1 /* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux. 2 Copyright 1999 Silicon Integrated System Corporation 3 Revision: 1.08.10 Apr. 2 2006 4 5 Modified from the driver which is originally written by Donald Becker. 6 7 This software may be used and distributed according to the terms 8 of the GNU General Public License (GPL), incorporated herein by reference. 9 Drivers based on this skeleton fall under the GPL and must retain 10 the authorship (implicit copyright) notice. 11 12 References: 13 SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support, 14 preliminary Rev. 1.0 Jan. 14, 1998 15 SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support, 16 preliminary Rev. 1.0 Nov. 10, 1998 17 SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution, 18 preliminary Rev. 1.0 Jan. 18, 1998 19 20 Rev 1.08.10 Apr. 2 2006 Daniele Venzano add vlan (jumbo packets) support 21 Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support 22 Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages 23 Rev 1.08.07 Nov. 2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support 24 Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support 25 Rev 1.08.05 Jun. 6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary 26 Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support 27 Rev 1.08.03 Feb. 1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function 28 Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem 29 Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY 30 Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix 31 Rev 1.07.11 Apr. 2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3 32 Rev 1.07.10 Mar. 1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support 33 Rev 1.07.09 Feb. 9 2001 Dave Jones <davej@suse.de> PCI enable cleanup 34 Rev 1.07.08 Jan. 8 2001 Lei-Chun Chang added RTL8201 PHY support 35 Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix 36 Rev 1.07.06 Nov. 7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning 37 Rev 1.07.05 Nov. 6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig 38 Rev 1.07.04 Sep. 6 2000 Lei-Chun Chang added ICS1893 PHY support 39 Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E equalizer workaround rule 40 Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1 41 Rev 1.07 Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring 42 Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4 43 Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release 44 Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed 45 Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com) 46 Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release 47 Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx 48 Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support 49 Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/kernel.h> 55 #include <linux/sched.h> 56 #include <linux/string.h> 57 #include <linux/timer.h> 58 #include <linux/errno.h> 59 #include <linux/ioport.h> 60 #include <linux/slab.h> 61 #include <linux/interrupt.h> 62 #include <linux/pci.h> 63 #include <linux/netdevice.h> 64 #include <linux/init.h> 65 #include <linux/mii.h> 66 #include <linux/etherdevice.h> 67 #include <linux/skbuff.h> 68 #include <linux/delay.h> 69 #include <linux/ethtool.h> 70 #include <linux/crc32.h> 71 #include <linux/bitops.h> 72 #include <linux/dma-mapping.h> 73 74 #include <asm/processor.h> /* Processor type for cache alignment. */ 75 #include <asm/io.h> 76 #include <asm/irq.h> 77 #include <linux/uaccess.h> /* User space memory access functions */ 78 79 #include "sis900.h" 80 81 #define SIS900_MODULE_NAME "sis900" 82 #define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006" 83 84 static const char version[] = 85 KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n"; 86 87 static int max_interrupt_work = 40; 88 static int multicast_filter_limit = 128; 89 90 static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */ 91 92 #define SIS900_DEF_MSG \ 93 (NETIF_MSG_DRV | \ 94 NETIF_MSG_LINK | \ 95 NETIF_MSG_RX_ERR | \ 96 NETIF_MSG_TX_ERR) 97 98 /* Time in jiffies before concluding the transmitter is hung. */ 99 #define TX_TIMEOUT (4*HZ) 100 101 enum { 102 SIS_900 = 0, 103 SIS_7016 104 }; 105 static const char * card_names[] = { 106 "SiS 900 PCI Fast Ethernet", 107 "SiS 7016 PCI Fast Ethernet" 108 }; 109 110 static const struct pci_device_id sis900_pci_tbl[] = { 111 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900, 112 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900}, 113 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016, 114 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016}, 115 {0,} 116 }; 117 MODULE_DEVICE_TABLE (pci, sis900_pci_tbl); 118 119 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex); 120 121 static const struct mii_chip_info { 122 const char * name; 123 u16 phy_id0; 124 u16 phy_id1; 125 u8 phy_types; 126 #define HOME 0x0001 127 #define LAN 0x0002 128 #define MIX 0x0003 129 #define UNKNOWN 0x0 130 } mii_chip_table[] = { 131 { "SiS 900 Internal MII PHY", 0x001d, 0x8000, LAN }, 132 { "SiS 7014 Physical Layer Solution", 0x0016, 0xf830, LAN }, 133 { "SiS 900 on Foxconn 661 7MI", 0x0143, 0xBC70, LAN }, 134 { "Altimata AC101LF PHY", 0x0022, 0x5520, LAN }, 135 { "ADM 7001 LAN PHY", 0x002e, 0xcc60, LAN }, 136 { "AMD 79C901 10BASE-T PHY", 0x0000, 0x6B70, LAN }, 137 { "AMD 79C901 HomePNA PHY", 0x0000, 0x6B90, HOME}, 138 { "ICS LAN PHY", 0x0015, 0xF440, LAN }, 139 { "ICS LAN PHY", 0x0143, 0xBC70, LAN }, 140 { "NS 83851 PHY", 0x2000, 0x5C20, MIX }, 141 { "NS 83847 PHY", 0x2000, 0x5C30, MIX }, 142 { "Realtek RTL8201 PHY", 0x0000, 0x8200, LAN }, 143 { "VIA 6103 PHY", 0x0101, 0x8f20, LAN }, 144 {NULL,}, 145 }; 146 147 struct mii_phy { 148 struct mii_phy * next; 149 int phy_addr; 150 u16 phy_id0; 151 u16 phy_id1; 152 u16 status; 153 u8 phy_types; 154 }; 155 156 typedef struct _BufferDesc { 157 u32 link; 158 u32 cmdsts; 159 u32 bufptr; 160 } BufferDesc; 161 162 struct sis900_private { 163 struct pci_dev * pci_dev; 164 165 spinlock_t lock; 166 167 struct mii_phy * mii; 168 struct mii_phy * first_mii; /* record the first mii structure */ 169 unsigned int cur_phy; 170 struct mii_if_info mii_info; 171 172 void __iomem *ioaddr; 173 174 struct timer_list timer; /* Link status detection timer. */ 175 u8 autong_complete; /* 1: auto-negotiate complete */ 176 177 u32 msg_enable; 178 179 unsigned int cur_rx, dirty_rx; /* producer/consumer pointers for Tx/Rx ring */ 180 unsigned int cur_tx, dirty_tx; 181 182 /* The saved address of a sent/receive-in-place packet buffer */ 183 struct sk_buff *tx_skbuff[NUM_TX_DESC]; 184 struct sk_buff *rx_skbuff[NUM_RX_DESC]; 185 BufferDesc *tx_ring; 186 BufferDesc *rx_ring; 187 188 dma_addr_t tx_ring_dma; 189 dma_addr_t rx_ring_dma; 190 191 unsigned int tx_full; /* The Tx queue is full. */ 192 u8 host_bridge_rev; 193 u8 chipset_rev; 194 /* EEPROM data */ 195 int eeprom_size; 196 }; 197 198 MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>"); 199 MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver"); 200 MODULE_LICENSE("GPL"); 201 202 module_param(multicast_filter_limit, int, 0444); 203 module_param(max_interrupt_work, int, 0444); 204 module_param(sis900_debug, int, 0444); 205 MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses"); 206 MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt"); 207 MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level"); 208 209 #define sw32(reg, val) iowrite32(val, ioaddr + (reg)) 210 #define sw8(reg, val) iowrite8(val, ioaddr + (reg)) 211 #define sr32(reg) ioread32(ioaddr + (reg)) 212 #define sr16(reg) ioread16(ioaddr + (reg)) 213 214 #ifdef CONFIG_NET_POLL_CONTROLLER 215 static void sis900_poll(struct net_device *dev); 216 #endif 217 static int sis900_open(struct net_device *net_dev); 218 static int sis900_mii_probe (struct net_device * net_dev); 219 static void sis900_init_rxfilter (struct net_device * net_dev); 220 static u16 read_eeprom(void __iomem *ioaddr, int location); 221 static int mdio_read(struct net_device *net_dev, int phy_id, int location); 222 static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val); 223 static void sis900_timer(struct timer_list *t); 224 static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy); 225 static void sis900_tx_timeout(struct net_device *net_dev, unsigned int txqueue); 226 static void sis900_init_tx_ring(struct net_device *net_dev); 227 static void sis900_init_rx_ring(struct net_device *net_dev); 228 static netdev_tx_t sis900_start_xmit(struct sk_buff *skb, 229 struct net_device *net_dev); 230 static int sis900_rx(struct net_device *net_dev); 231 static void sis900_finish_xmit (struct net_device *net_dev); 232 static irqreturn_t sis900_interrupt(int irq, void *dev_instance); 233 static int sis900_close(struct net_device *net_dev); 234 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd); 235 static u16 sis900_mcast_bitnr(u8 *addr, u8 revision); 236 static void set_rx_mode(struct net_device *net_dev); 237 static void sis900_reset(struct net_device *net_dev); 238 static void sis630_set_eq(struct net_device *net_dev, u8 revision); 239 static int sis900_set_config(struct net_device *dev, struct ifmap *map); 240 static u16 sis900_default_phy(struct net_device * net_dev); 241 static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy); 242 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr); 243 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr); 244 static void sis900_set_mode(struct sis900_private *, int speed, int duplex); 245 static const struct ethtool_ops sis900_ethtool_ops; 246 247 /** 248 * sis900_get_mac_addr - Get MAC address for stand alone SiS900 model 249 * @pci_dev: the sis900 pci device 250 * @net_dev: the net device to get address for 251 * 252 * Older SiS900 and friends, use EEPROM to store MAC address. 