xref: /openbmc/linux/drivers/net/ethernet/sis/sis900.c (revision 9d749629)
1 /* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
2    Copyright 1999 Silicon Integrated System Corporation
3    Revision:	1.08.10 Apr. 2 2006
4 
5    Modified from the driver which is originally written by Donald Becker.
6 
7    This software may be used and distributed according to the terms
8    of the GNU General Public License (GPL), incorporated herein by reference.
9    Drivers based on this skeleton fall under the GPL and must retain
10    the authorship (implicit copyright) notice.
11 
12    References:
13    SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
14    preliminary Rev. 1.0 Jan. 14, 1998
15    SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
16    preliminary Rev. 1.0 Nov. 10, 1998
17    SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
18    preliminary Rev. 1.0 Jan. 18, 1998
19 
20    Rev 1.08.10 Apr.  2 2006 Daniele Venzano add vlan (jumbo packets) support
21    Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
22    Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
23    Rev 1.08.07 Nov.  2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
24    Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
25    Rev 1.08.05 Jun.  6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
26    Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
27    Rev 1.08.03 Feb.  1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
28    Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
29    Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
30    Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
31    Rev 1.07.11 Apr.  2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
32    Rev 1.07.10 Mar.  1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
33    Rev 1.07.09 Feb.  9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
34    Rev 1.07.08 Jan.  8 2001 Lei-Chun Chang added RTL8201 PHY support
35    Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
36    Rev 1.07.06 Nov.  7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
37    Rev 1.07.05 Nov.  6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
38    Rev 1.07.04 Sep.  6 2000 Lei-Chun Chang added ICS1893 PHY support
39    Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E equalizer workaround rule
40    Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
41    Rev 1.07    Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
42    Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
43    Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
44    Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
45    Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
46    Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
47    Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
48    Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
49    Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
50 */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/kernel.h>
55 #include <linux/sched.h>
56 #include <linux/string.h>
57 #include <linux/timer.h>
58 #include <linux/errno.h>
59 #include <linux/ioport.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/pci.h>
63 #include <linux/netdevice.h>
64 #include <linux/init.h>
65 #include <linux/mii.h>
66 #include <linux/etherdevice.h>
67 #include <linux/skbuff.h>
68 #include <linux/delay.h>
69 #include <linux/ethtool.h>
70 #include <linux/crc32.h>
71 #include <linux/bitops.h>
72 #include <linux/dma-mapping.h>
73 
74 #include <asm/processor.h>      /* Processor type for cache alignment. */
75 #include <asm/io.h>
76 #include <asm/irq.h>
77 #include <asm/uaccess.h>	/* User space memory access functions */
78 
79 #include "sis900.h"
80 
81 #define SIS900_MODULE_NAME "sis900"
82 #define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
83 
84 static const char version[] =
85 	KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
86 
87 static int max_interrupt_work = 40;
88 static int multicast_filter_limit = 128;
89 
90 static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
91 
92 #define SIS900_DEF_MSG \
93 	(NETIF_MSG_DRV		| \
94 	 NETIF_MSG_LINK		| \
95 	 NETIF_MSG_RX_ERR	| \
96 	 NETIF_MSG_TX_ERR)
97 
98 /* Time in jiffies before concluding the transmitter is hung. */
99 #define TX_TIMEOUT  (4*HZ)
100 
101 enum {
102 	SIS_900 = 0,
103 	SIS_7016
104 };
105 static const char * card_names[] = {
106 	"SiS 900 PCI Fast Ethernet",
107 	"SiS 7016 PCI Fast Ethernet"
108 };
109 static DEFINE_PCI_DEVICE_TABLE(sis900_pci_tbl) = {
110 	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
111 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
112 	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
113 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
114 	{0,}
115 };
116 MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
117 
118 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
119 
120 static const struct mii_chip_info {
121 	const char * name;
122 	u16 phy_id0;
123 	u16 phy_id1;
124 	u8  phy_types;
125 #define	HOME 	0x0001
126 #define LAN	0x0002
127 #define MIX	0x0003
128 #define UNKNOWN	0x0
129 } mii_chip_table[] = {
130 	{ "SiS 900 Internal MII PHY", 		0x001d, 0x8000, LAN },
131 	{ "SiS 7014 Physical Layer Solution", 	0x0016, 0xf830, LAN },
132 	{ "SiS 900 on Foxconn 661 7MI",         0x0143, 0xBC70, LAN },
133 	{ "Altimata AC101LF PHY",               0x0022, 0x5520, LAN },
134 	{ "ADM 7001 LAN PHY",			0x002e, 0xcc60, LAN },
135 	{ "AMD 79C901 10BASE-T PHY",  		0x0000, 0x6B70, LAN },
136 	{ "AMD 79C901 HomePNA PHY",		0x0000, 0x6B90, HOME},
137 	{ "ICS LAN PHY",			0x0015, 0xF440, LAN },
138 	{ "ICS LAN PHY",			0x0143, 0xBC70, LAN },
139 	{ "NS 83851 PHY",			0x2000, 0x5C20, MIX },
140 	{ "NS 83847 PHY",                       0x2000, 0x5C30, MIX },
141 	{ "Realtek RTL8201 PHY",		0x0000, 0x8200, LAN },
142 	{ "VIA 6103 PHY",			0x0101, 0x8f20, LAN },
143 	{NULL,},
144 };
145 
146 struct mii_phy {
147 	struct mii_phy * next;
148 	int phy_addr;
149 	u16 phy_id0;
150 	u16 phy_id1;
151 	u16 status;
152 	u8  phy_types;
153 };
154 
155 typedef struct _BufferDesc {
156 	u32 link;
157 	u32 cmdsts;
158 	u32 bufptr;
159 } BufferDesc;
160 
161 struct sis900_private {
162 	struct pci_dev * pci_dev;
163 
164 	spinlock_t lock;
165 
166 	struct mii_phy * mii;
167 	struct mii_phy * first_mii; /* record the first mii structure */
168 	unsigned int cur_phy;
169 	struct mii_if_info mii_info;
170 
171 	void __iomem	*ioaddr;
172 
173 	struct timer_list timer; /* Link status detection timer. */
174 	u8 autong_complete; /* 1: auto-negotiate complete  */
175 
176 	u32 msg_enable;
177 
178 	unsigned int cur_rx, dirty_rx; /* producer/comsumer pointers for Tx/Rx ring */
179 	unsigned int cur_tx, dirty_tx;
180 
181 	/* The saved address of a sent/receive-in-place packet buffer */
182 	struct sk_buff *tx_skbuff[NUM_TX_DESC];
183 	struct sk_buff *rx_skbuff[NUM_RX_DESC];
184 	BufferDesc *tx_ring;
185 	BufferDesc *rx_ring;
186 
187 	dma_addr_t tx_ring_dma;
188 	dma_addr_t rx_ring_dma;
189 
190 	unsigned int tx_full; /* The Tx queue is full. */
191 	u8 host_bridge_rev;
192 	u8 chipset_rev;
193 };
194 
195 MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
196 MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
197 MODULE_LICENSE("GPL");
198 
199 module_param(multicast_filter_limit, int, 0444);
200 module_param(max_interrupt_work, int, 0444);
201 module_param(sis900_debug, int, 0444);
202 MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
203 MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
204 MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
205 
206 #define sw32(reg, val)	iowrite32(val, ioaddr + (reg))
207 #define sw8(reg, val)	iowrite8(val, ioaddr + (reg))
208 #define sr32(reg)	ioread32(ioaddr + (reg))
209 #define sr16(reg)	ioread16(ioaddr + (reg))
210 
211 #ifdef CONFIG_NET_POLL_CONTROLLER
212 static void sis900_poll(struct net_device *dev);
213 #endif
214 static int sis900_open(struct net_device *net_dev);
215 static int sis900_mii_probe (struct net_device * net_dev);
216 static void sis900_init_rxfilter (struct net_device * net_dev);
217 static u16 read_eeprom(void __iomem *ioaddr, int location);
218 static int mdio_read(struct net_device *net_dev, int phy_id, int location);
219 static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
220 static void sis900_timer(unsigned long data);
221 static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
222 static void sis900_tx_timeout(struct net_device *net_dev);
223 static void sis900_init_tx_ring(struct net_device *net_dev);
224 static void sis900_init_rx_ring(struct net_device *net_dev);
225 static netdev_tx_t sis900_start_xmit(struct sk_buff *skb,
226 				     struct net_device *net_dev);
227 static int sis900_rx(struct net_device *net_dev);
228 static void sis900_finish_xmit (struct net_device *net_dev);
229 static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
230 static int sis900_close(struct net_device *net_dev);
231 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
232 static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
233 static void set_rx_mode(struct net_device *net_dev);
234 static void sis900_reset(struct net_device *net_dev);
235 static void sis630_set_eq(struct net_device *net_dev, u8 revision);
236 static int sis900_set_config(struct net_device *dev, struct ifmap *map);
237 static u16 sis900_default_phy(struct net_device * net_dev);
238 static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
239 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
240 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
241 static void sis900_set_mode(struct sis900_private *, int speed, int duplex);
242 static const struct ethtool_ops sis900_ethtool_ops;
243 
244 /**
245  *	sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
246  *	@pci_dev: the sis900 pci device
247  *	@net_dev: the net device to get address for
248  *
249  *	Older SiS900 and friends, use EEPROM to store MAC address.
250  *	MAC address is read from read_eeprom() into @net_dev->dev_addr.
251  */
252 
253 static int sis900_get_mac_addr(struct pci_dev *pci_dev,
254 			       struct net_device *net_dev)
255 {
256 	struct sis900_private *sis_priv = netdev_priv(net_dev);
257 	void __iomem *ioaddr = sis_priv->ioaddr;
258 	u16 signature;
259 	int i;
260 
261 	/* check to see if we have sane EEPROM */
262 	signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
263 	if (signature == 0xffff || signature == 0x0000) {
264 		printk (KERN_WARNING "%s: Error EERPOM read %x\n",
265 			pci_name(pci_dev), signature);
266 		return 0;
267 	}
268 
269 	/* get MAC address from EEPROM */
270 	for (i = 0; i < 3; i++)
271 	        ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
272 
273 	return 1;
274 }
275 
276 /**
277  *	sis630e_get_mac_addr - Get MAC address for SiS630E model
278  *	@pci_dev: the sis900 pci device
279  *	@net_dev: the net device to get address for
280  *
281  *	SiS630E model, use APC CMOS RAM to store MAC address.
282  *	APC CMOS RAM is accessed through ISA bridge.
283  *	MAC address is read into @net_dev->dev_addr.
