1 /* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux. 2 Copyright 1999 Silicon Integrated System Corporation 3 Revision: 1.08.10 Apr. 2 2006 4 5 Modified from the driver which is originally written by Donald Becker. 6 7 This software may be used and distributed according to the terms 8 of the GNU General Public License (GPL), incorporated herein by reference. 9 Drivers based on this skeleton fall under the GPL and must retain 10 the authorship (implicit copyright) notice. 11 12 References: 13 SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support, 14 preliminary Rev. 1.0 Jan. 14, 1998 15 SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support, 16 preliminary Rev. 1.0 Nov. 10, 1998 17 SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution, 18 preliminary Rev. 1.0 Jan. 18, 1998 19 20 Rev 1.08.10 Apr. 2 2006 Daniele Venzano add vlan (jumbo packets) support 21 Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support 22 Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages 23 Rev 1.08.07 Nov. 2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support 24 Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support 25 Rev 1.08.05 Jun. 6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary 26 Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support 27 Rev 1.08.03 Feb. 1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function 28 Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem 29 Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY 30 Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix 31 Rev 1.07.11 Apr. 2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3 32 Rev 1.07.10 Mar. 1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support 33 Rev 1.07.09 Feb. 9 2001 Dave Jones <davej@suse.de> PCI enable cleanup 34 Rev 1.07.08 Jan. 8 2001 Lei-Chun Chang added RTL8201 PHY support 35 Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix 36 Rev 1.07.06 Nov. 7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning 37 Rev 1.07.05 Nov. 6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig 38 Rev 1.07.04 Sep. 6 2000 Lei-Chun Chang added ICS1893 PHY support 39 Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E equalizer workaround rule 40 Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1 41 Rev 1.07 Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring 42 Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4 43 Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release 44 Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed 45 Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com) 46 Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release 47 Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx 48 Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support 49 Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/kernel.h> 55 #include <linux/sched.h> 56 #include <linux/string.h> 57 #include <linux/timer.h> 58 #include <linux/errno.h> 59 #include <linux/ioport.h> 60 #include <linux/slab.h> 61 #include <linux/interrupt.h> 62 #include <linux/pci.h> 63 #include <linux/netdevice.h> 64 #include <linux/init.h> 65 #include <linux/mii.h> 66 #include <linux/etherdevice.h> 67 #include <linux/skbuff.h> 68 #include <linux/delay.h> 69 #include <linux/ethtool.h> 70 #include <linux/crc32.h> 71 #include <linux/bitops.h> 72 #include <linux/dma-mapping.h> 73 74 #include <asm/processor.h> /* Processor type for cache alignment. */ 75 #include <asm/io.h> 76 #include <asm/irq.h> 77 #include <asm/uaccess.h> /* User space memory access functions */ 78 79 #include "sis900.h" 80 81 #define SIS900_MODULE_NAME "sis900" 82 #define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006" 83 84 static const char version[] = 85 KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n"; 86 87 static int max_interrupt_work = 40; 88 static int multicast_filter_limit = 128; 89 90 static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */ 91 92 #define SIS900_DEF_MSG \ 93 (NETIF_MSG_DRV | \ 94 NETIF_MSG_LINK | \ 95 NETIF_MSG_RX_ERR | \ 96 NETIF_MSG_TX_ERR) 97 98 /* Time in jiffies before concluding the transmitter is hung. */ 99 #define TX_TIMEOUT (4*HZ) 100 101 enum { 102 SIS_900 = 0, 103 SIS_7016 104 }; 105 static const char * card_names[] = { 106 "SiS 900 PCI Fast Ethernet", 107 "SiS 7016 PCI Fast Ethernet" 108 }; 109 static DEFINE_PCI_DEVICE_TABLE(sis900_pci_tbl) = { 110 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900, 111 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900}, 112 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016, 113 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016}, 114 {0,} 115 }; 116 MODULE_DEVICE_TABLE (pci, sis900_pci_tbl); 117 118 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex); 119 120 static const struct mii_chip_info { 121 const char * name; 122 u16 phy_id0; 123 u16 phy_id1; 124 u8 phy_types; 125 #define HOME 0x0001 126 #define LAN 0x0002 127 #define MIX 0x0003 128 #define UNKNOWN 0x0 129 } mii_chip_table[] = { 130 { "SiS 900 Internal MII PHY", 0x001d, 0x8000, LAN }, 131 { "SiS 7014 Physical Layer Solution", 0x0016, 0xf830, LAN }, 132 { "SiS 900 on Foxconn 661 7MI", 0x0143, 0xBC70, LAN }, 133 { "Altimata AC101LF PHY", 0x0022, 0x5520, LAN }, 134 { "ADM 7001 LAN PHY", 0x002e, 0xcc60, LAN }, 135 { "AMD 79C901 10BASE-T PHY", 0x0000, 0x6B70, LAN }, 136 { "AMD 79C901 HomePNA PHY", 0x0000, 0x6B90, HOME}, 137 { "ICS LAN PHY", 0x0015, 0xF440, LAN }, 138 { "ICS LAN PHY", 0x0143, 0xBC70, LAN }, 139 { "NS 83851 PHY", 0x2000, 0x5C20, MIX }, 140 { "NS 83847 PHY", 0x2000, 0x5C30, MIX }, 141 { "Realtek RTL8201 PHY", 0x0000, 0x8200, LAN }, 142 { "VIA 6103 PHY", 0x0101, 0x8f20, LAN }, 143 {NULL,}, 144 }; 145 146 struct mii_phy { 147 struct mii_phy * next; 148 int phy_addr; 149 u16 phy_id0; 150 u16 phy_id1; 151 u16 status; 152 u8 phy_types; 153 }; 154 155 typedef struct _BufferDesc { 156 u32 link; 157 u32 cmdsts; 158 u32 bufptr; 159 } BufferDesc; 160 161 struct sis900_private { 162 struct pci_dev * pci_dev; 163 164 spinlock_t lock; 165 166 struct mii_phy * mii; 167 struct mii_phy * first_mii; /* record the first mii structure */ 168 unsigned int cur_phy; 169 struct mii_if_info mii_info; 170 171 void __iomem *ioaddr; 172 173 struct timer_list timer; /* Link status detection timer. */ 174 u8 autong_complete; /* 1: auto-negotiate complete */ 175 176 u32 msg_enable; 177 178 unsigned int cur_rx, dirty_rx; /* producer/comsumer pointers for Tx/Rx ring */ 179 unsigned int cur_tx, dirty_tx; 180 181 /* The saved address of a sent/receive-in-place packet buffer */ 182 struct sk_buff *tx_skbuff[NUM_TX_DESC]; 183 struct sk_buff *rx_skbuff[NUM_RX_DESC]; 184 BufferDesc *tx_ring; 185 BufferDesc *rx_ring; 186 187 dma_addr_t tx_ring_dma; 188 dma_addr_t rx_ring_dma; 189 190 unsigned int tx_full; /* The Tx queue is full. */ 191 u8 host_bridge_rev; 192 u8 chipset_rev; 193 }; 194 195 MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>"); 196 MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver"); 197 MODULE_LICENSE("GPL"); 198 199 module_param(multicast_filter_limit, int, 0444); 200 module_param(max_interrupt_work, int, 0444); 201 module_param(sis900_debug, int, 0444); 202 MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses"); 203 MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt"); 204 MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level"); 205 206 #define sw32(reg, val) iowrite32(val, ioaddr + (reg)) 207 #define sw8(reg, val) iowrite8(val, ioaddr + (reg)) 208 #define sr32(reg) ioread32(ioaddr + (reg)) 209 #define sr16(reg) ioread16(ioaddr + (reg)) 210 211 #ifdef CONFIG_NET_POLL_CONTROLLER 212 static void sis900_poll(struct net_device *dev); 213 #endif 214 static int sis900_open(struct net_device *net_dev); 215 static int sis900_mii_probe (struct net_device * net_dev); 216 static void sis900_init_rxfilter (struct net_device * net_dev); 217 static u16 read_eeprom(void __iomem *ioaddr, int location); 218 static int mdio_read(struct net_device *net_dev, int phy_id, int location); 219 static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val); 220 static void sis900_timer(unsigned long data); 221 static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy); 222 static void sis900_tx_timeout(struct net_device *net_dev); 223 static void sis900_init_tx_ring(struct net_device *net_dev); 224 static void sis900_init_rx_ring(struct net_device *net_dev); 225 static netdev_tx_t sis900_start_xmit(struct sk_buff *skb, 226 struct net_device *net_dev); 227 static int sis900_rx(struct net_device *net_dev); 228 static void sis900_finish_xmit (struct net_device *net_dev); 229 static irqreturn_t sis900_interrupt(int irq, void *dev_instance); 230 static int sis900_close(struct net_device *net_dev); 231 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd); 232 static u16 sis900_mcast_bitnr(u8 *addr, u8 revision); 233 static void set_rx_mode(struct net_device *net_dev); 234 static void sis900_reset(struct net_device *net_dev); 235 static void sis630_set_eq(struct net_device *net_dev, u8 revision); 236 static int sis900_set_config(struct net_device *dev, struct ifmap *map); 237 static u16 sis900_default_phy(struct net_device * net_dev); 238 static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy); 239 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr); 240 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr); 241 static void sis900_set_mode(struct sis900_private *, int speed, int duplex); 242 static const struct ethtool_ops sis900_ethtool_ops; 243 244 /** 245 * sis900_get_mac_addr - Get MAC address for stand alone SiS900 model 246 * @pci_dev: the sis900 pci device 247 * @net_dev: the net device to get address for 248 * 249 * Older SiS900 and friends, use EEPROM to store MAC address. 