xref: /openbmc/linux/drivers/net/ethernet/sis/sis900.c (revision b923cda9)
1 /* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
2    Copyright 1999 Silicon Integrated System Corporation
3    Revision:	1.08.10 Apr. 2 2006
4 
5    Modified from the driver which is originally written by Donald Becker.
6 
7    This software may be used and distributed according to the terms
8    of the GNU General Public License (GPL), incorporated herein by reference.
9    Drivers based on this skeleton fall under the GPL and must retain
10    the authorship (implicit copyright) notice.
11 
12    References:
13    SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
14    preliminary Rev. 1.0 Jan. 14, 1998
15    SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
16    preliminary Rev. 1.0 Nov. 10, 1998
17    SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
18    preliminary Rev. 1.0 Jan. 18, 1998
19 
20    Rev 1.08.10 Apr.  2 2006 Daniele Venzano add vlan (jumbo packets) support
21    Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
22    Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
23    Rev 1.08.07 Nov.  2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
24    Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
25    Rev 1.08.05 Jun.  6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
26    Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
27    Rev 1.08.03 Feb.  1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
28    Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
29    Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
30    Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
31    Rev 1.07.11 Apr.  2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
32    Rev 1.07.10 Mar.  1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
33    Rev 1.07.09 Feb.  9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
34    Rev 1.07.08 Jan.  8 2001 Lei-Chun Chang added RTL8201 PHY support
35    Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
36    Rev 1.07.06 Nov.  7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
37    Rev 1.07.05 Nov.  6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
38    Rev 1.07.04 Sep.  6 2000 Lei-Chun Chang added ICS1893 PHY support
39    Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E equalizer workaround rule
40    Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
41    Rev 1.07    Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
42    Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
43    Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
44    Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
45    Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
46    Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
47    Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
48    Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
49    Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
50 */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/kernel.h>
55 #include <linux/sched.h>
56 #include <linux/string.h>
57 #include <linux/timer.h>
58 #include <linux/errno.h>
59 #include <linux/ioport.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/pci.h>
63 #include <linux/netdevice.h>
64 #include <linux/init.h>
65 #include <linux/mii.h>
66 #include <linux/etherdevice.h>
67 #include <linux/skbuff.h>
68 #include <linux/delay.h>
69 #include <linux/ethtool.h>
70 #include <linux/crc32.h>
71 #include <linux/bitops.h>
72 #include <linux/dma-mapping.h>
73 
74 #include <asm/processor.h>      /* Processor type for cache alignment. */
75 #include <asm/io.h>
76 #include <asm/irq.h>
77 #include <linux/uaccess.h>	/* User space memory access functions */
78 
79 #include "sis900.h"
80 
81 #define SIS900_MODULE_NAME "sis900"
82 #define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
83 
84 static const char version[] =
85 	KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
86 
87 static int max_interrupt_work = 40;
88 static int multicast_filter_limit = 128;
89 
90 static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
91 
92 #define SIS900_DEF_MSG \
93 	(NETIF_MSG_DRV		| \
94 	 NETIF_MSG_LINK		| \
95 	 NETIF_MSG_RX_ERR	| \
96 	 NETIF_MSG_TX_ERR)
97 
98 /* Time in jiffies before concluding the transmitter is hung. */
99 #define TX_TIMEOUT  (4*HZ)
100 
101 enum {
102 	SIS_900 = 0,
103 	SIS_7016
104 };
105 static const char * card_names[] = {
106 	"SiS 900 PCI Fast Ethernet",
107 	"SiS 7016 PCI Fast Ethernet"
108 };
109 
110 static const struct pci_device_id sis900_pci_tbl[] = {
111 	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
112 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
113 	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
114 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
115 	{0,}
116 };
117 MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
118 
119 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
120 
121 static const struct mii_chip_info {
122 	const char * name;
123 	u16 phy_id0;
124 	u16 phy_id1;
125 	u8  phy_types;
126 #define	HOME 	0x0001
127 #define LAN	0x0002
128 #define MIX	0x0003
129 #define UNKNOWN	0x0
130 } mii_chip_table[] = {
131 	{ "SiS 900 Internal MII PHY", 		0x001d, 0x8000, LAN },
132 	{ "SiS 7014 Physical Layer Solution", 	0x0016, 0xf830, LAN },
133 	{ "SiS 900 on Foxconn 661 7MI",         0x0143, 0xBC70, LAN },
134 	{ "Altimata AC101LF PHY",               0x0022, 0x5520, LAN },
135 	{ "ADM 7001 LAN PHY",			0x002e, 0xcc60, LAN },
136 	{ "AMD 79C901 10BASE-T PHY",  		0x0000, 0x6B70, LAN },
137 	{ "AMD 79C901 HomePNA PHY",		0x0000, 0x6B90, HOME},
138 	{ "ICS LAN PHY",			0x0015, 0xF440, LAN },
139 	{ "ICS LAN PHY",			0x0143, 0xBC70, LAN },
140 	{ "NS 83851 PHY",			0x2000, 0x5C20, MIX },
141 	{ "NS 83847 PHY",                       0x2000, 0x5C30, MIX },
142 	{ "Realtek RTL8201 PHY",		0x0000, 0x8200, LAN },
143 	{ "VIA 6103 PHY",			0x0101, 0x8f20, LAN },
144 	{NULL,},
145 };
146 
147 struct mii_phy {
148 	struct mii_phy * next;
149 	int phy_addr;
150 	u16 phy_id0;
151 	u16 phy_id1;
152 	u16 status;
153 	u8  phy_types;
154 };
155 
156 typedef struct _BufferDesc {
157 	u32 link;
158 	u32 cmdsts;
159 	u32 bufptr;
160 } BufferDesc;
161 
162 struct sis900_private {
163 	struct pci_dev * pci_dev;
164 
165 	spinlock_t lock;
166 
167 	struct mii_phy * mii;
168 	struct mii_phy * first_mii; /* record the first mii structure */
169 	unsigned int cur_phy;
170 	struct mii_if_info mii_info;
171 
172 	void __iomem	*ioaddr;
173 
174 	struct timer_list timer; /* Link status detection timer. */
175 	u8 autong_complete; /* 1: auto-negotiate complete  */
176 
177 	u32 msg_enable;
178 
179 	unsigned int cur_rx, dirty_rx; /* producer/consumer pointers for Tx/Rx ring */
180 	unsigned int cur_tx, dirty_tx;
181 
182 	/* The saved address of a sent/receive-in-place packet buffer */
183 	struct sk_buff *tx_skbuff[NUM_TX_DESC];
184 	struct sk_buff *rx_skbuff[NUM_RX_DESC];
185 	BufferDesc *tx_ring;
186 	BufferDesc *rx_ring;
187 
188 	dma_addr_t tx_ring_dma;
189 	dma_addr_t rx_ring_dma;
190 
191 	unsigned int tx_full; /* The Tx queue is full. */
192 	u8 host_bridge_rev;
193 	u8 chipset_rev;
194 	/* EEPROM data */
195 	int eeprom_size;
196 };
197 
198 MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
199 MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
200 MODULE_LICENSE("GPL");
201 
202 module_param(multicast_filter_limit, int, 0444);
203 module_param(max_interrupt_work, int, 0444);
204 module_param(sis900_debug, int, 0444);
205 MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
206 MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
207 MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
208 
209 #define sw32(reg, val)	iowrite32(val, ioaddr + (reg))
210 #define sw8(reg, val)	iowrite8(val, ioaddr + (reg))
211 #define sr32(reg)	ioread32(ioaddr + (reg))
212 #define sr16(reg)	ioread16(ioaddr + (reg))
213 
214 #ifdef CONFIG_NET_POLL_CONTROLLER
215 static void sis900_poll(struct net_device *dev);
216 #endif
217 static int sis900_open(struct net_device *net_dev);
218 static int sis900_mii_probe (struct net_device * net_dev);
219 static void sis900_init_rxfilter (struct net_device * net_dev);
220 static u16 read_eeprom(void __iomem *ioaddr, int location);
221 static int mdio_read(struct net_device *net_dev, int phy_id, int location);
222 static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
223 static void sis900_timer(struct timer_list *t);
224 static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
225 static void sis900_tx_timeout(struct net_device *net_dev, unsigned int txqueue);
226 static void sis900_init_tx_ring(struct net_device *net_dev);
227 static void sis900_init_rx_ring(struct net_device *net_dev);
228 static netdev_tx_t sis900_start_xmit(struct sk_buff *skb,
229 				     struct net_device *net_dev);
230 static int sis900_rx(struct net_device *net_dev);
231 static void sis900_finish_xmit (struct net_device *net_dev);
232 static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
233 static int sis900_close(struct net_device *net_dev);
234 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
235 static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
236 static void set_rx_mode(struct net_device *net_dev);
237 static void sis900_reset(struct net_device *net_dev);
238 static void sis630_set_eq(struct net_device *net_dev, u8 revision);
239 static int sis900_set_config(struct net_device *dev, struct ifmap *map);
240 static u16 sis900_default_phy(struct net_device * net_dev);
241 static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
242 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
243 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
244 static void sis900_set_mode(struct sis900_private *, int speed, int duplex);
245 static const struct ethtool_ops sis900_ethtool_ops;
246 
247 /**
248  *	sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
249  *	@pci_dev: the sis900 pci device
250  *	@net_dev: the net device to get address for
251  *
252  *	Older SiS900 and friends, use EEPROM to store MAC address.
253  *	MAC address is read from read_eeprom() into @net_dev->dev_addr.
254  */
255 
256 static int sis900_get_mac_addr(struct pci_dev *pci_dev,
257 			       struct net_device *net_dev)
258 {
259 	struct sis900_private *sis_priv = netdev_priv(net_dev);
260 	void __iomem *ioaddr = sis_priv->ioaddr;
261 	u16 signature;
262 	int i;
263 
264 	/* check to see if we have sane EEPROM */
265 	signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
266 	if (signature == 0xffff || signature == 0x0000) {
267 		printk (KERN_WARNING "%s: Error EEPROM read %x\n",
268 			pci_name(pci_dev), signature);
269 		return 0;
270 	}
271 
272 	/* get MAC address from EEPROM */
273 	for (i = 0; i < 3; i++)
274 	        ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
275 
276 	return 1;
277 }
278 
279 /**
280  *	sis630e_get_mac_addr - Get MAC address for SiS630E model
281  *	@pci_dev: the sis900 pci device
282  *	@net_dev: the net device to get address for
283  *
284  *	SiS630E model, use APC CMOS RAM to store MAC address.
285  *	APC CMOS RAM is accessed through ISA bridge.
286  *	MAC address is read into @net_dev->dev_addr.
287  */
288 
289 static int sis630e_get_mac_addr(struct pci_dev *pci_dev,
290 				struct net_device *net_dev)
291 {
292 	struct pci_dev *isa_bridge = NULL;
293 	u8 reg;
294 	int i;
295 
296 	isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
297 	if (!isa_bridge)
298 		isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
299 	if (!isa_bridge) {
300 		printk(KERN_WARNING "%s: Can not find ISA bridge\n",
301 		       pci_name(pci_dev));
302 		return 0;
303 	}
304 	pci_read_config_byte(isa_bridge, 0x48, &reg);
305 	pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
306 
307 	for (i = 0; i < 6; i++) {
308 		outb(0x09 + i, 0x70);
309 		((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
310 	}
311 
312 	pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
313 	pci_dev_put(isa_bridge);
314 
315 	return 1;
316 }
317 
318 
319 /**
320  *	sis635_get_mac_addr - Get MAC address for SIS635 model
321  *	@pci_dev: the sis900 pci device
322  *	@net_dev: the net device to get address for
323  *
324  *	SiS635 model, set MAC Reload Bit to load Mac address from APC
325  *	to rfdr. rfdr is accessed through rfcr. MAC address is read into
326  *	@net_dev->dev_addr.
