xref: /openbmc/linux/drivers/net/ethernet/sis/sis900.c (revision 94cdda6b)
1 /* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
2    Copyright 1999 Silicon Integrated System Corporation
3    Revision:	1.08.10 Apr. 2 2006
4 
5    Modified from the driver which is originally written by Donald Becker.
6 
7    This software may be used and distributed according to the terms
8    of the GNU General Public License (GPL), incorporated herein by reference.
9    Drivers based on this skeleton fall under the GPL and must retain
10    the authorship (implicit copyright) notice.
11 
12    References:
13    SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
14    preliminary Rev. 1.0 Jan. 14, 1998
15    SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
16    preliminary Rev. 1.0 Nov. 10, 1998
17    SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
18    preliminary Rev. 1.0 Jan. 18, 1998
19 
20    Rev 1.08.10 Apr.  2 2006 Daniele Venzano add vlan (jumbo packets) support
21    Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
22    Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
23    Rev 1.08.07 Nov.  2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
24    Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
25    Rev 1.08.05 Jun.  6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
26    Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
27    Rev 1.08.03 Feb.  1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
28    Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
29    Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
30    Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
31    Rev 1.07.11 Apr.  2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
32    Rev 1.07.10 Mar.  1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
33    Rev 1.07.09 Feb.  9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
34    Rev 1.07.08 Jan.  8 2001 Lei-Chun Chang added RTL8201 PHY support
35    Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
36    Rev 1.07.06 Nov.  7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
37    Rev 1.07.05 Nov.  6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
38    Rev 1.07.04 Sep.  6 2000 Lei-Chun Chang added ICS1893 PHY support
39    Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E equalizer workaround rule
40    Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
41    Rev 1.07    Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
42    Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
43    Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
44    Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
45    Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
46    Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
47    Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
48    Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
49    Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
50 */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/kernel.h>
55 #include <linux/sched.h>
56 #include <linux/string.h>
57 #include <linux/timer.h>
58 #include <linux/errno.h>
59 #include <linux/ioport.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/pci.h>
63 #include <linux/netdevice.h>
64 #include <linux/init.h>
65 #include <linux/mii.h>
66 #include <linux/etherdevice.h>
67 #include <linux/skbuff.h>
68 #include <linux/delay.h>
69 #include <linux/ethtool.h>
70 #include <linux/crc32.h>
71 #include <linux/bitops.h>
72 #include <linux/dma-mapping.h>
73 
74 #include <asm/processor.h>      /* Processor type for cache alignment. */
75 #include <asm/io.h>
76 #include <asm/irq.h>
77 #include <asm/uaccess.h>	/* User space memory access functions */
78 
79 #include "sis900.h"
80 
81 #define SIS900_MODULE_NAME "sis900"
82 #define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
83 
84 static const char version[] =
85 	KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
86 
87 static int max_interrupt_work = 40;
88 static int multicast_filter_limit = 128;
89 
90 static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
91 
92 #define SIS900_DEF_MSG \
93 	(NETIF_MSG_DRV		| \
94 	 NETIF_MSG_LINK		| \
95 	 NETIF_MSG_RX_ERR	| \
96 	 NETIF_MSG_TX_ERR)
97 
98 /* Time in jiffies before concluding the transmitter is hung. */
99 #define TX_TIMEOUT  (4*HZ)
100 
101 enum {
102 	SIS_900 = 0,
103 	SIS_7016
104 };
105 static const char * card_names[] = {
106 	"SiS 900 PCI Fast Ethernet",
107 	"SiS 7016 PCI Fast Ethernet"
108 };
109 
110 static const struct pci_device_id sis900_pci_tbl[] = {
111 	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
112 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
113 	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
114 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
115 	{0,}
116 };
117 MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
118 
119 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
120 
121 static const struct mii_chip_info {
122 	const char * name;
123 	u16 phy_id0;
124 	u16 phy_id1;
125 	u8  phy_types;
126 #define	HOME 	0x0001
127 #define LAN	0x0002
128 #define MIX	0x0003
129 #define UNKNOWN	0x0
130 } mii_chip_table[] = {
131 	{ "SiS 900 Internal MII PHY", 		0x001d, 0x8000, LAN },
132 	{ "SiS 7014 Physical Layer Solution", 	0x0016, 0xf830, LAN },
133 	{ "SiS 900 on Foxconn 661 7MI",         0x0143, 0xBC70, LAN },
134 	{ "Altimata AC101LF PHY",               0x0022, 0x5520, LAN },
135 	{ "ADM 7001 LAN PHY",			0x002e, 0xcc60, LAN },
136 	{ "AMD 79C901 10BASE-T PHY",  		0x0000, 0x6B70, LAN },
137 	{ "AMD 79C901 HomePNA PHY",		0x0000, 0x6B90, HOME},
138 	{ "ICS LAN PHY",			0x0015, 0xF440, LAN },
139 	{ "ICS LAN PHY",			0x0143, 0xBC70, LAN },
140 	{ "NS 83851 PHY",			0x2000, 0x5C20, MIX },
141 	{ "NS 83847 PHY",                       0x2000, 0x5C30, MIX },
142 	{ "Realtek RTL8201 PHY",		0x0000, 0x8200, LAN },
143 	{ "VIA 6103 PHY",			0x0101, 0x8f20, LAN },
144 	{NULL,},
145 };
146 
147 struct mii_phy {
148 	struct mii_phy * next;
149 	int phy_addr;
150 	u16 phy_id0;
151 	u16 phy_id1;
152 	u16 status;
153 	u8  phy_types;
154 };
155 
156 typedef struct _BufferDesc {
157 	u32 link;
158 	u32 cmdsts;
159 	u32 bufptr;
160 } BufferDesc;
161 
162 struct sis900_private {
163 	struct pci_dev * pci_dev;
164 
165 	spinlock_t lock;
166 
167 	struct mii_phy * mii;
168 	struct mii_phy * first_mii; /* record the first mii structure */
169 	unsigned int cur_phy;
170 	struct mii_if_info mii_info;
171 
172 	void __iomem	*ioaddr;
173 
174 	struct timer_list timer; /* Link status detection timer. */
175 	u8 autong_complete; /* 1: auto-negotiate complete  */
176 
177 	u32 msg_enable;
178 
179 	unsigned int cur_rx, dirty_rx; /* producer/comsumer pointers for Tx/Rx ring */
180 	unsigned int cur_tx, dirty_tx;
181 
182 	/* The saved address of a sent/receive-in-place packet buffer */
183 	struct sk_buff *tx_skbuff[NUM_TX_DESC];
184 	struct sk_buff *rx_skbuff[NUM_RX_DESC];
185 	BufferDesc *tx_ring;
186 	BufferDesc *rx_ring;
187 
188 	dma_addr_t tx_ring_dma;
189 	dma_addr_t rx_ring_dma;
190 
191 	unsigned int tx_full; /* The Tx queue is full. */
192 	u8 host_bridge_rev;
193 	u8 chipset_rev;
194 };
195 
196 MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
197 MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
198 MODULE_LICENSE("GPL");
199 
200 module_param(multicast_filter_limit, int, 0444);
201 module_param(max_interrupt_work, int, 0444);
202 module_param(sis900_debug, int, 0444);
203 MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
204 MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
205 MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
206 
207 #define sw32(reg, val)	iowrite32(val, ioaddr + (reg))
208 #define sw8(reg, val)	iowrite8(val, ioaddr + (reg))
209 #define sr32(reg)	ioread32(ioaddr + (reg))
210 #define sr16(reg)	ioread16(ioaddr + (reg))
211 
212 #ifdef CONFIG_NET_POLL_CONTROLLER
213 static void sis900_poll(struct net_device *dev);
214 #endif
215 static int sis900_open(struct net_device *net_dev);
216 static int sis900_mii_probe (struct net_device * net_dev);
217 static void sis900_init_rxfilter (struct net_device * net_dev);
218 static u16 read_eeprom(void __iomem *ioaddr, int location);
219 static int mdio_read(struct net_device *net_dev, int phy_id, int location);
220 static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
221 static void sis900_timer(unsigned long data);
222 static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
223 static void sis900_tx_timeout(struct net_device *net_dev);
224 static void sis900_init_tx_ring(struct net_device *net_dev);
225 static void sis900_init_rx_ring(struct net_device *net_dev);
226 static netdev_tx_t sis900_start_xmit(struct sk_buff *skb,
227 				     struct net_device *net_dev);
228 static int sis900_rx(struct net_device *net_dev);
229 static void sis900_finish_xmit (struct net_device *net_dev);
230 static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
231 static int sis900_close(struct net_device *net_dev);
232 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
233 static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
234 static void set_rx_mode(struct net_device *net_dev);
235 static void sis900_reset(struct net_device *net_dev);
236 static void sis630_set_eq(struct net_device *net_dev, u8 revision);
237 static int sis900_set_config(struct net_device *dev, struct ifmap *map);
238 static u16 sis900_default_phy(struct net_device * net_dev);
239 static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
240 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
241 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
242 static void sis900_set_mode(struct sis900_private *, int speed, int duplex);
243 static const struct ethtool_ops sis900_ethtool_ops;
244 
245 /**
246  *	sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
247  *	@pci_dev: the sis900 pci device
248  *	@net_dev: the net device to get address for
249  *
250  *	Older SiS900 and friends, use EEPROM to store MAC address.
251  *	MAC address is read from read_eeprom() into @net_dev->dev_addr.
252  */
253 
254 static int sis900_get_mac_addr(struct pci_dev *pci_dev,
255 			       struct net_device *net_dev)
256 {
257 	struct sis900_private *sis_priv = netdev_priv(net_dev);
258 	void __iomem *ioaddr = sis_priv->ioaddr;
259 	u16 signature;
260 	int i;
261 
262 	/* check to see if we have sane EEPROM */
263 	signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
264 	if (signature == 0xffff || signature == 0x0000) {
265 		printk (KERN_WARNING "%s: Error EERPOM read %x\n",
266 			pci_name(pci_dev), signature);
267 		return 0;
268 	}
269 
270 	/* get MAC address from EEPROM */
271 	for (i = 0; i < 3; i++)
272 	        ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
273 
274 	return 1;
275 }
276 
277 /**
278  *	sis630e_get_mac_addr - Get MAC address for SiS630E model
279  *	@pci_dev: the sis900 pci device
280  *	@net_dev: the net device to get address for
281  *
282  *	SiS630E model, use APC CMOS RAM to store MAC address.
283  *	APC CMOS RAM is accessed through ISA bridge.
284  *	MAC address is read into @net_dev->dev_addr.
