xref: /openbmc/linux/drivers/net/ethernet/sis/sis900.c (revision d0b73b48)
1 /* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
2    Copyright 1999 Silicon Integrated System Corporation
3    Revision:	1.08.10 Apr. 2 2006
4 
5    Modified from the driver which is originally written by Donald Becker.
6 
7    This software may be used and distributed according to the terms
8    of the GNU General Public License (GPL), incorporated herein by reference.
9    Drivers based on this skeleton fall under the GPL and must retain
10    the authorship (implicit copyright) notice.
11 
12    References:
13    SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
14    preliminary Rev. 1.0 Jan. 14, 1998
15    SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
16    preliminary Rev. 1.0 Nov. 10, 1998
17    SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
18    preliminary Rev. 1.0 Jan. 18, 1998
19 
20    Rev 1.08.10 Apr.  2 2006 Daniele Venzano add vlan (jumbo packets) support
21    Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
22    Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
23    Rev 1.08.07 Nov.  2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
24    Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
25    Rev 1.08.05 Jun.  6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
26    Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
27    Rev 1.08.03 Feb.  1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
28    Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
29    Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
30    Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
31    Rev 1.07.11 Apr.  2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
32    Rev 1.07.10 Mar.  1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
33    Rev 1.07.09 Feb.  9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
34    Rev 1.07.08 Jan.  8 2001 Lei-Chun Chang added RTL8201 PHY support
35    Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
36    Rev 1.07.06 Nov.  7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
37    Rev 1.07.05 Nov.  6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
38    Rev 1.07.04 Sep.  6 2000 Lei-Chun Chang added ICS1893 PHY support
39    Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E equalizer workaround rule
40    Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
41    Rev 1.07    Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
42    Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
43    Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
44    Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
45    Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
46    Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
47    Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
48    Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
49    Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
50 */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/kernel.h>
55 #include <linux/sched.h>
56 #include <linux/string.h>
57 #include <linux/timer.h>
58 #include <linux/errno.h>
59 #include <linux/ioport.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/pci.h>
63 #include <linux/netdevice.h>
64 #include <linux/init.h>
65 #include <linux/mii.h>
66 #include <linux/etherdevice.h>
67 #include <linux/skbuff.h>
68 #include <linux/delay.h>
69 #include <linux/ethtool.h>
70 #include <linux/crc32.h>
71 #include <linux/bitops.h>
72 #include <linux/dma-mapping.h>
73 
74 #include <asm/processor.h>      /* Processor type for cache alignment. */
75 #include <asm/io.h>
76 #include <asm/irq.h>
77 #include <asm/uaccess.h>	/* User space memory access functions */
78 
79 #include "sis900.h"
80 
81 #define SIS900_MODULE_NAME "sis900"
82 #define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
83 
84 static const char version[] =
85 	KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
86 
87 static int max_interrupt_work = 40;
88 static int multicast_filter_limit = 128;
89 
90 static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
91 
92 #define SIS900_DEF_MSG \
93 	(NETIF_MSG_DRV		| \
94 	 NETIF_MSG_LINK		| \
95 	 NETIF_MSG_RX_ERR	| \
96 	 NETIF_MSG_TX_ERR)
97 
98 /* Time in jiffies before concluding the transmitter is hung. */
99 #define TX_TIMEOUT  (4*HZ)
100 
101 enum {
102 	SIS_900 = 0,
103 	SIS_7016
104 };
105 static const char * card_names[] = {
106 	"SiS 900 PCI Fast Ethernet",
107 	"SiS 7016 PCI Fast Ethernet"
108 };
109 static DEFINE_PCI_DEVICE_TABLE(sis900_pci_tbl) = {
110 	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
111 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
112 	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
113 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
114 	{0,}
115 };
116 MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
117 
118 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
119 
120 static const struct mii_chip_info {
121 	const char * name;
122 	u16 phy_id0;
123 	u16 phy_id1;
124 	u8  phy_types;
125 #define	HOME 	0x0001
126 #define LAN	0x0002
127 #define MIX	0x0003
128 #define UNKNOWN	0x0
129 } mii_chip_table[] = {
130 	{ "SiS 900 Internal MII PHY", 		0x001d, 0x8000, LAN },
131 	{ "SiS 7014 Physical Layer Solution", 	0x0016, 0xf830, LAN },
132 	{ "SiS 900 on Foxconn 661 7MI",         0x0143, 0xBC70, LAN },
133 	{ "Altimata AC101LF PHY",               0x0022, 0x5520, LAN },
134 	{ "ADM 7001 LAN PHY",			0x002e, 0xcc60, LAN },
135 	{ "AMD 79C901 10BASE-T PHY",  		0x0000, 0x6B70, LAN },
136 	{ "AMD 79C901 HomePNA PHY",		0x0000, 0x6B90, HOME},
137 	{ "ICS LAN PHY",			0x0015, 0xF440, LAN },
138 	{ "ICS LAN PHY",			0x0143, 0xBC70, LAN },
139 	{ "NS 83851 PHY",			0x2000, 0x5C20, MIX },
140 	{ "NS 83847 PHY",                       0x2000, 0x5C30, MIX },
141 	{ "Realtek RTL8201 PHY",		0x0000, 0x8200, LAN },
142 	{ "VIA 6103 PHY",			0x0101, 0x8f20, LAN },
143 	{NULL,},
144 };
145 
146 struct mii_phy {
147 	struct mii_phy * next;
148 	int phy_addr;
149 	u16 phy_id0;
150 	u16 phy_id1;
151 	u16 status;
152 	u8  phy_types;
153 };
154 
155 typedef struct _BufferDesc {
156 	u32 link;
157 	u32 cmdsts;
158 	u32 bufptr;
159 } BufferDesc;
160 
161 struct sis900_private {
162 	struct pci_dev * pci_dev;
163 
164 	spinlock_t lock;
165 
166 	struct mii_phy * mii;
167 	struct mii_phy * first_mii; /* record the first mii structure */
168 	unsigned int cur_phy;
169 	struct mii_if_info mii_info;
170 
171 	void __iomem	*ioaddr;
172 
173 	struct timer_list timer; /* Link status detection timer. */
174 	u8 autong_complete; /* 1: auto-negotiate complete  */
175 
176 	u32 msg_enable;
177 
178 	unsigned int cur_rx, dirty_rx; /* producer/comsumer pointers for Tx/Rx ring */
179 	unsigned int cur_tx, dirty_tx;
180 
181 	/* The saved address of a sent/receive-in-place packet buffer */
182 	struct sk_buff *tx_skbuff[NUM_TX_DESC];
183 	struct sk_buff *rx_skbuff[NUM_RX_DESC];
184 	BufferDesc *tx_ring;
185 	BufferDesc *rx_ring;
186 
187 	dma_addr_t tx_ring_dma;
188 	dma_addr_t rx_ring_dma;
189 
190 	unsigned int tx_full; /* The Tx queue is full. */
191 	u8 host_bridge_rev;
192 	u8 chipset_rev;
193 };
194 
195 MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
196 MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
197 MODULE_LICENSE("GPL");
198 
199 module_param(multicast_filter_limit, int, 0444);
200 module_param(max_interrupt_work, int, 0444);
201 module_param(sis900_debug, int, 0444);
202 MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
203 MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
204 MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
205 
206 #define sw32(reg, val)	iowrite32(val, ioaddr + (reg))
207 #define sw8(reg, val)	iowrite8(val, ioaddr + (reg))
208 #define sr32(reg)	ioread32(ioaddr + (reg))
209 #define sr16(reg)	ioread16(ioaddr + (reg))
210 
211 #ifdef CONFIG_NET_POLL_CONTROLLER
212 static void sis900_poll(struct net_device *dev);
213 #endif
214 static int sis900_open(struct net_device *net_dev);
215 static int sis900_mii_probe (struct net_device * net_dev);
216 static void sis900_init_rxfilter (struct net_device * net_dev);
217 static u16 read_eeprom(void __iomem *ioaddr, int location);
218 static int mdio_read(struct net_device *net_dev, int phy_id, int location);
219 static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
220 static void sis900_timer(unsigned long data);
221 static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
222 static void sis900_tx_timeout(struct net_device *net_dev);
223 static void sis900_init_tx_ring(struct net_device *net_dev);
224 static void sis900_init_rx_ring(struct net_device *net_dev);
225 static netdev_tx_t sis900_start_xmit(struct sk_buff *skb,
226 				     struct net_device *net_dev);
227 static int sis900_rx(struct net_device *net_dev);
228 static void sis900_finish_xmit (struct net_device *net_dev);
229 static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
230 static int sis900_close(struct net_device *net_dev);
231 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
232 static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
233 static void set_rx_mode(struct net_device *net_dev);
234 static void sis900_reset(struct net_device *net_dev);
235 static void sis630_set_eq(struct net_device *net_dev, u8 revision);
236 static int sis900_set_config(struct net_device *dev, struct ifmap *map);
237 static u16 sis900_default_phy(struct net_device * net_dev);
238 static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
239 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
240 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
241 static void sis900_set_mode(struct sis900_private *, int speed, int duplex);
242 static const struct ethtool_ops sis900_ethtool_ops;
243 
244 /**
245  *	sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
246  *	@pci_dev: the sis900 pci device
247  *	@net_dev: the net device to get address for
248  *
249  *	Older SiS900 and friends, use EEPROM to store MAC address.
250  *	MAC address is read from read_eeprom() into @net_dev->dev_addr and
251  *	@net_dev->perm_addr.
252  */
253 
254 static int sis900_get_mac_addr(struct pci_dev *pci_dev,
255 			       struct net_device *net_dev)
256 {
257 	struct sis900_private *sis_priv = netdev_priv(net_dev);
258 	void __iomem *ioaddr = sis_priv->ioaddr;
259 	u16 signature;
260 	int i;
261 
262 	/* check to see if we have sane EEPROM */
263 	signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
264 	if (signature == 0xffff || signature == 0x0000) {
265 		printk (KERN_WARNING "%s: Error EERPOM read %x\n",
266 			pci_name(pci_dev), signature);
267 		return 0;
268 	}
269 
270 	/* get MAC address from EEPROM */
271 	for (i = 0; i < 3; i++)
272 	        ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
273 
274 	/* Store MAC Address in perm_addr */
275 	memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
276 
277 	return 1;
278 }
279 
280 /**
281  *	sis630e_get_mac_addr - Get MAC address for SiS630E model
282  *	@pci_dev: the sis900 pci device
283  *	@net_dev: the net device to get address for
284  *
285  *	SiS630E model, use APC CMOS RAM to store MAC address.
286  *	APC CMOS RAM is accessed through ISA bridge.
287  *	MAC address is read into @net_dev->dev_addr and
288  *	@net_dev->perm_addr.