253 * MAC address is read from read_eeprom() into @net_dev->dev_addr. 254 */ 255 256 static int sis900_get_mac_addr(struct pci_dev *pci_dev, 257 struct net_device *net_dev) 258 { 259 struct sis900_private *sis_priv = netdev_priv(net_dev); 260 void __iomem *ioaddr = sis_priv->ioaddr; 261 u16 signature; 262 int i; 263 264 /* check to see if we have sane EEPROM */ 265 signature = (u16) read_eeprom(ioaddr, EEPROMSignature); 266 if (signature == 0xffff || signature == 0x0000) { 267 printk (KERN_WARNING "%s: Error EEPROM read %x\n", 268 pci_name(pci_dev), signature); 269 return 0; 270 } 271 272 /* get MAC address from EEPROM */ 273 for (i = 0; i < 3; i++) 274 ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr); 275 276 return 1; 277 } 278 279 /** 280 * sis630e_get_mac_addr - Get MAC address for SiS630E model 281 * @pci_dev: the sis900 pci device 282 * @net_dev: the net device to get address for 283 * 284 * SiS630E model, use APC CMOS RAM to store MAC address. 285 * APC CMOS RAM is accessed through ISA bridge. 286 * MAC address is read into @net_dev->dev_addr. 287 */ 288 289 static int sis630e_get_mac_addr(struct pci_dev *pci_dev, 290 struct net_device *net_dev) 291 { 292 struct pci_dev *isa_bridge = NULL; 293 u8 reg; 294 int i; 295 296 isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge); 297 if (!isa_bridge) 298 isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge); 299 if (!isa_bridge) { 300 printk(KERN_WARNING "%s: Can not find ISA bridge\n", 301 pci_name(pci_dev)); 302 return 0; 303 } 304 pci_read_config_byte(isa_bridge, 0x48, ®); 305 pci_write_config_byte(isa_bridge, 0x48, reg | 0x40); 306 307 for (i = 0; i < 6; i++) { 308 outb(0x09 + i, 0x70); 309 ((u8 *)(net_dev->dev_addr))[i] = inb(0x71); 310 } 311 312 pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40); 313 pci_dev_put(isa_bridge); 314 315 return 1; 316 } 317 318 319 /** 320 * sis635_get_mac_addr - Get MAC address for SIS635 model 321 * @pci_dev: the sis900 pci device 322 * @net_dev: the net device to get address for 323 * 324 * SiS635 model, set MAC Reload Bit to load Mac address from APC 325 * to rfdr. rfdr is accessed through rfcr. MAC address is read into 326 * @net_dev->dev_addr. 327 */ 328 329 static int sis635_get_mac_addr(struct pci_dev *pci_dev, 330 struct net_device *net_dev) 331 { 332 struct sis900_private *sis_priv = netdev_priv(net_dev); 333 void __iomem *ioaddr = sis_priv->ioaddr; 334 u32 rfcrSave; 335 u32 i; 336 337 rfcrSave = sr32(rfcr); 338 339 sw32(cr, rfcrSave | RELOAD); 340 sw32(cr, 0); 341 342 /* disable packet filtering before setting filter */ 343 sw32(rfcr, rfcrSave & ~RFEN); 344 345 /* load MAC addr to filter data register */ 346 for (i = 0 ; i < 3 ; i++) { 347 sw32(rfcr, (i << RFADDR_shift)); 348 *( ((u16 *)net_dev->dev_addr) + i) = sr16(rfdr); 349 } 350 351 /* enable packet filtering */ 352 sw32(rfcr, rfcrSave | RFEN); 353 354 return 1; 355 } 356 357 /** 358 * sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model 359 * @pci_dev: the sis900 pci device 360 * @net_dev: the net device to get address for 361 * 362 * SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM 363 * is shared by 364 * LAN and 1394. When accessing EEPROM, send EEREQ signal to hardware first 365 * and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be accessed 366 * by LAN, otherwise it is not. After MAC address is read from EEPROM, send 367 * EEDONE signal to refuse EEPROM access by LAN. 368 * The EEPROM map of SiS962 or SiS963 is different to SiS900. 369 * The signature field in SiS962 or SiS963 spec is meaningless. 370 * MAC address is read into @net_dev->dev_addr. 371 */ 372 373 static int sis96x_get_mac_addr(struct pci_dev *pci_dev, 374 struct net_device *net_dev) 375 { 376 struct sis900_private *sis_priv = netdev_priv(net_dev); 377 void __iomem *ioaddr = sis_priv->ioaddr; 378 int wait, rc = 0; 379 380 sw32(mear, EEREQ); 381 for (wait = 0; wait < 2000; wait++) { 382 if (sr32(mear) & EEGNT) { 383 u16 *mac = (u16 *)net_dev->dev_addr; 384 int i; 385 386 /* get MAC address from EEPROM */ 387 for (i = 0; i < 3; i++) 388 mac[i] = read_eeprom(ioaddr, i + EEPROMMACAddr); 389 390 rc = 1; 391 break; 392 } 393 udelay(1); 394 } 395 sw32(mear, EEDONE); 396 return rc; 397 } 398 399 static const struct net_device_ops sis900_netdev_ops = { 400 .ndo_open = sis900_open, 401 .ndo_stop = sis900_close, 402 .ndo_start_xmit = sis900_start_xmit, 403 .ndo_set_config = sis900_set_config, 404 .ndo_set_rx_mode = set_rx_mode, 405 .ndo_validate_addr = eth_validate_addr, 406 .ndo_set_mac_address = eth_mac_addr, 407 .ndo_do_ioctl = mii_ioctl, 408 .ndo_tx_timeout = sis900_tx_timeout, 409 #ifdef CONFIG_NET_POLL_CONTROLLER 410 .ndo_poll_controller = sis900_poll, 411 #endif 412 }; 413 414 /** 415 * sis900_probe - Probe for sis900 device 416 * @pci_dev: the sis900 pci device 417 * @pci_id: the pci device ID 418 * 419 * Check and probe sis900 net device for @pci_dev. 420 * Get mac address according to the chip revision, 421 * and assign SiS900-specific entries in the device structure. 422 * ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc. 423 */ 424 425 static int sis900_probe(struct pci_dev *pci_dev, 426 const struct pci_device_id *pci_id) 427 { 428 struct sis900_private *sis_priv; 429 struct net_device *net_dev; 430 struct pci_dev *dev; 431 dma_addr_t ring_dma; 432 void *ring_space; 433 void __iomem *ioaddr; 434 int i, ret; 435 const char *card_name = card_names[pci_id->driver_data]; 436 const char *dev_name = pci_name(pci_dev); 437 438 /* when built into the kernel, we only print version if device is found */ 439 #ifndef MODULE 440 static int printed_version; 441 if (!printed_version++) 442 printk(version); 443 #endif 444 445 /* setup various bits in PCI command register */ 446 ret = pci_enable_device(pci_dev); 447 if(ret) return ret; 448 449 i = dma_set_mask(&pci_dev->dev, DMA_BIT_MASK(32)); 450 if(i){ 451 printk(KERN_ERR "sis900.c: architecture does not support " 452 "32bit PCI busmaster DMA\n"); 453 return i; 454 } 455 456 pci_set_master(pci_dev); 457 458 net_dev = alloc_etherdev(sizeof(struct sis900_private)); 459 if (!net_dev) 460 return -ENOMEM; 461 SET_NETDEV_DEV(net_dev, &pci_dev->dev); 462 463 /* We do a request_region() to register /proc/ioports info. */ 464 ret = pci_request_regions(pci_dev, "sis900"); 465 if (ret) 466 goto err_out; 467 468 /* IO region. */ 469 ioaddr = pci_iomap(pci_dev, 0, 0); 470 if (!ioaddr) { 471 ret = -ENOMEM; 472 goto err_out_cleardev; 473 } 474 475 sis_priv = netdev_priv(net_dev); 476 sis_priv->ioaddr = ioaddr; 477 sis_priv->pci_dev = pci_dev; 478 spin_lock_init(&sis_priv->lock); 479 480 sis_priv->eeprom_size = 24; 481 482 pci_set_drvdata(pci_dev, net_dev); 483 484 ring_space = dma_alloc_coherent(&pci_dev->dev, TX_TOTAL_SIZE, 485 &ring_dma, GFP_KERNEL); 486 if (!ring_space) { 487 ret = -ENOMEM; 488 goto err_out_unmap; 489 } 490 sis_priv->tx_ring = ring_space; 491 sis_priv->tx_ring_dma = ring_dma; 492 493 ring_space = dma_alloc_coherent(&pci_dev->dev, RX_TOTAL_SIZE, 494 &ring_dma, GFP_KERNEL); 495 if (!ring_space) { 496 ret = -ENOMEM; 497 goto err_unmap_tx; 498 } 499 sis_priv->rx_ring = ring_space; 500 sis_priv->rx_ring_dma = ring_dma; 501 502 /* The SiS900-specific entries in the device structure. */ 503 net_dev->netdev_ops = &sis900_netdev_ops; 504 net_dev->watchdog_timeo = TX_TIMEOUT; 505 net_dev->ethtool_ops = &sis900_ethtool_ops; 506 507 if (sis900_debug > 0) 508 sis_priv->msg_enable = sis900_debug; 509 else 510 sis_priv->msg_enable = SIS900_DEF_MSG; 511 512 sis_priv->mii_info.dev = net_dev; 513 sis_priv->mii_info.mdio_read = mdio_read; 514 sis_priv->mii_info.mdio_write = mdio_write; 515 sis_priv->mii_info.phy_id_mask = 0x1f; 516 sis_priv->mii_info.reg_num_mask = 0x1f; 517 518 /* Get Mac address according to the chip revision */ 519 sis_priv->chipset_rev = pci_dev->revision; 520 if(netif_msg_probe(sis_priv)) 521 printk(KERN_DEBUG "%s: detected revision %2.2x, " 522 "trying to get MAC address...\n", 523 dev_name, sis_priv->chipset_rev); 524 525 ret = 0; 526 if (sis_priv->chipset_rev == SIS630E_900_REV) 527 ret = sis630e_get_mac_addr(pci_dev, net_dev); 528 else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) ) 529 ret = sis635_get_mac_addr(pci_dev, net_dev); 530 else if (sis_priv->chipset_rev == SIS96x_900_REV) 531 ret = sis96x_get_mac_addr(pci_dev, net_dev); 532 else 533 ret = sis900_get_mac_addr(pci_dev, net_dev); 534 535 if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) { 536 eth_hw_addr_random(net_dev); 537 printk(KERN_WARNING "%s: Unreadable or invalid MAC address," 538 "using random generated one\n", dev_name); 539 } 540 541 /* 630ET : set the mii access mode as software-mode */ 542 if (sis_priv->chipset_rev == SIS630ET_900_REV) 543 sw32(cr, ACCESSMODE | sr32(cr)); 544 545 /* probe for mii transceiver */ 546 if (sis900_mii_probe(net_dev) == 0) { 547 printk(KERN_WARNING "%s: Error probing MII device.\n", 548 dev_name); 549 ret = -ENODEV; 550 goto err_unmap_rx; 551 } 552 553 /* save our host bridge revision */ 554 dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL); 555 if (dev) { 556 sis_priv->host_bridge_rev = dev->revision; 557 pci_dev_put(dev); 558 } 559 560 ret = register_netdev(net_dev); 561 if (ret) 562 goto err_unmap_rx; 563 564 /* print some information about our NIC */ 565 printk(KERN_INFO "%s: %s at 0x%p, IRQ %d, %pM\n", 566 net_dev->name, card_name, ioaddr, pci_dev->irq, 567 net_dev->dev_addr); 568 569 /* Detect Wake on Lan support */ 570 ret = (sr32(CFGPMC) & PMESP) >> 27; 571 if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0) 572 printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name); 573 574 return 0; 575 576 err_unmap_rx: 577 dma_free_coherent(&pci_dev->dev, RX_TOTAL_SIZE, sis_priv->rx_ring, 578 sis_priv->rx_ring_dma); 579 err_unmap_tx: 580 dma_free_coherent(&pci_dev->dev, TX_TOTAL_SIZE, sis_priv->tx_ring, 581 sis_priv->tx_ring_dma); 582 err_out_unmap: 583 pci_iounmap(pci_dev, ioaddr); 584 err_out_cleardev: 585 pci_release_regions(pci_dev); 586 err_out: 587 free_netdev(net_dev); 588 return ret; 589 } 590 591 /** 592 * sis900_mii_probe - Probe MII PHY for sis900 593 * @net_dev: the net device to probe for 594 * 595 * Search for total of 32 possible mii phy addresses. 596 * Identify and set current phy if found one, 597 * return error if it failed to found. 