284  */
285 
286 static int sis630e_get_mac_addr(struct pci_dev *pci_dev,
287 				struct net_device *net_dev)
288 {
289 	struct pci_dev *isa_bridge = NULL;
290 	u8 reg;
291 	int i;
292 
293 	isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
294 	if (!isa_bridge)
295 		isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
296 	if (!isa_bridge) {
297 		printk(KERN_WARNING "%s: Can not find ISA bridge\n",
298 		       pci_name(pci_dev));
299 		return 0;
300 	}
301 	pci_read_config_byte(isa_bridge, 0x48, &reg);
302 	pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
303 
304 	for (i = 0; i < 6; i++) {
305 		outb(0x09 + i, 0x70);
306 		((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
307 	}
308 
309 	pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
310 	pci_dev_put(isa_bridge);
311 
312 	return 1;
313 }
314 
315 
316 /**
317  *	sis635_get_mac_addr - Get MAC address for SIS635 model
318  *	@pci_dev: the sis900 pci device
319  *	@net_dev: the net device to get address for
320  *
321  *	SiS635 model, set MAC Reload Bit to load Mac address from APC
322  *	to rfdr. rfdr is accessed through rfcr. MAC address is read into
323  *	@net_dev->dev_addr.
324  */
325 
326 static int sis635_get_mac_addr(struct pci_dev *pci_dev,
327 			       struct net_device *net_dev)
328 {
329 	struct sis900_private *sis_priv = netdev_priv(net_dev);
330 	void __iomem *ioaddr = sis_priv->ioaddr;
331 	u32 rfcrSave;
332 	u32 i;
333 
334 	rfcrSave = sr32(rfcr);
335 
336 	sw32(cr, rfcrSave | RELOAD);
337 	sw32(cr, 0);
338 
339 	/* disable packet filtering before setting filter */
340 	sw32(rfcr, rfcrSave & ~RFEN);
341 
342 	/* load MAC addr to filter data register */
343 	for (i = 0 ; i < 3 ; i++) {
344 		sw32(rfcr, (i << RFADDR_shift));
345 		*( ((u16 *)net_dev->dev_addr) + i) = sr16(rfdr);
346 	}
347 
348 	/* enable packet filtering */
349 	sw32(rfcr, rfcrSave | RFEN);
350 
351 	return 1;
352 }
353 
354 /**
355  *	sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
356  *	@pci_dev: the sis900 pci device
357  *	@net_dev: the net device to get address for
358  *
359  *	SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
360  *	is shared by
361  *	LAN and 1394. When access EEPROM, send EEREQ signal to hardware first
362  *	and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access
363  *	by LAN, otherwise is not. After MAC address is read from EEPROM, send
364  *	EEDONE signal to refuse EEPROM access by LAN.
365  *	The EEPROM map of SiS962 or SiS963 is different to SiS900.
366  *	The signature field in SiS962 or SiS963 spec is meaningless.
367  *	MAC address is read into @net_dev->dev_addr.
368  */
369 
370 static int sis96x_get_mac_addr(struct pci_dev *pci_dev,
371 			       struct net_device *net_dev)
372 {
373 	struct sis900_private *sis_priv = netdev_priv(net_dev);
374 	void __iomem *ioaddr = sis_priv->ioaddr;
375 	int wait, rc = 0;
376 
377 	sw32(mear, EEREQ);
378 	for (wait = 0; wait < 2000; wait++) {
379 		if (sr32(mear) & EEGNT) {
380 			u16 *mac = (u16 *)net_dev->dev_addr;
381 			int i;
382 
383 			/* get MAC address from EEPROM */
384 			for (i = 0; i < 3; i++)
385 			        mac[i] = read_eeprom(ioaddr, i + EEPROMMACAddr);
386 
387 			rc = 1;
388 			break;
389 		}
390 		udelay(1);
391 	}
392 	sw32(mear, EEDONE);
393 	return rc;
394 }
395 
396 static const struct net_device_ops sis900_netdev_ops = {
397 	.ndo_open		 = sis900_open,
398 	.ndo_stop		= sis900_close,
399 	.ndo_start_xmit		= sis900_start_xmit,
400 	.ndo_set_config		= sis900_set_config,
401 	.ndo_set_rx_mode	= set_rx_mode,
402 	.ndo_change_mtu		= eth_change_mtu,
403 	.ndo_validate_addr	= eth_validate_addr,
404 	.ndo_set_mac_address 	= eth_mac_addr,
405 	.ndo_do_ioctl		= mii_ioctl,
406 	.ndo_tx_timeout		= sis900_tx_timeout,
407 #ifdef CONFIG_NET_POLL_CONTROLLER
408         .ndo_poll_controller	= sis900_poll,
409 #endif
410 };
411 
412 /**
413  *	sis900_probe - Probe for sis900 device
414  *	@pci_dev: the sis900 pci device
415  *	@pci_id: the pci device ID
416  *
417  *	Check and probe sis900 net device for @pci_dev.
418  *	Get mac address according to the chip revision,
419  *	and assign SiS900-specific entries in the device structure.
420  *	ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
421  */
422 
423 static int sis900_probe(struct pci_dev *pci_dev,
424 			const struct pci_device_id *pci_id)
425 {
426 	struct sis900_private *sis_priv;
427 	struct net_device *net_dev;
428 	struct pci_dev *dev;
429 	dma_addr_t ring_dma;
430 	void *ring_space;
431 	void __iomem *ioaddr;
432 	int i, ret;
433 	const char *card_name = card_names[pci_id->driver_data];
434 	const char *dev_name = pci_name(pci_dev);
435 
436 /* when built into the kernel, we only print version if device is found */
437 #ifndef MODULE
438 	static int printed_version;
439 	if (!printed_version++)
440 		printk(version);
441 #endif
442 
443 	/* setup various bits in PCI command register */
444 	ret = pci_enable_device(pci_dev);
445 	if(ret) return ret;
446 
447 	i = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
448 	if(i){
449 		printk(KERN_ERR "sis900.c: architecture does not support "
450 			"32bit PCI busmaster DMA\n");
451 		return i;
452 	}
453 
454 	pci_set_master(pci_dev);
455 
456 	net_dev = alloc_etherdev(sizeof(struct sis900_private));
457 	if (!net_dev)
458 		return -ENOMEM;
459 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
460 
461 	/* We do a request_region() to register /proc/ioports info. */
462 	ret = pci_request_regions(pci_dev, "sis900");
463 	if (ret)
464 		goto err_out;
465 
466 	/* IO region. */
467 	ioaddr = pci_iomap(pci_dev, 0, 0);
468 	if (!ioaddr) {
469 		ret = -ENOMEM;
470 		goto err_out_cleardev;
471 	}
472 
473 	sis_priv = netdev_priv(net_dev);
474 	sis_priv->ioaddr = ioaddr;
475 	sis_priv->pci_dev = pci_dev;
476 	spin_lock_init(&sis_priv->lock);
477 
478 	pci_set_drvdata(pci_dev, net_dev);
479 
480 	ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
481 	if (!ring_space) {
482 		ret = -ENOMEM;
483 		goto err_out_unmap;
484 	}
485 	sis_priv->tx_ring = ring_space;
486 	sis_priv->tx_ring_dma = ring_dma;
487 
488 	ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
489 	if (!ring_space) {
490 		ret = -ENOMEM;
491 		goto err_unmap_tx;
492 	}
493 	sis_priv->rx_ring = ring_space;
494 	sis_priv->rx_ring_dma = ring_dma;
495 
496 	/* The SiS900-specific entries in the device structure. */
497 	net_dev->netdev_ops = &sis900_netdev_ops;
498 	net_dev->watchdog_timeo = TX_TIMEOUT;
499 	net_dev->ethtool_ops = &sis900_ethtool_ops;
500 
501 	if (sis900_debug > 0)
502 		sis_priv->msg_enable = sis900_debug;
503 	else
504 		sis_priv->msg_enable = SIS900_DEF_MSG;
505 
506 	sis_priv->mii_info.dev = net_dev;
507 	sis_priv->mii_info.mdio_read = mdio_read;
508 	sis_priv->mii_info.mdio_write = mdio_write;
509 	sis_priv->mii_info.phy_id_mask = 0x1f;
510 	sis_priv->mii_info.reg_num_mask = 0x1f;
511 
512 	/* Get Mac address according to the chip revision */
513 	sis_priv->chipset_rev = pci_dev->revision;
514 	if(netif_msg_probe(sis_priv))
515 		printk(KERN_DEBUG "%s: detected revision %2.2x, "
516 				"trying to get MAC address...\n",
517 				dev_name, sis_priv->chipset_rev);
518 
519 	ret = 0;
520 	if (sis_priv->chipset_rev == SIS630E_900_REV)
521 		ret = sis630e_get_mac_addr(pci_dev, net_dev);
522 	else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
523 		ret = sis635_get_mac_addr(pci_dev, net_dev);
524 	else if (sis_priv->chipset_rev == SIS96x_900_REV)
525 		ret = sis96x_get_mac_addr(pci_dev, net_dev);
526 	else
527 		ret = sis900_get_mac_addr(pci_dev, net_dev);
528 
529 	if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) {
530 		eth_hw_addr_random(net_dev);
531 		printk(KERN_WARNING "%s: Unreadable or invalid MAC address,"
532 				"using random generated one\n", dev_name);
533 	}
534 
535 	/* 630ET : set the mii access mode as software-mode */
536 	if (sis_priv->chipset_rev == SIS630ET_900_REV)
537 		sw32(cr, ACCESSMODE | sr32(cr));
538 
539 	/* probe for mii transceiver */
540 	if (sis900_mii_probe(net_dev) == 0) {
541 		printk(KERN_WARNING "%s: Error probing MII device.\n",
542 		       dev_name);
543 		ret = -ENODEV;
544 		goto err_unmap_rx;
545 	}
546 
547 	/* save our host bridge revision */
548 	dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
549 	if (dev) {
550 		sis_priv->host_bridge_rev = dev->revision;
551 		pci_dev_put(dev);
552 	}
553 
554 	ret = register_netdev(net_dev);
555 	if (ret)
556 		goto err_unmap_rx;
557 
558 	/* print some information about our NIC */
559 	printk(KERN_INFO "%s: %s at 0x%p, IRQ %d, %pM\n",
560 	       net_dev->name, card_name, ioaddr, pci_dev->irq,
561 	       net_dev->dev_addr);
562 
563 	/* Detect Wake on Lan support */
564 	ret = (sr32(CFGPMC) & PMESP) >> 27;
565 	if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
566 		printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
567 
568 	return 0;
569 
570 err_unmap_rx:
571 	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
572 		sis_priv->rx_ring_dma);
573 err_unmap_tx:
574 	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
575 		sis_priv->tx_ring_dma);
576 err_out_unmap:
577 	pci_iounmap(pci_dev, ioaddr);
578 err_out_cleardev:
579 	pci_set_drvdata(pci_dev, NULL);
580 	pci_release_regions(pci_dev);
581  err_out:
582 	free_netdev(net_dev);
583 	return ret;
584 }
585 
586 /**
587  *	sis900_mii_probe - Probe MII PHY for sis900
588  *	@net_dev: the net device to probe for
589  *
590  *	Search for total of 32 possible mii phy addresses.
591  *	Identify and set current phy if found one,
592  *	return error if it failed to found.