289  */
290 
291 static int sis630e_get_mac_addr(struct pci_dev *pci_dev,
292 				struct net_device *net_dev)
293 {
294 	struct pci_dev *isa_bridge = NULL;
295 	u8 reg;
296 	int i;
297 
298 	isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
299 	if (!isa_bridge)
300 		isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
301 	if (!isa_bridge) {
302 		printk(KERN_WARNING "%s: Can not find ISA bridge\n",
303 		       pci_name(pci_dev));
304 		return 0;
305 	}
306 	pci_read_config_byte(isa_bridge, 0x48, &reg);
307 	pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
308 
309 	for (i = 0; i < 6; i++) {
310 		outb(0x09 + i, 0x70);
311 		((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
312 	}
313 
314 	/* Store MAC Address in perm_addr */
315 	memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
316 
317 	pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
318 	pci_dev_put(isa_bridge);
319 
320 	return 1;
321 }
322 
323 
324 /**
325  *	sis635_get_mac_addr - Get MAC address for SIS635 model
326  *	@pci_dev: the sis900 pci device
327  *	@net_dev: the net device to get address for
328  *
329  *	SiS635 model, set MAC Reload Bit to load Mac address from APC
330  *	to rfdr. rfdr is accessed through rfcr. MAC address is read into
331  *	@net_dev->dev_addr and @net_dev->perm_addr.
332  */
333 
334 static int sis635_get_mac_addr(struct pci_dev *pci_dev,
335 			       struct net_device *net_dev)
336 {
337 	struct sis900_private *sis_priv = netdev_priv(net_dev);
338 	void __iomem *ioaddr = sis_priv->ioaddr;
339 	u32 rfcrSave;
340 	u32 i;
341 
342 	rfcrSave = sr32(rfcr);
343 
344 	sw32(cr, rfcrSave | RELOAD);
345 	sw32(cr, 0);
346 
347 	/* disable packet filtering before setting filter */
348 	sw32(rfcr, rfcrSave & ~RFEN);
349 
350 	/* load MAC addr to filter data register */
351 	for (i = 0 ; i < 3 ; i++) {
352 		sw32(rfcr, (i << RFADDR_shift));
353 		*( ((u16 *)net_dev->dev_addr) + i) = sr16(rfdr);
354 	}
355 
356 	/* Store MAC Address in perm_addr */
357 	memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
358 
359 	/* enable packet filtering */
360 	sw32(rfcr, rfcrSave | RFEN);
361 
362 	return 1;
363 }
364 
365 /**
366  *	sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
367  *	@pci_dev: the sis900 pci device
368  *	@net_dev: the net device to get address for
369  *
370  *	SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
371  *	is shared by
372  *	LAN and 1394. When access EEPROM, send EEREQ signal to hardware first
373  *	and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access
374  *	by LAN, otherwise is not. After MAC address is read from EEPROM, send
375  *	EEDONE signal to refuse EEPROM access by LAN.
376  *	The EEPROM map of SiS962 or SiS963 is different to SiS900.
377  *	The signature field in SiS962 or SiS963 spec is meaningless.
378  *	MAC address is read into @net_dev->dev_addr and @net_dev->perm_addr.
379  */
380 
381 static int sis96x_get_mac_addr(struct pci_dev *pci_dev,
382 			       struct net_device *net_dev)
383 {
384 	struct sis900_private *sis_priv = netdev_priv(net_dev);
385 	void __iomem *ioaddr = sis_priv->ioaddr;
386 	int wait, rc = 0;
387 
388 	sw32(mear, EEREQ);
389 	for (wait = 0; wait < 2000; wait++) {
390 		if (sr32(mear) & EEGNT) {
391 			u16 *mac = (u16 *)net_dev->dev_addr;
392 			int i;
393 
394 			/* get MAC address from EEPROM */
395 			for (i = 0; i < 3; i++)
396 			        mac[i] = read_eeprom(ioaddr, i + EEPROMMACAddr);
397 
398 			/* Store MAC Address in perm_addr */
399 			memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
400 
401 			rc = 1;
402 			break;
403 		}
404 		udelay(1);
405 	}
406 	sw32(mear, EEDONE);
407 	return rc;
408 }
409 
410 static const struct net_device_ops sis900_netdev_ops = {
411 	.ndo_open		 = sis900_open,
412 	.ndo_stop		= sis900_close,
413 	.ndo_start_xmit		= sis900_start_xmit,
414 	.ndo_set_config		= sis900_set_config,
415 	.ndo_set_rx_mode	= set_rx_mode,
416 	.ndo_change_mtu		= eth_change_mtu,
417 	.ndo_validate_addr	= eth_validate_addr,
418 	.ndo_set_mac_address 	= eth_mac_addr,
419 	.ndo_do_ioctl		= mii_ioctl,
420 	.ndo_tx_timeout		= sis900_tx_timeout,
421 #ifdef CONFIG_NET_POLL_CONTROLLER
422         .ndo_poll_controller	= sis900_poll,
423 #endif
424 };
425 
426 /**
427  *	sis900_probe - Probe for sis900 device
428  *	@pci_dev: the sis900 pci device
429  *	@pci_id: the pci device ID
430  *
431  *	Check and probe sis900 net device for @pci_dev.
432  *	Get mac address according to the chip revision,
433  *	and assign SiS900-specific entries in the device structure.
434  *	ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
435  */
436 
437 static int sis900_probe(struct pci_dev *pci_dev,
438 			const struct pci_device_id *pci_id)
439 {
440 	struct sis900_private *sis_priv;
441 	struct net_device *net_dev;
442 	struct pci_dev *dev;
443 	dma_addr_t ring_dma;
444 	void *ring_space;
445 	void __iomem *ioaddr;
446 	int i, ret;
447 	const char *card_name = card_names[pci_id->driver_data];
448 	const char *dev_name = pci_name(pci_dev);
449 
450 /* when built into the kernel, we only print version if device is found */
451 #ifndef MODULE
452 	static int printed_version;
453 	if (!printed_version++)
454 		printk(version);
455 #endif
456 
457 	/* setup various bits in PCI command register */
458 	ret = pci_enable_device(pci_dev);
459 	if(ret) return ret;
460 
461 	i = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
462 	if(i){
463 		printk(KERN_ERR "sis900.c: architecture does not support "
464 			"32bit PCI busmaster DMA\n");
465 		return i;
466 	}
467 
468 	pci_set_master(pci_dev);
469 
470 	net_dev = alloc_etherdev(sizeof(struct sis900_private));
471 	if (!net_dev)
472 		return -ENOMEM;
473 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
474 
475 	/* We do a request_region() to register /proc/ioports info. */
476 	ret = pci_request_regions(pci_dev, "sis900");
477 	if (ret)
478 		goto err_out;
479 
480 	/* IO region. */
481 	ioaddr = pci_iomap(pci_dev, 0, 0);
482 	if (!ioaddr) {
483 		ret = -ENOMEM;
484 		goto err_out_cleardev;
485 	}
486 
487 	sis_priv = netdev_priv(net_dev);
488 	sis_priv->ioaddr = ioaddr;
489 	sis_priv->pci_dev = pci_dev;
490 	spin_lock_init(&sis_priv->lock);
491 
492 	pci_set_drvdata(pci_dev, net_dev);
493 
494 	ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
495 	if (!ring_space) {
496 		ret = -ENOMEM;
497 		goto err_out_unmap;
498 	}
499 	sis_priv->tx_ring = ring_space;
500 	sis_priv->tx_ring_dma = ring_dma;
501 
502 	ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
503 	if (!ring_space) {
504 		ret = -ENOMEM;
505 		goto err_unmap_tx;
506 	}
507 	sis_priv->rx_ring = ring_space;
508 	sis_priv->rx_ring_dma = ring_dma;
509 
510 	/* The SiS900-specific entries in the device structure. */
511 	net_dev->netdev_ops = &sis900_netdev_ops;
512 	net_dev->watchdog_timeo = TX_TIMEOUT;
513 	net_dev->ethtool_ops = &sis900_ethtool_ops;
514 
515 	if (sis900_debug > 0)
516 		sis_priv->msg_enable = sis900_debug;
517 	else
518 		sis_priv->msg_enable = SIS900_DEF_MSG;
519 
520 	sis_priv->mii_info.dev = net_dev;
521 	sis_priv->mii_info.mdio_read = mdio_read;
522 	sis_priv->mii_info.mdio_write = mdio_write;
523 	sis_priv->mii_info.phy_id_mask = 0x1f;
524 	sis_priv->mii_info.reg_num_mask = 0x1f;
525 
526 	/* Get Mac address according to the chip revision */
527 	sis_priv->chipset_rev = pci_dev->revision;
528 	if(netif_msg_probe(sis_priv))
529 		printk(KERN_DEBUG "%s: detected revision %2.2x, "
530 				"trying to get MAC address...\n",
531 				dev_name, sis_priv->chipset_rev);
532 
533 	ret = 0;
534 	if (sis_priv->chipset_rev == SIS630E_900_REV)
535 		ret = sis630e_get_mac_addr(pci_dev, net_dev);
536 	else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
537 		ret = sis635_get_mac_addr(pci_dev, net_dev);
538 	else if (sis_priv->chipset_rev == SIS96x_900_REV)
539 		ret = sis96x_get_mac_addr(pci_dev, net_dev);
540 	else
541 		ret = sis900_get_mac_addr(pci_dev, net_dev);
542 
543 	if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) {
544 		eth_hw_addr_random(net_dev);
545 		printk(KERN_WARNING "%s: Unreadable or invalid MAC address,"
546 				"using random generated one\n", dev_name);
547 	}
548 
549 	/* 630ET : set the mii access mode as software-mode */
550 	if (sis_priv->chipset_rev == SIS630ET_900_REV)
551 		sw32(cr, ACCESSMODE | sr32(cr));
552 
553 	/* probe for mii transceiver */
554 	if (sis900_mii_probe(net_dev) == 0) {
555 		printk(KERN_WARNING "%s: Error probing MII device.\n",
556 		       dev_name);
557 		ret = -ENODEV;
558 		goto err_unmap_rx;
559 	}
560 
561 	/* save our host bridge revision */
562 	dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
563 	if (dev) {
564 		sis_priv->host_bridge_rev = dev->revision;
565 		pci_dev_put(dev);
566 	}
567 
568 	ret = register_netdev(net_dev);
569 	if (ret)
570 		goto err_unmap_rx;
571 
572 	/* print some information about our NIC */
573 	printk(KERN_INFO "%s: %s at 0x%p, IRQ %d, %pM\n",
574 	       net_dev->name, card_name, ioaddr, pci_dev->irq,
575 	       net_dev->dev_addr);
576 
577 	/* Detect Wake on Lan support */
578 	ret = (sr32(CFGPMC) & PMESP) >> 27;
579 	if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
580 		printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
581 
582 	return 0;
583 
584 err_unmap_rx:
585 	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
586 		sis_priv->rx_ring_dma);
587 err_unmap_tx:
588 	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
589 		sis_priv->tx_ring_dma);
590 err_out_unmap:
591 	pci_iounmap(pci_dev, ioaddr);
592 err_out_cleardev:
593 	pci_set_drvdata(pci_dev, NULL);
594 	pci_release_regions(pci_dev);
595  err_out:
596 	free_netdev(net_dev);
597 	return ret;
598 }
599 
600 /**
601  *	sis900_mii_probe - Probe MII PHY for sis900
602  *	@net_dev: the net device to probe for
603  *
604  *	Search for total of 32 possible mii phy addresses.
605  *	Identify and set current phy if found one,
606  *	return error if it failed to found.
