xref: /openbmc/linux/drivers/net/ethernet/sis/sis900.c (revision e2c75e76)
1 /* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
2    Copyright 1999 Silicon Integrated System Corporation
3    Revision:	1.08.10 Apr. 2 2006
4 
5    Modified from the driver which is originally written by Donald Becker.
6 
7    This software may be used and distributed according to the terms
8    of the GNU General Public License (GPL), incorporated herein by reference.
9    Drivers based on this skeleton fall under the GPL and must retain
10    the authorship (implicit copyright) notice.
11 
12    References:
13    SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
14    preliminary Rev. 1.0 Jan. 14, 1998
15    SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
16    preliminary Rev. 1.0 Nov. 10, 1998
17    SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
18    preliminary Rev. 1.0 Jan. 18, 1998
19 
20    Rev 1.08.10 Apr.  2 2006 Daniele Venzano add vlan (jumbo packets) support
21    Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
22    Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
23    Rev 1.08.07 Nov.  2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
24    Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
25    Rev 1.08.05 Jun.  6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
26    Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
27    Rev 1.08.03 Feb.  1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
28    Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
29    Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
30    Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
31    Rev 1.07.11 Apr.  2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
32    Rev 1.07.10 Mar.  1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
33    Rev 1.07.09 Feb.  9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
34    Rev 1.07.08 Jan.  8 2001 Lei-Chun Chang added RTL8201 PHY support
35    Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
36    Rev 1.07.06 Nov.  7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
37    Rev 1.07.05 Nov.  6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
38    Rev 1.07.04 Sep.  6 2000 Lei-Chun Chang added ICS1893 PHY support
39    Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E equalizer workaround rule
40    Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
41    Rev 1.07    Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
42    Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
43    Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
44    Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
45    Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
46    Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
47    Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
48    Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
49    Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
50 */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/kernel.h>
55 #include <linux/sched.h>
56 #include <linux/string.h>
57 #include <linux/timer.h>
58 #include <linux/errno.h>
59 #include <linux/ioport.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/pci.h>
63 #include <linux/netdevice.h>
64 #include <linux/init.h>
65 #include <linux/mii.h>
66 #include <linux/etherdevice.h>
67 #include <linux/skbuff.h>
68 #include <linux/delay.h>
69 #include <linux/ethtool.h>
70 #include <linux/crc32.h>
71 #include <linux/bitops.h>
72 #include <linux/dma-mapping.h>
73 
74 #include <asm/processor.h>      /* Processor type for cache alignment. */
75 #include <asm/io.h>
76 #include <asm/irq.h>
77 #include <linux/uaccess.h>	/* User space memory access functions */
78 
79 #include "sis900.h"
80 
81 #define SIS900_MODULE_NAME "sis900"
82 #define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
83 
84 static const char version[] =
85 	KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
86 
87 static int max_interrupt_work = 40;
88 static int multicast_filter_limit = 128;
89 
90 static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
91 
92 #define SIS900_DEF_MSG \
93 	(NETIF_MSG_DRV		| \
94 	 NETIF_MSG_LINK		| \
95 	 NETIF_MSG_RX_ERR	| \
96 	 NETIF_MSG_TX_ERR)
97 
98 /* Time in jiffies before concluding the transmitter is hung. */
99 #define TX_TIMEOUT  (4*HZ)
100 
101 enum {
102 	SIS_900 = 0,
103 	SIS_7016
104 };
105 static const char * card_names[] = {
106 	"SiS 900 PCI Fast Ethernet",
107 	"SiS 7016 PCI Fast Ethernet"
108 };
109 
110 static const struct pci_device_id sis900_pci_tbl[] = {
111 	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
112 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
113 	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
114 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
115 	{0,}
116 };
117 MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
118 
119 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
120 
121 static const struct mii_chip_info {
122 	const char * name;
123 	u16 phy_id0;
124 	u16 phy_id1;
125 	u8  phy_types;
126 #define	HOME 	0x0001
127 #define LAN	0x0002
128 #define MIX	0x0003
129 #define UNKNOWN	0x0
130 } mii_chip_table[] = {
131 	{ "SiS 900 Internal MII PHY", 		0x001d, 0x8000, LAN },
132 	{ "SiS 7014 Physical Layer Solution", 	0x0016, 0xf830, LAN },
133 	{ "SiS 900 on Foxconn 661 7MI",         0x0143, 0xBC70, LAN },
134 	{ "Altimata AC101LF PHY",               0x0022, 0x5520, LAN },
135 	{ "ADM 7001 LAN PHY",			0x002e, 0xcc60, LAN },
136 	{ "AMD 79C901 10BASE-T PHY",  		0x0000, 0x6B70, LAN },
137 	{ "AMD 79C901 HomePNA PHY",		0x0000, 0x6B90, HOME},
138 	{ "ICS LAN PHY",			0x0015, 0xF440, LAN },
139 	{ "ICS LAN PHY",			0x0143, 0xBC70, LAN },
140 	{ "NS 83851 PHY",			0x2000, 0x5C20, MIX },
141 	{ "NS 83847 PHY",                       0x2000, 0x5C30, MIX },
142 	{ "Realtek RTL8201 PHY",		0x0000, 0x8200, LAN },
143 	{ "VIA 6103 PHY",			0x0101, 0x8f20, LAN },
144 	{NULL,},
145 };
146 
147 struct mii_phy {
148 	struct mii_phy * next;
149 	int phy_addr;
150 	u16 phy_id0;
151 	u16 phy_id1;
152 	u16 status;
153 	u8  phy_types;
154 };
155 
156 typedef struct _BufferDesc {
157 	u32 link;
158 	u32 cmdsts;
159 	u32 bufptr;
160 } BufferDesc;
161 
162 struct sis900_private {
163 	struct pci_dev * pci_dev;
164 
165 	spinlock_t lock;
166 
167 	struct mii_phy * mii;
168 	struct mii_phy * first_mii; /* record the first mii structure */
169 	unsigned int cur_phy;
170 	struct mii_if_info mii_info;
171 
172 	void __iomem	*ioaddr;
173 
174 	struct timer_list timer; /* Link status detection timer. */
175 	u8 autong_complete; /* 1: auto-negotiate complete  */
176 
177 	u32 msg_enable;
178 
179 	unsigned int cur_rx, dirty_rx; /* producer/consumer pointers for Tx/Rx ring */
180 	unsigned int cur_tx, dirty_tx;
181 
182 	/* The saved address of a sent/receive-in-place packet buffer */
183 	struct sk_buff *tx_skbuff[NUM_TX_DESC];
184 	struct sk_buff *rx_skbuff[NUM_RX_DESC];
185 	BufferDesc *tx_ring;
186 	BufferDesc *rx_ring;
187 
188 	dma_addr_t tx_ring_dma;
189 	dma_addr_t rx_ring_dma;
190 
191 	unsigned int tx_full; /* The Tx queue is full. */
192 	u8 host_bridge_rev;
193 	u8 chipset_rev;
194 };
195 
196 MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
197 MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
198 MODULE_LICENSE("GPL");
199 
200 module_param(multicast_filter_limit, int, 0444);
201 module_param(max_interrupt_work, int, 0444);
202 module_param(sis900_debug, int, 0444);
203 MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
204 MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
205 MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
206 
207 #define sw32(reg, val)	iowrite32(val, ioaddr + (reg))
208 #define sw8(reg, val)	iowrite8(val, ioaddr + (reg))
209 #define sr32(reg)	ioread32(ioaddr + (reg))
210 #define sr16(reg)	ioread16(ioaddr + (reg))
211 
212 #ifdef CONFIG_NET_POLL_CONTROLLER
213 static void sis900_poll(struct net_device *dev);
214 #endif
215 static int sis900_open(struct net_device *net_dev);
216 static int sis900_mii_probe (struct net_device * net_dev);
217 static void sis900_init_rxfilter (struct net_device * net_dev);
218 static u16 read_eeprom(void __iomem *ioaddr, int location);
219 static int mdio_read(struct net_device *net_dev, int phy_id, int location);
220 static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
221 static void sis900_timer(struct timer_list *t);
222 static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
223 static void sis900_tx_timeout(struct net_device *net_dev);
224 static void sis900_init_tx_ring(struct net_device *net_dev);
225 static void sis900_init_rx_ring(struct net_device *net_dev);
226 static netdev_tx_t sis900_start_xmit(struct sk_buff *skb,
227 				     struct net_device *net_dev);
228 static int sis900_rx(struct net_device *net_dev);
229 static void sis900_finish_xmit (struct net_device *net_dev);
230 static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
231 static int sis900_close(struct net_device *net_dev);
232 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
233 static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
234 static void set_rx_mode(struct net_device *net_dev);
235 static void sis900_reset(struct net_device *net_dev);
236 static void sis630_set_eq(struct net_device *net_dev, u8 revision);
237 static int sis900_set_config(struct net_device *dev, struct ifmap *map);
238 static u16 sis900_default_phy(struct net_device * net_dev);
239 static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
240 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
241 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
242 static void sis900_set_mode(struct sis900_private *, int speed, int duplex);
243 static const struct ethtool_ops sis900_ethtool_ops;
244 
245 /**
246  *	sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
247  *	@pci_dev: the sis900 pci device
248  *	@net_dev: the net device to get address for
249  *
250  *	Older SiS900 and friends, use EEPROM to store MAC address.
251  *	MAC address is read from read_eeprom() into @net_dev->dev_addr.
252  */
253 
254 static int sis900_get_mac_addr(struct pci_dev *pci_dev,
255 			       struct net_device *net_dev)
256 {
257 	struct sis900_private *sis_priv = netdev_priv(net_dev);
258 	void __iomem *ioaddr = sis_priv->ioaddr;
259 	u16 signature;
260 	int i;
261 
262 	/* check to see if we have sane EEPROM */
263 	signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
264 	if (signature == 0xffff || signature == 0x0000) {
265 		printk (KERN_WARNING "%s: Error EERPOM read %x\n",
266 			pci_name(pci_dev), signature);
267 		return 0;
268 	}
269 
270 	/* get MAC address from EEPROM */
271 	for (i = 0; i < 3; i++)
272 	        ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
273 
274 	return 1;
275 }
276 
277 /**
278  *	sis630e_get_mac_addr - Get MAC address for SiS630E model
279  *	@pci_dev: the sis900 pci device
280  *	@net_dev: the net device to get address for
281  *
282  *	SiS630E model, use APC CMOS RAM to store MAC address.
283  *	APC CMOS RAM is accessed through ISA bridge.
284  *	MAC address is read into @net_dev->dev_addr.
285  */
286 
287 static int sis630e_get_mac_addr(struct pci_dev *pci_dev,
288 				struct net_device *net_dev)
289 {
290 	struct pci_dev *isa_bridge = NULL;
291 	u8 reg;
292 	int i;
293 
294 	isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
295 	if (!isa_bridge)
296 		isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
297 	if (!isa_bridge) {
298 		printk(KERN_WARNING "%s: Can not find ISA bridge\n",
299 		       pci_name(pci_dev));
300 		return 0;
301 	}
302 	pci_read_config_byte(isa_bridge, 0x48, &reg);
303 	pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
304 
305 	for (i = 0; i < 6; i++) {
306 		outb(0x09 + i, 0x70);
307 		((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
308 	}
309 
310 	pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
311 	pci_dev_put(isa_bridge);
312 
313 	return 1;
314 }
315 
316 
317 /**
318  *	sis635_get_mac_addr - Get MAC address for SIS635 model
319  *	@pci_dev: the sis900 pci device
320  *	@net_dev: the net device to get address for
321  *
322  *	SiS635 model, set MAC Reload Bit to load Mac address from APC
323  *	to rfdr. rfdr is accessed through rfcr. MAC address is read into
324  *	@net_dev->dev_addr.
