xref: /openbmc/linux/drivers/net/ethernet/sis/sis900.c (revision 95c96174)
1 /* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
2    Copyright 1999 Silicon Integrated System Corporation
3    Revision:	1.08.10 Apr. 2 2006
4 
5    Modified from the driver which is originally written by Donald Becker.
6 
7    This software may be used and distributed according to the terms
8    of the GNU General Public License (GPL), incorporated herein by reference.
9    Drivers based on this skeleton fall under the GPL and must retain
10    the authorship (implicit copyright) notice.
11 
12    References:
13    SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
14    preliminary Rev. 1.0 Jan. 14, 1998
15    SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
16    preliminary Rev. 1.0 Nov. 10, 1998
17    SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
18    preliminary Rev. 1.0 Jan. 18, 1998
19 
20    Rev 1.08.10 Apr.  2 2006 Daniele Venzano add vlan (jumbo packets) support
21    Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
22    Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
23    Rev 1.08.07 Nov.  2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
24    Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
25    Rev 1.08.05 Jun.  6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
26    Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
27    Rev 1.08.03 Feb.  1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
28    Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
29    Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
30    Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
31    Rev 1.07.11 Apr.  2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
32    Rev 1.07.10 Mar.  1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
33    Rev 1.07.09 Feb.  9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
34    Rev 1.07.08 Jan.  8 2001 Lei-Chun Chang added RTL8201 PHY support
35    Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
36    Rev 1.07.06 Nov.  7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
37    Rev 1.07.05 Nov.  6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
38    Rev 1.07.04 Sep.  6 2000 Lei-Chun Chang added ICS1893 PHY support
39    Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E equalizer workaround rule
40    Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
41    Rev 1.07    Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
42    Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
43    Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
44    Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
45    Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
46    Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
47    Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
48    Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
49    Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
50 */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/kernel.h>
55 #include <linux/sched.h>
56 #include <linux/string.h>
57 #include <linux/timer.h>
58 #include <linux/errno.h>
59 #include <linux/ioport.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/pci.h>
63 #include <linux/netdevice.h>
64 #include <linux/init.h>
65 #include <linux/mii.h>
66 #include <linux/etherdevice.h>
67 #include <linux/skbuff.h>
68 #include <linux/delay.h>
69 #include <linux/ethtool.h>
70 #include <linux/crc32.h>
71 #include <linux/bitops.h>
72 #include <linux/dma-mapping.h>
73 
74 #include <asm/processor.h>      /* Processor type for cache alignment. */
75 #include <asm/io.h>
76 #include <asm/irq.h>
77 #include <asm/uaccess.h>	/* User space memory access functions */
78 
79 #include "sis900.h"
80 
81 #define SIS900_MODULE_NAME "sis900"
82 #define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
83 
84 static const char version[] __devinitconst =
85 	KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
86 
87 static int max_interrupt_work = 40;
88 static int multicast_filter_limit = 128;
89 
90 static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
91 
92 #define SIS900_DEF_MSG \
93 	(NETIF_MSG_DRV		| \
94 	 NETIF_MSG_LINK		| \
95 	 NETIF_MSG_RX_ERR	| \
96 	 NETIF_MSG_TX_ERR)
97 
98 /* Time in jiffies before concluding the transmitter is hung. */
99 #define TX_TIMEOUT  (4*HZ)
100 
101 enum {
102 	SIS_900 = 0,
103 	SIS_7016
104 };
105 static const char * card_names[] = {
106 	"SiS 900 PCI Fast Ethernet",
107 	"SiS 7016 PCI Fast Ethernet"
108 };
109 static DEFINE_PCI_DEVICE_TABLE(sis900_pci_tbl) = {
110 	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
111 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
112 	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
113 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
114 	{0,}
115 };
116 MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
117 
118 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
119 
120 static const struct mii_chip_info {
121 	const char * name;
122 	u16 phy_id0;
123 	u16 phy_id1;
124 	u8  phy_types;
125 #define	HOME 	0x0001
126 #define LAN	0x0002
127 #define MIX	0x0003
128 #define UNKNOWN	0x0
129 } mii_chip_table[] = {
130 	{ "SiS 900 Internal MII PHY", 		0x001d, 0x8000, LAN },
131 	{ "SiS 7014 Physical Layer Solution", 	0x0016, 0xf830, LAN },
132 	{ "SiS 900 on Foxconn 661 7MI",         0x0143, 0xBC70, LAN },
133 	{ "Altimata AC101LF PHY",               0x0022, 0x5520, LAN },
134 	{ "ADM 7001 LAN PHY",			0x002e, 0xcc60, LAN },
135 	{ "AMD 79C901 10BASE-T PHY",  		0x0000, 0x6B70, LAN },
136 	{ "AMD 79C901 HomePNA PHY",		0x0000, 0x6B90, HOME},
137 	{ "ICS LAN PHY",			0x0015, 0xF440, LAN },
138 	{ "ICS LAN PHY",			0x0143, 0xBC70, LAN },
139 	{ "NS 83851 PHY",			0x2000, 0x5C20, MIX },
140 	{ "NS 83847 PHY",                       0x2000, 0x5C30, MIX },
141 	{ "Realtek RTL8201 PHY",		0x0000, 0x8200, LAN },
142 	{ "VIA 6103 PHY",			0x0101, 0x8f20, LAN },
143 	{NULL,},
144 };
145 
146 struct mii_phy {
147 	struct mii_phy * next;
148 	int phy_addr;
149 	u16 phy_id0;
150 	u16 phy_id1;
151 	u16 status;
152 	u8  phy_types;
153 };
154 
155 typedef struct _BufferDesc {
156 	u32 link;
157 	u32 cmdsts;
158 	u32 bufptr;
159 } BufferDesc;
160 
161 struct sis900_private {
162 	struct pci_dev * pci_dev;
163 
164 	spinlock_t lock;
165 
166 	struct mii_phy * mii;
167 	struct mii_phy * first_mii; /* record the first mii structure */
168 	unsigned int cur_phy;
169 	struct mii_if_info mii_info;
170 
171 	void __iomem	*ioaddr;
172 
173 	struct timer_list timer; /* Link status detection timer. */
174 	u8 autong_complete; /* 1: auto-negotiate complete  */
175 
176 	u32 msg_enable;
177 
178 	unsigned int cur_rx, dirty_rx; /* producer/comsumer pointers for Tx/Rx ring */
179 	unsigned int cur_tx, dirty_tx;
180 
181 	/* The saved address of a sent/receive-in-place packet buffer */
182 	struct sk_buff *tx_skbuff[NUM_TX_DESC];
183 	struct sk_buff *rx_skbuff[NUM_RX_DESC];
184 	BufferDesc *tx_ring;
185 	BufferDesc *rx_ring;
186 
187 	dma_addr_t tx_ring_dma;
188 	dma_addr_t rx_ring_dma;
189 
190 	unsigned int tx_full; /* The Tx queue is full. */
191 	u8 host_bridge_rev;
192 	u8 chipset_rev;
193 };
194 
195 MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
196 MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
197 MODULE_LICENSE("GPL");
198 
199 module_param(multicast_filter_limit, int, 0444);
200 module_param(max_interrupt_work, int, 0444);
201 module_param(sis900_debug, int, 0444);
202 MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
203 MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
204 MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
205 
206 #define sw32(reg, val)	iowrite32(val, ioaddr + (reg))
207 #define sw8(reg, val)	iowrite8(val, ioaddr + (reg))
208 #define sr32(reg)	ioread32(ioaddr + (reg))
209 #define sr16(reg)	ioread16(ioaddr + (reg))
210 
211 #ifdef CONFIG_NET_POLL_CONTROLLER
212 static void sis900_poll(struct net_device *dev);
213 #endif
214 static int sis900_open(struct net_device *net_dev);
215 static int sis900_mii_probe (struct net_device * net_dev);
216 static void sis900_init_rxfilter (struct net_device * net_dev);
217 static u16 read_eeprom(void __iomem *ioaddr, int location);
218 static int mdio_read(struct net_device *net_dev, int phy_id, int location);
219 static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
220 static void sis900_timer(unsigned long data);
221 static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
222 static void sis900_tx_timeout(struct net_device *net_dev);
223 static void sis900_init_tx_ring(struct net_device *net_dev);
224 static void sis900_init_rx_ring(struct net_device *net_dev);
225 static netdev_tx_t sis900_start_xmit(struct sk_buff *skb,
226 				     struct net_device *net_dev);
227 static int sis900_rx(struct net_device *net_dev);
228 static void sis900_finish_xmit (struct net_device *net_dev);
229 static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
230 static int sis900_close(struct net_device *net_dev);
231 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
232 static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
233 static void set_rx_mode(struct net_device *net_dev);
234 static void sis900_reset(struct net_device *net_dev);
235 static void sis630_set_eq(struct net_device *net_dev, u8 revision);
236 static int sis900_set_config(struct net_device *dev, struct ifmap *map);
237 static u16 sis900_default_phy(struct net_device * net_dev);
238 static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
239 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
240 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
241 static void sis900_set_mode(struct sis900_private *, int speed, int duplex);
242 static const struct ethtool_ops sis900_ethtool_ops;
243 
244 /**
245  *	sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
246  *	@pci_dev: the sis900 pci device
247  *	@net_dev: the net device to get address for
248  *
249  *	Older SiS900 and friends, use EEPROM to store MAC address.
250  *	MAC address is read from read_eeprom() into @net_dev->dev_addr and
251  *	@net_dev->perm_addr.
252  */
253 
254 static int __devinit sis900_get_mac_addr(struct pci_dev * pci_dev, struct net_device *net_dev)
255 {
256 	struct sis900_private *sis_priv = netdev_priv(net_dev);
257 	void __iomem *ioaddr = sis_priv->ioaddr;
258 	u16 signature;
259 	int i;
260 
261 	/* check to see if we have sane EEPROM */
262 	signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
263 	if (signature == 0xffff || signature == 0x0000) {
264 		printk (KERN_WARNING "%s: Error EERPOM read %x\n",
265 			pci_name(pci_dev), signature);
266 		return 0;
267 	}
268 
269 	/* get MAC address from EEPROM */
270 	for (i = 0; i < 3; i++)
271 	        ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
272 
273 	/* Store MAC Address in perm_addr */
274 	memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
275 
276 	return 1;
277 }
278 
279 /**
280  *	sis630e_get_mac_addr - Get MAC address for SiS630E model
281  *	@pci_dev: the sis900 pci device
282  *	@net_dev: the net device to get address for
283  *
284  *	SiS630E model, use APC CMOS RAM to store MAC address.
285  *	APC CMOS RAM is accessed through ISA bridge.
286  *	MAC address is read into @net_dev->dev_addr and
287  *	@net_dev->perm_addr.