250 * MAC address is read from read_eeprom() into @net_dev->dev_addr. 251 */ 252 253 static int sis900_get_mac_addr(struct pci_dev *pci_dev, 254 struct net_device *net_dev) 255 { 256 struct sis900_private *sis_priv = netdev_priv(net_dev); 257 void __iomem *ioaddr = sis_priv->ioaddr; 258 u16 signature; 259 int i; 260 261 /* check to see if we have sane EEPROM */ 262 signature = (u16) read_eeprom(ioaddr, EEPROMSignature); 263 if (signature == 0xffff || signature == 0x0000) { 264 printk (KERN_WARNING "%s: Error EERPOM read %x\n", 265 pci_name(pci_dev), signature); 266 return 0; 267 } 268 269 /* get MAC address from EEPROM */ 270 for (i = 0; i < 3; i++) 271 ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr); 272 273 return 1; 274 } 275 276 /** 277 * sis630e_get_mac_addr - Get MAC address for SiS630E model 278 * @pci_dev: the sis900 pci device 279 * @net_dev: the net device to get address for 280 * 281 * SiS630E model, use APC CMOS RAM to store MAC address. 282 * APC CMOS RAM is accessed through ISA bridge. 283 * MAC address is read into @net_dev->dev_addr. 284 */ 285 286 static int sis630e_get_mac_addr(struct pci_dev *pci_dev, 287 struct net_device *net_dev) 288 { 289 struct pci_dev *isa_bridge = NULL; 290 u8 reg; 291 int i; 292 293 isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge); 294 if (!isa_bridge) 295 isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge); 296 if (!isa_bridge) { 297 printk(KERN_WARNING "%s: Can not find ISA bridge\n", 298 pci_name(pci_dev)); 299 return 0; 300 } 301 pci_read_config_byte(isa_bridge, 0x48, ®); 302 pci_write_config_byte(isa_bridge, 0x48, reg | 0x40); 303 304 for (i = 0; i < 6; i++) { 305 outb(0x09 + i, 0x70); 306 ((u8 *)(net_dev->dev_addr))[i] = inb(0x71); 307 } 308 309 pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40); 310 pci_dev_put(isa_bridge); 311 312 return 1; 313 } 314 315 316 /** 317 * sis635_get_mac_addr - Get MAC address for SIS635 model 318 * @pci_dev: the sis900 pci device 319 * @net_dev: the net device to get address for 320 * 321 * SiS635 model, set MAC Reload Bit to load Mac address from APC 322 * to rfdr. rfdr is accessed through rfcr. MAC address is read into 323 * @net_dev->dev_addr. 324 */ 325 326 static int sis635_get_mac_addr(struct pci_dev *pci_dev, 327 struct net_device *net_dev) 328 { 329 struct sis900_private *sis_priv = netdev_priv(net_dev); 330 void __iomem *ioaddr = sis_priv->ioaddr; 331 u32 rfcrSave; 332 u32 i; 333 334 rfcrSave = sr32(rfcr); 335 336 sw32(cr, rfcrSave | RELOAD); 337 sw32(cr, 0); 338 339 /* disable packet filtering before setting filter */ 340 sw32(rfcr, rfcrSave & ~RFEN); 341 342 /* load MAC addr to filter data register */ 343 for (i = 0 ; i < 3 ; i++) { 344 sw32(rfcr, (i << RFADDR_shift)); 345 *( ((u16 *)net_dev->dev_addr) + i) = sr16(rfdr); 346 } 347 348 /* enable packet filtering */ 349 sw32(rfcr, rfcrSave | RFEN); 350 351 return 1; 352 } 353 354 /** 355 * sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model 356 * @pci_dev: the sis900 pci device 357 * @net_dev: the net device to get address for 358 * 359 * SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM 360 * is shared by 361 * LAN and 1394. When access EEPROM, send EEREQ signal to hardware first 362 * and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access 363 * by LAN, otherwise is not. After MAC address is read from EEPROM, send 364 * EEDONE signal to refuse EEPROM access by LAN. 365 * The EEPROM map of SiS962 or SiS963 is different to SiS900. 366 * The signature field in SiS962 or SiS963 spec is meaningless. 367 * MAC address is read into @net_dev->dev_addr. 368 */ 369 370 static int sis96x_get_mac_addr(struct pci_dev *pci_dev, 371 struct net_device *net_dev) 372 { 373 struct sis900_private *sis_priv = netdev_priv(net_dev); 374 void __iomem *ioaddr = sis_priv->ioaddr; 375 int wait, rc = 0; 376 377 sw32(mear, EEREQ); 378 for (wait = 0; wait < 2000; wait++) { 379 if (sr32(mear) & EEGNT) { 380 u16 *mac = (u16 *)net_dev->dev_addr; 381 int i; 382 383 /* get MAC address from EEPROM */ 384 for (i = 0; i < 3; i++) 385 mac[i] = read_eeprom(ioaddr, i + EEPROMMACAddr); 386 387 rc = 1; 388 break; 389 } 390 udelay(1); 391 } 392 sw32(mear, EEDONE); 393 return rc; 394 } 395 396 static const struct net_device_ops sis900_netdev_ops = { 397 .ndo_open = sis900_open, 398 .ndo_stop = sis900_close, 399 .ndo_start_xmit = sis900_start_xmit, 400 .ndo_set_config = sis900_set_config, 401 .ndo_set_rx_mode = set_rx_mode, 402 .ndo_change_mtu = eth_change_mtu, 403 .ndo_validate_addr = eth_validate_addr, 404 .ndo_set_mac_address = eth_mac_addr, 405 .ndo_do_ioctl = mii_ioctl, 406 .ndo_tx_timeout = sis900_tx_timeout, 407 #ifdef CONFIG_NET_POLL_CONTROLLER 408 .ndo_poll_controller = sis900_poll, 409 #endif 410 }; 411 412 /** 413 * sis900_probe - Probe for sis900 device 414 * @pci_dev: the sis900 pci device 415 * @pci_id: the pci device ID 416 * 417 * Check and probe sis900 net device for @pci_dev. 418 * Get mac address according to the chip revision, 419 * and assign SiS900-specific entries in the device structure. 420 * ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc. 421 */ 422 423 static int sis900_probe(struct pci_dev *pci_dev, 424 const struct pci_device_id *pci_id) 425 { 426 struct sis900_private *sis_priv; 427 struct net_device *net_dev; 428 struct pci_dev *dev; 429 dma_addr_t ring_dma; 430 void *ring_space; 431 void __iomem *ioaddr; 432 int i, ret; 433 const char *card_name = card_names[pci_id->driver_data]; 434 const char *dev_name = pci_name(pci_dev); 435 436 /* when built into the kernel, we only print version if device is found */ 437 #ifndef MODULE 438 static int printed_version; 439 if (!printed_version++) 440 printk(version); 441 #endif 442 443 /* setup various bits in PCI command register */ 444 ret = pci_enable_device(pci_dev); 445 if(ret) return ret; 446 447 i = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32)); 448 if(i){ 449 printk(KERN_ERR "sis900.c: architecture does not support " 450 "32bit PCI busmaster DMA\n"); 451 return i; 452 } 453 454 pci_set_master(pci_dev); 455 456 net_dev = alloc_etherdev(sizeof(struct sis900_private)); 457 if (!net_dev) 458 return -ENOMEM; 459 SET_NETDEV_DEV(net_dev, &pci_dev->dev); 460 461 /* We do a request_region() to register /proc/ioports info. */ 462 ret = pci_request_regions(pci_dev, "sis900"); 463 if (ret) 464 goto err_out; 465 466 /* IO region. */ 467 ioaddr = pci_iomap(pci_dev, 0, 0); 468 if (!ioaddr) { 469 ret = -ENOMEM; 470 goto err_out_cleardev; 471 } 472 473 sis_priv = netdev_priv(net_dev); 474 sis_priv->ioaddr = ioaddr; 475 sis_priv->pci_dev = pci_dev; 476 spin_lock_init(&sis_priv->lock); 477 478 pci_set_drvdata(pci_dev, net_dev); 479 480 ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma); 481 if (!ring_space) { 482 ret = -ENOMEM; 483 goto err_out_unmap; 484 } 485 sis_priv->tx_ring = ring_space; 486 sis_priv->tx_ring_dma = ring_dma; 487 488 ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma); 489 if (!ring_space) { 490 ret = -ENOMEM; 491 goto err_unmap_tx; 492 } 493 sis_priv->rx_ring = ring_space; 494 sis_priv->rx_ring_dma = ring_dma; 495 496 /* The SiS900-specific entries in the device structure. */ 497 net_dev->netdev_ops = &sis900_netdev_ops; 498 net_dev->watchdog_timeo = TX_TIMEOUT; 499 net_dev->ethtool_ops = &sis900_ethtool_ops; 500 501 if (sis900_debug > 0) 502 sis_priv->msg_enable = sis900_debug; 503 else 504 sis_priv->msg_enable = SIS900_DEF_MSG; 505 506 sis_priv->mii_info.dev = net_dev; 507 sis_priv->mii_info.mdio_read = mdio_read; 508 sis_priv->mii_info.mdio_write = mdio_write; 509 sis_priv->mii_info.phy_id_mask = 0x1f; 510 sis_priv->mii_info.reg_num_mask = 0x1f; 511 512 /* Get Mac address according to the chip revision */ 513 sis_priv->chipset_rev = pci_dev->revision; 514 if(netif_msg_probe(sis_priv)) 515 printk(KERN_DEBUG "%s: detected revision %2.2x, " 516 "trying to get MAC address...\n", 517 dev_name, sis_priv->chipset_rev); 518 519 ret = 0; 520 if (sis_priv->chipset_rev == SIS630E_900_REV) 521 ret = sis630e_get_mac_addr(pci_dev, net_dev); 522 else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) ) 523 ret = sis635_get_mac_addr(pci_dev, net_dev); 524 else if (sis_priv->chipset_rev == SIS96x_900_REV) 525 ret = sis96x_get_mac_addr(pci_dev, net_dev); 526 else 527 ret = sis900_get_mac_addr(pci_dev, net_dev); 528 529 if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) { 530 eth_hw_addr_random(net_dev); 531 printk(KERN_WARNING "%s: Unreadable or invalid MAC address," 532 "using random generated one\n", dev_name); 533 } 534 535 /* 630ET : set the mii access mode as software-mode */ 536 if (sis_priv->chipset_rev == SIS630ET_900_REV) 537 sw32(cr, ACCESSMODE | sr32(cr)); 538 539 /* probe for mii transceiver */ 540 if (sis900_mii_probe(net_dev) == 0) { 541 printk(KERN_WARNING "%s: Error probing MII device.\n", 542 dev_name); 543 ret = -ENODEV; 544 goto err_unmap_rx; 545 } 546 547 /* save our host bridge revision */ 548 dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL); 549 if (dev) { 550 sis_priv->host_bridge_rev = dev->revision; 551 pci_dev_put(dev); 552 } 553 554 ret = register_netdev(net_dev); 555 if (ret) 556 goto err_unmap_rx; 557 558 /* print some information about our NIC */ 559 printk(KERN_INFO "%s: %s at 0x%p, IRQ %d, %pM\n", 560 net_dev->name, card_name, ioaddr, pci_dev->irq, 561 net_dev->dev_addr); 562 563 /* Detect Wake on Lan support */ 564 ret = (sr32(CFGPMC) & PMESP) >> 27; 565 if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0) 566 printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name); 567 568 return 0; 569 570 err_unmap_rx: 571 pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring, 572 sis_priv->rx_ring_dma); 573 err_unmap_tx: 574 pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring, 575 sis_priv->tx_ring_dma); 576 err_out_unmap: 577 pci_iounmap(pci_dev, ioaddr); 578 err_out_cleardev: 579 pci_set_drvdata(pci_dev, NULL); 580 pci_release_regions(pci_dev); 581 err_out: 582 free_netdev(net_dev); 583 return ret; 584 } 585 586 /** 587 * sis900_mii_probe - Probe MII PHY for sis900 588 * @net_dev: the net device to probe for 589 * 590 * Search for total of 32 possible mii phy addresses. 591 * Identify and set current phy if found one, 592 * return error if it failed to found. 