607  */
608 
609 static int sis900_mii_probe(struct net_device *net_dev)
610 {
611 	struct sis900_private *sis_priv = netdev_priv(net_dev);
612 	const char *dev_name = pci_name(sis_priv->pci_dev);
613 	u16 poll_bit = MII_STAT_LINK, status = 0;
614 	unsigned long timeout = jiffies + 5 * HZ;
615 	int phy_addr;
616 
617 	sis_priv->mii = NULL;
618 
619 	/* search for total of 32 possible mii phy addresses */
620 	for (phy_addr = 0; phy_addr < 32; phy_addr++) {
621 		struct mii_phy * mii_phy = NULL;
622 		u16 mii_status;
623 		int i;
624 
625 		mii_phy = NULL;
626 		for(i = 0; i < 2; i++)
627 			mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
628 
629 		if (mii_status == 0xffff || mii_status == 0x0000) {
630 			if (netif_msg_probe(sis_priv))
631 				printk(KERN_DEBUG "%s: MII at address %d"
632 						" not accessible\n",
633 						dev_name, phy_addr);
634 			continue;
635 		}
636 
637 		if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
638 			mii_phy = sis_priv->first_mii;
639 			while (mii_phy) {
640 				struct mii_phy *phy;
641 				phy = mii_phy;
642 				mii_phy = mii_phy->next;
643 				kfree(phy);
644 			}
645 			return 0;
646 		}
647 
648 		mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
649 		mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
650 		mii_phy->phy_addr = phy_addr;
651 		mii_phy->status = mii_status;
652 		mii_phy->next = sis_priv->mii;
653 		sis_priv->mii = mii_phy;
654 		sis_priv->first_mii = mii_phy;
655 
656 		for (i = 0; mii_chip_table[i].phy_id1; i++)
657 			if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
658 			    ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
659 				mii_phy->phy_types = mii_chip_table[i].phy_types;
660 				if (mii_chip_table[i].phy_types == MIX)
661 					mii_phy->phy_types =
662 					    (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
663 				printk(KERN_INFO "%s: %s transceiver found "
664 							"at address %d.\n",
665 							dev_name,
666 							mii_chip_table[i].name,
667 							phy_addr);
668 				break;
669 			}
670 
671 		if( !mii_chip_table[i].phy_id1 ) {
672 			printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
673 			       dev_name, phy_addr);
674 			mii_phy->phy_types = UNKNOWN;
675 		}
676 	}
677 
678 	if (sis_priv->mii == NULL) {
679 		printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
680 		return 0;
681 	}
682 
683 	/* select default PHY for mac */
684 	sis_priv->mii = NULL;
685 	sis900_default_phy( net_dev );
686 
687 	/* Reset phy if default phy is internal sis900 */
688         if ((sis_priv->mii->phy_id0 == 0x001D) &&
689 	    ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
690         	status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
691 
692         /* workaround for ICS1893 PHY */
693         if ((sis_priv->mii->phy_id0 == 0x0015) &&
694             ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
695             	mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
696 
697 	if(status & MII_STAT_LINK){
698 		while (poll_bit) {
699 			yield();
700 
701 			poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
702 			if (time_after_eq(jiffies, timeout)) {
703 				printk(KERN_WARNING "%s: reset phy and link down now\n",
704 				       dev_name);
705 				return -ETIME;
706 			}
707 		}
708 	}
709 
710 	if (sis_priv->chipset_rev == SIS630E_900_REV) {
711 		/* SiS 630E has some bugs on default value of PHY registers */
712 		mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
713 		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
714 		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
715 		mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
716 		//mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
717 	}
718 
719 	if (sis_priv->mii->status & MII_STAT_LINK)
720 		netif_carrier_on(net_dev);
721 	else
722 		netif_carrier_off(net_dev);
723 
724 	return 1;
725 }
726 
727 /**
728  *	sis900_default_phy - Select default PHY for sis900 mac.
729  *	@net_dev: the net device to probe for
730  *
731  *	Select first detected PHY with link as default.
732  *	If no one is link on, select PHY whose types is HOME as default.
733  *	If HOME doesn't exist, select LAN.
734  */
735 
736 static u16 sis900_default_phy(struct net_device * net_dev)
737 {
738 	struct sis900_private *sis_priv = netdev_priv(net_dev);
739  	struct mii_phy *phy = NULL, *phy_home = NULL,
740 		*default_phy = NULL, *phy_lan = NULL;
741 	u16 status;
742 
743         for (phy=sis_priv->first_mii; phy; phy=phy->next) {
744 		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
745 		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
746 
747 		/* Link ON & Not select default PHY & not ghost PHY */
748 		 if ((status & MII_STAT_LINK) && !default_phy &&
749 					(phy->phy_types != UNKNOWN))
750 		 	default_phy = phy;
751 		 else {
752 			status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
753 			mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
754 				status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
755 			if (phy->phy_types == HOME)
756 				phy_home = phy;
757 			else if(phy->phy_types == LAN)
758 				phy_lan = phy;
759 		 }
760 	}
761 
762 	if (!default_phy && phy_home)
763 		default_phy = phy_home;
764 	else if (!default_phy && phy_lan)
765 		default_phy = phy_lan;
766 	else if (!default_phy)
767 		default_phy = sis_priv->first_mii;
768 
769 	if (sis_priv->mii != default_phy) {
770 		sis_priv->mii = default_phy;
771 		sis_priv->cur_phy = default_phy->phy_addr;
772 		printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
773 		       pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
774 	}
775 
776 	sis_priv->mii_info.phy_id = sis_priv->cur_phy;
777 
778 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
779 	status &= (~MII_CNTL_ISOLATE);
780 
781 	mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
782 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
783 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
784 
785 	return status;
786 }
787 
788 
789 /**
790  * 	sis900_set_capability - set the media capability of network adapter.
791  *	@net_dev : the net device to probe for
792  *	@phy : default PHY
793  *
794  *	Set the media capability of network adapter according to
795  *	mii status register. It's necessary before auto-negotiate.
796  */
797 
798 static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
799 {
800 	u16 cap;
801 	u16 status;
802 
803 	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
804 	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
805 
806 	cap = MII_NWAY_CSMA_CD |
807 		((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
808 		((phy->status & MII_STAT_CAN_TX)    ? MII_NWAY_TX:0) |
809 		((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
810 		((phy->status & MII_STAT_CAN_T)     ? MII_NWAY_T:0);
811 
812 	mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
813 }
814 
815 
816 /* Delay between EEPROM clock transitions. */
817 #define eeprom_delay()	sr32(mear)
818 
819 /**
820  *	read_eeprom - Read Serial EEPROM
821  *	@ioaddr: base i/o address
822  *	@location: the EEPROM location to read
823  *
824  *	Read Serial EEPROM through EEPROM Access Register.
825  *	Note that location is in word (16 bits) unit
826  */
827 
828 static u16 read_eeprom(void __iomem *ioaddr, int location)
829 {
830 	u32 read_cmd = location | EEread;
831 	int i;
832 	u16 retval = 0;
833 
834 	sw32(mear, 0);
835 	eeprom_delay();
836 	sw32(mear, EECS);
837 	eeprom_delay();
838 
839 	/* Shift the read command (9) bits out. */
840 	for (i = 8; i >= 0; i--) {
841 		u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
842 
843 		sw32(mear, dataval);
844 		eeprom_delay();
845 		sw32(mear, dataval | EECLK);
846 		eeprom_delay();
847 	}
848 	sw32(mear, EECS);
849 	eeprom_delay();
850 
851 	/* read the 16-bits data in */
852 	for (i = 16; i > 0; i--) {
853 		sw32(mear, EECS);
854 		eeprom_delay();
855 		sw32(mear, EECS | EECLK);
856 		eeprom_delay();
857 		retval = (retval << 1) | ((sr32(mear) & EEDO) ? 1 : 0);
858 		eeprom_delay();
859 	}
860 
861 	/* Terminate the EEPROM access. */
862 	sw32(mear, 0);
863 	eeprom_delay();
864 
865 	return retval;
866 }
867 
868 /* Read and write the MII management registers using software-generated
869    serial MDIO protocol. Note that the command bits and data bits are
870    send out separately */
871 #define mdio_delay()	sr32(mear)
872 
873 static void mdio_idle(struct sis900_private *sp)
874 {
875 	void __iomem *ioaddr = sp->ioaddr;
876 
877 	sw32(mear, MDIO | MDDIR);
878 	mdio_delay();
879 	sw32(mear, MDIO | MDDIR | MDC);
880 }
881 
882 /* Synchronize the MII management interface by shifting 32 one bits out. */
883 static void mdio_reset(struct sis900_private *sp)
884 {
885 	void __iomem *ioaddr = sp->ioaddr;
886 	int i;
887 
888 	for (i = 31; i >= 0; i--) {
889 		sw32(mear, MDDIR | MDIO);
890 		mdio_delay();
891 		sw32(mear, MDDIR | MDIO | MDC);
892 		mdio_delay();
893 	}
894 }
895 
896 /**
897  *	mdio_read - read MII PHY register
898  *	@net_dev: the net device to read
899  *	@phy_id: the phy address to read
900  *	@location: the phy regiester id to read
901  *
902  *	Read MII registers through MDIO and MDC
903  *	using MDIO management frame structure and protocol(defined by ISO/IEC).
904  *	Please see SiS7014 or ICS spec
905  */
906 
907 static int mdio_read(struct net_device *net_dev, int phy_id, int location)
908 {
909 	int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
910 	struct sis900_private *sp = netdev_priv(net_dev);
911 	void __iomem *ioaddr = sp->ioaddr;
912 	u16 retval = 0;
913 	int i;
914 
915 	mdio_reset(sp);
916 	mdio_idle(sp);
917 
918 	for (i = 15; i >= 0; i--) {
919 		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
920 
921 		sw32(mear, dataval);
922 		mdio_delay();
923 		sw32(mear, dataval | MDC);
924 		mdio_delay();
925 	}
926 
927 	/* Read the 16 data bits. */
928 	for (i = 16; i > 0; i--) {
929 		sw32(mear, 0);
930 		mdio_delay();
931 		retval = (retval << 1) | ((sr32(mear) & MDIO) ? 1 : 0);
932 		sw32(mear, MDC);
933 		mdio_delay();
934 	}
935 	sw32(mear, 0x00);
936 
937 	return retval;
938 }
939 
940 /**
941  *	mdio_write - write MII PHY register
942  *	@net_dev: the net device to write
943  *	@phy_id: the phy address to write
944  *	@location: the phy regiester id to write
945  *	@value: the register value to write with
946  *
947  *	Write MII registers with @value through MDIO and MDC
948  *	using MDIO management frame structure and protocol(defined by ISO/IEC)
949  *	please see SiS7014 or ICS spec
950  */
951 
952 static void mdio_write(struct net_device *net_dev, int phy_id, int location,
953 			int value)
954 {
955 	int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
956 	struct sis900_private *sp = netdev_priv(net_dev);
957 	void __iomem *ioaddr = sp->ioaddr;
958 	int i;
959 
960 	mdio_reset(sp);
961 	mdio_idle(sp);
962 
963 	/* Shift the command bits out. */
964 	for (i = 15; i >= 0; i--) {
965 		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
966 
967 		sw8(mear, dataval);
968 		mdio_delay();
969 		sw8(mear, dataval | MDC);
970 		mdio_delay();
971 	}
972 	mdio_delay();
973 
974 	/* Shift the value bits out. */
975 	for (i = 15; i >= 0; i--) {
976 		int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
977 
978 		sw32(mear, dataval);
979 		mdio_delay();
980 		sw32(mear, dataval | MDC);
981 		mdio_delay();
982 	}
983 	mdio_delay();
984 
985 	/* Clear out extra bits. */
986 	for (i = 2; i > 0; i--) {
987 		sw8(mear, 0);
988 		mdio_delay();
989 		sw8(mear, MDC);
990 		mdio_delay();
991 	}
992 	sw32(mear, 0x00);
993 }
994 
995 
996 /**
997  *	sis900_reset_phy - reset sis900 mii phy.