288  */
289 
290 static int __devinit sis630e_get_mac_addr(struct pci_dev * pci_dev,
291 					struct net_device *net_dev)
292 {
293 	struct pci_dev *isa_bridge = NULL;
294 	u8 reg;
295 	int i;
296 
297 	isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
298 	if (!isa_bridge)
299 		isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
300 	if (!isa_bridge) {
301 		printk(KERN_WARNING "%s: Can not find ISA bridge\n",
302 		       pci_name(pci_dev));
303 		return 0;
304 	}
305 	pci_read_config_byte(isa_bridge, 0x48, &reg);
306 	pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
307 
308 	for (i = 0; i < 6; i++) {
309 		outb(0x09 + i, 0x70);
310 		((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
311 	}
312 
313 	/* Store MAC Address in perm_addr */
314 	memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
315 
316 	pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
317 	pci_dev_put(isa_bridge);
318 
319 	return 1;
320 }
321 
322 
323 /**
324  *	sis635_get_mac_addr - Get MAC address for SIS635 model
325  *	@pci_dev: the sis900 pci device
326  *	@net_dev: the net device to get address for
327  *
328  *	SiS635 model, set MAC Reload Bit to load Mac address from APC
329  *	to rfdr. rfdr is accessed through rfcr. MAC address is read into
330  *	@net_dev->dev_addr and @net_dev->perm_addr.
331  */
332 
333 static int __devinit sis635_get_mac_addr(struct pci_dev * pci_dev,
334 					struct net_device *net_dev)
335 {
336 	struct sis900_private *sis_priv = netdev_priv(net_dev);
337 	void __iomem *ioaddr = sis_priv->ioaddr;
338 	u32 rfcrSave;
339 	u32 i;
340 
341 	rfcrSave = sr32(rfcr);
342 
343 	sw32(cr, rfcrSave | RELOAD);
344 	sw32(cr, 0);
345 
346 	/* disable packet filtering before setting filter */
347 	sw32(rfcr, rfcrSave & ~RFEN);
348 
349 	/* load MAC addr to filter data register */
350 	for (i = 0 ; i < 3 ; i++) {
351 		sw32(rfcr, (i << RFADDR_shift));
352 		*( ((u16 *)net_dev->dev_addr) + i) = sr16(rfdr);
353 	}
354 
355 	/* Store MAC Address in perm_addr */
356 	memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
357 
358 	/* enable packet filtering */
359 	sw32(rfcr, rfcrSave | RFEN);
360 
361 	return 1;
362 }
363 
364 /**
365  *	sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
366  *	@pci_dev: the sis900 pci device
367  *	@net_dev: the net device to get address for
368  *
369  *	SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
370  *	is shared by
371  *	LAN and 1394. When access EEPROM, send EEREQ signal to hardware first
372  *	and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access
373  *	by LAN, otherwise is not. After MAC address is read from EEPROM, send
374  *	EEDONE signal to refuse EEPROM access by LAN.
375  *	The EEPROM map of SiS962 or SiS963 is different to SiS900.
376  *	The signature field in SiS962 or SiS963 spec is meaningless.
377  *	MAC address is read into @net_dev->dev_addr and @net_dev->perm_addr.
378  */
379 
380 static int __devinit sis96x_get_mac_addr(struct pci_dev * pci_dev,
381 					struct net_device *net_dev)
382 {
383 	struct sis900_private *sis_priv = netdev_priv(net_dev);
384 	void __iomem *ioaddr = sis_priv->ioaddr;
385 	int wait, rc = 0;
386 
387 	sw32(mear, EEREQ);
388 	for (wait = 0; wait < 2000; wait++) {
389 		if (sr32(mear) & EEGNT) {
390 			u16 *mac = (u16 *)net_dev->dev_addr;
391 			int i;
392 
393 			/* get MAC address from EEPROM */
394 			for (i = 0; i < 3; i++)
395 			        mac[i] = read_eeprom(ioaddr, i + EEPROMMACAddr);
396 
397 			/* Store MAC Address in perm_addr */
398 			memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
399 
400 			rc = 1;
401 			break;
402 		}
403 		udelay(1);
404 	}
405 	sw32(mear, EEDONE);
406 	return rc;
407 }
408 
409 static const struct net_device_ops sis900_netdev_ops = {
410 	.ndo_open		 = sis900_open,
411 	.ndo_stop		= sis900_close,
412 	.ndo_start_xmit		= sis900_start_xmit,
413 	.ndo_set_config		= sis900_set_config,
414 	.ndo_set_rx_mode	= set_rx_mode,
415 	.ndo_change_mtu		= eth_change_mtu,
416 	.ndo_validate_addr	= eth_validate_addr,
417 	.ndo_set_mac_address 	= eth_mac_addr,
418 	.ndo_do_ioctl		= mii_ioctl,
419 	.ndo_tx_timeout		= sis900_tx_timeout,
420 #ifdef CONFIG_NET_POLL_CONTROLLER
421         .ndo_poll_controller	= sis900_poll,
422 #endif
423 };
424 
425 /**
426  *	sis900_probe - Probe for sis900 device
427  *	@pci_dev: the sis900 pci device
428  *	@pci_id: the pci device ID
429  *
430  *	Check and probe sis900 net device for @pci_dev.
431  *	Get mac address according to the chip revision,
432  *	and assign SiS900-specific entries in the device structure.
433  *	ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
434  */
435 
436 static int __devinit sis900_probe(struct pci_dev *pci_dev,
437 				const struct pci_device_id *pci_id)
438 {
439 	struct sis900_private *sis_priv;
440 	struct net_device *net_dev;
441 	struct pci_dev *dev;
442 	dma_addr_t ring_dma;
443 	void *ring_space;
444 	void __iomem *ioaddr;
445 	int i, ret;
446 	const char *card_name = card_names[pci_id->driver_data];
447 	const char *dev_name = pci_name(pci_dev);
448 
449 /* when built into the kernel, we only print version if device is found */
450 #ifndef MODULE
451 	static int printed_version;
452 	if (!printed_version++)
453 		printk(version);
454 #endif
455 
456 	/* setup various bits in PCI command register */
457 	ret = pci_enable_device(pci_dev);
458 	if(ret) return ret;
459 
460 	i = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
461 	if(i){
462 		printk(KERN_ERR "sis900.c: architecture does not support "
463 			"32bit PCI busmaster DMA\n");
464 		return i;
465 	}
466 
467 	pci_set_master(pci_dev);
468 
469 	net_dev = alloc_etherdev(sizeof(struct sis900_private));
470 	if (!net_dev)
471 		return -ENOMEM;
472 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
473 
474 	/* We do a request_region() to register /proc/ioports info. */
475 	ret = pci_request_regions(pci_dev, "sis900");
476 	if (ret)
477 		goto err_out;
478 
479 	/* IO region. */
480 	ioaddr = pci_iomap(pci_dev, 0, 0);
481 	if (!ioaddr)
482 		goto err_out_cleardev;
483 
484 	sis_priv = netdev_priv(net_dev);
485 	sis_priv->ioaddr = ioaddr;
486 	sis_priv->pci_dev = pci_dev;
487 	spin_lock_init(&sis_priv->lock);
488 
489 	pci_set_drvdata(pci_dev, net_dev);
490 
491 	ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
492 	if (!ring_space) {
493 		ret = -ENOMEM;
494 		goto err_out_unmap;
495 	}
496 	sis_priv->tx_ring = ring_space;
497 	sis_priv->tx_ring_dma = ring_dma;
498 
499 	ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
500 	if (!ring_space) {
501 		ret = -ENOMEM;
502 		goto err_unmap_tx;
503 	}
504 	sis_priv->rx_ring = ring_space;
505 	sis_priv->rx_ring_dma = ring_dma;
506 
507 	/* The SiS900-specific entries in the device structure. */
508 	net_dev->netdev_ops = &sis900_netdev_ops;
509 	net_dev->watchdog_timeo = TX_TIMEOUT;
510 	net_dev->ethtool_ops = &sis900_ethtool_ops;
511 
512 	if (sis900_debug > 0)
513 		sis_priv->msg_enable = sis900_debug;
514 	else
515 		sis_priv->msg_enable = SIS900_DEF_MSG;
516 
517 	sis_priv->mii_info.dev = net_dev;
518 	sis_priv->mii_info.mdio_read = mdio_read;
519 	sis_priv->mii_info.mdio_write = mdio_write;
520 	sis_priv->mii_info.phy_id_mask = 0x1f;
521 	sis_priv->mii_info.reg_num_mask = 0x1f;
522 
523 	/* Get Mac address according to the chip revision */
524 	sis_priv->chipset_rev = pci_dev->revision;
525 	if(netif_msg_probe(sis_priv))
526 		printk(KERN_DEBUG "%s: detected revision %2.2x, "
527 				"trying to get MAC address...\n",
528 				dev_name, sis_priv->chipset_rev);
529 
530 	ret = 0;
531 	if (sis_priv->chipset_rev == SIS630E_900_REV)
532 		ret = sis630e_get_mac_addr(pci_dev, net_dev);
533 	else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
534 		ret = sis635_get_mac_addr(pci_dev, net_dev);
535 	else if (sis_priv->chipset_rev == SIS96x_900_REV)
536 		ret = sis96x_get_mac_addr(pci_dev, net_dev);
537 	else
538 		ret = sis900_get_mac_addr(pci_dev, net_dev);
539 
540 	if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) {
541 		eth_hw_addr_random(net_dev);
542 		printk(KERN_WARNING "%s: Unreadable or invalid MAC address,"
543 				"using random generated one\n", dev_name);
544 	}
545 
546 	/* 630ET : set the mii access mode as software-mode */
547 	if (sis_priv->chipset_rev == SIS630ET_900_REV)
548 		sw32(cr, ACCESSMODE | sr32(cr));
549 
550 	/* probe for mii transceiver */
551 	if (sis900_mii_probe(net_dev) == 0) {
552 		printk(KERN_WARNING "%s: Error probing MII device.\n",
553 		       dev_name);
554 		ret = -ENODEV;
555 		goto err_unmap_rx;
556 	}
557 
558 	/* save our host bridge revision */
559 	dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
560 	if (dev) {
561 		sis_priv->host_bridge_rev = dev->revision;
562 		pci_dev_put(dev);
563 	}
564 
565 	ret = register_netdev(net_dev);
566 	if (ret)
567 		goto err_unmap_rx;
568 
569 	/* print some information about our NIC */
570 	printk(KERN_INFO "%s: %s at 0x%p, IRQ %d, %pM\n",
571 	       net_dev->name, card_name, ioaddr, pci_dev->irq,
572 	       net_dev->dev_addr);
573 
574 	/* Detect Wake on Lan support */
575 	ret = (sr32(CFGPMC) & PMESP) >> 27;
576 	if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
577 		printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
578 
579 	return 0;
580 
581 err_unmap_rx:
582 	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
583 		sis_priv->rx_ring_dma);
584 err_unmap_tx:
585 	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
586 		sis_priv->tx_ring_dma);
587 err_out_unmap:
588 	pci_iounmap(pci_dev, ioaddr);
589 err_out_cleardev:
590 	pci_set_drvdata(pci_dev, NULL);
591 	pci_release_regions(pci_dev);
592  err_out:
593 	free_netdev(net_dev);
594 	return ret;
595 }
596 
597 /**
598  *	sis900_mii_probe - Probe MII PHY for sis900
599  *	@net_dev: the net device to probe for
600  *
601  *	Search for total of 32 possible mii phy addresses.
602  *	Identify and set current phy if found one,
603  *	return error if it failed to found.