598 */ 599 600 static int sis900_mii_probe(struct net_device *net_dev) 601 { 602 struct sis900_private *sis_priv = netdev_priv(net_dev); 603 const char *dev_name = pci_name(sis_priv->pci_dev); 604 u16 poll_bit = MII_STAT_LINK, status = 0; 605 unsigned long timeout = jiffies + 5 * HZ; 606 int phy_addr; 607 608 sis_priv->mii = NULL; 609 610 /* search for total of 32 possible mii phy addresses */ 611 for (phy_addr = 0; phy_addr < 32; phy_addr++) { 612 struct mii_phy * mii_phy = NULL; 613 u16 mii_status; 614 int i; 615 616 mii_phy = NULL; 617 for(i = 0; i < 2; i++) 618 mii_status = mdio_read(net_dev, phy_addr, MII_STATUS); 619 620 if (mii_status == 0xffff || mii_status == 0x0000) { 621 if (netif_msg_probe(sis_priv)) 622 printk(KERN_DEBUG "%s: MII at address %d" 623 " not accessible\n", 624 dev_name, phy_addr); 625 continue; 626 } 627 628 if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) { 629 mii_phy = sis_priv->first_mii; 630 while (mii_phy) { 631 struct mii_phy *phy; 632 phy = mii_phy; 633 mii_phy = mii_phy->next; 634 kfree(phy); 635 } 636 return 0; 637 } 638 639 mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0); 640 mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1); 641 mii_phy->phy_addr = phy_addr; 642 mii_phy->status = mii_status; 643 mii_phy->next = sis_priv->mii; 644 sis_priv->mii = mii_phy; 645 sis_priv->first_mii = mii_phy; 646 647 for (i = 0; mii_chip_table[i].phy_id1; i++) 648 if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) && 649 ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){ 650 mii_phy->phy_types = mii_chip_table[i].phy_types; 651 if (mii_chip_table[i].phy_types == MIX) 652 mii_phy->phy_types = 653 (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME; 654 printk(KERN_INFO "%s: %s transceiver found " 655 "at address %d.\n", 656 dev_name, 657 mii_chip_table[i].name, 658 phy_addr); 659 break; 660 } 661 662 if( !mii_chip_table[i].phy_id1 ) { 663 printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n", 664 dev_name, phy_addr); 665 mii_phy->phy_types = UNKNOWN; 666 } 667 } 668 669 if (sis_priv->mii == NULL) { 670 printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name); 671 return 0; 672 } 673 674 /* select default PHY for mac */ 675 sis_priv->mii = NULL; 676 sis900_default_phy( net_dev ); 677 678 /* Reset phy if default phy is internal sis900 */ 679 if ((sis_priv->mii->phy_id0 == 0x001D) && 680 ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000)) 681 status = sis900_reset_phy(net_dev, sis_priv->cur_phy); 682 683 /* workaround for ICS1893 PHY */ 684 if ((sis_priv->mii->phy_id0 == 0x0015) && 685 ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440)) 686 mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200); 687 688 if(status & MII_STAT_LINK){ 689 while (poll_bit) { 690 yield(); 691 692 poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit); 693 if (time_after_eq(jiffies, timeout)) { 694 printk(KERN_WARNING "%s: reset phy and link down now\n", 695 dev_name); 696 return -ETIME; 697 } 698 } 699 } 700 701 if (sis_priv->chipset_rev == SIS630E_900_REV) { 702 /* SiS 630E has some bugs on default value of PHY registers */ 703 mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1); 704 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22); 705 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00); 706 mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0); 707 //mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000); 708 } 709 710 if (sis_priv->mii->status & MII_STAT_LINK) 711 netif_carrier_on(net_dev); 712 else 713 netif_carrier_off(net_dev); 714 715 return 1; 716 } 717 718 /** 719 * sis900_default_phy - Select default PHY for sis900 mac. 720 * @net_dev: the net device to probe for 721 * 722 * Select first detected PHY with link as default. 723 * If no one is link on, select PHY whose types is HOME as default. 724 * If HOME doesn't exist, select LAN. 725 */ 726 727 static u16 sis900_default_phy(struct net_device * net_dev) 728 { 729 struct sis900_private *sis_priv = netdev_priv(net_dev); 730 struct mii_phy *phy = NULL, *phy_home = NULL, 731 *default_phy = NULL, *phy_lan = NULL; 732 u16 status; 733 734 for (phy=sis_priv->first_mii; phy; phy=phy->next) { 735 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS); 736 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS); 737 738 /* Link ON & Not select default PHY & not ghost PHY */ 739 if ((status & MII_STAT_LINK) && !default_phy && 740 (phy->phy_types != UNKNOWN)) { 741 default_phy = phy; 742 } else { 743 status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL); 744 mdio_write(net_dev, phy->phy_addr, MII_CONTROL, 745 status | MII_CNTL_AUTO | MII_CNTL_ISOLATE); 746 if (phy->phy_types == HOME) 747 phy_home = phy; 748 else if(phy->phy_types == LAN) 749 phy_lan = phy; 750 } 751 } 752 753 if (!default_phy && phy_home) 754 default_phy = phy_home; 755 else if (!default_phy && phy_lan) 756 default_phy = phy_lan; 757 else if (!default_phy) 758 default_phy = sis_priv->first_mii; 759 760 if (sis_priv->mii != default_phy) { 761 sis_priv->mii = default_phy; 762 sis_priv->cur_phy = default_phy->phy_addr; 763 printk(KERN_INFO "%s: Using transceiver found at address %d as default\n", 764 pci_name(sis_priv->pci_dev), sis_priv->cur_phy); 765 } 766 767 sis_priv->mii_info.phy_id = sis_priv->cur_phy; 768 769 status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL); 770 status &= (~MII_CNTL_ISOLATE); 771 772 mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status); 773 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS); 774 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS); 775 776 return status; 777 } 778 779 780 /** 781 * sis900_set_capability - set the media capability of network adapter. 782 * @net_dev : the net device to probe for 783 * @phy : default PHY 784 * 785 * Set the media capability of network adapter according to 786 * mii status register. It's necessary before auto-negotiate. 787 */ 788 789 static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy) 790 { 791 u16 cap; 792 u16 status; 793 794 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS); 795 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS); 796 797 cap = MII_NWAY_CSMA_CD | 798 ((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) | 799 ((phy->status & MII_STAT_CAN_TX) ? MII_NWAY_TX:0) | 800 ((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)| 801 ((phy->status & MII_STAT_CAN_T) ? MII_NWAY_T:0); 802 803 mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap); 804 } 805 806 807 /* Delay between EEPROM clock transitions. */ 808 #define eeprom_delay() sr32(mear) 809 810 /** 811 * read_eeprom - Read Serial EEPROM 812 * @ioaddr: base i/o address 813 * @location: the EEPROM location to read 814 * 815 * Read Serial EEPROM through EEPROM Access Register. 816 * Note that location is in word (16 bits) unit 817 */ 818 819 static u16 read_eeprom(void __iomem *ioaddr, int location) 820 { 821 u32 read_cmd = location | EEread; 822 int i; 823 u16 retval = 0; 824 825 sw32(mear, 0); 826 eeprom_delay(); 827 sw32(mear, EECS); 828 eeprom_delay(); 829 830 /* Shift the read command (9) bits out. */ 831 for (i = 8; i >= 0; i--) { 832 u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS; 833 834 sw32(mear, dataval); 835 eeprom_delay(); 836 sw32(mear, dataval | EECLK); 837 eeprom_delay(); 838 } 839 sw32(mear, EECS); 840 eeprom_delay(); 841 842 /* read the 16-bits data in */ 843 for (i = 16; i > 0; i--) { 844 sw32(mear, EECS); 845 eeprom_delay(); 846 sw32(mear, EECS | EECLK); 847 eeprom_delay(); 848 retval = (retval << 1) | ((sr32(mear) & EEDO) ? 1 : 0); 849 eeprom_delay(); 850 } 851 852 /* Terminate the EEPROM access. */ 853 sw32(mear, 0); 854 eeprom_delay(); 855 856 return retval; 857 } 858 859 /* Read and write the MII management registers using software-generated 860 serial MDIO protocol. Note that the command bits and data bits are 861 send out separately */ 862 #define mdio_delay() sr32(mear) 863 864 static void mdio_idle(struct sis900_private *sp) 865 { 866 void __iomem *ioaddr = sp->ioaddr; 867 868 sw32(mear, MDIO | MDDIR); 869 mdio_delay(); 870 sw32(mear, MDIO | MDDIR | MDC); 871 } 872 873 /* Synchronize the MII management interface by shifting 32 one bits out. */ 874 static void mdio_reset(struct sis900_private *sp) 875 { 876 void __iomem *ioaddr = sp->ioaddr; 877 int i; 878 879 for (i = 31; i >= 0; i--) { 880 sw32(mear, MDDIR | MDIO); 881 mdio_delay(); 882 sw32(mear, MDDIR | MDIO | MDC); 883 mdio_delay(); 884 } 885 } 886 887 /** 888 * mdio_read - read MII PHY register 889 * @net_dev: the net device to read 890 * @phy_id: the phy address to read 891 * @location: the phy register id to read 892 * 893 * Read MII registers through MDIO and MDC 894 * using MDIO management frame structure and protocol(defined by ISO/IEC). 895 * Please see SiS7014 or ICS spec 896 */ 897 898 static int mdio_read(struct net_device *net_dev, int phy_id, int location) 899 { 900 int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift); 901 struct sis900_private *sp = netdev_priv(net_dev); 902 void __iomem *ioaddr = sp->ioaddr; 903 u16 retval = 0; 904 int i; 905 906 mdio_reset(sp); 907 mdio_idle(sp); 908 909 for (i = 15; i >= 0; i--) { 910 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR; 911 912 sw32(mear, dataval); 913 mdio_delay(); 914 sw32(mear, dataval | MDC); 915 mdio_delay(); 916 } 917 918 /* Read the 16 data bits. */ 919 for (i = 16; i > 0; i--) { 920 sw32(mear, 0); 921 mdio_delay(); 922 retval = (retval << 1) | ((sr32(mear) & MDIO) ? 1 : 0); 923 sw32(mear, MDC); 924 mdio_delay(); 925 } 926 sw32(mear, 0x00); 927 928 return retval; 929 } 930 931 /** 932 * mdio_write - write MII PHY register 933 * @net_dev: the net device to write 934 * @phy_id: the phy address to write 935 * @location: the phy register id to write 936 * @value: the register value to write with 937 * 938 * Write MII registers with @value through MDIO and MDC 939 * using MDIO management frame structure and protocol(defined by ISO/IEC) 940 * please see SiS7014 or ICS spec 941 */ 942 943 static void mdio_write(struct net_device *net_dev, int phy_id, int location, 944 int value) 945 { 946 int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift); 947 struct sis900_private *sp = netdev_priv(net_dev); 948 void __iomem *ioaddr = sp->ioaddr; 949 int i; 950 951 mdio_reset(sp); 952 mdio_idle(sp); 953 954 /* Shift the command bits out. */ 955 for (i = 15; i >= 0; i--) { 956 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR; 957 958 sw8(mear, dataval); 959 mdio_delay(); 960 sw8(mear, dataval | MDC); 961 mdio_delay(); 962 } 963 mdio_delay(); 964 965 /* Shift the value bits out. */ 966 for (i = 15; i >= 0; i--) { 967 int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR; 968 969 sw32(mear, dataval); 970 mdio_delay(); 971 sw32(mear, dataval | MDC); 972 mdio_delay(); 973 } 974 mdio_delay(); 975 976 /* Clear out extra bits. */ 977 for (i = 2; i > 0; i--) { 978 sw8(mear, 0); 979 mdio_delay(); 980 sw8(mear, MDC); 981 mdio_delay(); 982 } 983 sw32(mear, 0x00); 984 } 985 986 987 /** 988 * sis900_reset_phy - reset sis900 mii phy. 989 * @net_dev: the net device to write 990 * @phy_addr: default phy address 991 * 992 * Some specific phy can't work properly without reset. 