325  */
326 
327 static int sis635_get_mac_addr(struct pci_dev *pci_dev,
328 			       struct net_device *net_dev)
329 {
330 	struct sis900_private *sis_priv = netdev_priv(net_dev);
331 	void __iomem *ioaddr = sis_priv->ioaddr;
332 	u32 rfcrSave;
333 	u32 i;
334 
335 	rfcrSave = sr32(rfcr);
336 
337 	sw32(cr, rfcrSave | RELOAD);
338 	sw32(cr, 0);
339 
340 	/* disable packet filtering before setting filter */
341 	sw32(rfcr, rfcrSave & ~RFEN);
342 
343 	/* load MAC addr to filter data register */
344 	for (i = 0 ; i < 3 ; i++) {
345 		sw32(rfcr, (i << RFADDR_shift));
346 		*( ((u16 *)net_dev->dev_addr) + i) = sr16(rfdr);
347 	}
348 
349 	/* enable packet filtering */
350 	sw32(rfcr, rfcrSave | RFEN);
351 
352 	return 1;
353 }
354 
355 /**
356  *	sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
357  *	@pci_dev: the sis900 pci device
358  *	@net_dev: the net device to get address for
359  *
360  *	SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
361  *	is shared by
362  *	LAN and 1394. When access EEPROM, send EEREQ signal to hardware first
363  *	and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access
364  *	by LAN, otherwise is not. After MAC address is read from EEPROM, send
365  *	EEDONE signal to refuse EEPROM access by LAN.
366  *	The EEPROM map of SiS962 or SiS963 is different to SiS900.
367  *	The signature field in SiS962 or SiS963 spec is meaningless.
368  *	MAC address is read into @net_dev->dev_addr.
369  */
370 
371 static int sis96x_get_mac_addr(struct pci_dev *pci_dev,
372 			       struct net_device *net_dev)
373 {
374 	struct sis900_private *sis_priv = netdev_priv(net_dev);
375 	void __iomem *ioaddr = sis_priv->ioaddr;
376 	int wait, rc = 0;
377 
378 	sw32(mear, EEREQ);
379 	for (wait = 0; wait < 2000; wait++) {
380 		if (sr32(mear) & EEGNT) {
381 			u16 *mac = (u16 *)net_dev->dev_addr;
382 			int i;
383 
384 			/* get MAC address from EEPROM */
385 			for (i = 0; i < 3; i++)
386 			        mac[i] = read_eeprom(ioaddr, i + EEPROMMACAddr);
387 
388 			rc = 1;
389 			break;
390 		}
391 		udelay(1);
392 	}
393 	sw32(mear, EEDONE);
394 	return rc;
395 }
396 
397 static const struct net_device_ops sis900_netdev_ops = {
398 	.ndo_open		 = sis900_open,
399 	.ndo_stop		= sis900_close,
400 	.ndo_start_xmit		= sis900_start_xmit,
401 	.ndo_set_config		= sis900_set_config,
402 	.ndo_set_rx_mode	= set_rx_mode,
403 	.ndo_validate_addr	= eth_validate_addr,
404 	.ndo_set_mac_address 	= eth_mac_addr,
405 	.ndo_do_ioctl		= mii_ioctl,
406 	.ndo_tx_timeout		= sis900_tx_timeout,
407 #ifdef CONFIG_NET_POLL_CONTROLLER
408         .ndo_poll_controller	= sis900_poll,
409 #endif
410 };
411 
412 /**
413  *	sis900_probe - Probe for sis900 device
414  *	@pci_dev: the sis900 pci device
415  *	@pci_id: the pci device ID
416  *
417  *	Check and probe sis900 net device for @pci_dev.
418  *	Get mac address according to the chip revision,
419  *	and assign SiS900-specific entries in the device structure.
420  *	ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
421  */
422 
423 static int sis900_probe(struct pci_dev *pci_dev,
424 			const struct pci_device_id *pci_id)
425 {
426 	struct sis900_private *sis_priv;
427 	struct net_device *net_dev;
428 	struct pci_dev *dev;
429 	dma_addr_t ring_dma;
430 	void *ring_space;
431 	void __iomem *ioaddr;
432 	int i, ret;
433 	const char *card_name = card_names[pci_id->driver_data];
434 	const char *dev_name = pci_name(pci_dev);
435 
436 /* when built into the kernel, we only print version if device is found */
437 #ifndef MODULE
438 	static int printed_version;
439 	if (!printed_version++)
440 		printk(version);
441 #endif
442 
443 	/* setup various bits in PCI command register */
444 	ret = pci_enable_device(pci_dev);
445 	if(ret) return ret;
446 
447 	i = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
448 	if(i){
449 		printk(KERN_ERR "sis900.c: architecture does not support "
450 			"32bit PCI busmaster DMA\n");
451 		return i;
452 	}
453 
454 	pci_set_master(pci_dev);
455 
456 	net_dev = alloc_etherdev(sizeof(struct sis900_private));
457 	if (!net_dev)
458 		return -ENOMEM;
459 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
460 
461 	/* We do a request_region() to register /proc/ioports info. */
462 	ret = pci_request_regions(pci_dev, "sis900");
463 	if (ret)
464 		goto err_out;
465 
466 	/* IO region. */
467 	ioaddr = pci_iomap(pci_dev, 0, 0);
468 	if (!ioaddr) {
469 		ret = -ENOMEM;
470 		goto err_out_cleardev;
471 	}
472 
473 	sis_priv = netdev_priv(net_dev);
474 	sis_priv->ioaddr = ioaddr;
475 	sis_priv->pci_dev = pci_dev;
476 	spin_lock_init(&sis_priv->lock);
477 
478 	pci_set_drvdata(pci_dev, net_dev);
479 
480 	ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
481 	if (!ring_space) {
482 		ret = -ENOMEM;
483 		goto err_out_unmap;
484 	}
485 	sis_priv->tx_ring = ring_space;
486 	sis_priv->tx_ring_dma = ring_dma;
487 
488 	ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
489 	if (!ring_space) {
490 		ret = -ENOMEM;
491 		goto err_unmap_tx;
492 	}
493 	sis_priv->rx_ring = ring_space;
494 	sis_priv->rx_ring_dma = ring_dma;
495 
496 	/* The SiS900-specific entries in the device structure. */
497 	net_dev->netdev_ops = &sis900_netdev_ops;
498 	net_dev->watchdog_timeo = TX_TIMEOUT;
499 	net_dev->ethtool_ops = &sis900_ethtool_ops;
500 
501 	if (sis900_debug > 0)
502 		sis_priv->msg_enable = sis900_debug;
503 	else
504 		sis_priv->msg_enable = SIS900_DEF_MSG;
505 
506 	sis_priv->mii_info.dev = net_dev;
507 	sis_priv->mii_info.mdio_read = mdio_read;
508 	sis_priv->mii_info.mdio_write = mdio_write;
509 	sis_priv->mii_info.phy_id_mask = 0x1f;
510 	sis_priv->mii_info.reg_num_mask = 0x1f;
511 
512 	/* Get Mac address according to the chip revision */
513 	sis_priv->chipset_rev = pci_dev->revision;
514 	if(netif_msg_probe(sis_priv))
515 		printk(KERN_DEBUG "%s: detected revision %2.2x, "
516 				"trying to get MAC address...\n",
517 				dev_name, sis_priv->chipset_rev);
518 
519 	ret = 0;
520 	if (sis_priv->chipset_rev == SIS630E_900_REV)
521 		ret = sis630e_get_mac_addr(pci_dev, net_dev);
522 	else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
523 		ret = sis635_get_mac_addr(pci_dev, net_dev);
524 	else if (sis_priv->chipset_rev == SIS96x_900_REV)
525 		ret = sis96x_get_mac_addr(pci_dev, net_dev);
526 	else
527 		ret = sis900_get_mac_addr(pci_dev, net_dev);
528 
529 	if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) {
530 		eth_hw_addr_random(net_dev);
531 		printk(KERN_WARNING "%s: Unreadable or invalid MAC address,"
532 				"using random generated one\n", dev_name);
533 	}
534 
535 	/* 630ET : set the mii access mode as software-mode */
536 	if (sis_priv->chipset_rev == SIS630ET_900_REV)
537 		sw32(cr, ACCESSMODE | sr32(cr));
538 
539 	/* probe for mii transceiver */
540 	if (sis900_mii_probe(net_dev) == 0) {
541 		printk(KERN_WARNING "%s: Error probing MII device.\n",
542 		       dev_name);
543 		ret = -ENODEV;
544 		goto err_unmap_rx;
545 	}
546 
547 	/* save our host bridge revision */
548 	dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
549 	if (dev) {
550 		sis_priv->host_bridge_rev = dev->revision;
551 		pci_dev_put(dev);
552 	}
553 
554 	ret = register_netdev(net_dev);
555 	if (ret)
556 		goto err_unmap_rx;
557 
558 	/* print some information about our NIC */
559 	printk(KERN_INFO "%s: %s at 0x%p, IRQ %d, %pM\n",
560 	       net_dev->name, card_name, ioaddr, pci_dev->irq,
561 	       net_dev->dev_addr);
562 
563 	/* Detect Wake on Lan support */
564 	ret = (sr32(CFGPMC) & PMESP) >> 27;
565 	if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
566 		printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
567 
568 	return 0;
569 
570 err_unmap_rx:
571 	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
572 		sis_priv->rx_ring_dma);
573 err_unmap_tx:
574 	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
575 		sis_priv->tx_ring_dma);
576 err_out_unmap:
577 	pci_iounmap(pci_dev, ioaddr);
578 err_out_cleardev:
579 	pci_release_regions(pci_dev);
580  err_out:
581 	free_netdev(net_dev);
582 	return ret;
583 }
584 
585 /**
586  *	sis900_mii_probe - Probe MII PHY for sis900
587  *	@net_dev: the net device to probe for
588  *
589  *	Search for total of 32 possible mii phy addresses.
590  *	Identify and set current phy if found one,
591  *	return error if it failed to found.
