv->timer);
1988 
1989 	free_irq(pdev->irq, net_dev);
1990 
1991 	/* Free Tx and RX skbuff */
1992 	for (i = 0; i < NUM_RX_DESC; i++) {
1993 		skb = sis_priv->rx_skbuff[i];
1994 		if (skb) {
1995 			pci_unmap_single(pdev, sis_priv->rx_ring[i].bufptr,
1996 					 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1997 			dev_kfree_skb(skb);
1998 			sis_priv->rx_skbuff[i] = NULL;
1999 		}
2000 	}
2001 	for (i = 0; i < NUM_TX_DESC; i++) {
2002 		skb = sis_priv->tx_skbuff[i];
2003 		if (skb) {
2004 			pci_unmap_single(pdev, sis_priv->tx_ring[i].bufptr,
2005 					 skb->len, PCI_DMA_TODEVICE);
2006 			dev_kfree_skb(skb);
2007 			sis_priv->tx_skbuff[i] = NULL;
2008 		}
2009 	}
2010 
2011 	/* Green! Put the chip in low-power mode. */
2012 
2013 	return 0;
2014 }
2015 
2016 /**
2017  *	sis900_get_drvinfo - Return information about driver
2018  *	@net_dev: the net device to probe
2019  *	@info: container for info returned
2020  *
2021  *	Process ethtool command such as "ehtool -i" to show information
2022  */
2023 
2024 static void sis900_get_drvinfo(struct net_device *net_dev,
2025 			       struct ethtool_drvinfo *info)
2026 {
2027 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2028 
2029 	strlcpy(info->driver, SIS900_MODULE_NAME, sizeof(info->driver));
2030 	strlcpy(info->version, SIS900_DRV_VERSION, sizeof(info->version));
2031 	strlcpy(info->bus_info, pci_name(sis_priv->pci_dev),
2032 		sizeof(info->bus_info));
2033 }
2034 
2035 static u32 sis900_get_msglevel(struct net_device *net_dev)
2036 {
2037 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2038 	return sis_priv->msg_enable;
2039 }
2040 
2041 static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
2042 {
2043 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2044 	sis_priv->msg_enable = value;
2045 }
2046 
2047 static u32 sis900_get_link(struct net_device *net_dev)
2048 {
2049 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2050 	return mii_link_ok(&sis_priv->mii_info);
2051 }
2052 
2053 static int sis900_get_settings(struct net_device *net_dev,
2054 				struct ethtool_cmd *cmd)
2055 {
2056 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2057 	spin_lock_irq(&sis_priv->lock);
2058 	mii_ethtool_gset(&sis_priv->mii_info, cmd);
2059 	spin_unlock_irq(&sis_priv->lock);
2060 	return 0;
2061 }
2062 
2063 static int sis900_set_settings(struct net_device *net_dev,
2064 				struct ethtool_cmd *cmd)
2065 {
2066 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2067 	int rt;
2068 	spin_lock_irq(&sis_priv->lock);
2069 	rt = mii_ethtool_sset(&sis_priv->mii_info, cmd);
2070 	spin_unlock_irq(&sis_priv->lock);
2071 	return rt;
2072 }
2073 
2074 static int sis900_nway_reset(struct net_device *net_dev)
2075 {
2076 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2077 	return mii_nway_restart(&sis_priv->mii_info);
2078 }
2079 
2080 /**
2081  *	sis900_set_wol - Set up Wake on Lan registers
2082  *	@net_dev: the net device to probe
2083  *	@wol: container for info passed to the driver
2084  *
2085  *	Process ethtool command "wol" to setup wake on lan features.
2086  *	SiS900 supports sending WoL events if a correct packet is received,
2087  *	but there is no simple way to filter them to only a subset (broadcast,
2088  *	multicast, unicast or arp).