593  */
594 
595 static int sis900_mii_probe(struct net_device *net_dev)
596 {
597 	struct sis900_private *sis_priv = netdev_priv(net_dev);
598 	const char *dev_name = pci_name(sis_priv->pci_dev);
599 	u16 poll_bit = MII_STAT_LINK, status = 0;
600 	unsigned long timeout = jiffies + 5 * HZ;
601 	int phy_addr;
602 
603 	sis_priv->mii = NULL;
604 
605 	/* search for total of 32 possible mii phy addresses */
606 	for (phy_addr = 0; phy_addr < 32; phy_addr++) {
607 		struct mii_phy * mii_phy = NULL;
608 		u16 mii_status;
609 		int i;
610 
611 		mii_phy = NULL;
612 		for(i = 0; i < 2; i++)
613 			mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
614 
615 		if (mii_status == 0xffff || mii_status == 0x0000) {
616 			if (netif_msg_probe(sis_priv))
617 				printk(KERN_DEBUG "%s: MII at address %d"
618 						" not accessible\n",
619 						dev_name, phy_addr);
620 			continue;
621 		}
622 
623 		if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
624 			mii_phy = sis_priv->first_mii;
625 			while (mii_phy) {
626 				struct mii_phy *phy;
627 				phy = mii_phy;
628 				mii_phy = mii_phy->next;
629 				kfree(phy);
630 			}
631 			return 0;
632 		}
633 
634 		mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
635 		mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
636 		mii_phy->phy_addr = phy_addr;
637 		mii_phy->status = mii_status;
638 		mii_phy->next = sis_priv->mii;
639 		sis_priv->mii = mii_phy;
640 		sis_priv->first_mii = mii_phy;
641 
642 		for (i = 0; mii_chip_table[i].phy_id1; i++)
643 			if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
644 			    ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
645 				mii_phy->phy_types = mii_chip_table[i].phy_types;
646 				if (mii_chip_table[i].phy_types == MIX)
647 					mii_phy->phy_types =
648 					    (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
649 				printk(KERN_INFO "%s: %s transceiver found "
650 							"at address %d.\n",
651 							dev_name,
652 							mii_chip_table[i].name,
653 							phy_addr);
654 				break;
655 			}
656 
657 		if( !mii_chip_table[i].phy_id1 ) {
658 			printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
659 			       dev_name, phy_addr);
660 			mii_phy->phy_types = UNKNOWN;
661 		}
662 	}
663 
664 	if (sis_priv->mii == NULL) {
665 		printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
666 		return 0;
667 	}
668 
669 	/* select default PHY for mac */
670 	sis_priv->mii = NULL;
671 	sis900_default_phy( net_dev );
672 
673 	/* Reset phy if default phy is internal sis900 */
674         if ((sis_priv->mii->phy_id0 == 0x001D) &&
675 	    ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
676         	status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
677 
678         /* workaround for ICS1893 PHY */
679         if ((sis_priv->mii->phy_id0 == 0x0015) &&
680             ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
681             	mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
682 
683 	if(status & MII_STAT_LINK){
684 		while (poll_bit) {
685 			yield();
686 
687 			poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
688 			if (time_after_eq(jiffies, timeout)) {
689 				printk(KERN_WARNING "%s: reset phy and link down now\n",
690 				       dev_name);
691 				return -ETIME;
692 			}
693 		}
694 	}
695 
696 	if (sis_priv->chipset_rev == SIS630E_900_REV) {
697 		/* SiS 630E has some bugs on default value of PHY registers */
698 		mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
699 		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
700 		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
701 		mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
702 		//mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
703 	}
704 
705 	if (sis_priv->mii->status & MII_STAT_LINK)
706 		netif_carrier_on(net_dev);
707 	else
708 		netif_carrier_off(net_dev);
709 
710 	return 1;
711 }
712 
713 /**
714  *	sis900_default_phy - Select default PHY for sis900 mac.
715  *	@net_dev: the net device to probe for
716  *
717  *	Select first detected PHY with link as default.
718  *	If no one is link on, select PHY whose types is HOME as default.
719  *	If HOME doesn't exist, select LAN.
720  */
721 
722 static u16 sis900_default_phy(struct net_device * net_dev)
723 {
724 	struct sis900_private *sis_priv = netdev_priv(net_dev);
725  	struct mii_phy *phy = NULL, *phy_home = NULL,
726 		*default_phy = NULL, *phy_lan = NULL;
727 	u16 status;
728 
729         for (phy=sis_priv->first_mii; phy; phy=phy->next) {
730 		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
731 		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
732 
733 		/* Link ON & Not select default PHY & not ghost PHY */
734 		 if ((status & MII_STAT_LINK) && !default_phy &&
735 					(phy->phy_types != UNKNOWN))
736 		 	default_phy = phy;
737 		 else {
738 			status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
739 			mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
740 				status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
741 			if (phy->phy_types == HOME)
742 				phy_home = phy;
743 			else if(phy->phy_types == LAN)
744 				phy_lan = phy;
745 		 }
746 	}
747 
748 	if (!default_phy && phy_home)
749 		default_phy = phy_home;
750 	else if (!default_phy && phy_lan)
751 		default_phy = phy_lan;
752 	else if (!default_phy)
753 		default_phy = sis_priv->first_mii;
754 
755 	if (sis_priv->mii != default_phy) {
756 		sis_priv->mii = default_phy;
757 		sis_priv->cur_phy = default_phy->phy_addr;
758 		printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
759 		       pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
760 	}
761 
762 	sis_priv->mii_info.phy_id = sis_priv->cur_phy;
763 
764 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
765 	status &= (~MII_CNTL_ISOLATE);
766 
767 	mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
768 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
769 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
770 
771 	return status;
772 }
773 
774 
775 /**
776  * 	sis900_set_capability - set the media capability of network adapter.
777  *	@net_dev : the net device to probe for
778  *	@phy : default PHY
779  *
780  *	Set the media capability of network adapter according to
781  *	mii status register. It's necessary before auto-negotiate.
782  */
783 
784 static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
785 {
786 	u16 cap;
787 	u16 status;
788 
789 	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
790 	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
791 
792 	cap = MII_NWAY_CSMA_CD |
793 		((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
794 		((phy->status & MII_STAT_CAN_TX)    ? MII_NWAY_TX:0) |
795 		((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
796 		((phy->status & MII_STAT_CAN_T)     ? MII_NWAY_T:0);
797 
798 	mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
799 }
800 
801 
802 /* Delay between EEPROM clock transitions. */
803 #define eeprom_delay()	sr32(mear)
804 
805 /**
806  *	read_eeprom - Read Serial EEPROM
807  *	@ioaddr: base i/o address
808  *	@location: the EEPROM location to read
809  *
810  *	Read Serial EEPROM through EEPROM Access Register.
811  *	Note that location is in word (16 bits) unit
812  */
813 
814 static u16 read_eeprom(void __iomem *ioaddr, int location)
815 {
816 	u32 read_cmd = location | EEread;
817 	int i;
818 	u16 retval = 0;
819 
820 	sw32(mear, 0);
821 	eeprom_delay();
822 	sw32(mear, EECS);
823 	eeprom_delay();
824 
825 	/* Shift the read command (9) bits out. */
826 	for (i = 8; i >= 0; i--) {
827 		u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
828 
829 		sw32(mear, dataval);
830 		eeprom_delay();
831 		sw32(mear, dataval | EECLK);
832 		eeprom_delay();
833 	}
834 	sw32(mear, EECS);
835 	eeprom_delay();
836 
837 	/* read the 16-bits data in */
838 	for (i = 16; i > 0; i--) {
839 		sw32(mear, EECS);
840 		eeprom_delay();
841 		sw32(mear, EECS | EECLK);
842 		eeprom_delay();
843 		retval = (retval << 1) | ((sr32(mear) & EEDO) ? 1 : 0);
844 		eeprom_delay();
845 	}
846 
847 	/* Terminate the EEPROM access. */
848 	sw32(mear, 0);
849 	eeprom_delay();
850 
851 	return retval;
852 }
853 
854 /* Read and write the MII management registers using software-generated
855    serial MDIO protocol. Note that the command bits and data bits are
856    send out separately */
857 #define mdio_delay()	sr32(mear)
858 
859 static void mdio_idle(struct sis900_private *sp)
860 {
861 	void __iomem *ioaddr = sp->ioaddr;
862 
863 	sw32(mear, MDIO | MDDIR);
864 	mdio_delay();
865 	sw32(mear, MDIO | MDDIR | MDC);
866 }
867 
868 /* Synchronize the MII management interface by shifting 32 one bits out. */
869 static void mdio_reset(struct sis900_private *sp)
870 {
871 	void __iomem *ioaddr = sp->ioaddr;
872 	int i;
873 
874 	for (i = 31; i >= 0; i--) {
875 		sw32(mear, MDDIR | MDIO);
876 		mdio_delay();
877 		sw32(mear, MDDIR | MDIO | MDC);
878 		mdio_delay();
879 	}
880 }
881 
882 /**
883  *	mdio_read - read MII PHY register
884  *	@net_dev: the net device to read
885  *	@phy_id: the phy address to read
886  *	@location: the phy regiester id to read
887  *
888  *	Read MII registers through MDIO and MDC
889  *	using MDIO management frame structure and protocol(defined by ISO/IEC).
890  *	Please see SiS7014 or ICS spec
891  */
892 
893 static int mdio_read(struct net_device *net_dev, int phy_id, int location)
894 {
895 	int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
896 	struct sis900_private *sp = netdev_priv(net_dev);
897 	void __iomem *ioaddr = sp->ioaddr;
898 	u16 retval = 0;
899 	int i;
900 
901 	mdio_reset(sp);
902 	mdio_idle(sp);
903 
904 	for (i = 15; i >= 0; i--) {
905 		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
906 
907 		sw32(mear, dataval);
908 		mdio_delay();
909 		sw32(mear, dataval | MDC);
910 		mdio_delay();
911 	}
912 
913 	/* Read the 16 data bits. */
914 	for (i = 16; i > 0; i--) {
915 		sw32(mear, 0);
916 		mdio_delay();
917 		retval = (retval << 1) | ((sr32(mear) & MDIO) ? 1 : 0);
918 		sw32(mear, MDC);
919 		mdio_delay();
920 	}
921 	sw32(mear, 0x00);
922 
923 	return retval;
924 }
925 
926 /**
927  *	mdio_write - write MII PHY register
928  *	@net_dev: the net device to write
929  *	@phy_id: the phy address to write
930  *	@location: the phy regiester id to write
931  *	@value: the register value to write with
932  *
933  *	Write MII registers with @value through MDIO and MDC
934  *	using MDIO management frame structure and protocol(defined by ISO/IEC)
935  *	please see SiS7014 or ICS spec
936  */
937 
938 static void mdio_write(struct net_device *net_dev, int phy_id, int location,
939 			int value)
940 {
941 	int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
942 	struct sis900_private *sp = netdev_priv(net_dev);
943 	void __iomem *ioaddr = sp->ioaddr;
944 	int i;
945 
946 	mdio_reset(sp);
947 	mdio_idle(sp);
948 
949 	/* Shift the command bits out. */
950 	for (i = 15; i >= 0; i--) {
951 		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
952 
953 		sw8(mear, dataval);
954 		mdio_delay();
955 		sw8(mear, dataval | MDC);
956 		mdio_delay();
957 	}
958 	mdio_delay();
959 
960 	/* Shift the value bits out. */
961 	for (i = 15; i >= 0; i--) {
962 		int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
963 
964 		sw32(mear, dataval);
965 		mdio_delay();
966 		sw32(mear, dataval | MDC);
967 		mdio_delay();
968 	}
969 	mdio_delay();
970 
971 	/* Clear out extra bits. */
972 	for (i = 2; i > 0; i--) {
973 		sw8(mear, 0);
974 		mdio_delay();
975 		sw8(mear, MDC);
976 		mdio_delay();
977 	}
978 	sw32(mear, 0x00);
979 }
980 
981 
982 /**
983  *	sis900_reset_phy - reset sis900 mii phy.