604  */
605 
606 static int __devinit sis900_mii_probe(struct net_device * net_dev)
607 {
608 	struct sis900_private *sis_priv = netdev_priv(net_dev);
609 	const char *dev_name = pci_name(sis_priv->pci_dev);
610 	u16 poll_bit = MII_STAT_LINK, status = 0;
611 	unsigned long timeout = jiffies + 5 * HZ;
612 	int phy_addr;
613 
614 	sis_priv->mii = NULL;
615 
616 	/* search for total of 32 possible mii phy addresses */
617 	for (phy_addr = 0; phy_addr < 32; phy_addr++) {
618 		struct mii_phy * mii_phy = NULL;
619 		u16 mii_status;
620 		int i;
621 
622 		mii_phy = NULL;
623 		for(i = 0; i < 2; i++)
624 			mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
625 
626 		if (mii_status == 0xffff || mii_status == 0x0000) {
627 			if (netif_msg_probe(sis_priv))
628 				printk(KERN_DEBUG "%s: MII at address %d"
629 						" not accessible\n",
630 						dev_name, phy_addr);
631 			continue;
632 		}
633 
634 		if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
635 			mii_phy = sis_priv->first_mii;
636 			while (mii_phy) {
637 				struct mii_phy *phy;
638 				phy = mii_phy;
639 				mii_phy = mii_phy->next;
640 				kfree(phy);
641 			}
642 			return 0;
643 		}
644 
645 		mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
646 		mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
647 		mii_phy->phy_addr = phy_addr;
648 		mii_phy->status = mii_status;
649 		mii_phy->next = sis_priv->mii;
650 		sis_priv->mii = mii_phy;
651 		sis_priv->first_mii = mii_phy;
652 
653 		for (i = 0; mii_chip_table[i].phy_id1; i++)
654 			if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
655 			    ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
656 				mii_phy->phy_types = mii_chip_table[i].phy_types;
657 				if (mii_chip_table[i].phy_types == MIX)
658 					mii_phy->phy_types =
659 					    (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
660 				printk(KERN_INFO "%s: %s transceiver found "
661 							"at address %d.\n",
662 							dev_name,
663 							mii_chip_table[i].name,
664 							phy_addr);
665 				break;
666 			}
667 
668 		if( !mii_chip_table[i].phy_id1 ) {
669 			printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
670 			       dev_name, phy_addr);
671 			mii_phy->phy_types = UNKNOWN;
672 		}
673 	}
674 
675 	if (sis_priv->mii == NULL) {
676 		printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
677 		return 0;
678 	}
679 
680 	/* select default PHY for mac */
681 	sis_priv->mii = NULL;
682 	sis900_default_phy( net_dev );
683 
684 	/* Reset phy if default phy is internal sis900 */
685         if ((sis_priv->mii->phy_id0 == 0x001D) &&
686 	    ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
687         	status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
688 
689         /* workaround for ICS1893 PHY */
690         if ((sis_priv->mii->phy_id0 == 0x0015) &&
691             ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
692             	mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
693 
694 	if(status & MII_STAT_LINK){
695 		while (poll_bit) {
696 			yield();
697 
698 			poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
699 			if (time_after_eq(jiffies, timeout)) {
700 				printk(KERN_WARNING "%s: reset phy and link down now\n",
701 				       dev_name);
702 				return -ETIME;
703 			}
704 		}
705 	}
706 
707 	if (sis_priv->chipset_rev == SIS630E_900_REV) {
708 		/* SiS 630E has some bugs on default value of PHY registers */
709 		mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
710 		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
711 		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
712 		mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
713 		//mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
714 	}
715 
716 	if (sis_priv->mii->status & MII_STAT_LINK)
717 		netif_carrier_on(net_dev);
718 	else
719 		netif_carrier_off(net_dev);
720 
721 	return 1;
722 }
723 
724 /**
725  *	sis900_default_phy - Select default PHY for sis900 mac.
726  *	@net_dev: the net device to probe for
727  *
728  *	Select first detected PHY with link as default.
729  *	If no one is link on, select PHY whose types is HOME as default.
730  *	If HOME doesn't exist, select LAN.
731  */
732 
733 static u16 sis900_default_phy(struct net_device * net_dev)
734 {
735 	struct sis900_private *sis_priv = netdev_priv(net_dev);
736  	struct mii_phy *phy = NULL, *phy_home = NULL,
737 		*default_phy = NULL, *phy_lan = NULL;
738 	u16 status;
739 
740         for (phy=sis_priv->first_mii; phy; phy=phy->next) {
741 		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
742 		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
743 
744 		/* Link ON & Not select default PHY & not ghost PHY */
745 		 if ((status & MII_STAT_LINK) && !default_phy &&
746 					(phy->phy_types != UNKNOWN))
747 		 	default_phy = phy;
748 		 else {
749 			status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
750 			mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
751 				status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
752 			if (phy->phy_types == HOME)
753 				phy_home = phy;
754 			else if(phy->phy_types == LAN)
755 				phy_lan = phy;
756 		 }
757 	}
758 
759 	if (!default_phy && phy_home)
760 		default_phy = phy_home;
761 	else if (!default_phy && phy_lan)
762 		default_phy = phy_lan;
763 	else if (!default_phy)
764 		default_phy = sis_priv->first_mii;
765 
766 	if (sis_priv->mii != default_phy) {
767 		sis_priv->mii = default_phy;
768 		sis_priv->cur_phy = default_phy->phy_addr;
769 		printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
770 		       pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
771 	}
772 
773 	sis_priv->mii_info.phy_id = sis_priv->cur_phy;
774 
775 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
776 	status &= (~MII_CNTL_ISOLATE);
777 
778 	mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
779 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
780 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
781 
782 	return status;
783 }
784 
785 
786 /**
787  * 	sis900_set_capability - set the media capability of network adapter.
788  *	@net_dev : the net device to probe for
789  *	@phy : default PHY
790  *
791  *	Set the media capability of network adapter according to
792  *	mii status register. It's necessary before auto-negotiate.
793  */
794 
795 static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
796 {
797 	u16 cap;
798 	u16 status;
799 
800 	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
801 	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
802 
803 	cap = MII_NWAY_CSMA_CD |
804 		((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
805 		((phy->status & MII_STAT_CAN_TX)    ? MII_NWAY_TX:0) |
806 		((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
807 		((phy->status & MII_STAT_CAN_T)     ? MII_NWAY_T:0);
808 
809 	mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
810 }
811 
812 
813 /* Delay between EEPROM clock transitions. */
814 #define eeprom_delay()	sr32(mear)
815 
816 /**
817  *	read_eeprom - Read Serial EEPROM
818  *	@ioaddr: base i/o address
819  *	@location: the EEPROM location to read
820  *
821  *	Read Serial EEPROM through EEPROM Access Register.
822  *	Note that location is in word (16 bits) unit
823  */
824 
825 static u16 __devinit read_eeprom(void __iomem *ioaddr, int location)
826 {
827 	u32 read_cmd = location | EEread;
828 	int i;
829 	u16 retval = 0;
830 
831 	sw32(mear, 0);
832 	eeprom_delay();
833 	sw32(mear, EECS);
834 	eeprom_delay();
835 
836 	/* Shift the read command (9) bits out. */
837 	for (i = 8; i >= 0; i--) {
838 		u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
839 
840 		sw32(mear, dataval);
841 		eeprom_delay();
842 		sw32(mear, dataval | EECLK);
843 		eeprom_delay();
844 	}
845 	sw32(mear, EECS);
846 	eeprom_delay();
847 
848 	/* read the 16-bits data in */
849 	for (i = 16; i > 0; i--) {
850 		sw32(mear, EECS);
851 		eeprom_delay();
852 		sw32(mear, EECS | EECLK);
853 		eeprom_delay();
854 		retval = (retval << 1) | ((sr32(mear) & EEDO) ? 1 : 0);
855 		eeprom_delay();
856 	}
857 
858 	/* Terminate the EEPROM access. */
859 	sw32(mear, 0);
860 	eeprom_delay();
861 
862 	return retval;
863 }
864 
865 /* Read and write the MII management registers using software-generated
866    serial MDIO protocol. Note that the command bits and data bits are
867    send out separately */
868 #define mdio_delay()	sr32(mear)
869 
870 static void mdio_idle(struct sis900_private *sp)
871 {
872 	void __iomem *ioaddr = sp->ioaddr;
873 
874 	sw32(mear, MDIO | MDDIR);
875 	mdio_delay();
876 	sw32(mear, MDIO | MDDIR | MDC);
877 }
878 
879 /* Synchronize the MII management interface by shifting 32 one bits out. */
880 static void mdio_reset(struct sis900_private *sp)
881 {
882 	void __iomem *ioaddr = sp->ioaddr;
883 	int i;
884 
885 	for (i = 31; i >= 0; i--) {
886 		sw32(mear, MDDIR | MDIO);
887 		mdio_delay();
888 		sw32(mear, MDDIR | MDIO | MDC);
889 		mdio_delay();
890 	}
891 }
892 
893 /**
894  *	mdio_read - read MII PHY register
895  *	@net_dev: the net device to read
896  *	@phy_id: the phy address to read
897  *	@location: the phy regiester id to read
898  *
899  *	Read MII registers through MDIO and MDC
900  *	using MDIO management frame structure and protocol(defined by ISO/IEC).
901  *	Please see SiS7014 or ICS spec
902  */
903 
904 static int mdio_read(struct net_device *net_dev, int phy_id, int location)
905 {
906 	int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
907 	struct sis900_private *sp = netdev_priv(net_dev);
908 	void __iomem *ioaddr = sp->ioaddr;
909 	u16 retval = 0;
910 	int i;
911 
912 	mdio_reset(sp);
913 	mdio_idle(sp);
914 
915 	for (i = 15; i >= 0; i--) {
916 		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
917 
918 		sw32(mear, dataval);
919 		mdio_delay();
920 		sw32(mear, dataval | MDC);
921 		mdio_delay();
922 	}
923 
924 	/* Read the 16 data bits. */
925 	for (i = 16; i > 0; i--) {
926 		sw32(mear, 0);
927 		mdio_delay();
928 		retval = (retval << 1) | ((sr32(mear) & MDIO) ? 1 : 0);
929 		sw32(mear, MDC);
930 		mdio_delay();
931 	}
932 	sw32(mear, 0x00);
933 
934 	return retval;
935 }
936 
937 /**
938  *	mdio_write - write MII PHY register
939  *	@net_dev: the net device to write
940  *	@phy_id: the phy address to write
941  *	@location: the phy regiester id to write
942  *	@value: the register value to write with
943  *
944  *	Write MII registers with @value through MDIO and MDC
945  *	using MDIO management frame structure and protocol(defined by ISO/IEC)
946  *	please see SiS7014 or ICS spec
947  */
948 
949 static void mdio_write(struct net_device *net_dev, int phy_id, int location,
950 			int value)
951 {
952 	int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
953 	struct sis900_private *sp = netdev_priv(net_dev);
954 	void __iomem *ioaddr = sp->ioaddr;
955 	int i;
956 
957 	mdio_reset(sp);
958 	mdio_idle(sp);
959 
960 	/* Shift the command bits out. */
961 	for (i = 15; i >= 0; i--) {
962 		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
963 
964 		sw8(mear, dataval);
965 		mdio_delay();
966 		sw8(mear, dataval | MDC);
967 		mdio_delay();
968 	}
969 	mdio_delay();
970 
971 	/* Shift the value bits out. */
972 	for (i = 15; i >= 0; i--) {
973 		int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
974 
975 		sw32(mear, dataval);
976 		mdio_delay();
977 		sw32(mear, dataval | MDC);
978 		mdio_delay();
979 	}
980 	mdio_delay();
981 
982 	/* Clear out extra bits. */
983 	for (i = 2; i > 0; i--) {
984 		sw8(mear, 0);
985 		mdio_delay();
986 		sw8(mear, MDC);
987 		mdio_delay();
988 	}
989 	sw32(mear, 0x00);
990 }
991 
992 
993 /**
994  *	sis900_reset_phy - reset sis900 mii phy.