2089  */
2090 
2091 static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2092 {
2093 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2094 	void __iomem *ioaddr = sis_priv->ioaddr;
2095 	u32 cfgpmcsr = 0, pmctrl_bits = 0;
2096 
2097 	if (wol->wolopts == 0) {
2098 		pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2099 		cfgpmcsr &= ~PME_EN;
2100 		pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2101 		sw32(pmctrl, pmctrl_bits);
2102 		if (netif_msg_wol(sis_priv))
2103 			printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2104 		return 0;
2105 	}
2106 
2107 	if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2108 				| WAKE_BCAST | WAKE_ARP))
2109 		return -EINVAL;
2110 
2111 	if (wol->wolopts & WAKE_MAGIC)
2112 		pmctrl_bits |= MAGICPKT;
2113 	if (wol->wolopts & WAKE_PHY)
2114 		pmctrl_bits |= LINKON;
2115 
2116 	sw32(pmctrl, pmctrl_bits);
2117 
2118 	pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2119 	cfgpmcsr |= PME_EN;
2120 	pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2121 	if (netif_msg_wol(sis_priv))
2122 		printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2123 
2124 	return 0;
2125 }
2126 
2127 static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2128 {
2129 	struct sis900_private *sp = netdev_priv(net_dev);
2130 	void __iomem *ioaddr = sp->ioaddr;
2131 	u32 pmctrl_bits;
2132 
2133 	pmctrl_bits = sr32(pmctrl);
2134 	if (pmctrl_bits & MAGICPKT)
2135 		wol->wolopts |= WAKE_MAGIC;
2136 	if (pmctrl_bits & LINKON)
2137 		wol->wolopts |= WAKE_PHY;
2138 
2139 	wol->supported = (WAKE_PHY | WAKE_MAGIC);
2140 }
2141 
2142 static const struct ethtool_ops sis900_ethtool_ops = {
2143 	.get_drvinfo 	= sis900_get_drvinfo,
2144 	.get_msglevel	= sis900_get_msglevel,
2145 	.set_msglevel	= sis900_set_msglevel,
2146 	.get_link	= sis900_get_link,
2147 	.get_settings	= sis900_get_settings,
2148 	.set_settings	= sis900_set_settings,
2149 	.nway_reset	= sis900_nway_reset,
2150 	.get_wol	= sis900_get_wol,
2151 	.set_wol	= sis900_set_wol
2152 };
2153 
2154 /**
2155  *	mii_ioctl - process MII i/o control command
2156  *	@net_dev: the net device to command for
2157  *	@rq: parameter for command
2158  *	@cmd: the i/o command
2159  *
2160  *	Process MII command like read/write MII register
2161  */
2162 
2163 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2164 {
2165 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2166 	struct mii_ioctl_data *data = if_mii(rq);
2167 
2168 	switch(cmd) {
2169 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2170 		data->phy_id = sis_priv->mii->phy_addr;
2171 		/* Fall Through */
2172 
2173 	case SIOCGMIIREG:		/* Read MII PHY register. */
2174 		data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2175 		return 0;
2176 
2177 	case SIOCSMIIREG:		/* Write MII PHY register. */
2178 		mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2179 		return 0;
2180 	default:
2181 		return -EOPNOTSUPP;
2182 	}
2183 }
2184 
2185 /**
2186  *	sis900_set_config - Set media type by net_device.set_config
2187  *	@dev: the net device for media type change
2188  *	@map: ifmap passed by ifconfig
2189  *
2190  *	Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2191  *	we support only port changes. All other runtime configuration
2192  *	changes will be ignored
2193  */
2194 
2195 static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2196 {
2197 	struct sis900_private *sis_priv = netdev_priv(dev);
2198 	struct mii_phy *mii_phy = sis_priv->mii;
2199 
2200 	u16 status;
2201 
2202 	if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2203 		/* we switch on the ifmap->port field. I couldn't find anything
2204 		 * like a definition or standard for the values of that field.