593 */ 594 595 static int sis900_mii_probe(struct net_device *net_dev) 596 { 597 struct sis900_private *sis_priv = netdev_priv(net_dev); 598 const char *dev_name = pci_name(sis_priv->pci_dev); 599 u16 poll_bit = MII_STAT_LINK, status = 0; 600 unsigned long timeout = jiffies + 5 * HZ; 601 int phy_addr; 602 603 sis_priv->mii = NULL; 604 605 /* search for total of 32 possible mii phy addresses */ 606 for (phy_addr = 0; phy_addr < 32; phy_addr++) { 607 struct mii_phy * mii_phy = NULL; 608 u16 mii_status; 609 int i; 610 611 mii_phy = NULL; 612 for(i = 0; i < 2; i++) 613 mii_status = mdio_read(net_dev, phy_addr, MII_STATUS); 614 615 if (mii_status == 0xffff || mii_status == 0x0000) { 616 if (netif_msg_probe(sis_priv)) 617 printk(KERN_DEBUG "%s: MII at address %d" 618 " not accessible\n", 619 dev_name, phy_addr); 620 continue; 621 } 622 623 if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) { 624 mii_phy = sis_priv->first_mii; 625 while (mii_phy) { 626 struct mii_phy *phy; 627 phy = mii_phy; 628 mii_phy = mii_phy->next; 629 kfree(phy); 630 } 631 return 0; 632 } 633 634 mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0); 635 mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1); 636 mii_phy->phy_addr = phy_addr; 637 mii_phy->status = mii_status; 638 mii_phy->next = sis_priv->mii; 639 sis_priv->mii = mii_phy; 640 sis_priv->first_mii = mii_phy; 641 642 for (i = 0; mii_chip_table[i].phy_id1; i++) 643 if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) && 644 ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){ 645 mii_phy->phy_types = mii_chip_table[i].phy_types; 646 if (mii_chip_table[i].phy_types == MIX) 647 mii_phy->phy_types = 648 (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME; 649 printk(KERN_INFO "%s: %s transceiver found " 650 "at address %d.\n", 651 dev_name, 652 mii_chip_table[i].name, 653 phy_addr); 654 break; 655 } 656 657 if( !mii_chip_table[i].phy_id1 ) { 658 printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n", 659 dev_name, phy_addr); 660 mii_phy->phy_types = UNKNOWN; 661 } 662 } 663 664 if (sis_priv->mii == NULL) { 665 printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name); 666 return 0; 667 } 668 669 /* select default PHY for mac */ 670 sis_priv->mii = NULL; 671 sis900_default_phy( net_dev ); 672 673 /* Reset phy if default phy is internal sis900 */ 674 if ((sis_priv->mii->phy_id0 == 0x001D) && 675 ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000)) 676 status = sis900_reset_phy(net_dev, sis_priv->cur_phy); 677 678 /* workaround for ICS1893 PHY */ 679 if ((sis_priv->mii->phy_id0 == 0x0015) && 680 ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440)) 681 mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200); 682 683 if(status & MII_STAT_LINK){ 684 while (poll_bit) { 685 yield(); 686 687 poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit); 688 if (time_after_eq(jiffies, timeout)) { 689 printk(KERN_WARNING "%s: reset phy and link down now\n", 690 dev_name); 691 return -ETIME; 692 } 693 } 694 } 695 696 if (sis_priv->chipset_rev == SIS630E_900_REV) { 697 /* SiS 630E has some bugs on default value of PHY registers */ 698 mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1); 699 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22); 700 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00); 701 mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0); 702 //mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000); 703 } 704 705 if (sis_priv->mii->status & MII_STAT_LINK) 706 netif_carrier_on(net_dev); 707 else 708 netif_carrier_off(net_dev); 709 710 return 1; 711 } 712 713 /** 714 * sis900_default_phy - Select default PHY for sis900 mac. 715 * @net_dev: the net device to probe for 716 * 717 * Select first detected PHY with link as default. 718 * If no one is link on, select PHY whose types is HOME as default. 719 * If HOME doesn't exist, select LAN. 720 */ 721 722 static u16 sis900_default_phy(struct net_device * net_dev) 723 { 724 struct sis900_private *sis_priv = netdev_priv(net_dev); 725 struct mii_phy *phy = NULL, *phy_home = NULL, 726 *default_phy = NULL, *phy_lan = NULL; 727 u16 status; 728 729 for (phy=sis_priv->first_mii; phy; phy=phy->next) { 730 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS); 731 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS); 732 733 /* Link ON & Not select default PHY & not ghost PHY */ 734 if ((status & MII_STAT_LINK) && !default_phy && 735 (phy->phy_types != UNKNOWN)) 736 default_phy = phy; 737 else { 738 status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL); 739 mdio_write(net_dev, phy->phy_addr, MII_CONTROL, 740 status | MII_CNTL_AUTO | MII_CNTL_ISOLATE); 741 if (phy->phy_types == HOME) 742 phy_home = phy; 743 else if(phy->phy_types == LAN) 744 phy_lan = phy; 745 } 746 } 747 748 if (!default_phy && phy_home) 749 default_phy = phy_home; 750 else if (!default_phy && phy_lan) 751 default_phy = phy_lan; 752 else if (!default_phy) 753 default_phy = sis_priv->first_mii; 754 755 if (sis_priv->mii != default_phy) { 756 sis_priv->mii = default_phy; 757 sis_priv->cur_phy = default_phy->phy_addr; 758 printk(KERN_INFO "%s: Using transceiver found at address %d as default\n", 759 pci_name(sis_priv->pci_dev), sis_priv->cur_phy); 760 } 761 762 sis_priv->mii_info.phy_id = sis_priv->cur_phy; 763 764 status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL); 765 status &= (~MII_CNTL_ISOLATE); 766 767 mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status); 768 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS); 769 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS); 770 771 return status; 772 } 773 774 775 /** 776 * sis900_set_capability - set the media capability of network adapter. 777 * @net_dev : the net device to probe for 778 * @phy : default PHY 779 * 780 * Set the media capability of network adapter according to 781 * mii status register. It's necessary before auto-negotiate. 782 */ 783 784 static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy) 785 { 786 u16 cap; 787 u16 status; 788 789 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS); 790 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS); 791 792 cap = MII_NWAY_CSMA_CD | 793 ((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) | 794 ((phy->status & MII_STAT_CAN_TX) ? MII_NWAY_TX:0) | 795 ((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)| 796 ((phy->status & MII_STAT_CAN_T) ? MII_NWAY_T:0); 797 798 mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap); 799 } 800 801 802 /* Delay between EEPROM clock transitions. */ 803 #define eeprom_delay() sr32(mear) 804 805 /** 806 * read_eeprom - Read Serial EEPROM 807 * @ioaddr: base i/o address 808 * @location: the EEPROM location to read 809 * 810 * Read Serial EEPROM through EEPROM Access Register. 811 * Note that location is in word (16 bits) unit 812 */ 813 814 static u16 read_eeprom(void __iomem *ioaddr, int location) 815 { 816 u32 read_cmd = location | EEread; 817 int i; 818 u16 retval = 0; 819 820 sw32(mear, 0); 821 eeprom_delay(); 822 sw32(mear, EECS); 823 eeprom_delay(); 824 825 /* Shift the read command (9) bits out. */ 826 for (i = 8; i >= 0; i--) { 827 u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS; 828 829 sw32(mear, dataval); 830 eeprom_delay(); 831 sw32(mear, dataval | EECLK); 832 eeprom_delay(); 833 } 834 sw32(mear, EECS); 835 eeprom_delay(); 836 837 /* read the 16-bits data in */ 838 for (i = 16; i > 0; i--) { 839 sw32(mear, EECS); 840 eeprom_delay(); 841 sw32(mear, EECS | EECLK); 842 eeprom_delay(); 843 retval = (retval << 1) | ((sr32(mear) & EEDO) ? 1 : 0); 844 eeprom_delay(); 845 } 846 847 /* Terminate the EEPROM access. */ 848 sw32(mear, 0); 849 eeprom_delay(); 850 851 return retval; 852 } 853 854 /* Read and write the MII management registers using software-generated 855 serial MDIO protocol. Note that the command bits and data bits are 856 send out separately */ 857 #define mdio_delay() sr32(mear) 858 859 static void mdio_idle(struct sis900_private *sp) 860 { 861 void __iomem *ioaddr = sp->ioaddr; 862 863 sw32(mear, MDIO | MDDIR); 864 mdio_delay(); 865 sw32(mear, MDIO | MDDIR | MDC); 866 } 867 868 /* Synchronize the MII management interface by shifting 32 one bits out. */ 869 static void mdio_reset(struct sis900_private *sp) 870 { 871 void __iomem *ioaddr = sp->ioaddr; 872 int i; 873 874 for (i = 31; i >= 0; i--) { 875 sw32(mear, MDDIR | MDIO); 876 mdio_delay(); 877 sw32(mear, MDDIR | MDIO | MDC); 878 mdio_delay(); 879 } 880 } 881 882 /** 883 * mdio_read - read MII PHY register 884 * @net_dev: the net device to read 885 * @phy_id: the phy address to read 886 * @location: the phy regiester id to read 887 * 888 * Read MII registers through MDIO and MDC 889 * using MDIO management frame structure and protocol(defined by ISO/IEC). 890 * Please see SiS7014 or ICS spec 891 */ 892 893 static int mdio_read(struct net_device *net_dev, int phy_id, int location) 894 { 895 int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift); 896 struct sis900_private *sp = netdev_priv(net_dev); 897 void __iomem *ioaddr = sp->ioaddr; 898 u16 retval = 0; 899 int i; 900 901 mdio_reset(sp); 902 mdio_idle(sp); 903 904 for (i = 15; i >= 0; i--) { 905 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR; 906 907 sw32(mear, dataval); 908 mdio_delay(); 909 sw32(mear, dataval | MDC); 910 mdio_delay(); 911 } 912 913 /* Read the 16 data bits. */ 914 for (i = 16; i > 0; i--) { 915 sw32(mear, 0); 916 mdio_delay(); 917 retval = (retval << 1) | ((sr32(mear) & MDIO) ? 