327  */
328 
329 static int sis635_get_mac_addr(struct pci_dev *pci_dev,
330 			       struct net_device *net_dev)
331 {
332 	struct sis900_private *sis_priv = netdev_priv(net_dev);
333 	void __iomem *ioaddr = sis_priv->ioaddr;
334 	u32 rfcrSave;
335 	u32 i;
336 
337 	rfcrSave = sr32(rfcr);
338 
339 	sw32(cr, rfcrSave | RELOAD);
340 	sw32(cr, 0);
341 
342 	/* disable packet filtering before setting filter */
343 	sw32(rfcr, rfcrSave & ~RFEN);
344 
345 	/* load MAC addr to filter data register */
346 	for (i = 0 ; i < 3 ; i++) {
347 		sw32(rfcr, (i << RFADDR_shift));
348 		*( ((u16 *)net_dev->dev_addr) + i) = sr16(rfdr);
349 	}
350 
351 	/* enable packet filtering */
352 	sw32(rfcr, rfcrSave | RFEN);
353 
354 	return 1;
355 }
356 
357 /**
358  *	sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
359  *	@pci_dev: the sis900 pci device
360  *	@net_dev: the net device to get address for
361  *
362  *	SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
363  *	is shared by
364  *	LAN and 1394. When accessing EEPROM, send EEREQ signal to hardware first
365  *	and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be accessed
366  *	by LAN, otherwise it is not. After MAC address is read from EEPROM, send
367  *	EEDONE signal to refuse EEPROM access by LAN.
368  *	The EEPROM map of SiS962 or SiS963 is different to SiS900.
369  *	The signature field in SiS962 or SiS963 spec is meaningless.
370  *	MAC address is read into @net_dev->dev_addr.
371  */
372 
373 static int sis96x_get_mac_addr(struct pci_dev *pci_dev,
374 			       struct net_device *net_dev)
375 {
376 	struct sis900_private *sis_priv = netdev_priv(net_dev);
377 	void __iomem *ioaddr = sis_priv->ioaddr;
378 	int wait, rc = 0;
379 
380 	sw32(mear, EEREQ);
381 	for (wait = 0; wait < 2000; wait++) {
382 		if (sr32(mear) & EEGNT) {
383 			u16 *mac = (u16 *)net_dev->dev_addr;
384 			int i;
385 
386 			/* get MAC address from EEPROM */
387 			for (i = 0; i < 3; i++)
388 			        mac[i] = read_eeprom(ioaddr, i + EEPROMMACAddr);
389 
390 			rc = 1;
391 			break;
392 		}
393 		udelay(1);
394 	}
395 	sw32(mear, EEDONE);
396 	return rc;
397 }
398 
399 static const struct net_device_ops sis900_netdev_ops = {
400 	.ndo_open		 = sis900_open,
401 	.ndo_stop		= sis900_close,
402 	.ndo_start_xmit		= sis900_start_xmit,
403 	.ndo_set_config		= sis900_set_config,
404 	.ndo_set_rx_mode	= set_rx_mode,
405 	.ndo_validate_addr	= eth_validate_addr,
406 	.ndo_set_mac_address 	= eth_mac_addr,
407 	.ndo_do_ioctl		= mii_ioctl,
408 	.ndo_tx_timeout		= sis900_tx_timeout,
409 #ifdef CONFIG_NET_POLL_CONTROLLER
410         .ndo_poll_controller	= sis900_poll,
411 #endif
412 };
413 
414 /**
415  *	sis900_probe - Probe for sis900 device
416  *	@pci_dev: the sis900 pci device
417  *	@pci_id: the pci device ID
418  *
419  *	Check and probe sis900 net device for @pci_dev.
420  *	Get mac address according to the chip revision,
421  *	and assign SiS900-specific entries in the device structure.
422  *	ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
423  */
424 
425 static int sis900_probe(struct pci_dev *pci_dev,
426 			const struct pci_device_id *pci_id)
427 {
428 	struct sis900_private *sis_priv;
429 	struct net_device *net_dev;
430 	struct pci_dev *dev;
431 	dma_addr_t ring_dma;
432 	void *ring_space;
433 	void __iomem *ioaddr;
434 	int i, ret;
435 	const char *card_name = card_names[pci_id->driver_data];
436 	const char *dev_name = pci_name(pci_dev);
437 
438 /* when built into the kernel, we only print version if device is found */
439 #ifndef MODULE
440 	static int printed_version;
441 	if (!printed_version++)
442 		printk(version);
443 #endif
444 
445 	/* setup various bits in PCI command register */
446 	ret = pci_enable_device(pci_dev);
447 	if(ret) return ret;
448 
449 	i = dma_set_mask(&pci_dev->dev, DMA_BIT_MASK(32));
450 	if(i){
451 		printk(KERN_ERR "sis900.c: architecture does not support "
452 			"32bit PCI busmaster DMA\n");
453 		return i;
454 	}
455 
456 	pci_set_master(pci_dev);
457 
458 	net_dev = alloc_etherdev(sizeof(struct sis900_private));
459 	if (!net_dev)
460 		return -ENOMEM;
461 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
462 
463 	/* We do a request_region() to register /proc/ioports info. */
464 	ret = pci_request_regions(pci_dev, "sis900");
465 	if (ret)
466 		goto err_out;
467 
468 	/* IO region. */
469 	ioaddr = pci_iomap(pci_dev, 0, 0);
470 	if (!ioaddr) {
471 		ret = -ENOMEM;
472 		goto err_out_cleardev;
473 	}
474 
475 	sis_priv = netdev_priv(net_dev);
476 	sis_priv->ioaddr = ioaddr;
477 	sis_priv->pci_dev = pci_dev;
478 	spin_lock_init(&sis_priv->lock);
479 
480 	sis_priv->eeprom_size = 24;
481 
482 	pci_set_drvdata(pci_dev, net_dev);
483 
484 	ring_space = dma_alloc_coherent(&pci_dev->dev, TX_TOTAL_SIZE,
485 					&ring_dma, GFP_KERNEL);
486 	if (!ring_space) {
487 		ret = -ENOMEM;
488 		goto err_out_unmap;
489 	}
490 	sis_priv->tx_ring = ring_space;
491 	sis_priv->tx_ring_dma = ring_dma;
492 
493 	ring_space = dma_alloc_coherent(&pci_dev->dev, RX_TOTAL_SIZE,
494 					&ring_dma, GFP_KERNEL);
495 	if (!ring_space) {
496 		ret = -ENOMEM;
497 		goto err_unmap_tx;
498 	}
499 	sis_priv->rx_ring = ring_space;
500 	sis_priv->rx_ring_dma = ring_dma;
501 
502 	/* The SiS900-specific entries in the device structure. */
503 	net_dev->netdev_ops = &sis900_netdev_ops;
504 	net_dev->watchdog_timeo = TX_TIMEOUT;
505 	net_dev->ethtool_ops = &sis900_ethtool_ops;
506 
507 	if (sis900_debug > 0)
508 		sis_priv->msg_enable = sis900_debug;
509 	else
510 		sis_priv->msg_enable = SIS900_DEF_MSG;
511 
512 	sis_priv->mii_info.dev = net_dev;
513 	sis_priv->mii_info.mdio_read = mdio_read;
514 	sis_priv->mii_info.mdio_write = mdio_write;
515 	sis_priv->mii_info.phy_id_mask = 0x1f;
516 	sis_priv->mii_info.reg_num_mask = 0x1f;
517 
518 	/* Get Mac address according to the chip revision */
519 	sis_priv->chipset_rev = pci_dev->revision;
520 	if(netif_msg_probe(sis_priv))
521 		printk(KERN_DEBUG "%s: detected revision %2.2x, "
522 				"trying to get MAC address...\n",
523 				dev_name, sis_priv->chipset_rev);
524 
525 	ret = 0;
526 	if (sis_priv->chipset_rev == SIS630E_900_REV)
527 		ret = sis630e_get_mac_addr(pci_dev, net_dev);
528 	else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
529 		ret = sis635_get_mac_addr(pci_dev, net_dev);
530 	else if (sis_priv->chipset_rev == SIS96x_900_REV)
531 		ret = sis96x_get_mac_addr(pci_dev, net_dev);
532 	else
533 		ret = sis900_get_mac_addr(pci_dev, net_dev);
534 
535 	if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) {
536 		eth_hw_addr_random(net_dev);
537 		printk(KERN_WARNING "%s: Unreadable or invalid MAC address,"
538 				"using random generated one\n", dev_name);
539 	}
540 
541 	/* 630ET : set the mii access mode as software-mode */
542 	if (sis_priv->chipset_rev == SIS630ET_900_REV)
543 		sw32(cr, ACCESSMODE | sr32(cr));
544 
545 	/* probe for mii transceiver */
546 	if (sis900_mii_probe(net_dev) == 0) {
547 		printk(KERN_WARNING "%s: Error probing MII device.\n",
548 		       dev_name);
549 		ret = -ENODEV;
550 		goto err_unmap_rx;
551 	}
552 
553 	/* save our host bridge revision */
554 	dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
555 	if (dev) {
556 		sis_priv->host_bridge_rev = dev->revision;
557 		pci_dev_put(dev);
558 	}
559 
560 	ret = register_netdev(net_dev);
561 	if (ret)
562 		goto err_unmap_rx;
563 
564 	/* print some information about our NIC */
565 	printk(KERN_INFO "%s: %s at 0x%p, IRQ %d, %pM\n",
566 	       net_dev->name, card_name, ioaddr, pci_dev->irq,
567 	       net_dev->dev_addr);
568 
569 	/* Detect Wake on Lan support */
570 	ret = (sr32(CFGPMC) & PMESP) >> 27;
571 	if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
572 		printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
573 
574 	return 0;
575 
576 err_unmap_rx:
577 	dma_free_coherent(&pci_dev->dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
578 			  sis_priv->rx_ring_dma);
579 err_unmap_tx:
580 	dma_free_coherent(&pci_dev->dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
581 			  sis_priv->tx_ring_dma);
582 err_out_unmap:
583 	pci_iounmap(pci_dev, ioaddr);
584 err_out_cleardev:
585 	pci_release_regions(pci_dev);
586  err_out:
587 	free_netdev(net_dev);
588 	return ret;
589 }
590 
591 /**
592  *	sis900_mii_probe - Probe MII PHY for sis900
593  *	@net_dev: the net device to probe for
594  *
595  *	Search for total of 32 possible mii phy addresses.
596  *	Identify and set current phy if found one,
597  *	return error if it failed to found.