2205 		 * I think the meaning of those values is device specific. But
2206 		 * since I would like to change the media type via the ifconfig
2207 		 * command I use the definition from linux/netdevice.h
2208 		 * (which seems to be different from the ifport(pcmcia) definition) */
2209 		switch(map->port){
2210 		case IF_PORT_UNKNOWN: /* use auto here */
2211 			dev->if_port = map->port;
2212 			/* we are going to change the media type, so the Link
2213 			 * will be temporary down and we need to reflect that
2214 			 * here. When the Link comes up again, it will be
2215 			 * sensed by the sis_timer procedure, which also does
2216 			 * all the rest for us */
2217 			netif_carrier_off(dev);
2218 
2219 			/* read current state */
2220 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2221 
2222 			/* enable auto negotiation and reset the negotioation
2223 			 * (I don't really know what the auto negatiotiation
2224 			 * reset really means, but it sounds for me right to
2225 			 * do one here) */
2226 			mdio_write(dev, mii_phy->phy_addr,
2227 				   MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2228 
2229 			break;
2230 
2231 		case IF_PORT_10BASET: /* 10BaseT */
2232 			dev->if_port = map->port;
2233 
2234 			/* we are going to change the media type, so the Link
2235 			 * will be temporary down and we need to reflect that
2236 			 * here. When the Link comes up again, it will be
2237 			 * sensed by the sis_timer procedure, which also does
2238 			 * all the rest for us */
2239 			netif_carrier_off(dev);
2240 
2241 			/* set Speed to 10Mbps */
2242 			/* read current state */
2243 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2244 
2245 			/* disable auto negotiation and force 10MBit mode*/
2246 			mdio_write(dev, mii_phy->phy_addr,
2247 				   MII_CONTROL, status & ~(MII_CNTL_SPEED |
2248 					MII_CNTL_AUTO));
2249 			break;
2250 
2251 		case IF_PORT_100BASET: /* 100BaseT */
2252 		case IF_PORT_100BASETX: /* 100BaseTx */
2253 			dev->if_port = map->port;
2254 
2255 			/* we are going to change the media type, so the Link
2256 			 * will be temporary down and we need to reflect that
2257 			 * here. When the Link comes up again, it will be
2258 			 * sensed by the sis_timer procedure, which also does
2259 			 * all the rest for us */
2260 			netif_carrier_off(dev);
2261 
2262 			/* set Speed to 100Mbps */
2263 			/* disable auto negotiation and enable 100MBit Mode */
2264 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2265 			mdio_write(dev, mii_phy->phy_addr,
2266 				   MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2267 				   MII_CNTL_SPEED);
2268 
2269 			break;
2270 
2271 		case IF_PORT_10BASE2: /* 10Base2 */
2272 		case IF_PORT_AUI: /* AUI */
2273 		case IF_PORT_100BASEFX: /* 100BaseFx */
2274                 	/* These Modes are not supported (are they?)*/
2275 			return -EOPNOTSUPP;
2276 			break;
2277 
2278 		default:
2279 			return -EINVAL;
2280 		}
2281 	}
2282 	return 0;
2283 }
2284 
2285 /**
2286  *	sis900_mcast_bitnr - compute hashtable index
2287  *	@addr: multicast address
2288  *	@revision: revision id of chip
2289  *
2290  *	SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2291  *	hash table, which makes this function a little bit different from other drivers
2292  *	SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2293  *   	multicast hash table.
2294  */
2295 
2296 static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2297 {
2298 
2299 	u32 crc = ether_crc(6, addr);
2300 
2301 	/* leave 8 or 7 most siginifant bits */
2302 	if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2303 		return (int)(crc >> 24);
2304 	else
2305 		return (int)(crc >> 25);
2306 }
2307 
2308 /**
2309  *	set_rx_mode - Set SiS900 receive mode
2310  *	@net_dev: the net device to be set
2311  *
2312  *	Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2313  *	And set the appropriate multicast filter.