1 : 0); 918 sw32(mear, MDC); 919 mdio_delay(); 920 } 921 sw32(mear, 0x00); 922 923 return retval; 924 } 925 926 /** 927 * mdio_write - write MII PHY register 928 * @net_dev: the net device to write 929 * @phy_id: the phy address to write 930 * @location: the phy regiester id to write 931 * @value: the register value to write with 932 * 933 * Write MII registers with @value through MDIO and MDC 934 * using MDIO management frame structure and protocol(defined by ISO/IEC) 935 * please see SiS7014 or ICS spec 936 */ 937 938 static void mdio_write(struct net_device *net_dev, int phy_id, int location, 939 int value) 940 { 941 int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift); 942 struct sis900_private *sp = netdev_priv(net_dev); 943 void __iomem *ioaddr = sp->ioaddr; 944 int i; 945 946 mdio_reset(sp); 947 mdio_idle(sp); 948 949 /* Shift the command bits out. */ 950 for (i = 15; i >= 0; i--) { 951 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR; 952 953 sw8(mear, dataval); 954 mdio_delay(); 955 sw8(mear, dataval | MDC); 956 mdio_delay(); 957 } 958 mdio_delay(); 959 960 /* Shift the value bits out. */ 961 for (i = 15; i >= 0; i--) { 962 int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR; 963 964 sw32(mear, dataval); 965 mdio_delay(); 966 sw32(mear, dataval | MDC); 967 mdio_delay(); 968 } 969 mdio_delay(); 970 971 /* Clear out extra bits. */ 972 for (i = 2; i > 0; i--) { 973 sw8(mear, 0); 974 mdio_delay(); 975 sw8(mear, MDC); 976 mdio_delay(); 977 } 978 sw32(mear, 0x00); 979 } 980 981 982 /** 983 * sis900_reset_phy - reset sis900 mii phy. 984 * @net_dev: the net device to write 985 * @phy_addr: default phy address 986 * 987 * Some specific phy can't work properly without reset. 988 * This function will be called during initialization and 989 * link status change from ON to DOWN. 990 */ 991 992 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr) 993 { 994 int i; 995 u16 status; 996 997 for (i = 0; i < 2; i++) 998 status = mdio_read(net_dev, phy_addr, MII_STATUS); 999 1000 mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET ); 1001 1002 return status; 1003 } 1004 1005 #ifdef CONFIG_NET_POLL_CONTROLLER 1006 /* 1007 * Polling 'interrupt' - used by things like netconsole to send skbs 1008 * without having to re-enable interrupts. It's not called while 1009 * the interrupt routine is executing. 1010 */ 1011 static void sis900_poll(struct net_device *dev) 1012 { 1013 struct sis900_private *sp = netdev_priv(dev); 1014 const int irq = sp->pci_dev->irq; 1015 1016 disable_irq(irq); 1017 sis900_interrupt(irq, dev); 1018 enable_irq(irq); 1019 } 1020 #endif 1021 1022 /** 1023 * sis900_open - open sis900 device 1024 * @net_dev: the net device to open 1025 * 1026 * Do some initialization and start net interface. 1027 * enable interrupts and set sis900 timer. 1028 */ 1029 1030 static int 1031 sis900_open(struct net_device *net_dev) 1032 { 1033 struct sis900_private *sis_priv = netdev_priv(net_dev); 1034 void __iomem *ioaddr = sis_priv->ioaddr; 1035 int ret; 1036 1037 /* Soft reset the chip. */ 1038 sis900_reset(net_dev); 1039 1040 /* Equalizer workaround Rule */ 1041 sis630_set_eq(net_dev, sis_priv->chipset_rev); 1042 1043 ret = request_irq(sis_priv->pci_dev->irq, sis900_interrupt, IRQF_SHARED, 1044 net_dev->name, net_dev); 1045 if (ret) 1046 return ret; 1047 1048 sis900_init_rxfilter(net_dev); 1049 1050 sis900_init_tx_ring(net_dev); 1051 sis900_init_rx_ring(net_dev); 1052 1053 set_rx_mode(net_dev); 1054 1055 netif_start_queue(net_dev); 1056 1057 /* Workaround for EDB */ 1058 sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED); 1059 1060 /* Enable all known interrupts by setting the interrupt mask. */ 1061 sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE); 1062 sw32(cr, RxENA | sr32(cr)); 1063 sw32(ier, IE); 1064 1065 sis900_check_mode(net_dev, sis_priv->mii); 1066 1067 /* Set the timer to switch to check for link beat and perhaps switch 1068 to an alternate media type. */ 1069 init_timer(&sis_priv->timer); 1070 sis_priv->timer.expires = jiffies + HZ; 1071 sis_priv->timer.data = (unsigned long)net_dev; 1072 sis_priv->timer.function = sis900_timer; 1073 add_timer(&sis_priv->timer); 1074 1075 return 0; 1076 } 1077 1078 /** 1079 * sis900_init_rxfilter - Initialize the Rx filter 1080 * @net_dev: the net device to initialize for 1081 * 1082 * Set receive filter address to our MAC address 1083 * and enable packet filtering. 1084 */ 1085 1086 static void 1087 sis900_init_rxfilter (struct net_device * net_dev) 1088 { 1089 struct sis900_private *sis_priv = netdev_priv(net_dev); 1090 void __iomem *ioaddr = sis_priv->ioaddr; 1091 u32 rfcrSave; 1092 u32 i; 1093 1094 rfcrSave = sr32(rfcr); 1095 1096 /* disable packet filtering before setting filter */ 1097 sw32(rfcr, rfcrSave & ~RFEN); 1098 1099 /* load MAC addr to filter data register */ 1100 for (i = 0 ; i < 3 ; i++) { 1101 u32 w = (u32) *((u16 *)(net_dev->dev_addr)+i); 1102 1103 sw32(rfcr, i << RFADDR_shift); 1104 sw32(rfdr, w); 1105 1106 if (netif_msg_hw(sis_priv)) { 1107 printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n", 1108 net_dev->name, i, sr32(rfdr)); 1109 } 1110 } 1111 1112 /* enable packet filtering */ 1113 sw32(rfcr, rfcrSave | RFEN); 1114 } 1115 1116 /** 1117 * sis900_init_tx_ring - Initialize the Tx descriptor ring 1118 * @net_dev: the net device to initialize for 1119 * 1120 * Initialize the Tx descriptor ring, 1121 */ 1122 1123 static void 1124 sis900_init_tx_ring(struct net_device *net_dev) 1125 { 1126 struct sis900_private *sis_priv = netdev_priv(net_dev); 1127 void __iomem *ioaddr = sis_priv->ioaddr; 1128 int i; 1129 1130 sis_priv->tx_full = 0; 1131 sis_priv->dirty_tx = sis_priv->cur_tx = 0; 1132 1133 for (i = 0; i < NUM_TX_DESC; i++) { 1134 sis_priv->tx_skbuff[i] = NULL; 1135 1136 sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma + 1137 ((i+1)%NUM_TX_DESC)*sizeof(BufferDesc); 1138 sis_priv->tx_ring[i].cmdsts = 0; 1139 sis_priv->tx_ring[i].bufptr = 0; 1140 } 1141 1142 /* load Transmit Descriptor Register */ 1143 sw32(txdp, sis_priv->tx_ring_dma); 1144 if (netif_msg_hw(sis_priv)) 1145 printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n", 1146 net_dev->name, sr32(txdp)); 1147 } 1148 1149 /** 1150 * sis900_init_rx_ring - Initialize the Rx descriptor ring 1151 * @net_dev: the net device to initialize for 1152 * 1153 * Initialize the Rx descriptor ring, 1154 * and pre-allocate recevie buffers (socket buffer) 1155 */ 1156 1157 static void 1158 sis900_init_rx_ring(struct net_device *net_dev) 1159 { 1160 struct sis900_private *sis_priv = netdev_priv(net_dev); 1161 void __iomem *ioaddr = sis_priv->ioaddr; 1162 int i; 1163 1164 sis_priv->cur_rx = 0; 1165 sis_priv->dirty_rx = 0; 1166 1167 /* init RX descriptor */ 1168 for (i = 0; i < NUM_RX_DESC; i++) { 1169 sis_priv->rx_skbuff[i] = NULL; 1170 1171 sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma + 1172 ((i+1)%NUM_RX_DESC)*sizeof(BufferDesc); 1173 sis_priv->rx_ring[i].cmdsts = 0; 1174 sis_priv->rx_ring[i].bufptr = 0; 1175 } 1176 1177 /* allocate sock buffers */ 1178 for (i = 0; i < NUM_RX_DESC; i++) { 1179 struct sk_buff *skb; 1180 1181 if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) { 1182 /* not enough memory for skbuff, this makes a "hole" 1183 on the buffer ring, it is not clear how the 1184 hardware will react to this kind of degenerated 1185 buffer */ 1186 break; 1187 } 1188 sis_priv->rx_skbuff[i] = skb; 1189 sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE; 1190 sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev, 1191 skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 1192 if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev, 1193 sis_priv->rx_ring[i].bufptr))) { 1194 dev_kfree_skb(skb); 1195 sis_priv->rx_skbuff[i] = NULL; 1196 break; 1197 } 1198 } 1199 sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC); 1200 1201 /* load Receive Descriptor Register */ 1202 sw32(rxdp, sis_priv->rx_ring_dma); 1203 if (netif_msg_hw(sis_priv)) 1204 printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n", 1205 net_dev->name, sr32(rxdp)); 1206 } 1207 1208 /** 1209 * sis630_set_eq - set phy equalizer value for 630 LAN 1210 * @net_dev: the net device to set equalizer value 1211 * @revision: 630 LAN revision number 1212 * 1213 * 630E equalizer workaround rule(Cyrus Huang 08/15) 1214 * PHY register 14h(Test) 1215 * Bit 14: 0 -- Automatically detect (default) 1216 * 1 -- Manually set Equalizer filter 1217 * Bit 13: 0 -- (Default) 1218 * 1 -- Speed up convergence of equalizer setting 1219 * Bit 9 : 0 -- (Default) 1220 * 1 -- Disable Baseline Wander 1221 * Bit 3~7 -- Equalizer filter setting 1222 * Link ON: Set Bit 9, 13 to 1, Bit 14 to 0 1223 * Then calculate equalizer value 1224 * Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0 1225 * Link Off:Set Bit 13 to 1, Bit 14 to 0 1226 * Calculate Equalizer value: 1227 * When Link is ON and Bit 14 is 0, SIS900PHY will auto-detect proper equalizer value. 1228 * When the equalizer is stable, this value is not a fixed value. It will be within 1229 * a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9) 1230 * 0 <= max <= 4 --> set equalizer to max 1231 * 5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min 1232 * max >= 15 --> set equalizer to max+5 or set equalizer to max+6 if max == min 1233 */ 1234 1235 static void sis630_set_eq(struct net_device *net_dev, u8 revision) 1236 { 1237 struct sis900_private *sis_priv = netdev_priv(net_dev); 1238 u16 reg14h, eq_value=0, max_value=0, min_value=0; 1239 int i, maxcount=10; 1240 1241 if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV || 1242 revision == SIS630A_900_REV || revision == SIS630ET_900_REV) ) 1243 return; 1244 1245 if (netif_carrier_ok(net_dev)) { 1246 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV); 1247 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, 1248 (0x2200 | reg14h) & 0xBFFF); 1249 for (i=0; i < maxcount; i++) { 1250 eq_value = (0x00F8 & mdio_read(net_dev, 1251 sis_priv->cur_phy, MII_RESV)) >> 3; 1252 if (i == 0) 1253 max_value=min_value=eq_value; 1254 max_value = (eq_value > max_value) ? 1255 eq_value : max_value; 1256 min_value = (eq_value < min_value) ? 1257 eq_value : min_value; 1258 } 1259 /* 630E rule to determine the equalizer value */ 1260 if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV || 1261 revision == SIS630ET_900_REV) { 1262 if (max_value < 5) 1263 eq_value = max_value; 1264 else if (max_value >= 5 && max_value < 15) 1265 eq_value = (max_value == min_value) ? 