592  */
593 
594 static int sis900_mii_probe(struct net_device *net_dev)
595 {
596 	struct sis900_private *sis_priv = netdev_priv(net_dev);
597 	const char *dev_name = pci_name(sis_priv->pci_dev);
598 	u16 poll_bit = MII_STAT_LINK, status = 0;
599 	unsigned long timeout = jiffies + 5 * HZ;
600 	int phy_addr;
601 
602 	sis_priv->mii = NULL;
603 
604 	/* search for total of 32 possible mii phy addresses */
605 	for (phy_addr = 0; phy_addr < 32; phy_addr++) {
606 		struct mii_phy * mii_phy = NULL;
607 		u16 mii_status;
608 		int i;
609 
610 		mii_phy = NULL;
611 		for(i = 0; i < 2; i++)
612 			mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
613 
614 		if (mii_status == 0xffff || mii_status == 0x0000) {
615 			if (netif_msg_probe(sis_priv))
616 				printk(KERN_DEBUG "%s: MII at address %d"
617 						" not accessible\n",
618 						dev_name, phy_addr);
619 			continue;
620 		}
621 
622 		if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
623 			mii_phy = sis_priv->first_mii;
624 			while (mii_phy) {
625 				struct mii_phy *phy;
626 				phy = mii_phy;
627 				mii_phy = mii_phy->next;
628 				kfree(phy);
629 			}
630 			return 0;
631 		}
632 
633 		mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
634 		mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
635 		mii_phy->phy_addr = phy_addr;
636 		mii_phy->status = mii_status;
637 		mii_phy->next = sis_priv->mii;
638 		sis_priv->mii = mii_phy;
639 		sis_priv->first_mii = mii_phy;
640 
641 		for (i = 0; mii_chip_table[i].phy_id1; i++)
642 			if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
643 			    ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
644 				mii_phy->phy_types = mii_chip_table[i].phy_types;
645 				if (mii_chip_table[i].phy_types == MIX)
646 					mii_phy->phy_types =
647 					    (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
648 				printk(KERN_INFO "%s: %s transceiver found "
649 							"at address %d.\n",
650 							dev_name,
651 							mii_chip_table[i].name,
652 							phy_addr);
653 				break;
654 			}
655 
656 		if( !mii_chip_table[i].phy_id1 ) {
657 			printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
658 			       dev_name, phy_addr);
659 			mii_phy->phy_types = UNKNOWN;
660 		}
661 	}
662 
663 	if (sis_priv->mii == NULL) {
664 		printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
665 		return 0;
666 	}
667 
668 	/* select default PHY for mac */
669 	sis_priv->mii = NULL;
670 	sis900_default_phy( net_dev );
671 
672 	/* Reset phy if default phy is internal sis900 */
673         if ((sis_priv->mii->phy_id0 == 0x001D) &&
674 	    ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
675         	status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
676 
677         /* workaround for ICS1893 PHY */
678         if ((sis_priv->mii->phy_id0 == 0x0015) &&
679             ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
680             	mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
681 
682 	if(status & MII_STAT_LINK){
683 		while (poll_bit) {
684 			yield();
685 
686 			poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
687 			if (time_after_eq(jiffies, timeout)) {
688 				printk(KERN_WARNING "%s: reset phy and link down now\n",
689 				       dev_name);
690 				return -ETIME;
691 			}
692 		}
693 	}
694 
695 	if (sis_priv->chipset_rev == SIS630E_900_REV) {
696 		/* SiS 630E has some bugs on default value of PHY registers */
697 		mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
698 		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
699 		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
700 		mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
701 		//mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
702 	}
703 
704 	if (sis_priv->mii->status & MII_STAT_LINK)
705 		netif_carrier_on(net_dev);
706 	else
707 		netif_carrier_off(net_dev);
708 
709 	return 1;
710 }
711 
712 /**
713  *	sis900_default_phy - Select default PHY for sis900 mac.
714  *	@net_dev: the net device to probe for
715  *
716  *	Select first detected PHY with link as default.
717  *	If no one is link on, select PHY whose types is HOME as default.
718  *	If HOME doesn't exist, select LAN.
719  */
720 
721 static u16 sis900_default_phy(struct net_device * net_dev)
722 {
723 	struct sis900_private *sis_priv = netdev_priv(net_dev);
724  	struct mii_phy *phy = NULL, *phy_home = NULL,
725 		*default_phy = NULL, *phy_lan = NULL;
726 	u16 status;
727 
728         for (phy=sis_priv->first_mii; phy; phy=phy->next) {
729 		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
730 		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
731 
732 		/* Link ON & Not select default PHY & not ghost PHY */
733 		 if ((status & MII_STAT_LINK) && !default_phy &&
734 					(phy->phy_types != UNKNOWN))
735 		 	default_phy = phy;
736 		 else {
737 			status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
738 			mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
739 				status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
740 			if (phy->phy_types == HOME)
741 				phy_home = phy;
742 			else if(phy->phy_types == LAN)
743 				phy_lan = phy;
744 		 }
745 	}
746 
747 	if (!default_phy && phy_home)
748 		default_phy = phy_home;
749 	else if (!default_phy && phy_lan)
750 		default_phy = phy_lan;
751 	else if (!default_phy)
752 		default_phy = sis_priv->first_mii;
753 
754 	if (sis_priv->mii != default_phy) {
755 		sis_priv->mii = default_phy;
756 		sis_priv->cur_phy = default_phy->phy_addr;
757 		printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
758 		       pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
759 	}
760 
761 	sis_priv->mii_info.phy_id = sis_priv->cur_phy;
762 
763 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
764 	status &= (~MII_CNTL_ISOLATE);
765 
766 	mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
767 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
768 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
769 
770 	return status;
771 }
772 
773 
774 /**
775  * 	sis900_set_capability - set the media capability of network adapter.
776  *	@net_dev : the net device to probe for
777  *	@phy : default PHY
778  *
779  *	Set the media capability of network adapter according to
780  *	mii status register. It's necessary before auto-negotiate.
781  */
782 
783 static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
784 {
785 	u16 cap;
786 	u16 status;
787 
788 	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
789 	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
790 
791 	cap = MII_NWAY_CSMA_CD |
792 		((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
793 		((phy->status & MII_STAT_CAN_TX)    ? MII_NWAY_TX:0) |
794 		((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
795 		((phy->status & MII_STAT_CAN_T)     ? MII_NWAY_T:0);
796 
797 	mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
798 }
799 
800 
801 /* Delay between EEPROM clock transitions. */
802 #define eeprom_delay()	sr32(mear)
803 
804 /**
805  *	read_eeprom - Read Serial EEPROM
806  *	@ioaddr: base i/o address
807  *	@location: the EEPROM location to read
808  *
809  *	Read Serial EEPROM through EEPROM Access Register.
810  *	Note that location is in word (16 bits) unit
811  */
812 
813 static u16 read_eeprom(void __iomem *ioaddr, int location)
814 {
815 	u32 read_cmd = location | EEread;
816 	int i;
817 	u16 retval = 0;
818 
819 	sw32(mear, 0);
820 	eeprom_delay();
821 	sw32(mear, EECS);
822 	eeprom_delay();
823 
824 	/* Shift the read command (9) bits out. */
825 	for (i = 8; i >= 0; i--) {
826 		u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
827 
828 		sw32(mear, dataval);
829 		eeprom_delay();
830 		sw32(mear, dataval | EECLK);
831 		eeprom_delay();
832 	}
833 	sw32(mear, EECS);
834 	eeprom_delay();
835 
836 	/* read the 16-bits data in */
837 	for (i = 16; i > 0; i--) {
838 		sw32(mear, EECS);
839 		eeprom_delay();
840 		sw32(mear, EECS | EECLK);
841 		eeprom_delay();
842 		retval = (retval << 1) | ((sr32(mear) & EEDO) ? 1 : 0);
843 		eeprom_delay();
844 	}
845 
846 	/* Terminate the EEPROM access. */
847 	sw32(mear, 0);
848 	eeprom_delay();
849 
850 	return retval;
851 }
852 
853 /* Read and write the MII management registers using software-generated
854    serial MDIO protocol. Note that the command bits and data bits are
855    send out separately */
856 #define mdio_delay()	sr32(mear)
857 
858 static void mdio_idle(struct sis900_private *sp)
859 {
860 	void __iomem *ioaddr = sp->ioaddr;
861 
862 	sw32(mear, MDIO | MDDIR);
863 	mdio_delay();
864 	sw32(mear, MDIO | MDDIR | MDC);
865 }
866 
867 /* Synchronize the MII management interface by shifting 32 one bits out. */
868 static void mdio_reset(struct sis900_private *sp)
869 {
870 	void __iomem *ioaddr = sp->ioaddr;
871 	int i;
872 
873 	for (i = 31; i >= 0; i--) {
874 		sw32(mear, MDDIR | MDIO);
875 		mdio_delay();
876 		sw32(mear, MDDIR | MDIO | MDC);
877 		mdio_delay();
878 	}
879 }
880 
881 /**
882  *	mdio_read - read MII PHY register
883  *	@net_dev: the net device to read
884  *	@phy_id: the phy address to read
885  *	@location: the phy regiester id to read
886  *
887  *	Read MII registers through MDIO and MDC
888  *	using MDIO management frame structure and protocol(defined by ISO/IEC).
889  *	Please see SiS7014 or ICS spec
890  */
891 
892 static int mdio_read(struct net_device *net_dev, int phy_id, int location)
893 {
894 	int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
895 	struct sis900_private *sp = netdev_priv(net_dev);
896 	void __iomem *ioaddr = sp->ioaddr;
897 	u16 retval = 0;
898 	int i;
899 
900 	mdio_reset(sp);
901 	mdio_idle(sp);
902 
903 	for (i = 15; i >= 0; i--) {
904 		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
905 
906 		sw32(mear, dataval);
907 		mdio_delay();
908 		sw32(mear, dataval | MDC);
909 		mdio_delay();
910 	}
911 
912 	/* Read the 16 data bits. */
913 	for (i = 16; i > 0; i--) {
914 		sw32(mear, 0);
915 		mdio_delay();
916 		retval = (retval << 1) | ((sr32(mear) & MDIO) ? 1 : 0);
917 		sw32(mear, MDC);
918 		mdio_delay();
919 	}
920 	sw32(mear, 0x00);
921 
922 	return retval;
923 }
924 
925 /**
926  *	mdio_write - write MII PHY register
927  *	@net_dev: the net device to write
928  *	@phy_id: the phy address to write
929  *	@location: the phy regiester id to write
930  *	@value: the register value to write with
931  *
932  *	Write MII registers with @value through MDIO and MDC
933  *	using MDIO management frame structure and protocol(defined by ISO/IEC)
934  *	please see SiS7014 or ICS spec
935  */
936 
937 static void mdio_write(struct net_device *net_dev, int phy_id, int location,
938 			int value)
939 {
940 	int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
941 	struct sis900_private *sp = netdev_priv(net_dev);
942 	void __iomem *ioaddr = sp->ioaddr;
943 	int i;
944 
945 	mdio_reset(sp);
946 	mdio_idle(sp);
947 
948 	/* Shift the command bits out. */
949 	for (i = 15; i >= 0; i--) {
950 		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
951 
952 		sw8(mear, dataval);
953 		mdio_delay();
954 		sw8(mear, dataval | MDC);
955 		mdio_delay();
956 	}
957 	mdio_delay();
958 
959 	/* Shift the value bits out. */
960 	for (i = 15; i >= 0; i--) {
961 		int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
962 
963 		sw32(mear, dataval);
964 		mdio_delay();
965 		sw32(mear, dataval | MDC);
966 		mdio_delay();
967 	}
968 	mdio_delay();
969 
970 	/* Clear out extra bits. */
971 	for (i = 2; i > 0; i--) {
972 		sw8(mear, 0);
973 		mdio_delay();
974 		sw8(mear, MDC);
975 		mdio_delay();
976 	}
977 	sw32(mear, 0x00);
978 }
979 
980 
981 /**
982  *	sis900_reset_phy - reset sis900 mii phy.