984  *	@net_dev: the net device to write
985  *	@phy_addr: default phy address
986  *
987  *	Some specific phy can't work properly without reset.
988  *	This function will be called during initialization and
989  *	link status change from ON to DOWN.
990  */
991 
992 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
993 {
994 	int i;
995 	u16 status;
996 
997 	for (i = 0; i < 2; i++)
998 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
999 
1000 	mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
1001 
1002 	return status;
1003 }
1004 
1005 #ifdef CONFIG_NET_POLL_CONTROLLER
1006 /*
1007  * Polling 'interrupt' - used by things like netconsole to send skbs
1008  * without having to re-enable interrupts. It's not called while
1009  * the interrupt routine is executing.
1010 */
1011 static void sis900_poll(struct net_device *dev)
1012 {
1013 	struct sis900_private *sp = netdev_priv(dev);
1014 	const int irq = sp->pci_dev->irq;
1015 
1016 	disable_irq(irq);
1017 	sis900_interrupt(irq, dev);
1018 	enable_irq(irq);
1019 }
1020 #endif
1021 
1022 /**
1023  *	sis900_open - open sis900 device
1024  *	@net_dev: the net device to open
1025  *
1026  *	Do some initialization and start net interface.
1027  *	enable interrupts and set sis900 timer.
1028  */
1029 
1030 static int
1031 sis900_open(struct net_device *net_dev)
1032 {
1033 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1034 	void __iomem *ioaddr = sis_priv->ioaddr;
1035 	int ret;
1036 
1037 	/* Soft reset the chip. */
1038 	sis900_reset(net_dev);
1039 
1040 	/* Equalizer workaround Rule */
1041 	sis630_set_eq(net_dev, sis_priv->chipset_rev);
1042 
1043 	ret = request_irq(sis_priv->pci_dev->irq, sis900_interrupt, IRQF_SHARED,
1044 			  net_dev->name, net_dev);
1045 	if (ret)
1046 		return ret;
1047 
1048 	sis900_init_rxfilter(net_dev);
1049 
1050 	sis900_init_tx_ring(net_dev);
1051 	sis900_init_rx_ring(net_dev);
1052 
1053 	set_rx_mode(net_dev);
1054 
1055 	netif_start_queue(net_dev);
1056 
1057 	/* Workaround for EDB */
1058 	sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1059 
1060 	/* Enable all known interrupts by setting the interrupt mask. */
1061 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
1062 	sw32(cr, RxENA | sr32(cr));
1063 	sw32(ier, IE);
1064 
1065 	sis900_check_mode(net_dev, sis_priv->mii);
1066 
1067 	/* Set the timer to switch to check for link beat and perhaps switch
1068 	   to an alternate media type. */
1069 	init_timer(&sis_priv->timer);
1070 	sis_priv->timer.expires = jiffies + HZ;
1071 	sis_priv->timer.data = (unsigned long)net_dev;
1072 	sis_priv->timer.function = sis900_timer;
1073 	add_timer(&sis_priv->timer);
1074 
1075 	return 0;
1076 }
1077 
1078 /**
1079  *	sis900_init_rxfilter - Initialize the Rx filter
1080  *	@net_dev: the net device to initialize for
1081  *
1082  *	Set receive filter address to our MAC address
1083  *	and enable packet filtering.
1084  */
1085 
1086 static void
1087 sis900_init_rxfilter (struct net_device * net_dev)
1088 {
1089 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1090 	void __iomem *ioaddr = sis_priv->ioaddr;
1091 	u32 rfcrSave;
1092 	u32 i;
1093 
1094 	rfcrSave = sr32(rfcr);
1095 
1096 	/* disable packet filtering before setting filter */
1097 	sw32(rfcr, rfcrSave & ~RFEN);
1098 
1099 	/* load MAC addr to filter data register */
1100 	for (i = 0 ; i < 3 ; i++) {
1101 		u32 w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1102 
1103 		sw32(rfcr, i << RFADDR_shift);
1104 		sw32(rfdr, w);
1105 
1106 		if (netif_msg_hw(sis_priv)) {
1107 			printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n",
1108 			       net_dev->name, i, sr32(rfdr));
1109 		}
1110 	}
1111 
1112 	/* enable packet filtering */
1113 	sw32(rfcr, rfcrSave | RFEN);
1114 }
1115 
1116 /**
1117  *	sis900_init_tx_ring - Initialize the Tx descriptor ring
1118  *	@net_dev: the net device to initialize for
1119  *
1120  *	Initialize the Tx descriptor ring,
1121  */
1122 
1123 static void
1124 sis900_init_tx_ring(struct net_device *net_dev)
1125 {
1126 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1127 	void __iomem *ioaddr = sis_priv->ioaddr;
1128 	int i;
1129 
1130 	sis_priv->tx_full = 0;
1131 	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1132 
1133 	for (i = 0; i < NUM_TX_DESC; i++) {
1134 		sis_priv->tx_skbuff[i] = NULL;
1135 
1136 		sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1137 			((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1138 		sis_priv->tx_ring[i].cmdsts = 0;
1139 		sis_priv->tx_ring[i].bufptr = 0;
1140 	}
1141 
1142 	/* load Transmit Descriptor Register */
1143 	sw32(txdp, sis_priv->tx_ring_dma);
1144 	if (netif_msg_hw(sis_priv))
1145 		printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1146 		       net_dev->name, sr32(txdp));
1147 }
1148 
1149 /**
1150  *	sis900_init_rx_ring - Initialize the Rx descriptor ring
1151  *	@net_dev: the net device to initialize for
1152  *
1153  *	Initialize the Rx descriptor ring,
1154  *	and pre-allocate recevie buffers (socket buffer)
1155  */
1156 
1157 static void
1158 sis900_init_rx_ring(struct net_device *net_dev)
1159 {
1160 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1161 	void __iomem *ioaddr = sis_priv->ioaddr;
1162 	int i;
1163 
1164 	sis_priv->cur_rx = 0;
1165 	sis_priv->dirty_rx = 0;
1166 
1167 	/* init RX descriptor */
1168 	for (i = 0; i < NUM_RX_DESC; i++) {
1169 		sis_priv->rx_skbuff[i] = NULL;
1170 
1171 		sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1172 			((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1173 		sis_priv->rx_ring[i].cmdsts = 0;
1174 		sis_priv->rx_ring[i].bufptr = 0;
1175 	}
1176 
1177 	/* allocate sock buffers */
1178 	for (i = 0; i < NUM_RX_DESC; i++) {
1179 		struct sk_buff *skb;
1180 
1181 		if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1182 			/* not enough memory for skbuff, this makes a "hole"
1183 			   on the buffer ring, it is not clear how the
1184 			   hardware will react to this kind of degenerated
1185 			   buffer */
1186 			break;
1187 		}
1188 		sis_priv->rx_skbuff[i] = skb;
1189 		sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1190                 sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1191                         skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1192 	}
1193 	sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1194 
1195 	/* load Receive Descriptor Register */
1196 	sw32(rxdp, sis_priv->rx_ring_dma);
1197 	if (netif_msg_hw(sis_priv))
1198 		printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1199 		       net_dev->name, sr32(rxdp));
1200 }
1201 
1202 /**
1203  *	sis630_set_eq - set phy equalizer value for 630 LAN
1204  *	@net_dev: the net device to set equalizer value
1205  *	@revision: 630 LAN revision number
1206  *
1207  *	630E equalizer workaround rule(Cyrus Huang 08/15)
1208  *	PHY register 14h(Test)
1209  *	Bit 14: 0 -- Automatically detect (default)
1210  *		1 -- Manually set Equalizer filter
1211  *	Bit 13: 0 -- (Default)
1212  *		1 -- Speed up convergence of equalizer setting
1213  *	Bit 9 : 0 -- (Default)
1214  *		1 -- Disable Baseline Wander
1215  *	Bit 3~7   -- Equalizer filter setting
1216  *	Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1217  *	Then calculate equalizer value
1218  *	Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1219  *	Link Off:Set Bit 13 to 1, Bit 14 to 0
1220  *	Calculate Equalizer value:
1221  *	When Link is ON and Bit 14 is 0, SIS900PHY will auto-detect proper equalizer value.
1222  *	When the equalizer is stable, this value is not a fixed value. It will be within
1223  *	a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1224  *	0 <= max <= 4  --> set equalizer to max
1225  *	5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1226  *	max >= 15      --> set equalizer to max+5 or set equalizer to max+6 if max == min
1227  */
1228 
1229 static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1230 {
1231 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1232 	u16 reg14h, eq_value=0, max_value=0, min_value=0;
1233 	int i, maxcount=10;
1234 
1235 	if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1236 	       revision == SIS630A_900_REV || revision ==  SIS630ET_900_REV) )
1237 		return;
1238 
1239 	if (netif_carrier_ok(net_dev)) {
1240 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1241 		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1242 					(0x2200 | reg14h) & 0xBFFF);
1243 		for (i=0; i < maxcount; i++) {
1244 			eq_value = (0x00F8 & mdio_read(net_dev,
1245 					sis_priv->cur_phy, MII_RESV)) >> 3;
1246 			if (i == 0)
1247 				max_value=min_value=eq_value;
1248 			max_value = (eq_value > max_value) ?
1249 						eq_value : max_value;
1250 			min_value = (eq_value < min_value) ?
1251 						eq_value : min_value;
1252 		}
1253 		/* 630E rule to determine the equalizer value */
1254 		if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1255 		    revision == SIS630ET_900_REV) {
1256 			if (max_value < 5)
1257 				eq_value = max_value;
1258 			else if (max_value >= 5 && max_value < 15)
1259 				eq_value = (max_value == min_value) ?
1260 						max_value+2 : max_value+1;
1261 			else if (max_value >= 15)
1262 				eq_value=(max_value == min_value) ?