598  */
599 
600 static int sis900_mii_probe(struct net_device *net_dev)
601 {
602 	struct sis900_private *sis_priv = netdev_priv(net_dev);
603 	const char *dev_name = pci_name(sis_priv->pci_dev);
604 	u16 poll_bit = MII_STAT_LINK, status = 0;
605 	unsigned long timeout = jiffies + 5 * HZ;
606 	int phy_addr;
607 
608 	sis_priv->mii = NULL;
609 
610 	/* search for total of 32 possible mii phy addresses */
611 	for (phy_addr = 0; phy_addr < 32; phy_addr++) {
612 		struct mii_phy * mii_phy = NULL;
613 		u16 mii_status;
614 		int i;
615 
616 		mii_phy = NULL;
617 		for(i = 0; i < 2; i++)
618 			mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
619 
620 		if (mii_status == 0xffff || mii_status == 0x0000) {
621 			if (netif_msg_probe(sis_priv))
622 				printk(KERN_DEBUG "%s: MII at address %d"
623 						" not accessible\n",
624 						dev_name, phy_addr);
625 			continue;
626 		}
627 
628 		if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
629 			mii_phy = sis_priv->first_mii;
630 			while (mii_phy) {
631 				struct mii_phy *phy;
632 				phy = mii_phy;
633 				mii_phy = mii_phy->next;
634 				kfree(phy);
635 			}
636 			return 0;
637 		}
638 
639 		mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
640 		mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
641 		mii_phy->phy_addr = phy_addr;
642 		mii_phy->status = mii_status;
643 		mii_phy->next = sis_priv->mii;
644 		sis_priv->mii = mii_phy;
645 		sis_priv->first_mii = mii_phy;
646 
647 		for (i = 0; mii_chip_table[i].phy_id1; i++)
648 			if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
649 			    ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
650 				mii_phy->phy_types = mii_chip_table[i].phy_types;
651 				if (mii_chip_table[i].phy_types == MIX)
652 					mii_phy->phy_types =
653 					    (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
654 				printk(KERN_INFO "%s: %s transceiver found "
655 							"at address %d.\n",
656 							dev_name,
657 							mii_chip_table[i].name,
658 							phy_addr);
659 				break;
660 			}
661 
662 		if( !mii_chip_table[i].phy_id1 ) {
663 			printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
664 			       dev_name, phy_addr);
665 			mii_phy->phy_types = UNKNOWN;
666 		}
667 	}
668 
669 	if (sis_priv->mii == NULL) {
670 		printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
671 		return 0;
672 	}
673 
674 	/* select default PHY for mac */
675 	sis_priv->mii = NULL;
676 	sis900_default_phy( net_dev );
677 
678 	/* Reset phy if default phy is internal sis900 */
679         if ((sis_priv->mii->phy_id0 == 0x001D) &&
680 	    ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
681 		status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
682 
683         /* workaround for ICS1893 PHY */
684         if ((sis_priv->mii->phy_id0 == 0x0015) &&
685             ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
686 		mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
687 
688 	if(status & MII_STAT_LINK){
689 		while (poll_bit) {
690 			yield();
691 
692 			poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
693 			if (time_after_eq(jiffies, timeout)) {
694 				printk(KERN_WARNING "%s: reset phy and link down now\n",
695 				       dev_name);
696 				return -ETIME;
697 			}
698 		}
699 	}
700 
701 	if (sis_priv->chipset_rev == SIS630E_900_REV) {
702 		/* SiS 630E has some bugs on default value of PHY registers */
703 		mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
704 		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
705 		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
706 		mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
707 		//mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
708 	}
709 
710 	if (sis_priv->mii->status & MII_STAT_LINK)
711 		netif_carrier_on(net_dev);
712 	else
713 		netif_carrier_off(net_dev);
714 
715 	return 1;
716 }
717 
718 /**
719  *	sis900_default_phy - Select default PHY for sis900 mac.
720  *	@net_dev: the net device to probe for
721  *
722  *	Select first detected PHY with link as default.
723  *	If no one is link on, select PHY whose types is HOME as default.
724  *	If HOME doesn't exist, select LAN.
725  */
726 
727 static u16 sis900_default_phy(struct net_device * net_dev)
728 {
729 	struct sis900_private *sis_priv = netdev_priv(net_dev);
730 	struct mii_phy *phy = NULL, *phy_home = NULL,
731 		*default_phy = NULL, *phy_lan = NULL;
732 	u16 status;
733 
734         for (phy=sis_priv->first_mii; phy; phy=phy->next) {
735 		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
736 		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
737 
738 		/* Link ON & Not select default PHY & not ghost PHY */
739 		if ((status & MII_STAT_LINK) && !default_phy &&
740 		    (phy->phy_types != UNKNOWN)) {
741 			default_phy = phy;
742 		} else {
743 			status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
744 			mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
745 				status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
746 			if (phy->phy_types == HOME)
747 				phy_home = phy;
748 			else if(phy->phy_types == LAN)
749 				phy_lan = phy;
750 		}
751 	}
752 
753 	if (!default_phy && phy_home)
754 		default_phy = phy_home;
755 	else if (!default_phy && phy_lan)
756 		default_phy = phy_lan;
757 	else if (!default_phy)
758 		default_phy = sis_priv->first_mii;
759 
760 	if (sis_priv->mii != default_phy) {
761 		sis_priv->mii = default_phy;
762 		sis_priv->cur_phy = default_phy->phy_addr;
763 		printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
764 		       pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
765 	}
766 
767 	sis_priv->mii_info.phy_id = sis_priv->cur_phy;
768 
769 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
770 	status &= (~MII_CNTL_ISOLATE);
771 
772 	mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
773 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
774 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
775 
776 	return status;
777 }
778 
779 
780 /**
781  * 	sis900_set_capability - set the media capability of network adapter.
782  *	@net_dev : the net device to probe for
783  *	@phy : default PHY
784  *
785  *	Set the media capability of network adapter according to
786  *	mii status register. It's necessary before auto-negotiate.
787  */
788 
789 static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
790 {
791 	u16 cap;
792 
793 	mdio_read(net_dev, phy->phy_addr, MII_STATUS);
794 	mdio_read(net_dev, phy->phy_addr, MII_STATUS);
795 
796 	cap = MII_NWAY_CSMA_CD |
797 		((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
798 		((phy->status & MII_STAT_CAN_TX)    ? MII_NWAY_TX:0) |
799 		((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
800 		((phy->status & MII_STAT_CAN_T)     ? MII_NWAY_T:0);
801 
802 	mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
803 }
804 
805 
806 /* Delay between EEPROM clock transitions. */
807 #define eeprom_delay()	sr32(mear)
808 
809 /**
810  *	read_eeprom - Read Serial EEPROM
811  *	@ioaddr: base i/o address
812  *	@location: the EEPROM location to read
813  *
814  *	Read Serial EEPROM through EEPROM Access Register.
815  *	Note that location is in word (16 bits) unit
816  */
817 
818 static u16 read_eeprom(void __iomem *ioaddr, int location)
819 {
820 	u32 read_cmd = location | EEread;
821 	int i;
822 	u16 retval = 0;
823 
824 	sw32(mear, 0);
825 	eeprom_delay();
826 	sw32(mear, EECS);
827 	eeprom_delay();
828 
829 	/* Shift the read command (9) bits out. */
830 	for (i = 8; i >= 0; i--) {
831 		u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
832 
833 		sw32(mear, dataval);
834 		eeprom_delay();
835 		sw32(mear, dataval | EECLK);
836 		eeprom_delay();
837 	}
838 	sw32(mear, EECS);
839 	eeprom_delay();
840 
841 	/* read the 16-bits data in */
842 	for (i = 16; i > 0; i--) {
843 		sw32(mear, EECS);
844 		eeprom_delay();
845 		sw32(mear, EECS | EECLK);
846 		eeprom_delay();
847 		retval = (retval << 1) | ((sr32(mear) & EEDO) ? 1 : 0);
848 		eeprom_delay();
849 	}
850 
851 	/* Terminate the EEPROM access. */
852 	sw32(mear, 0);
853 	eeprom_delay();
854 
855 	return retval;
856 }
857 
858 /* Read and write the MII management registers using software-generated
859    serial MDIO protocol. Note that the command bits and data bits are
860    send out separately */
861 #define mdio_delay()	sr32(mear)
862 
863 static void mdio_idle(struct sis900_private *sp)
864 {
865 	void __iomem *ioaddr = sp->ioaddr;
866 
867 	sw32(mear, MDIO | MDDIR);
868 	mdio_delay();
869 	sw32(mear, MDIO | MDDIR | MDC);
870 }
871 
872 /* Synchronize the MII management interface by shifting 32 one bits out. */
873 static void mdio_reset(struct sis900_private *sp)
874 {
875 	void __iomem *ioaddr = sp->ioaddr;
876 	int i;
877 
878 	for (i = 31; i >= 0; i--) {
879 		sw32(mear, MDDIR | MDIO);
880 		mdio_delay();
881 		sw32(mear, MDDIR | MDIO | MDC);
882 		mdio_delay();
883 	}
884 }
885 
886 /**
887  *	mdio_read - read MII PHY register
888  *	@net_dev: the net device to read
889  *	@phy_id: the phy address to read
890  *	@location: the phy register id to read
891  *
892  *	Read MII registers through MDIO and MDC
893  *	using MDIO management frame structure and protocol(defined by ISO/IEC).
894  *	Please see SiS7014 or ICS spec
895  */
896 
897 static int mdio_read(struct net_device *net_dev, int phy_id, int location)
898 {
899 	int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
900 	struct sis900_private *sp = netdev_priv(net_dev);
901 	void __iomem *ioaddr = sp->ioaddr;
902 	u16 retval = 0;
903 	int i;
904 
905 	mdio_reset(sp);
906 	mdio_idle(sp);
907 
908 	for (i = 15; i >= 0; i--) {
909 		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
910 
911 		sw32(mear, dataval);
912 		mdio_delay();
913 		sw32(mear, dataval | MDC);
914 		mdio_delay();
915 	}
916 
917 	/* Read the 16 data bits. */
918 	for (i = 16; i > 0; i--) {
919 		sw32(mear, 0);
920 		mdio_delay();
921 		retval = (retval << 1) | ((sr32(mear) & MDIO) ? 1 : 0);
922 		sw32(mear, MDC);
923 		mdio_delay();
924 	}
925 	sw32(mear, 0x00);
926 
927 	return retval;
928 }
929 
930 /**
931  *	mdio_write - write MII PHY register
932  *	@net_dev: the net device to write
933  *	@phy_id: the phy address to write
934  *	@location: the phy register id to write
935  *	@value: the register value to write with
936  *
937  *	Write MII registers with @value through MDIO and MDC
938  *	using MDIO management frame structure and protocol(defined by ISO/IEC)
939  *	please see SiS7014 or ICS spec
940  */
941 
942 static void mdio_write(struct net_device *net_dev, int phy_id, int location,
943 			int value)
944 {
945 	int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
946 	struct sis900_private *sp = netdev_priv(net_dev);
947 	void __iomem *ioaddr = sp->ioaddr;
948 	int i;
949 
950 	mdio_reset(sp);
951 	mdio_idle(sp);
952 
953 	/* Shift the command bits out. */
954 	for (i = 15; i >= 0; i--) {
955 		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
956 
957 		sw8(mear, dataval);
958 		mdio_delay();
959 		sw8(mear, dataval | MDC);
960 		mdio_delay();
961 	}
962 	mdio_delay();
963 
964 	/* Shift the value bits out. */
965 	for (i = 15; i >= 0; i--) {
966 		int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
967 
968 		sw32(mear, dataval);
969 		mdio_delay();
970 		sw32(mear, dataval | MDC);
971 		mdio_delay();
972 	}
973 	mdio_delay();
974 
975 	/* Clear out extra bits. */
976 	for (i = 2; i > 0; i--) {
977 		sw8(mear, 0);
978 		mdio_delay();
979 		sw8(mear, MDC);
980 		mdio_delay();
981 	}
982 	sw32(mear, 0x00);
983 }
984 
985 
986 /**
987  *	sis900_reset_phy - reset sis900 mii phy.
988  *	@net_dev: the net device to write
989  *	@phy_addr: default phy address
990  *
991  *	Some specific phy can't work properly without reset.
992  *	This function will be called during initialization and
993  *	link status change from ON to DOWN.
994  */
995 
996 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
997 {
998 	int i;
999 	u16 status;
1000 
1001 	for (i = 0; i < 2; i++)
1002 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1003 
1004 	mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
1005 
1006 	return status;
1007 }
1008 
1009 #ifdef CONFIG_NET_POLL_CONTROLLER
1010 /*
1011  * Polling 'interrupt' - used by things like netconsole to send skbs
1012  * without having to re-enable interrupts. It's not called while
1013  * the interrupt routine is executing.