983  *	@net_dev: the net device to write
984  *	@phy_addr: default phy address
985  *
986  *	Some specific phy can't work properly without reset.
987  *	This function will be called during initialization and
988  *	link status change from ON to DOWN.
989  */
990 
991 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
992 {
993 	int i;
994 	u16 status;
995 
996 	for (i = 0; i < 2; i++)
997 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
998 
999 	mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
1000 
1001 	return status;
1002 }
1003 
1004 #ifdef CONFIG_NET_POLL_CONTROLLER
1005 /*
1006  * Polling 'interrupt' - used by things like netconsole to send skbs
1007  * without having to re-enable interrupts. It's not called while
1008  * the interrupt routine is executing.
1009 */
1010 static void sis900_poll(struct net_device *dev)
1011 {
1012 	struct sis900_private *sp = netdev_priv(dev);
1013 	const int irq = sp->pci_dev->irq;
1014 
1015 	disable_irq(irq);
1016 	sis900_interrupt(irq, dev);
1017 	enable_irq(irq);
1018 }
1019 #endif
1020 
1021 /**
1022  *	sis900_open - open sis900 device
1023  *	@net_dev: the net device to open
1024  *
1025  *	Do some initialization and start net interface.
1026  *	enable interrupts and set sis900 timer.
1027  */
1028 
1029 static int
1030 sis900_open(struct net_device *net_dev)
1031 {
1032 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1033 	void __iomem *ioaddr = sis_priv->ioaddr;
1034 	int ret;
1035 
1036 	/* Soft reset the chip. */
1037 	sis900_reset(net_dev);
1038 
1039 	/* Equalizer workaround Rule */
1040 	sis630_set_eq(net_dev, sis_priv->chipset_rev);
1041 
1042 	ret = request_irq(sis_priv->pci_dev->irq, sis900_interrupt, IRQF_SHARED,
1043 			  net_dev->name, net_dev);
1044 	if (ret)
1045 		return ret;
1046 
1047 	sis900_init_rxfilter(net_dev);
1048 
1049 	sis900_init_tx_ring(net_dev);
1050 	sis900_init_rx_ring(net_dev);
1051 
1052 	set_rx_mode(net_dev);
1053 
1054 	netif_start_queue(net_dev);
1055 
1056 	/* Workaround for EDB */
1057 	sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1058 
1059 	/* Enable all known interrupts by setting the interrupt mask. */
1060 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
1061 	sw32(cr, RxENA | sr32(cr));
1062 	sw32(ier, IE);
1063 
1064 	sis900_check_mode(net_dev, sis_priv->mii);
1065 
1066 	/* Set the timer to switch to check for link beat and perhaps switch
1067 	   to an alternate media type. */
1068 	timer_setup(&sis_priv->timer, sis900_timer, 0);
1069 	sis_priv->timer.expires = jiffies + HZ;
1070 	add_timer(&sis_priv->timer);
1071 
1072 	return 0;
1073 }
1074 
1075 /**
1076  *	sis900_init_rxfilter - Initialize the Rx filter
1077  *	@net_dev: the net device to initialize for
1078  *
1079  *	Set receive filter address to our MAC address
1080  *	and enable packet filtering.
1081  */
1082 
1083 static void
1084 sis900_init_rxfilter (struct net_device * net_dev)
1085 {
1086 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1087 	void __iomem *ioaddr = sis_priv->ioaddr;
1088 	u32 rfcrSave;
1089 	u32 i;
1090 
1091 	rfcrSave = sr32(rfcr);
1092 
1093 	/* disable packet filtering before setting filter */
1094 	sw32(rfcr, rfcrSave & ~RFEN);
1095 
1096 	/* load MAC addr to filter data register */
1097 	for (i = 0 ; i < 3 ; i++) {
1098 		u32 w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1099 
1100 		sw32(rfcr, i << RFADDR_shift);
1101 		sw32(rfdr, w);
1102 
1103 		if (netif_msg_hw(sis_priv)) {
1104 			printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n",
1105 			       net_dev->name, i, sr32(rfdr));
1106 		}
1107 	}
1108 
1109 	/* enable packet filtering */
1110 	sw32(rfcr, rfcrSave | RFEN);
1111 }
1112 
1113 /**
1114  *	sis900_init_tx_ring - Initialize the Tx descriptor ring
1115  *	@net_dev: the net device to initialize for
1116  *
1117  *	Initialize the Tx descriptor ring,
1118  */
1119 
1120 static void
1121 sis900_init_tx_ring(struct net_device *net_dev)
1122 {
1123 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1124 	void __iomem *ioaddr = sis_priv->ioaddr;
1125 	int i;
1126 
1127 	sis_priv->tx_full = 0;
1128 	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1129 
1130 	for (i = 0; i < NUM_TX_DESC; i++) {
1131 		sis_priv->tx_skbuff[i] = NULL;
1132 
1133 		sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1134 			((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1135 		sis_priv->tx_ring[i].cmdsts = 0;
1136 		sis_priv->tx_ring[i].bufptr = 0;
1137 	}
1138 
1139 	/* load Transmit Descriptor Register */
1140 	sw32(txdp, sis_priv->tx_ring_dma);
1141 	if (netif_msg_hw(sis_priv))
1142 		printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1143 		       net_dev->name, sr32(txdp));
1144 }
1145 
1146 /**
1147  *	sis900_init_rx_ring - Initialize the Rx descriptor ring
1148  *	@net_dev: the net device to initialize for
1149  *
1150  *	Initialize the Rx descriptor ring,
1151  *	and pre-allocate recevie buffers (socket buffer)
1152  */
1153 
1154 static void
1155 sis900_init_rx_ring(struct net_device *net_dev)
1156 {
1157 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1158 	void __iomem *ioaddr = sis_priv->ioaddr;
1159 	int i;
1160 
1161 	sis_priv->cur_rx = 0;
1162 	sis_priv->dirty_rx = 0;
1163 
1164 	/* init RX descriptor */
1165 	for (i = 0; i < NUM_RX_DESC; i++) {
1166 		sis_priv->rx_skbuff[i] = NULL;
1167 
1168 		sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1169 			((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1170 		sis_priv->rx_ring[i].cmdsts = 0;
1171 		sis_priv->rx_ring[i].bufptr = 0;
1172 	}
1173 
1174 	/* allocate sock buffers */
1175 	for (i = 0; i < NUM_RX_DESC; i++) {
1176 		struct sk_buff *skb;
1177 
1178 		if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1179 			/* not enough memory for skbuff, this makes a "hole"
1180 			   on the buffer ring, it is not clear how the
1181 			   hardware will react to this kind of degenerated
1182 			   buffer */
1183 			break;
1184 		}
1185 		sis_priv->rx_skbuff[i] = skb;
1186 		sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1187 		sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1188 				skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1189 		if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1190 				sis_priv->rx_ring[i].bufptr))) {
1191 			dev_kfree_skb(skb);
1192 			sis_priv->rx_skbuff[i] = NULL;
1193 			break;
1194 		}
1195 	}
1196 	sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1197 
1198 	/* load Receive Descriptor Register */
1199 	sw32(rxdp, sis_priv->rx_ring_dma);
1200 	if (netif_msg_hw(sis_priv))
1201 		printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1202 		       net_dev->name, sr32(rxdp));
1203 }
1204 
1205 /**
1206  *	sis630_set_eq - set phy equalizer value for 630 LAN
1207  *	@net_dev: the net device to set equalizer value
1208  *	@revision: 630 LAN revision number
1209  *
1210  *	630E equalizer workaround rule(Cyrus Huang 08/15)
1211  *	PHY register 14h(Test)
1212  *	Bit 14: 0 -- Automatically detect (default)
1213  *		1 -- Manually set Equalizer filter
1214  *	Bit 13: 0 -- (Default)
1215  *		1 -- Speed up convergence of equalizer setting
1216  *	Bit 9 : 0 -- (Default)
1217  *		1 -- Disable Baseline Wander
1218  *	Bit 3~7   -- Equalizer filter setting
1219  *	Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1220  *	Then calculate equalizer value
1221  *	Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1222  *	Link Off:Set Bit 13 to 1, Bit 14 to 0
1223  *	Calculate Equalizer value:
1224  *	When Link is ON and Bit 14 is 0, SIS900PHY will auto-detect proper equalizer value.
1225  *	When the equalizer is stable, this value is not a fixed value. It will be within
1226  *	a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1227  *	0 <= max <= 4  --> set equalizer to max
1228  *	5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1229  *	max >= 15      --> set equalizer to max+5 or set equalizer to max+6 if max == min
1230  */
1231 
1232 static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1233 {
1234 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1235 	u16 reg14h, eq_value=0, max_value=0, min_value=0;
1236 	int i, maxcount=10;
1237 
1238 	if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1239 	       revision == SIS630A_900_REV || revision ==  SIS630ET_900_REV) )
1240 		return;
1241 
1242 	if (netif_carrier_ok(net_dev)) {
1243 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1244 		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1245 					(0x2200 | reg14h) & 0xBFFF);
1246 		for (i=0; i < maxcount; i++) {
1247 			eq_value = (0x00F8 & mdio_read(net_dev,
1248 					sis_priv->cur_phy, MII_RESV)) >> 3;
1249 			if (i == 0)
1250 				max_value=min_value=eq_value;
1251 			max_value = (eq_value > max_value) ?
1252 						eq_value : max_value;
1253 			min_value = (eq_value < min_value) ?
1254 						eq_value : min_value;
1255 		}
1256 		/* 630E rule to determine the equalizer value */
1257 		if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1258 		    revision == SIS630ET_900_REV) {
1259 			if (max_value < 5)
1260 				eq_value = max_value;
1261 			else if (max_value >= 5 && max_value < 15)
1262 				eq_value = (max_value == min_value) ?
1263 						max_value+2 : max_value+1;
1264 			else if (max_value >= 15)
1265 				eq_value=(max_value == min_value) ?