993 * This function will be called during initialization and 994 * link status change from ON to DOWN. 995 */ 996 997 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr) 998 { 999 int i; 1000 u16 status; 1001 1002 for (i = 0; i < 2; i++) 1003 status = mdio_read(net_dev, phy_addr, MII_STATUS); 1004 1005 mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET ); 1006 1007 return status; 1008 } 1009 1010 #ifdef CONFIG_NET_POLL_CONTROLLER 1011 /* 1012 * Polling 'interrupt' - used by things like netconsole to send skbs 1013 * without having to re-enable interrupts. It's not called while 1014 * the interrupt routine is executing. 1015 */ 1016 static void sis900_poll(struct net_device *dev) 1017 { 1018 struct sis900_private *sp = netdev_priv(dev); 1019 const int irq = sp->pci_dev->irq; 1020 1021 disable_irq(irq); 1022 sis900_interrupt(irq, dev); 1023 enable_irq(irq); 1024 } 1025 #endif 1026 1027 /** 1028 * sis900_open - open sis900 device 1029 * @net_dev: the net device to open 1030 * 1031 * Do some initialization and start net interface. 1032 * enable interrupts and set sis900 timer. 1033 */ 1034 1035 static int 1036 sis900_open(struct net_device *net_dev) 1037 { 1038 struct sis900_private *sis_priv = netdev_priv(net_dev); 1039 void __iomem *ioaddr = sis_priv->ioaddr; 1040 int ret; 1041 1042 /* Soft reset the chip. */ 1043 sis900_reset(net_dev); 1044 1045 /* Equalizer workaround Rule */ 1046 sis630_set_eq(net_dev, sis_priv->chipset_rev); 1047 1048 ret = request_irq(sis_priv->pci_dev->irq, sis900_interrupt, IRQF_SHARED, 1049 net_dev->name, net_dev); 1050 if (ret) 1051 return ret; 1052 1053 sis900_init_rxfilter(net_dev); 1054 1055 sis900_init_tx_ring(net_dev); 1056 sis900_init_rx_ring(net_dev); 1057 1058 set_rx_mode(net_dev); 1059 1060 netif_start_queue(net_dev); 1061 1062 /* Workaround for EDB */ 1063 sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED); 1064 1065 /* Enable all known interrupts by setting the interrupt mask. */ 1066 sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxDESC); 1067 sw32(cr, RxENA | sr32(cr)); 1068 sw32(ier, IE); 1069 1070 sis900_check_mode(net_dev, sis_priv->mii); 1071 1072 /* Set the timer to switch to check for link beat and perhaps switch 1073 to an alternate media type. */ 1074 timer_setup(&sis_priv->timer, sis900_timer, 0); 1075 sis_priv->timer.expires = jiffies + HZ; 1076 add_timer(&sis_priv->timer); 1077 1078 return 0; 1079 } 1080 1081 /** 1082 * sis900_init_rxfilter - Initialize the Rx filter 1083 * @net_dev: the net device to initialize for 1084 * 1085 * Set receive filter address to our MAC address 1086 * and enable packet filtering. 1087 */ 1088 1089 static void 1090 sis900_init_rxfilter (struct net_device * net_dev) 1091 { 1092 struct sis900_private *sis_priv = netdev_priv(net_dev); 1093 void __iomem *ioaddr = sis_priv->ioaddr; 1094 u32 rfcrSave; 1095 u32 i; 1096 1097 rfcrSave = sr32(rfcr); 1098 1099 /* disable packet filtering before setting filter */ 1100 sw32(rfcr, rfcrSave & ~RFEN); 1101 1102 /* load MAC addr to filter data register */ 1103 for (i = 0 ; i < 3 ; i++) { 1104 u32 w = (u32) *((u16 *)(net_dev->dev_addr)+i); 1105 1106 sw32(rfcr, i << RFADDR_shift); 1107 sw32(rfdr, w); 1108 1109 if (netif_msg_hw(sis_priv)) { 1110 printk(KERN_DEBUG "%s: Receive Filter Address[%d]=%x\n", 1111 net_dev->name, i, sr32(rfdr)); 1112 } 1113 } 1114 1115 /* enable packet filtering */ 1116 sw32(rfcr, rfcrSave | RFEN); 1117 } 1118 1119 /** 1120 * sis900_init_tx_ring - Initialize the Tx descriptor ring 1121 * @net_dev: the net device to initialize for 1122 * 1123 * Initialize the Tx descriptor ring, 1124 */ 1125 1126 static void 1127 sis900_init_tx_ring(struct net_device *net_dev) 1128 { 1129 struct sis900_private *sis_priv = netdev_priv(net_dev); 1130 void __iomem *ioaddr = sis_priv->ioaddr; 1131 int i; 1132 1133 sis_priv->tx_full = 0; 1134 sis_priv->dirty_tx = sis_priv->cur_tx = 0; 1135 1136 for (i = 0; i < NUM_TX_DESC; i++) { 1137 sis_priv->tx_skbuff[i] = NULL; 1138 1139 sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma + 1140 ((i+1)%NUM_TX_DESC)*sizeof(BufferDesc); 1141 sis_priv->tx_ring[i].cmdsts = 0; 1142 sis_priv->tx_ring[i].bufptr = 0; 1143 } 1144 1145 /* load Transmit Descriptor Register */ 1146 sw32(txdp, sis_priv->tx_ring_dma); 1147 if (netif_msg_hw(sis_priv)) 1148 printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n", 1149 net_dev->name, sr32(txdp)); 1150 } 1151 1152 /** 1153 * sis900_init_rx_ring - Initialize the Rx descriptor ring 1154 * @net_dev: the net device to initialize for 1155 * 1156 * Initialize the Rx descriptor ring, 1157 * and pre-allocate receive buffers (socket buffer) 1158 */ 1159 1160 static void 1161 sis900_init_rx_ring(struct net_device *net_dev) 1162 { 1163 struct sis900_private *sis_priv = netdev_priv(net_dev); 1164 void __iomem *ioaddr = sis_priv->ioaddr; 1165 int i; 1166 1167 sis_priv->cur_rx = 0; 1168 sis_priv->dirty_rx = 0; 1169 1170 /* init RX descriptor */ 1171 for (i = 0; i < NUM_RX_DESC; i++) { 1172 sis_priv->rx_skbuff[i] = NULL; 1173 1174 sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma + 1175 ((i+1)%NUM_RX_DESC)*sizeof(BufferDesc); 1176 sis_priv->rx_ring[i].cmdsts = 0; 1177 sis_priv->rx_ring[i].bufptr = 0; 1178 } 1179 1180 /* allocate sock buffers */ 1181 for (i = 0; i < NUM_RX_DESC; i++) { 1182 struct sk_buff *skb; 1183 1184 if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) { 1185 /* not enough memory for skbuff, this makes a "hole" 1186 on the buffer ring, it is not clear how the 1187 hardware will react to this kind of degenerated 1188 buffer */ 1189 break; 1190 } 1191 sis_priv->rx_skbuff[i] = skb; 1192 sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE; 1193 sis_priv->rx_ring[i].bufptr = dma_map_single(&sis_priv->pci_dev->dev, 1194 skb->data, 1195 RX_BUF_SIZE, 1196 DMA_FROM_DEVICE); 1197 if (unlikely(dma_mapping_error(&sis_priv->pci_dev->dev, 1198 sis_priv->rx_ring[i].bufptr))) { 1199 dev_kfree_skb(skb); 1200 sis_priv->rx_skbuff[i] = NULL; 1201 break; 1202 } 1203 } 1204 sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC); 1205 1206 /* load Receive Descriptor Register */ 1207 sw32(rxdp, sis_priv->rx_ring_dma); 1208 if (netif_msg_hw(sis_priv)) 1209 printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n", 1210 net_dev->name, sr32(rxdp)); 1211 } 1212 1213 /** 1214 * sis630_set_eq - set phy equalizer value for 630 LAN 1215 * @net_dev: the net device to set equalizer value 1216 * @revision: 630 LAN revision number 1217 * 1218 * 630E equalizer workaround rule(Cyrus Huang 08/15) 1219 * PHY register 14h(Test) 1220 * Bit 14: 0 -- Automatically detect (default) 1221 * 1 -- Manually set Equalizer filter 1222 * Bit 13: 0 -- (Default) 1223 * 1 -- Speed up convergence of equalizer setting 1224 * Bit 9 : 0 -- (Default) 1225 * 1 -- Disable Baseline Wander 1226 * Bit 3~7 -- Equalizer filter setting 1227 * Link ON: Set Bit 9, 13 to 1, Bit 14 to 0 1228 * Then calculate equalizer value 1229 * Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0 1230 * Link Off:Set Bit 13 to 1, Bit 14 to 0 1231 * Calculate Equalizer value: 1232 * When Link is ON and Bit 14 is 0, SIS900PHY will auto-detect proper equalizer value. 1233 * When the equalizer is stable, this value is not a fixed value. It will be within 1234 * a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9) 1235 * 0 <= max <= 4 --> set equalizer to max 1236 * 5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min 1237 * max >= 15 --> set equalizer to max+5 or set equalizer to max+6 if max == min 1238 */ 1239 1240 static void sis630_set_eq(struct net_device *net_dev, u8 revision) 1241 { 1242 struct sis900_private *sis_priv = netdev_priv(net_dev); 1243 u16 reg14h, eq_value=0, max_value=0, min_value=0; 1244 int i, maxcount=10; 1245 1246 if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV || 1247 revision == SIS630A_900_REV || revision == SIS630ET_900_REV) ) 1248 return; 1249 1250 if (netif_carrier_ok(net_dev)) { 1251 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV); 1252 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, 1253 (0x2200 | reg14h) & 0xBFFF); 1254 for (i=0; i < maxcount; i++) { 1255 eq_value = (0x00F8 & mdio_read(net_dev, 1256 sis_priv->cur_phy, MII_RESV)) >> 3; 1257 if (i == 0) 1258 max_value=min_value=eq_value; 1259 max_value = (eq_value > max_value) ? 1260 eq_value : max_value; 1261 min_value = (eq_value < min_value) ? 1262 eq_value : min_value; 1263 } 1264 /* 630E rule to determine the equalizer value */ 1265 if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV || 1266 revision == SIS630ET_900_REV) { 1267 if (max_value < 5) 1268 eq_value = max_value; 1269 else if (max_value >= 5 && max_value < 15) 1270 eq_value = (max_value == min_value) ? 1271 max_value+2 : max_value+1; 1272 else if (max_value >= 15) 1273 eq_value=(max_value == min_value) ? 