998  *	@net_dev: the net device to write
999  *	@phy_addr: default phy address
1000  *
1001  *	Some specific phy can't work properly without reset.
1002  *	This function will be called during initialization and
1003  *	link status change from ON to DOWN.
1004  */
1005 
1006 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
1007 {
1008 	int i;
1009 	u16 status;
1010 
1011 	for (i = 0; i < 2; i++)
1012 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1013 
1014 	mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
1015 
1016 	return status;
1017 }
1018 
1019 #ifdef CONFIG_NET_POLL_CONTROLLER
1020 /*
1021  * Polling 'interrupt' - used by things like netconsole to send skbs
1022  * without having to re-enable interrupts. It's not called while
1023  * the interrupt routine is executing.
1024 */
1025 static void sis900_poll(struct net_device *dev)
1026 {
1027 	struct sis900_private *sp = netdev_priv(dev);
1028 	const int irq = sp->pci_dev->irq;
1029 
1030 	disable_irq(irq);
1031 	sis900_interrupt(irq, dev);
1032 	enable_irq(irq);
1033 }
1034 #endif
1035 
1036 /**
1037  *	sis900_open - open sis900 device
1038  *	@net_dev: the net device to open
1039  *
1040  *	Do some initialization and start net interface.
1041  *	enable interrupts and set sis900 timer.
1042  */
1043 
1044 static int
1045 sis900_open(struct net_device *net_dev)
1046 {
1047 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1048 	void __iomem *ioaddr = sis_priv->ioaddr;
1049 	int ret;
1050 
1051 	/* Soft reset the chip. */
1052 	sis900_reset(net_dev);
1053 
1054 	/* Equalizer workaround Rule */
1055 	sis630_set_eq(net_dev, sis_priv->chipset_rev);
1056 
1057 	ret = request_irq(sis_priv->pci_dev->irq, sis900_interrupt, IRQF_SHARED,
1058 			  net_dev->name, net_dev);
1059 	if (ret)
1060 		return ret;
1061 
1062 	sis900_init_rxfilter(net_dev);
1063 
1064 	sis900_init_tx_ring(net_dev);
1065 	sis900_init_rx_ring(net_dev);
1066 
1067 	set_rx_mode(net_dev);
1068 
1069 	netif_start_queue(net_dev);
1070 
1071 	/* Workaround for EDB */
1072 	sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1073 
1074 	/* Enable all known interrupts by setting the interrupt mask. */
1075 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
1076 	sw32(cr, RxENA | sr32(cr));
1077 	sw32(ier, IE);
1078 
1079 	sis900_check_mode(net_dev, sis_priv->mii);
1080 
1081 	/* Set the timer to switch to check for link beat and perhaps switch
1082 	   to an alternate media type. */
1083 	init_timer(&sis_priv->timer);
1084 	sis_priv->timer.expires = jiffies + HZ;
1085 	sis_priv->timer.data = (unsigned long)net_dev;
1086 	sis_priv->timer.function = sis900_timer;
1087 	add_timer(&sis_priv->timer);
1088 
1089 	return 0;
1090 }
1091 
1092 /**
1093  *	sis900_init_rxfilter - Initialize the Rx filter
1094  *	@net_dev: the net device to initialize for
1095  *
1096  *	Set receive filter address to our MAC address
1097  *	and enable packet filtering.
1098  */
1099 
1100 static void
1101 sis900_init_rxfilter (struct net_device * net_dev)
1102 {
1103 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1104 	void __iomem *ioaddr = sis_priv->ioaddr;
1105 	u32 rfcrSave;
1106 	u32 i;
1107 
1108 	rfcrSave = sr32(rfcr);
1109 
1110 	/* disable packet filtering before setting filter */
1111 	sw32(rfcr, rfcrSave & ~RFEN);
1112 
1113 	/* load MAC addr to filter data register */
1114 	for (i = 0 ; i < 3 ; i++) {
1115 		u32 w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1116 
1117 		sw32(rfcr, i << RFADDR_shift);
1118 		sw32(rfdr, w);
1119 
1120 		if (netif_msg_hw(sis_priv)) {
1121 			printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n",
1122 			       net_dev->name, i, sr32(rfdr));
1123 		}
1124 	}
1125 
1126 	/* enable packet filtering */
1127 	sw32(rfcr, rfcrSave | RFEN);
1128 }
1129 
1130 /**
1131  *	sis900_init_tx_ring - Initialize the Tx descriptor ring
1132  *	@net_dev: the net device to initialize for
1133  *
1134  *	Initialize the Tx descriptor ring,
1135  */
1136 
1137 static void
1138 sis900_init_tx_ring(struct net_device *net_dev)
1139 {
1140 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1141 	void __iomem *ioaddr = sis_priv->ioaddr;
1142 	int i;
1143 
1144 	sis_priv->tx_full = 0;
1145 	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1146 
1147 	for (i = 0; i < NUM_TX_DESC; i++) {
1148 		sis_priv->tx_skbuff[i] = NULL;
1149 
1150 		sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1151 			((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1152 		sis_priv->tx_ring[i].cmdsts = 0;
1153 		sis_priv->tx_ring[i].bufptr = 0;
1154 	}
1155 
1156 	/* load Transmit Descriptor Register */
1157 	sw32(txdp, sis_priv->tx_ring_dma);
1158 	if (netif_msg_hw(sis_priv))
1159 		printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1160 		       net_dev->name, sr32(txdp));
1161 }
1162 
1163 /**
1164  *	sis900_init_rx_ring - Initialize the Rx descriptor ring
1165  *	@net_dev: the net device to initialize for
1166  *
1167  *	Initialize the Rx descriptor ring,
1168  *	and pre-allocate recevie buffers (socket buffer)
1169  */
1170 
1171 static void
1172 sis900_init_rx_ring(struct net_device *net_dev)
1173 {
1174 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1175 	void __iomem *ioaddr = sis_priv->ioaddr;
1176 	int i;
1177 
1178 	sis_priv->cur_rx = 0;
1179 	sis_priv->dirty_rx = 0;
1180 
1181 	/* init RX descriptor */
1182 	for (i = 0; i < NUM_RX_DESC; i++) {
1183 		sis_priv->rx_skbuff[i] = NULL;
1184 
1185 		sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1186 			((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1187 		sis_priv->rx_ring[i].cmdsts = 0;
1188 		sis_priv->rx_ring[i].bufptr = 0;
1189 	}
1190 
1191 	/* allocate sock buffers */
1192 	for (i = 0; i < NUM_RX_DESC; i++) {
1193 		struct sk_buff *skb;
1194 
1195 		if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1196 			/* not enough memory for skbuff, this makes a "hole"
1197 			   on the buffer ring, it is not clear how the
1198 			   hardware will react to this kind of degenerated
1199 			   buffer */
1200 			break;
1201 		}
1202 		sis_priv->rx_skbuff[i] = skb;
1203 		sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1204                 sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1205                         skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1206 	}
1207 	sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1208 
1209 	/* load Receive Descriptor Register */
1210 	sw32(rxdp, sis_priv->rx_ring_dma);
1211 	if (netif_msg_hw(sis_priv))
1212 		printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1213 		       net_dev->name, sr32(rxdp));
1214 }
1215 
1216 /**
1217  *	sis630_set_eq - set phy equalizer value for 630 LAN
1218  *	@net_dev: the net device to set equalizer value
1219  *	@revision: 630 LAN revision number
1220  *
1221  *	630E equalizer workaround rule(Cyrus Huang 08/15)
1222  *	PHY register 14h(Test)
1223  *	Bit 14: 0 -- Automatically detect (default)
1224  *		1 -- Manually set Equalizer filter
1225  *	Bit 13: 0 -- (Default)
1226  *		1 -- Speed up convergence of equalizer setting
1227  *	Bit 9 : 0 -- (Default)
1228  *		1 -- Disable Baseline Wander
1229  *	Bit 3~7   -- Equalizer filter setting
1230  *	Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1231  *	Then calculate equalizer value
1232  *	Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1233  *	Link Off:Set Bit 13 to 1, Bit 14 to 0
1234  *	Calculate Equalizer value:
1235  *	When Link is ON and Bit 14 is 0, SIS900PHY will auto-detect proper equalizer value.
1236  *	When the equalizer is stable, this value is not a fixed value. It will be within
1237  *	a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1238  *	0 <= max <= 4  --> set equalizer to max
1239  *	5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1240  *	max >= 15      --> set equalizer to max+5 or set equalizer to max+6 if max == min
1241  */
1242 
1243 static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1244 {
1245 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1246 	u16 reg14h, eq_value=0, max_value=0, min_value=0;
1247 	int i, maxcount=10;
1248 
1249 	if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1250 	       revision == SIS630A_900_REV || revision ==  SIS630ET_900_REV) )
1251 		return;
1252 
1253 	if (netif_carrier_ok(net_dev)) {
1254 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1255 		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1256 					(0x2200 | reg14h) & 0xBFFF);
1257 		for (i=0; i < maxcount; i++) {
1258 			eq_value = (0x00F8 & mdio_read(net_dev,
1259 					sis_priv->cur_phy, MII_RESV)) >> 3;
1260 			if (i == 0)
1261 				max_value=min_value=eq_value;
1262 			max_value = (eq_value > max_value) ?
1263 						eq_value : max_value;
1264 			min_value = (eq_value < min_value) ?
1265 						eq_value : min_value;
1266 		}
1267 		/* 630E rule to determine the equalizer value */
1268 		if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1269 		    revision == SIS630ET_900_REV) {
1270 			if (max_value < 5)
1271 				eq_value = max_value;
1272 			else if (max_value >= 5 && max_value < 15)
1273 				eq_value = (max_value == min_value) ?
1274 						max_value+2 : max_value+1;
1275 			else if (max_value >= 15)
1276 				eq_value=(max_value == min_value) ?