285  */
286 
287 static int sis630e_get_mac_addr(struct pci_dev *pci_dev,
288 				struct net_device *net_dev)
289 {
290 	struct pci_dev *isa_bridge = NULL;
291 	u8 reg;
292 	int i;
293 
294 	isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
295 	if (!isa_bridge)
296 		isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
297 	if (!isa_bridge) {
298 		printk(KERN_WARNING "%s: Can not find ISA bridge\n",
299 		       pci_name(pci_dev));
300 		return 0;
301 	}
302 	pci_read_config_byte(isa_bridge, 0x48, &reg);
303 	pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
304 
305 	for (i = 0; i < 6; i++) {
306 		outb(0x09 + i, 0x70);
307 		((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
308 	}
309 
310 	pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
311 	pci_dev_put(isa_bridge);
312 
313 	return 1;
314 }
315 
316 
317 /**
318  *	sis635_get_mac_addr - Get MAC address for SIS635 model
319  *	@pci_dev: the sis900 pci device
320  *	@net_dev: the net device to get address for
321  *
322  *	SiS635 model, set MAC Reload Bit to load Mac address from APC
323  *	to rfdr. rfdr is accessed through rfcr. MAC address is read into
324  *	@net_dev->dev_addr.
325  */
326 
327 static int sis635_get_mac_addr(struct pci_dev *pci_dev,
328 			       struct net_device *net_dev)
329 {
330 	struct sis900_private *sis_priv = netdev_priv(net_dev);
331 	void __iomem *ioaddr = sis_priv->ioaddr;
332 	u32 rfcrSave;
333 	u32 i;
334 
335 	rfcrSave = sr32(rfcr);
336 
337 	sw32(cr, rfcrSave | RELOAD);
338 	sw32(cr, 0);
339 
340 	/* disable packet filtering before setting filter */
341 	sw32(rfcr, rfcrSave & ~RFEN);
342 
343 	/* load MAC addr to filter data register */
344 	for (i = 0 ; i < 3 ; i++) {
345 		sw32(rfcr, (i << RFADDR_shift));
346 		*( ((u16 *)net_dev->dev_addr) + i) = sr16(rfdr);
347 	}
348 
349 	/* enable packet filtering */
350 	sw32(rfcr, rfcrSave | RFEN);
351 
352 	return 1;
353 }
354 
355 /**
356  *	sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
357  *	@pci_dev: the sis900 pci device
358  *	@net_dev: the net device to get address for
359  *
360  *	SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
361  *	is shared by
362  *	LAN and 1394. When access EEPROM, send EEREQ signal to hardware first
363  *	and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access
364  *	by LAN, otherwise is not. After MAC address is read from EEPROM, send
365  *	EEDONE signal to refuse EEPROM access by LAN.
366  *	The EEPROM map of SiS962 or SiS963 is different to SiS900.
367  *	The signature field in SiS962 or SiS963 spec is meaningless.
368  *	MAC address is read into @net_dev->dev_addr.
369  */
370 
371 static int sis96x_get_mac_addr(struct pci_dev *pci_dev,
372 			       struct net_device *net_dev)
373 {
374 	struct sis900_private *sis_priv = netdev_priv(net_dev);
375 	void __iomem *ioaddr = sis_priv->ioaddr;
376 	int wait, rc = 0;
377 
378 	sw32(mear, EEREQ);
379 	for (wait = 0; wait < 2000; wait++) {
380 		if (sr32(mear) & EEGNT) {
381 			u16 *mac = (u16 *)net_dev->dev_addr;
382 			int i;
383 
384 			/* get MAC address from EEPROM */
385 			for (i = 0; i < 3; i++)
386 			        mac[i] = read_eeprom(ioaddr, i + EEPROMMACAddr);
387 
388 			rc = 1;
389 			break;
390 		}
391 		udelay(1);
392 	}
393 	sw32(mear, EEDONE);
394 	return rc;
395 }
396 
397 static const struct net_device_ops sis900_netdev_ops = {
398 	.ndo_open		 = sis900_open,
399 	.ndo_stop		= sis900_close,
400 	.ndo_start_xmit		= sis900_start_xmit,
401 	.ndo_set_config		= sis900_set_config,
402 	.ndo_set_rx_mode	= set_rx_mode,
403 	.ndo_change_mtu		= eth_change_mtu,
404 	.ndo_validate_addr	= eth_validate_addr,
405 	.ndo_set_mac_address 	= eth_mac_addr,
406 	.ndo_do_ioctl		= mii_ioctl,
407 	.ndo_tx_timeout		= sis900_tx_timeout,
408 #ifdef CONFIG_NET_POLL_CONTROLLER
409         .ndo_poll_controller	= sis900_poll,
410 #endif
411 };
412 
413 /**
414  *	sis900_probe - Probe for sis900 device
415  *	@pci_dev: the sis900 pci device
416  *	@pci_id: the pci device ID
417  *
418  *	Check and probe sis900 net device for @pci_dev.
419  *	Get mac address according to the chip revision,
420  *	and assign SiS900-specific entries in the device structure.
421  *	ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
422  */
423 
424 static int sis900_probe(struct pci_dev *pci_dev,
425 			const struct pci_device_id *pci_id)
426 {
427 	struct sis900_private *sis_priv;
428 	struct net_device *net_dev;
429 	struct pci_dev *dev;
430 	dma_addr_t ring_dma;
431 	void *ring_space;
432 	void __iomem *ioaddr;
433 	int i, ret;
434 	const char *card_name = card_names[pci_id->driver_data];
435 	const char *dev_name = pci_name(pci_dev);
436 
437 /* when built into the kernel, we only print version if device is found */
438 #ifndef MODULE
439 	static int printed_version;
440 	if (!printed_version++)
441 		printk(version);
442 #endif
443 
444 	/* setup various bits in PCI command register */
445 	ret = pci_enable_device(pci_dev);
446 	if(ret) return ret;
447 
448 	i = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
449 	if(i){
450 		printk(KERN_ERR "sis900.c: architecture does not support "
451 			"32bit PCI busmaster DMA\n");
452 		return i;
453 	}
454 
455 	pci_set_master(pci_dev);
456 
457 	net_dev = alloc_etherdev(sizeof(struct sis900_private));
458 	if (!net_dev)
459 		return -ENOMEM;
460 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
461 
462 	/* We do a request_region() to register /proc/ioports info. */
463 	ret = pci_request_regions(pci_dev, "sis900");
464 	if (ret)
465 		goto err_out;
466 
467 	/* IO region. */
468 	ioaddr = pci_iomap(pci_dev, 0, 0);
469 	if (!ioaddr) {
470 		ret = -ENOMEM;
471 		goto err_out_cleardev;
472 	}
473 
474 	sis_priv = netdev_priv(net_dev);
475 	sis_priv->ioaddr = ioaddr;
476 	sis_priv->pci_dev = pci_dev;
477 	spin_lock_init(&sis_priv->lock);
478 
479 	pci_set_drvdata(pci_dev, net_dev);
480 
481 	ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
482 	if (!ring_space) {
483 		ret = -ENOMEM;
484 		goto err_out_unmap;
485 	}
486 	sis_priv->tx_ring = ring_space;
487 	sis_priv->tx_ring_dma = ring_dma;
488 
489 	ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
490 	if (!ring_space) {
491 		ret = -ENOMEM;
492 		goto err_unmap_tx;
493 	}
494 	sis_priv->rx_ring = ring_space;
495 	sis_priv->rx_ring_dma = ring_dma;
496 
497 	/* The SiS900-specific entries in the device structure. */
498 	net_dev->netdev_ops = &sis900_netdev_ops;
499 	net_dev->watchdog_timeo = TX_TIMEOUT;
500 	net_dev->ethtool_ops = &sis900_ethtool_ops;
501 
502 	if (sis900_debug > 0)
503 		sis_priv->msg_enable = sis900_debug;
504 	else
505 		sis_priv->msg_enable = SIS900_DEF_MSG;
506 
507 	sis_priv->mii_info.dev = net_dev;
508 	sis_priv->mii_info.mdio_read = mdio_read;
509 	sis_priv->mii_info.mdio_write = mdio_write;
510 	sis_priv->mii_info.phy_id_mask = 0x1f;
511 	sis_priv->mii_info.reg_num_mask = 0x1f;
512 
513 	/* Get Mac address according to the chip revision */
514 	sis_priv->chipset_rev = pci_dev->revision;
515 	if(netif_msg_probe(sis_priv))
516 		printk(KERN_DEBUG "%s: detected revision %2.2x, "
517 				"trying to get MAC address...\n",
518 				dev_name, sis_priv->chipset_rev);
519 
520 	ret = 0;
521 	if (sis_priv->chipset_rev == SIS630E_900_REV)
522 		ret = sis630e_get_mac_addr(pci_dev, net_dev);
523 	else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
524 		ret = sis635_get_mac_addr(pci_dev, net_dev);
525 	else if (sis_priv->chipset_rev == SIS96x_900_REV)
526 		ret = sis96x_get_mac_addr(pci_dev, net_dev);
527 	else
528 		ret = sis900_get_mac_addr(pci_dev, net_dev);
529 
530 	if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) {
531 		eth_hw_addr_random(net_dev);
532 		printk(KERN_WARNING "%s: Unreadable or invalid MAC address,"
533 				"using random generated one\n", dev_name);
534 	}
535 
536 	/* 630ET : set the mii access mode as software-mode */
537 	if (sis_priv->chipset_rev == SIS630ET_900_REV)
538 		sw32(cr, ACCESSMODE | sr32(cr));
539 
540 	/* probe for mii transceiver */
541 	if (sis900_mii_probe(net_dev) == 0) {
542 		printk(KERN_WARNING "%s: Error probing MII device.\n",
543 		       dev_name);
544 		ret = -ENODEV;
545 		goto err_unmap_rx;
546 	}
547 
548 	/* save our host bridge revision */
549 	dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
550 	if (dev) {
551 		sis_priv->host_bridge_rev = dev->revision;
552 		pci_dev_put(dev);
553 	}
554 
555 	ret = register_netdev(net_dev);
556 	if (ret)
557 		goto err_unmap_rx;
558 
559 	/* print some information about our NIC */
560 	printk(KERN_INFO "%s: %s at 0x%p, IRQ %d, %pM\n",
561 	       net_dev->name, card_name, ioaddr, pci_dev->irq,
562 	       net_dev->dev_addr);
563 
564 	/* Detect Wake on Lan support */
565 	ret = (sr32(CFGPMC) & PMESP) >> 27;
566 	if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
567 		printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
568 
569 	return 0;
570 
571 err_unmap_rx:
572 	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
573 		sis_priv->rx_ring_dma);
574 err_unmap_tx:
575 	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
576 		sis_priv->tx_ring_dma);
577 err_out_unmap:
578 	pci_iounmap(pci_dev, ioaddr);
579 err_out_cleardev:
580 	pci_release_regions(pci_dev);
581  err_out:
582 	free_netdev(net_dev);
583 	return ret;
584 }
585 
586 /**
587  *	sis900_mii_probe - Probe MII PHY for sis900
588  *	@net_dev: the net device to probe for
589  *
590  *	Search for total of 32 possible mii phy addresses.