1263 						max_value+6 : max_value+5;
1264 		}
1265 		/* 630B0&B1 rule to determine the equalizer value */
1266 		if (revision == SIS630A_900_REV &&
1267 		    (sis_priv->host_bridge_rev == SIS630B0 ||
1268 		     sis_priv->host_bridge_rev == SIS630B1)) {
1269 			if (max_value == 0)
1270 				eq_value = 3;
1271 			else
1272 				eq_value = (max_value + min_value + 1)/2;
1273 		}
1274 		/* write equalizer value and setting */
1275 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1276 		reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1277 		reg14h = (reg14h | 0x6000) & 0xFDFF;
1278 		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1279 	} else {
1280 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1281 		if (revision == SIS630A_900_REV &&
1282 		    (sis_priv->host_bridge_rev == SIS630B0 ||
1283 		     sis_priv->host_bridge_rev == SIS630B1))
1284 			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1285 						(reg14h | 0x2200) & 0xBFFF);
1286 		else
1287 			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1288 						(reg14h | 0x2000) & 0xBFFF);
1289 	}
1290 }
1291 
1292 /**
1293  *	sis900_timer - sis900 timer routine
1294  *	@data: pointer to sis900 net device
1295  *
1296  *	On each timer ticks we check two things,
1297  *	link status (ON/OFF) and link mode (10/100/Full/Half)
1298  */
1299 
1300 static void sis900_timer(unsigned long data)
1301 {
1302 	struct net_device *net_dev = (struct net_device *)data;
1303 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1304 	struct mii_phy *mii_phy = sis_priv->mii;
1305 	static const int next_tick = 5*HZ;
1306 	u16 status;
1307 
1308 	if (!sis_priv->autong_complete){
1309 		int uninitialized_var(speed), duplex = 0;
1310 
1311 		sis900_read_mode(net_dev, &speed, &duplex);
1312 		if (duplex){
1313 			sis900_set_mode(sis_priv, speed, duplex);
1314 			sis630_set_eq(net_dev, sis_priv->chipset_rev);
1315 			netif_start_queue(net_dev);
1316 		}
1317 
1318 		sis_priv->timer.expires = jiffies + HZ;
1319 		add_timer(&sis_priv->timer);
1320 		return;
1321 	}
1322 
1323 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1324 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1325 
1326 	/* Link OFF -> ON */
1327 	if (!netif_carrier_ok(net_dev)) {
1328 	LookForLink:
1329 		/* Search for new PHY */
1330 		status = sis900_default_phy(net_dev);
1331 		mii_phy = sis_priv->mii;
1332 
1333 		if (status & MII_STAT_LINK){
1334 			sis900_check_mode(net_dev, mii_phy);
1335 			netif_carrier_on(net_dev);
1336 		}
1337 	} else {
1338 	/* Link ON -> OFF */
1339                 if (!(status & MII_STAT_LINK)){
1340                 	netif_carrier_off(net_dev);
1341 			if(netif_msg_link(sis_priv))
1342                 		printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1343 
1344                 	/* Change mode issue */
1345                 	if ((mii_phy->phy_id0 == 0x001D) &&
1346 			    ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1347                			sis900_reset_phy(net_dev,  sis_priv->cur_phy);
1348 
1349 			sis630_set_eq(net_dev, sis_priv->chipset_rev);
1350 
1351                 	goto LookForLink;
1352                 }
1353 	}
1354 
1355 	sis_priv->timer.expires = jiffies + next_tick;
1356 	add_timer(&sis_priv->timer);
1357 }
1358 
1359 /**
1360  *	sis900_check_mode - check the media mode for sis900
1361  *	@net_dev: the net device to be checked
1362  *	@mii_phy: the mii phy
1363  *
1364  *	Older driver gets the media mode from mii status output
1365  *	register. Now we set our media capability and auto-negotiate
1366  *	to get the upper bound of speed and duplex between two ends.
1367  *	If the types of mii phy is HOME, it doesn't need to auto-negotiate
1368  *	and autong_complete should be set to 1.
1369  */
1370 
1371 static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1372 {
1373 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1374 	void __iomem *ioaddr = sis_priv->ioaddr;
1375 	int speed, duplex;
1376 
1377 	if (mii_phy->phy_types == LAN) {
1378 		sw32(cfg, ~EXD & sr32(cfg));
1379 		sis900_set_capability(net_dev , mii_phy);
1380 		sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1381 	} else {
1382 		sw32(cfg, EXD | sr32(cfg));
1383 		speed = HW_SPEED_HOME;
1384 		duplex = FDX_CAPABLE_HALF_SELECTED;
1385 		sis900_set_mode(sis_priv, speed, duplex);
1386 		sis_priv->autong_complete = 1;
1387 	}
1388 }
1389 
1390 /**
1391  *	sis900_set_mode - Set the media mode of mac register.
1392  *	@sp:     the device private data
1393  *	@speed : the transmit speed to be determined
1394  *	@duplex: the duplex mode to be determined
1395  *
1396  *	Set the media mode of mac register txcfg/rxcfg according to
1397  *	speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1398  *	bus is used instead of PCI bus. When this bit is set 1, the
1399  *	Max DMA Burst Size for TX/RX DMA should be no larger than 16
1400  *	double words.
1401  */
1402 
1403 static void sis900_set_mode(struct sis900_private *sp, int speed, int duplex)
1404 {
1405 	void __iomem *ioaddr = sp->ioaddr;
1406 	u32 tx_flags = 0, rx_flags = 0;
1407 
1408 	if (sr32( cfg) & EDB_MASTER_EN) {
1409 		tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1410 					(TX_FILL_THRESH << TxFILLT_shift);
1411 		rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1412 	} else {
1413 		tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1414 					(TX_FILL_THRESH << TxFILLT_shift);
1415 		rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1416 	}
1417 
1418 	if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1419 		rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1420 		tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1421 	} else {
1422 		rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1423 		tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1424 	}
1425 
1426 	if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1427 		tx_flags |= (TxCSI | TxHBI);
1428 		rx_flags |= RxATX;
1429 	}
1430 
1431 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1432 	/* Can accept Jumbo packet */
1433 	rx_flags |= RxAJAB;
1434 #endif
1435 
1436 	sw32(txcfg, tx_flags);
1437 	sw32(rxcfg, rx_flags);
1438 }
1439 
1440 /**
1441  *	sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1442  *	@net_dev: the net device to read mode for
1443  *	@phy_addr: mii phy address
1444  *
1445  *	If the adapter is link-on, set the auto-negotiate enable/reset bit.
1446  *	autong_complete should be set to 0 when starting auto-negotiation.
1447  *	autong_complete should be set to 1 if we didn't start auto-negotiation.
1448  *	sis900_timer will wait for link on again if autong_complete = 0.
1449  */
1450 
1451 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1452 {
1453 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1454 	int i = 0;
1455 	u32 status;
1456 
1457 	for (i = 0; i < 2; i++)
1458 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1459 
1460 	if (!(status & MII_STAT_LINK)){
1461 		if(netif_msg_link(sis_priv))
1462 			printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1463 		sis_priv->autong_complete = 1;
1464 		netif_carrier_off(net_dev);
1465 		return;
1466 	}
1467 
1468 	/* (Re)start AutoNegotiate */
1469 	mdio_write(net_dev, phy_addr, MII_CONTROL,
1470 		   MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1471 	sis_priv->autong_complete = 0;
1472 }
1473 
1474 
1475 /**
1476  *	sis900_read_mode - read media mode for sis900 internal phy
1477  *	@net_dev: the net device to read mode for
1478  *	@speed  : the transmit speed to be determined
1479  *	@duplex : the duplex mode to be determined
1480  *
1481  *	The capability of remote end will be put in mii register autorec
1482  *	after auto-negotiation. Use AND operation to get the upper bound
1483  *	of speed and duplex between two ends.
1484  */
1485 
1486 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1487 {
1488 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1489 	struct mii_phy *phy = sis_priv->mii;
1490 	int phy_addr = sis_priv->cur_phy;
1491 	u32 status;
1492 	u16 autoadv, autorec;
1493 	int i;
1494 
1495 	for (i = 0; i < 2; i++)
1496 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1497 
1498 	if (!(status & MII_STAT_LINK))
1499 		return;
1500 
1501 	/* AutoNegotiate completed */
1502 	autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1503 	autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1504 	status = autoadv & autorec;
1505 
1506 	*speed = HW_SPEED_10_MBPS;
1507 	*duplex = FDX_CAPABLE_HALF_SELECTED;
1508 
1509 	if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1510 		*speed = HW_SPEED_100_MBPS;
1511 	if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1512 		*duplex = FDX_CAPABLE_FULL_SELECTED;
1513 
1514 	sis_priv->autong_complete = 1;
1515 
1516 	/* Workaround for Realtek RTL8201 PHY issue */
1517 	if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1518 		if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1519 			*duplex = FDX_CAPABLE_FULL_SELECTED;
1520 		if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1521 			*speed = HW_SPEED_100_MBPS;
1522 	}
1523 
1524 	if(netif_msg_link(sis_priv))
1525 		printk(KERN_INFO "%s: Media Link On %s %s-duplex\n",
1526 	       				net_dev->name,
1527 	       				*speed == HW_SPEED_100_MBPS ?
1528 	       					"100mbps" : "10mbps",
1529 	       				*duplex == FDX_CAPABLE_FULL_SELECTED ?
1530 	       					"full" : "half");
1531 }
1532 
1533 /**
1534  *	sis900_tx_timeout - sis900 transmit timeout routine
1535  *	@net_dev: the net device to transmit
1536  *
1537  *	print transmit timeout status
1538  *	disable interrupts and do some tasks
1539  */
1540 
1541 static void sis900_tx_timeout(struct net_device *net_dev)
1542 {
1543 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1544 	void __iomem *ioaddr = sis_priv->ioaddr;
1545 	unsigned long flags;
1546 	int i;
1547 
1548 	if (netif_msg_tx_err(sis_priv)) {
1549 		printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n",
1550 			net_dev->name, sr32(cr), sr32(isr));
1551 	}
1552 
1553 	/* Disable interrupts by clearing the interrupt mask. */
1554 	sw32(imr, 0x0000);
1555 
1556 	/* use spinlock to prevent interrupt handler accessing buffer ring */
1557 	spin_lock_irqsave(&sis_priv->lock, flags);
1558 
1559 	/* discard unsent packets */
1560 	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1561 	for (i = 0; i < NUM_TX_DESC; i++) {
1562 		struct sk_buff *skb = sis_priv->tx_skbuff[i];
1563 
1564 		if (skb) {
1565 			pci_unmap_single(sis_priv->pci_dev,
1566 				sis_priv->tx_ring[i].bufptr, skb->len,
1567 				PCI_DMA_TODEVICE);
1568 			dev_kfree_skb_irq(skb);
1569 			sis_priv->tx_skbuff[i] = NULL;
1570 			sis_priv->tx_ring[i].cmdsts = 0;
1571 			sis_priv->tx_ring[i].bufptr = 0;
1572 			net_dev->stats.tx_dropped++;
1573 		}
1574 	}
1575 	sis_priv->tx_full = 0;
1576 	netif_wake_queue(net_dev);
1577 
1578 	spin_unlock_irqrestore(&sis_priv->lock, flags);
1579 
1580 	net_dev->trans_start = jiffies; /* prevent tx timeout */
1581 
1582 	/* load Transmit Descriptor Register */
1583 	sw32(txdp, sis_priv->tx_ring_dma);
1584 
1585 	/* Enable all known interrupts by setting the interrupt mask. */
1586 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
1587 }
1588 
1589 /**
1590  *	sis900_start_xmit - sis900 start transmit routine
1591  *	@skb: socket buffer pointer to put the data being transmitted
1592  *	@net_dev: the net device to transmit with
1593  *
1594  *	Set the transmit buffer descriptor,
1595  *	and write TxENA to enable transmit state machine.