995  *	@net_dev: the net device to write
996  *	@phy_addr: default phy address
997  *
998  *	Some specific phy can't work properly without reset.
999  *	This function will be called during initialization and
1000  *	link status change from ON to DOWN.
1001  */
1002 
1003 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
1004 {
1005 	int i;
1006 	u16 status;
1007 
1008 	for (i = 0; i < 2; i++)
1009 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1010 
1011 	mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
1012 
1013 	return status;
1014 }
1015 
1016 #ifdef CONFIG_NET_POLL_CONTROLLER
1017 /*
1018  * Polling 'interrupt' - used by things like netconsole to send skbs
1019  * without having to re-enable interrupts. It's not called while
1020  * the interrupt routine is executing.
1021 */
1022 static void sis900_poll(struct net_device *dev)
1023 {
1024 	struct sis900_private *sp = netdev_priv(dev);
1025 	const int irq = sp->pci_dev->irq;
1026 
1027 	disable_irq(irq);
1028 	sis900_interrupt(irq, dev);
1029 	enable_irq(irq);
1030 }
1031 #endif
1032 
1033 /**
1034  *	sis900_open - open sis900 device
1035  *	@net_dev: the net device to open
1036  *
1037  *	Do some initialization and start net interface.
1038  *	enable interrupts and set sis900 timer.
1039  */
1040 
1041 static int
1042 sis900_open(struct net_device *net_dev)
1043 {
1044 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1045 	void __iomem *ioaddr = sis_priv->ioaddr;
1046 	int ret;
1047 
1048 	/* Soft reset the chip. */
1049 	sis900_reset(net_dev);
1050 
1051 	/* Equalizer workaround Rule */
1052 	sis630_set_eq(net_dev, sis_priv->chipset_rev);
1053 
1054 	ret = request_irq(sis_priv->pci_dev->irq, sis900_interrupt, IRQF_SHARED,
1055 			  net_dev->name, net_dev);
1056 	if (ret)
1057 		return ret;
1058 
1059 	sis900_init_rxfilter(net_dev);
1060 
1061 	sis900_init_tx_ring(net_dev);
1062 	sis900_init_rx_ring(net_dev);
1063 
1064 	set_rx_mode(net_dev);
1065 
1066 	netif_start_queue(net_dev);
1067 
1068 	/* Workaround for EDB */
1069 	sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1070 
1071 	/* Enable all known interrupts by setting the interrupt mask. */
1072 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
1073 	sw32(cr, RxENA | sr32(cr));
1074 	sw32(ier, IE);
1075 
1076 	sis900_check_mode(net_dev, sis_priv->mii);
1077 
1078 	/* Set the timer to switch to check for link beat and perhaps switch
1079 	   to an alternate media type. */
1080 	init_timer(&sis_priv->timer);
1081 	sis_priv->timer.expires = jiffies + HZ;
1082 	sis_priv->timer.data = (unsigned long)net_dev;
1083 	sis_priv->timer.function = sis900_timer;
1084 	add_timer(&sis_priv->timer);
1085 
1086 	return 0;
1087 }
1088 
1089 /**
1090  *	sis900_init_rxfilter - Initialize the Rx filter
1091  *	@net_dev: the net device to initialize for
1092  *
1093  *	Set receive filter address to our MAC address
1094  *	and enable packet filtering.
1095  */
1096 
1097 static void
1098 sis900_init_rxfilter (struct net_device * net_dev)
1099 {
1100 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1101 	void __iomem *ioaddr = sis_priv->ioaddr;
1102 	u32 rfcrSave;
1103 	u32 i;
1104 
1105 	rfcrSave = sr32(rfcr);
1106 
1107 	/* disable packet filtering before setting filter */
1108 	sw32(rfcr, rfcrSave & ~RFEN);
1109 
1110 	/* load MAC addr to filter data register */
1111 	for (i = 0 ; i < 3 ; i++) {
1112 		u32 w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1113 
1114 		sw32(rfcr, i << RFADDR_shift);
1115 		sw32(rfdr, w);
1116 
1117 		if (netif_msg_hw(sis_priv)) {
1118 			printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n",
1119 			       net_dev->name, i, sr32(rfdr));
1120 		}
1121 	}
1122 
1123 	/* enable packet filtering */
1124 	sw32(rfcr, rfcrSave | RFEN);
1125 }
1126 
1127 /**
1128  *	sis900_init_tx_ring - Initialize the Tx descriptor ring
1129  *	@net_dev: the net device to initialize for
1130  *
1131  *	Initialize the Tx descriptor ring,
1132  */
1133 
1134 static void
1135 sis900_init_tx_ring(struct net_device *net_dev)
1136 {
1137 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1138 	void __iomem *ioaddr = sis_priv->ioaddr;
1139 	int i;
1140 
1141 	sis_priv->tx_full = 0;
1142 	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1143 
1144 	for (i = 0; i < NUM_TX_DESC; i++) {
1145 		sis_priv->tx_skbuff[i] = NULL;
1146 
1147 		sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1148 			((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1149 		sis_priv->tx_ring[i].cmdsts = 0;
1150 		sis_priv->tx_ring[i].bufptr = 0;
1151 	}
1152 
1153 	/* load Transmit Descriptor Register */
1154 	sw32(txdp, sis_priv->tx_ring_dma);
1155 	if (netif_msg_hw(sis_priv))
1156 		printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1157 		       net_dev->name, sr32(txdp));
1158 }
1159 
1160 /**
1161  *	sis900_init_rx_ring - Initialize the Rx descriptor ring
1162  *	@net_dev: the net device to initialize for
1163  *
1164  *	Initialize the Rx descriptor ring,
1165  *	and pre-allocate recevie buffers (socket buffer)
1166  */
1167 
1168 static void
1169 sis900_init_rx_ring(struct net_device *net_dev)
1170 {
1171 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1172 	void __iomem *ioaddr = sis_priv->ioaddr;
1173 	int i;
1174 
1175 	sis_priv->cur_rx = 0;
1176 	sis_priv->dirty_rx = 0;
1177 
1178 	/* init RX descriptor */
1179 	for (i = 0; i < NUM_RX_DESC; i++) {
1180 		sis_priv->rx_skbuff[i] = NULL;
1181 
1182 		sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1183 			((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1184 		sis_priv->rx_ring[i].cmdsts = 0;
1185 		sis_priv->rx_ring[i].bufptr = 0;
1186 	}
1187 
1188 	/* allocate sock buffers */
1189 	for (i = 0; i < NUM_RX_DESC; i++) {
1190 		struct sk_buff *skb;
1191 
1192 		if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1193 			/* not enough memory for skbuff, this makes a "hole"
1194 			   on the buffer ring, it is not clear how the
1195 			   hardware will react to this kind of degenerated
1196 			   buffer */
1197 			break;
1198 		}
1199 		sis_priv->rx_skbuff[i] = skb;
1200 		sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1201                 sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1202                         skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1203 	}
1204 	sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1205 
1206 	/* load Receive Descriptor Register */
1207 	sw32(rxdp, sis_priv->rx_ring_dma);
1208 	if (netif_msg_hw(sis_priv))
1209 		printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1210 		       net_dev->name, sr32(rxdp));
1211 }
1212 
1213 /**
1214  *	sis630_set_eq - set phy equalizer value for 630 LAN
1215  *	@net_dev: the net device to set equalizer value
1216  *	@revision: 630 LAN revision number
1217  *
1218  *	630E equalizer workaround rule(Cyrus Huang 08/15)
1219  *	PHY register 14h(Test)
1220  *	Bit 14: 0 -- Automatically detect (default)
1221  *		1 -- Manually set Equalizer filter
1222  *	Bit 13: 0 -- (Default)
1223  *		1 -- Speed up convergence of equalizer setting
1224  *	Bit 9 : 0 -- (Default)
1225  *		1 -- Disable Baseline Wander
1226  *	Bit 3~7   -- Equalizer filter setting
1227  *	Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1228  *	Then calculate equalizer value
1229  *	Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1230  *	Link Off:Set Bit 13 to 1, Bit 14 to 0
1231  *	Calculate Equalizer value:
1232  *	When Link is ON and Bit 14 is 0, SIS900PHY will auto-detect proper equalizer value.
1233  *	When the equalizer is stable, this value is not a fixed value. It will be within
1234  *	a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1235  *	0 <= max <= 4  --> set equalizer to max
1236  *	5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1237  *	max >= 15      --> set equalizer to max+5 or set equalizer to max+6 if max == min
1238  */
1239 
1240 static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1241 {
1242 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1243 	u16 reg14h, eq_value=0, max_value=0, min_value=0;
1244 	int i, maxcount=10;
1245 
1246 	if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1247 	       revision == SIS630A_900_REV || revision ==  SIS630ET_900_REV) )
1248 		return;
1249 
1250 	if (netif_carrier_ok(net_dev)) {
1251 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1252 		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1253 					(0x2200 | reg14h) & 0xBFFF);
1254 		for (i=0; i < maxcount; i++) {
1255 			eq_value = (0x00F8 & mdio_read(net_dev,
1256 					sis_priv->cur_phy, MII_RESV)) >> 3;
1257 			if (i == 0)
1258 				max_value=min_value=eq_value;
1259 			max_value = (eq_value > max_value) ?
1260 						eq_value : max_value;
1261 			min_value = (eq_value < min_value) ?
1262 						eq_value : min_value;
1263 		}
1264 		/* 630E rule to determine the equalizer value */
1265 		if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1266 		    revision == SIS630ET_900_REV) {
1267 			if (max_value < 5)
1268 				eq_value = max_value;
1269 			else if (max_value >= 5 && max_value < 15)
1270 				eq_value = (max_value == min_value) ?
1271 						max_value+2 : max_value+1;
1272 			else if (max_value >= 15)
1273 				eq_value=(max_value == min_value) ?