591  *	Identify and set current phy if found one,
592  *	return error if it failed to found.
593  */
594 
595 static int sis900_mii_probe(struct net_device *net_dev)
596 {
597 	struct sis900_private *sis_priv = netdev_priv(net_dev);
598 	const char *dev_name = pci_name(sis_priv->pci_dev);
599 	u16 poll_bit = MII_STAT_LINK, status = 0;
600 	unsigned long timeout = jiffies + 5 * HZ;
601 	int phy_addr;
602 
603 	sis_priv->mii = NULL;
604 
605 	/* search for total of 32 possible mii phy addresses */
606 	for (phy_addr = 0; phy_addr < 32; phy_addr++) {
607 		struct mii_phy * mii_phy = NULL;
608 		u16 mii_status;
609 		int i;
610 
611 		mii_phy = NULL;
612 		for(i = 0; i < 2; i++)
613 			mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
614 
615 		if (mii_status == 0xffff || mii_status == 0x0000) {
616 			if (netif_msg_probe(sis_priv))
617 				printk(KERN_DEBUG "%s: MII at address %d"
618 						" not accessible\n",
619 						dev_name, phy_addr);
620 			continue;
621 		}
622 
623 		if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
624 			mii_phy = sis_priv->first_mii;
625 			while (mii_phy) {
626 				struct mii_phy *phy;
627 				phy = mii_phy;
628 				mii_phy = mii_phy->next;
629 				kfree(phy);
630 			}
631 			return 0;
632 		}
633 
634 		mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
635 		mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
636 		mii_phy->phy_addr = phy_addr;
637 		mii_phy->status = mii_status;
638 		mii_phy->next = sis_priv->mii;
639 		sis_priv->mii = mii_phy;
640 		sis_priv->first_mii = mii_phy;
641 
642 		for (i = 0; mii_chip_table[i].phy_id1; i++)
643 			if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
644 			    ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
645 				mii_phy->phy_types = mii_chip_table[i].phy_types;
646 				if (mii_chip_table[i].phy_types == MIX)
647 					mii_phy->phy_types =
648 					    (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
649 				printk(KERN_INFO "%s: %s transceiver found "
650 							"at address %d.\n",
651 							dev_name,
652 							mii_chip_table[i].name,
653 							phy_addr);
654 				break;
655 			}
656 
657 		if( !mii_chip_table[i].phy_id1 ) {
658 			printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
659 			       dev_name, phy_addr);
660 			mii_phy->phy_types = UNKNOWN;
661 		}
662 	}
663 
664 	if (sis_priv->mii == NULL) {
665 		printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
666 		return 0;
667 	}
668 
669 	/* select default PHY for mac */
670 	sis_priv->mii = NULL;
671 	sis900_default_phy( net_dev );
672 
673 	/* Reset phy if default phy is internal sis900 */
674         if ((sis_priv->mii->phy_id0 == 0x001D) &&
675 	    ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
676         	status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
677 
678         /* workaround for ICS1893 PHY */
679         if ((sis_priv->mii->phy_id0 == 0x0015) &&
680             ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
681             	mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
682 
683 	if(status & MII_STAT_LINK){
684 		while (poll_bit) {
685 			yield();
686 
687 			poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
688 			if (time_after_eq(jiffies, timeout)) {
689 				printk(KERN_WARNING "%s: reset phy and link down now\n",
690 				       dev_name);
691 				return -ETIME;
692 			}
693 		}
694 	}
695 
696 	if (sis_priv->chipset_rev == SIS630E_900_REV) {
697 		/* SiS 630E has some bugs on default value of PHY registers */
698 		mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
699 		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
700 		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
701 		mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
702 		//mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
703 	}
704 
705 	if (sis_priv->mii->status & MII_STAT_LINK)
706 		netif_carrier_on(net_dev);
707 	else
708 		netif_carrier_off(net_dev);
709 
710 	return 1;
711 }
712 
713 /**
714  *	sis900_default_phy - Select default PHY for sis900 mac.
715  *	@net_dev: the net device to probe for
716  *
717  *	Select first detected PHY with link as default.
718  *	If no one is link on, select PHY whose types is HOME as default.
719  *	If HOME doesn't exist, select LAN.
720  */
721 
722 static u16 sis900_default_phy(struct net_device * net_dev)
723 {
724 	struct sis900_private *sis_priv = netdev_priv(net_dev);
725  	struct mii_phy *phy = NULL, *phy_home = NULL,
726 		*default_phy = NULL, *phy_lan = NULL;
727 	u16 status;
728 
729         for (phy=sis_priv->first_mii; phy; phy=phy->next) {
730 		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
731 		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
732 
733 		/* Link ON & Not select default PHY & not ghost PHY */
734 		 if ((status & MII_STAT_LINK) && !default_phy &&
735 					(phy->phy_types != UNKNOWN))
736 		 	default_phy = phy;
737 		 else {
738 			status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
739 			mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
740 				status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
741 			if (phy->phy_types == HOME)
742 				phy_home = phy;
743 			else if(phy->phy_types == LAN)
744 				phy_lan = phy;
745 		 }
746 	}
747 
748 	if (!default_phy && phy_home)
749 		default_phy = phy_home;
750 	else if (!default_phy && phy_lan)
751 		default_phy = phy_lan;
752 	else if (!default_phy)
753 		default_phy = sis_priv->first_mii;
754 
755 	if (sis_priv->mii != default_phy) {
756 		sis_priv->mii = default_phy;
757 		sis_priv->cur_phy = default_phy->phy_addr;
758 		printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
759 		       pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
760 	}
761 
762 	sis_priv->mii_info.phy_id = sis_priv->cur_phy;
763 
764 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
765 	status &= (~MII_CNTL_ISOLATE);
766 
767 	mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
768 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
769 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
770 
771 	return status;
772 }
773 
774 
775 /**
776  * 	sis900_set_capability - set the media capability of network adapter.
777  *	@net_dev : the net device to probe for
778  *	@phy : default PHY
779  *
780  *	Set the media capability of network adapter according to
781  *	mii status register. It's necessary before auto-negotiate.
782  */
783 
784 static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
785 {
786 	u16 cap;
787 	u16 status;
788 
789 	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
790 	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
791 
792 	cap = MII_NWAY_CSMA_CD |
793 		((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
794 		((phy->status & MII_STAT_CAN_TX)    ? MII_NWAY_TX:0) |
795 		((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
796 		((phy->status & MII_STAT_CAN_T)     ? MII_NWAY_T:0);
797 
798 	mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
799 }
800 
801 
802 /* Delay between EEPROM clock transitions. */
803 #define eeprom_delay()	sr32(mear)
804 
805 /**
806  *	read_eeprom - Read Serial EEPROM
807  *	@ioaddr: base i/o address
808  *	@location: the EEPROM location to read
809  *
810  *	Read Serial EEPROM through EEPROM Access Register.
811  *	Note that location is in word (16 bits) unit
812  */
813 
814 static u16 read_eeprom(void __iomem *ioaddr, int location)
815 {
816 	u32 read_cmd = location | EEread;
817 	int i;
818 	u16 retval = 0;
819 
820 	sw32(mear, 0);
821 	eeprom_delay();
822 	sw32(mear, EECS);
823 	eeprom_delay();
824 
825 	/* Shift the read command (9) bits out. */
826 	for (i = 8; i >= 0; i--) {
827 		u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
828 
829 		sw32(mear, dataval);
830 		eeprom_delay();
831 		sw32(mear, dataval | EECLK);
832 		eeprom_delay();
833 	}
834 	sw32(mear, EECS);
835 	eeprom_delay();
836 
837 	/* read the 16-bits data in */
838 	for (i = 16; i > 0; i--) {
839 		sw32(mear, EECS);
840 		eeprom_delay();
841 		sw32(mear, EECS | EECLK);
842 		eeprom_delay();
843 		retval = (retval << 1) | ((sr32(mear) & EEDO) ? 1 : 0);
844 		eeprom_delay();
845 	}
846 
847 	/* Terminate the EEPROM access. */
848 	sw32(mear, 0);
849 	eeprom_delay();
850 
851 	return retval;
852 }
853 
854 /* Read and write the MII management registers using software-generated
855    serial MDIO protocol. Note that the command bits and data bits are
856    send out separately */
857 #define mdio_delay()	sr32(mear)
858 
859 static void mdio_idle(struct sis900_private *sp)
860 {
861 	void __iomem *ioaddr = sp->ioaddr;
862 
863 	sw32(mear, MDIO | MDDIR);
864 	mdio_delay();
865 	sw32(mear, MDIO | MDDIR | MDC);
866 }
867 
868 /* Synchronize the MII management interface by shifting 32 one bits out. */
869 static void mdio_reset(struct sis900_private *sp)
870 {
871 	void __iomem *ioaddr = sp->ioaddr;
872 	int i;
873 
874 	for (i = 31; i >= 0; i--) {
875 		sw32(mear, MDDIR | MDIO);
876 		mdio_delay();
877 		sw32(mear, MDDIR | MDIO | MDC);
878 		mdio_delay();
879 	}
880 }
881 
882 /**
883  *	mdio_read - read MII PHY register
884  *	@net_dev: the net device to read
885  *	@phy_id: the phy address to read
886  *	@location: the phy regiester id to read
887  *
888  *	Read MII registers through MDIO and MDC
889  *	using MDIO management frame structure and protocol(defined by ISO/IEC).