1596  *	tell upper layer if the buffer is full
1597  */
1598 
1599 static netdev_tx_t
1600 sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1601 {
1602 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1603 	void __iomem *ioaddr = sis_priv->ioaddr;
1604 	unsigned int  entry;
1605 	unsigned long flags;
1606 	unsigned int  index_cur_tx, index_dirty_tx;
1607 	unsigned int  count_dirty_tx;
1608 
1609 	/* Don't transmit data before the complete of auto-negotiation */
1610 	if(!sis_priv->autong_complete){
1611 		netif_stop_queue(net_dev);
1612 		return NETDEV_TX_BUSY;
1613 	}
1614 
1615 	spin_lock_irqsave(&sis_priv->lock, flags);
1616 
1617 	/* Calculate the next Tx descriptor entry. */
1618 	entry = sis_priv->cur_tx % NUM_TX_DESC;
1619 	sis_priv->tx_skbuff[entry] = skb;
1620 
1621 	/* set the transmit buffer descriptor and enable Transmit State Machine */
1622 	sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1623 		skb->data, skb->len, PCI_DMA_TODEVICE);
1624 	sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len);
1625 	sw32(cr, TxENA | sr32(cr));
1626 
1627 	sis_priv->cur_tx ++;
1628 	index_cur_tx = sis_priv->cur_tx;
1629 	index_dirty_tx = sis_priv->dirty_tx;
1630 
1631 	for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1632 		count_dirty_tx ++;
1633 
1634 	if (index_cur_tx == index_dirty_tx) {
1635 		/* dirty_tx is met in the cycle of cur_tx, buffer full */
1636 		sis_priv->tx_full = 1;
1637 		netif_stop_queue(net_dev);
1638 	} else if (count_dirty_tx < NUM_TX_DESC) {
1639 		/* Typical path, tell upper layer that more transmission is possible */
1640 		netif_start_queue(net_dev);
1641 	} else {
1642 		/* buffer full, tell upper layer no more transmission */
1643 		sis_priv->tx_full = 1;
1644 		netif_stop_queue(net_dev);
1645 	}
1646 
1647 	spin_unlock_irqrestore(&sis_priv->lock, flags);
1648 
1649 	if (netif_msg_tx_queued(sis_priv))
1650 		printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1651 		       "to slot %d.\n",
1652 		       net_dev->name, skb->data, (int)skb->len, entry);
1653 
1654 	return NETDEV_TX_OK;
1655 }
1656 
1657 /**
1658  *	sis900_interrupt - sis900 interrupt handler
1659  *	@irq: the irq number
1660  *	@dev_instance: the client data object
1661  *
1662  *	The interrupt handler does all of the Rx thread work,
1663  *	and cleans up after the Tx thread
1664  */
1665 
1666 static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1667 {
1668 	struct net_device *net_dev = dev_instance;
1669 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1670 	int boguscnt = max_interrupt_work;
1671 	void __iomem *ioaddr = sis_priv->ioaddr;
1672 	u32 status;
1673 	unsigned int handled = 0;
1674 
1675 	spin_lock (&sis_priv->lock);
1676 
1677 	do {
1678 		status = sr32(isr);
1679 
1680 		if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0)
1681 			/* nothing intresting happened */
1682 			break;
1683 		handled = 1;
1684 
1685 		/* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1686 		if (status & (RxORN | RxERR | RxOK))
1687 			/* Rx interrupt */
1688 			sis900_rx(net_dev);
1689 
1690 		if (status & (TxURN | TxERR | TxIDLE))
1691 			/* Tx interrupt */
1692 			sis900_finish_xmit(net_dev);
1693 
1694 		/* something strange happened !!! */
1695 		if (status & HIBERR) {
1696 			if(netif_msg_intr(sis_priv))
1697 				printk(KERN_INFO "%s: Abnormal interrupt, "
1698 					"status %#8.8x.\n", net_dev->name, status);
1699 			break;
1700 		}
1701 		if (--boguscnt < 0) {
1702 			if(netif_msg_intr(sis_priv))
1703 				printk(KERN_INFO "%s: Too much work at interrupt, "
1704 					"interrupt status = %#8.8x.\n",
1705 					net_dev->name, status);
1706 			break;
1707 		}
1708 	} while (1);
1709 
1710 	if(netif_msg_intr(sis_priv))
1711 		printk(KERN_DEBUG "%s: exiting interrupt, "
1712 		       "interrupt status = 0x%#8.8x.\n",
1713 		       net_dev->name, sr32(isr));
1714 
1715 	spin_unlock (&sis_priv->lock);
1716 	return IRQ_RETVAL(handled);
1717 }
1718 
1719 /**
1720  *	sis900_rx - sis900 receive routine
1721  *	@net_dev: the net device which receives data
1722  *
1723  *	Process receive interrupt events,
1724  *	put buffer to higher layer and refill buffer pool
1725  *	Note: This function is called by interrupt handler,
1726  *	don't do "too much" work here
1727  */
1728 
1729 static int sis900_rx(struct net_device *net_dev)
1730 {
1731 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1732 	void __iomem *ioaddr = sis_priv->ioaddr;
1733 	unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1734 	u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1735 	int rx_work_limit;
1736 
1737 	if (netif_msg_rx_status(sis_priv))
1738 		printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1739 		       "status:0x%8.8x\n",
1740 		       sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1741 	rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1742 
1743 	while (rx_status & OWN) {
1744 		unsigned int rx_size;
1745 		unsigned int data_size;
1746 
1747 		if (--rx_work_limit < 0)
1748 			break;
1749 
1750 		data_size = rx_status & DSIZE;
1751 		rx_size = data_size - CRC_SIZE;
1752 
1753 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1754 		/* ``TOOLONG'' flag means jumbo packet received. */
1755 		if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1756 			rx_status &= (~ ((unsigned int)TOOLONG));
1757 #endif
1758 
1759 		if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1760 			/* corrupted packet received */
1761 			if (netif_msg_rx_err(sis_priv))
1762 				printk(KERN_DEBUG "%s: Corrupted packet "
1763 				       "received, buffer status = 0x%8.8x/%d.\n",
1764 				       net_dev->name, rx_status, data_size);
1765 			net_dev->stats.rx_errors++;
1766 			if (rx_status & OVERRUN)
1767 				net_dev->stats.rx_over_errors++;
1768 			if (rx_status & (TOOLONG|RUNT))
1769 				net_dev->stats.rx_length_errors++;
1770 			if (rx_status & (RXISERR | FAERR))
1771 				net_dev->stats.rx_frame_errors++;
1772 			if (rx_status & CRCERR)
1773 				net_dev->stats.rx_crc_errors++;
1774 			/* reset buffer descriptor state */
1775 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1776 		} else {
1777 			struct sk_buff * skb;
1778 			struct sk_buff * rx_skb;
1779 
1780 			pci_unmap_single(sis_priv->pci_dev,
1781 				sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1782 				PCI_DMA_FROMDEVICE);
1783 
1784 			/* refill the Rx buffer, what if there is not enough
1785 			 * memory for new socket buffer ?? */
1786 			if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1787 				/*
1788 				 * Not enough memory to refill the buffer
1789 				 * so we need to recycle the old one so
1790 				 * as to avoid creating a memory hole
1791 				 * in the rx ring
1792 				 */
1793 				skb = sis_priv->rx_skbuff[entry];
1794 				net_dev->stats.rx_dropped++;
1795 				goto refill_rx_ring;
1796 			}
1797 
1798 			/* This situation should never happen, but due to
1799 			   some unknown bugs, it is possible that
1800 			   we are working on NULL sk_buff :-( */
1801 			if (sis_priv->rx_skbuff[entry] == NULL) {
1802 				if (netif_msg_rx_err(sis_priv))
1803 					printk(KERN_WARNING "%s: NULL pointer "
1804 					      "encountered in Rx ring\n"
1805 					      "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1806 					      net_dev->name, sis_priv->cur_rx,
1807 					      sis_priv->dirty_rx);
1808 				dev_kfree_skb(skb);
1809 				break;
1810 			}
1811 
1812 			/* give the socket buffer to upper layers */
1813 			rx_skb = sis_priv->rx_skbuff[entry];
1814 			skb_put(rx_skb, rx_size);
1815 			rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1816 			netif_rx(rx_skb);
1817 
1818 			/* some network statistics */
1819 			if ((rx_status & BCAST) == MCAST)
1820 				net_dev->stats.multicast++;
1821 			net_dev->stats.rx_bytes += rx_size;
1822 			net_dev->stats.rx_packets++;
1823 			sis_priv->dirty_rx++;
1824 refill_rx_ring:
1825 			sis_priv->rx_skbuff[entry] = skb;
1826 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1827                 	sis_priv->rx_ring[entry].bufptr =
1828 				pci_map_single(sis_priv->pci_dev, skb->data,
1829 					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1830 		}
1831 		sis_priv->cur_rx++;
1832 		entry = sis_priv->cur_rx % NUM_RX_DESC;
1833 		rx_status = sis_priv->rx_ring[entry].cmdsts;
1834 	} // while
1835 
1836 	/* refill the Rx buffer, what if the rate of refilling is slower
1837 	 * than consuming ?? */
1838 	for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1839 		struct sk_buff *skb;
1840 
1841 		entry = sis_priv->dirty_rx % NUM_RX_DESC;
1842 
1843 		if (sis_priv->rx_skbuff[entry] == NULL) {
1844 			if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1845 				/* not enough memory for skbuff, this makes a
1846 				 * "hole" on the buffer ring, it is not clear
1847 				 * how the hardware will react to this kind
1848 				 * of degenerated buffer */
1849 				if (netif_msg_rx_err(sis_priv))
1850 					printk(KERN_INFO "%s: Memory squeeze, "
1851 						"deferring packet.\n",
1852 						net_dev->name);
1853 				net_dev->stats.rx_dropped++;
1854 				break;
1855 			}
1856 			sis_priv->rx_skbuff[entry] = skb;
1857 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1858                 	sis_priv->rx_ring[entry].bufptr =
1859 				pci_map_single(sis_priv->pci_dev, skb->data,
1860 					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1861 		}
1862 	}
1863 	/* re-enable the potentially idle receive state matchine */
1864 	sw32(cr , RxENA | sr32(cr));
1865 
1866 	return 0;
1867 }
1868 
1869 /**
1870  *	sis900_finish_xmit - finish up transmission of packets
1871  *	@net_dev: the net device to be transmitted on
1872  *
1873  *	Check for error condition and free socket buffer etc
1874  *	schedule for more transmission as needed
1875  *	Note: This function is called by interrupt handler,
1876  *	don't do "too much" work here
1877  */
1878 
1879 static void sis900_finish_xmit (struct net_device *net_dev)
1880 {
1881 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1882 
1883 	for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1884 		struct sk_buff *skb;
1885 		unsigned int entry;
1886 		u32 tx_status;
1887 
1888 		entry = sis_priv->dirty_tx % NUM_TX_DESC;
1889 		tx_status = sis_priv->tx_ring[entry].cmdsts;
1890 
1891 		if (tx_status & OWN) {
1892 			/* The packet is not transmitted yet (owned by hardware) !