1274 						max_value+6 : max_value+5;
1275 		}
1276 		/* 630B0&B1 rule to determine the equalizer value */
1277 		if (revision == SIS630A_900_REV &&
1278 		    (sis_priv->host_bridge_rev == SIS630B0 ||
1279 		     sis_priv->host_bridge_rev == SIS630B1)) {
1280 			if (max_value == 0)
1281 				eq_value = 3;
1282 			else
1283 				eq_value = (max_value + min_value + 1)/2;
1284 		}
1285 		/* write equalizer value and setting */
1286 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1287 		reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1288 		reg14h = (reg14h | 0x6000) & 0xFDFF;
1289 		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1290 	} else {
1291 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1292 		if (revision == SIS630A_900_REV &&
1293 		    (sis_priv->host_bridge_rev == SIS630B0 ||
1294 		     sis_priv->host_bridge_rev == SIS630B1))
1295 			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1296 						(reg14h | 0x2200) & 0xBFFF);
1297 		else
1298 			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1299 						(reg14h | 0x2000) & 0xBFFF);
1300 	}
1301 }
1302 
1303 /**
1304  *	sis900_timer - sis900 timer routine
1305  *	@data: pointer to sis900 net device
1306  *
1307  *	On each timer ticks we check two things,
1308  *	link status (ON/OFF) and link mode (10/100/Full/Half)
1309  */
1310 
1311 static void sis900_timer(unsigned long data)
1312 {
1313 	struct net_device *net_dev = (struct net_device *)data;
1314 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1315 	struct mii_phy *mii_phy = sis_priv->mii;
1316 	static const int next_tick = 5*HZ;
1317 	u16 status;
1318 
1319 	if (!sis_priv->autong_complete){
1320 		int uninitialized_var(speed), duplex = 0;
1321 
1322 		sis900_read_mode(net_dev, &speed, &duplex);
1323 		if (duplex){
1324 			sis900_set_mode(sis_priv, speed, duplex);
1325 			sis630_set_eq(net_dev, sis_priv->chipset_rev);
1326 			netif_start_queue(net_dev);
1327 		}
1328 
1329 		sis_priv->timer.expires = jiffies + HZ;
1330 		add_timer(&sis_priv->timer);
1331 		return;
1332 	}
1333 
1334 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1335 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1336 
1337 	/* Link OFF -> ON */
1338 	if (!netif_carrier_ok(net_dev)) {
1339 	LookForLink:
1340 		/* Search for new PHY */
1341 		status = sis900_default_phy(net_dev);
1342 		mii_phy = sis_priv->mii;
1343 
1344 		if (status & MII_STAT_LINK){
1345 			sis900_check_mode(net_dev, mii_phy);
1346 			netif_carrier_on(net_dev);
1347 		}
1348 	} else {
1349 	/* Link ON -> OFF */
1350                 if (!(status & MII_STAT_LINK)){
1351                 	netif_carrier_off(net_dev);
1352 			if(netif_msg_link(sis_priv))
1353                 		printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1354 
1355                 	/* Change mode issue */
1356                 	if ((mii_phy->phy_id0 == 0x001D) &&
1357 			    ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1358                			sis900_reset_phy(net_dev,  sis_priv->cur_phy);
1359 
1360 			sis630_set_eq(net_dev, sis_priv->chipset_rev);
1361 
1362                 	goto LookForLink;
1363                 }
1364 	}
1365 
1366 	sis_priv->timer.expires = jiffies + next_tick;
1367 	add_timer(&sis_priv->timer);
1368 }
1369 
1370 /**
1371  *	sis900_check_mode - check the media mode for sis900
1372  *	@net_dev: the net device to be checked
1373  *	@mii_phy: the mii phy
1374  *
1375  *	Older driver gets the media mode from mii status output
1376  *	register. Now we set our media capability and auto-negotiate
1377  *	to get the upper bound of speed and duplex between two ends.
1378  *	If the types of mii phy is HOME, it doesn't need to auto-negotiate
1379  *	and autong_complete should be set to 1.
1380  */
1381 
1382 static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1383 {
1384 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1385 	void __iomem *ioaddr = sis_priv->ioaddr;
1386 	int speed, duplex;
1387 
1388 	if (mii_phy->phy_types == LAN) {
1389 		sw32(cfg, ~EXD & sr32(cfg));
1390 		sis900_set_capability(net_dev , mii_phy);
1391 		sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1392 	} else {
1393 		sw32(cfg, EXD | sr32(cfg));
1394 		speed = HW_SPEED_HOME;
1395 		duplex = FDX_CAPABLE_HALF_SELECTED;
1396 		sis900_set_mode(sis_priv, speed, duplex);
1397 		sis_priv->autong_complete = 1;
1398 	}
1399 }
1400 
1401 /**
1402  *	sis900_set_mode - Set the media mode of mac register.
1403  *	@sp:     the device private data
1404  *	@speed : the transmit speed to be determined
1405  *	@duplex: the duplex mode to be determined
1406  *
1407  *	Set the media mode of mac register txcfg/rxcfg according to
1408  *	speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1409  *	bus is used instead of PCI bus. When this bit is set 1, the
1410  *	Max DMA Burst Size for TX/RX DMA should be no larger than 16
1411  *	double words.
1412  */
1413 
1414 static void sis900_set_mode(struct sis900_private *sp, int speed, int duplex)
1415 {
1416 	void __iomem *ioaddr = sp->ioaddr;
1417 	u32 tx_flags = 0, rx_flags = 0;
1418 
1419 	if (sr32( cfg) & EDB_MASTER_EN) {
1420 		tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1421 					(TX_FILL_THRESH << TxFILLT_shift);
1422 		rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1423 	} else {
1424 		tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1425 					(TX_FILL_THRESH << TxFILLT_shift);
1426 		rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1427 	}
1428 
1429 	if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1430 		rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1431 		tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1432 	} else {
1433 		rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1434 		tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1435 	}
1436 
1437 	if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1438 		tx_flags |= (TxCSI | TxHBI);
1439 		rx_flags |= RxATX;
1440 	}
1441 
1442 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1443 	/* Can accept Jumbo packet */
1444 	rx_flags |= RxAJAB;
1445 #endif
1446 
1447 	sw32(txcfg, tx_flags);
1448 	sw32(rxcfg, rx_flags);
1449 }
1450 
1451 /**
1452  *	sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1453  *	@net_dev: the net device to read mode for
1454  *	@phy_addr: mii phy address
1455  *
1456  *	If the adapter is link-on, set the auto-negotiate enable/reset bit.
1457  *	autong_complete should be set to 0 when starting auto-negotiation.
1458  *	autong_complete should be set to 1 if we didn't start auto-negotiation.
1459  *	sis900_timer will wait for link on again if autong_complete = 0.
1460  */
1461 
1462 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1463 {
1464 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1465 	int i = 0;
1466 	u32 status;
1467 
1468 	for (i = 0; i < 2; i++)
1469 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1470 
1471 	if (!(status & MII_STAT_LINK)){
1472 		if(netif_msg_link(sis_priv))
1473 			printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1474 		sis_priv->autong_complete = 1;
1475 		netif_carrier_off(net_dev);
1476 		return;
1477 	}
1478 
1479 	/* (Re)start AutoNegotiate */
1480 	mdio_write(net_dev, phy_addr, MII_CONTROL,
1481 		   MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1482 	sis_priv->autong_complete = 0;
1483 }
1484 
1485 
1486 /**
1487  *	sis900_read_mode - read media mode for sis900 internal phy
1488  *	@net_dev: the net device to read mode for
1489  *	@speed  : the transmit speed to be determined
1490  *	@duplex : the duplex mode to be determined
1491  *
1492  *	The capability of remote end will be put in mii register autorec
1493  *	after auto-negotiation. Use AND operation to get the upper bound
1494  *	of speed and duplex between two ends.
1495  */
1496 
1497 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1498 {
1499 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1500 	struct mii_phy *phy = sis_priv->mii;
1501 	int phy_addr = sis_priv->cur_phy;
1502 	u32 status;
1503 	u16 autoadv, autorec;
1504 	int i;
1505 
1506 	for (i = 0; i < 2; i++)
1507 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1508 
1509 	if (!(status & MII_STAT_LINK))
1510 		return;
1511 
1512 	/* AutoNegotiate completed */
1513 	autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1514 	autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1515 	status = autoadv & autorec;
1516 
1517 	*speed = HW_SPEED_10_MBPS;
1518 	*duplex = FDX_CAPABLE_HALF_SELECTED;
1519 
1520 	if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1521 		*speed = HW_SPEED_100_MBPS;
1522 	if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1523 		*duplex = FDX_CAPABLE_FULL_SELECTED;
1524 
1525 	sis_priv->autong_complete = 1;
1526 
1527 	/* Workaround for Realtek RTL8201 PHY issue */
1528 	if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1529 		if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1530 			*duplex = FDX_CAPABLE_FULL_SELECTED;
1531 		if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1532 			*speed = HW_SPEED_100_MBPS;
1533 	}
1534 
1535 	if(netif_msg_link(sis_priv))
1536 		printk(KERN_INFO "%s: Media Link On %s %s-duplex\n",
1537 	       				net_dev->name,
1538 	       				*speed == HW_SPEED_100_MBPS ?
1539 	       					"100mbps" : "10mbps",
1540 	       				*duplex == FDX_CAPABLE_FULL_SELECTED ?
1541 	       					"full" : "half");
1542 }
1543 
1544 /**
1545  *	sis900_tx_timeout - sis900 transmit timeout routine
1546  *	@net_dev: the net device to transmit
1547  *
1548  *	print transmit timeout status
1549  *	disable interrupts and do some tasks
1550  */
1551 
1552 static void sis900_tx_timeout(struct net_device *net_dev)
1553 {
1554 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1555 	void __iomem *ioaddr = sis_priv->ioaddr;
1556 	unsigned long flags;
1557 	int i;
1558 
1559 	if (netif_msg_tx_err(sis_priv)) {
1560 		printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n",
1561 			net_dev->name, sr32(cr), sr32(isr));
1562 	}
1563 
1564 	/* Disable interrupts by clearing the interrupt mask. */
1565 	sw32(imr, 0x0000);
1566 
1567 	/* use spinlock to prevent interrupt handler accessing buffer ring */
1568 	spin_lock_irqsave(&sis_priv->lock, flags);
1569 
1570 	/* discard unsent packets */
1571 	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1572 	for (i = 0; i < NUM_TX_DESC; i++) {
1573 		struct sk_buff *skb = sis_priv->tx_skbuff[i];
1574 
1575 		if (skb) {
1576 			pci_unmap_single(sis_priv->pci_dev,
1577 				sis_priv->tx_ring[i].bufptr, skb->len,
1578 				PCI_DMA_TODEVICE);
1579 			dev_kfree_skb_irq(skb);
1580 			sis_priv->tx_skbuff[i] = NULL;
1581 			sis_priv->tx_ring[i].cmdsts = 0;
1582 			sis_priv->tx_ring[i].bufptr = 0;
1583 			net_dev->stats.tx_dropped++;
1584 		}
1585 	}
1586 	sis_priv->tx_full = 0;
1587 	netif_wake_queue(net_dev);
1588 
1589 	spin_unlock_irqrestore(&sis_priv->lock, flags);
1590 
1591 	net_dev->trans_start = jiffies; /* prevent tx timeout */
1592 
1593 	/* load Transmit Descriptor Register */
1594 	sw32(txdp, sis_priv->tx_ring_dma);
1595 
1596 	/* Enable all known interrupts by setting the interrupt mask. */
1597 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
1598 }
1599 
1600 /**
1601  *	sis900_start_xmit - sis900 start transmit routine
1602  *	@skb: socket buffer pointer to put the data being transmitted
1603  *	@net_dev: the net device to transmit with
1604  *
1605  *	Set the transmit buffer descriptor,
1606  *	and write TxENA to enable transmit state machine.