1266 max_value+2 : max_value+1; 1267 else if (max_value >= 15) 1268 eq_value=(max_value == min_value) ? 1269 max_value+6 : max_value+5; 1270 } 1271 /* 630B0&B1 rule to determine the equalizer value */ 1272 if (revision == SIS630A_900_REV && 1273 (sis_priv->host_bridge_rev == SIS630B0 || 1274 sis_priv->host_bridge_rev == SIS630B1)) { 1275 if (max_value == 0) 1276 eq_value = 3; 1277 else 1278 eq_value = (max_value + min_value + 1)/2; 1279 } 1280 /* write equalizer value and setting */ 1281 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV); 1282 reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8); 1283 reg14h = (reg14h | 0x6000) & 0xFDFF; 1284 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h); 1285 } else { 1286 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV); 1287 if (revision == SIS630A_900_REV && 1288 (sis_priv->host_bridge_rev == SIS630B0 || 1289 sis_priv->host_bridge_rev == SIS630B1)) 1290 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, 1291 (reg14h | 0x2200) & 0xBFFF); 1292 else 1293 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, 1294 (reg14h | 0x2000) & 0xBFFF); 1295 } 1296 } 1297 1298 /** 1299 * sis900_timer - sis900 timer routine 1300 * @data: pointer to sis900 net device 1301 * 1302 * On each timer ticks we check two things, 1303 * link status (ON/OFF) and link mode (10/100/Full/Half) 1304 */ 1305 1306 static void sis900_timer(unsigned long data) 1307 { 1308 struct net_device *net_dev = (struct net_device *)data; 1309 struct sis900_private *sis_priv = netdev_priv(net_dev); 1310 struct mii_phy *mii_phy = sis_priv->mii; 1311 static const int next_tick = 5*HZ; 1312 int speed = 0, duplex = 0; 1313 u16 status; 1314 1315 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS); 1316 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS); 1317 1318 /* Link OFF -> ON */ 1319 if (!netif_carrier_ok(net_dev)) { 1320 LookForLink: 1321 /* Search for new PHY */ 1322 status = sis900_default_phy(net_dev); 1323 mii_phy = sis_priv->mii; 1324 1325 if (status & MII_STAT_LINK) { 1326 WARN_ON(!(status & MII_STAT_AUTO_DONE)); 1327 1328 sis900_read_mode(net_dev, &speed, &duplex); 1329 if (duplex) { 1330 sis900_set_mode(sis_priv, speed, duplex); 1331 sis630_set_eq(net_dev, sis_priv->chipset_rev); 1332 netif_carrier_on(net_dev); 1333 } 1334 } 1335 } else { 1336 /* Link ON -> OFF */ 1337 if (!(status & MII_STAT_LINK)){ 1338 netif_carrier_off(net_dev); 1339 if(netif_msg_link(sis_priv)) 1340 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name); 1341 1342 /* Change mode issue */ 1343 if ((mii_phy->phy_id0 == 0x001D) && 1344 ((mii_phy->phy_id1 & 0xFFF0) == 0x8000)) 1345 sis900_reset_phy(net_dev, sis_priv->cur_phy); 1346 1347 sis630_set_eq(net_dev, sis_priv->chipset_rev); 1348 1349 goto LookForLink; 1350 } 1351 } 1352 1353 sis_priv->timer.expires = jiffies + next_tick; 1354 add_timer(&sis_priv->timer); 1355 } 1356 1357 /** 1358 * sis900_check_mode - check the media mode for sis900 1359 * @net_dev: the net device to be checked 1360 * @mii_phy: the mii phy 1361 * 1362 * Older driver gets the media mode from mii status output 1363 * register. Now we set our media capability and auto-negotiate 1364 * to get the upper bound of speed and duplex between two ends. 1365 * If the types of mii phy is HOME, it doesn't need to auto-negotiate 1366 * and autong_complete should be set to 1. 1367 */ 1368 1369 static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy) 1370 { 1371 struct sis900_private *sis_priv = netdev_priv(net_dev); 1372 void __iomem *ioaddr = sis_priv->ioaddr; 1373 int speed, duplex; 1374 1375 if (mii_phy->phy_types == LAN) { 1376 sw32(cfg, ~EXD & sr32(cfg)); 1377 sis900_set_capability(net_dev , mii_phy); 1378 sis900_auto_negotiate(net_dev, sis_priv->cur_phy); 1379 } else { 1380 sw32(cfg, EXD | sr32(cfg)); 1381 speed = HW_SPEED_HOME; 1382 duplex = FDX_CAPABLE_HALF_SELECTED; 1383 sis900_set_mode(sis_priv, speed, duplex); 1384 sis_priv->autong_complete = 1; 1385 } 1386 } 1387 1388 /** 1389 * sis900_set_mode - Set the media mode of mac register. 1390 * @sp: the device private data 1391 * @speed : the transmit speed to be determined 1392 * @duplex: the duplex mode to be determined 1393 * 1394 * Set the media mode of mac register txcfg/rxcfg according to 1395 * speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB 1396 * bus is used instead of PCI bus. When this bit is set 1, the 1397 * Max DMA Burst Size for TX/RX DMA should be no larger than 16 1398 * double words. 1399 */ 1400 1401 static void sis900_set_mode(struct sis900_private *sp, int speed, int duplex) 1402 { 1403 void __iomem *ioaddr = sp->ioaddr; 1404 u32 tx_flags = 0, rx_flags = 0; 1405 1406 if (sr32( cfg) & EDB_MASTER_EN) { 1407 tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) | 1408 (TX_FILL_THRESH << TxFILLT_shift); 1409 rx_flags = DMA_BURST_64 << RxMXDMA_shift; 1410 } else { 1411 tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) | 1412 (TX_FILL_THRESH << TxFILLT_shift); 1413 rx_flags = DMA_BURST_512 << RxMXDMA_shift; 1414 } 1415 1416 if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) { 1417 rx_flags |= (RxDRNT_10 << RxDRNT_shift); 1418 tx_flags |= (TxDRNT_10 << TxDRNT_shift); 1419 } else { 1420 rx_flags |= (RxDRNT_100 << RxDRNT_shift); 1421 tx_flags |= (TxDRNT_100 << TxDRNT_shift); 1422 } 1423 1424 if (duplex == FDX_CAPABLE_FULL_SELECTED) { 1425 tx_flags |= (TxCSI | TxHBI); 1426 rx_flags |= RxATX; 1427 } 1428 1429 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) 1430 /* Can accept Jumbo packet */ 1431 rx_flags |= RxAJAB; 1432 #endif 1433 1434 sw32(txcfg, tx_flags); 1435 sw32(rxcfg, rx_flags); 1436 } 1437 1438 /** 1439 * sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit. 1440 * @net_dev: the net device to read mode for 1441 * @phy_addr: mii phy address 1442 * 1443 * If the adapter is link-on, set the auto-negotiate enable/reset bit. 1444 * autong_complete should be set to 0 when starting auto-negotiation. 1445 * autong_complete should be set to 1 if we didn't start auto-negotiation. 1446 * sis900_timer will wait for link on again if autong_complete = 0. 1447 */ 1448 1449 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr) 1450 { 1451 struct sis900_private *sis_priv = netdev_priv(net_dev); 1452 int i = 0; 1453 u32 status; 1454 1455 for (i = 0; i < 2; i++) 1456 status = mdio_read(net_dev, phy_addr, MII_STATUS); 1457 1458 if (!(status & MII_STAT_LINK)){ 1459 if(netif_msg_link(sis_priv)) 1460 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name); 1461 sis_priv->autong_complete = 1; 1462 netif_carrier_off(net_dev); 1463 return; 1464 } 1465 1466 /* (Re)start AutoNegotiate */ 1467 mdio_write(net_dev, phy_addr, MII_CONTROL, 1468 MII_CNTL_AUTO | MII_CNTL_RST_AUTO); 1469 sis_priv->autong_complete = 0; 1470 } 1471 1472 1473 /** 1474 * sis900_read_mode - read media mode for sis900 internal phy 1475 * @net_dev: the net device to read mode for 1476 * @speed : the transmit speed to be determined 1477 * @duplex : the duplex mode to be determined 1478 * 1479 * The capability of remote end will be put in mii register autorec 1480 * after auto-negotiation. Use AND operation to get the upper bound 1481 * of speed and duplex between two ends. 1482 */ 1483 1484 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex) 1485 { 1486 struct sis900_private *sis_priv = netdev_priv(net_dev); 1487 struct mii_phy *phy = sis_priv->mii; 1488 int phy_addr = sis_priv->cur_phy; 1489 u32 status; 1490 u16 autoadv, autorec; 1491 int i; 1492 1493 for (i = 0; i < 2; i++) 1494 status = mdio_read(net_dev, phy_addr, MII_STATUS); 1495 1496 if (!(status & MII_STAT_LINK)) 1497 return; 1498 1499 /* AutoNegotiate completed */ 1500 autoadv = mdio_read(net_dev, phy_addr, MII_ANADV); 1501 autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR); 1502 status = autoadv & autorec; 1503 1504 *speed = HW_SPEED_10_MBPS; 1505 *duplex = FDX_CAPABLE_HALF_SELECTED; 1506 1507 if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX)) 1508 *speed = HW_SPEED_100_MBPS; 1509 if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX)) 1510 *duplex = FDX_CAPABLE_FULL_SELECTED; 1511 1512 sis_priv->autong_complete = 1; 1513 1514 /* Workaround for Realtek RTL8201 PHY issue */ 1515 if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) { 1516 if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX) 1517 *duplex = FDX_CAPABLE_FULL_SELECTED; 1518 if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01) 1519 *speed = HW_SPEED_100_MBPS; 1520 } 1521 1522 if(netif_msg_link(sis_priv)) 1523 printk(KERN_INFO "%s: Media Link On %s %s-duplex\n", 1524 net_dev->name, 1525 *speed == HW_SPEED_100_MBPS ? 1526 "100mbps" : "10mbps", 1527 *duplex == FDX_CAPABLE_FULL_SELECTED ? 1528 "full" : "half"); 1529 } 1530 1531 /** 1532 * sis900_tx_timeout - sis900 transmit timeout routine 1533 * @net_dev: the net device to transmit 1534 * 1535 * print transmit timeout status 1536 * disable interrupts and do some tasks 1537 */ 1538 1539 static void sis900_tx_timeout(struct net_device *net_dev) 1540 { 1541 struct sis900_private *sis_priv = netdev_priv(net_dev); 1542 void __iomem *ioaddr = sis_priv->ioaddr; 1543 unsigned long flags; 1544 int i; 1545 1546 if (netif_msg_tx_err(sis_priv)) { 1547 printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n", 1548 net_dev->name, sr32(cr), sr32(isr)); 1549 } 1550 1551 /* Disable interrupts by clearing the interrupt mask. */ 1552 sw32(imr, 0x0000); 1553 1554 /* use spinlock to prevent interrupt handler accessing buffer ring */ 1555 spin_lock_irqsave(&sis_priv->lock, flags); 1556 1557 /* discard unsent packets */ 1558 sis_priv->dirty_tx = sis_priv->cur_tx = 0; 1559 for (i = 0; i < NUM_TX_DESC; i++) { 1560 struct sk_buff *skb = sis_priv->tx_skbuff[i]; 1561 1562 if (skb) { 1563 pci_unmap_single(sis_priv->pci_dev, 1564 sis_priv->tx_ring[i].bufptr, skb->len, 1565 PCI_DMA_TODEVICE); 1566 dev_kfree_skb_irq(skb); 1567 sis_priv->tx_skbuff[i] = NULL; 1568 sis_priv->tx_ring[i].cmdsts = 0; 1569 sis_priv->tx_ring[i].bufptr = 0; 1570 net_dev->stats.tx_dropped++; 1571 } 1572 } 1573 sis_priv->tx_full = 0; 1574 netif_wake_queue(net_dev); 1575 1576 spin_unlock_irqrestore(&sis_priv->lock, flags); 1577 1578 net_dev->trans_start = jiffies; /* prevent tx timeout */ 1579 1580 /* load Transmit Descriptor Register */ 1581 sw32(txdp, sis_priv->tx_ring_dma); 1582 1583 /* Enable all known interrupts by setting the interrupt mask. */ 1584 sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE); 1585 } 1586 1587 /** 1588 * sis900_start_xmit - sis900 start transmit routine 1589 * @skb: socket buffer pointer to put the data being transmitted 1590 * @net_dev: the net device to transmit with 1591 * 1592 * Set the transmit buffer descriptor, 1593 * and write TxENA to enable transmit state machine. 