890  *	Please see SiS7014 or ICS spec
891  */
892 
893 static int mdio_read(struct net_device *net_dev, int phy_id, int location)
894 {
895 	int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
896 	struct sis900_private *sp = netdev_priv(net_dev);
897 	void __iomem *ioaddr = sp->ioaddr;
898 	u16 retval = 0;
899 	int i;
900 
901 	mdio_reset(sp);
902 	mdio_idle(sp);
903 
904 	for (i = 15; i >= 0; i--) {
905 		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
906 
907 		sw32(mear, dataval);
908 		mdio_delay();
909 		sw32(mear, dataval | MDC);
910 		mdio_delay();
911 	}
912 
913 	/* Read the 16 data bits. */
914 	for (i = 16; i > 0; i--) {
915 		sw32(mear, 0);
916 		mdio_delay();
917 		retval = (retval << 1) | ((sr32(mear) & MDIO) ? 1 : 0);
918 		sw32(mear, MDC);
919 		mdio_delay();
920 	}
921 	sw32(mear, 0x00);
922 
923 	return retval;
924 }
925 
926 /**
927  *	mdio_write - write MII PHY register
928  *	@net_dev: the net device to write
929  *	@phy_id: the phy address to write
930  *	@location: the phy regiester id to write
931  *	@value: the register value to write with
932  *
933  *	Write MII registers with @value through MDIO and MDC
934  *	using MDIO management frame structure and protocol(defined by ISO/IEC)
935  *	please see SiS7014 or ICS spec
936  */
937 
938 static void mdio_write(struct net_device *net_dev, int phy_id, int location,
939 			int value)
940 {
941 	int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
942 	struct sis900_private *sp = netdev_priv(net_dev);
943 	void __iomem *ioaddr = sp->ioaddr;
944 	int i;
945 
946 	mdio_reset(sp);
947 	mdio_idle(sp);
948 
949 	/* Shift the command bits out. */
950 	for (i = 15; i >= 0; i--) {
951 		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
952 
953 		sw8(mear, dataval);
954 		mdio_delay();
955 		sw8(mear, dataval | MDC);
956 		mdio_delay();
957 	}
958 	mdio_delay();
959 
960 	/* Shift the value bits out. */
961 	for (i = 15; i >= 0; i--) {
962 		int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
963 
964 		sw32(mear, dataval);
965 		mdio_delay();
966 		sw32(mear, dataval | MDC);
967 		mdio_delay();
968 	}
969 	mdio_delay();
970 
971 	/* Clear out extra bits. */
972 	for (i = 2; i > 0; i--) {
973 		sw8(mear, 0);
974 		mdio_delay();
975 		sw8(mear, MDC);
976 		mdio_delay();
977 	}
978 	sw32(mear, 0x00);
979 }
980 
981 
982 /**
983  *	sis900_reset_phy - reset sis900 mii phy.
984  *	@net_dev: the net device to write
985  *	@phy_addr: default phy address
986  *
987  *	Some specific phy can't work properly without reset.
988  *	This function will be called during initialization and
989  *	link status change from ON to DOWN.
990  */
991 
992 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
993 {
994 	int i;
995 	u16 status;
996 
997 	for (i = 0; i < 2; i++)
998 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
999 
1000 	mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
1001 
1002 	return status;
1003 }
1004 
1005 #ifdef CONFIG_NET_POLL_CONTROLLER
1006 /*
1007  * Polling 'interrupt' - used by things like netconsole to send skbs
1008  * without having to re-enable interrupts. It's not called while
1009  * the interrupt routine is executing.
1010 */
1011 static void sis900_poll(struct net_device *dev)
1012 {
1013 	struct sis900_private *sp = netdev_priv(dev);
1014 	const int irq = sp->pci_dev->irq;
1015 
1016 	disable_irq(irq);
1017 	sis900_interrupt(irq, dev);
1018 	enable_irq(irq);
1019 }
1020 #endif
1021 
1022 /**
1023  *	sis900_open - open sis900 device
1024  *	@net_dev: the net device to open
1025  *
1026  *	Do some initialization and start net interface.
1027  *	enable interrupts and set sis900 timer.
1028  */
1029 
1030 static int
1031 sis900_open(struct net_device *net_dev)
1032 {
1033 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1034 	void __iomem *ioaddr = sis_priv->ioaddr;
1035 	int ret;
1036 
1037 	/* Soft reset the chip. */
1038 	sis900_reset(net_dev);
1039 
1040 	/* Equalizer workaround Rule */
1041 	sis630_set_eq(net_dev, sis_priv->chipset_rev);
1042 
1043 	ret = request_irq(sis_priv->pci_dev->irq, sis900_interrupt, IRQF_SHARED,
1044 			  net_dev->name, net_dev);
1045 	if (ret)
1046 		return ret;
1047 
1048 	sis900_init_rxfilter(net_dev);
1049 
1050 	sis900_init_tx_ring(net_dev);
1051 	sis900_init_rx_ring(net_dev);
1052 
1053 	set_rx_mode(net_dev);
1054 
1055 	netif_start_queue(net_dev);
1056 
1057 	/* Workaround for EDB */
1058 	sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1059 
1060 	/* Enable all known interrupts by setting the interrupt mask. */
1061 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
1062 	sw32(cr, RxENA | sr32(cr));
1063 	sw32(ier, IE);
1064 
1065 	sis900_check_mode(net_dev, sis_priv->mii);
1066 
1067 	/* Set the timer to switch to check for link beat and perhaps switch
1068 	   to an alternate media type. */
1069 	init_timer(&sis_priv->timer);
1070 	sis_priv->timer.expires = jiffies + HZ;
1071 	sis_priv->timer.data = (unsigned long)net_dev;
1072 	sis_priv->timer.function = sis900_timer;
1073 	add_timer(&sis_priv->timer);
1074 
1075 	return 0;
1076 }
1077 
1078 /**
1079  *	sis900_init_rxfilter - Initialize the Rx filter
1080  *	@net_dev: the net device to initialize for
1081  *
1082  *	Set receive filter address to our MAC address
1083  *	and enable packet filtering.
1084  */
1085 
1086 static void
1087 sis900_init_rxfilter (struct net_device * net_dev)
1088 {
1089 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1090 	void __iomem *ioaddr = sis_priv->ioaddr;
1091 	u32 rfcrSave;
1092 	u32 i;
1093 
1094 	rfcrSave = sr32(rfcr);
1095 
1096 	/* disable packet filtering before setting filter */
1097 	sw32(rfcr, rfcrSave & ~RFEN);
1098 
1099 	/* load MAC addr to filter data register */
1100 	for (i = 0 ; i < 3 ; i++) {
1101 		u32 w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1102 
1103 		sw32(rfcr, i << RFADDR_shift);
1104 		sw32(rfdr, w);
1105 
1106 		if (netif_msg_hw(sis_priv)) {
1107 			printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n",
1108 			       net_dev->name, i, sr32(rfdr));
1109 		}
1110 	}
1111 
1112 	/* enable packet filtering */
1113 	sw32(rfcr, rfcrSave | RFEN);
1114 }
1115 
1116 /**
1117  *	sis900_init_tx_ring - Initialize the Tx descriptor ring
1118  *	@net_dev: the net device to initialize for
1119  *
1120  *	Initialize the Tx descriptor ring,
1121  */
1122 
1123 static void
1124 sis900_init_tx_ring(struct net_device *net_dev)
1125 {
1126 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1127 	void __iomem *ioaddr = sis_priv->ioaddr;
1128 	int i;
1129 
1130 	sis_priv->tx_full = 0;
1131 	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1132 
1133 	for (i = 0; i < NUM_TX_DESC; i++) {
1134 		sis_priv->tx_skbuff[i] = NULL;
1135 
1136 		sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1137 			((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1138 		sis_priv->tx_ring[i].cmdsts = 0;
1139 		sis_priv->tx_ring[i].bufptr = 0;
1140 	}
1141 
1142 	/* load Transmit Descriptor Register */
1143 	sw32(txdp, sis_priv->tx_ring_dma);
1144 	if (netif_msg_hw(sis_priv))
1145 		printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1146 		       net_dev->name, sr32(txdp));
1147 }
1148 
1149 /**
1150  *	sis900_init_rx_ring - Initialize the Rx descriptor ring
1151  *	@net_dev: the net device to initialize for
1152  *
1153  *	Initialize the Rx descriptor ring,
1154  *	and pre-allocate recevie buffers (socket buffer)
1155  */
1156 
1157 static void
1158 sis900_init_rx_ring(struct net_device *net_dev)
1159 {
1160 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1161 	void __iomem *ioaddr = sis_priv->ioaddr;
1162 	int i;
1163 
1164 	sis_priv->cur_rx = 0;
1165 	sis_priv->dirty_rx = 0;
1166 
1167 	/* init RX descriptor */
1168 	for (i = 0; i < NUM_RX_DESC; i++) {
1169 		sis_priv->rx_skbuff[i] = NULL;
1170 
1171 		sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1172 			((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1173 		sis_priv->rx_ring[i].cmdsts = 0;
1174 		sis_priv->rx_ring[i].bufptr = 0;
1175 	}
1176 
1177 	/* allocate sock buffers */
1178 	for (i = 0; i < NUM_RX_DESC; i++) {
1179 		struct sk_buff *skb;
1180 
1181 		if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1182 			/* not enough memory for skbuff, this makes a "hole"
1183 			   on the buffer ring, it is not clear how the
1184 			   hardware will react to this kind of degenerated
1185 			   buffer */
1186 			break;
1187 		}
1188 		sis_priv->rx_skbuff[i] = skb;
1189 		sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1190 		sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1191 				skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1192 		if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1193 				sis_priv->rx_ring[i].bufptr))) {
1194 			dev_kfree_skb(skb);
1195 			sis_priv->rx_skbuff[i] = NULL;
1196 			break;
1197 		}
1198 	}
1199 	sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1200 
1201 	/* load Receive Descriptor Register */
1202 	sw32(rxdp, sis_priv->rx_ring_dma);
1203 	if (netif_msg_hw(sis_priv))
1204 		printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1205 		       net_dev->name, sr32(rxdp));
1206 }
1207 
1208 /**
1209  *	sis630_set_eq - set phy equalizer value for 630 LAN
1210  *	@net_dev: the net device to set equalizer value
1211  *	@revision: 630 LAN revision number
1212  *
1213  *	630E equalizer workaround rule(Cyrus Huang 08/15)
1214  *	PHY register 14h(Test)
1215  *	Bit 14: 0 -- Automatically detect (default)
1216  *		1 -- Manually set Equalizer filter
1217  *	Bit 13: 0 -- (Default)
1218  *		1 -- Speed up convergence of equalizer setting
1219  *	Bit 9 : 0 -- (Default)
1220  *		1 -- Disable Baseline Wander
1221  *	Bit 3~7   -- Equalizer filter setting
1222  *	Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1223  *	Then calculate equalizer value
1224  *	Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1225  *	Link Off:Set Bit 13 to 1, Bit 14 to 0
1226  *	Calculate Equalizer value:
1227  *	When Link is ON and Bit 14 is 0, SIS900PHY will auto-detect proper equalizer value.