1266 						max_value+6 : max_value+5;
1267 		}
1268 		/* 630B0&B1 rule to determine the equalizer value */
1269 		if (revision == SIS630A_900_REV &&
1270 		    (sis_priv->host_bridge_rev == SIS630B0 ||
1271 		     sis_priv->host_bridge_rev == SIS630B1)) {
1272 			if (max_value == 0)
1273 				eq_value = 3;
1274 			else
1275 				eq_value = (max_value + min_value + 1)/2;
1276 		}
1277 		/* write equalizer value and setting */
1278 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1279 		reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1280 		reg14h = (reg14h | 0x6000) & 0xFDFF;
1281 		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1282 	} else {
1283 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1284 		if (revision == SIS630A_900_REV &&
1285 		    (sis_priv->host_bridge_rev == SIS630B0 ||
1286 		     sis_priv->host_bridge_rev == SIS630B1))
1287 			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1288 						(reg14h | 0x2200) & 0xBFFF);
1289 		else
1290 			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1291 						(reg14h | 0x2000) & 0xBFFF);
1292 	}
1293 }
1294 
1295 /**
1296  *	sis900_timer - sis900 timer routine
1297  *	@data: pointer to sis900 net device
1298  *
1299  *	On each timer ticks we check two things,
1300  *	link status (ON/OFF) and link mode (10/100/Full/Half)
1301  */
1302 
1303 static void sis900_timer(struct timer_list *t)
1304 {
1305 	struct sis900_private *sis_priv = from_timer(sis_priv, t, timer);
1306 	struct net_device *net_dev = sis_priv->mii_info.dev;
1307 	struct mii_phy *mii_phy = sis_priv->mii;
1308 	static const int next_tick = 5*HZ;
1309 	int speed = 0, duplex = 0;
1310 	u16 status;
1311 
1312 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1313 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1314 
1315 	/* Link OFF -> ON */
1316 	if (!netif_carrier_ok(net_dev)) {
1317 	LookForLink:
1318 		/* Search for new PHY */
1319 		status = sis900_default_phy(net_dev);
1320 		mii_phy = sis_priv->mii;
1321 
1322 		if (status & MII_STAT_LINK) {
1323 			WARN_ON(!(status & MII_STAT_AUTO_DONE));
1324 
1325 			sis900_read_mode(net_dev, &speed, &duplex);
1326 			if (duplex) {
1327 				sis900_set_mode(sis_priv, speed, duplex);
1328 				sis630_set_eq(net_dev, sis_priv->chipset_rev);
1329 				netif_carrier_on(net_dev);
1330 			}
1331 		}
1332 	} else {
1333 	/* Link ON -> OFF */
1334                 if (!(status & MII_STAT_LINK)){
1335                 	netif_carrier_off(net_dev);
1336 			if(netif_msg_link(sis_priv))
1337                 		printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1338 
1339                 	/* Change mode issue */
1340                 	if ((mii_phy->phy_id0 == 0x001D) &&
1341 			    ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1342                			sis900_reset_phy(net_dev,  sis_priv->cur_phy);
1343 
1344 			sis630_set_eq(net_dev, sis_priv->chipset_rev);
1345 
1346                 	goto LookForLink;
1347                 }
1348 	}
1349 
1350 	sis_priv->timer.expires = jiffies + next_tick;
1351 	add_timer(&sis_priv->timer);
1352 }
1353 
1354 /**
1355  *	sis900_check_mode - check the media mode for sis900
1356  *	@net_dev: the net device to be checked
1357  *	@mii_phy: the mii phy
1358  *
1359  *	Older driver gets the media mode from mii status output
1360  *	register. Now we set our media capability and auto-negotiate
1361  *	to get the upper bound of speed and duplex between two ends.
1362  *	If the types of mii phy is HOME, it doesn't need to auto-negotiate
1363  *	and autong_complete should be set to 1.
1364  */
1365 
1366 static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1367 {
1368 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1369 	void __iomem *ioaddr = sis_priv->ioaddr;
1370 	int speed, duplex;
1371 
1372 	if (mii_phy->phy_types == LAN) {
1373 		sw32(cfg, ~EXD & sr32(cfg));
1374 		sis900_set_capability(net_dev , mii_phy);
1375 		sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1376 	} else {
1377 		sw32(cfg, EXD | sr32(cfg));
1378 		speed = HW_SPEED_HOME;
1379 		duplex = FDX_CAPABLE_HALF_SELECTED;
1380 		sis900_set_mode(sis_priv, speed, duplex);
1381 		sis_priv->autong_complete = 1;
1382 	}
1383 }
1384 
1385 /**
1386  *	sis900_set_mode - Set the media mode of mac register.
1387  *	@sp:     the device private data
1388  *	@speed : the transmit speed to be determined
1389  *	@duplex: the duplex mode to be determined
1390  *
1391  *	Set the media mode of mac register txcfg/rxcfg according to
1392  *	speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1393  *	bus is used instead of PCI bus. When this bit is set 1, the
1394  *	Max DMA Burst Size for TX/RX DMA should be no larger than 16
1395  *	double words.
1396  */
1397 
1398 static void sis900_set_mode(struct sis900_private *sp, int speed, int duplex)
1399 {
1400 	void __iomem *ioaddr = sp->ioaddr;
1401 	u32 tx_flags = 0, rx_flags = 0;
1402 
1403 	if (sr32( cfg) & EDB_MASTER_EN) {
1404 		tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1405 					(TX_FILL_THRESH << TxFILLT_shift);
1406 		rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1407 	} else {
1408 		tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1409 					(TX_FILL_THRESH << TxFILLT_shift);
1410 		rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1411 	}
1412 
1413 	if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1414 		rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1415 		tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1416 	} else {
1417 		rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1418 		tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1419 	}
1420 
1421 	if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1422 		tx_flags |= (TxCSI | TxHBI);
1423 		rx_flags |= RxATX;
1424 	}
1425 
1426 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1427 	/* Can accept Jumbo packet */
1428 	rx_flags |= RxAJAB;
1429 #endif
1430 
1431 	sw32(txcfg, tx_flags);
1432 	sw32(rxcfg, rx_flags);
1433 }
1434 
1435 /**
1436  *	sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1437  *	@net_dev: the net device to read mode for
1438  *	@phy_addr: mii phy address
1439  *
1440  *	If the adapter is link-on, set the auto-negotiate enable/reset bit.
1441  *	autong_complete should be set to 0 when starting auto-negotiation.
1442  *	autong_complete should be set to 1 if we didn't start auto-negotiation.
1443  *	sis900_timer will wait for link on again if autong_complete = 0.
1444  */
1445 
1446 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1447 {
1448 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1449 	int i = 0;
1450 	u32 status;
1451 
1452 	for (i = 0; i < 2; i++)
1453 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1454 
1455 	if (!(status & MII_STAT_LINK)){
1456 		if(netif_msg_link(sis_priv))
1457 			printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1458 		sis_priv->autong_complete = 1;
1459 		netif_carrier_off(net_dev);
1460 		return;
1461 	}
1462 
1463 	/* (Re)start AutoNegotiate */
1464 	mdio_write(net_dev, phy_addr, MII_CONTROL,
1465 		   MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1466 	sis_priv->autong_complete = 0;
1467 }
1468 
1469 
1470 /**
1471  *	sis900_read_mode - read media mode for sis900 internal phy
1472  *	@net_dev: the net device to read mode for
1473  *	@speed  : the transmit speed to be determined
1474  *	@duplex : the duplex mode to be determined
1475  *
1476  *	The capability of remote end will be put in mii register autorec
1477  *	after auto-negotiation. Use AND operation to get the upper bound
1478  *	of speed and duplex between two ends.
1479  */
1480 
1481 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1482 {
1483 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1484 	struct mii_phy *phy = sis_priv->mii;
1485 	int phy_addr = sis_priv->cur_phy;
1486 	u32 status;
1487 	u16 autoadv, autorec;
1488 	int i;
1489 
1490 	for (i = 0; i < 2; i++)
1491 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1492 
1493 	if (!(status & MII_STAT_LINK))
1494 		return;
1495 
1496 	/* AutoNegotiate completed */
1497 	autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1498 	autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1499 	status = autoadv & autorec;
1500 
1501 	*speed = HW_SPEED_10_MBPS;
1502 	*duplex = FDX_CAPABLE_HALF_SELECTED;
1503 
1504 	if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1505 		*speed = HW_SPEED_100_MBPS;
1506 	if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1507 		*duplex = FDX_CAPABLE_FULL_SELECTED;
1508 
1509 	sis_priv->autong_complete = 1;
1510 
1511 	/* Workaround for Realtek RTL8201 PHY issue */
1512 	if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1513 		if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1514 			*duplex = FDX_CAPABLE_FULL_SELECTED;
1515 		if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1516 			*speed = HW_SPEED_100_MBPS;
1517 	}
1518 
1519 	if(netif_msg_link(sis_priv))
1520 		printk(KERN_INFO "%s: Media Link On %s %s-duplex\n",
1521 	       				net_dev->name,
1522 	       				*speed == HW_SPEED_100_MBPS ?
1523 	       					"100mbps" : "10mbps",
1524 	       				*duplex == FDX_CAPABLE_FULL_SELECTED ?
1525 	       					"full" : "half");
1526 }
1527 
1528 /**
1529  *	sis900_tx_timeout - sis900 transmit timeout routine
1530  *	@net_dev: the net device to transmit
1531  *
1532  *	print transmit timeout status
1533  *	disable interrupts and do some tasks
1534  */
1535 
1536 static void sis900_tx_timeout(struct net_device *net_dev)
1537 {
1538 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1539 	void __iomem *ioaddr = sis_priv->ioaddr;
1540 	unsigned long flags;
1541 	int i;
1542 
1543 	if (netif_msg_tx_err(sis_priv)) {
1544 		printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n",
1545 			net_dev->name, sr32(cr), sr32(isr));
1546 	}
1547 
1548 	/* Disable interrupts by clearing the interrupt mask. */
1549 	sw32(imr, 0x0000);
1550 
1551 	/* use spinlock to prevent interrupt handler accessing buffer ring */
1552 	spin_lock_irqsave(&sis_priv->lock, flags);
1553 
1554 	/* discard unsent packets */
1555 	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1556 	for (i = 0; i < NUM_TX_DESC; i++) {
1557 		struct sk_buff *skb = sis_priv->tx_skbuff[i];
1558 
1559 		if (skb) {
1560 			pci_unmap_single(sis_priv->pci_dev,
1561 				sis_priv->tx_ring[i].bufptr, skb->len,
1562 				PCI_DMA_TODEVICE);
1563 			dev_kfree_skb_irq(skb);
1564 			sis_priv->tx_skbuff[i] = NULL;
1565 			sis_priv->tx_ring[i].cmdsts = 0;
1566 			sis_priv->tx_ring[i].bufptr = 0;
1567 			net_dev->stats.tx_dropped++;
1568 		}
1569 	}
1570 	sis_priv->tx_full = 0;
1571 	netif_wake_queue(net_dev);
1572 
1573 	spin_unlock_irqrestore(&sis_priv->lock, flags);
1574 
1575 	netif_trans_update(net_dev); /* prevent tx timeout */
1576 
1577 	/* load Transmit Descriptor Register */
1578 	sw32(txdp, sis_priv->tx_ring_dma);
1579 
1580 	/* Enable all known interrupts by setting the interrupt mask. */
1581 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
1582 }
1583 
1584 /**
1585  *	sis900_start_xmit - sis900 start transmit routine
1586  *	@skb: socket buffer pointer to put the data being transmitted
1587  *	@net_dev: the net device to transmit with
1588  *
1589  *	Set the transmit buffer descriptor,
1590  *	and write TxENA to enable transmit state machine.