1274 max_value+6 : max_value+5; 1275 } 1276 /* 630B0&B1 rule to determine the equalizer value */ 1277 if (revision == SIS630A_900_REV && 1278 (sis_priv->host_bridge_rev == SIS630B0 || 1279 sis_priv->host_bridge_rev == SIS630B1)) { 1280 if (max_value == 0) 1281 eq_value = 3; 1282 else 1283 eq_value = (max_value + min_value + 1)/2; 1284 } 1285 /* write equalizer value and setting */ 1286 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV); 1287 reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8); 1288 reg14h = (reg14h | 0x6000) & 0xFDFF; 1289 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h); 1290 } else { 1291 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV); 1292 if (revision == SIS630A_900_REV && 1293 (sis_priv->host_bridge_rev == SIS630B0 || 1294 sis_priv->host_bridge_rev == SIS630B1)) 1295 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, 1296 (reg14h | 0x2200) & 0xBFFF); 1297 else 1298 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, 1299 (reg14h | 0x2000) & 0xBFFF); 1300 } 1301 } 1302 1303 /** 1304 * sis900_timer - sis900 timer routine 1305 * @data: pointer to sis900 net device 1306 * 1307 * On each timer ticks we check two things, 1308 * link status (ON/OFF) and link mode (10/100/Full/Half) 1309 */ 1310 1311 static void sis900_timer(struct timer_list *t) 1312 { 1313 struct sis900_private *sis_priv = from_timer(sis_priv, t, timer); 1314 struct net_device *net_dev = sis_priv->mii_info.dev; 1315 struct mii_phy *mii_phy = sis_priv->mii; 1316 static const int next_tick = 5*HZ; 1317 int speed = 0, duplex = 0; 1318 u16 status; 1319 1320 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS); 1321 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS); 1322 1323 /* Link OFF -> ON */ 1324 if (!netif_carrier_ok(net_dev)) { 1325 LookForLink: 1326 /* Search for new PHY */ 1327 status = sis900_default_phy(net_dev); 1328 mii_phy = sis_priv->mii; 1329 1330 if (status & MII_STAT_LINK) { 1331 WARN_ON(!(status & MII_STAT_AUTO_DONE)); 1332 1333 sis900_read_mode(net_dev, &speed, &duplex); 1334 if (duplex) { 1335 sis900_set_mode(sis_priv, speed, duplex); 1336 sis630_set_eq(net_dev, sis_priv->chipset_rev); 1337 netif_carrier_on(net_dev); 1338 } 1339 } 1340 } else { 1341 /* Link ON -> OFF */ 1342 if (!(status & MII_STAT_LINK)){ 1343 netif_carrier_off(net_dev); 1344 if(netif_msg_link(sis_priv)) 1345 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name); 1346 1347 /* Change mode issue */ 1348 if ((mii_phy->phy_id0 == 0x001D) && 1349 ((mii_phy->phy_id1 & 0xFFF0) == 0x8000)) 1350 sis900_reset_phy(net_dev, sis_priv->cur_phy); 1351 1352 sis630_set_eq(net_dev, sis_priv->chipset_rev); 1353 1354 goto LookForLink; 1355 } 1356 } 1357 1358 sis_priv->timer.expires = jiffies + next_tick; 1359 add_timer(&sis_priv->timer); 1360 } 1361 1362 /** 1363 * sis900_check_mode - check the media mode for sis900 1364 * @net_dev: the net device to be checked 1365 * @mii_phy: the mii phy 1366 * 1367 * Older driver gets the media mode from mii status output 1368 * register. Now we set our media capability and auto-negotiate 1369 * to get the upper bound of speed and duplex between two ends. 1370 * If the types of mii phy is HOME, it doesn't need to auto-negotiate 1371 * and autong_complete should be set to 1. 1372 */ 1373 1374 static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy) 1375 { 1376 struct sis900_private *sis_priv = netdev_priv(net_dev); 1377 void __iomem *ioaddr = sis_priv->ioaddr; 1378 int speed, duplex; 1379 1380 if (mii_phy->phy_types == LAN) { 1381 sw32(cfg, ~EXD & sr32(cfg)); 1382 sis900_set_capability(net_dev , mii_phy); 1383 sis900_auto_negotiate(net_dev, sis_priv->cur_phy); 1384 } else { 1385 sw32(cfg, EXD | sr32(cfg)); 1386 speed = HW_SPEED_HOME; 1387 duplex = FDX_CAPABLE_HALF_SELECTED; 1388 sis900_set_mode(sis_priv, speed, duplex); 1389 sis_priv->autong_complete = 1; 1390 } 1391 } 1392 1393 /** 1394 * sis900_set_mode - Set the media mode of mac register. 1395 * @sp: the device private data 1396 * @speed : the transmit speed to be determined 1397 * @duplex: the duplex mode to be determined 1398 * 1399 * Set the media mode of mac register txcfg/rxcfg according to 1400 * speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB 1401 * bus is used instead of PCI bus. When this bit is set 1, the 1402 * Max DMA Burst Size for TX/RX DMA should be no larger than 16 1403 * double words. 1404 */ 1405 1406 static void sis900_set_mode(struct sis900_private *sp, int speed, int duplex) 1407 { 1408 void __iomem *ioaddr = sp->ioaddr; 1409 u32 tx_flags = 0, rx_flags = 0; 1410 1411 if (sr32( cfg) & EDB_MASTER_EN) { 1412 tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) | 1413 (TX_FILL_THRESH << TxFILLT_shift); 1414 rx_flags = DMA_BURST_64 << RxMXDMA_shift; 1415 } else { 1416 tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) | 1417 (TX_FILL_THRESH << TxFILLT_shift); 1418 rx_flags = DMA_BURST_512 << RxMXDMA_shift; 1419 } 1420 1421 if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) { 1422 rx_flags |= (RxDRNT_10 << RxDRNT_shift); 1423 tx_flags |= (TxDRNT_10 << TxDRNT_shift); 1424 } else { 1425 rx_flags |= (RxDRNT_100 << RxDRNT_shift); 1426 tx_flags |= (TxDRNT_100 << TxDRNT_shift); 1427 } 1428 1429 if (duplex == FDX_CAPABLE_FULL_SELECTED) { 1430 tx_flags |= (TxCSI | TxHBI); 1431 rx_flags |= RxATX; 1432 } 1433 1434 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1435 /* Can accept Jumbo packet */ 1436 rx_flags |= RxAJAB; 1437 #endif 1438 1439 sw32(txcfg, tx_flags); 1440 sw32(rxcfg, rx_flags); 1441 } 1442 1443 /** 1444 * sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit. 1445 * @net_dev: the net device to read mode for 1446 * @phy_addr: mii phy address 1447 * 1448 * If the adapter is link-on, set the auto-negotiate enable/reset bit. 1449 * autong_complete should be set to 0 when starting auto-negotiation. 1450 * autong_complete should be set to 1 if we didn't start auto-negotiation. 1451 * sis900_timer will wait for link on again if autong_complete = 0. 1452 */ 1453 1454 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr) 1455 { 1456 struct sis900_private *sis_priv = netdev_priv(net_dev); 1457 int i = 0; 1458 u32 status; 1459 1460 for (i = 0; i < 2; i++) 1461 status = mdio_read(net_dev, phy_addr, MII_STATUS); 1462 1463 if (!(status & MII_STAT_LINK)){ 1464 if(netif_msg_link(sis_priv)) 1465 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name); 1466 sis_priv->autong_complete = 1; 1467 netif_carrier_off(net_dev); 1468 return; 1469 } 1470 1471 /* (Re)start AutoNegotiate */ 1472 mdio_write(net_dev, phy_addr, MII_CONTROL, 1473 MII_CNTL_AUTO | MII_CNTL_RST_AUTO); 1474 sis_priv->autong_complete = 0; 1475 } 1476 1477 1478 /** 1479 * sis900_read_mode - read media mode for sis900 internal phy 1480 * @net_dev: the net device to read mode for 1481 * @speed : the transmit speed to be determined 1482 * @duplex : the duplex mode to be determined 1483 * 1484 * The capability of remote end will be put in mii register autorec 1485 * after auto-negotiation. Use AND operation to get the upper bound 1486 * of speed and duplex between two ends. 1487 */ 1488 1489 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex) 1490 { 1491 struct sis900_private *sis_priv = netdev_priv(net_dev); 1492 struct mii_phy *phy = sis_priv->mii; 1493 int phy_addr = sis_priv->cur_phy; 1494 u32 status; 1495 u16 autoadv, autorec; 1496 int i; 1497 1498 for (i = 0; i < 2; i++) 1499 status = mdio_read(net_dev, phy_addr, MII_STATUS); 1500 1501 if (!(status & MII_STAT_LINK)) 1502 return; 1503 1504 /* AutoNegotiate completed */ 1505 autoadv = mdio_read(net_dev, phy_addr, MII_ANADV); 1506 autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR); 1507 status = autoadv & autorec; 1508 1509 *speed = HW_SPEED_10_MBPS; 1510 *duplex = FDX_CAPABLE_HALF_SELECTED; 1511 1512 if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX)) 1513 *speed = HW_SPEED_100_MBPS; 1514 if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX)) 1515 *duplex = FDX_CAPABLE_FULL_SELECTED; 1516 1517 sis_priv->autong_complete = 1; 1518 1519 /* Workaround for Realtek RTL8201 PHY issue */ 1520 if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) { 1521 if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX) 1522 *duplex = FDX_CAPABLE_FULL_SELECTED; 1523 if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01) 1524 *speed = HW_SPEED_100_MBPS; 1525 } 1526 1527 if(netif_msg_link(sis_priv)) 1528 printk(KERN_INFO "%s: Media Link On %s %s-duplex\n", 1529 net_dev->name, 1530 *speed == HW_SPEED_100_MBPS ? 1531 "100mbps" : "10mbps", 1532 *duplex == FDX_CAPABLE_FULL_SELECTED ? 1533 "full" : "half"); 1534 } 1535 1536 /** 1537 * sis900_tx_timeout - sis900 transmit timeout routine 1538 * @net_dev: the net device to transmit 1539 * 1540 * print transmit timeout status 1541 * disable interrupts and do some tasks 1542 */ 1543 1544 static void sis900_tx_timeout(struct net_device *net_dev, unsigned int txqueue) 1545 { 1546 struct sis900_private *sis_priv = netdev_priv(net_dev); 1547 void __iomem *ioaddr = sis_priv->ioaddr; 1548 unsigned long flags; 1549 int i; 1550 1551 if (netif_msg_tx_err(sis_priv)) { 1552 printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n", 1553 net_dev->name, sr32(cr), sr32(isr)); 1554 } 1555 1556 /* Disable interrupts by clearing the interrupt mask. */ 1557 sw32(imr, 0x0000); 1558 1559 /* use spinlock to prevent interrupt handler accessing buffer ring */ 1560 spin_lock_irqsave(&sis_priv->lock, flags); 1561 1562 /* discard unsent packets */ 1563 sis_priv->dirty_tx = sis_priv->cur_tx = 0; 1564 for (i = 0; i < NUM_TX_DESC; i++) { 1565 struct sk_buff *skb = sis_priv->tx_skbuff[i]; 1566 1567 if (skb) { 1568 dma_unmap_single(&sis_priv->pci_dev->dev, 1569 sis_priv->tx_ring[i].bufptr, 1570 skb->len, DMA_TO_DEVICE); 1571 dev_kfree_skb_irq(skb); 1572 sis_priv->tx_skbuff[i] = NULL; 1573 sis_priv->tx_ring[i].cmdsts = 0; 1574 sis_priv->tx_ring[i].bufptr = 0; 1575 net_dev->stats.tx_dropped++; 1576 } 1577 } 1578 sis_priv->tx_full = 0; 1579 netif_wake_queue(net_dev); 1580 1581 spin_unlock_irqrestore(&sis_priv->lock, flags); 1582 1583 netif_trans_update(net_dev); /* prevent tx timeout */ 1584 1585 /* load Transmit Descriptor Register */ 1586 sw32(txdp, sis_priv->tx_ring_dma); 1587 1588 /* Enable all known interrupts by setting the interrupt mask. */ 1589 sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxDESC); 1590 } 1591 1592 /** 1593 * sis900_start_xmit - sis900 start transmit routine 1594 * @skb: socket buffer pointer to put the data being transmitted 1595 * @net_dev: the net device to transmit with 1596 * 1597 * Set the transmit buffer descriptor, 1598 * and write TxENA to enable transmit state machine. 