1228  *	When the equalizer is stable, this value is not a fixed value. It will be within
1229  *	a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1230  *	0 <= max <= 4  --> set equalizer to max
1231  *	5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1232  *	max >= 15      --> set equalizer to max+5 or set equalizer to max+6 if max == min
1233  */
1234 
1235 static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1236 {
1237 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1238 	u16 reg14h, eq_value=0, max_value=0, min_value=0;
1239 	int i, maxcount=10;
1240 
1241 	if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1242 	       revision == SIS630A_900_REV || revision ==  SIS630ET_900_REV) )
1243 		return;
1244 
1245 	if (netif_carrier_ok(net_dev)) {
1246 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1247 		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1248 					(0x2200 | reg14h) & 0xBFFF);
1249 		for (i=0; i < maxcount; i++) {
1250 			eq_value = (0x00F8 & mdio_read(net_dev,
1251 					sis_priv->cur_phy, MII_RESV)) >> 3;
1252 			if (i == 0)
1253 				max_value=min_value=eq_value;
1254 			max_value = (eq_value > max_value) ?
1255 						eq_value : max_value;
1256 			min_value = (eq_value < min_value) ?
1257 						eq_value : min_value;
1258 		}
1259 		/* 630E rule to determine the equalizer value */
1260 		if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1261 		    revision == SIS630ET_900_REV) {
1262 			if (max_value < 5)
1263 				eq_value = max_value;
1264 			else if (max_value >= 5 && max_value < 15)
1265 				eq_value = (max_value == min_value) ?
1266 						max_value+2 : max_value+1;
1267 			else if (max_value >= 15)
1268 				eq_value=(max_value == min_value) ?
1269 						max_value+6 : max_value+5;
1270 		}
1271 		/* 630B0&B1 rule to determine the equalizer value */
1272 		if (revision == SIS630A_900_REV &&
1273 		    (sis_priv->host_bridge_rev == SIS630B0 ||
1274 		     sis_priv->host_bridge_rev == SIS630B1)) {
1275 			if (max_value == 0)
1276 				eq_value = 3;
1277 			else
1278 				eq_value = (max_value + min_value + 1)/2;
1279 		}
1280 		/* write equalizer value and setting */
1281 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1282 		reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1283 		reg14h = (reg14h | 0x6000) & 0xFDFF;
1284 		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1285 	} else {
1286 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1287 		if (revision == SIS630A_900_REV &&
1288 		    (sis_priv->host_bridge_rev == SIS630B0 ||
1289 		     sis_priv->host_bridge_rev == SIS630B1))
1290 			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1291 						(reg14h | 0x2200) & 0xBFFF);
1292 		else
1293 			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1294 						(reg14h | 0x2000) & 0xBFFF);
1295 	}
1296 }
1297 
1298 /**
1299  *	sis900_timer - sis900 timer routine
1300  *	@data: pointer to sis900 net device
1301  *
1302  *	On each timer ticks we check two things,
1303  *	link status (ON/OFF) and link mode (10/100/Full/Half)
1304  */
1305 
1306 static void sis900_timer(unsigned long data)
1307 {
1308 	struct net_device *net_dev = (struct net_device *)data;
1309 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1310 	struct mii_phy *mii_phy = sis_priv->mii;
1311 	static const int next_tick = 5*HZ;
1312 	int speed = 0, duplex = 0;
1313 	u16 status;
1314 
1315 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1316 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1317 
1318 	/* Link OFF -> ON */
1319 	if (!netif_carrier_ok(net_dev)) {
1320 	LookForLink:
1321 		/* Search for new PHY */
1322 		status = sis900_default_phy(net_dev);
1323 		mii_phy = sis_priv->mii;
1324 
1325 		if (status & MII_STAT_LINK) {
1326 			WARN_ON(!(status & MII_STAT_AUTO_DONE));
1327 
1328 			sis900_read_mode(net_dev, &speed, &duplex);
1329 			if (duplex) {
1330 				sis900_set_mode(sis_priv, speed, duplex);
1331 				sis630_set_eq(net_dev, sis_priv->chipset_rev);
1332 				netif_carrier_on(net_dev);
1333 			}
1334 		}
1335 	} else {
1336 	/* Link ON -> OFF */
1337                 if (!(status & MII_STAT_LINK)){
1338                 	netif_carrier_off(net_dev);
1339 			if(netif_msg_link(sis_priv))
1340                 		printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1341 
1342                 	/* Change mode issue */
1343                 	if ((mii_phy->phy_id0 == 0x001D) &&
1344 			    ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1345                			sis900_reset_phy(net_dev,  sis_priv->cur_phy);
1346 
1347 			sis630_set_eq(net_dev, sis_priv->chipset_rev);
1348 
1349                 	goto LookForLink;
1350                 }
1351 	}
1352 
1353 	sis_priv->timer.expires = jiffies + next_tick;
1354 	add_timer(&sis_priv->timer);
1355 }
1356 
1357 /**
1358  *	sis900_check_mode - check the media mode for sis900
1359  *	@net_dev: the net device to be checked
1360  *	@mii_phy: the mii phy
1361  *
1362  *	Older driver gets the media mode from mii status output
1363  *	register. Now we set our media capability and auto-negotiate
1364  *	to get the upper bound of speed and duplex between two ends.
1365  *	If the types of mii phy is HOME, it doesn't need to auto-negotiate
1366  *	and autong_complete should be set to 1.
1367  */
1368 
1369 static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1370 {
1371 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1372 	void __iomem *ioaddr = sis_priv->ioaddr;
1373 	int speed, duplex;
1374 
1375 	if (mii_phy->phy_types == LAN) {
1376 		sw32(cfg, ~EXD & sr32(cfg));
1377 		sis900_set_capability(net_dev , mii_phy);
1378 		sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1379 	} else {
1380 		sw32(cfg, EXD | sr32(cfg));
1381 		speed = HW_SPEED_HOME;
1382 		duplex = FDX_CAPABLE_HALF_SELECTED;
1383 		sis900_set_mode(sis_priv, speed, duplex);
1384 		sis_priv->autong_complete = 1;
1385 	}
1386 }
1387 
1388 /**
1389  *	sis900_set_mode - Set the media mode of mac register.
1390  *	@sp:     the device private data
1391  *	@speed : the transmit speed to be determined
1392  *	@duplex: the duplex mode to be determined
1393  *
1394  *	Set the media mode of mac register txcfg/rxcfg according to
1395  *	speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1396  *	bus is used instead of PCI bus. When this bit is set 1, the
1397  *	Max DMA Burst Size for TX/RX DMA should be no larger than 16
1398  *	double words.
1399  */
1400 
1401 static void sis900_set_mode(struct sis900_private *sp, int speed, int duplex)
1402 {
1403 	void __iomem *ioaddr = sp->ioaddr;
1404 	u32 tx_flags = 0, rx_flags = 0;
1405 
1406 	if (sr32( cfg) & EDB_MASTER_EN) {
1407 		tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1408 					(TX_FILL_THRESH << TxFILLT_shift);
1409 		rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1410 	} else {
1411 		tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1412 					(TX_FILL_THRESH << TxFILLT_shift);
1413 		rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1414 	}
1415 
1416 	if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1417 		rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1418 		tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1419 	} else {
1420 		rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1421 		tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1422 	}
1423 
1424 	if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1425 		tx_flags |= (TxCSI | TxHBI);
1426 		rx_flags |= RxATX;
1427 	}
1428 
1429 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1430 	/* Can accept Jumbo packet */
1431 	rx_flags |= RxAJAB;
1432 #endif
1433 
1434 	sw32(txcfg, tx_flags);
1435 	sw32(rxcfg, rx_flags);
1436 }
1437 
1438 /**
1439  *	sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1440  *	@net_dev: the net device to read mode for
1441  *	@phy_addr: mii phy address
1442  *
1443  *	If the adapter is link-on, set the auto-negotiate enable/reset bit.
1444  *	autong_complete should be set to 0 when starting auto-negotiation.
1445  *	autong_complete should be set to 1 if we didn't start auto-negotiation.
1446  *	sis900_timer will wait for link on again if autong_complete = 0.
1447  */
1448 
1449 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1450 {
1451 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1452 	int i = 0;
1453 	u32 status;
1454 
1455 	for (i = 0; i < 2; i++)
1456 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1457 
1458 	if (!(status & MII_STAT_LINK)){
1459 		if(netif_msg_link(sis_priv))
1460 			printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1461 		sis_priv->autong_complete = 1;
1462 		netif_carrier_off(net_dev);
1463 		return;
1464 	}
1465 
1466 	/* (Re)start AutoNegotiate */
1467 	mdio_write(net_dev, phy_addr, MII_CONTROL,
1468 		   MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1469 	sis_priv->autong_complete = 0;
1470 }
1471 
1472 
1473 /**
1474  *	sis900_read_mode - read media mode for sis900 internal phy
1475  *	@net_dev: the net device to read mode for
1476  *	@speed  : the transmit speed to be determined
1477  *	@duplex : the duplex mode to be determined
1478  *
1479  *	The capability of remote end will be put in mii register autorec
1480  *	after auto-negotiation. Use AND operation to get the upper bound
1481  *	of speed and duplex between two ends.
1482  */
1483 
1484 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1485 {
1486 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1487 	struct mii_phy *phy = sis_priv->mii;
1488 	int phy_addr = sis_priv->cur_phy;
1489 	u32 status;
1490 	u16 autoadv, autorec;
1491 	int i;
1492 
1493 	for (i = 0; i < 2; i++)
1494 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1495 
1496 	if (!(status & MII_STAT_LINK))
1497 		return;
1498 
1499 	/* AutoNegotiate completed */
1500 	autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1501 	autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1502 	status = autoadv & autorec;
1503 
1504 	*speed = HW_SPEED_10_MBPS;
1505 	*duplex = FDX_CAPABLE_HALF_SELECTED;
1506 
1507 	if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1508 		*speed = HW_SPEED_100_MBPS;
1509 	if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1510 		*duplex = FDX_CAPABLE_FULL_SELECTED;
1511 
1512 	sis_priv->autong_complete = 1;
1513 
1514 	/* Workaround for Realtek RTL8201 PHY issue */
1515 	if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1516 		if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1517 			*duplex = FDX_CAPABLE_FULL_SELECTED;
1518 		if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1519 			*speed = HW_SPEED_100_MBPS;
1520 	}
1521 
1522 	if(netif_msg_link(sis_priv))
1523 		printk(KERN_INFO "%s: Media Link On %s %s-duplex\n",
1524 	       				net_dev->name,
1525 	       				*speed == HW_SPEED_100_MBPS ?
1526 	       					"100mbps" : "10mbps",
1527 	       				*duplex == FDX_CAPABLE_FULL_SELECTED ?