1014 */
1015 static void sis900_poll(struct net_device *dev)
1016 {
1017 	struct sis900_private *sp = netdev_priv(dev);
1018 	const int irq = sp->pci_dev->irq;
1019 
1020 	disable_irq(irq);
1021 	sis900_interrupt(irq, dev);
1022 	enable_irq(irq);
1023 }
1024 #endif
1025 
1026 /**
1027  *	sis900_open - open sis900 device
1028  *	@net_dev: the net device to open
1029  *
1030  *	Do some initialization and start net interface.
1031  *	enable interrupts and set sis900 timer.
1032  */
1033 
1034 static int
1035 sis900_open(struct net_device *net_dev)
1036 {
1037 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1038 	void __iomem *ioaddr = sis_priv->ioaddr;
1039 	int ret;
1040 
1041 	/* Soft reset the chip. */
1042 	sis900_reset(net_dev);
1043 
1044 	/* Equalizer workaround Rule */
1045 	sis630_set_eq(net_dev, sis_priv->chipset_rev);
1046 
1047 	ret = request_irq(sis_priv->pci_dev->irq, sis900_interrupt, IRQF_SHARED,
1048 			  net_dev->name, net_dev);
1049 	if (ret)
1050 		return ret;
1051 
1052 	sis900_init_rxfilter(net_dev);
1053 
1054 	sis900_init_tx_ring(net_dev);
1055 	sis900_init_rx_ring(net_dev);
1056 
1057 	set_rx_mode(net_dev);
1058 
1059 	netif_start_queue(net_dev);
1060 
1061 	/* Workaround for EDB */
1062 	sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1063 
1064 	/* Enable all known interrupts by setting the interrupt mask. */
1065 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxDESC);
1066 	sw32(cr, RxENA | sr32(cr));
1067 	sw32(ier, IE);
1068 
1069 	sis900_check_mode(net_dev, sis_priv->mii);
1070 
1071 	/* Set the timer to switch to check for link beat and perhaps switch
1072 	   to an alternate media type. */
1073 	timer_setup(&sis_priv->timer, sis900_timer, 0);
1074 	sis_priv->timer.expires = jiffies + HZ;
1075 	add_timer(&sis_priv->timer);
1076 
1077 	return 0;
1078 }
1079 
1080 /**
1081  *	sis900_init_rxfilter - Initialize the Rx filter
1082  *	@net_dev: the net device to initialize for
1083  *
1084  *	Set receive filter address to our MAC address
1085  *	and enable packet filtering.
1086  */
1087 
1088 static void
1089 sis900_init_rxfilter (struct net_device * net_dev)
1090 {
1091 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1092 	void __iomem *ioaddr = sis_priv->ioaddr;
1093 	u32 rfcrSave;
1094 	u32 i;
1095 
1096 	rfcrSave = sr32(rfcr);
1097 
1098 	/* disable packet filtering before setting filter */
1099 	sw32(rfcr, rfcrSave & ~RFEN);
1100 
1101 	/* load MAC addr to filter data register */
1102 	for (i = 0 ; i < 3 ; i++) {
1103 		u32 w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1104 
1105 		sw32(rfcr, i << RFADDR_shift);
1106 		sw32(rfdr, w);
1107 
1108 		if (netif_msg_hw(sis_priv)) {
1109 			printk(KERN_DEBUG "%s: Receive Filter Address[%d]=%x\n",
1110 			       net_dev->name, i, sr32(rfdr));
1111 		}
1112 	}
1113 
1114 	/* enable packet filtering */
1115 	sw32(rfcr, rfcrSave | RFEN);
1116 }
1117 
1118 /**
1119  *	sis900_init_tx_ring - Initialize the Tx descriptor ring
1120  *	@net_dev: the net device to initialize for
1121  *
1122  *	Initialize the Tx descriptor ring,
1123  */
1124 
1125 static void
1126 sis900_init_tx_ring(struct net_device *net_dev)
1127 {
1128 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1129 	void __iomem *ioaddr = sis_priv->ioaddr;
1130 	int i;
1131 
1132 	sis_priv->tx_full = 0;
1133 	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1134 
1135 	for (i = 0; i < NUM_TX_DESC; i++) {
1136 		sis_priv->tx_skbuff[i] = NULL;
1137 
1138 		sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1139 			((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1140 		sis_priv->tx_ring[i].cmdsts = 0;
1141 		sis_priv->tx_ring[i].bufptr = 0;
1142 	}
1143 
1144 	/* load Transmit Descriptor Register */
1145 	sw32(txdp, sis_priv->tx_ring_dma);
1146 	if (netif_msg_hw(sis_priv))
1147 		printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1148 		       net_dev->name, sr32(txdp));
1149 }
1150 
1151 /**
1152  *	sis900_init_rx_ring - Initialize the Rx descriptor ring
1153  *	@net_dev: the net device to initialize for
1154  *
1155  *	Initialize the Rx descriptor ring,
1156  *	and pre-allocate receive buffers (socket buffer)
1157  */
1158 
1159 static void
1160 sis900_init_rx_ring(struct net_device *net_dev)
1161 {
1162 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1163 	void __iomem *ioaddr = sis_priv->ioaddr;
1164 	int i;
1165 
1166 	sis_priv->cur_rx = 0;
1167 	sis_priv->dirty_rx = 0;
1168 
1169 	/* init RX descriptor */
1170 	for (i = 0; i < NUM_RX_DESC; i++) {
1171 		sis_priv->rx_skbuff[i] = NULL;
1172 
1173 		sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1174 			((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1175 		sis_priv->rx_ring[i].cmdsts = 0;
1176 		sis_priv->rx_ring[i].bufptr = 0;
1177 	}
1178 
1179 	/* allocate sock buffers */
1180 	for (i = 0; i < NUM_RX_DESC; i++) {
1181 		struct sk_buff *skb;
1182 
1183 		if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1184 			/* not enough memory for skbuff, this makes a "hole"
1185 			   on the buffer ring, it is not clear how the
1186 			   hardware will react to this kind of degenerated
1187 			   buffer */
1188 			break;
1189 		}
1190 		sis_priv->rx_skbuff[i] = skb;
1191 		sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1192 		sis_priv->rx_ring[i].bufptr = dma_map_single(&sis_priv->pci_dev->dev,
1193 							     skb->data,
1194 							     RX_BUF_SIZE,
1195 							     DMA_FROM_DEVICE);
1196 		if (unlikely(dma_mapping_error(&sis_priv->pci_dev->dev,
1197 					       sis_priv->rx_ring[i].bufptr))) {
1198 			dev_kfree_skb(skb);
1199 			sis_priv->rx_skbuff[i] = NULL;
1200 			break;
1201 		}
1202 	}
1203 	sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1204 
1205 	/* load Receive Descriptor Register */
1206 	sw32(rxdp, sis_priv->rx_ring_dma);
1207 	if (netif_msg_hw(sis_priv))
1208 		printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1209 		       net_dev->name, sr32(rxdp));
1210 }
1211 
1212 /**
1213  *	sis630_set_eq - set phy equalizer value for 630 LAN
1214  *	@net_dev: the net device to set equalizer value
1215  *	@revision: 630 LAN revision number
1216  *
1217  *	630E equalizer workaround rule(Cyrus Huang 08/15)
1218  *	PHY register 14h(Test)
1219  *	Bit 14: 0 -- Automatically detect (default)
1220  *		1 -- Manually set Equalizer filter
1221  *	Bit 13: 0 -- (Default)
1222  *		1 -- Speed up convergence of equalizer setting
1223  *	Bit 9 : 0 -- (Default)
1224  *		1 -- Disable Baseline Wander
1225  *	Bit 3~7   -- Equalizer filter setting
1226  *	Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1227  *	Then calculate equalizer value
1228  *	Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1229  *	Link Off:Set Bit 13 to 1, Bit 14 to 0
1230  *	Calculate Equalizer value:
1231  *	When Link is ON and Bit 14 is 0, SIS900PHY will auto-detect proper equalizer value.
1232  *	When the equalizer is stable, this value is not a fixed value. It will be within
1233  *	a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1234  *	0 <= max <= 4  --> set equalizer to max
1235  *	5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1236  *	max >= 15      --> set equalizer to max+5 or set equalizer to max+6 if max == min
1237  */
1238 
1239 static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1240 {
1241 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1242 	u16 reg14h, eq_value=0, max_value=0, min_value=0;
1243 	int i, maxcount=10;
1244 
1245 	if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1246 	       revision == SIS630A_900_REV || revision ==  SIS630ET_900_REV) )
1247 		return;
1248 
1249 	if (netif_carrier_ok(net_dev)) {
1250 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1251 		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1252 					(0x2200 | reg14h) & 0xBFFF);
1253 		for (i=0; i < maxcount; i++) {
1254 			eq_value = (0x00F8 & mdio_read(net_dev,
1255 					sis_priv->cur_phy, MII_RESV)) >> 3;
1256 			if (i == 0)
1257 				max_value=min_value=eq_value;
1258 			max_value = (eq_value > max_value) ?
1259 						eq_value : max_value;
1260 			min_value = (eq_value < min_value) ?
1261 						eq_value : min_value;
1262 		}
1263 		/* 630E rule to determine the equalizer value */
1264 		if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1265 		    revision == SIS630ET_900_REV) {
1266 			if (max_value < 5)
1267 				eq_value = max_value;
1268 			else if (max_value >= 5 && max_value < 15)
1269 				eq_value = (max_value == min_value) ?
1270 						max_value+2 : max_value+1;
1271 			else if (max_value >= 15)
1272 				eq_value=(max_value == min_value) ?
1273 						max_value+6 : max_value+5;
1274 		}
1275 		/* 630B0&B1 rule to determine the equalizer value */
1276 		if (revision == SIS630A_900_REV &&
1277 		    (sis_priv->host_bridge_rev == SIS630B0 ||
1278 		     sis_priv->host_bridge_rev == SIS630B1)) {
1279 			if (max_value == 0)
1280 				eq_value = 3;
1281 			else
1282 				eq_value = (max_value + min_value + 1)/2;
1283 		}
1284 		/* write equalizer value and setting */
1285 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1286 		reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1287 		reg14h = (reg14h | 0x6000) & 0xFDFF;
1288 		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1289 	} else {
1290 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1291 		if (revision == SIS630A_900_REV &&
1292 		    (sis_priv->host_bridge_rev == SIS630B0 ||
1293 		     sis_priv->host_bridge_rev == SIS630B1))
1294 			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1295 						(reg14h | 0x2200) & 0xBFFF);
1296 		else
1297 			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1298 						(reg14h | 0x2000) & 0xBFFF);
1299 	}
1300 }
1301 
1302 /**
1303  *	sis900_timer - sis900 timer routine
1304  *	@t: timer list containing a pointer to sis900 net device
1305  *
1306  *	On each timer ticks we check two things,
1307  *	link status (ON/OFF) and link mode (10/100/Full/Half)
1308  */
1309 
1310 static void sis900_timer(struct timer_list *t)
1311 {
1312 	struct sis900_private *sis_priv = from_timer(sis_priv, t, timer);
1313 	struct net_device *net_dev = sis_priv->mii_info.dev;
1314 	struct mii_phy *mii_phy = sis_priv->mii;
1315 	static const int next_tick = 5*HZ;
1316 	int speed = 0, duplex = 0;
1317 	u16 status;
1318 
1319 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1320 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1321 
1322 	/* Link OFF -> ON */
1323 	if (!netif_carrier_ok(net_dev)) {
1324 	LookForLink:
1325 		/* Search for new PHY */
1326 		status = sis900_default_phy(net_dev);
1327 		mii_phy = sis_priv->mii;
1328 
1329 		if (status & MII_STAT_LINK) {
1330 			WARN_ON(!(status & MII_STAT_AUTO_DONE));
1331 
1332 			sis900_read_mode(net_dev, &speed, &duplex);
1333 			if (duplex) {
1334 				sis900_set_mode(sis_priv, speed, duplex);
1335 				sis630_set_eq(net_dev, sis_priv->chipset_rev);
1336 				netif_carrier_on(net_dev);
1337 			}
1338 		}
1339 	} else {
1340 	/* Link ON -> OFF */
1341                 if (!(status & MII_STAT_LINK)){
1342 			netif_carrier_off(net_dev);
1343 			if(netif_msg_link(sis_priv))
1344 				printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1345 
1346 			/* Change mode issue */
1347 			if ((mii_phy->phy_id0 == 0x001D) &&
1348 				((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1349 					sis900_reset_phy(net_dev,  sis_priv->cur_phy);
1350 
1351 			sis630_set_eq(net_dev, sis_priv->chipset_rev);
1352 
1353 			goto LookForLink;
1354                 }
1355 	}
1356 
1357 	sis_priv->timer.expires = jiffies + next_tick;
1358 	add_timer(&sis_priv->timer);
1359 }
1360 
1361 /**
1362  *	sis900_check_mode - check the media mode for sis900
1363  *	@net_dev: the net device to be checked
1364  *	@mii_phy: the mii phy
1365  *
1366  *	Older driver gets the media mode from mii status output
1367  *	register. Now we set our media capability and auto-negotiate
1368  *	to get the upper bound of speed and duplex between two ends.