1277 						max_value+6 : max_value+5;
1278 		}
1279 		/* 630B0&B1 rule to determine the equalizer value */
1280 		if (revision == SIS630A_900_REV &&
1281 		    (sis_priv->host_bridge_rev == SIS630B0 ||
1282 		     sis_priv->host_bridge_rev == SIS630B1)) {
1283 			if (max_value == 0)
1284 				eq_value = 3;
1285 			else
1286 				eq_value = (max_value + min_value + 1)/2;
1287 		}
1288 		/* write equalizer value and setting */
1289 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1290 		reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1291 		reg14h = (reg14h | 0x6000) & 0xFDFF;
1292 		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1293 	} else {
1294 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1295 		if (revision == SIS630A_900_REV &&
1296 		    (sis_priv->host_bridge_rev == SIS630B0 ||
1297 		     sis_priv->host_bridge_rev == SIS630B1))
1298 			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1299 						(reg14h | 0x2200) & 0xBFFF);
1300 		else
1301 			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1302 						(reg14h | 0x2000) & 0xBFFF);
1303 	}
1304 }
1305 
1306 /**
1307  *	sis900_timer - sis900 timer routine
1308  *	@data: pointer to sis900 net device
1309  *
1310  *	On each timer ticks we check two things,
1311  *	link status (ON/OFF) and link mode (10/100/Full/Half)
1312  */
1313 
1314 static void sis900_timer(unsigned long data)
1315 {
1316 	struct net_device *net_dev = (struct net_device *)data;
1317 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1318 	struct mii_phy *mii_phy = sis_priv->mii;
1319 	static const int next_tick = 5*HZ;
1320 	u16 status;
1321 
1322 	if (!sis_priv->autong_complete){
1323 		int uninitialized_var(speed), duplex = 0;
1324 
1325 		sis900_read_mode(net_dev, &speed, &duplex);
1326 		if (duplex){
1327 			sis900_set_mode(sis_priv, speed, duplex);
1328 			sis630_set_eq(net_dev, sis_priv->chipset_rev);
1329 			netif_start_queue(net_dev);
1330 		}
1331 
1332 		sis_priv->timer.expires = jiffies + HZ;
1333 		add_timer(&sis_priv->timer);
1334 		return;
1335 	}
1336 
1337 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1338 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1339 
1340 	/* Link OFF -> ON */
1341 	if (!netif_carrier_ok(net_dev)) {
1342 	LookForLink:
1343 		/* Search for new PHY */
1344 		status = sis900_default_phy(net_dev);
1345 		mii_phy = sis_priv->mii;
1346 
1347 		if (status & MII_STAT_LINK){
1348 			sis900_check_mode(net_dev, mii_phy);
1349 			netif_carrier_on(net_dev);
1350 		}
1351 	} else {
1352 	/* Link ON -> OFF */
1353                 if (!(status & MII_STAT_LINK)){
1354                 	netif_carrier_off(net_dev);
1355 			if(netif_msg_link(sis_priv))
1356                 		printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1357 
1358                 	/* Change mode issue */
1359                 	if ((mii_phy->phy_id0 == 0x001D) &&
1360 			    ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1361                			sis900_reset_phy(net_dev,  sis_priv->cur_phy);
1362 
1363 			sis630_set_eq(net_dev, sis_priv->chipset_rev);
1364 
1365                 	goto LookForLink;
1366                 }
1367 	}
1368 
1369 	sis_priv->timer.expires = jiffies + next_tick;
1370 	add_timer(&sis_priv->timer);
1371 }
1372 
1373 /**
1374  *	sis900_check_mode - check the media mode for sis900
1375  *	@net_dev: the net device to be checked
1376  *	@mii_phy: the mii phy
1377  *
1378  *	Older driver gets the media mode from mii status output
1379  *	register. Now we set our media capability and auto-negotiate
1380  *	to get the upper bound of speed and duplex between two ends.
1381  *	If the types of mii phy is HOME, it doesn't need to auto-negotiate
1382  *	and autong_complete should be set to 1.
1383  */
1384 
1385 static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1386 {
1387 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1388 	void __iomem *ioaddr = sis_priv->ioaddr;
1389 	int speed, duplex;
1390 
1391 	if (mii_phy->phy_types == LAN) {
1392 		sw32(cfg, ~EXD & sr32(cfg));
1393 		sis900_set_capability(net_dev , mii_phy);
1394 		sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1395 	} else {
1396 		sw32(cfg, EXD | sr32(cfg));
1397 		speed = HW_SPEED_HOME;
1398 		duplex = FDX_CAPABLE_HALF_SELECTED;
1399 		sis900_set_mode(sis_priv, speed, duplex);
1400 		sis_priv->autong_complete = 1;
1401 	}
1402 }
1403 
1404 /**
1405  *	sis900_set_mode - Set the media mode of mac register.
1406  *	@sp:     the device private data
1407  *	@speed : the transmit speed to be determined
1408  *	@duplex: the duplex mode to be determined
1409  *
1410  *	Set the media mode of mac register txcfg/rxcfg according to
1411  *	speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1412  *	bus is used instead of PCI bus. When this bit is set 1, the
1413  *	Max DMA Burst Size for TX/RX DMA should be no larger than 16
1414  *	double words.
1415  */
1416 
1417 static void sis900_set_mode(struct sis900_private *sp, int speed, int duplex)
1418 {
1419 	void __iomem *ioaddr = sp->ioaddr;
1420 	u32 tx_flags = 0, rx_flags = 0;
1421 
1422 	if (sr32( cfg) & EDB_MASTER_EN) {
1423 		tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1424 					(TX_FILL_THRESH << TxFILLT_shift);
1425 		rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1426 	} else {
1427 		tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1428 					(TX_FILL_THRESH << TxFILLT_shift);
1429 		rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1430 	}
1431 
1432 	if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1433 		rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1434 		tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1435 	} else {
1436 		rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1437 		tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1438 	}
1439 
1440 	if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1441 		tx_flags |= (TxCSI | TxHBI);
1442 		rx_flags |= RxATX;
1443 	}
1444 
1445 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1446 	/* Can accept Jumbo packet */
1447 	rx_flags |= RxAJAB;
1448 #endif
1449 
1450 	sw32(txcfg, tx_flags);
1451 	sw32(rxcfg, rx_flags);
1452 }
1453 
1454 /**
1455  *	sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1456  *	@net_dev: the net device to read mode for
1457  *	@phy_addr: mii phy address
1458  *
1459  *	If the adapter is link-on, set the auto-negotiate enable/reset bit.
1460  *	autong_complete should be set to 0 when starting auto-negotiation.
1461  *	autong_complete should be set to 1 if we didn't start auto-negotiation.
1462  *	sis900_timer will wait for link on again if autong_complete = 0.
1463  */
1464 
1465 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1466 {
1467 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1468 	int i = 0;
1469 	u32 status;
1470 
1471 	for (i = 0; i < 2; i++)
1472 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1473 
1474 	if (!(status & MII_STAT_LINK)){
1475 		if(netif_msg_link(sis_priv))
1476 			printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1477 		sis_priv->autong_complete = 1;
1478 		netif_carrier_off(net_dev);
1479 		return;
1480 	}
1481 
1482 	/* (Re)start AutoNegotiate */
1483 	mdio_write(net_dev, phy_addr, MII_CONTROL,
1484 		   MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1485 	sis_priv->autong_complete = 0;
1486 }
1487 
1488 
1489 /**
1490  *	sis900_read_mode - read media mode for sis900 internal phy
1491  *	@net_dev: the net device to read mode for
1492  *	@speed  : the transmit speed to be determined
1493  *	@duplex : the duplex mode to be determined
1494  *
1495  *	The capability of remote end will be put in mii register autorec
1496  *	after auto-negotiation. Use AND operation to get the upper bound
1497  *	of speed and duplex between two ends.
1498  */
1499 
1500 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1501 {
1502 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1503 	struct mii_phy *phy = sis_priv->mii;
1504 	int phy_addr = sis_priv->cur_phy;
1505 	u32 status;
1506 	u16 autoadv, autorec;
1507 	int i;
1508 
1509 	for (i = 0; i < 2; i++)
1510 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1511 
1512 	if (!(status & MII_STAT_LINK))
1513 		return;
1514 
1515 	/* AutoNegotiate completed */
1516 	autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1517 	autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1518 	status = autoadv & autorec;
1519 
1520 	*speed = HW_SPEED_10_MBPS;
1521 	*duplex = FDX_CAPABLE_HALF_SELECTED;
1522 
1523 	if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1524 		*speed = HW_SPEED_100_MBPS;
1525 	if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1526 		*duplex = FDX_CAPABLE_FULL_SELECTED;
1527 
1528 	sis_priv->autong_complete = 1;
1529 
1530 	/* Workaround for Realtek RTL8201 PHY issue */
1531 	if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1532 		if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1533 			*duplex = FDX_CAPABLE_FULL_SELECTED;
1534 		if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1535 			*speed = HW_SPEED_100_MBPS;
1536 	}
1537 
1538 	if(netif_msg_link(sis_priv))
1539 		printk(KERN_INFO "%s: Media Link On %s %s-duplex\n",
1540 	       				net_dev->name,
1541 	       				*speed == HW_SPEED_100_MBPS ?
1542 	       					"100mbps" : "10mbps",
1543 	       				*duplex == FDX_CAPABLE_FULL_SELECTED ?
1544 	       					"full" : "half");
1545 }
1546 
1547 /**
1548  *	sis900_tx_timeout - sis900 transmit timeout routine
1549  *	@net_dev: the net device to transmit
1550  *
1551  *	print transmit timeout status
1552  *	disable interrupts and do some tasks
1553  */
1554 
1555 static void sis900_tx_timeout(struct net_device *net_dev)
1556 {
1557 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1558 	void __iomem *ioaddr = sis_priv->ioaddr;
1559 	unsigned long flags;
1560 	int i;
1561 
1562 	if (netif_msg_tx_err(sis_priv)) {
1563 		printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n",
1564 			net_dev->name, sr32(cr), sr32(isr));
1565 	}
1566 
1567 	/* Disable interrupts by clearing the interrupt mask. */
1568 	sw32(imr, 0x0000);
1569 
1570 	/* use spinlock to prevent interrupt handler accessing buffer ring */
1571 	spin_lock_irqsave(&sis_priv->lock, flags);
1572 
1573 	/* discard unsent packets */
1574 	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1575 	for (i = 0; i < NUM_TX_DESC; i++) {
1576 		struct sk_buff *skb = sis_priv->tx_skbuff[i];
1577 
1578 		if (skb) {
1579 			pci_unmap_single(sis_priv->pci_dev,
1580 				sis_priv->tx_ring[i].bufptr, skb->len,
1581 				PCI_DMA_TODEVICE);
1582 			dev_kfree_skb_irq(skb);
1583 			sis_priv->tx_skbuff[i] = NULL;
1584 			sis_priv->tx_ring[i].cmdsts = 0;
1585 			sis_priv->tx_ring[i].bufptr = 0;
1586 			net_dev->stats.tx_dropped++;
1587 		}
1588 	}
1589 	sis_priv->tx_full = 0;
1590 	netif_wake_queue(net_dev);
1591 
1592 	spin_unlock_irqrestore(&sis_priv->lock, flags);
1593 
1594 	net_dev->trans_start = jiffies; /* prevent tx timeout */
1595 
1596 	/* load Transmit Descriptor Register */
1597 	sw32(txdp, sis_priv->tx_ring_dma);
1598 
1599 	/* Enable all known interrupts by setting the interrupt mask. */
1600 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
1601 }
1602 
1603 /**
1604  *	sis900_start_xmit - sis900 start transmit routine
1605  *	@skb: socket buffer pointer to put the data being transmitted
1606  *	@net_dev: the net device to transmit with
1607  *
1608  *	Set the transmit buffer descriptor,
1609  *	and write TxENA to enable transmit state machine.