2314  *	Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2315  */
2316 
2317 static void set_rx_mode(struct net_device *net_dev)
2318 {
2319 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2320 	void __iomem *ioaddr = sis_priv->ioaddr;
2321 	u16 mc_filter[16] = {0};	/* 256/128 bits multicast hash table */
2322 	int i, table_entries;
2323 	u32 rx_mode;
2324 
2325 	/* 635 Hash Table entries = 256(2^16) */
2326 	if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2327 			(sis_priv->chipset_rev == SIS900B_900_REV))
2328 		table_entries = 16;
2329 	else
2330 		table_entries = 8;
2331 
2332 	if (net_dev->flags & IFF_PROMISC) {
2333 		/* Accept any kinds of packets */
2334 		rx_mode = RFPromiscuous;
2335 		for (i = 0; i < table_entries; i++)
2336 			mc_filter[i] = 0xffff;
2337 	} else if ((netdev_mc_count(net_dev) > multicast_filter_limit) ||
2338 		   (net_dev->flags & IFF_ALLMULTI)) {
2339 		/* too many multicast addresses or accept all multicast packet */
2340 		rx_mode = RFAAB | RFAAM;
2341 		for (i = 0; i < table_entries; i++)
2342 			mc_filter[i] = 0xffff;
2343 	} else {
2344 		/* Accept Broadcast packet, destination address matchs our
2345 		 * MAC address, use Receive Filter to reject unwanted MCAST
2346 		 * packets */
2347 		struct netdev_hw_addr *ha;
2348 		rx_mode = RFAAB;
2349 
2350 		netdev_for_each_mc_addr(ha, net_dev) {
2351 			unsigned int bit_nr;
2352 
2353 			bit_nr = sis900_mcast_bitnr(ha->addr,
2354 						    sis_priv->chipset_rev);
2355 			mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2356 		}
2357 	}
2358 
2359 	/* update Multicast Hash Table in Receive Filter */
2360 	for (i = 0; i < table_entries; i++) {
2361                 /* why plus 0x04 ??, That makes the correct value for hash table. */
2362 		sw32(rfcr, (u32)(0x00000004 + i) << RFADDR_shift);
2363 		sw32(rfdr, mc_filter[i]);
2364 	}
2365 
2366 	sw32(rfcr, RFEN | rx_mode);
2367 
2368 	/* sis900 is capable of looping back packets at MAC level for
2369 	 * debugging purpose */
2370 	if (net_dev->flags & IFF_LOOPBACK) {
2371 		u32 cr_saved;
2372 		/* We must disable Tx/Rx before setting loopback mode */
2373 		cr_saved = sr32(cr);
2374 		sw32(cr, cr_saved | TxDIS | RxDIS);
2375 		/* enable loopback */
2376 		sw32(txcfg, sr32(txcfg) | TxMLB);
2377 		sw32(rxcfg, sr32(rxcfg) | RxATX);
2378 		/* restore cr */
2379 		sw32(cr, cr_saved);
2380 	}
2381 }
2382 
2383 /**
2384  *	sis900_reset - Reset sis900 MAC
2385  *	@net_dev: the net device to reset
2386  *
2387  *	reset sis900 MAC and wait until finished
2388  *	reset through command register
2389  *	change backoff algorithm for 900B0 & 635 M/B
2390  */
2391 
2392 static void sis900_reset(struct net_device *net_dev)
2393 {
2394 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2395 	void __iomem *ioaddr = sis_priv->ioaddr;
2396 	u32 status = TxRCMP | RxRCMP;
2397 	int i;
2398 
2399 	sw32(ier, 0);
2400 	sw32(imr, 0);
2401 	sw32(rfcr, 0);
2402 
2403 	sw32(cr, RxRESET | TxRESET | RESET | sr32(cr));
2404 
2405 	/* Check that the chip has finished the reset. */
2406 	for (i = 0; status && (i < 1000); i++)
2407 		status ^= sr32(isr) & status;
2408 
2409 	if (sis_priv->chipset_rev >= SIS635A_900_REV ||
2410 	    sis_priv->chipset_rev == SIS900B_900_REV)
2411 		sw32(cfg, PESEL | RND_CNT);
2412 	else
2413 		sw32(cfg, PESEL);