1369  *	If the types of mii phy is HOME, it doesn't need to auto-negotiate
1370  *	and autong_complete should be set to 1.
1371  */
1372 
1373 static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1374 {
1375 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1376 	void __iomem *ioaddr = sis_priv->ioaddr;
1377 	int speed, duplex;
1378 
1379 	if (mii_phy->phy_types == LAN) {
1380 		sw32(cfg, ~EXD & sr32(cfg));
1381 		sis900_set_capability(net_dev , mii_phy);
1382 		sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1383 	} else {
1384 		sw32(cfg, EXD | sr32(cfg));
1385 		speed = HW_SPEED_HOME;
1386 		duplex = FDX_CAPABLE_HALF_SELECTED;
1387 		sis900_set_mode(sis_priv, speed, duplex);
1388 		sis_priv->autong_complete = 1;
1389 	}
1390 }
1391 
1392 /**
1393  *	sis900_set_mode - Set the media mode of mac register.
1394  *	@sp:     the device private data
1395  *	@speed : the transmit speed to be determined
1396  *	@duplex: the duplex mode to be determined
1397  *
1398  *	Set the media mode of mac register txcfg/rxcfg according to
1399  *	speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1400  *	bus is used instead of PCI bus. When this bit is set 1, the
1401  *	Max DMA Burst Size for TX/RX DMA should be no larger than 16
1402  *	double words.
1403  */
1404 
1405 static void sis900_set_mode(struct sis900_private *sp, int speed, int duplex)
1406 {
1407 	void __iomem *ioaddr = sp->ioaddr;
1408 	u32 tx_flags = 0, rx_flags = 0;
1409 
1410 	if (sr32( cfg) & EDB_MASTER_EN) {
1411 		tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1412 					(TX_FILL_THRESH << TxFILLT_shift);
1413 		rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1414 	} else {
1415 		tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1416 					(TX_FILL_THRESH << TxFILLT_shift);
1417 		rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1418 	}
1419 
1420 	if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1421 		rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1422 		tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1423 	} else {
1424 		rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1425 		tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1426 	}
1427 
1428 	if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1429 		tx_flags |= (TxCSI | TxHBI);
1430 		rx_flags |= RxATX;
1431 	}
1432 
1433 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1434 	/* Can accept Jumbo packet */
1435 	rx_flags |= RxAJAB;
1436 #endif
1437 
1438 	sw32(txcfg, tx_flags);
1439 	sw32(rxcfg, rx_flags);
1440 }
1441 
1442 /**
1443  *	sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1444  *	@net_dev: the net device to read mode for
1445  *	@phy_addr: mii phy address
1446  *
1447  *	If the adapter is link-on, set the auto-negotiate enable/reset bit.
1448  *	autong_complete should be set to 0 when starting auto-negotiation.
1449  *	autong_complete should be set to 1 if we didn't start auto-negotiation.
1450  *	sis900_timer will wait for link on again if autong_complete = 0.
1451  */
1452 
1453 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1454 {
1455 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1456 	int i = 0;
1457 	u32 status;
1458 
1459 	for (i = 0; i < 2; i++)
1460 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1461 
1462 	if (!(status & MII_STAT_LINK)){
1463 		if(netif_msg_link(sis_priv))
1464 			printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1465 		sis_priv->autong_complete = 1;
1466 		netif_carrier_off(net_dev);
1467 		return;
1468 	}
1469 
1470 	/* (Re)start AutoNegotiate */
1471 	mdio_write(net_dev, phy_addr, MII_CONTROL,
1472 		   MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1473 	sis_priv->autong_complete = 0;
1474 }
1475 
1476 
1477 /**
1478  *	sis900_read_mode - read media mode for sis900 internal phy
1479  *	@net_dev: the net device to read mode for
1480  *	@speed  : the transmit speed to be determined
1481  *	@duplex : the duplex mode to be determined
1482  *
1483  *	The capability of remote end will be put in mii register autorec
1484  *	after auto-negotiation. Use AND operation to get the upper bound
1485  *	of speed and duplex between two ends.
1486  */
1487 
1488 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1489 {
1490 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1491 	struct mii_phy *phy = sis_priv->mii;
1492 	int phy_addr = sis_priv->cur_phy;
1493 	u32 status;
1494 	u16 autoadv, autorec;
1495 	int i;
1496 
1497 	for (i = 0; i < 2; i++)
1498 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1499 
1500 	if (!(status & MII_STAT_LINK))
1501 		return;
1502 
1503 	/* AutoNegotiate completed */
1504 	autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1505 	autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1506 	status = autoadv & autorec;
1507 
1508 	*speed = HW_SPEED_10_MBPS;
1509 	*duplex = FDX_CAPABLE_HALF_SELECTED;
1510 
1511 	if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1512 		*speed = HW_SPEED_100_MBPS;
1513 	if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1514 		*duplex = FDX_CAPABLE_FULL_SELECTED;
1515 
1516 	sis_priv->autong_complete = 1;
1517 
1518 	/* Workaround for Realtek RTL8201 PHY issue */
1519 	if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1520 		if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1521 			*duplex = FDX_CAPABLE_FULL_SELECTED;
1522 		if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1523 			*speed = HW_SPEED_100_MBPS;
1524 	}
1525 
1526 	if(netif_msg_link(sis_priv))
1527 		printk(KERN_INFO "%s: Media Link On %s %s-duplex\n",
1528 	       				net_dev->name,
1529 	       				*speed == HW_SPEED_100_MBPS ?
1530 	       					"100mbps" : "10mbps",
1531 	       				*duplex == FDX_CAPABLE_FULL_SELECTED ?
1532 	       					"full" : "half");
1533 }
1534 
1535 /**
1536  *	sis900_tx_timeout - sis900 transmit timeout routine
1537  *	@net_dev: the net device to transmit
1538  *	@txqueue: index of hanging queue
1539  *
1540  *	print transmit timeout status
1541  *	disable interrupts and do some tasks
1542  */
1543 
1544 static void sis900_tx_timeout(struct net_device *net_dev, unsigned int txqueue)
1545 {
1546 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1547 	void __iomem *ioaddr = sis_priv->ioaddr;
1548 	unsigned long flags;
1549 	int i;
1550 
1551 	if (netif_msg_tx_err(sis_priv)) {
1552 		printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n",
1553 			net_dev->name, sr32(cr), sr32(isr));
1554 	}
1555 
1556 	/* Disable interrupts by clearing the interrupt mask. */
1557 	sw32(imr, 0x0000);
1558 
1559 	/* use spinlock to prevent interrupt handler accessing buffer ring */
1560 	spin_lock_irqsave(&sis_priv->lock, flags);
1561 
1562 	/* discard unsent packets */
1563 	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1564 	for (i = 0; i < NUM_TX_DESC; i++) {
1565 		struct sk_buff *skb = sis_priv->tx_skbuff[i];
1566 
1567 		if (skb) {
1568 			dma_unmap_single(&sis_priv->pci_dev->dev,
1569 					 sis_priv->tx_ring[i].bufptr,
1570 					 skb->len, DMA_TO_DEVICE);
1571 			dev_kfree_skb_irq(skb);
1572 			sis_priv->tx_skbuff[i] = NULL;
1573 			sis_priv->tx_ring[i].cmdsts = 0;
1574 			sis_priv->tx_ring[i].bufptr = 0;
1575 			net_dev->stats.tx_dropped++;
1576 		}
1577 	}
1578 	sis_priv->tx_full = 0;
1579 	netif_wake_queue(net_dev);
1580 
1581 	spin_unlock_irqrestore(&sis_priv->lock, flags);
1582 
1583 	netif_trans_update(net_dev); /* prevent tx timeout */
1584 
1585 	/* load Transmit Descriptor Register */
1586 	sw32(txdp, sis_priv->tx_ring_dma);
1587 
1588 	/* Enable all known interrupts by setting the interrupt mask. */
1589 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxDESC);
1590 }
1591 
1592 /**
1593  *	sis900_start_xmit - sis900 start transmit routine
1594  *	@skb: socket buffer pointer to put the data being transmitted
1595  *	@net_dev: the net device to transmit with
1596  *
1597  *	Set the transmit buffer descriptor,
1598  *	and write TxENA to enable transmit state machine.