1893 			 * Note: the interrupt is generated only when Tx Machine
1894 			 * is idle, so this is an almost impossible case */
1895 			break;
1896 		}
1897 
1898 		if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1899 			/* packet unsuccessfully transmitted */
1900 			if (netif_msg_tx_err(sis_priv))
1901 				printk(KERN_DEBUG "%s: Transmit "
1902 				       "error, Tx status %8.8x.\n",
1903 				       net_dev->name, tx_status);
1904 			net_dev->stats.tx_errors++;
1905 			if (tx_status & UNDERRUN)
1906 				net_dev->stats.tx_fifo_errors++;
1907 			if (tx_status & ABORT)
1908 				net_dev->stats.tx_aborted_errors++;
1909 			if (tx_status & NOCARRIER)
1910 				net_dev->stats.tx_carrier_errors++;
1911 			if (tx_status & OWCOLL)
1912 				net_dev->stats.tx_window_errors++;
1913 		} else {
1914 			/* packet successfully transmitted */
1915 			net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1916 			net_dev->stats.tx_bytes += tx_status & DSIZE;
1917 			net_dev->stats.tx_packets++;
1918 		}
1919 		/* Free the original skb. */
1920 		skb = sis_priv->tx_skbuff[entry];
1921 		pci_unmap_single(sis_priv->pci_dev,
1922 			sis_priv->tx_ring[entry].bufptr, skb->len,
1923 			PCI_DMA_TODEVICE);
1924 		dev_kfree_skb_irq(skb);
1925 		sis_priv->tx_skbuff[entry] = NULL;
1926 		sis_priv->tx_ring[entry].bufptr = 0;
1927 		sis_priv->tx_ring[entry].cmdsts = 0;
1928 	}
1929 
1930 	if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1931 	    sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1932 		/* The ring is no longer full, clear tx_full and schedule
1933 		 * more transmission by netif_wake_queue(net_dev) */
1934 		sis_priv->tx_full = 0;
1935 		netif_wake_queue (net_dev);
1936 	}
1937 }
1938 
1939 /**
1940  *	sis900_close - close sis900 device
1941  *	@net_dev: the net device to be closed
1942  *
1943  *	Disable interrupts, stop the Tx and Rx Status Machine
1944  *	free Tx and RX socket buffer
1945  */
1946 
1947 static int sis900_close(struct net_device *net_dev)
1948 {
1949 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1950 	struct pci_dev *pdev = sis_priv->pci_dev;
1951 	void __iomem *ioaddr = sis_priv->ioaddr;
1952 	struct sk_buff *skb;
1953 	int i;
1954 
1955 	netif_stop_queue(net_dev);
1956 
1957 	/* Disable interrupts by clearing the interrupt mask. */
1958 	sw32(imr, 0x0000);
1959 	sw32(ier, 0x0000);
1960 
1961 	/* Stop the chip's Tx and Rx Status Machine */
1962 	sw32(cr, RxDIS | TxDIS | sr32(cr));
1963 
1964 	del_timer(&sis_priv->timer);
1965 
1966 	free_irq(pdev->irq, net_dev);
1967 
1968 	/* Free Tx and RX skbuff */
1969 	for (i = 0; i < NUM_RX_DESC; i++) {
1970 		skb = sis_priv->rx_skbuff[i];
1971 		if (skb) {
1972 			pci_unmap_single(pdev, sis_priv->rx_ring[i].bufptr,
1973 					 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1974 			dev_kfree_skb(skb);
1975 			sis_priv->rx_skbuff[i] = NULL;
1976 		}
1977 	}
1978 	for (i = 0; i < NUM_TX_DESC; i++) {
1979 		skb = sis_priv->tx_skbuff[i];
1980 		if (skb) {
1981 			pci_unmap_single(pdev, sis_priv->tx_ring[i].bufptr,
1982 					 skb->len, PCI_DMA_TODEVICE);
1983 			dev_kfree_skb(skb);
1984 			sis_priv->tx_skbuff[i] = NULL;
1985 		}
1986 	}
1987 
1988 	/* Green! Put the chip in low-power mode. */
1989 
1990 	return 0;
1991 }
1992 
1993 /**
1994  *	sis900_get_drvinfo - Return information about driver
1995  *	@net_dev: the net device to probe
1996  *	@info: container for info returned
1997  *
1998  *	Process ethtool command such as "ehtool -i" to show information
1999  */
2000 
2001 static void sis900_get_drvinfo(struct net_device *net_dev,
2002 			       struct ethtool_drvinfo *info)
2003 {
2004 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2005 
2006 	strlcpy(info->driver, SIS900_MODULE_NAME, sizeof(info->driver));
2007 	strlcpy(info->version, SIS900_DRV_VERSION, sizeof(info->version));
2008 	strlcpy(info->bus_info, pci_name(sis_priv->pci_dev),
2009 		sizeof(info->bus_info));
2010 }
2011 
2012 static u32 sis900_get_msglevel(struct net_device *net_dev)
2013 {
2014 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2015 	return sis_priv->msg_enable;
2016 }
2017 
2018 static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
2019 {
2020 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2021 	sis_priv->msg_enable = value;
2022 }
2023 
2024 static u32 sis900_get_link(struct net_device *net_dev)
2025 {
2026 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2027 	return mii_link_ok(&sis_priv->mii_info);
2028 }
2029 
2030 static int sis900_get_settings(struct net_device *net_dev,
2031 				struct ethtool_cmd *cmd)
2032 {
2033 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2034 	spin_lock_irq(&sis_priv->lock);
2035 	mii_ethtool_gset(&sis_priv->mii_info, cmd);
2036 	spin_unlock_irq(&sis_priv->lock);
2037 	return 0;
2038 }
2039 
2040 static int sis900_set_settings(struct net_device *net_dev,
2041 				struct ethtool_cmd *cmd)
2042 {
2043 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2044 	int rt;
2045 	spin_lock_irq(&sis_priv->lock);
2046 	rt = mii_ethtool_sset(&sis_priv->mii_info, cmd);
2047 	spin_unlock_irq(&sis_priv->lock);
2048 	return rt;
2049 }
2050 
2051 static int sis900_nway_reset(struct net_device *net_dev)
2052 {
2053 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2054 	return mii_nway_restart(&sis_priv->mii_info);
2055 }
2056 
2057 /**
2058  *	sis900_set_wol - Set up Wake on Lan registers
2059  *	@net_dev: the net device to probe
2060  *	@wol: container for info passed to the driver
2061  *
2062  *	Process ethtool command "wol" to setup wake on lan features.
2063  *	SiS900 supports sending WoL events if a correct packet is received,
2064  *	but there is no simple way to filter them to only a subset (broadcast,
2065  *	multicast, unicast or arp).
2066  */
2067 
2068 static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2069 {
2070 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2071 	void __iomem *ioaddr = sis_priv->ioaddr;
2072 	u32 cfgpmcsr = 0, pmctrl_bits = 0;
2073 
2074 	if (wol->wolopts == 0) {
2075 		pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2076 		cfgpmcsr &= ~PME_EN;
2077 		pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2078 		sw32(pmctrl, pmctrl_bits);
2079 		if (netif_msg_wol(sis_priv))
2080 			printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2081 		return 0;
2082 	}
2083 
2084 	if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2085 				| WAKE_BCAST | WAKE_ARP))
2086 		return -EINVAL;
2087 
2088 	if (wol->wolopts & WAKE_MAGIC)
2089 		pmctrl_bits |= MAGICPKT;
2090 	if (wol->wolopts & WAKE_PHY)
2091 		pmctrl_bits |= LINKON;
2092 
2093 	sw32(pmctrl, pmctrl_bits);
2094 
2095 	pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2096 	cfgpmcsr |= PME_EN;
2097 	pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2098 	if (netif_msg_wol(sis_priv))
2099 		printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2100 
2101 	return 0;
2102 }
2103 
2104 static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2105 {
2106 	struct sis900_private *sp = netdev_priv(net_dev);
2107 	void __iomem *ioaddr = sp->ioaddr;
2108 	u32 pmctrl_bits;
2109 
2110 	pmctrl_bits = sr32(pmctrl);
2111 	if (pmctrl_bits & MAGICPKT)
2112 		wol->wolopts |= WAKE_MAGIC;
2113 	if (pmctrl_bits & LINKON)
2114 		wol->wolopts |= WAKE_PHY;
2115 
2116 	wol->supported = (WAKE_PHY | WAKE_MAGIC);
2117 }
2118 
2119 static const struct ethtool_ops sis900_ethtool_ops = {
2120 	.get_drvinfo 	= sis900_get_drvinfo,
2121 	.get_msglevel	= sis900_get_msglevel,
2122 	.set_msglevel	= sis900_set_msglevel,
2123 	.get_link	= sis900_get_link,
2124 	.get_settings	= sis900_get_settings,
2125 	.set_settings	= sis900_set_settings,
2126 	.nway_reset	= sis900_nway_reset,
2127 	.get_wol	= sis900_get_wol,
2128 	.set_wol	= sis900_set_wol
2129 };
2130 
2131 /**
2132  *	mii_ioctl - process MII i/o control command
2133  *	@net_dev: the net device to command for
2134  *	@rq: parameter for command
2135  *	@cmd: the i/o command
2136  *
2137  *	Process MII command like read/write MII register
2138  */
2139 
2140 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2141 {
2142 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2143 	struct mii_ioctl_data *data = if_mii(rq);
2144 
2145 	switch(cmd) {
2146 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2147 		data->phy_id = sis_priv->mii->phy_addr;
2148 		/* Fall Through */
2149 
2150 	case SIOCGMIIREG:		/* Read MII PHY register. */
2151 		data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2152 		return 0;
2153 
2154 	case SIOCSMIIREG:		/* Write MII PHY register. */
2155 		mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2156 		return 0;
2157 	default:
2158 		return -EOPNOTSUPP;
2159 	}
2160 }
2161 
2162 /**
2163  *	sis900_set_config - Set media type by net_device.set_config
2164  *	@dev: the net device for media type change
2165  *	@map: ifmap passed by ifconfig
2166  *
2167  *	Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2168  *	we support only port changes. All other runtime configuration
2169  *	changes will be ignored
2170  */
2171 
2172 static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2173 {
2174 	struct sis900_private *sis_priv = netdev_priv(dev);
2175 	struct mii_phy *mii_phy = sis_priv->mii;
2176 
2177 	u16 status;
2178 
2179 	if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2180 		/* we switch on the ifmap->port field. I couldn't find anything
2181 		 * like a definition or standard for the values of that field.