1594 * tell upper layer if the buffer is full 1595 */ 1596 1597 static netdev_tx_t 1598 sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev) 1599 { 1600 struct sis900_private *sis_priv = netdev_priv(net_dev); 1601 void __iomem *ioaddr = sis_priv->ioaddr; 1602 unsigned int entry; 1603 unsigned long flags; 1604 unsigned int index_cur_tx, index_dirty_tx; 1605 unsigned int count_dirty_tx; 1606 1607 spin_lock_irqsave(&sis_priv->lock, flags); 1608 1609 /* Calculate the next Tx descriptor entry. */ 1610 entry = sis_priv->cur_tx % NUM_TX_DESC; 1611 sis_priv->tx_skbuff[entry] = skb; 1612 1613 /* set the transmit buffer descriptor and enable Transmit State Machine */ 1614 sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev, 1615 skb->data, skb->len, PCI_DMA_TODEVICE); 1616 if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev, 1617 sis_priv->tx_ring[entry].bufptr))) { 1618 dev_kfree_skb(skb); 1619 sis_priv->tx_skbuff[entry] = NULL; 1620 net_dev->stats.tx_dropped++; 1621 spin_unlock_irqrestore(&sis_priv->lock, flags); 1622 return NETDEV_TX_OK; 1623 } 1624 sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len); 1625 sw32(cr, TxENA | sr32(cr)); 1626 1627 sis_priv->cur_tx ++; 1628 index_cur_tx = sis_priv->cur_tx; 1629 index_dirty_tx = sis_priv->dirty_tx; 1630 1631 for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++) 1632 count_dirty_tx ++; 1633 1634 if (index_cur_tx == index_dirty_tx) { 1635 /* dirty_tx is met in the cycle of cur_tx, buffer full */ 1636 sis_priv->tx_full = 1; 1637 netif_stop_queue(net_dev); 1638 } else if (count_dirty_tx < NUM_TX_DESC) { 1639 /* Typical path, tell upper layer that more transmission is possible */ 1640 netif_start_queue(net_dev); 1641 } else { 1642 /* buffer full, tell upper layer no more transmission */ 1643 sis_priv->tx_full = 1; 1644 netif_stop_queue(net_dev); 1645 } 1646 1647 spin_unlock_irqrestore(&sis_priv->lock, flags); 1648 1649 if (netif_msg_tx_queued(sis_priv)) 1650 printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d " 1651 "to slot %d.\n", 1652 net_dev->name, skb->data, (int)skb->len, entry); 1653 1654 return NETDEV_TX_OK; 1655 } 1656 1657 /** 1658 * sis900_interrupt - sis900 interrupt handler 1659 * @irq: the irq number 1660 * @dev_instance: the client data object 1661 * 1662 * The interrupt handler does all of the Rx thread work, 1663 * and cleans up after the Tx thread 1664 */ 1665 1666 static irqreturn_t sis900_interrupt(int irq, void *dev_instance) 1667 { 1668 struct net_device *net_dev = dev_instance; 1669 struct sis900_private *sis_priv = netdev_priv(net_dev); 1670 int boguscnt = max_interrupt_work; 1671 void __iomem *ioaddr = sis_priv->ioaddr; 1672 u32 status; 1673 unsigned int handled = 0; 1674 1675 spin_lock (&sis_priv->lock); 1676 1677 do { 1678 status = sr32(isr); 1679 1680 if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0) 1681 /* nothing intresting happened */ 1682 break; 1683 handled = 1; 1684 1685 /* why dow't we break after Tx/Rx case ?? keyword: full-duplex */ 1686 if (status & (RxORN | RxERR | RxOK)) 1687 /* Rx interrupt */ 1688 sis900_rx(net_dev); 1689 1690 if (status & (TxURN | TxERR | TxIDLE)) 1691 /* Tx interrupt */ 1692 sis900_finish_xmit(net_dev); 1693 1694 /* something strange happened !!! */ 1695 if (status & HIBERR) { 1696 if(netif_msg_intr(sis_priv)) 1697 printk(KERN_INFO "%s: Abnormal interrupt, " 1698 "status %#8.8x.\n", net_dev->name, status); 1699 break; 1700 } 1701 if (--boguscnt < 0) { 1702 if(netif_msg_intr(sis_priv)) 1703 printk(KERN_INFO "%s: Too much work at interrupt, " 1704 "interrupt status = %#8.8x.\n", 1705 net_dev->name, status); 1706 break; 1707 } 1708 } while (1); 1709 1710 if(netif_msg_intr(sis_priv)) 1711 printk(KERN_DEBUG "%s: exiting interrupt, " 1712 "interrupt status = %#8.8x\n", 1713 net_dev->name, sr32(isr)); 1714 1715 spin_unlock (&sis_priv->lock); 1716 return IRQ_RETVAL(handled); 1717 } 1718 1719 /** 1720 * sis900_rx - sis900 receive routine 1721 * @net_dev: the net device which receives data 1722 * 1723 * Process receive interrupt events, 1724 * put buffer to higher layer and refill buffer pool 1725 * Note: This function is called by interrupt handler, 1726 * don't do "too much" work here 1727 */ 1728 1729 static int sis900_rx(struct net_device *net_dev) 1730 { 1731 struct sis900_private *sis_priv = netdev_priv(net_dev); 1732 void __iomem *ioaddr = sis_priv->ioaddr; 1733 unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC; 1734 u32 rx_status = sis_priv->rx_ring[entry].cmdsts; 1735 int rx_work_limit; 1736 1737 if (netif_msg_rx_status(sis_priv)) 1738 printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d " 1739 "status:0x%8.8x\n", 1740 sis_priv->cur_rx, sis_priv->dirty_rx, rx_status); 1741 rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx; 1742 1743 while (rx_status & OWN) { 1744 unsigned int rx_size; 1745 unsigned int data_size; 1746 1747 if (--rx_work_limit < 0) 1748 break; 1749 1750 data_size = rx_status & DSIZE; 1751 rx_size = data_size - CRC_SIZE; 1752 1753 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) 1754 /* ``TOOLONG'' flag means jumbo packet received. */ 1755 if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE) 1756 rx_status &= (~ ((unsigned int)TOOLONG)); 1757 #endif 1758 1759 if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) { 1760 /* corrupted packet received */ 1761 if (netif_msg_rx_err(sis_priv)) 1762 printk(KERN_DEBUG "%s: Corrupted packet " 1763 "received, buffer status = 0x%8.8x/%d.\n", 1764 net_dev->name, rx_status, data_size); 1765 net_dev->stats.rx_errors++; 1766 if (rx_status & OVERRUN) 1767 net_dev->stats.rx_over_errors++; 1768 if (rx_status & (TOOLONG|RUNT)) 1769 net_dev->stats.rx_length_errors++; 1770 if (rx_status & (RXISERR | FAERR)) 1771 net_dev->stats.rx_frame_errors++; 1772 if (rx_status & CRCERR) 1773 net_dev->stats.rx_crc_errors++; 1774 /* reset buffer descriptor state */ 1775 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE; 1776 } else { 1777 struct sk_buff * skb; 1778 struct sk_buff * rx_skb; 1779 1780 pci_unmap_single(sis_priv->pci_dev, 1781 sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE, 1782 PCI_DMA_FROMDEVICE); 1783 1784 /* refill the Rx buffer, what if there is not enough 1785 * memory for new socket buffer ?? */ 1786 if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) { 1787 /* 1788 * Not enough memory to refill the buffer 1789 * so we need to recycle the old one so 1790 * as to avoid creating a memory hole 1791 * in the rx ring 1792 */ 1793 skb = sis_priv->rx_skbuff[entry]; 1794 net_dev->stats.rx_dropped++; 1795 goto refill_rx_ring; 1796 } 1797 1798 /* This situation should never happen, but due to 1799 some unknown bugs, it is possible that 1800 we are working on NULL sk_buff :-( */ 1801 if (sis_priv->rx_skbuff[entry] == NULL) { 1802 if (netif_msg_rx_err(sis_priv)) 1803 printk(KERN_WARNING "%s: NULL pointer " 1804 "encountered in Rx ring\n" 1805 "cur_rx:%4.4d, dirty_rx:%4.4d\n", 1806 net_dev->name, sis_priv->cur_rx, 1807 sis_priv->dirty_rx); 1808 dev_kfree_skb(skb); 1809 break; 1810 } 1811 1812 /* give the socket buffer to upper layers */ 1813 rx_skb = sis_priv->rx_skbuff[entry]; 1814 skb_put(rx_skb, rx_size); 1815 rx_skb->protocol = eth_type_trans(rx_skb, net_dev); 1816 netif_rx(rx_skb); 1817 1818 /* some network statistics */ 1819 if ((rx_status & BCAST) == MCAST) 1820 net_dev->stats.multicast++; 1821 net_dev->stats.rx_bytes += rx_size; 1822 net_dev->stats.rx_packets++; 1823 sis_priv->dirty_rx++; 1824 refill_rx_ring: 1825 sis_priv->rx_skbuff[entry] = skb; 1826 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE; 1827 sis_priv->rx_ring[entry].bufptr = 1828 pci_map_single(sis_priv->pci_dev, skb->data, 1829 RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 1830 if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev, 1831 sis_priv->rx_ring[entry].bufptr))) { 1832 dev_kfree_skb_irq(skb); 1833 sis_priv->rx_skbuff[entry] = NULL; 1834 break; 1835 } 1836 } 1837 sis_priv->cur_rx++; 1838 entry = sis_priv->cur_rx % NUM_RX_DESC; 1839 rx_status = sis_priv->rx_ring[entry].cmdsts; 1840 } // while 1841 1842 /* refill the Rx buffer, what if the rate of refilling is slower 1843 * than consuming ?? */ 1844 for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) { 1845 struct sk_buff *skb; 1846 1847 entry = sis_priv->dirty_rx % NUM_RX_DESC; 1848 1849 if (sis_priv->rx_skbuff[entry] == NULL) { 1850 skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE); 1851 if (skb == NULL) { 1852 /* not enough memory for skbuff, this makes a 1853 * "hole" on the buffer ring, it is not clear 1854 * how the hardware will react to this kind 1855 * of degenerated buffer */ 1856 net_dev->stats.rx_dropped++; 1857 break; 1858 } 1859 sis_priv->rx_skbuff[entry] = skb; 1860 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE; 1861 sis_priv->rx_ring[entry].bufptr = 1862 pci_map_single(sis_priv->pci_dev, skb->data, 1863 RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 1864 if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev, 1865 sis_priv->rx_ring[entry].bufptr))) { 1866 dev_kfree_skb_irq(skb); 1867 sis_priv->rx_skbuff[entry] = NULL; 1868 break; 1869 } 1870 } 1871 } 1872 /* re-enable the potentially idle receive state matchine */ 1873 sw32(cr , RxENA | sr32(cr)); 1874 1875 return 0; 1876 } 1877 1878 /** 1879 * sis900_finish_xmit - finish up transmission of packets 1880 * @net_dev: the net device to be transmitted on 1881 * 1882 * Check for error condition and free socket buffer etc 1883 * schedule for more transmission as needed 1884 * Note: This function is called by interrupt handler, 1885 * don't do "too much" work here 1886 */ 1887 1888 static void sis900_finish_xmit (struct net_device *net_dev) 1889 { 1890 struct sis900_private *sis_priv = netdev_priv(net_dev); 1891 1892 for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) { 1893 struct sk_buff *skb; 1894 unsigned int entry; 1895 u32 tx_status; 1896 1897 entry = sis_priv->dirty_tx % NUM_TX_DESC; 1898 tx_status = sis_priv->tx_ring[entry].cmdsts; 1899 1900 if (tx_status & OWN) { 1901 /* The packet is not transmitted yet (owned by hardware) ! 