1599  *	tell upper layer if the buffer is full
1600  */
1601 
1602 static netdev_tx_t
1603 sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1604 {
1605 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1606 	void __iomem *ioaddr = sis_priv->ioaddr;
1607 	unsigned int  entry;
1608 	unsigned long flags;
1609 	unsigned int  index_cur_tx, index_dirty_tx;
1610 	unsigned int  count_dirty_tx;
1611 
1612 	spin_lock_irqsave(&sis_priv->lock, flags);
1613 
1614 	/* Calculate the next Tx descriptor entry. */
1615 	entry = sis_priv->cur_tx % NUM_TX_DESC;
1616 	sis_priv->tx_skbuff[entry] = skb;
1617 
1618 	/* set the transmit buffer descriptor and enable Transmit State Machine */
1619 	sis_priv->tx_ring[entry].bufptr = dma_map_single(&sis_priv->pci_dev->dev,
1620 							 skb->data, skb->len,
1621 							 DMA_TO_DEVICE);
1622 	if (unlikely(dma_mapping_error(&sis_priv->pci_dev->dev,
1623 				       sis_priv->tx_ring[entry].bufptr))) {
1624 			dev_kfree_skb_any(skb);
1625 			sis_priv->tx_skbuff[entry] = NULL;
1626 			net_dev->stats.tx_dropped++;
1627 			spin_unlock_irqrestore(&sis_priv->lock, flags);
1628 			return NETDEV_TX_OK;
1629 	}
1630 	sis_priv->tx_ring[entry].cmdsts = (OWN | INTR | skb->len);
1631 	sw32(cr, TxENA | sr32(cr));
1632 
1633 	sis_priv->cur_tx ++;
1634 	index_cur_tx = sis_priv->cur_tx;
1635 	index_dirty_tx = sis_priv->dirty_tx;
1636 
1637 	for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1638 		count_dirty_tx ++;
1639 
1640 	if (index_cur_tx == index_dirty_tx) {
1641 		/* dirty_tx is met in the cycle of cur_tx, buffer full */
1642 		sis_priv->tx_full = 1;
1643 		netif_stop_queue(net_dev);
1644 	} else if (count_dirty_tx < NUM_TX_DESC) {
1645 		/* Typical path, tell upper layer that more transmission is possible */
1646 		netif_start_queue(net_dev);
1647 	} else {
1648 		/* buffer full, tell upper layer no more transmission */
1649 		sis_priv->tx_full = 1;
1650 		netif_stop_queue(net_dev);
1651 	}
1652 
1653 	spin_unlock_irqrestore(&sis_priv->lock, flags);
1654 
1655 	if (netif_msg_tx_queued(sis_priv))
1656 		printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1657 		       "to slot %d.\n",
1658 		       net_dev->name, skb->data, (int)skb->len, entry);
1659 
1660 	return NETDEV_TX_OK;
1661 }
1662 
1663 /**
1664  *	sis900_interrupt - sis900 interrupt handler
1665  *	@irq: the irq number
1666  *	@dev_instance: the client data object
1667  *
1668  *	The interrupt handler does all of the Rx thread work,
1669  *	and cleans up after the Tx thread
1670  */
1671 
1672 static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1673 {
1674 	struct net_device *net_dev = dev_instance;
1675 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1676 	int boguscnt = max_interrupt_work;
1677 	void __iomem *ioaddr = sis_priv->ioaddr;
1678 	u32 status;
1679 	unsigned int handled = 0;
1680 
1681 	spin_lock (&sis_priv->lock);
1682 
1683 	do {
1684 		status = sr32(isr);
1685 
1686 		if ((status & (HIBERR|TxURN|TxERR|TxDESC|RxORN|RxERR|RxOK)) == 0)
1687 			/* nothing interesting happened */
1688 			break;
1689 		handled = 1;
1690 
1691 		/* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1692 		if (status & (RxORN | RxERR | RxOK))
1693 			/* Rx interrupt */
1694 			sis900_rx(net_dev);
1695 
1696 		if (status & (TxURN | TxERR | TxDESC))
1697 			/* Tx interrupt */
1698 			sis900_finish_xmit(net_dev);
1699 
1700 		/* something strange happened !!! */
1701 		if (status & HIBERR) {
1702 			if(netif_msg_intr(sis_priv))
1703 				printk(KERN_INFO "%s: Abnormal interrupt, "
1704 					"status %#8.8x.\n", net_dev->name, status);
1705 			break;
1706 		}
1707 		if (--boguscnt < 0) {
1708 			if(netif_msg_intr(sis_priv))
1709 				printk(KERN_INFO "%s: Too much work at interrupt, "
1710 					"interrupt status = %#8.8x.\n",
1711 					net_dev->name, status);
1712 			break;
1713 		}
1714 	} while (1);
1715 
1716 	if(netif_msg_intr(sis_priv))
1717 		printk(KERN_DEBUG "%s: exiting interrupt, "
1718 		       "interrupt status = %#8.8x\n",
1719 		       net_dev->name, sr32(isr));
1720 
1721 	spin_unlock (&sis_priv->lock);
1722 	return IRQ_RETVAL(handled);
1723 }
1724 
1725 /**
1726  *	sis900_rx - sis900 receive routine
1727  *	@net_dev: the net device which receives data
1728  *
1729  *	Process receive interrupt events,
1730  *	put buffer to higher layer and refill buffer pool
1731  *	Note: This function is called by interrupt handler,
1732  *	don't do "too much" work here
1733  */
1734 
1735 static int sis900_rx(struct net_device *net_dev)
1736 {
1737 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1738 	void __iomem *ioaddr = sis_priv->ioaddr;
1739 	unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1740 	u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1741 	int rx_work_limit;
1742 
1743 	if (netif_msg_rx_status(sis_priv))
1744 		printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1745 		       "status:0x%8.8x\n",
1746 		       sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1747 	rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1748 
1749 	while (rx_status & OWN) {
1750 		unsigned int rx_size;
1751 		unsigned int data_size;
1752 
1753 		if (--rx_work_limit < 0)
1754 			break;
1755 
1756 		data_size = rx_status & DSIZE;
1757 		rx_size = data_size - CRC_SIZE;
1758 
1759 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1760 		/* ``TOOLONG'' flag means jumbo packet received. */
1761 		if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1762 			rx_status &= (~ ((unsigned int)TOOLONG));
1763 #endif
1764 
1765 		if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1766 			/* corrupted packet received */
1767 			if (netif_msg_rx_err(sis_priv))
1768 				printk(KERN_DEBUG "%s: Corrupted packet "
1769 				       "received, buffer status = 0x%8.8x/%d.\n",
1770 				       net_dev->name, rx_status, data_size);
1771 			net_dev->stats.rx_errors++;
1772 			if (rx_status & OVERRUN)
1773 				net_dev->stats.rx_over_errors++;
1774 			if (rx_status & (TOOLONG|RUNT))
1775 				net_dev->stats.rx_length_errors++;
1776 			if (rx_status & (RXISERR | FAERR))
1777 				net_dev->stats.rx_frame_errors++;
1778 			if (rx_status & CRCERR)
1779 				net_dev->stats.rx_crc_errors++;
1780 			/* reset buffer descriptor state */
1781 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1782 		} else {
1783 			struct sk_buff * skb;
1784 			struct sk_buff * rx_skb;
1785 
1786 			dma_unmap_single(&sis_priv->pci_dev->dev,
1787 					 sis_priv->rx_ring[entry].bufptr,
1788 					 RX_BUF_SIZE, DMA_FROM_DEVICE);
1789 
1790 			/* refill the Rx buffer, what if there is not enough
1791 			 * memory for new socket buffer ?? */
1792 			if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1793 				/*
1794 				 * Not enough memory to refill the buffer
1795 				 * so we need to recycle the old one so
1796 				 * as to avoid creating a memory hole
1797 				 * in the rx ring
1798 				 */
1799 				skb = sis_priv->rx_skbuff[entry];
1800 				net_dev->stats.rx_dropped++;
1801 				goto refill_rx_ring;
1802 			}
1803 
1804 			/* This situation should never happen, but due to
1805 			   some unknown bugs, it is possible that
1806 			   we are working on NULL sk_buff :-( */
1807 			if (sis_priv->rx_skbuff[entry] == NULL) {
1808 				if (netif_msg_rx_err(sis_priv))
1809 					printk(KERN_WARNING "%s: NULL pointer "
1810 					      "encountered in Rx ring\n"
1811 					      "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1812 					      net_dev->name, sis_priv->cur_rx,
1813 					      sis_priv->dirty_rx);
1814 				dev_kfree_skb(skb);
1815 				break;
1816 			}
1817 
1818 			/* give the socket buffer to upper layers */
1819 			rx_skb = sis_priv->rx_skbuff[entry];
1820 			skb_put(rx_skb, rx_size);
1821 			rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1822 			netif_rx(rx_skb);
1823 
1824 			/* some network statistics */
1825 			if ((rx_status & BCAST) == MCAST)
1826 				net_dev->stats.multicast++;
1827 			net_dev->stats.rx_bytes += rx_size;
1828 			net_dev->stats.rx_packets++;
1829 			sis_priv->dirty_rx++;
1830 refill_rx_ring:
1831 			sis_priv->rx_skbuff[entry] = skb;
1832 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1833 			sis_priv->rx_ring[entry].bufptr =
1834 				dma_map_single(&sis_priv->pci_dev->dev,
1835 					       skb->data, RX_BUF_SIZE,
1836 					       DMA_FROM_DEVICE);
1837 			if (unlikely(dma_mapping_error(&sis_priv->pci_dev->dev,
1838 						       sis_priv->rx_ring[entry].bufptr))) {
1839 				dev_kfree_skb_irq(skb);
1840 				sis_priv->rx_skbuff[entry] = NULL;
1841 				break;
1842 			}
1843 		}
1844 		sis_priv->cur_rx++;
1845 		entry = sis_priv->cur_rx % NUM_RX_DESC;
1846 		rx_status = sis_priv->rx_ring[entry].cmdsts;
1847 	} // while
1848 
1849 	/* refill the Rx buffer, what if the rate of refilling is slower
1850 	 * than consuming ?? */
1851 	for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1852 		struct sk_buff *skb;
1853 
1854 		entry = sis_priv->dirty_rx % NUM_RX_DESC;
1855 
1856 		if (sis_priv->rx_skbuff[entry] == NULL) {
1857 			skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE);
1858 			if (skb == NULL) {
1859 				/* not enough memory for skbuff, this makes a
1860 				 * "hole" on the buffer ring, it is not clear
1861 				 * how the hardware will react to this kind
1862 				 * of degenerated buffer */
1863 				net_dev->stats.rx_dropped++;
1864 				break;
1865 			}
1866 			sis_priv->rx_skbuff[entry] = skb;
1867 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1868 			sis_priv->rx_ring[entry].bufptr =
1869 				dma_map_single(&sis_priv->pci_dev->dev,
1870 					       skb->data, RX_BUF_SIZE,
1871 					       DMA_FROM_DEVICE);
1872 			if (unlikely(dma_mapping_error(&sis_priv->pci_dev->dev,
1873 						       sis_priv->rx_ring[entry].bufptr))) {
1874 				dev_kfree_skb_irq(skb);
1875 				sis_priv->rx_skbuff[entry] = NULL;
1876 				break;
1877 			}
1878 		}
1879 	}
1880 	/* re-enable the potentially idle receive state matchine */
1881 	sw32(cr , RxENA | sr32(cr));
1882 
1883 	return 0;
1884 }
1885 
1886 /**
1887  *	sis900_finish_xmit - finish up transmission of packets
1888  *	@net_dev: the net device to be transmitted on
1889  *
1890  *	Check for error condition and free socket buffer etc
1891  *	schedule for more transmission as needed
1892  *	Note: This function is called by interrupt handler,
1893  *	don't do "too much" work here
1894  */
1895 
1896 static void sis900_finish_xmit (struct net_device *net_dev)
1897 {
1898 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1899 
1900 	for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1901 		struct sk_buff *skb;
1902 		unsigned int entry;
1903 		u32 tx_status;
1904 
1905 		entry = sis_priv->dirty_tx % NUM_TX_DESC;
1906 		tx_status = sis_priv->tx_ring[entry].cmdsts;
1907 
1908 		if (tx_status & OWN) {
1909 			/* The packet is not transmitted yet (owned by hardware) !