1528 	       					"full" : "half");
1529 }
1530 
1531 /**
1532  *	sis900_tx_timeout - sis900 transmit timeout routine
1533  *	@net_dev: the net device to transmit
1534  *
1535  *	print transmit timeout status
1536  *	disable interrupts and do some tasks
1537  */
1538 
1539 static void sis900_tx_timeout(struct net_device *net_dev)
1540 {
1541 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1542 	void __iomem *ioaddr = sis_priv->ioaddr;
1543 	unsigned long flags;
1544 	int i;
1545 
1546 	if (netif_msg_tx_err(sis_priv)) {
1547 		printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n",
1548 			net_dev->name, sr32(cr), sr32(isr));
1549 	}
1550 
1551 	/* Disable interrupts by clearing the interrupt mask. */
1552 	sw32(imr, 0x0000);
1553 
1554 	/* use spinlock to prevent interrupt handler accessing buffer ring */
1555 	spin_lock_irqsave(&sis_priv->lock, flags);
1556 
1557 	/* discard unsent packets */
1558 	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1559 	for (i = 0; i < NUM_TX_DESC; i++) {
1560 		struct sk_buff *skb = sis_priv->tx_skbuff[i];
1561 
1562 		if (skb) {
1563 			pci_unmap_single(sis_priv->pci_dev,
1564 				sis_priv->tx_ring[i].bufptr, skb->len,
1565 				PCI_DMA_TODEVICE);
1566 			dev_kfree_skb_irq(skb);
1567 			sis_priv->tx_skbuff[i] = NULL;
1568 			sis_priv->tx_ring[i].cmdsts = 0;
1569 			sis_priv->tx_ring[i].bufptr = 0;
1570 			net_dev->stats.tx_dropped++;
1571 		}
1572 	}
1573 	sis_priv->tx_full = 0;
1574 	netif_wake_queue(net_dev);
1575 
1576 	spin_unlock_irqrestore(&sis_priv->lock, flags);
1577 
1578 	net_dev->trans_start = jiffies; /* prevent tx timeout */
1579 
1580 	/* load Transmit Descriptor Register */
1581 	sw32(txdp, sis_priv->tx_ring_dma);
1582 
1583 	/* Enable all known interrupts by setting the interrupt mask. */
1584 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
1585 }
1586 
1587 /**
1588  *	sis900_start_xmit - sis900 start transmit routine
1589  *	@skb: socket buffer pointer to put the data being transmitted
1590  *	@net_dev: the net device to transmit with
1591  *
1592  *	Set the transmit buffer descriptor,
1593  *	and write TxENA to enable transmit state machine.
1594  *	tell upper layer if the buffer is full
1595  */
1596 
1597 static netdev_tx_t
1598 sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1599 {
1600 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1601 	void __iomem *ioaddr = sis_priv->ioaddr;
1602 	unsigned int  entry;
1603 	unsigned long flags;
1604 	unsigned int  index_cur_tx, index_dirty_tx;
1605 	unsigned int  count_dirty_tx;
1606 
1607 	spin_lock_irqsave(&sis_priv->lock, flags);
1608 
1609 	/* Calculate the next Tx descriptor entry. */
1610 	entry = sis_priv->cur_tx % NUM_TX_DESC;
1611 	sis_priv->tx_skbuff[entry] = skb;
1612 
1613 	/* set the transmit buffer descriptor and enable Transmit State Machine */
1614 	sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1615 		skb->data, skb->len, PCI_DMA_TODEVICE);
1616 	if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1617 		sis_priv->tx_ring[entry].bufptr))) {
1618 			dev_kfree_skb_any(skb);
1619 			sis_priv->tx_skbuff[entry] = NULL;
1620 			net_dev->stats.tx_dropped++;
1621 			spin_unlock_irqrestore(&sis_priv->lock, flags);
1622 			return NETDEV_TX_OK;
1623 	}
1624 	sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len);
1625 	sw32(cr, TxENA | sr32(cr));
1626 
1627 	sis_priv->cur_tx ++;
1628 	index_cur_tx = sis_priv->cur_tx;
1629 	index_dirty_tx = sis_priv->dirty_tx;
1630 
1631 	for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1632 		count_dirty_tx ++;
1633 
1634 	if (index_cur_tx == index_dirty_tx) {
1635 		/* dirty_tx is met in the cycle of cur_tx, buffer full */
1636 		sis_priv->tx_full = 1;
1637 		netif_stop_queue(net_dev);
1638 	} else if (count_dirty_tx < NUM_TX_DESC) {
1639 		/* Typical path, tell upper layer that more transmission is possible */
1640 		netif_start_queue(net_dev);
1641 	} else {
1642 		/* buffer full, tell upper layer no more transmission */
1643 		sis_priv->tx_full = 1;
1644 		netif_stop_queue(net_dev);
1645 	}
1646 
1647 	spin_unlock_irqrestore(&sis_priv->lock, flags);
1648 
1649 	if (netif_msg_tx_queued(sis_priv))
1650 		printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1651 		       "to slot %d.\n",
1652 		       net_dev->name, skb->data, (int)skb->len, entry);
1653 
1654 	return NETDEV_TX_OK;
1655 }
1656 
1657 /**
1658  *	sis900_interrupt - sis900 interrupt handler
1659  *	@irq: the irq number
1660  *	@dev_instance: the client data object
1661  *
1662  *	The interrupt handler does all of the Rx thread work,
1663  *	and cleans up after the Tx thread
1664  */
1665 
1666 static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1667 {
1668 	struct net_device *net_dev = dev_instance;
1669 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1670 	int boguscnt = max_interrupt_work;
1671 	void __iomem *ioaddr = sis_priv->ioaddr;
1672 	u32 status;
1673 	unsigned int handled = 0;
1674 
1675 	spin_lock (&sis_priv->lock);
1676 
1677 	do {
1678 		status = sr32(isr);
1679 
1680 		if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0)
1681 			/* nothing intresting happened */
1682 			break;
1683 		handled = 1;
1684 
1685 		/* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1686 		if (status & (RxORN | RxERR | RxOK))
1687 			/* Rx interrupt */
1688 			sis900_rx(net_dev);
1689 
1690 		if (status & (TxURN | TxERR | TxIDLE))
1691 			/* Tx interrupt */
1692 			sis900_finish_xmit(net_dev);
1693 
1694 		/* something strange happened !!! */
1695 		if (status & HIBERR) {
1696 			if(netif_msg_intr(sis_priv))
1697 				printk(KERN_INFO "%s: Abnormal interrupt, "
1698 					"status %#8.8x.\n", net_dev->name, status);
1699 			break;
1700 		}
1701 		if (--boguscnt < 0) {
1702 			if(netif_msg_intr(sis_priv))
1703 				printk(KERN_INFO "%s: Too much work at interrupt, "
1704 					"interrupt status = %#8.8x.\n",
1705 					net_dev->name, status);
1706 			break;
1707 		}
1708 	} while (1);
1709 
1710 	if(netif_msg_intr(sis_priv))
1711 		printk(KERN_DEBUG "%s: exiting interrupt, "
1712 		       "interrupt status = %#8.8x\n",
1713 		       net_dev->name, sr32(isr));
1714 
1715 	spin_unlock (&sis_priv->lock);
1716 	return IRQ_RETVAL(handled);
1717 }
1718 
1719 /**
1720  *	sis900_rx - sis900 receive routine
1721  *	@net_dev: the net device which receives data
1722  *
1723  *	Process receive interrupt events,
1724  *	put buffer to higher layer and refill buffer pool
1725  *	Note: This function is called by interrupt handler,
1726  *	don't do "too much" work here
1727  */
1728 
1729 static int sis900_rx(struct net_device *net_dev)
1730 {
1731 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1732 	void __iomem *ioaddr = sis_priv->ioaddr;
1733 	unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1734 	u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1735 	int rx_work_limit;
1736 
1737 	if (netif_msg_rx_status(sis_priv))
1738 		printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1739 		       "status:0x%8.8x\n",
1740 		       sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1741 	rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1742 
1743 	while (rx_status & OWN) {
1744 		unsigned int rx_size;
1745 		unsigned int data_size;
1746 
1747 		if (--rx_work_limit < 0)
1748 			break;
1749 
1750 		data_size = rx_status & DSIZE;
1751 		rx_size = data_size - CRC_SIZE;
1752 
1753 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1754 		/* ``TOOLONG'' flag means jumbo packet received. */
1755 		if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1756 			rx_status &= (~ ((unsigned int)TOOLONG));
1757 #endif
1758 
1759 		if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1760 			/* corrupted packet received */
1761 			if (netif_msg_rx_err(sis_priv))
1762 				printk(KERN_DEBUG "%s: Corrupted packet "
1763 				       "received, buffer status = 0x%8.8x/%d.\n",
1764 				       net_dev->name, rx_status, data_size);
1765 			net_dev->stats.rx_errors++;
1766 			if (rx_status & OVERRUN)
1767 				net_dev->stats.rx_over_errors++;
1768 			if (rx_status & (TOOLONG|RUNT))
1769 				net_dev->stats.rx_length_errors++;
1770 			if (rx_status & (RXISERR | FAERR))
1771 				net_dev->stats.rx_frame_errors++;
1772 			if (rx_status & CRCERR)
1773 				net_dev->stats.rx_crc_errors++;
1774 			/* reset buffer descriptor state */
1775 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1776 		} else {
1777 			struct sk_buff * skb;
1778 			struct sk_buff * rx_skb;
1779 
1780 			pci_unmap_single(sis_priv->pci_dev,
1781 				sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1782 				PCI_DMA_FROMDEVICE);
1783 
1784 			/* refill the Rx buffer, what if there is not enough
1785 			 * memory for new socket buffer ?? */
1786 			if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1787 				/*
1788 				 * Not enough memory to refill the buffer
1789 				 * so we need to recycle the old one so
1790 				 * as to avoid creating a memory hole
1791 				 * in the rx ring
1792 				 */
1793 				skb = sis_priv->rx_skbuff[entry];
1794 				net_dev->stats.rx_dropped++;
1795 				goto refill_rx_ring;
1796 			}
1797 
1798 			/* This situation should never happen, but due to
1799 			   some unknown bugs, it is possible that
1800 			   we are working on NULL sk_buff :-( */
1801 			if (sis_priv->rx_skbuff[entry] == NULL) {