2182 		 * I think the meaning of those values is device specific. But
2183 		 * since I would like to change the media type via the ifconfig
2184 		 * command I use the definition from linux/netdevice.h
2185 		 * (which seems to be different from the ifport(pcmcia) definition) */
2186 		switch(map->port){
2187 		case IF_PORT_UNKNOWN: /* use auto here */
2188 			dev->if_port = map->port;
2189 			/* we are going to change the media type, so the Link
2190 			 * will be temporary down and we need to reflect that
2191 			 * here. When the Link comes up again, it will be
2192 			 * sensed by the sis_timer procedure, which also does
2193 			 * all the rest for us */
2194 			netif_carrier_off(dev);
2195 
2196 			/* read current state */
2197 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2198 
2199 			/* enable auto negotiation and reset the negotioation
2200 			 * (I don't really know what the auto negatiotiation
2201 			 * reset really means, but it sounds for me right to
2202 			 * do one here) */
2203 			mdio_write(dev, mii_phy->phy_addr,
2204 				   MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2205 
2206 			break;
2207 
2208 		case IF_PORT_10BASET: /* 10BaseT */
2209 			dev->if_port = map->port;
2210 
2211 			/* we are going to change the media type, so the Link
2212 			 * will be temporary down and we need to reflect that
2213 			 * here. When the Link comes up again, it will be
2214 			 * sensed by the sis_timer procedure, which also does
2215 			 * all the rest for us */
2216 			netif_carrier_off(dev);
2217 
2218 			/* set Speed to 10Mbps */
2219 			/* read current state */
2220 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2221 
2222 			/* disable auto negotiation and force 10MBit mode*/
2223 			mdio_write(dev, mii_phy->phy_addr,
2224 				   MII_CONTROL, status & ~(MII_CNTL_SPEED |
2225 					MII_CNTL_AUTO));
2226 			break;
2227 
2228 		case IF_PORT_100BASET: /* 100BaseT */
2229 		case IF_PORT_100BASETX: /* 100BaseTx */
2230 			dev->if_port = map->port;
2231 
2232 			/* we are going to change the media type, so the Link
2233 			 * will be temporary down and we need to reflect that
2234 			 * here. When the Link comes up again, it will be
2235 			 * sensed by the sis_timer procedure, which also does
2236 			 * all the rest for us */
2237 			netif_carrier_off(dev);
2238 
2239 			/* set Speed to 100Mbps */
2240 			/* disable auto negotiation and enable 100MBit Mode */
2241 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2242 			mdio_write(dev, mii_phy->phy_addr,
2243 				   MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2244 				   MII_CNTL_SPEED);
2245 
2246 			break;
2247 
2248 		case IF_PORT_10BASE2: /* 10Base2 */
2249 		case IF_PORT_AUI: /* AUI */
2250 		case IF_PORT_100BASEFX: /* 100BaseFx */
2251                 	/* These Modes are not supported (are they?)*/
2252 			return -EOPNOTSUPP;
2253 			break;
2254 
2255 		default:
2256 			return -EINVAL;
2257 		}
2258 	}
2259 	return 0;
2260 }
2261 
2262 /**
2263  *	sis900_mcast_bitnr - compute hashtable index
2264  *	@addr: multicast address
2265  *	@revision: revision id of chip
2266  *
2267  *	SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2268  *	hash table, which makes this function a little bit different from other drivers
2269  *	SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2270  *   	multicast hash table.
2271  */
2272 
2273 static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2274 {
2275 
2276 	u32 crc = ether_crc(6, addr);
2277 
2278 	/* leave 8 or 7 most siginifant bits */
2279 	if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2280 		return (int)(crc >> 24);
2281 	else
2282 		return (int)(crc >> 25);
2283 }
2284 
2285 /**
2286  *	set_rx_mode - Set SiS900 receive mode
2287  *	@net_dev: the net device to be set
2288  *
2289  *	Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2290  *	And set the appropriate multicast filter.
2291  *	Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2292  */
2293 
2294 static void set_rx_mode(struct net_device *net_dev)
2295 {
2296 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2297 	void __iomem *ioaddr = sis_priv->ioaddr;
2298 	u16 mc_filter[16] = {0};	/* 256/128 bits multicast hash table */
2299 	int i, table_entries;
2300 	u32 rx_mode;
2301 
2302 	/* 635 Hash Table entries = 256(2^16) */
2303 	if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2304 			(sis_priv->chipset_rev == SIS900B_900_REV))
2305 		table_entries = 16;
2306 	else
2307 		table_entries = 8;
2308 
2309 	if (net_dev->flags & IFF_PROMISC) {
2310 		/* Accept any kinds of packets */
2311 		rx_mode = RFPromiscuous;
2312 		for (i = 0; i < table_entries; i++)
2313 			mc_filter[i] = 0xffff;
2314 	} else if ((netdev_mc_count(net_dev) > multicast_filter_limit) ||
2315 		   (net_dev->flags & IFF_ALLMULTI)) {
2316 		/* too many multicast addresses or accept all multicast packet */
2317 		rx_mode = RFAAB | RFAAM;
2318 		for (i = 0; i < table_entries; i++)
2319 			mc_filter[i] = 0xffff;
2320 	} else {
2321 		/* Accept Broadcast packet, destination address matchs our
2322 		 * MAC address, use Receive Filter to reject unwanted MCAST
2323 		 * packets */
2324 		struct netdev_hw_addr *ha;
2325 		rx_mode = RFAAB;
2326 
2327 		netdev_for_each_mc_addr(ha, net_dev) {
2328 			unsigned int bit_nr;
2329 
2330 			bit_nr = sis900_mcast_bitnr(ha->addr,
2331 						    sis_priv->chipset_rev);
2332 			mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2333 		}
2334 	}
2335 
2336 	/* update Multicast Hash Table in Receive Filter */
2337 	for (i = 0; i < table_entries; i++) {
2338                 /* why plus 0x04 ??, That makes the correct value for hash table. */
2339 		sw32(rfcr, (u32)(0x00000004 + i) << RFADDR_shift);
2340 		sw32(rfdr, mc_filter[i]);
2341 	}
2342 
2343 	sw32(rfcr, RFEN | rx_mode);
2344 
2345 	/* sis900 is capable of looping back packets at MAC level for
2346 	 * debugging purpose */
2347 	if (net_dev->flags & IFF_LOOPBACK) {
2348 		u32 cr_saved;
2349 		/* We must disable Tx/Rx before setting loopback mode */
2350 		cr_saved = sr32(cr);
2351 		sw32(cr, cr_saved | TxDIS | RxDIS);
2352 		/* enable loopback */
2353 		sw32(txcfg, sr32(txcfg) | TxMLB);
2354 		sw32(rxcfg, sr32(rxcfg) | RxATX);
2355 		/* restore cr */
2356 		sw32(cr, cr_saved);
2357 	}
2358 }
2359 
2360 /**
2361  *	sis900_reset - Reset sis900 MAC
2362  *	@net_dev: the net device to reset
2363  *
2364  *	reset sis900 MAC and wait until finished
2365  *	reset through command register
2366  *	change backoff algorithm for 900B0 & 635 M/B
2367  */
2368 
2369 static void sis900_reset(struct net_device *net_dev)
2370 {
2371 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2372 	void __iomem *ioaddr = sis_priv->ioaddr;
2373 	u32 status = TxRCMP | RxRCMP;
2374 	int i;
2375 
2376 	sw32(ier, 0);
2377 	sw32(imr, 0);
2378 	sw32(rfcr, 0);
2379 
2380 	sw32(cr, RxRESET | TxRESET | RESET | sr32(cr));
2381 
2382 	/* Check that the chip has finished the reset. */
2383 	for (i = 0; status && (i < 1000); i++)
2384 		status ^= sr32(isr) & status;
2385 
2386 	if (sis_priv->chipset_rev >= SIS635A_900_REV ||
2387 	    sis_priv->chipset_rev == SIS900B_900_REV)
2388 		sw32(cfg, PESEL | RND_CNT);
2389 	else
2390 		sw32(cfg, PESEL);
2391 }
2392 
2393 /**
2394  *	sis900_remove - Remove sis900 device
2395  *	@pci_dev: the pci device to be removed
2396  *
2397  *	remove and release SiS900 net device
2398  */
2399 
2400 static void sis900_remove(struct pci_dev *pci_dev)
2401 {
2402 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2403 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2404 
2405 	unregister_netdev(net_dev);
2406 
2407 	while (sis_priv->first_mii) {
2408 		struct mii_phy *phy = sis_priv->first_mii;
2409 
2410 		sis_priv->first_mii = phy->next;
2411 		kfree(phy);
2412 	}
2413 
2414 	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2415 		sis_priv->rx_ring_dma);
2416 	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2417 		sis_priv->tx_ring_dma);
2418 	pci_iounmap(pci_dev, sis_priv->ioaddr);
2419 	free_netdev(net_dev);
2420 	pci_release_regions(pci_dev);
2421 	pci_set_drvdata(pci_dev, NULL);
2422 }
2423 
2424 #ifdef CONFIG_PM
2425 
2426 static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state)
2427 {
2428 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2429 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2430 	void __iomem *ioaddr = sis_priv->ioaddr;
2431 
2432 	if(!netif_running(net_dev))
2433 		return 0;
2434 
2435 	netif_stop_queue(net_dev);
2436 	netif_device_detach(net_dev);
2437 
2438 	/* Stop the chip's Tx and Rx Status Machine */
2439 	sw32(cr, RxDIS | TxDIS | sr32(cr));
2440 
2441 	pci_set_power_state(pci_dev, PCI_D3hot);
2442 	pci_save_state(pci_dev);
2443 
2444 	return 0;
2445 }
2446 
2447 static int sis900_resume(struct pci_dev *pci_dev)
2448 {
2449 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2450 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2451 	void __iomem *ioaddr = sis_priv->ioaddr;
2452 
2453 	if(!netif_running(net_dev))
2454 		return 0;
2455 	pci_restore_state(pci_dev);
2456 	pci_set_power_state(pci_dev, PCI_D0);
2457 
2458 	sis900_init_rxfilter(net_dev);
2459 
2460 	sis900_init_tx_ring(net_dev);
2461 	sis900_init_rx_ring(net_dev);
2462 
2463 	set_rx_mode(net_dev);
2464 
2465 	netif_device_attach(net_dev);
2466 	netif_start_queue(net_dev);
2467 
2468 	/* Workaround for EDB */
2469 	sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2470 
2471 	/* Enable all known interrupts by setting the interrupt mask. */
2472 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
2473 	sw32(cr, RxENA | sr32(cr));
2474 	sw32(ier, IE);
2475 
2476 	sis900_check_mode(net_dev, sis_priv->mii);
2477 
2478 	return 0;
2479 }
2480 #endif /* CONFIG_PM */
2481 
2482 static struct pci_driver sis900_pci_driver = {
2483 	.name		= SIS900_MODULE_NAME,
2484 	.id_table	= sis900_pci_tbl,
2485 	.probe		= sis900_probe,
2486 	.remove		= sis900_remove,
2487 #ifdef CONFIG_PM
2488 	.suspend	= sis900_suspend,
2489 	.resume		= sis900_resume,
2490 #endif /* CONFIG_PM */
2491 };
2492 
2493 static int __init sis900_init_module(void)
2494 {
2495 /* when a module, this is printed whether or not devices are found in probe */
2496 #ifdef MODULE
2497 	printk(version);
2498 #endif
2499 
2500 	return pci_register_driver(&sis900_pci_driver);
2501 }
2502 
2503 static void __exit sis900_cleanup_module(void)
2504 {
2505 	pci_unregister_driver(&sis900_pci_driver);
2506 }
2507 
2508 module_init(sis900_init_module);
2509 module_exit(sis900_cleanup_module);
2510 
2511