1591  *	tell upper layer if the buffer is full
1592  */
1593 
1594 static netdev_tx_t
1595 sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1596 {
1597 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1598 	void __iomem *ioaddr = sis_priv->ioaddr;
1599 	unsigned int  entry;
1600 	unsigned long flags;
1601 	unsigned int  index_cur_tx, index_dirty_tx;
1602 	unsigned int  count_dirty_tx;
1603 
1604 	spin_lock_irqsave(&sis_priv->lock, flags);
1605 
1606 	/* Calculate the next Tx descriptor entry. */
1607 	entry = sis_priv->cur_tx % NUM_TX_DESC;
1608 	sis_priv->tx_skbuff[entry] = skb;
1609 
1610 	/* set the transmit buffer descriptor and enable Transmit State Machine */
1611 	sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1612 		skb->data, skb->len, PCI_DMA_TODEVICE);
1613 	if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1614 		sis_priv->tx_ring[entry].bufptr))) {
1615 			dev_kfree_skb_any(skb);
1616 			sis_priv->tx_skbuff[entry] = NULL;
1617 			net_dev->stats.tx_dropped++;
1618 			spin_unlock_irqrestore(&sis_priv->lock, flags);
1619 			return NETDEV_TX_OK;
1620 	}
1621 	sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len);
1622 	sw32(cr, TxENA | sr32(cr));
1623 
1624 	sis_priv->cur_tx ++;
1625 	index_cur_tx = sis_priv->cur_tx;
1626 	index_dirty_tx = sis_priv->dirty_tx;
1627 
1628 	for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1629 		count_dirty_tx ++;
1630 
1631 	if (index_cur_tx == index_dirty_tx) {
1632 		/* dirty_tx is met in the cycle of cur_tx, buffer full */
1633 		sis_priv->tx_full = 1;
1634 		netif_stop_queue(net_dev);
1635 	} else if (count_dirty_tx < NUM_TX_DESC) {
1636 		/* Typical path, tell upper layer that more transmission is possible */
1637 		netif_start_queue(net_dev);
1638 	} else {
1639 		/* buffer full, tell upper layer no more transmission */
1640 		sis_priv->tx_full = 1;
1641 		netif_stop_queue(net_dev);
1642 	}
1643 
1644 	spin_unlock_irqrestore(&sis_priv->lock, flags);
1645 
1646 	if (netif_msg_tx_queued(sis_priv))
1647 		printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1648 		       "to slot %d.\n",
1649 		       net_dev->name, skb->data, (int)skb->len, entry);
1650 
1651 	return NETDEV_TX_OK;
1652 }
1653 
1654 /**
1655  *	sis900_interrupt - sis900 interrupt handler
1656  *	@irq: the irq number
1657  *	@dev_instance: the client data object
1658  *
1659  *	The interrupt handler does all of the Rx thread work,
1660  *	and cleans up after the Tx thread
1661  */
1662 
1663 static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1664 {
1665 	struct net_device *net_dev = dev_instance;
1666 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1667 	int boguscnt = max_interrupt_work;
1668 	void __iomem *ioaddr = sis_priv->ioaddr;
1669 	u32 status;
1670 	unsigned int handled = 0;
1671 
1672 	spin_lock (&sis_priv->lock);
1673 
1674 	do {
1675 		status = sr32(isr);
1676 
1677 		if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0)
1678 			/* nothing intresting happened */
1679 			break;
1680 		handled = 1;
1681 
1682 		/* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1683 		if (status & (RxORN | RxERR | RxOK))
1684 			/* Rx interrupt */
1685 			sis900_rx(net_dev);
1686 
1687 		if (status & (TxURN | TxERR | TxIDLE))
1688 			/* Tx interrupt */
1689 			sis900_finish_xmit(net_dev);
1690 
1691 		/* something strange happened !!! */
1692 		if (status & HIBERR) {
1693 			if(netif_msg_intr(sis_priv))
1694 				printk(KERN_INFO "%s: Abnormal interrupt, "
1695 					"status %#8.8x.\n", net_dev->name, status);
1696 			break;
1697 		}
1698 		if (--boguscnt < 0) {
1699 			if(netif_msg_intr(sis_priv))
1700 				printk(KERN_INFO "%s: Too much work at interrupt, "
1701 					"interrupt status = %#8.8x.\n",
1702 					net_dev->name, status);
1703 			break;
1704 		}
1705 	} while (1);
1706 
1707 	if(netif_msg_intr(sis_priv))
1708 		printk(KERN_DEBUG "%s: exiting interrupt, "
1709 		       "interrupt status = %#8.8x\n",
1710 		       net_dev->name, sr32(isr));
1711 
1712 	spin_unlock (&sis_priv->lock);
1713 	return IRQ_RETVAL(handled);
1714 }
1715 
1716 /**
1717  *	sis900_rx - sis900 receive routine
1718  *	@net_dev: the net device which receives data
1719  *
1720  *	Process receive interrupt events,
1721  *	put buffer to higher layer and refill buffer pool
1722  *	Note: This function is called by interrupt handler,
1723  *	don't do "too much" work here
1724  */
1725 
1726 static int sis900_rx(struct net_device *net_dev)
1727 {
1728 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1729 	void __iomem *ioaddr = sis_priv->ioaddr;
1730 	unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1731 	u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1732 	int rx_work_limit;
1733 
1734 	if (netif_msg_rx_status(sis_priv))
1735 		printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1736 		       "status:0x%8.8x\n",
1737 		       sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1738 	rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1739 
1740 	while (rx_status & OWN) {
1741 		unsigned int rx_size;
1742 		unsigned int data_size;
1743 
1744 		if (--rx_work_limit < 0)
1745 			break;
1746 
1747 		data_size = rx_status & DSIZE;
1748 		rx_size = data_size - CRC_SIZE;
1749 
1750 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1751 		/* ``TOOLONG'' flag means jumbo packet received. */
1752 		if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1753 			rx_status &= (~ ((unsigned int)TOOLONG));
1754 #endif
1755 
1756 		if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1757 			/* corrupted packet received */
1758 			if (netif_msg_rx_err(sis_priv))
1759 				printk(KERN_DEBUG "%s: Corrupted packet "
1760 				       "received, buffer status = 0x%8.8x/%d.\n",
1761 				       net_dev->name, rx_status, data_size);
1762 			net_dev->stats.rx_errors++;
1763 			if (rx_status & OVERRUN)
1764 				net_dev->stats.rx_over_errors++;
1765 			if (rx_status & (TOOLONG|RUNT))
1766 				net_dev->stats.rx_length_errors++;
1767 			if (rx_status & (RXISERR | FAERR))
1768 				net_dev->stats.rx_frame_errors++;
1769 			if (rx_status & CRCERR)
1770 				net_dev->stats.rx_crc_errors++;
1771 			/* reset buffer descriptor state */
1772 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1773 		} else {
1774 			struct sk_buff * skb;
1775 			struct sk_buff * rx_skb;
1776 
1777 			pci_unmap_single(sis_priv->pci_dev,
1778 				sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1779 				PCI_DMA_FROMDEVICE);
1780 
1781 			/* refill the Rx buffer, what if there is not enough
1782 			 * memory for new socket buffer ?? */
1783 			if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1784 				/*
1785 				 * Not enough memory to refill the buffer
1786 				 * so we need to recycle the old one so
1787 				 * as to avoid creating a memory hole
1788 				 * in the rx ring
1789 				 */
1790 				skb = sis_priv->rx_skbuff[entry];
1791 				net_dev->stats.rx_dropped++;
1792 				goto refill_rx_ring;
1793 			}
1794 
1795 			/* This situation should never happen, but due to
1796 			   some unknown bugs, it is possible that
1797 			   we are working on NULL sk_buff :-( */
1798 			if (sis_priv->rx_skbuff[entry] == NULL) {
1799 				if (netif_msg_rx_err(sis_priv))
1800 					printk(KERN_WARNING "%s: NULL pointer "
1801 					      "encountered in Rx ring\n"
1802 					      "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1803 					      net_dev->name, sis_priv->cur_rx,
1804 					      sis_priv->dirty_rx);
1805 				dev_kfree_skb(skb);
1806 				break;
1807 			}
1808 
1809 			/* give the socket buffer to upper layers */
1810 			rx_skb = sis_priv->rx_skbuff[entry];
1811 			skb_put(rx_skb, rx_size);
1812 			rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1813 			netif_rx(rx_skb);
1814 
1815 			/* some network statistics */
1816 			if ((rx_status & BCAST) == MCAST)
1817 				net_dev->stats.multicast++;
1818 			net_dev->stats.rx_bytes += rx_size;
1819 			net_dev->stats.rx_packets++;
1820 			sis_priv->dirty_rx++;
1821 refill_rx_ring:
1822 			sis_priv->rx_skbuff[entry] = skb;
1823 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1824 			sis_priv->rx_ring[entry].bufptr =
1825 				pci_map_single(sis_priv->pci_dev, skb->data,
1826 					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1827 			if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1828 				sis_priv->rx_ring[entry].bufptr))) {
1829 				dev_kfree_skb_irq(skb);
1830 				sis_priv->rx_skbuff[entry] = NULL;
1831 				break;
1832 			}
1833 		}
1834 		sis_priv->cur_rx++;
1835 		entry = sis_priv->cur_rx % NUM_RX_DESC;
1836 		rx_status = sis_priv->rx_ring[entry].cmdsts;
1837 	} // while
1838 
1839 	/* refill the Rx buffer, what if the rate of refilling is slower
1840 	 * than consuming ?? */
1841 	for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1842 		struct sk_buff *skb;
1843 
1844 		entry = sis_priv->dirty_rx % NUM_RX_DESC;
1845 
1846 		if (sis_priv->rx_skbuff[entry] == NULL) {
1847 			skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE);
1848 			if (skb == NULL) {
1849 				/* not enough memory for skbuff, this makes a
1850 				 * "hole" on the buffer ring, it is not clear
1851 				 * how the hardware will react to this kind
1852 				 * of degenerated buffer */
1853 				net_dev->stats.rx_dropped++;
1854 				break;
1855 			}
1856 			sis_priv->rx_skbuff[entry] = skb;
1857 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1858 			sis_priv->rx_ring[entry].bufptr =
1859 				pci_map_single(sis_priv->pci_dev, skb->data,
1860 					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1861 			if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1862 					sis_priv->rx_ring[entry].bufptr))) {
1863 				dev_kfree_skb_irq(skb);
1864 				sis_priv->rx_skbuff[entry] = NULL;
1865 				break;
1866 			}
1867 		}
1868 	}
1869 	/* re-enable the potentially idle receive state matchine */
1870 	sw32(cr , RxENA | sr32(cr));
1871 
1872 	return 0;
1873 }
1874 
1875 /**
1876  *	sis900_finish_xmit - finish up transmission of packets
1877  *	@net_dev: the net device to be transmitted on
1878  *
1879  *	Check for error condition and free socket buffer etc
1880  *	schedule for more transmission as needed
1881  *	Note: This function is called by interrupt handler,
1882  *	don't do "too much" work here
1883  */
1884 
1885 static void sis900_finish_xmit (struct net_device *net_dev)
1886 {
1887 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1888 
1889 	for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1890 		struct sk_buff *skb;
1891 		unsigned int entry;
1892 		u32 tx_status;
1893 
1894 		entry = sis_priv->dirty_tx % NUM_TX_DESC;
1895 		tx_status = sis_priv->tx_ring[entry].cmdsts;
1896 
1897 		if (tx_status & OWN) {
1898 			/* The packet is not transmitted yet (owned by hardware) !