1607  *	tell upper layer if the buffer is full
1608  */
1609 
1610 static netdev_tx_t
1611 sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1612 {
1613 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1614 	void __iomem *ioaddr = sis_priv->ioaddr;
1615 	unsigned int  entry;
1616 	unsigned long flags;
1617 	unsigned int  index_cur_tx, index_dirty_tx;
1618 	unsigned int  count_dirty_tx;
1619 
1620 	/* Don't transmit data before the complete of auto-negotiation */
1621 	if(!sis_priv->autong_complete){
1622 		netif_stop_queue(net_dev);
1623 		return NETDEV_TX_BUSY;
1624 	}
1625 
1626 	spin_lock_irqsave(&sis_priv->lock, flags);
1627 
1628 	/* Calculate the next Tx descriptor entry. */
1629 	entry = sis_priv->cur_tx % NUM_TX_DESC;
1630 	sis_priv->tx_skbuff[entry] = skb;
1631 
1632 	/* set the transmit buffer descriptor and enable Transmit State Machine */
1633 	sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1634 		skb->data, skb->len, PCI_DMA_TODEVICE);
1635 	sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len);
1636 	sw32(cr, TxENA | sr32(cr));
1637 
1638 	sis_priv->cur_tx ++;
1639 	index_cur_tx = sis_priv->cur_tx;
1640 	index_dirty_tx = sis_priv->dirty_tx;
1641 
1642 	for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1643 		count_dirty_tx ++;
1644 
1645 	if (index_cur_tx == index_dirty_tx) {
1646 		/* dirty_tx is met in the cycle of cur_tx, buffer full */
1647 		sis_priv->tx_full = 1;
1648 		netif_stop_queue(net_dev);
1649 	} else if (count_dirty_tx < NUM_TX_DESC) {
1650 		/* Typical path, tell upper layer that more transmission is possible */
1651 		netif_start_queue(net_dev);
1652 	} else {
1653 		/* buffer full, tell upper layer no more transmission */
1654 		sis_priv->tx_full = 1;
1655 		netif_stop_queue(net_dev);
1656 	}
1657 
1658 	spin_unlock_irqrestore(&sis_priv->lock, flags);
1659 
1660 	if (netif_msg_tx_queued(sis_priv))
1661 		printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1662 		       "to slot %d.\n",
1663 		       net_dev->name, skb->data, (int)skb->len, entry);
1664 
1665 	return NETDEV_TX_OK;
1666 }
1667 
1668 /**
1669  *	sis900_interrupt - sis900 interrupt handler
1670  *	@irq: the irq number
1671  *	@dev_instance: the client data object
1672  *
1673  *	The interrupt handler does all of the Rx thread work,
1674  *	and cleans up after the Tx thread
1675  */
1676 
1677 static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1678 {
1679 	struct net_device *net_dev = dev_instance;
1680 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1681 	int boguscnt = max_interrupt_work;
1682 	void __iomem *ioaddr = sis_priv->ioaddr;
1683 	u32 status;
1684 	unsigned int handled = 0;
1685 
1686 	spin_lock (&sis_priv->lock);
1687 
1688 	do {
1689 		status = sr32(isr);
1690 
1691 		if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0)
1692 			/* nothing intresting happened */
1693 			break;
1694 		handled = 1;
1695 
1696 		/* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1697 		if (status & (RxORN | RxERR | RxOK))
1698 			/* Rx interrupt */
1699 			sis900_rx(net_dev);
1700 
1701 		if (status & (TxURN | TxERR | TxIDLE))
1702 			/* Tx interrupt */
1703 			sis900_finish_xmit(net_dev);
1704 
1705 		/* something strange happened !!! */
1706 		if (status & HIBERR) {
1707 			if(netif_msg_intr(sis_priv))
1708 				printk(KERN_INFO "%s: Abnormal interrupt, "
1709 					"status %#8.8x.\n", net_dev->name, status);
1710 			break;
1711 		}
1712 		if (--boguscnt < 0) {
1713 			if(netif_msg_intr(sis_priv))
1714 				printk(KERN_INFO "%s: Too much work at interrupt, "
1715 					"interrupt status = %#8.8x.\n",
1716 					net_dev->name, status);
1717 			break;
1718 		}
1719 	} while (1);
1720 
1721 	if(netif_msg_intr(sis_priv))
1722 		printk(KERN_DEBUG "%s: exiting interrupt, "
1723 		       "interrupt status = 0x%#8.8x.\n",
1724 		       net_dev->name, sr32(isr));
1725 
1726 	spin_unlock (&sis_priv->lock);
1727 	return IRQ_RETVAL(handled);
1728 }
1729 
1730 /**
1731  *	sis900_rx - sis900 receive routine
1732  *	@net_dev: the net device which receives data
1733  *
1734  *	Process receive interrupt events,
1735  *	put buffer to higher layer and refill buffer pool
1736  *	Note: This function is called by interrupt handler,
1737  *	don't do "too much" work here
1738  */
1739 
1740 static int sis900_rx(struct net_device *net_dev)
1741 {
1742 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1743 	void __iomem *ioaddr = sis_priv->ioaddr;
1744 	unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1745 	u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1746 	int rx_work_limit;
1747 
1748 	if (netif_msg_rx_status(sis_priv))
1749 		printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1750 		       "status:0x%8.8x\n",
1751 		       sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1752 	rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1753 
1754 	while (rx_status & OWN) {
1755 		unsigned int rx_size;
1756 		unsigned int data_size;
1757 
1758 		if (--rx_work_limit < 0)
1759 			break;
1760 
1761 		data_size = rx_status & DSIZE;
1762 		rx_size = data_size - CRC_SIZE;
1763 
1764 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1765 		/* ``TOOLONG'' flag means jumbo packet received. */
1766 		if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1767 			rx_status &= (~ ((unsigned int)TOOLONG));
1768 #endif
1769 
1770 		if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1771 			/* corrupted packet received */
1772 			if (netif_msg_rx_err(sis_priv))
1773 				printk(KERN_DEBUG "%s: Corrupted packet "
1774 				       "received, buffer status = 0x%8.8x/%d.\n",
1775 				       net_dev->name, rx_status, data_size);
1776 			net_dev->stats.rx_errors++;
1777 			if (rx_status & OVERRUN)
1778 				net_dev->stats.rx_over_errors++;
1779 			if (rx_status & (TOOLONG|RUNT))
1780 				net_dev->stats.rx_length_errors++;
1781 			if (rx_status & (RXISERR | FAERR))
1782 				net_dev->stats.rx_frame_errors++;
1783 			if (rx_status & CRCERR)
1784 				net_dev->stats.rx_crc_errors++;
1785 			/* reset buffer descriptor state */
1786 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1787 		} else {
1788 			struct sk_buff * skb;
1789 			struct sk_buff * rx_skb;
1790 
1791 			pci_unmap_single(sis_priv->pci_dev,
1792 				sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1793 				PCI_DMA_FROMDEVICE);
1794 
1795 			/* refill the Rx buffer, what if there is not enough
1796 			 * memory for new socket buffer ?? */
1797 			if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1798 				/*
1799 				 * Not enough memory to refill the buffer
1800 				 * so we need to recycle the old one so
1801 				 * as to avoid creating a memory hole
1802 				 * in the rx ring
1803 				 */
1804 				skb = sis_priv->rx_skbuff[entry];
1805 				net_dev->stats.rx_dropped++;
1806 				goto refill_rx_ring;
1807 			}
1808 
1809 			/* This situation should never happen, but due to
1810 			   some unknown bugs, it is possible that
1811 			   we are working on NULL sk_buff :-( */
1812 			if (sis_priv->rx_skbuff[entry] == NULL) {
1813 				if (netif_msg_rx_err(sis_priv))
1814 					printk(KERN_WARNING "%s: NULL pointer "
1815 					      "encountered in Rx ring\n"
1816 					      "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1817 					      net_dev->name, sis_priv->cur_rx,
1818 					      sis_priv->dirty_rx);
1819 				dev_kfree_skb(skb);
1820 				break;
1821 			}
1822 
1823 			/* give the socket buffer to upper layers */
1824 			rx_skb = sis_priv->rx_skbuff[entry];
1825 			skb_put(rx_skb, rx_size);
1826 			rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1827 			netif_rx(rx_skb);
1828 
1829 			/* some network statistics */
1830 			if ((rx_status & BCAST) == MCAST)
1831 				net_dev->stats.multicast++;
1832 			net_dev->stats.rx_bytes += rx_size;
1833 			net_dev->stats.rx_packets++;
1834 			sis_priv->dirty_rx++;
1835 refill_rx_ring:
1836 			sis_priv->rx_skbuff[entry] = skb;
1837 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1838                 	sis_priv->rx_ring[entry].bufptr =
1839 				pci_map_single(sis_priv->pci_dev, skb->data,
1840 					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1841 		}
1842 		sis_priv->cur_rx++;
1843 		entry = sis_priv->cur_rx % NUM_RX_DESC;
1844 		rx_status = sis_priv->rx_ring[entry].cmdsts;
1845 	} // while
1846 
1847 	/* refill the Rx buffer, what if the rate of refilling is slower
1848 	 * than consuming ?? */
1849 	for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1850 		struct sk_buff *skb;
1851 
1852 		entry = sis_priv->dirty_rx % NUM_RX_DESC;
1853 
1854 		if (sis_priv->rx_skbuff[entry] == NULL) {
1855 			if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1856 				/* not enough memory for skbuff, this makes a
1857 				 * "hole" on the buffer ring, it is not clear
1858 				 * how the hardware will react to this kind
1859 				 * of degenerated buffer */
1860 				if (netif_msg_rx_err(sis_priv))
1861 					printk(KERN_INFO "%s: Memory squeeze, "
1862 						"deferring packet.\n",
1863 						net_dev->name);
1864 				net_dev->stats.rx_dropped++;
1865 				break;
1866 			}
1867 			sis_priv->rx_skbuff[entry] = skb;
1868 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1869                 	sis_priv->rx_ring[entry].bufptr =
1870 				pci_map_single(sis_priv->pci_dev, skb->data,
1871 					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1872 		}
1873 	}
1874 	/* re-enable the potentially idle receive state matchine */
1875 	sw32(cr , RxENA | sr32(cr));
1876 
1877 	return 0;
1878 }
1879 
1880 /**
1881  *	sis900_finish_xmit - finish up transmission of packets
1882  *	@net_dev: the net device to be transmitted on
1883  *
1884  *	Check for error condition and free socket buffer etc
1885  *	schedule for more transmission as needed
1886  *	Note: This function is called by interrupt handler,
1887  *	don't do "too much" work here
1888  */
1889 
1890 static void sis900_finish_xmit (struct net_device *net_dev)
1891 {
1892 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1893 
1894 	for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1895 		struct sk_buff *skb;
1896 		unsigned int entry;
1897 		u32 tx_status;
1898 
1899 		entry = sis_priv->dirty_tx % NUM_TX_DESC;
1900 		tx_status = sis_priv->tx_ring[entry].cmdsts;
1901 
1902 		if (tx_status & OWN) {
1903 			/* The packet is not transmitted yet (owned by hardware) !