1610  *	tell upper layer if the buffer is full
1611  */
1612 
1613 static netdev_tx_t
1614 sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1615 {
1616 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1617 	void __iomem *ioaddr = sis_priv->ioaddr;
1618 	unsigned int  entry;
1619 	unsigned long flags;
1620 	unsigned int  index_cur_tx, index_dirty_tx;
1621 	unsigned int  count_dirty_tx;
1622 
1623 	/* Don't transmit data before the complete of auto-negotiation */
1624 	if(!sis_priv->autong_complete){
1625 		netif_stop_queue(net_dev);
1626 		return NETDEV_TX_BUSY;
1627 	}
1628 
1629 	spin_lock_irqsave(&sis_priv->lock, flags);
1630 
1631 	/* Calculate the next Tx descriptor entry. */
1632 	entry = sis_priv->cur_tx % NUM_TX_DESC;
1633 	sis_priv->tx_skbuff[entry] = skb;
1634 
1635 	/* set the transmit buffer descriptor and enable Transmit State Machine */
1636 	sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1637 		skb->data, skb->len, PCI_DMA_TODEVICE);
1638 	sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len);
1639 	sw32(cr, TxENA | sr32(cr));
1640 
1641 	sis_priv->cur_tx ++;
1642 	index_cur_tx = sis_priv->cur_tx;
1643 	index_dirty_tx = sis_priv->dirty_tx;
1644 
1645 	for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1646 		count_dirty_tx ++;
1647 
1648 	if (index_cur_tx == index_dirty_tx) {
1649 		/* dirty_tx is met in the cycle of cur_tx, buffer full */
1650 		sis_priv->tx_full = 1;
1651 		netif_stop_queue(net_dev);
1652 	} else if (count_dirty_tx < NUM_TX_DESC) {
1653 		/* Typical path, tell upper layer that more transmission is possible */
1654 		netif_start_queue(net_dev);
1655 	} else {
1656 		/* buffer full, tell upper layer no more transmission */
1657 		sis_priv->tx_full = 1;
1658 		netif_stop_queue(net_dev);
1659 	}
1660 
1661 	spin_unlock_irqrestore(&sis_priv->lock, flags);
1662 
1663 	if (netif_msg_tx_queued(sis_priv))
1664 		printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1665 		       "to slot %d.\n",
1666 		       net_dev->name, skb->data, (int)skb->len, entry);
1667 
1668 	return NETDEV_TX_OK;
1669 }
1670 
1671 /**
1672  *	sis900_interrupt - sis900 interrupt handler
1673  *	@irq: the irq number
1674  *	@dev_instance: the client data object
1675  *
1676  *	The interrupt handler does all of the Rx thread work,
1677  *	and cleans up after the Tx thread
1678  */
1679 
1680 static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1681 {
1682 	struct net_device *net_dev = dev_instance;
1683 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1684 	int boguscnt = max_interrupt_work;
1685 	void __iomem *ioaddr = sis_priv->ioaddr;
1686 	u32 status;
1687 	unsigned int handled = 0;
1688 
1689 	spin_lock (&sis_priv->lock);
1690 
1691 	do {
1692 		status = sr32(isr);
1693 
1694 		if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0)
1695 			/* nothing intresting happened */
1696 			break;
1697 		handled = 1;
1698 
1699 		/* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1700 		if (status & (RxORN | RxERR | RxOK))
1701 			/* Rx interrupt */
1702 			sis900_rx(net_dev);
1703 
1704 		if (status & (TxURN | TxERR | TxIDLE))
1705 			/* Tx interrupt */
1706 			sis900_finish_xmit(net_dev);
1707 
1708 		/* something strange happened !!! */
1709 		if (status & HIBERR) {
1710 			if(netif_msg_intr(sis_priv))
1711 				printk(KERN_INFO "%s: Abnormal interrupt, "
1712 					"status %#8.8x.\n", net_dev->name, status);
1713 			break;
1714 		}
1715 		if (--boguscnt < 0) {
1716 			if(netif_msg_intr(sis_priv))
1717 				printk(KERN_INFO "%s: Too much work at interrupt, "
1718 					"interrupt status = %#8.8x.\n",
1719 					net_dev->name, status);
1720 			break;
1721 		}
1722 	} while (1);
1723 
1724 	if(netif_msg_intr(sis_priv))
1725 		printk(KERN_DEBUG "%s: exiting interrupt, "
1726 		       "interrupt status = 0x%#8.8x.\n",
1727 		       net_dev->name, sr32(isr));
1728 
1729 	spin_unlock (&sis_priv->lock);
1730 	return IRQ_RETVAL(handled);
1731 }
1732 
1733 /**
1734  *	sis900_rx - sis900 receive routine
1735  *	@net_dev: the net device which receives data
1736  *
1737  *	Process receive interrupt events,
1738  *	put buffer to higher layer and refill buffer pool
1739  *	Note: This function is called by interrupt handler,
1740  *	don't do "too much" work here
1741  */
1742 
1743 static int sis900_rx(struct net_device *net_dev)
1744 {
1745 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1746 	void __iomem *ioaddr = sis_priv->ioaddr;
1747 	unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1748 	u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1749 	int rx_work_limit;
1750 
1751 	if (netif_msg_rx_status(sis_priv))
1752 		printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1753 		       "status:0x%8.8x\n",
1754 		       sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1755 	rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1756 
1757 	while (rx_status & OWN) {
1758 		unsigned int rx_size;
1759 		unsigned int data_size;
1760 
1761 		if (--rx_work_limit < 0)
1762 			break;
1763 
1764 		data_size = rx_status & DSIZE;
1765 		rx_size = data_size - CRC_SIZE;
1766 
1767 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1768 		/* ``TOOLONG'' flag means jumbo packet received. */
1769 		if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1770 			rx_status &= (~ ((unsigned int)TOOLONG));
1771 #endif
1772 
1773 		if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1774 			/* corrupted packet received */
1775 			if (netif_msg_rx_err(sis_priv))
1776 				printk(KERN_DEBUG "%s: Corrupted packet "
1777 				       "received, buffer status = 0x%8.8x/%d.\n",
1778 				       net_dev->name, rx_status, data_size);
1779 			net_dev->stats.rx_errors++;
1780 			if (rx_status & OVERRUN)
1781 				net_dev->stats.rx_over_errors++;
1782 			if (rx_status & (TOOLONG|RUNT))
1783 				net_dev->stats.rx_length_errors++;
1784 			if (rx_status & (RXISERR | FAERR))
1785 				net_dev->stats.rx_frame_errors++;
1786 			if (rx_status & CRCERR)
1787 				net_dev->stats.rx_crc_errors++;
1788 			/* reset buffer descriptor state */
1789 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1790 		} else {
1791 			struct sk_buff * skb;
1792 			struct sk_buff * rx_skb;
1793 
1794 			pci_unmap_single(sis_priv->pci_dev,
1795 				sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1796 				PCI_DMA_FROMDEVICE);
1797 
1798 			/* refill the Rx buffer, what if there is not enough
1799 			 * memory for new socket buffer ?? */
1800 			if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1801 				/*
1802 				 * Not enough memory to refill the buffer
1803 				 * so we need to recycle the old one so
1804 				 * as to avoid creating a memory hole
1805 				 * in the rx ring
1806 				 */
1807 				skb = sis_priv->rx_skbuff[entry];
1808 				net_dev->stats.rx_dropped++;
1809 				goto refill_rx_ring;
1810 			}
1811 
1812 			/* This situation should never happen, but due to
1813 			   some unknown bugs, it is possible that
1814 			   we are working on NULL sk_buff :-( */
1815 			if (sis_priv->rx_skbuff[entry] == NULL) {
1816 				if (netif_msg_rx_err(sis_priv))
1817 					printk(KERN_WARNING "%s: NULL pointer "
1818 					      "encountered in Rx ring\n"
1819 					      "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1820 					      net_dev->name, sis_priv->cur_rx,
1821 					      sis_priv->dirty_rx);
1822 				dev_kfree_skb(skb);
1823 				break;
1824 			}
1825 
1826 			/* give the socket buffer to upper layers */
1827 			rx_skb = sis_priv->rx_skbuff[entry];
1828 			skb_put(rx_skb, rx_size);
1829 			rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1830 			netif_rx(rx_skb);
1831 
1832 			/* some network statistics */
1833 			if ((rx_status & BCAST) == MCAST)
1834 				net_dev->stats.multicast++;
1835 			net_dev->stats.rx_bytes += rx_size;
1836 			net_dev->stats.rx_packets++;
1837 			sis_priv->dirty_rx++;
1838 refill_rx_ring:
1839 			sis_priv->rx_skbuff[entry] = skb;
1840 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1841                 	sis_priv->rx_ring[entry].bufptr =
1842 				pci_map_single(sis_priv->pci_dev, skb->data,
1843 					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1844 		}
1845 		sis_priv->cur_rx++;
1846 		entry = sis_priv->cur_rx % NUM_RX_DESC;
1847 		rx_status = sis_priv->rx_ring[entry].cmdsts;
1848 	} // while
1849 
1850 	/* refill the Rx buffer, what if the rate of refilling is slower
1851 	 * than consuming ?? */
1852 	for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1853 		struct sk_buff *skb;
1854 
1855 		entry = sis_priv->dirty_rx % NUM_RX_DESC;
1856 
1857 		if (sis_priv->rx_skbuff[entry] == NULL) {
1858 			if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1859 				/* not enough memory for skbuff, this makes a
1860 				 * "hole" on the buffer ring, it is not clear
1861 				 * how the hardware will react to this kind
1862 				 * of degenerated buffer */
1863 				if (netif_msg_rx_err(sis_priv))
1864 					printk(KERN_INFO "%s: Memory squeeze, "
1865 						"deferring packet.\n",
1866 						net_dev->name);
1867 				net_dev->stats.rx_dropped++;
1868 				break;
1869 			}
1870 			sis_priv->rx_skbuff[entry] = skb;
1871 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1872                 	sis_priv->rx_ring[entry].bufptr =
1873 				pci_map_single(sis_priv->pci_dev, skb->data,
1874 					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1875 		}
1876 	}
1877 	/* re-enable the potentially idle receive state matchine */
1878 	sw32(cr , RxENA | sr32(cr));
1879 
1880 	return 0;
1881 }
1882 
1883 /**
1884  *	sis900_finish_xmit - finish up transmission of packets
1885  *	@net_dev: the net device to be transmitted on
1886  *
1887  *	Check for error condition and free socket buffer etc
1888  *	schedule for more transmission as needed
1889  *	Note: This function is called by interrupt handler,
1890  *	don't do "too much" work here
1891  */
1892 
1893 static void sis900_finish_xmit (struct net_device *net_dev)
1894 {
1895 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1896 
1897 	for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1898 		struct sk_buff *skb;
1899 		unsigned int entry;
1900 		u32 tx_status;
1901 
1902 		entry = sis_priv->dirty_tx % NUM_TX_DESC;
1903 		tx_status = sis_priv->tx_ring[entry].cmdsts;
1904 
1905 		if (tx_status & OWN) {
1906 			/* The packet is not transmitted yet (owned by hardware) !