1899 			 * Note: the interrupt is generated only when Tx Machine
1900 			 * is idle, so this is an almost impossible case */
1901 			break;
1902 		}
1903 
1904 		if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1905 			/* packet unsuccessfully transmitted */
1906 			if (netif_msg_tx_err(sis_priv))
1907 				printk(KERN_DEBUG "%s: Transmit "
1908 				       "error, Tx status %8.8x.\n",
1909 				       net_dev->name, tx_status);
1910 			net_dev->stats.tx_errors++;
1911 			if (tx_status & UNDERRUN)
1912 				net_dev->stats.tx_fifo_errors++;
1913 			if (tx_status & ABORT)
1914 				net_dev->stats.tx_aborted_errors++;
1915 			if (tx_status & NOCARRIER)
1916 				net_dev->stats.tx_carrier_errors++;
1917 			if (tx_status & OWCOLL)
1918 				net_dev->stats.tx_window_errors++;
1919 		} else {
1920 			/* packet successfully transmitted */
1921 			net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1922 			net_dev->stats.tx_bytes += tx_status & DSIZE;
1923 			net_dev->stats.tx_packets++;
1924 		}
1925 		/* Free the original skb. */
1926 		skb = sis_priv->tx_skbuff[entry];
1927 		pci_unmap_single(sis_priv->pci_dev,
1928 			sis_priv->tx_ring[entry].bufptr, skb->len,
1929 			PCI_DMA_TODEVICE);
1930 		dev_kfree_skb_irq(skb);
1931 		sis_priv->tx_skbuff[entry] = NULL;
1932 		sis_priv->tx_ring[entry].bufptr = 0;
1933 		sis_priv->tx_ring[entry].cmdsts = 0;
1934 	}
1935 
1936 	if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1937 	    sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1938 		/* The ring is no longer full, clear tx_full and schedule
1939 		 * more transmission by netif_wake_queue(net_dev) */
1940 		sis_priv->tx_full = 0;
1941 		netif_wake_queue (net_dev);
1942 	}
1943 }
1944 
1945 /**
1946  *	sis900_close - close sis900 device
1947  *	@net_dev: the net device to be closed
1948  *
1949  *	Disable interrupts, stop the Tx and Rx Status Machine
1950  *	free Tx and RX socket buffer
1951  */
1952 
1953 static int sis900_close(struct net_device *net_dev)
1954 {
1955 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1956 	struct pci_dev *pdev = sis_priv->pci_dev;
1957 	void __iomem *ioaddr = sis_priv->ioaddr;
1958 	struct sk_buff *skb;
1959 	int i;
1960 
1961 	netif_stop_queue(net_dev);
1962 
1963 	/* Disable interrupts by clearing the interrupt mask. */
1964 	sw32(imr, 0x0000);
1965 	sw32(ier, 0x0000);
1966 
1967 	/* Stop the chip's Tx and Rx Status Machine */
1968 	sw32(cr, RxDIS | TxDIS | sr32(cr));
1969 
1970 	del_timer(&sis_priv->timer);
1971 
1972 	free_irq(pdev->irq, net_dev);
1973 
1974 	/* Free Tx and RX skbuff */
1975 	for (i = 0; i < NUM_RX_DESC; i++) {
1976 		skb = sis_priv->rx_skbuff[i];
1977 		if (skb) {
1978 			pci_unmap_single(pdev, sis_priv->rx_ring[i].bufptr,
1979 					 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1980 			dev_kfree_skb(skb);
1981 			sis_priv->rx_skbuff[i] = NULL;
1982 		}
1983 	}
1984 	for (i = 0; i < NUM_TX_DESC; i++) {
1985 		skb = sis_priv->tx_skbuff[i];
1986 		if (skb) {
1987 			pci_unmap_single(pdev, sis_priv->tx_ring[i].bufptr,
1988 					 skb->len, PCI_DMA_TODEVICE);
1989 			dev_kfree_skb(skb);
1990 			sis_priv->tx_skbuff[i] = NULL;
1991 		}
1992 	}
1993 
1994 	/* Green! Put the chip in low-power mode. */
1995 
1996 	return 0;
1997 }
1998 
1999 /**
2000  *	sis900_get_drvinfo - Return information about driver
2001  *	@net_dev: the net device to probe
2002  *	@info: container for info returned
2003  *
2004  *	Process ethtool command such as "ehtool -i" to show information
2005  */
2006 
2007 static void sis900_get_drvinfo(struct net_device *net_dev,
2008 			       struct ethtool_drvinfo *info)
2009 {
2010 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2011 
2012 	strlcpy(info->driver, SIS900_MODULE_NAME, sizeof(info->driver));
2013 	strlcpy(info->version, SIS900_DRV_VERSION, sizeof(info->version));
2014 	strlcpy(info->bus_info, pci_name(sis_priv->pci_dev),
2015 		sizeof(info->bus_info));
2016 }
2017 
2018 static u32 sis900_get_msglevel(struct net_device *net_dev)
2019 {
2020 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2021 	return sis_priv->msg_enable;
2022 }
2023 
2024 static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
2025 {
2026 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2027 	sis_priv->msg_enable = value;
2028 }
2029 
2030 static u32 sis900_get_link(struct net_device *net_dev)
2031 {
2032 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2033 	return mii_link_ok(&sis_priv->mii_info);
2034 }
2035 
2036 static int sis900_get_link_ksettings(struct net_device *net_dev,
2037 				     struct ethtool_link_ksettings *cmd)
2038 {
2039 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2040 	spin_lock_irq(&sis_priv->lock);
2041 	mii_ethtool_get_link_ksettings(&sis_priv->mii_info, cmd);
2042 	spin_unlock_irq(&sis_priv->lock);
2043 	return 0;
2044 }
2045 
2046 static int sis900_set_link_ksettings(struct net_device *net_dev,
2047 				     const struct ethtool_link_ksettings *cmd)
2048 {
2049 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2050 	int rt;
2051 	spin_lock_irq(&sis_priv->lock);
2052 	rt = mii_ethtool_set_link_ksettings(&sis_priv->mii_info, cmd);
2053 	spin_unlock_irq(&sis_priv->lock);
2054 	return rt;
2055 }
2056 
2057 static int sis900_nway_reset(struct net_device *net_dev)
2058 {
2059 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2060 	return mii_nway_restart(&sis_priv->mii_info);
2061 }
2062 
2063 /**
2064  *	sis900_set_wol - Set up Wake on Lan registers
2065  *	@net_dev: the net device to probe
2066  *	@wol: container for info passed to the driver
2067  *
2068  *	Process ethtool command "wol" to setup wake on lan features.
2069  *	SiS900 supports sending WoL events if a correct packet is received,
2070  *	but there is no simple way to filter them to only a subset (broadcast,
2071  *	multicast, unicast or arp).
2072  */
2073 
2074 static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2075 {
2076 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2077 	void __iomem *ioaddr = sis_priv->ioaddr;
2078 	u32 cfgpmcsr = 0, pmctrl_bits = 0;
2079 
2080 	if (wol->wolopts == 0) {
2081 		pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2082 		cfgpmcsr &= ~PME_EN;
2083 		pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2084 		sw32(pmctrl, pmctrl_bits);
2085 		if (netif_msg_wol(sis_priv))
2086 			printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2087 		return 0;
2088 	}
2089 
2090 	if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2091 				| WAKE_BCAST | WAKE_ARP))
2092 		return -EINVAL;
2093 
2094 	if (wol->wolopts & WAKE_MAGIC)
2095 		pmctrl_bits |= MAGICPKT;
2096 	if (wol->wolopts & WAKE_PHY)
2097 		pmctrl_bits |= LINKON;
2098 
2099 	sw32(pmctrl, pmctrl_bits);
2100 
2101 	pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2102 	cfgpmcsr |= PME_EN;
2103 	pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2104 	if (netif_msg_wol(sis_priv))
2105 		printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2106 
2107 	return 0;
2108 }
2109 
2110 static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2111 {
2112 	struct sis900_private *sp = netdev_priv(net_dev);
2113 	void __iomem *ioaddr = sp->ioaddr;
2114 	u32 pmctrl_bits;
2115 
2116 	pmctrl_bits = sr32(pmctrl);
2117 	if (pmctrl_bits & MAGICPKT)
2118 		wol->wolopts |= WAKE_MAGIC;
2119 	if (pmctrl_bits & LINKON)
2120 		wol->wolopts |= WAKE_PHY;
2121 
2122 	wol->supported = (WAKE_PHY | WAKE_MAGIC);
2123 }
2124 
2125 static const struct ethtool_ops sis900_ethtool_ops = {
2126 	.get_drvinfo 	= sis900_get_drvinfo,
2127 	.get_msglevel	= sis900_get_msglevel,
2128 	.set_msglevel	= sis900_set_msglevel,
2129 	.get_link	= sis900_get_link,
2130 	.nway_reset	= sis900_nway_reset,
2131 	.get_wol	= sis900_get_wol,
2132 	.set_wol	= sis900_set_wol,
2133 	.get_link_ksettings = sis900_get_link_ksettings,
2134 	.set_link_ksettings = sis900_set_link_ksettings,
2135 };
2136 
2137 /**
2138  *	mii_ioctl - process MII i/o control command
2139  *	@net_dev: the net device to command for
2140  *	@rq: parameter for command
2141  *	@cmd: the i/o command
2142  *
2143  *	Process MII command like read/write MII register
2144  */
2145 
2146 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2147 {
2148 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2149 	struct mii_ioctl_data *data = if_mii(rq);
2150 
2151 	switch(cmd) {
2152 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2153 		data->phy_id = sis_priv->mii->phy_addr;
2154 		/* Fall Through */
2155 
2156 	case SIOCGMIIREG:		/* Read MII PHY register. */
2157 		data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2158 		return 0;
2159 
2160 	case SIOCSMIIREG:		/* Write MII PHY register. */
2161 		mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2162 		return 0;
2163 	default:
2164 		return -EOPNOTSUPP;
2165 	}
2166 }
2167 
2168 /**
2169  *	sis900_set_config - Set media type by net_device.set_config
2170  *	@dev: the net device for media type change
2171  *	@map: ifmap passed by ifconfig
2172  *
2173  *	Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2174  *	we support only port changes. All other runtime configuration
2175  *	changes will be ignored
2176  */
2177 
2178 static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2179 {
2180 	struct sis900_private *sis_priv = netdev_priv(dev);
2181 	struct mii_phy *mii_phy = sis_priv->mii;
2182 
2183 	u16 status;
2184 
2185 	if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2186 		/* we switch on the ifmap->port field. I couldn't find anything
2187 		 * like a definition or standard for the values of that field.