1904 			 * Note: the interrupt is generated only when Tx Machine
1905 			 * is idle, so this is an almost impossible case */
1906 			break;
1907 		}
1908 
1909 		if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1910 			/* packet unsuccessfully transmitted */
1911 			if (netif_msg_tx_err(sis_priv))
1912 				printk(KERN_DEBUG "%s: Transmit "
1913 				       "error, Tx status %8.8x.\n",
1914 				       net_dev->name, tx_status);
1915 			net_dev->stats.tx_errors++;
1916 			if (tx_status & UNDERRUN)
1917 				net_dev->stats.tx_fifo_errors++;
1918 			if (tx_status & ABORT)
1919 				net_dev->stats.tx_aborted_errors++;
1920 			if (tx_status & NOCARRIER)
1921 				net_dev->stats.tx_carrier_errors++;
1922 			if (tx_status & OWCOLL)
1923 				net_dev->stats.tx_window_errors++;
1924 		} else {
1925 			/* packet successfully transmitted */
1926 			net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1927 			net_dev->stats.tx_bytes += tx_status & DSIZE;
1928 			net_dev->stats.tx_packets++;
1929 		}
1930 		/* Free the original skb. */
1931 		skb = sis_priv->tx_skbuff[entry];
1932 		pci_unmap_single(sis_priv->pci_dev,
1933 			sis_priv->tx_ring[entry].bufptr, skb->len,
1934 			PCI_DMA_TODEVICE);
1935 		dev_kfree_skb_irq(skb);
1936 		sis_priv->tx_skbuff[entry] = NULL;
1937 		sis_priv->tx_ring[entry].bufptr = 0;
1938 		sis_priv->tx_ring[entry].cmdsts = 0;
1939 	}
1940 
1941 	if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1942 	    sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1943 		/* The ring is no longer full, clear tx_full and schedule
1944 		 * more transmission by netif_wake_queue(net_dev) */
1945 		sis_priv->tx_full = 0;
1946 		netif_wake_queue (net_dev);
1947 	}
1948 }
1949 
1950 /**
1951  *	sis900_close - close sis900 device
1952  *	@net_dev: the net device to be closed
1953  *
1954  *	Disable interrupts, stop the Tx and Rx Status Machine
1955  *	free Tx and RX socket buffer
1956  */
1957 
1958 static int sis900_close(struct net_device *net_dev)
1959 {
1960 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1961 	struct pci_dev *pdev = sis_priv->pci_dev;
1962 	void __iomem *ioaddr = sis_priv->ioaddr;
1963 	struct sk_buff *skb;
1964 	int i;
1965 
1966 	netif_stop_queue(net_dev);
1967 
1968 	/* Disable interrupts by clearing the interrupt mask. */
1969 	sw32(imr, 0x0000);
1970 	sw32(ier, 0x0000);
1971 
1972 	/* Stop the chip's Tx and Rx Status Machine */
1973 	sw32(cr, RxDIS | TxDIS | sr32(cr));
1974 
1975 	del_timer(&sis_priv->timer);
1976 
1977 	free_irq(pdev->irq, net_dev);
1978 
1979 	/* Free Tx and RX skbuff */
1980 	for (i = 0; i < NUM_RX_DESC; i++) {
1981 		skb = sis_priv->rx_skbuff[i];
1982 		if (skb) {
1983 			pci_unmap_single(pdev, sis_priv->rx_ring[i].bufptr,
1984 					 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1985 			dev_kfree_skb(skb);
1986 			sis_priv->rx_skbuff[i] = NULL;
1987 		}
1988 	}
1989 	for (i = 0; i < NUM_TX_DESC; i++) {
1990 		skb = sis_priv->tx_skbuff[i];
1991 		if (skb) {
1992 			pci_unmap_single(pdev, sis_priv->tx_ring[i].bufptr,
1993 					 skb->len, PCI_DMA_TODEVICE);
1994 			dev_kfree_skb(skb);
1995 			sis_priv->tx_skbuff[i] = NULL;
1996 		}
1997 	}
1998 
1999 	/* Green! Put the chip in low-power mode. */
2000 
2001 	return 0;
2002 }
2003 
2004 /**
2005  *	sis900_get_drvinfo - Return information about driver
2006  *	@net_dev: the net device to probe
2007  *	@info: container for info returned
2008  *
2009  *	Process ethtool command such as "ehtool -i" to show information
2010  */
2011 
2012 static void sis900_get_drvinfo(struct net_device *net_dev,
2013 			       struct ethtool_drvinfo *info)
2014 {
2015 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2016 
2017 	strlcpy(info->driver, SIS900_MODULE_NAME, sizeof(info->driver));
2018 	strlcpy(info->version, SIS900_DRV_VERSION, sizeof(info->version));
2019 	strlcpy(info->bus_info, pci_name(sis_priv->pci_dev),
2020 		sizeof(info->bus_info));
2021 }
2022 
2023 static u32 sis900_get_msglevel(struct net_device *net_dev)
2024 {
2025 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2026 	return sis_priv->msg_enable;
2027 }
2028 
2029 static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
2030 {
2031 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2032 	sis_priv->msg_enable = value;
2033 }
2034 
2035 static u32 sis900_get_link(struct net_device *net_dev)
2036 {
2037 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2038 	return mii_link_ok(&sis_priv->mii_info);
2039 }
2040 
2041 static int sis900_get_settings(struct net_device *net_dev,
2042 				struct ethtool_cmd *cmd)
2043 {
2044 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2045 	spin_lock_irq(&sis_priv->lock);
2046 	mii_ethtool_gset(&sis_priv->mii_info, cmd);
2047 	spin_unlock_irq(&sis_priv->lock);
2048 	return 0;
2049 }
2050 
2051 static int sis900_set_settings(struct net_device *net_dev,
2052 				struct ethtool_cmd *cmd)
2053 {
2054 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2055 	int rt;
2056 	spin_lock_irq(&sis_priv->lock);
2057 	rt = mii_ethtool_sset(&sis_priv->mii_info, cmd);
2058 	spin_unlock_irq(&sis_priv->lock);
2059 	return rt;
2060 }
2061 
2062 static int sis900_nway_reset(struct net_device *net_dev)
2063 {
2064 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2065 	return mii_nway_restart(&sis_priv->mii_info);
2066 }
2067 
2068 /**
2069  *	sis900_set_wol - Set up Wake on Lan registers
2070  *	@net_dev: the net device to probe
2071  *	@wol: container for info passed to the driver
2072  *
2073  *	Process ethtool command "wol" to setup wake on lan features.
2074  *	SiS900 supports sending WoL events if a correct packet is received,
2075  *	but there is no simple way to filter them to only a subset (broadcast,
2076  *	multicast, unicast or arp).
2077  */
2078 
2079 static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2080 {
2081 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2082 	void __iomem *ioaddr = sis_priv->ioaddr;
2083 	u32 cfgpmcsr = 0, pmctrl_bits = 0;
2084 
2085 	if (wol->wolopts == 0) {
2086 		pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2087 		cfgpmcsr &= ~PME_EN;
2088 		pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2089 		sw32(pmctrl, pmctrl_bits);
2090 		if (netif_msg_wol(sis_priv))
2091 			printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2092 		return 0;
2093 	}
2094 
2095 	if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2096 				| WAKE_BCAST | WAKE_ARP))
2097 		return -EINVAL;
2098 
2099 	if (wol->wolopts & WAKE_MAGIC)
2100 		pmctrl_bits |= MAGICPKT;
2101 	if (wol->wolopts & WAKE_PHY)
2102 		pmctrl_bits |= LINKON;
2103 
2104 	sw32(pmctrl, pmctrl_bits);
2105 
2106 	pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2107 	cfgpmcsr |= PME_EN;
2108 	pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2109 	if (netif_msg_wol(sis_priv))
2110 		printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2111 
2112 	return 0;
2113 }
2114 
2115 static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2116 {
2117 	struct sis900_private *sp = netdev_priv(net_dev);
2118 	void __iomem *ioaddr = sp->ioaddr;
2119 	u32 pmctrl_bits;
2120 
2121 	pmctrl_bits = sr32(pmctrl);
2122 	if (pmctrl_bits & MAGICPKT)
2123 		wol->wolopts |= WAKE_MAGIC;
2124 	if (pmctrl_bits & LINKON)
2125 		wol->wolopts |= WAKE_PHY;
2126 
2127 	wol->supported = (WAKE_PHY | WAKE_MAGIC);
2128 }
2129 
2130 static const struct ethtool_ops sis900_ethtool_ops = {
2131 	.get_drvinfo 	= sis900_get_drvinfo,
2132 	.get_msglevel	= sis900_get_msglevel,
2133 	.set_msglevel	= sis900_set_msglevel,
2134 	.get_link	= sis900_get_link,
2135 	.get_settings	= sis900_get_settings,
2136 	.set_settings	= sis900_set_settings,
2137 	.nway_reset	= sis900_nway_reset,
2138 	.get_wol	= sis900_get_wol,
2139 	.set_wol	= sis900_set_wol
2140 };
2141 
2142 /**
2143  *	mii_ioctl - process MII i/o control command
2144  *	@net_dev: the net device to command for
2145  *	@rq: parameter for command
2146  *	@cmd: the i/o command
2147  *
2148  *	Process MII command like read/write MII register
2149  */
2150 
2151 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2152 {
2153 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2154 	struct mii_ioctl_data *data = if_mii(rq);
2155 
2156 	switch(cmd) {
2157 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2158 		data->phy_id = sis_priv->mii->phy_addr;
2159 		/* Fall Through */
2160 
2161 	case SIOCGMIIREG:		/* Read MII PHY register. */
2162 		data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2163 		return 0;
2164 
2165 	case SIOCSMIIREG:		/* Write MII PHY register. */
2166 		mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2167 		return 0;
2168 	default:
2169 		return -EOPNOTSUPP;
2170 	}
2171 }
2172 
2173 /**
2174  *	sis900_set_config - Set media type by net_device.set_config
2175  *	@dev: the net device for media type change
2176  *	@map: ifmap passed by ifconfig
2177  *
2178  *	Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2179  *	we support only port changes. All other runtime configuration
2180  *	changes will be ignored
2181  */
2182 
2183 static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2184 {
2185 	struct sis900_private *sis_priv = netdev_priv(dev);
2186 	struct mii_phy *mii_phy = sis_priv->mii;
2187 
2188 	u16 status;
2189 
2190 	if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2191 		/* we switch on the ifmap->port field. I couldn't find anything
2192 		 * like a definition or standard for the values of that field.