1599 * tell upper layer if the buffer is full 1600 */ 1601 1602 static netdev_tx_t 1603 sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev) 1604 { 1605 struct sis900_private *sis_priv = netdev_priv(net_dev); 1606 void __iomem *ioaddr = sis_priv->ioaddr; 1607 unsigned int entry; 1608 unsigned long flags; 1609 unsigned int index_cur_tx, index_dirty_tx; 1610 unsigned int count_dirty_tx; 1611 1612 spin_lock_irqsave(&sis_priv->lock, flags); 1613 1614 /* Calculate the next Tx descriptor entry. */ 1615 entry = sis_priv->cur_tx % NUM_TX_DESC; 1616 sis_priv->tx_skbuff[entry] = skb; 1617 1618 /* set the transmit buffer descriptor and enable Transmit State Machine */ 1619 sis_priv->tx_ring[entry].bufptr = dma_map_single(&sis_priv->pci_dev->dev, 1620 skb->data, skb->len, 1621 DMA_TO_DEVICE); 1622 if (unlikely(dma_mapping_error(&sis_priv->pci_dev->dev, 1623 sis_priv->tx_ring[entry].bufptr))) { 1624 dev_kfree_skb_any(skb); 1625 sis_priv->tx_skbuff[entry] = NULL; 1626 net_dev->stats.tx_dropped++; 1627 spin_unlock_irqrestore(&sis_priv->lock, flags); 1628 return NETDEV_TX_OK; 1629 } 1630 sis_priv->tx_ring[entry].cmdsts = (OWN | INTR | skb->len); 1631 sw32(cr, TxENA | sr32(cr)); 1632 1633 sis_priv->cur_tx ++; 1634 index_cur_tx = sis_priv->cur_tx; 1635 index_dirty_tx = sis_priv->dirty_tx; 1636 1637 for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++) 1638 count_dirty_tx ++; 1639 1640 if (index_cur_tx == index_dirty_tx) { 1641 /* dirty_tx is met in the cycle of cur_tx, buffer full */ 1642 sis_priv->tx_full = 1; 1643 netif_stop_queue(net_dev); 1644 } else if (count_dirty_tx < NUM_TX_DESC) { 1645 /* Typical path, tell upper layer that more transmission is possible */ 1646 netif_start_queue(net_dev); 1647 } else { 1648 /* buffer full, tell upper layer no more transmission */ 1649 sis_priv->tx_full = 1; 1650 netif_stop_queue(net_dev); 1651 } 1652 1653 spin_unlock_irqrestore(&sis_priv->lock, flags); 1654 1655 if (netif_msg_tx_queued(sis_priv)) 1656 printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d " 1657 "to slot %d.\n", 1658 net_dev->name, skb->data, (int)skb->len, entry); 1659 1660 return NETDEV_TX_OK; 1661 } 1662 1663 /** 1664 * sis900_interrupt - sis900 interrupt handler 1665 * @irq: the irq number 1666 * @dev_instance: the client data object 1667 * 1668 * The interrupt handler does all of the Rx thread work, 1669 * and cleans up after the Tx thread 1670 */ 1671 1672 static irqreturn_t sis900_interrupt(int irq, void *dev_instance) 1673 { 1674 struct net_device *net_dev = dev_instance; 1675 struct sis900_private *sis_priv = netdev_priv(net_dev); 1676 int boguscnt = max_interrupt_work; 1677 void __iomem *ioaddr = sis_priv->ioaddr; 1678 u32 status; 1679 unsigned int handled = 0; 1680 1681 spin_lock (&sis_priv->lock); 1682 1683 do { 1684 status = sr32(isr); 1685 1686 if ((status & (HIBERR|TxURN|TxERR|TxDESC|RxORN|RxERR|RxOK)) == 0) 1687 /* nothing interesting happened */ 1688 break; 1689 handled = 1; 1690 1691 /* why dow't we break after Tx/Rx case ?? keyword: full-duplex */ 1692 if (status & (RxORN | RxERR | RxOK)) 1693 /* Rx interrupt */ 1694 sis900_rx(net_dev); 1695 1696 if (status & (TxURN | TxERR | TxDESC)) 1697 /* Tx interrupt */ 1698 sis900_finish_xmit(net_dev); 1699 1700 /* something strange happened !!! */ 1701 if (status & HIBERR) { 1702 if(netif_msg_intr(sis_priv)) 1703 printk(KERN_INFO "%s: Abnormal interrupt, " 1704 "status %#8.8x.\n", net_dev->name, status); 1705 break; 1706 } 1707 if (--boguscnt < 0) { 1708 if(netif_msg_intr(sis_priv)) 1709 printk(KERN_INFO "%s: Too much work at interrupt, " 1710 "interrupt status = %#8.8x.\n", 1711 net_dev->name, status); 1712 break; 1713 } 1714 } while (1); 1715 1716 if(netif_msg_intr(sis_priv)) 1717 printk(KERN_DEBUG "%s: exiting interrupt, " 1718 "interrupt status = %#8.8x\n", 1719 net_dev->name, sr32(isr)); 1720 1721 spin_unlock (&sis_priv->lock); 1722 return IRQ_RETVAL(handled); 1723 } 1724 1725 /** 1726 * sis900_rx - sis900 receive routine 1727 * @net_dev: the net device which receives data 1728 * 1729 * Process receive interrupt events, 1730 * put buffer to higher layer and refill buffer pool 1731 * Note: This function is called by interrupt handler, 1732 * don't do "too much" work here 1733 */ 1734 1735 static int sis900_rx(struct net_device *net_dev) 1736 { 1737 struct sis900_private *sis_priv = netdev_priv(net_dev); 1738 void __iomem *ioaddr = sis_priv->ioaddr; 1739 unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC; 1740 u32 rx_status = sis_priv->rx_ring[entry].cmdsts; 1741 int rx_work_limit; 1742 1743 if (netif_msg_rx_status(sis_priv)) 1744 printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d " 1745 "status:0x%8.8x\n", 1746 sis_priv->cur_rx, sis_priv->dirty_rx, rx_status); 1747 rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx; 1748 1749 while (rx_status & OWN) { 1750 unsigned int rx_size; 1751 unsigned int data_size; 1752 1753 if (--rx_work_limit < 0) 1754 break; 1755 1756 data_size = rx_status & DSIZE; 1757 rx_size = data_size - CRC_SIZE; 1758 1759 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1760 /* ``TOOLONG'' flag means jumbo packet received. */ 1761 if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE) 1762 rx_status &= (~ ((unsigned int)TOOLONG)); 1763 #endif 1764 1765 if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) { 1766 /* corrupted packet received */ 1767 if (netif_msg_rx_err(sis_priv)) 1768 printk(KERN_DEBUG "%s: Corrupted packet " 1769 "received, buffer status = 0x%8.8x/%d.\n", 1770 net_dev->name, rx_status, data_size); 1771 net_dev->stats.rx_errors++; 1772 if (rx_status & OVERRUN) 1773 net_dev->stats.rx_over_errors++; 1774 if (rx_status & (TOOLONG|RUNT)) 1775 net_dev->stats.rx_length_errors++; 1776 if (rx_status & (RXISERR | FAERR)) 1777 net_dev->stats.rx_frame_errors++; 1778 if (rx_status & CRCERR) 1779 net_dev->stats.rx_crc_errors++; 1780 /* reset buffer descriptor state */ 1781 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE; 1782 } else { 1783 struct sk_buff * skb; 1784 struct sk_buff * rx_skb; 1785 1786 dma_unmap_single(&sis_priv->pci_dev->dev, 1787 sis_priv->rx_ring[entry].bufptr, 1788 RX_BUF_SIZE, DMA_FROM_DEVICE); 1789 1790 /* refill the Rx buffer, what if there is not enough 1791 * memory for new socket buffer ?? */ 1792 if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) { 1793 /* 1794 * Not enough memory to refill the buffer 1795 * so we need to recycle the old one so 1796 * as to avoid creating a memory hole 1797 * in the rx ring 1798 */ 1799 skb = sis_priv->rx_skbuff[entry]; 1800 net_dev->stats.rx_dropped++; 1801 goto refill_rx_ring; 1802 } 1803 1804 /* This situation should never happen, but due to 1805 some unknown bugs, it is possible that 1806 we are working on NULL sk_buff :-( */ 1807 if (sis_priv->rx_skbuff[entry] == NULL) { 1808 if (netif_msg_rx_err(sis_priv)) 1809 printk(KERN_WARNING "%s: NULL pointer " 1810 "encountered in Rx ring\n" 1811 "cur_rx:%4.4d, dirty_rx:%4.4d\n", 1812 net_dev->name, sis_priv->cur_rx, 1813 sis_priv->dirty_rx); 1814 dev_kfree_skb(skb); 1815 break; 1816 } 1817 1818 /* give the socket buffer to upper layers */ 1819 rx_skb = sis_priv->rx_skbuff[entry]; 1820 skb_put(rx_skb, rx_size); 1821 rx_skb->protocol = eth_type_trans(rx_skb, net_dev); 1822 netif_rx(rx_skb); 1823 1824 /* some network statistics */ 1825 if ((rx_status & BCAST) == MCAST) 1826 net_dev->stats.multicast++; 1827 net_dev->stats.rx_bytes += rx_size; 1828 net_dev->stats.rx_packets++; 1829 sis_priv->dirty_rx++; 1830 refill_rx_ring: 1831 sis_priv->rx_skbuff[entry] = skb; 1832 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE; 1833 sis_priv->rx_ring[entry].bufptr = 1834 dma_map_single(&sis_priv->pci_dev->dev, 1835 skb->data, RX_BUF_SIZE, 1836 DMA_FROM_DEVICE); 1837 if (unlikely(dma_mapping_error(&sis_priv->pci_dev->dev, 1838 sis_priv->rx_ring[entry].bufptr))) { 1839 dev_kfree_skb_irq(skb); 1840 sis_priv->rx_skbuff[entry] = NULL; 1841 break; 1842 } 1843 } 1844 sis_priv->cur_rx++; 1845 entry = sis_priv->cur_rx % NUM_RX_DESC; 1846 rx_status = sis_priv->rx_ring[entry].cmdsts; 1847 } // while 1848 1849 /* refill the Rx buffer, what if the rate of refilling is slower 1850 * than consuming ?? */ 1851 for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) { 1852 struct sk_buff *skb; 1853 1854 entry = sis_priv->dirty_rx % NUM_RX_DESC; 1855 1856 if (sis_priv->rx_skbuff[entry] == NULL) { 1857 skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE); 1858 if (skb == NULL) { 1859 /* not enough memory for skbuff, this makes a 1860 * "hole" on the buffer ring, it is not clear 1861 * how the hardware will react to this kind 1862 * of degenerated buffer */ 1863 net_dev->stats.rx_dropped++; 1864 break; 1865 } 1866 sis_priv->rx_skbuff[entry] = skb; 1867 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE; 1868 sis_priv->rx_ring[entry].bufptr = 1869 dma_map_single(&sis_priv->pci_dev->dev, 1870 skb->data, RX_BUF_SIZE, 1871 DMA_FROM_DEVICE); 1872 if (unlikely(dma_mapping_error(&sis_priv->pci_dev->dev, 1873 sis_priv->rx_ring[entry].bufptr))) { 1874 dev_kfree_skb_irq(skb); 1875 sis_priv->rx_skbuff[entry] = NULL; 1876 break; 1877 } 1878 } 1879 } 1880 /* re-enable the potentially idle receive state matchine */ 1881 sw32(cr , RxENA | sr32(cr)); 1882 1883 return 0; 1884 } 1885 1886 /** 1887 * sis900_finish_xmit - finish up transmission of packets 1888 * @net_dev: the net device to be transmitted on 1889 * 1890 * Check for error condition and free socket buffer etc 1891 * schedule for more transmission as needed 1892 * Note: This function is called by interrupt handler, 1893 * don't do "too much" work here 1894 */ 1895 1896 static void sis900_finish_xmit (struct net_device *net_dev) 1897 { 1898 struct sis900_private *sis_priv = netdev_priv(net_dev); 1899 1900 for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) { 1901 struct sk_buff *skb; 1902 unsigned int entry; 1903 u32 tx_status; 1904 1905 entry = sis_priv->dirty_tx % NUM_TX_DESC; 1906 tx_status = sis_priv->tx_ring[entry].cmdsts; 1907 1908 if (tx_status & OWN) { 1909 /* The packet is not transmitted yet (owned by hardware) ! 1910 * Note: this is an almost impossible condition 1911 * on TxDESC interrupt ('descriptor interrupt') */ 1912 break; 1913 } 1914 1915 if (tx_status & (ABORT | UNDERRUN | OWCOLL)) { 1916 /* packet unsuccessfully transmitted */ 1917 if (netif_msg_tx_err(sis_priv)) 1918 printk(KERN_DEBUG "%s: Transmit " 1919 "error, Tx status %8.8x.