1907 			 * Note: the interrupt is generated only when Tx Machine
1908 			 * is idle, so this is an almost impossible case */
1909 			break;
1910 		}
1911 
1912 		if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1913 			/* packet unsuccessfully transmitted */
1914 			if (netif_msg_tx_err(sis_priv))
1915 				printk(KERN_DEBUG "%s: Transmit "
1916 				       "error, Tx status %8.8x.\n",
1917 				       net_dev->name, tx_status);
1918 			net_dev->stats.tx_errors++;
1919 			if (tx_status & UNDERRUN)
1920 				net_dev->stats.tx_fifo_errors++;
1921 			if (tx_status & ABORT)
1922 				net_dev->stats.tx_aborted_errors++;
1923 			if (tx_status & NOCARRIER)
1924 				net_dev->stats.tx_carrier_errors++;
1925 			if (tx_status & OWCOLL)
1926 				net_dev->stats.tx_window_errors++;
1927 		} else {
1928 			/* packet successfully transmitted */
1929 			net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1930 			net_dev->stats.tx_bytes += tx_status & DSIZE;
1931 			net_dev->stats.tx_packets++;
1932 		}
1933 		/* Free the original skb. */
1934 		skb = sis_priv->tx_skbuff[entry];
1935 		pci_unmap_single(sis_priv->pci_dev,
1936 			sis_priv->tx_ring[entry].bufptr, skb->len,
1937 			PCI_DMA_TODEVICE);
1938 		dev_kfree_skb_irq(skb);
1939 		sis_priv->tx_skbuff[entry] = NULL;
1940 		sis_priv->tx_ring[entry].bufptr = 0;
1941 		sis_priv->tx_ring[entry].cmdsts = 0;
1942 	}
1943 
1944 	if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1945 	    sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1946 		/* The ring is no longer full, clear tx_full and schedule
1947 		 * more transmission by netif_wake_queue(net_dev) */
1948 		sis_priv->tx_full = 0;
1949 		netif_wake_queue (net_dev);
1950 	}
1951 }
1952 
1953 /**
1954  *	sis900_close - close sis900 device
1955  *	@net_dev: the net device to be closed
1956  *
1957  *	Disable interrupts, stop the Tx and Rx Status Machine
1958  *	free Tx and RX socket buffer
1959  */
1960 
1961 static int sis900_close(struct net_device *net_dev)
1962 {
1963 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1964 	struct pci_dev *pdev = sis_priv->pci_dev;
1965 	void __iomem *ioaddr = sis_priv->ioaddr;
1966 	struct sk_buff *skb;
1967 	int i;
1968 
1969 	netif_stop_queue(net_dev);
1970 
1971 	/* Disable interrupts by clearing the interrupt mask. */
1972 	sw32(imr, 0x0000);
1973 	sw32(ier, 0x0000);
1974 
1975 	/* Stop the chip's Tx and Rx Status Machine */
1976 	sw32(cr, RxDIS | TxDIS | sr32(cr));
1977 
1978 	del_timer(&sis_priv->timer);
1979 
1980 	free_irq(pdev->irq, net_dev);
1981 
1982 	/* Free Tx and RX skbuff */
1983 	for (i = 0; i < NUM_RX_DESC; i++) {
1984 		skb = sis_priv->rx_skbuff[i];
1985 		if (skb) {
1986 			pci_unmap_single(pdev, sis_priv->rx_ring[i].bufptr,
1987 					 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1988 			dev_kfree_skb(skb);
1989 			sis_priv->rx_skbuff[i] = NULL;
1990 		}
1991 	}
1992 	for (i = 0; i < NUM_TX_DESC; i++) {
1993 		skb = sis_priv->tx_skbuff[i];
1994 		if (skb) {
1995 			pci_unmap_single(pdev, sis_priv->tx_ring[i].bufptr,
1996 					 skb->len, PCI_DMA_TODEVICE);
1997 			dev_kfree_skb(skb);
1998 			sis_priv->tx_skbuff[i] = NULL;
1999 		}
2000 	}
2001 
2002 	/* Green! Put the chip in low-power mode. */
2003 
2004 	return 0;
2005 }
2006 
2007 /**
2008  *	sis900_get_drvinfo - Return information about driver
2009  *	@net_dev: the net device to probe
2010  *	@info: container for info returned
2011  *
2012  *	Process ethtool command such as "ehtool -i" to show information
2013  */
2014 
2015 static void sis900_get_drvinfo(struct net_device *net_dev,
2016 			       struct ethtool_drvinfo *info)
2017 {
2018 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2019 
2020 	strlcpy(info->driver, SIS900_MODULE_NAME, sizeof(info->driver));
2021 	strlcpy(info->version, SIS900_DRV_VERSION, sizeof(info->version));
2022 	strlcpy(info->bus_info, pci_name(sis_priv->pci_dev),
2023 		sizeof(info->bus_info));
2024 }
2025 
2026 static u32 sis900_get_msglevel(struct net_device *net_dev)
2027 {
2028 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2029 	return sis_priv->msg_enable;
2030 }
2031 
2032 static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
2033 {
2034 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2035 	sis_priv->msg_enable = value;
2036 }
2037 
2038 static u32 sis900_get_link(struct net_device *net_dev)
2039 {
2040 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2041 	return mii_link_ok(&sis_priv->mii_info);
2042 }
2043 
2044 static int sis900_get_settings(struct net_device *net_dev,
2045 				struct ethtool_cmd *cmd)
2046 {
2047 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2048 	spin_lock_irq(&sis_priv->lock);
2049 	mii_ethtool_gset(&sis_priv->mii_info, cmd);
2050 	spin_unlock_irq(&sis_priv->lock);
2051 	return 0;
2052 }
2053 
2054 static int sis900_set_settings(struct net_device *net_dev,
2055 				struct ethtool_cmd *cmd)
2056 {
2057 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2058 	int rt;
2059 	spin_lock_irq(&sis_priv->lock);
2060 	rt = mii_ethtool_sset(&sis_priv->mii_info, cmd);
2061 	spin_unlock_irq(&sis_priv->lock);
2062 	return rt;
2063 }
2064 
2065 static int sis900_nway_reset(struct net_device *net_dev)
2066 {
2067 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2068 	return mii_nway_restart(&sis_priv->mii_info);
2069 }
2070 
2071 /**
2072  *	sis900_set_wol - Set up Wake on Lan registers
2073  *	@net_dev: the net device to probe
2074  *	@wol: container for info passed to the driver
2075  *
2076  *	Process ethtool command "wol" to setup wake on lan features.
2077  *	SiS900 supports sending WoL events if a correct packet is received,
2078  *	but there is no simple way to filter them to only a subset (broadcast,
2079  *	multicast, unicast or arp).
2080  */
2081 
2082 static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2083 {
2084 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2085 	void __iomem *ioaddr = sis_priv->ioaddr;
2086 	u32 cfgpmcsr = 0, pmctrl_bits = 0;
2087 
2088 	if (wol->wolopts == 0) {
2089 		pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2090 		cfgpmcsr &= ~PME_EN;
2091 		pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2092 		sw32(pmctrl, pmctrl_bits);
2093 		if (netif_msg_wol(sis_priv))
2094 			printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2095 		return 0;
2096 	}
2097 
2098 	if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2099 				| WAKE_BCAST | WAKE_ARP))
2100 		return -EINVAL;
2101 
2102 	if (wol->wolopts & WAKE_MAGIC)
2103 		pmctrl_bits |= MAGICPKT;
2104 	if (wol->wolopts & WAKE_PHY)
2105 		pmctrl_bits |= LINKON;
2106 
2107 	sw32(pmctrl, pmctrl_bits);
2108 
2109 	pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2110 	cfgpmcsr |= PME_EN;
2111 	pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2112 	if (netif_msg_wol(sis_priv))
2113 		printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2114 
2115 	return 0;
2116 }
2117 
2118 static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2119 {
2120 	struct sis900_private *sp = netdev_priv(net_dev);
2121 	void __iomem *ioaddr = sp->ioaddr;
2122 	u32 pmctrl_bits;
2123 
2124 	pmctrl_bits = sr32(pmctrl);
2125 	if (pmctrl_bits & MAGICPKT)
2126 		wol->wolopts |= WAKE_MAGIC;
2127 	if (pmctrl_bits & LINKON)
2128 		wol->wolopts |= WAKE_PHY;
2129 
2130 	wol->supported = (WAKE_PHY | WAKE_MAGIC);
2131 }
2132 
2133 static const struct ethtool_ops sis900_ethtool_ops = {
2134 	.get_drvinfo 	= sis900_get_drvinfo,
2135 	.get_msglevel	= sis900_get_msglevel,
2136 	.set_msglevel	= sis900_set_msglevel,
2137 	.get_link	= sis900_get_link,
2138 	.get_settings	= sis900_get_settings,
2139 	.set_settings	= sis900_set_settings,
2140 	.nway_reset	= sis900_nway_reset,
2141 	.get_wol	= sis900_get_wol,
2142 	.set_wol	= sis900_set_wol
2143 };
2144 
2145 /**
2146  *	mii_ioctl - process MII i/o control command
2147  *	@net_dev: the net device to command for
2148  *	@rq: parameter for command
2149  *	@cmd: the i/o command
2150  *
2151  *	Process MII command like read/write MII register
2152  */
2153 
2154 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2155 {
2156 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2157 	struct mii_ioctl_data *data = if_mii(rq);
2158 
2159 	switch(cmd) {
2160 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2161 		data->phy_id = sis_priv->mii->phy_addr;
2162 		/* Fall Through */
2163 
2164 	case SIOCGMIIREG:		/* Read MII PHY register. */
2165 		data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2166 		return 0;
2167 
2168 	case SIOCSMIIREG:		/* Write MII PHY register. */
2169 		mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2170 		return 0;
2171 	default:
2172 		return -EOPNOTSUPP;
2173 	}
2174 }
2175 
2176 /**
2177  *	sis900_set_config - Set media type by net_device.set_config
2178  *	@dev: the net device for media type change
2179  *	@map: ifmap passed by ifconfig
2180  *
2181  *	Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2182  *	we support only port changes. All other runtime configuration
2183  *	changes will be ignored
2184  */
2185 
2186 static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2187 {
2188 	struct sis900_private *sis_priv = netdev_priv(dev);
2189 	struct mii_phy *mii_phy = sis_priv->mii;
2190 
2191 	u16 status;
2192 
2193 	if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2194 		/* we switch on the ifmap->port field. I couldn't find anything
2195 		 * like a definition or standard for the values of that field.