1910 			 * Note: this is an almost impossible condition
1911 			 * on TxDESC interrupt ('descriptor interrupt') */
1912 			break;
1913 		}
1914 
1915 		if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1916 			/* packet unsuccessfully transmitted */
1917 			if (netif_msg_tx_err(sis_priv))
1918 				printk(KERN_DEBUG "%s: Transmit "
1919 				       "error, Tx status %8.8x.\n",
1920 				       net_dev->name, tx_status);
1921 			net_dev->stats.tx_errors++;
1922 			if (tx_status & UNDERRUN)
1923 				net_dev->stats.tx_fifo_errors++;
1924 			if (tx_status & ABORT)
1925 				net_dev->stats.tx_aborted_errors++;
1926 			if (tx_status & NOCARRIER)
1927 				net_dev->stats.tx_carrier_errors++;
1928 			if (tx_status & OWCOLL)
1929 				net_dev->stats.tx_window_errors++;
1930 		} else {
1931 			/* packet successfully transmitted */
1932 			net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1933 			net_dev->stats.tx_bytes += tx_status & DSIZE;
1934 			net_dev->stats.tx_packets++;
1935 		}
1936 		/* Free the original skb. */
1937 		skb = sis_priv->tx_skbuff[entry];
1938 		dma_unmap_single(&sis_priv->pci_dev->dev,
1939 				 sis_priv->tx_ring[entry].bufptr, skb->len,
1940 				 DMA_TO_DEVICE);
1941 		dev_consume_skb_irq(skb);
1942 		sis_priv->tx_skbuff[entry] = NULL;
1943 		sis_priv->tx_ring[entry].bufptr = 0;
1944 		sis_priv->tx_ring[entry].cmdsts = 0;
1945 	}
1946 
1947 	if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1948 	    sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1949 		/* The ring is no longer full, clear tx_full and schedule
1950 		 * more transmission by netif_wake_queue(net_dev) */
1951 		sis_priv->tx_full = 0;
1952 		netif_wake_queue (net_dev);
1953 	}
1954 }
1955 
1956 /**
1957  *	sis900_close - close sis900 device
1958  *	@net_dev: the net device to be closed
1959  *
1960  *	Disable interrupts, stop the Tx and Rx Status Machine
1961  *	free Tx and RX socket buffer
1962  */
1963 
1964 static int sis900_close(struct net_device *net_dev)
1965 {
1966 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1967 	struct pci_dev *pdev = sis_priv->pci_dev;
1968 	void __iomem *ioaddr = sis_priv->ioaddr;
1969 	struct sk_buff *skb;
1970 	int i;
1971 
1972 	netif_stop_queue(net_dev);
1973 
1974 	/* Disable interrupts by clearing the interrupt mask. */
1975 	sw32(imr, 0x0000);
1976 	sw32(ier, 0x0000);
1977 
1978 	/* Stop the chip's Tx and Rx Status Machine */
1979 	sw32(cr, RxDIS | TxDIS | sr32(cr));
1980 
1981 	del_timer(&sis_priv->timer);
1982 
1983 	free_irq(pdev->irq, net_dev);
1984 
1985 	/* Free Tx and RX skbuff */
1986 	for (i = 0; i < NUM_RX_DESC; i++) {
1987 		skb = sis_priv->rx_skbuff[i];
1988 		if (skb) {
1989 			dma_unmap_single(&pdev->dev,
1990 					 sis_priv->rx_ring[i].bufptr,
1991 					 RX_BUF_SIZE, DMA_FROM_DEVICE);
1992 			dev_kfree_skb(skb);
1993 			sis_priv->rx_skbuff[i] = NULL;
1994 		}
1995 	}
1996 	for (i = 0; i < NUM_TX_DESC; i++) {
1997 		skb = sis_priv->tx_skbuff[i];
1998 		if (skb) {
1999 			dma_unmap_single(&pdev->dev,
2000 					 sis_priv->tx_ring[i].bufptr,
2001 					 skb->len, DMA_TO_DEVICE);
2002 			dev_kfree_skb(skb);
2003 			sis_priv->tx_skbuff[i] = NULL;
2004 		}
2005 	}
2006 
2007 	/* Green! Put the chip in low-power mode. */
2008 
2009 	return 0;
2010 }
2011 
2012 /**
2013  *	sis900_get_drvinfo - Return information about driver
2014  *	@net_dev: the net device to probe
2015  *	@info: container for info returned
2016  *
2017  *	Process ethtool command such as "ehtool -i" to show information
2018  */
2019 
2020 static void sis900_get_drvinfo(struct net_device *net_dev,
2021 			       struct ethtool_drvinfo *info)
2022 {
2023 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2024 
2025 	strlcpy(info->driver, SIS900_MODULE_NAME, sizeof(info->driver));
2026 	strlcpy(info->version, SIS900_DRV_VERSION, sizeof(info->version));
2027 	strlcpy(info->bus_info, pci_name(sis_priv->pci_dev),
2028 		sizeof(info->bus_info));
2029 }
2030 
2031 static u32 sis900_get_msglevel(struct net_device *net_dev)
2032 {
2033 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2034 	return sis_priv->msg_enable;
2035 }
2036 
2037 static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
2038 {
2039 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2040 	sis_priv->msg_enable = value;
2041 }
2042 
2043 static u32 sis900_get_link(struct net_device *net_dev)
2044 {
2045 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2046 	return mii_link_ok(&sis_priv->mii_info);
2047 }
2048 
2049 static int sis900_get_link_ksettings(struct net_device *net_dev,
2050 				     struct ethtool_link_ksettings *cmd)
2051 {
2052 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2053 	spin_lock_irq(&sis_priv->lock);
2054 	mii_ethtool_get_link_ksettings(&sis_priv->mii_info, cmd);
2055 	spin_unlock_irq(&sis_priv->lock);
2056 	return 0;
2057 }
2058 
2059 static int sis900_set_link_ksettings(struct net_device *net_dev,
2060 				     const struct ethtool_link_ksettings *cmd)
2061 {
2062 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2063 	int rt;
2064 	spin_lock_irq(&sis_priv->lock);
2065 	rt = mii_ethtool_set_link_ksettings(&sis_priv->mii_info, cmd);
2066 	spin_unlock_irq(&sis_priv->lock);
2067 	return rt;
2068 }
2069 
2070 static int sis900_nway_reset(struct net_device *net_dev)
2071 {
2072 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2073 	return mii_nway_restart(&sis_priv->mii_info);
2074 }
2075 
2076 /**
2077  *	sis900_set_wol - Set up Wake on Lan registers
2078  *	@net_dev: the net device to probe
2079  *	@wol: container for info passed to the driver
2080  *
2081  *	Process ethtool command "wol" to setup wake on lan features.
2082  *	SiS900 supports sending WoL events if a correct packet is received,
2083  *	but there is no simple way to filter them to only a subset (broadcast,
2084  *	multicast, unicast or arp).
2085  */
2086 
2087 static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2088 {
2089 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2090 	void __iomem *ioaddr = sis_priv->ioaddr;
2091 	u32 cfgpmcsr = 0, pmctrl_bits = 0;
2092 
2093 	if (wol->wolopts == 0) {
2094 		pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2095 		cfgpmcsr &= ~PME_EN;
2096 		pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2097 		sw32(pmctrl, pmctrl_bits);
2098 		if (netif_msg_wol(sis_priv))
2099 			printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2100 		return 0;
2101 	}
2102 
2103 	if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2104 				| WAKE_BCAST | WAKE_ARP))
2105 		return -EINVAL;
2106 
2107 	if (wol->wolopts & WAKE_MAGIC)
2108 		pmctrl_bits |= MAGICPKT;
2109 	if (wol->wolopts & WAKE_PHY)
2110 		pmctrl_bits |= LINKON;
2111 
2112 	sw32(pmctrl, pmctrl_bits);
2113 
2114 	pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2115 	cfgpmcsr |= PME_EN;
2116 	pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2117 	if (netif_msg_wol(sis_priv))
2118 		printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2119 
2120 	return 0;
2121 }
2122 
2123 static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2124 {
2125 	struct sis900_private *sp = netdev_priv(net_dev);
2126 	void __iomem *ioaddr = sp->ioaddr;
2127 	u32 pmctrl_bits;
2128 
2129 	pmctrl_bits = sr32(pmctrl);
2130 	if (pmctrl_bits & MAGICPKT)
2131 		wol->wolopts |= WAKE_MAGIC;
2132 	if (pmctrl_bits & LINKON)
2133 		wol->wolopts |= WAKE_PHY;
2134 
2135 	wol->supported = (WAKE_PHY | WAKE_MAGIC);
2136 }
2137 
2138 static int sis900_get_eeprom_len(struct net_device *dev)
2139 {
2140 	struct sis900_private *sis_priv = netdev_priv(dev);
2141 
2142 	return sis_priv->eeprom_size;
2143 }
2144 
2145 static int sis900_read_eeprom(struct net_device *net_dev, u8 *buf)
2146 {
2147 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2148 	void __iomem *ioaddr = sis_priv->ioaddr;
2149 	int wait, ret = -EAGAIN;
2150 	u16 signature;
2151 	u16 *ebuf = (u16 *)buf;
2152 	int i;
2153 
2154 	if (sis_priv->chipset_rev == SIS96x_900_REV) {
2155 		sw32(mear, EEREQ);
2156 		for (wait = 0; wait < 2000; wait++) {
2157 			if (sr32(mear) & EEGNT) {
2158 				/* read 16 bits, and index by 16 bits */
2159 				for (i = 0; i < sis_priv->eeprom_size / 2; i++)
2160 					ebuf[i] = (u16)read_eeprom(ioaddr, i);
2161 				ret = 0;
2162 				break;
2163 			}
2164 			udelay(1);
2165 		}
2166 		sw32(mear, EEDONE);
2167 	} else {
2168 		signature = (u16)read_eeprom(ioaddr, EEPROMSignature);
2169 		if (signature != 0xffff && signature != 0x0000) {
2170 			/* read 16 bits, and index by 16 bits */
2171 			for (i = 0; i < sis_priv->eeprom_size / 2; i++)
2172 				ebuf[i] = (u16)read_eeprom(ioaddr, i);
2173 			ret = 0;
2174 		}
2175 	}
2176 	return ret;
2177 }
2178 
2179 #define SIS900_EEPROM_MAGIC	0xBABE
2180 static int sis900_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2181 {
2182 	struct sis900_private *sis_priv = netdev_priv(dev);
2183 	u8 *eebuf;
2184 	int res;
2185 
2186 	eebuf = kmalloc(sis_priv->eeprom_size, GFP_KERNEL);
2187 	if (!eebuf)
2188 		return -ENOMEM;
2189 
2190 	eeprom->magic = SIS900_EEPROM_MAGIC;
2191 	spin_lock_irq(&sis_priv->lock);
2192 	res = sis900_read_eeprom(dev, eebuf);
2193 	spin_unlock_irq(&sis_priv->lock);
2194 	if (!res)
2195 		memcpy(data, eebuf + eeprom->offset, eeprom->len);
2196 	kfree(eebuf);
2197 	return res;
2198 }
2199 
2200 static const struct ethtool_ops sis900_ethtool_ops = {
2201 	.get_drvinfo 	= sis900_get_drvinfo,
2202 	.get_msglevel	= sis900_get_msglevel,
2203 	.set_msglevel	= sis900_set_msglevel,
2204 	.get_link	= sis900_get_link,
2205 	.nway_reset	= sis900_nway_reset,
2206 	.get_wol	= sis900_get_wol,
2207 	.set_wol	= sis900_set_wol,
2208 	.get_link_ksettings = sis900_get_link_ksettings,
2209 	.set_link_ksettings = sis900_set_link_ksettings,
2210 	.get_eeprom_len = sis900_get_eeprom_len,
2211 	.get_eeprom = sis900_get_eeprom,
2212 };
2213 
2214 /**
2215  *	mii_ioctl - process MII i/o control command
2216  *	@net_dev: the net device to command for
2217  *	@rq: parameter for command
2218  *	@cmd: the i/o command
2219  *
2220  *	Process MII command like read/write MII register
2221  */
2222 
2223 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2224 {
2225 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2226 	struct mii_ioctl_data *data = if_mii(rq);
2227 
2228 	switch(cmd) {
2229 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2230 		data->phy_id = sis_priv->mii->phy_addr;
2231 		fallthrough;
2232 
2233 	case SIOCGMIIREG:		/* Read MII PHY register. */
2234 		data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2235 		return 0;
2236 
2237 	case SIOCSMIIREG:		/* Write MII PHY register. */
2238 		mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2239 		return 0;
2240 	default:
2241 		return -EOPNOTSUPP;
2242 	}
2243 }
2244 
2245 /**
2246  *	sis900_set_config - Set media type by net_device.set_config
2247  *	@dev: the net device for media type change
2248  *	@map: ifmap passed by ifconfig
2249  *
2250  *	Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2251  *	we support only port changes. All other runtime configuration
2252  *	changes will be ignored
2253  */
2254 
2255 static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2256 {
2257 	struct sis900_private *sis_priv = netdev_priv(dev);
2258 	struct mii_phy *mii_phy = sis_priv->mii;
2259 
2260 	u16 status;
2261 
2262 	if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2263 		/* we switch on the ifmap->port field. I couldn't find anything
2264 		 * like a definition or standard for the values of that field.