1902 * Note: the interrupt is generated only when Tx Machine 1903 * is idle, so this is an almost impossible case */ 1904 break; 1905 } 1906 1907 if (tx_status & (ABORT | UNDERRUN | OWCOLL)) { 1908 /* packet unsuccessfully transmitted */ 1909 if (netif_msg_tx_err(sis_priv)) 1910 printk(KERN_DEBUG "%s: Transmit " 1911 "error, Tx status %8.8x.\n", 1912 net_dev->name, tx_status); 1913 net_dev->stats.tx_errors++; 1914 if (tx_status & UNDERRUN) 1915 net_dev->stats.tx_fifo_errors++; 1916 if (tx_status & ABORT) 1917 net_dev->stats.tx_aborted_errors++; 1918 if (tx_status & NOCARRIER) 1919 net_dev->stats.tx_carrier_errors++; 1920 if (tx_status & OWCOLL) 1921 net_dev->stats.tx_window_errors++; 1922 } else { 1923 /* packet successfully transmitted */ 1924 net_dev->stats.collisions += (tx_status & COLCNT) >> 16; 1925 net_dev->stats.tx_bytes += tx_status & DSIZE; 1926 net_dev->stats.tx_packets++; 1927 } 1928 /* Free the original skb. */ 1929 skb = sis_priv->tx_skbuff[entry]; 1930 pci_unmap_single(sis_priv->pci_dev, 1931 sis_priv->tx_ring[entry].bufptr, skb->len, 1932 PCI_DMA_TODEVICE); 1933 dev_kfree_skb_irq(skb); 1934 sis_priv->tx_skbuff[entry] = NULL; 1935 sis_priv->tx_ring[entry].bufptr = 0; 1936 sis_priv->tx_ring[entry].cmdsts = 0; 1937 } 1938 1939 if (sis_priv->tx_full && netif_queue_stopped(net_dev) && 1940 sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) { 1941 /* The ring is no longer full, clear tx_full and schedule 1942 * more transmission by netif_wake_queue(net_dev) */ 1943 sis_priv->tx_full = 0; 1944 netif_wake_queue (net_dev); 1945 } 1946 } 1947 1948 /** 1949 * sis900_close - close sis900 device 1950 * @net_dev: the net device to be closed 1951 * 1952 * Disable interrupts, stop the Tx and Rx Status Machine 1953 * free Tx and RX socket buffer 1954 */ 1955 1956 static int sis900_close(struct net_device *net_dev) 1957 { 1958 struct sis900_private *sis_priv = netdev_priv(net_dev); 1959 struct pci_dev *pdev = sis_priv->pci_dev; 1960 void __iomem *ioaddr = sis_priv->ioaddr; 1961 struct sk_buff *skb; 1962 int i; 1963 1964 netif_stop_queue(net_dev); 1965 1966 /* Disable interrupts by clearing the interrupt mask. */ 1967 sw32(imr, 0x0000); 1968 sw32(ier, 0x0000); 1969 1970 /* Stop the chip's Tx and Rx Status Machine */ 1971 sw32(cr, RxDIS | TxDIS | sr32(cr)); 1972 1973 del_timer(&sis_priv->timer); 1974 1975 free_irq(pdev->irq, net_dev); 1976 1977 /* Free Tx and RX skbuff */ 1978 for (i = 0; i < NUM_RX_DESC; i++) { 1979 skb = sis_priv->rx_skbuff[i]; 1980 if (skb) { 1981 pci_unmap_single(pdev, sis_priv->rx_ring[i].bufptr, 1982 RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 1983 dev_kfree_skb(skb); 1984 sis_priv->rx_skbuff[i] = NULL; 1985 } 1986 } 1987 for (i = 0; i < NUM_TX_DESC; i++) { 1988 skb = sis_priv->tx_skbuff[i]; 1989 if (skb) { 1990 pci_unmap_single(pdev, sis_priv->tx_ring[i].bufptr, 1991 skb->len, PCI_DMA_TODEVICE); 1992 dev_kfree_skb(skb); 1993 sis_priv->tx_skbuff[i] = NULL; 1994 } 1995 } 1996 1997 /* Green! Put the chip in low-power mode. */ 1998 1999 return 0; 2000 } 2001 2002 /** 2003 * sis900_get_drvinfo - Return information about driver 2004 * @net_dev: the net device to probe 2005 * @info: container for info returned 2006 * 2007 * Process ethtool command such as "ehtool -i" to show information 2008 */ 2009 2010 static void sis900_get_drvinfo(struct net_device *net_dev, 2011 struct ethtool_drvinfo *info) 2012 { 2013 struct sis900_private *sis_priv = netdev_priv(net_dev); 2014 2015 strlcpy(info->driver, SIS900_MODULE_NAME, sizeof(info->driver)); 2016 strlcpy(info->version, SIS900_DRV_VERSION, sizeof(info->version)); 2017 strlcpy(info->bus_info, pci_name(sis_priv->pci_dev), 2018 sizeof(info->bus_info)); 2019 } 2020 2021 static u32 sis900_get_msglevel(struct net_device *net_dev) 2022 { 2023 struct sis900_private *sis_priv = netdev_priv(net_dev); 2024 return sis_priv->msg_enable; 2025 } 2026 2027 static void sis900_set_msglevel(struct net_device *net_dev, u32 value) 2028 { 2029 struct sis900_private *sis_priv = netdev_priv(net_dev); 2030 sis_priv->msg_enable = value; 2031 } 2032 2033 static u32 sis900_get_link(struct net_device *net_dev) 2034 { 2035 struct sis900_private *sis_priv = netdev_priv(net_dev); 2036 return mii_link_ok(&sis_priv->mii_info); 2037 } 2038 2039 static int sis900_get_settings(struct net_device *net_dev, 2040 struct ethtool_cmd *cmd) 2041 { 2042 struct sis900_private *sis_priv = netdev_priv(net_dev); 2043 spin_lock_irq(&sis_priv->lock); 2044 mii_ethtool_gset(&sis_priv->mii_info, cmd); 2045 spin_unlock_irq(&sis_priv->lock); 2046 return 0; 2047 } 2048 2049 static int sis900_set_settings(struct net_device *net_dev, 2050 struct ethtool_cmd *cmd) 2051 { 2052 struct sis900_private *sis_priv = netdev_priv(net_dev); 2053 int rt; 2054 spin_lock_irq(&sis_priv->lock); 2055 rt = mii_ethtool_sset(&sis_priv->mii_info, cmd); 2056 spin_unlock_irq(&sis_priv->lock); 2057 return rt; 2058 } 2059 2060 static int sis900_nway_reset(struct net_device *net_dev) 2061 { 2062 struct sis900_private *sis_priv = netdev_priv(net_dev); 2063 return mii_nway_restart(&sis_priv->mii_info); 2064 } 2065 2066 /** 2067 * sis900_set_wol - Set up Wake on Lan registers 2068 * @net_dev: the net device to probe 2069 * @wol: container for info passed to the driver 2070 * 2071 * Process ethtool command "wol" to setup wake on lan features. 2072 * SiS900 supports sending WoL events if a correct packet is received, 2073 * but there is no simple way to filter them to only a subset (broadcast, 2074 * multicast, unicast or arp). 2075 */ 2076 2077 static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol) 2078 { 2079 struct sis900_private *sis_priv = netdev_priv(net_dev); 2080 void __iomem *ioaddr = sis_priv->ioaddr; 2081 u32 cfgpmcsr = 0, pmctrl_bits = 0; 2082 2083 if (wol->wolopts == 0) { 2084 pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr); 2085 cfgpmcsr &= ~PME_EN; 2086 pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr); 2087 sw32(pmctrl, pmctrl_bits); 2088 if (netif_msg_wol(sis_priv)) 2089 printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name); 2090 return 0; 2091 } 2092 2093 if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST 2094 | WAKE_BCAST | WAKE_ARP)) 2095 return -EINVAL; 2096 2097 if (wol->wolopts & WAKE_MAGIC) 2098 pmctrl_bits |= MAGICPKT; 2099 if (wol->wolopts & WAKE_PHY) 2100 pmctrl_bits |= LINKON; 2101 2102 sw32(pmctrl, pmctrl_bits); 2103 2104 pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr); 2105 cfgpmcsr |= PME_EN; 2106 pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr); 2107 if (netif_msg_wol(sis_priv)) 2108 printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name); 2109 2110 return 0; 2111 } 2112 2113 static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol) 2114 { 2115 struct sis900_private *sp = netdev_priv(net_dev); 2116 void __iomem *ioaddr = sp->ioaddr; 2117 u32 pmctrl_bits; 2118 2119 pmctrl_bits = sr32(pmctrl); 2120 if (pmctrl_bits & MAGICPKT) 2121 wol->wolopts |= WAKE_MAGIC; 2122 if (pmctrl_bits & LINKON) 2123 wol->wolopts |= WAKE_PHY; 2124 2125 wol->supported = (WAKE_PHY | WAKE_MAGIC); 2126 } 2127 2128 static const struct ethtool_ops sis900_ethtool_ops = { 2129 .get_drvinfo = sis900_get_drvinfo, 2130 .get_msglevel = sis900_get_msglevel, 2131 .set_msglevel = sis900_set_msglevel, 2132 .get_link = sis900_get_link, 2133 .get_settings = sis900_get_settings, 2134 .set_settings = sis900_set_settings, 2135 .nway_reset = sis900_nway_reset, 2136 .get_wol = sis900_get_wol, 2137 .set_wol = sis900_set_wol 2138 }; 2139 2140 /** 2141 * mii_ioctl - process MII i/o control command 2142 * @net_dev: the net device to command for 2143 * @rq: parameter for command 2144 * @cmd: the i/o command 2145 * 2146 * Process MII command like read/write MII register 2147 */ 2148 2149 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd) 2150 { 2151 struct sis900_private *sis_priv = netdev_priv(net_dev); 2152 struct mii_ioctl_data *data = if_mii(rq); 2153 2154 switch(cmd) { 2155 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 2156 data->phy_id = sis_priv->mii->phy_addr; 2157 /* Fall Through */ 2158 2159 case SIOCGMIIREG: /* Read MII PHY register. */ 2160 data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f); 2161 return 0; 2162 2163 case SIOCSMIIREG: /* Write MII PHY register. */ 2164 mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in); 2165 return 0; 2166 default: 2167 return -EOPNOTSUPP; 2168 } 2169 } 2170 2171 /** 2172 * sis900_set_config - Set media type by net_device.set_config 2173 * @dev: the net device for media type change 2174 * @map: ifmap passed by ifconfig 2175 * 2176 * Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig 2177 * we support only port changes. All other runtime configuration 2178 * changes will be ignored 2179 */ 2180 2181 static int sis900_set_config(struct net_device *dev, struct ifmap *map) 2182 { 2183 struct sis900_private *sis_priv = netdev_priv(dev); 2184 struct mii_phy *mii_phy = sis_priv->mii; 2185 2186 u16 status; 2187 2188 if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) { 2189 /* we switch on the ifmap->port field. I couldn't find anything 2190 * like a definition or standard for the values of that field. 