1802 				if (netif_msg_rx_err(sis_priv))
1803 					printk(KERN_WARNING "%s: NULL pointer "
1804 					      "encountered in Rx ring\n"
1805 					      "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1806 					      net_dev->name, sis_priv->cur_rx,
1807 					      sis_priv->dirty_rx);
1808 				dev_kfree_skb(skb);
1809 				break;
1810 			}
1811 
1812 			/* give the socket buffer to upper layers */
1813 			rx_skb = sis_priv->rx_skbuff[entry];
1814 			skb_put(rx_skb, rx_size);
1815 			rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1816 			netif_rx(rx_skb);
1817 
1818 			/* some network statistics */
1819 			if ((rx_status & BCAST) == MCAST)
1820 				net_dev->stats.multicast++;
1821 			net_dev->stats.rx_bytes += rx_size;
1822 			net_dev->stats.rx_packets++;
1823 			sis_priv->dirty_rx++;
1824 refill_rx_ring:
1825 			sis_priv->rx_skbuff[entry] = skb;
1826 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1827 			sis_priv->rx_ring[entry].bufptr =
1828 				pci_map_single(sis_priv->pci_dev, skb->data,
1829 					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1830 			if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1831 				sis_priv->rx_ring[entry].bufptr))) {
1832 				dev_kfree_skb_irq(skb);
1833 				sis_priv->rx_skbuff[entry] = NULL;
1834 				break;
1835 			}
1836 		}
1837 		sis_priv->cur_rx++;
1838 		entry = sis_priv->cur_rx % NUM_RX_DESC;
1839 		rx_status = sis_priv->rx_ring[entry].cmdsts;
1840 	} // while
1841 
1842 	/* refill the Rx buffer, what if the rate of refilling is slower
1843 	 * than consuming ?? */
1844 	for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1845 		struct sk_buff *skb;
1846 
1847 		entry = sis_priv->dirty_rx % NUM_RX_DESC;
1848 
1849 		if (sis_priv->rx_skbuff[entry] == NULL) {
1850 			skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE);
1851 			if (skb == NULL) {
1852 				/* not enough memory for skbuff, this makes a
1853 				 * "hole" on the buffer ring, it is not clear
1854 				 * how the hardware will react to this kind
1855 				 * of degenerated buffer */
1856 				net_dev->stats.rx_dropped++;
1857 				break;
1858 			}
1859 			sis_priv->rx_skbuff[entry] = skb;
1860 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1861 			sis_priv->rx_ring[entry].bufptr =
1862 				pci_map_single(sis_priv->pci_dev, skb->data,
1863 					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1864 			if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1865 					sis_priv->rx_ring[entry].bufptr))) {
1866 				dev_kfree_skb_irq(skb);
1867 				sis_priv->rx_skbuff[entry] = NULL;
1868 				break;
1869 			}
1870 		}
1871 	}
1872 	/* re-enable the potentially idle receive state matchine */
1873 	sw32(cr , RxENA | sr32(cr));
1874 
1875 	return 0;
1876 }
1877 
1878 /**
1879  *	sis900_finish_xmit - finish up transmission of packets
1880  *	@net_dev: the net device to be transmitted on
1881  *
1882  *	Check for error condition and free socket buffer etc
1883  *	schedule for more transmission as needed
1884  *	Note: This function is called by interrupt handler,
1885  *	don't do "too much" work here
1886  */
1887 
1888 static void sis900_finish_xmit (struct net_device *net_dev)
1889 {
1890 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1891 
1892 	for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1893 		struct sk_buff *skb;
1894 		unsigned int entry;
1895 		u32 tx_status;
1896 
1897 		entry = sis_priv->dirty_tx % NUM_TX_DESC;
1898 		tx_status = sis_priv->tx_ring[entry].cmdsts;
1899 
1900 		if (tx_status & OWN) {
1901 			/* The packet is not transmitted yet (owned by hardware) !
1902 			 * Note: the interrupt is generated only when Tx Machine
1903 			 * is idle, so this is an almost impossible case */
1904 			break;
1905 		}
1906 
1907 		if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1908 			/* packet unsuccessfully transmitted */
1909 			if (netif_msg_tx_err(sis_priv))
1910 				printk(KERN_DEBUG "%s: Transmit "
1911 				       "error, Tx status %8.8x.\n",
1912 				       net_dev->name, tx_status);
1913 			net_dev->stats.tx_errors++;
1914 			if (tx_status & UNDERRUN)
1915 				net_dev->stats.tx_fifo_errors++;
1916 			if (tx_status & ABORT)
1917 				net_dev->stats.tx_aborted_errors++;
1918 			if (tx_status & NOCARRIER)
1919 				net_dev->stats.tx_carrier_errors++;
1920 			if (tx_status & OWCOLL)
1921 				net_dev->stats.tx_window_errors++;
1922 		} else {
1923 			/* packet successfully transmitted */
1924 			net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1925 			net_dev->stats.tx_bytes += tx_status & DSIZE;
1926 			net_dev->stats.tx_packets++;
1927 		}
1928 		/* Free the original skb. */
1929 		skb = sis_priv->tx_skbuff[entry];
1930 		pci_unmap_single(sis_priv->pci_dev,
1931 			sis_priv->tx_ring[entry].bufptr, skb->len,
1932 			PCI_DMA_TODEVICE);
1933 		dev_kfree_skb_irq(skb);
1934 		sis_priv->tx_skbuff[entry] = NULL;
1935 		sis_priv->tx_ring[entry].bufptr = 0;
1936 		sis_priv->tx_ring[entry].cmdsts = 0;
1937 	}
1938 
1939 	if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1940 	    sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1941 		/* The ring is no longer full, clear tx_full and schedule
1942 		 * more transmission by netif_wake_queue(net_dev) */
1943 		sis_priv->tx_full = 0;
1944 		netif_wake_queue (net_dev);
1945 	}
1946 }
1947 
1948 /**
1949  *	sis900_close - close sis900 device
1950  *	@net_dev: the net device to be closed
1951  *
1952  *	Disable interrupts, stop the Tx and Rx Status Machine
1953  *	free Tx and RX socket buffer
1954  */
1955 
1956 static int sis900_close(struct net_device *net_dev)
1957 {
1958 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1959 	struct pci_dev *pdev = sis_priv->pci_dev;
1960 	void __iomem *ioaddr = sis_priv->ioaddr;
1961 	struct sk_buff *skb;
1962 	int i;
1963 
1964 	netif_stop_queue(net_dev);
1965 
1966 	/* Disable interrupts by clearing the interrupt mask. */
1967 	sw32(imr, 0x0000);
1968 	sw32(ier, 0x0000);
1969 
1970 	/* Stop the chip's Tx and Rx Status Machine */
1971 	sw32(cr, RxDIS | TxDIS | sr32(cr));
1972 
1973 	del_timer(&sis_priv->timer);
1974 
1975 	free_irq(pdev->irq, net_dev);
1976 
1977 	/* Free Tx and RX skbuff */
1978 	for (i = 0; i < NUM_RX_DESC; i++) {
1979 		skb = sis_priv->rx_skbuff[i];
1980 		if (skb) {
1981 			pci_unmap_single(pdev, sis_priv->rx_ring[i].bufptr,
1982 					 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1983 			dev_kfree_skb(skb);
1984 			sis_priv->rx_skbuff[i] = NULL;
1985 		}
1986 	}
1987 	for (i = 0; i < NUM_TX_DESC; i++) {
1988 		skb = sis_priv->tx_skbuff[i];
1989 		if (skb) {
1990 			pci_unmap_single(pdev, sis_priv->tx_ring[i].bufptr,
1991 					 skb->len, PCI_DMA_TODEVICE);
1992 			dev_kfree_skb(skb);
1993 			sis_priv->tx_skbuff[i] = NULL;
1994 		}
1995 	}
1996 
1997 	/* Green! Put the chip in low-power mode. */
1998 
1999 	return 0;
2000 }
2001 
2002 /**
2003  *	sis900_get_drvinfo - Return information about driver
2004  *	@net_dev: the net device to probe
2005  *	@info: container for info returned
2006  *
2007  *	Process ethtool command such as "ehtool -i" to show information
2008  */
2009 
2010 static void sis900_get_drvinfo(struct net_device *net_dev,
2011 			       struct ethtool_drvinfo *info)
2012 {
2013 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2014 
2015 	strlcpy(info->driver, SIS900_MODULE_NAME, sizeof(info->driver));
2016 	strlcpy(info->version, SIS900_DRV_VERSION, sizeof(info->version));
2017 	strlcpy(info->bus_info, pci_name(sis_priv->pci_dev),
2018 		sizeof(info->bus_info));
2019 }
2020 
2021 static u32 sis900_get_msglevel(struct net_device *net_dev)
2022 {
2023 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2024 	return sis_priv->msg_enable;
2025 }
2026 
2027 static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
2028 {
2029 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2030 	sis_priv->msg_enable = value;
2031 }
2032 
2033 static u32 sis900_get_link(struct net_device *net_dev)
2034 {
2035 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2036 	return mii_link_ok(&sis_priv->mii_info);
2037 }
2038 
2039 static int sis900_get_settings(struct net_device *net_dev,
2040 				struct ethtool_cmd *cmd)
2041 {
2042 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2043 	spin_lock_irq(&sis_priv->lock);
2044 	mii_ethtool_gset(&sis_priv->mii_info, cmd);
2045 	spin_unlock_irq(&sis_priv->lock);
2046 	return 0;
2047 }
2048 
2049 static int sis900_set_settings(struct net_device *net_dev,
2050 				struct ethtool_cmd *cmd)
2051 {
2052 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2053 	int rt;
2054 	spin_lock_irq(&sis_priv->lock);
2055 	rt = mii_ethtool_sset(&sis_priv->mii_info, cmd);
2056 	spin_unlock_irq(&sis_priv->lock);
2057 	return rt;
2058 }
2059 
2060 static int sis900_nway_reset(struct net_device *net_dev)
2061 {
2062 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2063 	return mii_nway_restart(&sis_priv->mii_info);
2064 }
2065 
2066 /**
2067  *	sis900_set_wol - Set up Wake on Lan registers
2068  *	@net_dev: the net device to probe
2069  *	@wol: container for info passed to the driver
2070  *
2071  *	Process ethtool command "wol" to setup wake on lan features.
2072  *	SiS900 supports sending WoL events if a correct packet is received,
2073  *	but there is no simple way to filter them to only a subset (broadcast,
2074  *	multicast, unicast or arp).