2265 		 * I think the meaning of those values is device specific. But
2266 		 * since I would like to change the media type via the ifconfig
2267 		 * command I use the definition from linux/netdevice.h
2268 		 * (which seems to be different from the ifport(pcmcia) definition) */
2269 		switch(map->port){
2270 		case IF_PORT_UNKNOWN: /* use auto here */
2271 			dev->if_port = map->port;
2272 			/* we are going to change the media type, so the Link
2273 			 * will be temporary down and we need to reflect that
2274 			 * here. When the Link comes up again, it will be
2275 			 * sensed by the sis_timer procedure, which also does
2276 			 * all the rest for us */
2277 			netif_carrier_off(dev);
2278 
2279 			/* read current state */
2280 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2281 
2282 			/* enable auto negotiation and reset the negotioation
2283 			 * (I don't really know what the auto negatiotiation
2284 			 * reset really means, but it sounds for me right to
2285 			 * do one here) */
2286 			mdio_write(dev, mii_phy->phy_addr,
2287 				   MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2288 
2289 			break;
2290 
2291 		case IF_PORT_10BASET: /* 10BaseT */
2292 			dev->if_port = map->port;
2293 
2294 			/* we are going to change the media type, so the Link
2295 			 * will be temporary down and we need to reflect that
2296 			 * here. When the Link comes up again, it will be
2297 			 * sensed by the sis_timer procedure, which also does
2298 			 * all the rest for us */
2299 			netif_carrier_off(dev);
2300 
2301 			/* set Speed to 10Mbps */
2302 			/* read current state */
2303 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2304 
2305 			/* disable auto negotiation and force 10MBit mode*/
2306 			mdio_write(dev, mii_phy->phy_addr,
2307 				   MII_CONTROL, status & ~(MII_CNTL_SPEED |
2308 					MII_CNTL_AUTO));
2309 			break;
2310 
2311 		case IF_PORT_100BASET: /* 100BaseT */
2312 		case IF_PORT_100BASETX: /* 100BaseTx */
2313 			dev->if_port = map->port;
2314 
2315 			/* we are going to change the media type, so the Link
2316 			 * will be temporary down and we need to reflect that
2317 			 * here. When the Link comes up again, it will be
2318 			 * sensed by the sis_timer procedure, which also does
2319 			 * all the rest for us */
2320 			netif_carrier_off(dev);
2321 
2322 			/* set Speed to 100Mbps */
2323 			/* disable auto negotiation and enable 100MBit Mode */
2324 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2325 			mdio_write(dev, mii_phy->phy_addr,
2326 				   MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2327 				   MII_CNTL_SPEED);
2328 
2329 			break;
2330 
2331 		case IF_PORT_10BASE2: /* 10Base2 */
2332 		case IF_PORT_AUI: /* AUI */
2333 		case IF_PORT_100BASEFX: /* 100BaseFx */
2334 			/* These Modes are not supported (are they?)*/
2335 			return -EOPNOTSUPP;
2336 
2337 		default:
2338 			return -EINVAL;
2339 		}
2340 	}
2341 	return 0;
2342 }
2343 
2344 /**
2345  *	sis900_mcast_bitnr - compute hashtable index
2346  *	@addr: multicast address
2347  *	@revision: revision id of chip
2348  *
2349  *	SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2350  *	hash table, which makes this function a little bit different from other drivers
2351  *	SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2352  *   	multicast hash table.
2353  */
2354 
2355 static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2356 {
2357 
2358 	u32 crc = ether_crc(6, addr);
2359 
2360 	/* leave 8 or 7 most siginifant bits */
2361 	if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2362 		return (int)(crc >> 24);
2363 	else
2364 		return (int)(crc >> 25);
2365 }
2366 
2367 /**
2368  *	set_rx_mode - Set SiS900 receive mode
2369  *	@net_dev: the net device to be set
2370  *
2371  *	Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2372  *	And set the appropriate multicast filter.
2373  *	Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2374  */
2375 
2376 static void set_rx_mode(struct net_device *net_dev)
2377 {
2378 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2379 	void __iomem *ioaddr = sis_priv->ioaddr;
2380 	u16 mc_filter[16] = {0};	/* 256/128 bits multicast hash table */
2381 	int i, table_entries;
2382 	u32 rx_mode;
2383 
2384 	/* 635 Hash Table entries = 256(2^16) */
2385 	if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2386 			(sis_priv->chipset_rev == SIS900B_900_REV))
2387 		table_entries = 16;
2388 	else
2389 		table_entries = 8;
2390 
2391 	if (net_dev->flags & IFF_PROMISC) {
2392 		/* Accept any kinds of packets */
2393 		rx_mode = RFPromiscuous;
2394 		for (i = 0; i < table_entries; i++)
2395 			mc_filter[i] = 0xffff;
2396 	} else if ((netdev_mc_count(net_dev) > multicast_filter_limit) ||
2397 		   (net_dev->flags & IFF_ALLMULTI)) {
2398 		/* too many multicast addresses or accept all multicast packet */
2399 		rx_mode = RFAAB | RFAAM;
2400 		for (i = 0; i < table_entries; i++)
2401 			mc_filter[i] = 0xffff;
2402 	} else {
2403 		/* Accept Broadcast packet, destination address matchs our
2404 		 * MAC address, use Receive Filter to reject unwanted MCAST
2405 		 * packets */
2406 		struct netdev_hw_addr *ha;
2407 		rx_mode = RFAAB;
2408 
2409 		netdev_for_each_mc_addr(ha, net_dev) {
2410 			unsigned int bit_nr;
2411 
2412 			bit_nr = sis900_mcast_bitnr(ha->addr,
2413 						    sis_priv->chipset_rev);
2414 			mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2415 		}
2416 	}
2417 
2418 	/* update Multicast Hash Table in Receive Filter */
2419 	for (i = 0; i < table_entries; i++) {
2420                 /* why plus 0x04 ??, That makes the correct value for hash table. */
2421 		sw32(rfcr, (u32)(0x00000004 + i) << RFADDR_shift);
2422 		sw32(rfdr, mc_filter[i]);
2423 	}
2424 
2425 	sw32(rfcr, RFEN | rx_mode);
2426 
2427 	/* sis900 is capable of looping back packets at MAC level for
2428 	 * debugging purpose */
2429 	if (net_dev->flags & IFF_LOOPBACK) {
2430 		u32 cr_saved;
2431 		/* We must disable Tx/Rx before setting loopback mode */
2432 		cr_saved = sr32(cr);
2433 		sw32(cr, cr_saved | TxDIS | RxDIS);
2434 		/* enable loopback */
2435 		sw32(txcfg, sr32(txcfg) | TxMLB);
2436 		sw32(rxcfg, sr32(rxcfg) | RxATX);
2437 		/* restore cr */
2438 		sw32(cr, cr_saved);
2439 	}
2440 }
2441 
2442 /**
2443  *	sis900_reset - Reset sis900 MAC
2444  *	@net_dev: the net device to reset
2445  *
2446  *	reset sis900 MAC and wait until finished
2447  *	reset through command register
2448  *	change backoff algorithm for 900B0 & 635 M/B
2449  */
2450 
2451 static void sis900_reset(struct net_device *net_dev)
2452 {
2453 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2454 	void __iomem *ioaddr = sis_priv->ioaddr;
2455 	u32 status = TxRCMP | RxRCMP;
2456 	int i;
2457 
2458 	sw32(ier, 0);
2459 	sw32(imr, 0);
2460 	sw32(rfcr, 0);
2461 
2462 	sw32(cr, RxRESET | TxRESET | RESET | sr32(cr));
2463 
2464 	/* Check that the chip has finished the reset. */
2465 	for (i = 0; status && (i < 1000); i++)
2466 		status ^= sr32(isr) & status;
2467 
2468 	if (sis_priv->chipset_rev >= SIS635A_900_REV ||
2469 	    sis_priv->chipset_rev == SIS900B_900_REV)
2470 		sw32(cfg, PESEL | RND_CNT);
2471 	else
2472 		sw32(cfg, PESEL);
2473 }
2474 
2475 /**
2476  *	sis900_remove - Remove sis900 device
2477  *	@pci_dev: the pci device to be removed
2478  *
2479  *	remove and release SiS900 net device
2480  */
2481 
2482 static void sis900_remove(struct pci_dev *pci_dev)
2483 {
2484 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2485 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2486 
2487 	unregister_netdev(net_dev);
2488 
2489 	while (sis_priv->first_mii) {
2490 		struct mii_phy *phy = sis_priv->first_mii;
2491 
2492 		sis_priv->first_mii = phy->next;
2493 		kfree(phy);
2494 	}
2495 
2496 	dma_free_coherent(&pci_dev->dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2497 			  sis_priv->rx_ring_dma);
2498 	dma_free_coherent(&pci_dev->dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2499 			  sis_priv->tx_ring_dma);
2500 	pci_iounmap(pci_dev, sis_priv->ioaddr);
2501 	free_netdev(net_dev);
2502 	pci_release_regions(pci_dev);
2503 }
2504 
2505 static int __maybe_unused sis900_suspend(struct device *dev)
2506 {
2507 	struct net_device *net_dev = dev_get_drvdata(dev);
2508 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2509 	void __iomem *ioaddr = sis_priv->ioaddr;
2510 
2511 	if(!netif_running(net_dev))
2512 		return 0;
2513 
2514 	netif_stop_queue(net_dev);
2515 	netif_device_detach(net_dev);
2516 
2517 	/* Stop the chip's Tx and Rx Status Machine */
2518 	sw32(cr, RxDIS | TxDIS | sr32(cr));
2519 
2520 	return 0;
2521 }
2522 
2523 static int __maybe_unused sis900_resume(struct device *dev)
2524 {
2525 	struct net_device *net_dev = dev_get_drvdata(dev);
2526 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2527 	void __iomem *ioaddr = sis_priv->ioaddr;
2528 
2529 	if(!netif_running(net_dev))
2530 		return 0;
2531 
2532 	sis900_init_rxfilter(net_dev);
2533 
2534 	sis900_init_tx_ring(net_dev);
2535 	sis900_init_rx_ring(net_dev);
2536 
2537 	set_rx_mode(net_dev);
2538 
2539 	netif_device_attach(net_dev);
2540 	netif_start_queue(net_dev);
2541 
2542 	/* Workaround for EDB */
2543 	sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2544 
2545 	/* Enable all known interrupts by setting the interrupt mask. */
2546 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxDESC);
2547 	sw32(cr, RxENA | sr32(cr));
2548 	sw32(ier, IE);
2549 
2550 	sis900_check_mode(net_dev, sis_priv->mii);
2551 
2552 	return 0;
2553 }
2554 
2555 static SIMPLE_DEV_PM_OPS(sis900_pm_ops, sis900_suspend, sis900_resume);
2556 
2557 static struct pci_driver sis900_pci_driver = {
2558 	.name		= SIS900_MODULE_NAME,
2559 	.id_table	= sis900_pci_tbl,
2560 	.probe		= sis900_probe,
2561 	.remove		= sis900_remove,
2562 	.driver.pm	= &sis900_pm_ops,
2563 };
2564 
2565 static int __init sis900_init_module(void)
2566 {
2567 /* when a module, this is printed whether or not devices are found in probe */
2568 #ifdef MODULE
2569 	printk(version);
2570 #endif
2571 
2572 	return pci_register_driver(&sis900_pci_driver);
2573 }
2574 
2575 static void __exit sis900_cleanup_module(void)
2576 {
2577 	pci_unregister_driver(&sis900_pci_driver);
2578 }
2579 
2580 module_init(sis900_init_module);
2581 module_exit(sis900_cleanup_module);
2582 
2583