2191 * I think the meaning of those values is device specific. But 2192 * since I would like to change the media type via the ifconfig 2193 * command I use the definition from linux/netdevice.h 2194 * (which seems to be different from the ifport(pcmcia) definition) */ 2195 switch(map->port){ 2196 case IF_PORT_UNKNOWN: /* use auto here */ 2197 dev->if_port = map->port; 2198 /* we are going to change the media type, so the Link 2199 * will be temporary down and we need to reflect that 2200 * here. When the Link comes up again, it will be 2201 * sensed by the sis_timer procedure, which also does 2202 * all the rest for us */ 2203 netif_carrier_off(dev); 2204 2205 /* read current state */ 2206 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL); 2207 2208 /* enable auto negotiation and reset the negotioation 2209 * (I don't really know what the auto negatiotiation 2210 * reset really means, but it sounds for me right to 2211 * do one here) */ 2212 mdio_write(dev, mii_phy->phy_addr, 2213 MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO); 2214 2215 break; 2216 2217 case IF_PORT_10BASET: /* 10BaseT */ 2218 dev->if_port = map->port; 2219 2220 /* we are going to change the media type, so the Link 2221 * will be temporary down and we need to reflect that 2222 * here. When the Link comes up again, it will be 2223 * sensed by the sis_timer procedure, which also does 2224 * all the rest for us */ 2225 netif_carrier_off(dev); 2226 2227 /* set Speed to 10Mbps */ 2228 /* read current state */ 2229 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL); 2230 2231 /* disable auto negotiation and force 10MBit mode*/ 2232 mdio_write(dev, mii_phy->phy_addr, 2233 MII_CONTROL, status & ~(MII_CNTL_SPEED | 2234 MII_CNTL_AUTO)); 2235 break; 2236 2237 case IF_PORT_100BASET: /* 100BaseT */ 2238 case IF_PORT_100BASETX: /* 100BaseTx */ 2239 dev->if_port = map->port; 2240 2241 /* we are going to change the media type, so the Link 2242 * will be temporary down and we need to reflect that 2243 * here. When the Link comes up again, it will be 2244 * sensed by the sis_timer procedure, which also does 2245 * all the rest for us */ 2246 netif_carrier_off(dev); 2247 2248 /* set Speed to 100Mbps */ 2249 /* disable auto negotiation and enable 100MBit Mode */ 2250 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL); 2251 mdio_write(dev, mii_phy->phy_addr, 2252 MII_CONTROL, (status & ~MII_CNTL_SPEED) | 2253 MII_CNTL_SPEED); 2254 2255 break; 2256 2257 case IF_PORT_10BASE2: /* 10Base2 */ 2258 case IF_PORT_AUI: /* AUI */ 2259 case IF_PORT_100BASEFX: /* 100BaseFx */ 2260 /* These Modes are not supported (are they?)*/ 2261 return -EOPNOTSUPP; 2262 break; 2263 2264 default: 2265 return -EINVAL; 2266 } 2267 } 2268 return 0; 2269 } 2270 2271 /** 2272 * sis900_mcast_bitnr - compute hashtable index 2273 * @addr: multicast address 2274 * @revision: revision id of chip 2275 * 2276 * SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast 2277 * hash table, which makes this function a little bit different from other drivers 2278 * SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits 2279 * multicast hash table. 2280 */ 2281 2282 static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision) 2283 { 2284 2285 u32 crc = ether_crc(6, addr); 2286 2287 /* leave 8 or 7 most siginifant bits */ 2288 if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV)) 2289 return (int)(crc >> 24); 2290 else 2291 return (int)(crc >> 25); 2292 } 2293 2294 /** 2295 * set_rx_mode - Set SiS900 receive mode 2296 * @net_dev: the net device to be set 2297 * 2298 * Set SiS900 receive mode for promiscuous, multicast, or broadcast mode. 2299 * And set the appropriate multicast filter. 2300 * Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0. 2301 */ 2302 2303 static void set_rx_mode(struct net_device *net_dev) 2304 { 2305 struct sis900_private *sis_priv = netdev_priv(net_dev); 2306 void __iomem *ioaddr = sis_priv->ioaddr; 2307 u16 mc_filter[16] = {0}; /* 256/128 bits multicast hash table */ 2308 int i, table_entries; 2309 u32 rx_mode; 2310 2311 /* 635 Hash Table entries = 256(2^16) */ 2312 if((sis_priv->chipset_rev >= SIS635A_900_REV) || 2313 (sis_priv->chipset_rev == SIS900B_900_REV)) 2314 table_entries = 16; 2315 else 2316 table_entries = 8; 2317 2318 if (net_dev->flags & IFF_PROMISC) { 2319 /* Accept any kinds of packets */ 2320 rx_mode = RFPromiscuous; 2321 for (i = 0; i < table_entries; i++) 2322 mc_filter[i] = 0xffff; 2323 } else if ((netdev_mc_count(net_dev) > multicast_filter_limit) || 2324 (net_dev->flags & IFF_ALLMULTI)) { 2325 /* too many multicast addresses or accept all multicast packet */ 2326 rx_mode = RFAAB | RFAAM; 2327 for (i = 0; i < table_entries; i++) 2328 mc_filter[i] = 0xffff; 2329 } else { 2330 /* Accept Broadcast packet, destination address matchs our 2331 * MAC address, use Receive Filter to reject unwanted MCAST 2332 * packets */ 2333 struct netdev_hw_addr *ha; 2334 rx_mode = RFAAB; 2335 2336 netdev_for_each_mc_addr(ha, net_dev) { 2337 unsigned int bit_nr; 2338 2339 bit_nr = sis900_mcast_bitnr(ha->addr, 2340 sis_priv->chipset_rev); 2341 mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf)); 2342 } 2343 } 2344 2345 /* update Multicast Hash Table in Receive Filter */ 2346 for (i = 0; i < table_entries; i++) { 2347 /* why plus 0x04 ??, That makes the correct value for hash table. */ 2348 sw32(rfcr, (u32)(0x00000004 + i) << RFADDR_shift); 2349 sw32(rfdr, mc_filter[i]); 2350 } 2351 2352 sw32(rfcr, RFEN | rx_mode); 2353 2354 /* sis900 is capable of looping back packets at MAC level for 2355 * debugging purpose */ 2356 if (net_dev->flags & IFF_LOOPBACK) { 2357 u32 cr_saved; 2358 /* We must disable Tx/Rx before setting loopback mode */ 2359 cr_saved = sr32(cr); 2360 sw32(cr, cr_saved | TxDIS | RxDIS); 2361 /* enable loopback */ 2362 sw32(txcfg, sr32(txcfg) | TxMLB); 2363 sw32(rxcfg, sr32(rxcfg) | RxATX); 2364 /* restore cr */ 2365 sw32(cr, cr_saved); 2366 } 2367 } 2368 2369 /** 2370 * sis900_reset - Reset sis900 MAC 2371 * @net_dev: the net device to reset 2372 * 2373 * reset sis900 MAC and wait until finished 2374 * reset through command register 2375 * change backoff algorithm for 900B0 & 635 M/B 2376 */ 2377 2378 static void sis900_reset(struct net_device *net_dev) 2379 { 2380 struct sis900_private *sis_priv = netdev_priv(net_dev); 2381 void __iomem *ioaddr = sis_priv->ioaddr; 2382 u32 status = TxRCMP | RxRCMP; 2383 int i; 2384 2385 sw32(ier, 0); 2386 sw32(imr, 0); 2387 sw32(rfcr, 0); 2388 2389 sw32(cr, RxRESET | TxRESET | RESET | sr32(cr)); 2390 2391 /* Check that the chip has finished the reset. */ 2392 for (i = 0; status && (i < 1000); i++) 2393 status ^= sr32(isr) & status; 2394 2395 if (sis_priv->chipset_rev >= SIS635A_900_REV || 2396 sis_priv->chipset_rev == SIS900B_900_REV) 2397 sw32(cfg, PESEL | RND_CNT); 2398 else 2399 sw32(cfg, PESEL); 2400 } 2401 2402 /** 2403 * sis900_remove - Remove sis900 device 2404 * @pci_dev: the pci device to be removed 2405 * 2406 * remove and release SiS900 net device 2407 */ 2408 2409 static void sis900_remove(struct pci_dev *pci_dev) 2410 { 2411 struct net_device *net_dev = pci_get_drvdata(pci_dev); 2412 struct sis900_private *sis_priv = netdev_priv(net_dev); 2413 2414 unregister_netdev(net_dev); 2415 2416 while (sis_priv->first_mii) { 2417 struct mii_phy *phy = sis_priv->first_mii; 2418 2419 sis_priv->first_mii = phy->next; 2420 kfree(phy); 2421 } 2422 2423 pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring, 2424 sis_priv->rx_ring_dma); 2425 pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring, 2426 sis_priv->tx_ring_dma); 2427 pci_iounmap(pci_dev, sis_priv->ioaddr); 2428 free_netdev(net_dev); 2429 pci_release_regions(pci_dev); 2430 pci_set_drvdata(pci_dev, NULL); 2431 } 2432 2433 #ifdef CONFIG_PM 2434 2435 static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state) 2436 { 2437 struct net_device *net_dev = pci_get_drvdata(pci_dev); 2438 struct sis900_private *sis_priv = netdev_priv(net_dev); 2439 void __iomem *ioaddr = sis_priv->ioaddr; 2440 2441 if(!netif_running(net_dev)) 2442 return 0; 2443 2444 netif_stop_queue(net_dev); 2445 netif_device_detach(net_dev); 2446 2447 /* Stop the chip's Tx and Rx Status Machine */ 2448 sw32(cr, RxDIS | TxDIS | sr32(cr)); 2449 2450 pci_set_power_state(pci_dev, PCI_D3hot); 2451 pci_save_state(pci_dev); 2452 2453 return 0; 2454 } 2455 2456 static int sis900_resume(struct pci_dev *pci_dev) 2457 { 2458 struct net_device *net_dev = pci_get_drvdata(pci_dev); 2459 struct sis900_private *sis_priv = netdev_priv(net_dev); 2460 void __iomem *ioaddr = sis_priv->ioaddr; 2461 2462 if(!netif_running(net_dev)) 2463 return 0; 2464 pci_restore_state(pci_dev); 2465 pci_set_power_state(pci_dev, PCI_D0); 2466 2467 sis900_init_rxfilter(net_dev); 2468 2469 sis900_init_tx_ring(net_dev); 2470 sis900_init_rx_ring(net_dev); 2471 2472 set_rx_mode(net_dev); 2473 2474 netif_device_attach(net_dev); 2475 netif_start_queue(net_dev); 2476 2477 /* Workaround for EDB */ 2478 sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED); 2479 2480 /* Enable all known interrupts by setting the interrupt mask. */ 2481 sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE); 2482 sw32(cr, RxENA | sr32(cr)); 2483 sw32(ier, IE); 2484 2485 sis900_check_mode(net_dev, sis_priv->mii); 2486 2487 return 0; 2488 } 2489 #endif /* CONFIG_PM */ 2490 2491 static struct pci_driver sis900_pci_driver = { 2492 .name = SIS900_MODULE_NAME, 2493 .id_table = sis900_pci_tbl, 2494 .probe = sis900_probe, 2495 .remove = sis900_remove, 2496 #ifdef CONFIG_PM 2497 .suspend = sis900_suspend, 2498 .resume = sis900_resume, 2499 #endif /* CONFIG_PM */ 2500 }; 2501 2502 static int __init sis900_init_module(void) 2503 { 2504 /* when a module, this is printed whether or not devices are found in probe */ 2505 #ifdef MODULE 2506 printk(version); 2507 #endif 2508 2509 return pci_register_driver(&sis900_pci_driver); 2510 } 2511 2512 static void __exit sis900_cleanup_module(void) 2513 { 2514 pci_unregister_driver(&sis900_pci_driver); 2515 } 2516 2517 module_init(sis900_init_module); 2518 module_exit(sis900_cleanup_module); 2519 2520