2188 		 * I think the meaning of those values is device specific. But
2189 		 * since I would like to change the media type via the ifconfig
2190 		 * command I use the definition from linux/netdevice.h
2191 		 * (which seems to be different from the ifport(pcmcia) definition) */
2192 		switch(map->port){
2193 		case IF_PORT_UNKNOWN: /* use auto here */
2194 			dev->if_port = map->port;
2195 			/* we are going to change the media type, so the Link
2196 			 * will be temporary down and we need to reflect that
2197 			 * here. When the Link comes up again, it will be
2198 			 * sensed by the sis_timer procedure, which also does
2199 			 * all the rest for us */
2200 			netif_carrier_off(dev);
2201 
2202 			/* read current state */
2203 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2204 
2205 			/* enable auto negotiation and reset the negotioation
2206 			 * (I don't really know what the auto negatiotiation
2207 			 * reset really means, but it sounds for me right to
2208 			 * do one here) */
2209 			mdio_write(dev, mii_phy->phy_addr,
2210 				   MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2211 
2212 			break;
2213 
2214 		case IF_PORT_10BASET: /* 10BaseT */
2215 			dev->if_port = map->port;
2216 
2217 			/* we are going to change the media type, so the Link
2218 			 * will be temporary down and we need to reflect that
2219 			 * here. When the Link comes up again, it will be
2220 			 * sensed by the sis_timer procedure, which also does
2221 			 * all the rest for us */
2222 			netif_carrier_off(dev);
2223 
2224 			/* set Speed to 10Mbps */
2225 			/* read current state */
2226 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2227 
2228 			/* disable auto negotiation and force 10MBit mode*/
2229 			mdio_write(dev, mii_phy->phy_addr,
2230 				   MII_CONTROL, status & ~(MII_CNTL_SPEED |
2231 					MII_CNTL_AUTO));
2232 			break;
2233 
2234 		case IF_PORT_100BASET: /* 100BaseT */
2235 		case IF_PORT_100BASETX: /* 100BaseTx */
2236 			dev->if_port = map->port;
2237 
2238 			/* we are going to change the media type, so the Link
2239 			 * will be temporary down and we need to reflect that
2240 			 * here. When the Link comes up again, it will be
2241 			 * sensed by the sis_timer procedure, which also does
2242 			 * all the rest for us */
2243 			netif_carrier_off(dev);
2244 
2245 			/* set Speed to 100Mbps */
2246 			/* disable auto negotiation and enable 100MBit Mode */
2247 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2248 			mdio_write(dev, mii_phy->phy_addr,
2249 				   MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2250 				   MII_CNTL_SPEED);
2251 
2252 			break;
2253 
2254 		case IF_PORT_10BASE2: /* 10Base2 */
2255 		case IF_PORT_AUI: /* AUI */
2256 		case IF_PORT_100BASEFX: /* 100BaseFx */
2257                 	/* These Modes are not supported (are they?)*/
2258 			return -EOPNOTSUPP;
2259 
2260 		default:
2261 			return -EINVAL;
2262 		}
2263 	}
2264 	return 0;
2265 }
2266 
2267 /**
2268  *	sis900_mcast_bitnr - compute hashtable index
2269  *	@addr: multicast address
2270  *	@revision: revision id of chip
2271  *
2272  *	SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2273  *	hash table, which makes this function a little bit different from other drivers
2274  *	SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2275  *   	multicast hash table.
2276  */
2277 
2278 static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2279 {
2280 
2281 	u32 crc = ether_crc(6, addr);
2282 
2283 	/* leave 8 or 7 most siginifant bits */
2284 	if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2285 		return (int)(crc >> 24);
2286 	else
2287 		return (int)(crc >> 25);
2288 }
2289 
2290 /**
2291  *	set_rx_mode - Set SiS900 receive mode
2292  *	@net_dev: the net device to be set
2293  *
2294  *	Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2295  *	And set the appropriate multicast filter.
2296  *	Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2297  */
2298 
2299 static void set_rx_mode(struct net_device *net_dev)
2300 {
2301 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2302 	void __iomem *ioaddr = sis_priv->ioaddr;
2303 	u16 mc_filter[16] = {0};	/* 256/128 bits multicast hash table */
2304 	int i, table_entries;
2305 	u32 rx_mode;
2306 
2307 	/* 635 Hash Table entries = 256(2^16) */
2308 	if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2309 			(sis_priv->chipset_rev == SIS900B_900_REV))
2310 		table_entries = 16;
2311 	else
2312 		table_entries = 8;
2313 
2314 	if (net_dev->flags & IFF_PROMISC) {
2315 		/* Accept any kinds of packets */
2316 		rx_mode = RFPromiscuous;
2317 		for (i = 0; i < table_entries; i++)
2318 			mc_filter[i] = 0xffff;
2319 	} else if ((netdev_mc_count(net_dev) > multicast_filter_limit) ||
2320 		   (net_dev->flags & IFF_ALLMULTI)) {
2321 		/* too many multicast addresses or accept all multicast packet */
2322 		rx_mode = RFAAB | RFAAM;
2323 		for (i = 0; i < table_entries; i++)
2324 			mc_filter[i] = 0xffff;
2325 	} else {
2326 		/* Accept Broadcast packet, destination address matchs our
2327 		 * MAC address, use Receive Filter to reject unwanted MCAST
2328 		 * packets */
2329 		struct netdev_hw_addr *ha;
2330 		rx_mode = RFAAB;
2331 
2332 		netdev_for_each_mc_addr(ha, net_dev) {
2333 			unsigned int bit_nr;
2334 
2335 			bit_nr = sis900_mcast_bitnr(ha->addr,
2336 						    sis_priv->chipset_rev);
2337 			mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2338 		}
2339 	}
2340 
2341 	/* update Multicast Hash Table in Receive Filter */
2342 	for (i = 0; i < table_entries; i++) {
2343                 /* why plus 0x04 ??, That makes the correct value for hash table. */
2344 		sw32(rfcr, (u32)(0x00000004 + i) << RFADDR_shift);
2345 		sw32(rfdr, mc_filter[i]);
2346 	}
2347 
2348 	sw32(rfcr, RFEN | rx_mode);
2349 
2350 	/* sis900 is capable of looping back packets at MAC level for
2351 	 * debugging purpose */
2352 	if (net_dev->flags & IFF_LOOPBACK) {
2353 		u32 cr_saved;
2354 		/* We must disable Tx/Rx before setting loopback mode */
2355 		cr_saved = sr32(cr);
2356 		sw32(cr, cr_saved | TxDIS | RxDIS);
2357 		/* enable loopback */
2358 		sw32(txcfg, sr32(txcfg) | TxMLB);
2359 		sw32(rxcfg, sr32(rxcfg) | RxATX);
2360 		/* restore cr */
2361 		sw32(cr, cr_saved);
2362 	}
2363 }
2364 
2365 /**
2366  *	sis900_reset - Reset sis900 MAC
2367  *	@net_dev: the net device to reset
2368  *
2369  *	reset sis900 MAC and wait until finished
2370  *	reset through command register
2371  *	change backoff algorithm for 900B0 & 635 M/B
2372  */
2373 
2374 static void sis900_reset(struct net_device *net_dev)
2375 {
2376 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2377 	void __iomem *ioaddr = sis_priv->ioaddr;
2378 	u32 status = TxRCMP | RxRCMP;
2379 	int i;
2380 
2381 	sw32(ier, 0);
2382 	sw32(imr, 0);
2383 	sw32(rfcr, 0);
2384 
2385 	sw32(cr, RxRESET | TxRESET | RESET | sr32(cr));
2386 
2387 	/* Check that the chip has finished the reset. */
2388 	for (i = 0; status && (i < 1000); i++)
2389 		status ^= sr32(isr) & status;
2390 
2391 	if (sis_priv->chipset_rev >= SIS635A_900_REV ||
2392 	    sis_priv->chipset_rev == SIS900B_900_REV)
2393 		sw32(cfg, PESEL | RND_CNT);
2394 	else
2395 		sw32(cfg, PESEL);
2396 }
2397 
2398 /**
2399  *	sis900_remove - Remove sis900 device
2400  *	@pci_dev: the pci device to be removed
2401  *
2402  *	remove and release SiS900 net device
2403  */
2404 
2405 static void sis900_remove(struct pci_dev *pci_dev)
2406 {
2407 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2408 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2409 
2410 	unregister_netdev(net_dev);
2411 
2412 	while (sis_priv->first_mii) {
2413 		struct mii_phy *phy = sis_priv->first_mii;
2414 
2415 		sis_priv->first_mii = phy->next;
2416 		kfree(phy);
2417 	}
2418 
2419 	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2420 		sis_priv->rx_ring_dma);
2421 	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2422 		sis_priv->tx_ring_dma);
2423 	pci_iounmap(pci_dev, sis_priv->ioaddr);
2424 	free_netdev(net_dev);
2425 	pci_release_regions(pci_dev);
2426 }
2427 
2428 #ifdef CONFIG_PM
2429 
2430 static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state)
2431 {
2432 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2433 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2434 	void __iomem *ioaddr = sis_priv->ioaddr;
2435 
2436 	if(!netif_running(net_dev))
2437 		return 0;
2438 
2439 	netif_stop_queue(net_dev);
2440 	netif_device_detach(net_dev);
2441 
2442 	/* Stop the chip's Tx and Rx Status Machine */
2443 	sw32(cr, RxDIS | TxDIS | sr32(cr));
2444 
2445 	pci_set_power_state(pci_dev, PCI_D3hot);
2446 	pci_save_state(pci_dev);
2447 
2448 	return 0;
2449 }
2450 
2451 static int sis900_resume(struct pci_dev *pci_dev)
2452 {
2453 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2454 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2455 	void __iomem *ioaddr = sis_priv->ioaddr;
2456 
2457 	if(!netif_running(net_dev))
2458 		return 0;
2459 	pci_restore_state(pci_dev);
2460 	pci_set_power_state(pci_dev, PCI_D0);
2461 
2462 	sis900_init_rxfilter(net_dev);
2463 
2464 	sis900_init_tx_ring(net_dev);
2465 	sis900_init_rx_ring(net_dev);
2466 
2467 	set_rx_mode(net_dev);
2468 
2469 	netif_device_attach(net_dev);
2470 	netif_start_queue(net_dev);
2471 
2472 	/* Workaround for EDB */
2473 	sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2474 
2475 	/* Enable all known interrupts by setting the interrupt mask. */
2476 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
2477 	sw32(cr, RxENA | sr32(cr));
2478 	sw32(ier, IE);
2479 
2480 	sis900_check_mode(net_dev, sis_priv->mii);
2481 
2482 	return 0;
2483 }
2484 #endif /* CONFIG_PM */
2485 
2486 static struct pci_driver sis900_pci_driver = {
2487 	.name		= SIS900_MODULE_NAME,
2488 	.id_table	= sis900_pci_tbl,
2489 	.probe		= sis900_probe,
2490 	.remove		= sis900_remove,
2491 #ifdef CONFIG_PM
2492 	.suspend	= sis900_suspend,
2493 	.resume		= sis900_resume,
2494 #endif /* CONFIG_PM */
2495 };
2496 
2497 static int __init sis900_init_module(void)
2498 {
2499 /* when a module, this is printed whether or not devices are found in probe */
2500 #ifdef MODULE
2501 	printk(version);
2502 #endif
2503 
2504 	return pci_register_driver(&sis900_pci_driver);
2505 }
2506 
2507 static void __exit sis900_cleanup_module(void)
2508 {
2509 	pci_unregister_driver(&sis900_pci_driver);
2510 }
2511 
2512 module_init(sis900_init_module);
2513 module_exit(sis900_cleanup_module);
2514 
2515