2196 		 * I think the meaning of those values is device specific. But
2197 		 * since I would like to change the media type via the ifconfig
2198 		 * command I use the definition from linux/netdevice.h
2199 		 * (which seems to be different from the ifport(pcmcia) definition) */
2200 		switch(map->port){
2201 		case IF_PORT_UNKNOWN: /* use auto here */
2202 			dev->if_port = map->port;
2203 			/* we are going to change the media type, so the Link
2204 			 * will be temporary down and we need to reflect that
2205 			 * here. When the Link comes up again, it will be
2206 			 * sensed by the sis_timer procedure, which also does
2207 			 * all the rest for us */
2208 			netif_carrier_off(dev);
2209 
2210 			/* read current state */
2211 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2212 
2213 			/* enable auto negotiation and reset the negotioation
2214 			 * (I don't really know what the auto negatiotiation
2215 			 * reset really means, but it sounds for me right to
2216 			 * do one here) */
2217 			mdio_write(dev, mii_phy->phy_addr,
2218 				   MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2219 
2220 			break;
2221 
2222 		case IF_PORT_10BASET: /* 10BaseT */
2223 			dev->if_port = map->port;
2224 
2225 			/* we are going to change the media type, so the Link
2226 			 * will be temporary down and we need to reflect that
2227 			 * here. When the Link comes up again, it will be
2228 			 * sensed by the sis_timer procedure, which also does
2229 			 * all the rest for us */
2230 			netif_carrier_off(dev);
2231 
2232 			/* set Speed to 10Mbps */
2233 			/* read current state */
2234 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2235 
2236 			/* disable auto negotiation and force 10MBit mode*/
2237 			mdio_write(dev, mii_phy->phy_addr,
2238 				   MII_CONTROL, status & ~(MII_CNTL_SPEED |
2239 					MII_CNTL_AUTO));
2240 			break;
2241 
2242 		case IF_PORT_100BASET: /* 100BaseT */
2243 		case IF_PORT_100BASETX: /* 100BaseTx */
2244 			dev->if_port = map->port;
2245 
2246 			/* we are going to change the media type, so the Link
2247 			 * will be temporary down and we need to reflect that
2248 			 * here. When the Link comes up again, it will be
2249 			 * sensed by the sis_timer procedure, which also does
2250 			 * all the rest for us */
2251 			netif_carrier_off(dev);
2252 
2253 			/* set Speed to 100Mbps */
2254 			/* disable auto negotiation and enable 100MBit Mode */
2255 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2256 			mdio_write(dev, mii_phy->phy_addr,
2257 				   MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2258 				   MII_CNTL_SPEED);
2259 
2260 			break;
2261 
2262 		case IF_PORT_10BASE2: /* 10Base2 */
2263 		case IF_PORT_AUI: /* AUI */
2264 		case IF_PORT_100BASEFX: /* 100BaseFx */
2265                 	/* These Modes are not supported (are they?)*/
2266 			return -EOPNOTSUPP;
2267 			break;
2268 
2269 		default:
2270 			return -EINVAL;
2271 		}
2272 	}
2273 	return 0;
2274 }
2275 
2276 /**
2277  *	sis900_mcast_bitnr - compute hashtable index
2278  *	@addr: multicast address
2279  *	@revision: revision id of chip
2280  *
2281  *	SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2282  *	hash table, which makes this function a little bit different from other drivers
2283  *	SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2284  *   	multicast hash table.
2285  */
2286 
2287 static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2288 {
2289 
2290 	u32 crc = ether_crc(6, addr);
2291 
2292 	/* leave 8 or 7 most siginifant bits */
2293 	if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2294 		return (int)(crc >> 24);
2295 	else
2296 		return (int)(crc >> 25);
2297 }
2298 
2299 /**
2300  *	set_rx_mode - Set SiS900 receive mode
2301  *	@net_dev: the net device to be set
2302  *
2303  *	Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2304  *	And set the appropriate multicast filter.
2305  *	Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2306  */
2307 
2308 static void set_rx_mode(struct net_device *net_dev)
2309 {
2310 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2311 	void __iomem *ioaddr = sis_priv->ioaddr;
2312 	u16 mc_filter[16] = {0};	/* 256/128 bits multicast hash table */
2313 	int i, table_entries;
2314 	u32 rx_mode;
2315 
2316 	/* 635 Hash Table entries = 256(2^16) */
2317 	if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2318 			(sis_priv->chipset_rev == SIS900B_900_REV))
2319 		table_entries = 16;
2320 	else
2321 		table_entries = 8;
2322 
2323 	if (net_dev->flags & IFF_PROMISC) {
2324 		/* Accept any kinds of packets */
2325 		rx_mode = RFPromiscuous;
2326 		for (i = 0; i < table_entries; i++)
2327 			mc_filter[i] = 0xffff;
2328 	} else if ((netdev_mc_count(net_dev) > multicast_filter_limit) ||
2329 		   (net_dev->flags & IFF_ALLMULTI)) {
2330 		/* too many multicast addresses or accept all multicast packet */
2331 		rx_mode = RFAAB | RFAAM;
2332 		for (i = 0; i < table_entries; i++)
2333 			mc_filter[i] = 0xffff;
2334 	} else {
2335 		/* Accept Broadcast packet, destination address matchs our
2336 		 * MAC address, use Receive Filter to reject unwanted MCAST
2337 		 * packets */
2338 		struct netdev_hw_addr *ha;
2339 		rx_mode = RFAAB;
2340 
2341 		netdev_for_each_mc_addr(ha, net_dev) {
2342 			unsigned int bit_nr;
2343 
2344 			bit_nr = sis900_mcast_bitnr(ha->addr,
2345 						    sis_priv->chipset_rev);
2346 			mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2347 		}
2348 	}
2349 
2350 	/* update Multicast Hash Table in Receive Filter */
2351 	for (i = 0; i < table_entries; i++) {
2352                 /* why plus 0x04 ??, That makes the correct value for hash table. */
2353 		sw32(rfcr, (u32)(0x00000004 + i) << RFADDR_shift);
2354 		sw32(rfdr, mc_filter[i]);
2355 	}
2356 
2357 	sw32(rfcr, RFEN | rx_mode);
2358 
2359 	/* sis900 is capable of looping back packets at MAC level for
2360 	 * debugging purpose */
2361 	if (net_dev->flags & IFF_LOOPBACK) {
2362 		u32 cr_saved;
2363 		/* We must disable Tx/Rx before setting loopback mode */
2364 		cr_saved = sr32(cr);
2365 		sw32(cr, cr_saved | TxDIS | RxDIS);
2366 		/* enable loopback */
2367 		sw32(txcfg, sr32(txcfg) | TxMLB);
2368 		sw32(rxcfg, sr32(rxcfg) | RxATX);
2369 		/* restore cr */
2370 		sw32(cr, cr_saved);
2371 	}
2372 }
2373 
2374 /**
2375  *	sis900_reset - Reset sis900 MAC
2376  *	@net_dev: the net device to reset
2377  *
2378  *	reset sis900 MAC and wait until finished
2379  *	reset through command register
2380  *	change backoff algorithm for 900B0 & 635 M/B
2381  */
2382 
2383 static void sis900_reset(struct net_device *net_dev)
2384 {
2385 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2386 	void __iomem *ioaddr = sis_priv->ioaddr;
2387 	u32 status = TxRCMP | RxRCMP;
2388 	int i;
2389 
2390 	sw32(ier, 0);
2391 	sw32(imr, 0);
2392 	sw32(rfcr, 0);
2393 
2394 	sw32(cr, RxRESET | TxRESET | RESET | sr32(cr));
2395 
2396 	/* Check that the chip has finished the reset. */
2397 	for (i = 0; status && (i < 1000); i++)
2398 		status ^= sr32(isr) & status;
2399 
2400 	if (sis_priv->chipset_rev >= SIS635A_900_REV ||
2401 	    sis_priv->chipset_rev == SIS900B_900_REV)
2402 		sw32(cfg, PESEL | RND_CNT);
2403 	else
2404 		sw32(cfg, PESEL);
2405 }
2406 
2407 /**
2408  *	sis900_remove - Remove sis900 device
2409  *	@pci_dev: the pci device to be removed
2410  *
2411  *	remove and release SiS900 net device
2412  */
2413 
2414 static void sis900_remove(struct pci_dev *pci_dev)
2415 {
2416 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2417 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2418 
2419 	unregister_netdev(net_dev);
2420 
2421 	while (sis_priv->first_mii) {
2422 		struct mii_phy *phy = sis_priv->first_mii;
2423 
2424 		sis_priv->first_mii = phy->next;
2425 		kfree(phy);
2426 	}
2427 
2428 	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2429 		sis_priv->rx_ring_dma);
2430 	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2431 		sis_priv->tx_ring_dma);
2432 	pci_iounmap(pci_dev, sis_priv->ioaddr);
2433 	free_netdev(net_dev);
2434 	pci_release_regions(pci_dev);
2435 	pci_set_drvdata(pci_dev, NULL);
2436 }
2437 
2438 #ifdef CONFIG_PM
2439 
2440 static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state)
2441 {
2442 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2443 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2444 	void __iomem *ioaddr = sis_priv->ioaddr;
2445 
2446 	if(!netif_running(net_dev))
2447 		return 0;
2448 
2449 	netif_stop_queue(net_dev);
2450 	netif_device_detach(net_dev);
2451 
2452 	/* Stop the chip's Tx and Rx Status Machine */
2453 	sw32(cr, RxDIS | TxDIS | sr32(cr));
2454 
2455 	pci_set_power_state(pci_dev, PCI_D3hot);
2456 	pci_save_state(pci_dev);
2457 
2458 	return 0;
2459 }
2460 
2461 static int sis900_resume(struct pci_dev *pci_dev)
2462 {
2463 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2464 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2465 	void __iomem *ioaddr = sis_priv->ioaddr;
2466 
2467 	if(!netif_running(net_dev))
2468 		return 0;
2469 	pci_restore_state(pci_dev);
2470 	pci_set_power_state(pci_dev, PCI_D0);
2471 
2472 	sis900_init_rxfilter(net_dev);
2473 
2474 	sis900_init_tx_ring(net_dev);
2475 	sis900_init_rx_ring(net_dev);
2476 
2477 	set_rx_mode(net_dev);
2478 
2479 	netif_device_attach(net_dev);
2480 	netif_start_queue(net_dev);
2481 
2482 	/* Workaround for EDB */
2483 	sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2484 
2485 	/* Enable all known interrupts by setting the interrupt mask. */
2486 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
2487 	sw32(cr, RxENA | sr32(cr));
2488 	sw32(ier, IE);
2489 
2490 	sis900_check_mode(net_dev, sis_priv->mii);
2491 
2492 	return 0;
2493 }
2494 #endif /* CONFIG_PM */
2495 
2496 static struct pci_driver sis900_pci_driver = {
2497 	.name		= SIS900_MODULE_NAME,
2498 	.id_table	= sis900_pci_tbl,
2499 	.probe		= sis900_probe,
2500 	.remove		= sis900_remove,
2501 #ifdef CONFIG_PM
2502 	.suspend	= sis900_suspend,
2503 	.resume		= sis900_resume,
2504 #endif /* CONFIG_PM */
2505 };
2506 
2507 static int __init sis900_init_module(void)
2508 {
2509 /* when a module, this is printed whether or not devices are found in probe */
2510 #ifdef MODULE
2511 	printk(version);
2512 #endif
2513 
2514 	return pci_register_driver(&sis900_pci_driver);
2515 }
2516 
2517 static void __exit sis900_cleanup_module(void)
2518 {
2519 	pci_unregister_driver(&sis900_pci_driver);
2520 }
2521 
2522 module_init(sis900_init_module);
2523 module_exit(sis900_cleanup_module);
2524 
2525