2414 }
2415 
2416 /**
2417  *	sis900_remove - Remove sis900 device
2418  *	@pci_dev: the pci device to be removed
2419  *
2420  *	remove and release SiS900 net device
2421  */
2422 
2423 static void sis900_remove(struct pci_dev *pci_dev)
2424 {
2425 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2426 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2427 
2428 	unregister_netdev(net_dev);
2429 
2430 	while (sis_priv->first_mii) {
2431 		struct mii_phy *phy = sis_priv->first_mii;
2432 
2433 		sis_priv->first_mii = phy->next;
2434 		kfree(phy);
2435 	}
2436 
2437 	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2438 		sis_priv->rx_ring_dma);
2439 	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2440 		sis_priv->tx_ring_dma);
2441 	pci_iounmap(pci_dev, sis_priv->ioaddr);
2442 	free_netdev(net_dev);
2443 	pci_release_regions(pci_dev);
2444 	pci_set_drvdata(pci_dev, NULL);
2445 }
2446 
2447 #ifdef CONFIG_PM
2448 
2449 static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state)
2450 {
2451 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2452 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2453 	void __iomem *ioaddr = sis_priv->ioaddr;
2454 
2455 	if(!netif_running(net_dev))
2456 		return 0;
2457 
2458 	netif_stop_queue(net_dev);
2459 	netif_device_detach(net_dev);
2460 
2461 	/* Stop the chip's Tx and Rx Status Machine */
2462 	sw32(cr, RxDIS | TxDIS | sr32(cr));
2463 
2464 	pci_set_power_state(pci_dev, PCI_D3hot);
2465 	pci_save_state(pci_dev);
2466 
2467 	return 0;
2468 }
2469 
2470 static int sis900_resume(struct pci_dev *pci_dev)
2471 {
2472 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2473 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2474 	void __iomem *ioaddr = sis_priv->ioaddr;
2475 
2476 	if(!netif_running(net_dev))
2477 		return 0;
2478 	pci_restore_state(pci_dev);
2479 	pci_set_power_state(pci_dev, PCI_D0);
2480 
2481 	sis900_init_rxfilter(net_dev);
2482 
2483 	sis900_init_tx_ring(net_dev);
2484 	sis900_init_rx_ring(net_dev);
2485 
2486 	set_rx_mode(net_dev);
2487 
2488 	netif_device_attach(net_dev);
2489 	netif_start_queue(net_dev);
2490 
2491 	/* Workaround for EDB */
2492 	sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2493 
2494 	/* Enable all known interrupts by setting the interrupt mask. */
2495 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
2496 	sw32(cr, RxENA | sr32(cr));
2497 	sw32(ier, IE);
2498 
2499 	sis900_check_mode(net_dev, sis_priv->mii);
2500 
2501 	return 0;
2502 }
2503 #endif /* CONFIG_PM */
2504 
2505 static struct pci_driver sis900_pci_driver = {
2506 	.name		= SIS900_MODULE_NAME,
2507 	.id_table	= sis900_pci_tbl,
2508 	.probe		= sis900_probe,
2509 	.remove		= sis900_remove,
2510 #ifdef CONFIG_PM
2511 	.suspend	= sis900_suspend,
2512 	.resume		= sis900_resume,
2513 #endif /* CONFIG_PM */
2514 };
2515 
2516 static int __init sis900_init_module(void)
2517 {
2518 /* when a module, this is printed whether or not devices are found in probe */
2519 #ifdef MODULE
2520 	printk(version);
2521 #endif
2522 
2523 	return pci_register_driver(&sis900_pci_driver);
2524 }
2525 
2526 static void __exit sis900_cleanup_module(void)
2527 {
2528 	pci_unregister_driver(&sis900_pci_driver);
2529 }
2530 
2531 module_init(sis900_init_module);
2532 module_exit(sis900_cleanup_module);
2533 
2534