\n", 1920 net_dev->name, tx_status); 1921 net_dev->stats.tx_errors++; 1922 if (tx_status & UNDERRUN) 1923 net_dev->stats.tx_fifo_errors++; 1924 if (tx_status & ABORT) 1925 net_dev->stats.tx_aborted_errors++; 1926 if (tx_status & NOCARRIER) 1927 net_dev->stats.tx_carrier_errors++; 1928 if (tx_status & OWCOLL) 1929 net_dev->stats.tx_window_errors++; 1930 } else { 1931 /* packet successfully transmitted */ 1932 net_dev->stats.collisions += (tx_status & COLCNT) >> 16; 1933 net_dev->stats.tx_bytes += tx_status & DSIZE; 1934 net_dev->stats.tx_packets++; 1935 } 1936 /* Free the original skb. */ 1937 skb = sis_priv->tx_skbuff[entry]; 1938 dma_unmap_single(&sis_priv->pci_dev->dev, 1939 sis_priv->tx_ring[entry].bufptr, skb->len, 1940 DMA_TO_DEVICE); 1941 dev_consume_skb_irq(skb); 1942 sis_priv->tx_skbuff[entry] = NULL; 1943 sis_priv->tx_ring[entry].bufptr = 0; 1944 sis_priv->tx_ring[entry].cmdsts = 0; 1945 } 1946 1947 if (sis_priv->tx_full && netif_queue_stopped(net_dev) && 1948 sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) { 1949 /* The ring is no longer full, clear tx_full and schedule 1950 * more transmission by netif_wake_queue(net_dev) */ 1951 sis_priv->tx_full = 0; 1952 netif_wake_queue (net_dev); 1953 } 1954 } 1955 1956 /** 1957 * sis900_close - close sis900 device 1958 * @net_dev: the net device to be closed 1959 * 1960 * Disable interrupts, stop the Tx and Rx Status Machine 1961 * free Tx and RX socket buffer 1962 */ 1963 1964 static int sis900_close(struct net_device *net_dev) 1965 { 1966 struct sis900_private *sis_priv = netdev_priv(net_dev); 1967 struct pci_dev *pdev = sis_priv->pci_dev; 1968 void __iomem *ioaddr = sis_priv->ioaddr; 1969 struct sk_buff *skb; 1970 int i; 1971 1972 netif_stop_queue(net_dev); 1973 1974 /* Disable interrupts by clearing the interrupt mask. */ 1975 sw32(imr, 0x0000); 1976 sw32(ier, 0x0000); 1977 1978 /* Stop the chip's Tx and Rx Status Machine */ 1979 sw32(cr, RxDIS | TxDIS | sr32(cr)); 1980 1981 del_timer(&sis_priv->timer); 1982 1983 free_irq(pdev->irq, net_dev); 1984 1985 /* Free Tx and RX skbuff */ 1986 for (i = 0; i < NUM_RX_DESC; i++) { 1987 skb = sis_priv->rx_skbuff[i]; 1988 if (skb) { 1989 dma_unmap_single(&pdev->dev, 1990 sis_priv->rx_ring[i].bufptr, 1991 RX_BUF_SIZE, DMA_FROM_DEVICE); 1992 dev_kfree_skb(skb); 1993 sis_priv->rx_skbuff[i] = NULL; 1994 } 1995 } 1996 for (i = 0; i < NUM_TX_DESC; i++) { 1997 skb = sis_priv->tx_skbuff[i]; 1998 if (skb) { 1999 dma_unmap_single(&pdev->dev, 2000 sis_priv->tx_ring[i].bufptr, 2001 skb->len, DMA_TO_DEVICE); 2002 dev_kfree_skb(skb); 2003 sis_priv->tx_skbuff[i] = NULL; 2004 } 2005 } 2006 2007 /* Green! Put the chip in low-power mode. */ 2008 2009 return 0; 2010 } 2011 2012 /** 2013 * sis900_get_drvinfo - Return information about driver 2014 * @net_dev: the net device to probe 2015 * @info: container for info returned 2016 * 2017 * Process ethtool command such as "ehtool -i" to show information 2018 */ 2019 2020 static void sis900_get_drvinfo(struct net_device *net_dev, 2021 struct ethtool_drvinfo *info) 2022 { 2023 struct sis900_private *sis_priv = netdev_priv(net_dev); 2024 2025 strlcpy(info->driver, SIS900_MODULE_NAME, sizeof(info->driver)); 2026 strlcpy(info->version, SIS900_DRV_VERSION, sizeof(info->version)); 2027 strlcpy(info->bus_info, pci_name(sis_priv->pci_dev), 2028 sizeof(info->bus_info)); 2029 } 2030 2031 static u32 sis900_get_msglevel(struct net_device *net_dev) 2032 { 2033 struct sis900_private *sis_priv = netdev_priv(net_dev); 2034 return sis_priv->msg_enable; 2035 } 2036 2037 static void sis900_set_msglevel(struct net_device *net_dev, u32 value) 2038 { 2039 struct sis900_private *sis_priv = netdev_priv(net_dev); 2040 sis_priv->msg_enable = value; 2041 } 2042 2043 static u32 sis900_get_link(struct net_device *net_dev) 2044 { 2045 struct sis900_private *sis_priv = netdev_priv(net_dev); 2046 return mii_link_ok(&sis_priv->mii_info); 2047 } 2048 2049 static int sis900_get_link_ksettings(struct net_device *net_dev, 2050 struct ethtool_link_ksettings *cmd) 2051 { 2052 struct sis900_private *sis_priv = netdev_priv(net_dev); 2053 spin_lock_irq(&sis_priv->lock); 2054 mii_ethtool_get_link_ksettings(&sis_priv->mii_info, cmd); 2055 spin_unlock_irq(&sis_priv->lock); 2056 return 0; 2057 } 2058 2059 static int sis900_set_link_ksettings(struct net_device *net_dev, 2060 const struct ethtool_link_ksettings *cmd) 2061 { 2062 struct sis900_private *sis_priv = netdev_priv(net_dev); 2063 int rt; 2064 spin_lock_irq(&sis_priv->lock); 2065 rt = mii_ethtool_set_link_ksettings(&sis_priv->mii_info, cmd); 2066 spin_unlock_irq(&sis_priv->lock); 2067 return rt; 2068 } 2069 2070 static int sis900_nway_reset(struct net_device *net_dev) 2071 { 2072 struct sis900_private *sis_priv = netdev_priv(net_dev); 2073 return mii_nway_restart(&sis_priv->mii_info); 2074 } 2075 2076 /** 2077 * sis900_set_wol - Set up Wake on Lan registers 2078 * @net_dev: the net device to probe 2079 * @wol: container for info passed to the driver 2080 * 2081 * Process ethtool command "wol" to setup wake on lan features. 2082 * SiS900 supports sending WoL events if a correct packet is received, 2083 * but there is no simple way to filter them to only a subset (broadcast, 2084 * multicast, unicast or arp). 2085 */ 2086 2087 static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol) 2088 { 2089 struct sis900_private *sis_priv = netdev_priv(net_dev); 2090 void __iomem *ioaddr = sis_priv->ioaddr; 2091 u32 cfgpmcsr = 0, pmctrl_bits = 0; 2092 2093 if (wol->wolopts == 0) { 2094 pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr); 2095 cfgpmcsr &= ~PME_EN; 2096 pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr); 2097 sw32(pmctrl, pmctrl_bits); 2098 if (netif_msg_wol(sis_priv)) 2099 printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name); 2100 return 0; 2101 } 2102 2103 if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST 2104 | WAKE_BCAST | WAKE_ARP)) 2105 return -EINVAL; 2106 2107 if (wol->wolopts & WAKE_MAGIC) 2108 pmctrl_bits |= MAGICPKT; 2109 if (wol->wolopts & WAKE_PHY) 2110 pmctrl_bits |= LINKON; 2111 2112 sw32(pmctrl, pmctrl_bits); 2113 2114 pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr); 2115 cfgpmcsr |= PME_EN; 2116 pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr); 2117 if (netif_msg_wol(sis_priv)) 2118 printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name); 2119 2120 return 0; 2121 } 2122 2123 static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol) 2124 { 2125 struct sis900_private *sp = netdev_priv(net_dev); 2126 void __iomem *ioaddr = sp->ioaddr; 2127 u32 pmctrl_bits; 2128 2129 pmctrl_bits = sr32(pmctrl); 2130 if (pmctrl_bits & MAGICPKT) 2131 wol->wolopts |= WAKE_MAGIC; 2132 if (pmctrl_bits & LINKON) 2133 wol->wolopts |= WAKE_PHY; 2134 2135 wol->supported = (WAKE_PHY | WAKE_MAGIC); 2136 } 2137 2138 static int sis900_get_eeprom_len(struct net_device *dev) 2139 { 2140 struct sis900_private *sis_priv = netdev_priv(dev); 2141 2142 return sis_priv->eeprom_size; 2143 } 2144 2145 static int sis900_read_eeprom(struct net_device *net_dev, u8 *buf) 2146 { 2147 struct sis900_private *sis_priv = netdev_priv(net_dev); 2148 void __iomem *ioaddr = sis_priv->ioaddr; 2149 int wait, ret = -EAGAIN; 2150 u16 signature; 2151 u16 *ebuf = (u16 *)buf; 2152 int i; 2153 2154 if (sis_priv->chipset_rev == SIS96x_900_REV) { 2155 sw32(mear, EEREQ); 2156 for (wait = 0; wait < 2000; wait++) { 2157 if (sr32(mear) & EEGNT) { 2158 /* read 16 bits, and index by 16 bits */ 2159 for (i = 0; i < sis_priv->eeprom_size / 2; i++) 2160 ebuf[i] = (u16)read_eeprom(ioaddr, i); 2161 ret = 0; 2162 break; 2163 } 2164 udelay(1); 2165 } 2166 sw32(mear, EEDONE); 2167 } else { 2168 signature = (u16)read_eeprom(ioaddr, EEPROMSignature); 2169 if (signature != 0xffff && signature != 0x0000) { 2170 /* read 16 bits, and index by 16 bits */ 2171 for (i = 0; i < sis_priv->eeprom_size / 2; i++) 2172 ebuf[i] = (u16)read_eeprom(ioaddr, i); 2173 ret = 0; 2174 } 2175 } 2176 return ret; 2177 } 2178 2179 #define SIS900_EEPROM_MAGIC 0xBABE 2180 static int sis900_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data) 2181 { 2182 struct sis900_private *sis_priv = netdev_priv(dev); 2183 u8 *eebuf; 2184 int res; 2185 2186 eebuf = kmalloc(sis_priv->eeprom_size, GFP_KERNEL); 2187 if (!eebuf) 2188 return -ENOMEM; 2189 2190 eeprom->magic = SIS900_EEPROM_MAGIC; 2191 spin_lock_irq(&sis_priv->lock); 2192 res = sis900_read_eeprom(dev, eebuf); 2193 spin_unlock_irq(&sis_priv->lock); 2194 if (!res) 2195 memcpy(data, eebuf + eeprom->offset, eeprom->len); 2196 kfree(eebuf); 2197 return res; 2198 } 2199 2200 static const struct ethtool_ops sis900_ethtool_ops = { 2201 .get_drvinfo = sis900_get_drvinfo, 2202 .get_msglevel = sis900_get_msglevel, 2203 .set_msglevel = sis900_set_msglevel, 2204 .get_link = sis900_get_link, 2205 .nway_reset = sis900_nway_reset, 2206 .get_wol = sis900_get_wol, 2207 .set_wol = sis900_set_wol, 2208 .get_link_ksettings = sis900_get_link_ksettings, 2209 .set_link_ksettings = sis900_set_link_ksettings, 2210 .get_eeprom_len = sis900_get_eeprom_len, 2211 .get_eeprom = sis900_get_eeprom, 2212 }; 2213 2214 /** 2215 * mii_ioctl - process MII i/o control command 2216 * @net_dev: the net device to command for 2217 * @rq: parameter for command 2218 * @cmd: the i/o command 2219 * 2220 * Process MII command like read/write MII register 2221 */ 2222 2223 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd) 2224 { 2225 struct sis900_private *sis_priv = netdev_priv(net_dev); 2226 struct mii_ioctl_data *data = if_mii(rq); 2227 2228 switch(cmd) { 2229 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 2230 data->phy_id = sis_priv->mii->phy_addr; 2231 fallthrough; 2232 2233 case SIOCGMIIREG: /* Read MII PHY register. */ 2234 data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f); 2235 return 0; 2236 2237 case SIOCSMIIREG: /* Write MII PHY register. */ 2238 mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in); 2239 return 0; 2240 default: 2241 return -EOPNOTSUPP; 2242 } 2243 } 2244 2245 /** 2246 * sis900_set_config - Set media type by net_device.set_config 2247 * @dev: the net device for media type change 2248 * @map: ifmap passed by ifconfig 2249 * 2250 * Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig 2251 * we support only port changes. All other runtime configuration 2252 * changes will be ignored 2253 */ 2254 2255 static int sis900_set_config(struct net_device *dev, struct ifmap *map) 2256 { 2257 struct sis900_private *sis_priv = netdev_priv(dev); 2258 struct mii_phy *mii_phy = sis_priv->mii; 2259 2260 u16 status; 2261 2262 if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) { 2263 /* we switch on the ifmap->port field. I couldn't find anything 2264 * like a definition or standard for the values of that field. 