2193 		 * I think the meaning of those values is device specific. But
2194 		 * since I would like to change the media type via the ifconfig
2195 		 * command I use the definition from linux/netdevice.h
2196 		 * (which seems to be different from the ifport(pcmcia) definition) */
2197 		switch(map->port){
2198 		case IF_PORT_UNKNOWN: /* use auto here */
2199 			dev->if_port = map->port;
2200 			/* we are going to change the media type, so the Link
2201 			 * will be temporary down and we need to reflect that
2202 			 * here. When the Link comes up again, it will be
2203 			 * sensed by the sis_timer procedure, which also does
2204 			 * all the rest for us */
2205 			netif_carrier_off(dev);
2206 
2207 			/* read current state */
2208 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2209 
2210 			/* enable auto negotiation and reset the negotioation
2211 			 * (I don't really know what the auto negatiotiation
2212 			 * reset really means, but it sounds for me right to
2213 			 * do one here) */
2214 			mdio_write(dev, mii_phy->phy_addr,
2215 				   MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2216 
2217 			break;
2218 
2219 		case IF_PORT_10BASET: /* 10BaseT */
2220 			dev->if_port = map->port;
2221 
2222 			/* we are going to change the media type, so the Link
2223 			 * will be temporary down and we need to reflect that
2224 			 * here. When the Link comes up again, it will be
2225 			 * sensed by the sis_timer procedure, which also does
2226 			 * all the rest for us */
2227 			netif_carrier_off(dev);
2228 
2229 			/* set Speed to 10Mbps */
2230 			/* read current state */
2231 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2232 
2233 			/* disable auto negotiation and force 10MBit mode*/
2234 			mdio_write(dev, mii_phy->phy_addr,
2235 				   MII_CONTROL, status & ~(MII_CNTL_SPEED |
2236 					MII_CNTL_AUTO));
2237 			break;
2238 
2239 		case IF_PORT_100BASET: /* 100BaseT */
2240 		case IF_PORT_100BASETX: /* 100BaseTx */
2241 			dev->if_port = map->port;
2242 
2243 			/* we are going to change the media type, so the Link
2244 			 * will be temporary down and we need to reflect that
2245 			 * here. When the Link comes up again, it will be
2246 			 * sensed by the sis_timer procedure, which also does
2247 			 * all the rest for us */
2248 			netif_carrier_off(dev);
2249 
2250 			/* set Speed to 100Mbps */
2251 			/* disable auto negotiation and enable 100MBit Mode */
2252 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2253 			mdio_write(dev, mii_phy->phy_addr,
2254 				   MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2255 				   MII_CNTL_SPEED);
2256 
2257 			break;
2258 
2259 		case IF_PORT_10BASE2: /* 10Base2 */
2260 		case IF_PORT_AUI: /* AUI */
2261 		case IF_PORT_100BASEFX: /* 100BaseFx */
2262                 	/* These Modes are not supported (are they?)*/
2263 			return -EOPNOTSUPP;
2264 			break;
2265 
2266 		default:
2267 			return -EINVAL;
2268 		}
2269 	}
2270 	return 0;
2271 }
2272 
2273 /**
2274  *	sis900_mcast_bitnr - compute hashtable index
2275  *	@addr: multicast address
2276  *	@revision: revision id of chip
2277  *
2278  *	SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2279  *	hash table, which makes this function a little bit different from other drivers
2280  *	SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2281  *   	multicast hash table.
2282  */
2283 
2284 static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2285 {
2286 
2287 	u32 crc = ether_crc(6, addr);
2288 
2289 	/* leave 8 or 7 most siginifant bits */
2290 	if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2291 		return (int)(crc >> 24);
2292 	else
2293 		return (int)(crc >> 25);
2294 }
2295 
2296 /**
2297  *	set_rx_mode - Set SiS900 receive mode
2298  *	@net_dev: the net device to be set
2299  *
2300  *	Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2301  *	And set the appropriate multicast filter.
2302  *	Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2303  */
2304 
2305 static void set_rx_mode(struct net_device *net_dev)
2306 {
2307 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2308 	void __iomem *ioaddr = sis_priv->ioaddr;
2309 	u16 mc_filter[16] = {0};	/* 256/128 bits multicast hash table */
2310 	int i, table_entries;
2311 	u32 rx_mode;
2312 
2313 	/* 635 Hash Table entries = 256(2^16) */
2314 	if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2315 			(sis_priv->chipset_rev == SIS900B_900_REV))
2316 		table_entries = 16;
2317 	else
2318 		table_entries = 8;
2319 
2320 	if (net_dev->flags & IFF_PROMISC) {
2321 		/* Accept any kinds of packets */
2322 		rx_mode = RFPromiscuous;
2323 		for (i = 0; i < table_entries; i++)
2324 			mc_filter[i] = 0xffff;
2325 	} else if ((netdev_mc_count(net_dev) > multicast_filter_limit) ||
2326 		   (net_dev->flags & IFF_ALLMULTI)) {
2327 		/* too many multicast addresses or accept all multicast packet */
2328 		rx_mode = RFAAB | RFAAM;
2329 		for (i = 0; i < table_entries; i++)
2330 			mc_filter[i] = 0xffff;
2331 	} else {
2332 		/* Accept Broadcast packet, destination address matchs our
2333 		 * MAC address, use Receive Filter to reject unwanted MCAST
2334 		 * packets */
2335 		struct netdev_hw_addr *ha;
2336 		rx_mode = RFAAB;
2337 
2338 		netdev_for_each_mc_addr(ha, net_dev) {
2339 			unsigned int bit_nr;
2340 
2341 			bit_nr = sis900_mcast_bitnr(ha->addr,
2342 						    sis_priv->chipset_rev);
2343 			mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2344 		}
2345 	}
2346 
2347 	/* update Multicast Hash Table in Receive Filter */
2348 	for (i = 0; i < table_entries; i++) {
2349                 /* why plus 0x04 ??, That makes the correct value for hash table. */
2350 		sw32(rfcr, (u32)(0x00000004 + i) << RFADDR_shift);
2351 		sw32(rfdr, mc_filter[i]);
2352 	}
2353 
2354 	sw32(rfcr, RFEN | rx_mode);
2355 
2356 	/* sis900 is capable of looping back packets at MAC level for
2357 	 * debugging purpose */
2358 	if (net_dev->flags & IFF_LOOPBACK) {
2359 		u32 cr_saved;
2360 		/* We must disable Tx/Rx before setting loopback mode */
2361 		cr_saved = sr32(cr);
2362 		sw32(cr, cr_saved | TxDIS | RxDIS);
2363 		/* enable loopback */
2364 		sw32(txcfg, sr32(txcfg) | TxMLB);
2365 		sw32(rxcfg, sr32(rxcfg) | RxATX);
2366 		/* restore cr */
2367 		sw32(cr, cr_saved);
2368 	}
2369 }
2370 
2371 /**
2372  *	sis900_reset - Reset sis900 MAC
2373  *	@net_dev: the net device to reset
2374  *
2375  *	reset sis900 MAC and wait until finished
2376  *	reset through command register
2377  *	change backoff algorithm for 900B0 & 635 M/B
2378  */
2379 
2380 static void sis900_reset(struct net_device *net_dev)
2381 {
2382 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2383 	void __iomem *ioaddr = sis_priv->ioaddr;
2384 	u32 status = TxRCMP | RxRCMP;
2385 	int i;
2386 
2387 	sw32(ier, 0);
2388 	sw32(imr, 0);
2389 	sw32(rfcr, 0);
2390 
2391 	sw32(cr, RxRESET | TxRESET | RESET | sr32(cr));
2392 
2393 	/* Check that the chip has finished the reset. */
2394 	for (i = 0; status && (i < 1000); i++)
2395 		status ^= sr32(isr) & status;
2396 
2397 	if (sis_priv->chipset_rev >= SIS635A_900_REV ||
2398 	    sis_priv->chipset_rev == SIS900B_900_REV)
2399 		sw32(cfg, PESEL | RND_CNT);
2400 	else
2401 		sw32(cfg, PESEL);
2402 }
2403 
2404 /**
2405  *	sis900_remove - Remove sis900 device
2406  *	@pci_dev: the pci device to be removed
2407  *
2408  *	remove and release SiS900 net device
2409  */
2410 
2411 static void __devexit sis900_remove(struct pci_dev *pci_dev)
2412 {
2413 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2414 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2415 
2416 	unregister_netdev(net_dev);
2417 
2418 	while (sis_priv->first_mii) {
2419 		struct mii_phy *phy = sis_priv->first_mii;
2420 
2421 		sis_priv->first_mii = phy->next;
2422 		kfree(phy);
2423 	}
2424 
2425 	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2426 		sis_priv->rx_ring_dma);
2427 	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2428 		sis_priv->tx_ring_dma);
2429 	pci_iounmap(pci_dev, sis_priv->ioaddr);
2430 	free_netdev(net_dev);
2431 	pci_release_regions(pci_dev);
2432 	pci_set_drvdata(pci_dev, NULL);
2433 }
2434 
2435 #ifdef CONFIG_PM
2436 
2437 static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state)
2438 {
2439 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2440 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2441 	void __iomem *ioaddr = sis_priv->ioaddr;
2442 
2443 	if(!netif_running(net_dev))
2444 		return 0;
2445 
2446 	netif_stop_queue(net_dev);
2447 	netif_device_detach(net_dev);
2448 
2449 	/* Stop the chip's Tx and Rx Status Machine */
2450 	sw32(cr, RxDIS | TxDIS | sr32(cr));
2451 
2452 	pci_set_power_state(pci_dev, PCI_D3hot);
2453 	pci_save_state(pci_dev);
2454 
2455 	return 0;
2456 }
2457 
2458 static int sis900_resume(struct pci_dev *pci_dev)
2459 {
2460 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2461 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2462 	void __iomem *ioaddr = sis_priv->ioaddr;
2463 
2464 	if(!netif_running(net_dev))
2465 		return 0;
2466 	pci_restore_state(pci_dev);
2467 	pci_set_power_state(pci_dev, PCI_D0);
2468 
2469 	sis900_init_rxfilter(net_dev);
2470 
2471 	sis900_init_tx_ring(net_dev);
2472 	sis900_init_rx_ring(net_dev);
2473 
2474 	set_rx_mode(net_dev);
2475 
2476 	netif_device_attach(net_dev);
2477 	netif_start_queue(net_dev);
2478 
2479 	/* Workaround for EDB */
2480 	sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2481 
2482 	/* Enable all known interrupts by setting the interrupt mask. */
2483 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
2484 	sw32(cr, RxENA | sr32(cr));
2485 	sw32(ier, IE);
2486 
2487 	sis900_check_mode(net_dev, sis_priv->mii);
2488 
2489 	return 0;
2490 }
2491 #endif /* CONFIG_PM */
2492 
2493 static struct pci_driver sis900_pci_driver = {
2494 	.name		= SIS900_MODULE_NAME,
2495 	.id_table	= sis900_pci_tbl,
2496 	.probe		= sis900_probe,
2497 	.remove		= __devexit_p(sis900_remove),
2498 #ifdef CONFIG_PM
2499 	.suspend	= sis900_suspend,
2500 	.resume		= sis900_resume,
2501 #endif /* CONFIG_PM */
2502 };
2503 
2504 static int __init sis900_init_module(void)
2505 {
2506 /* when a module, this is printed whether or not devices are found in probe */
2507 #ifdef MODULE
2508 	printk(version);
2509 #endif
2510 
2511 	return pci_register_driver(&sis900_pci_driver);
2512 }
2513 
2514 static void __exit sis900_cleanup_module(void)
2515 {
2516 	pci_unregister_driver(&sis900_pci_driver);
2517 }
2518 
2519 module_init(sis900_init_module);
2520 module_exit(sis900_cleanup_module);
2521 
2522