2265 * I think the meaning of those values is device specific. But 2266 * since I would like to change the media type via the ifconfig 2267 * command I use the definition from linux/netdevice.h 2268 * (which seems to be different from the ifport(pcmcia) definition) */ 2269 switch(map->port){ 2270 case IF_PORT_UNKNOWN: /* use auto here */ 2271 dev->if_port = map->port; 2272 /* we are going to change the media type, so the Link 2273 * will be temporary down and we need to reflect that 2274 * here. When the Link comes up again, it will be 2275 * sensed by the sis_timer procedure, which also does 2276 * all the rest for us */ 2277 netif_carrier_off(dev); 2278 2279 /* read current state */ 2280 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL); 2281 2282 /* enable auto negotiation and reset the negotioation 2283 * (I don't really know what the auto negatiotiation 2284 * reset really means, but it sounds for me right to 2285 * do one here) */ 2286 mdio_write(dev, mii_phy->phy_addr, 2287 MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO); 2288 2289 break; 2290 2291 case IF_PORT_10BASET: /* 10BaseT */ 2292 dev->if_port = map->port; 2293 2294 /* we are going to change the media type, so the Link 2295 * will be temporary down and we need to reflect that 2296 * here. When the Link comes up again, it will be 2297 * sensed by the sis_timer procedure, which also does 2298 * all the rest for us */ 2299 netif_carrier_off(dev); 2300 2301 /* set Speed to 10Mbps */ 2302 /* read current state */ 2303 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL); 2304 2305 /* disable auto negotiation and force 10MBit mode*/ 2306 mdio_write(dev, mii_phy->phy_addr, 2307 MII_CONTROL, status & ~(MII_CNTL_SPEED | 2308 MII_CNTL_AUTO)); 2309 break; 2310 2311 case IF_PORT_100BASET: /* 100BaseT */ 2312 case IF_PORT_100BASETX: /* 100BaseTx */ 2313 dev->if_port = map->port; 2314 2315 /* we are going to change the media type, so the Link 2316 * will be temporary down and we need to reflect that 2317 * here. When the Link comes up again, it will be 2318 * sensed by the sis_timer procedure, which also does 2319 * all the rest for us */ 2320 netif_carrier_off(dev); 2321 2322 /* set Speed to 100Mbps */ 2323 /* disable auto negotiation and enable 100MBit Mode */ 2324 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL); 2325 mdio_write(dev, mii_phy->phy_addr, 2326 MII_CONTROL, (status & ~MII_CNTL_SPEED) | 2327 MII_CNTL_SPEED); 2328 2329 break; 2330 2331 case IF_PORT_10BASE2: /* 10Base2 */ 2332 case IF_PORT_AUI: /* AUI */ 2333 case IF_PORT_100BASEFX: /* 100BaseFx */ 2334 /* These Modes are not supported (are they?)*/ 2335 return -EOPNOTSUPP; 2336 2337 default: 2338 return -EINVAL; 2339 } 2340 } 2341 return 0; 2342 } 2343 2344 /** 2345 * sis900_mcast_bitnr - compute hashtable index 2346 * @addr: multicast address 2347 * @revision: revision id of chip 2348 * 2349 * SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast 2350 * hash table, which makes this function a little bit different from other drivers 2351 * SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits 2352 * multicast hash table. 2353 */ 2354 2355 static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision) 2356 { 2357 2358 u32 crc = ether_crc(6, addr); 2359 2360 /* leave 8 or 7 most siginifant bits */ 2361 if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV)) 2362 return (int)(crc >> 24); 2363 else 2364 return (int)(crc >> 25); 2365 } 2366 2367 /** 2368 * set_rx_mode - Set SiS900 receive mode 2369 * @net_dev: the net device to be set 2370 * 2371 * Set SiS900 receive mode for promiscuous, multicast, or broadcast mode. 2372 * And set the appropriate multicast filter. 2373 * Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0. 2374 */ 2375 2376 static void set_rx_mode(struct net_device *net_dev) 2377 { 2378 struct sis900_private *sis_priv = netdev_priv(net_dev); 2379 void __iomem *ioaddr = sis_priv->ioaddr; 2380 u16 mc_filter[16] = {0}; /* 256/128 bits multicast hash table */ 2381 int i, table_entries; 2382 u32 rx_mode; 2383 2384 /* 635 Hash Table entries = 256(2^16) */ 2385 if((sis_priv->chipset_rev >= SIS635A_900_REV) || 2386 (sis_priv->chipset_rev == SIS900B_900_REV)) 2387 table_entries = 16; 2388 else 2389 table_entries = 8; 2390 2391 if (net_dev->flags & IFF_PROMISC) { 2392 /* Accept any kinds of packets */ 2393 rx_mode = RFPromiscuous; 2394 for (i = 0; i < table_entries; i++) 2395 mc_filter[i] = 0xffff; 2396 } else if ((netdev_mc_count(net_dev) > multicast_filter_limit) || 2397 (net_dev->flags & IFF_ALLMULTI)) { 2398 /* too many multicast addresses or accept all multicast packet */ 2399 rx_mode = RFAAB | RFAAM; 2400 for (i = 0; i < table_entries; i++) 2401 mc_filter[i] = 0xffff; 2402 } else { 2403 /* Accept Broadcast packet, destination address matchs our 2404 * MAC address, use Receive Filter to reject unwanted MCAST 2405 * packets */ 2406 struct netdev_hw_addr *ha; 2407 rx_mode = RFAAB; 2408 2409 netdev_for_each_mc_addr(ha, net_dev) { 2410 unsigned int bit_nr; 2411 2412 bit_nr = sis900_mcast_bitnr(ha->addr, 2413 sis_priv->chipset_rev); 2414 mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf)); 2415 } 2416 } 2417 2418 /* update Multicast Hash Table in Receive Filter */ 2419 for (i = 0; i < table_entries; i++) { 2420 /* why plus 0x04 ??, That makes the correct value for hash table. */ 2421 sw32(rfcr, (u32)(0x00000004 + i) << RFADDR_shift); 2422 sw32(rfdr, mc_filter[i]); 2423 } 2424 2425 sw32(rfcr, RFEN | rx_mode); 2426 2427 /* sis900 is capable of looping back packets at MAC level for 2428 * debugging purpose */ 2429 if (net_dev->flags & IFF_LOOPBACK) { 2430 u32 cr_saved; 2431 /* We must disable Tx/Rx before setting loopback mode */ 2432 cr_saved = sr32(cr); 2433 sw32(cr, cr_saved | TxDIS | RxDIS); 2434 /* enable loopback */ 2435 sw32(txcfg, sr32(txcfg) | TxMLB); 2436 sw32(rxcfg, sr32(rxcfg) | RxATX); 2437 /* restore cr */ 2438 sw32(cr, cr_saved); 2439 } 2440 } 2441 2442 /** 2443 * sis900_reset - Reset sis900 MAC 2444 * @net_dev: the net device to reset 2445 * 2446 * reset sis900 MAC and wait until finished 2447 * reset through command register 2448 * change backoff algorithm for 900B0 & 635 M/B 2449 */ 2450 2451 static void sis900_reset(struct net_device *net_dev) 2452 { 2453 struct sis900_private *sis_priv = netdev_priv(net_dev); 2454 void __iomem *ioaddr = sis_priv->ioaddr; 2455 u32 status = TxRCMP | RxRCMP; 2456 int i; 2457 2458 sw32(ier, 0); 2459 sw32(imr, 0); 2460 sw32(rfcr, 0); 2461 2462 sw32(cr, RxRESET | TxRESET | RESET | sr32(cr)); 2463 2464 /* Check that the chip has finished the reset. */ 2465 for (i = 0; status && (i < 1000); i++) 2466 status ^= sr32(isr) & status; 2467 2468 if (sis_priv->chipset_rev >= SIS635A_900_REV || 2469 sis_priv->chipset_rev == SIS900B_900_REV) 2470 sw32(cfg, PESEL | RND_CNT); 2471 else 2472 sw32(cfg, PESEL); 2473 } 2474 2475 /** 2476 * sis900_remove - Remove sis900 device 2477 * @pci_dev: the pci device to be removed 2478 * 2479 * remove and release SiS900 net device 2480 */ 2481 2482 static void sis900_remove(struct pci_dev *pci_dev) 2483 { 2484 struct net_device *net_dev = pci_get_drvdata(pci_dev); 2485 struct sis900_private *sis_priv = netdev_priv(net_dev); 2486 2487 unregister_netdev(net_dev); 2488 2489 while (sis_priv->first_mii) { 2490 struct mii_phy *phy = sis_priv->first_mii; 2491 2492 sis_priv->first_mii = phy->next; 2493 kfree(phy); 2494 } 2495 2496 dma_free_coherent(&pci_dev->dev, RX_TOTAL_SIZE, sis_priv->rx_ring, 2497 sis_priv->rx_ring_dma); 2498 dma_free_coherent(&pci_dev->dev, TX_TOTAL_SIZE, sis_priv->tx_ring, 2499 sis_priv->tx_ring_dma); 2500 pci_iounmap(pci_dev, sis_priv->ioaddr); 2501 free_netdev(net_dev); 2502 pci_release_regions(pci_dev); 2503 } 2504 2505 static int __maybe_unused sis900_suspend(struct device *dev) 2506 { 2507 struct net_device *net_dev = dev_get_drvdata(dev); 2508 struct sis900_private *sis_priv = netdev_priv(net_dev); 2509 void __iomem *ioaddr = sis_priv->ioaddr; 2510 2511 if(!netif_running(net_dev)) 2512 return 0; 2513 2514 netif_stop_queue(net_dev); 2515 netif_device_detach(net_dev); 2516 2517 /* Stop the chip's Tx and Rx Status Machine */ 2518 sw32(cr, RxDIS | TxDIS | sr32(cr)); 2519 2520 return 0; 2521 } 2522 2523 static int __maybe_unused sis900_resume(struct device *dev) 2524 { 2525 struct net_device *net_dev = dev_get_drvdata(dev); 2526 struct sis900_private *sis_priv = netdev_priv(net_dev); 2527 void __iomem *ioaddr = sis_priv->ioaddr; 2528 2529 if(!netif_running(net_dev)) 2530 return 0; 2531 2532 sis900_init_rxfilter(net_dev); 2533 2534 sis900_init_tx_ring(net_dev); 2535 sis900_init_rx_ring(net_dev); 2536 2537 set_rx_mode(net_dev); 2538 2539 netif_device_attach(net_dev); 2540 netif_start_queue(net_dev); 2541 2542 /* Workaround for EDB */ 2543 sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED); 2544 2545 /* Enable all known interrupts by setting the interrupt mask. */ 2546 sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxDESC); 2547 sw32(cr, RxENA | sr32(cr)); 2548 sw32(ier, IE); 2549 2550 sis900_check_mode(net_dev, sis_priv->mii); 2551 2552 return 0; 2553 } 2554 2555 static SIMPLE_DEV_PM_OPS(sis900_pm_ops, sis900_suspend, sis900_resume); 2556 2557 static struct pci_driver sis900_pci_driver = { 2558 .name = SIS900_MODULE_NAME, 2559 .id_table = sis900_pci_tbl, 2560 .probe = sis900_probe, 2561 .remove = sis900_remove, 2562 .driver.pm = &sis900_pm_ops, 2563 }; 2564 2565 static int __init sis900_init_module(void) 2566 { 2567 /* when a module, this is printed whether or not devices are found in probe */ 2568 #ifdef MODULE 2569 printk(version); 2570 #endif 2571 2572 return pci_register_driver(&sis900_pci_driver); 2573 } 2574 2575 static void __exit sis900_cleanup_module(void) 2576 { 2577 pci_unregister_driver(&sis900_pci_driver); 2578 } 2579 2580 module_init(sis900_init_module); 2581 module_exit(sis900_cleanup_module); 2582 2583