2075  */
2076 
2077 static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2078 {
2079 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2080 	void __iomem *ioaddr = sis_priv->ioaddr;
2081 	u32 cfgpmcsr = 0, pmctrl_bits = 0;
2082 
2083 	if (wol->wolopts == 0) {
2084 		pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2085 		cfgpmcsr &= ~PME_EN;
2086 		pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2087 		sw32(pmctrl, pmctrl_bits);
2088 		if (netif_msg_wol(sis_priv))
2089 			printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2090 		return 0;
2091 	}
2092 
2093 	if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2094 				| WAKE_BCAST | WAKE_ARP))
2095 		return -EINVAL;
2096 
2097 	if (wol->wolopts & WAKE_MAGIC)
2098 		pmctrl_bits |= MAGICPKT;
2099 	if (wol->wolopts & WAKE_PHY)
2100 		pmctrl_bits |= LINKON;
2101 
2102 	sw32(pmctrl, pmctrl_bits);
2103 
2104 	pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2105 	cfgpmcsr |= PME_EN;
2106 	pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2107 	if (netif_msg_wol(sis_priv))
2108 		printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2109 
2110 	return 0;
2111 }
2112 
2113 static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2114 {
2115 	struct sis900_private *sp = netdev_priv(net_dev);
2116 	void __iomem *ioaddr = sp->ioaddr;
2117 	u32 pmctrl_bits;
2118 
2119 	pmctrl_bits = sr32(pmctrl);
2120 	if (pmctrl_bits & MAGICPKT)
2121 		wol->wolopts |= WAKE_MAGIC;
2122 	if (pmctrl_bits & LINKON)
2123 		wol->wolopts |= WAKE_PHY;
2124 
2125 	wol->supported = (WAKE_PHY | WAKE_MAGIC);
2126 }
2127 
2128 static const struct ethtool_ops sis900_ethtool_ops = {
2129 	.get_drvinfo 	= sis900_get_drvinfo,
2130 	.get_msglevel	= sis900_get_msglevel,
2131 	.set_msglevel	= sis900_set_msglevel,
2132 	.get_link	= sis900_get_link,
2133 	.get_settings	= sis900_get_settings,
2134 	.set_settings	= sis900_set_settings,
2135 	.nway_reset	= sis900_nway_reset,
2136 	.get_wol	= sis900_get_wol,
2137 	.set_wol	= sis900_set_wol
2138 };
2139 
2140 /**
2141  *	mii_ioctl - process MII i/o control command
2142  *	@net_dev: the net device to command for
2143  *	@rq: parameter for command
2144  *	@cmd: the i/o command
2145  *
2146  *	Process MII command like read/write MII register
2147  */
2148 
2149 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2150 {
2151 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2152 	struct mii_ioctl_data *data = if_mii(rq);
2153 
2154 	switch(cmd) {
2155 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2156 		data->phy_id = sis_priv->mii->phy_addr;
2157 		/* Fall Through */
2158 
2159 	case SIOCGMIIREG:		/* Read MII PHY register. */
2160 		data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2161 		return 0;
2162 
2163 	case SIOCSMIIREG:		/* Write MII PHY register. */
2164 		mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2165 		return 0;
2166 	default:
2167 		return -EOPNOTSUPP;
2168 	}
2169 }
2170 
2171 /**
2172  *	sis900_set_config - Set media type by net_device.set_config
2173  *	@dev: the net device for media type change
2174  *	@map: ifmap passed by ifconfig
2175  *
2176  *	Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2177  *	we support only port changes. All other runtime configuration
2178  *	changes will be ignored
2179  */
2180 
2181 static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2182 {
2183 	struct sis900_private *sis_priv = netdev_priv(dev);
2184 	struct mii_phy *mii_phy = sis_priv->mii;
2185 
2186 	u16 status;
2187 
2188 	if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2189 		/* we switch on the ifmap->port field. I couldn't find anything
2190 		 * like a definition or standard for the values of that field.
2191 		 * I think the meaning of those values is device specific. But
2192 		 * since I would like to change the media type via the ifconfig
2193 		 * command I use the definition from linux/netdevice.h
2194 		 * (which seems to be different from the ifport(pcmcia) definition) */
2195 		switch(map->port){
2196 		case IF_PORT_UNKNOWN: /* use auto here */
2197 			dev->if_port = map->port;
2198 			/* we are going to change the media type, so the Link
2199 			 * will be temporary down and we need to reflect that
2200 			 * here. When the Link comes up again, it will be
2201 			 * sensed by the sis_timer procedure, which also does
2202 			 * all the rest for us */
2203 			netif_carrier_off(dev);
2204 
2205 			/* read current state */
2206 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2207 
2208 			/* enable auto negotiation and reset the negotioation
2209 			 * (I don't really know what the auto negatiotiation
2210 			 * reset really means, but it sounds for me right to
2211 			 * do one here) */
2212 			mdio_write(dev, mii_phy->phy_addr,
2213 				   MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2214 
2215 			break;
2216 
2217 		case IF_PORT_10BASET: /* 10BaseT */
2218 			dev->if_port = map->port;
2219 
2220 			/* we are going to change the media type, so the Link
2221 			 * will be temporary down and we need to reflect that
2222 			 * here. When the Link comes up again, it will be
2223 			 * sensed by the sis_timer procedure, which also does
2224 			 * all the rest for us */
2225 			netif_carrier_off(dev);
2226 
2227 			/* set Speed to 10Mbps */
2228 			/* read current state */
2229 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2230 
2231 			/* disable auto negotiation and force 10MBit mode*/
2232 			mdio_write(dev, mii_phy->phy_addr,
2233 				   MII_CONTROL, status & ~(MII_CNTL_SPEED |
2234 					MII_CNTL_AUTO));
2235 			break;
2236 
2237 		case IF_PORT_100BASET: /* 100BaseT */
2238 		case IF_PORT_100BASETX: /* 100BaseTx */
2239 			dev->if_port = map->port;
2240 
2241 			/* we are going to change the media type, so the Link
2242 			 * will be temporary down and we need to reflect that
2243 			 * here. When the Link comes up again, it will be
2244 			 * sensed by the sis_timer procedure, which also does
2245 			 * all the rest for us */
2246 			netif_carrier_off(dev);
2247 
2248 			/* set Speed to 100Mbps */
2249 			/* disable auto negotiation and enable 100MBit Mode */
2250 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2251 			mdio_write(dev, mii_phy->phy_addr,
2252 				   MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2253 				   MII_CNTL_SPEED);
2254 
2255 			break;
2256 
2257 		case IF_PORT_10BASE2: /* 10Base2 */
2258 		case IF_PORT_AUI: /* AUI */
2259 		case IF_PORT_100BASEFX: /* 100BaseFx */
2260                 	/* These Modes are not supported (are they?)*/
2261 			return -EOPNOTSUPP;
2262 
2263 		default:
2264 			return -EINVAL;
2265 		}
2266 	}
2267 	return 0;
2268 }
2269 
2270 /**
2271  *	sis900_mcast_bitnr - compute hashtable index
2272  *	@addr: multicast address
2273  *	@revision: revision id of chip
2274  *
2275  *	SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2276  *	hash table, which makes this function a little bit different from other drivers
2277  *	SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2278  *   	multicast hash table.
2279  */
2280 
2281 static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2282 {
2283 
2284 	u32 crc = ether_crc(6, addr);
2285 
2286 	/* leave 8 or 7 most siginifant bits */
2287 	if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2288 		return (int)(crc >> 24);
2289 	else
2290 		return (int)(crc >> 25);
2291 }
2292 
2293 /**
2294  *	set_rx_mode - Set SiS900 receive mode
2295  *	@net_dev: the net device to be set
2296  *
2297  *	Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2298  *	And set the appropriate multicast filter.
2299  *	Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2300  */
2301 
2302 static void set_rx_mode(struct net_device *net_dev)
2303 {
2304 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2305 	void __iomem *ioaddr = sis_priv->ioaddr;
2306 	u16 mc_filter[16] = {0};	/* 256/128 bits multicast hash table */
2307 	int i, table_entries;
2308 	u32 rx_mode;
2309 
2310 	/* 635 Hash Table entries = 256(2^16) */
2311 	if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2312 			(sis_priv->chipset_rev == SIS900B_900_REV))
2313 		table_entries = 16;
2314 	else
2315 		table_entries = 8;
2316 
2317 	if (net_dev->flags & IFF_PROMISC) {
2318 		/* Accept any kinds of packets */
2319 		rx_mode = RFPromiscuous;
2320 		for (i = 0; i < table_entries; i++)
2321 			mc_filter[i] = 0xffff;
2322 	} else if ((netdev_mc_count(net_dev) > multicast_filter_limit) ||
2323 		   (net_dev->flags & IFF_ALLMULTI)) {
2324 		/* too many multicast addresses or accept all multicast packet */
2325 		rx_mode = RFAAB | RFAAM;
2326 		for (i = 0; i < table_entries; i++)
2327 			mc_filter[i] = 0xffff;
2328 	} else {
2329 		/* Accept Broadcast packet, destination address matchs our
2330 		 * MAC address, use Receive Filter to reject unwanted MCAST
2331 		 * packets */
2332 		struct netdev_hw_addr *ha;
2333 		rx_mode = RFAAB;
2334 
2335 		netdev_for_each_mc_addr(ha, net_dev) {
2336 			unsigned int bit_nr;
2337 
2338 			bit_nr = sis900_mcast_bitnr(ha->addr,
2339 						    sis_priv->chipset_rev);
2340 			mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2341 		}
2342 	}
2343 
2344 	/* update Multicast Hash Table in Receive Filter */
2345 	for (i = 0; i < table_entries; i++) {
2346                 /* why plus 0x04 ??, That makes the correct value for hash table. */
2347 		sw32(rfcr, (u32)(0x00000004 + i) << RFADDR_shift);
2348 		sw32(rfdr, mc_filter[i]);
2349 	}
2350 
2351 	sw32(rfcr, RFEN | rx_mode);
2352 
2353 	/* sis900 is capable of looping back packets at MAC level for
2354 	 * debugging purpose */
2355 	if (net_dev->flags & IFF_LOOPBACK) {
2356 		u32 cr_saved;
2357 		/* We must disable Tx/Rx before setting loopback mode */
2358 		cr_saved = sr32(cr);
2359 		sw32(cr, cr_saved | TxDIS | RxDIS);
2360 		/* enable loopback */
2361 		sw32(txcfg, sr32(txcfg) | TxMLB);
2362 		sw32(rxcfg, sr32(rxcfg) | RxATX);
2363 		/* restore cr */
2364 		sw32(cr, cr_saved);
2365 	}
2366 }
2367 
2368 /**
2369  *	sis900_reset - Reset sis900 MAC
2370  *	@net_dev: the net device to reset
2371  *
2372  *	reset sis900 MAC and wait until finished
2373  *	reset through command register
2374  *	change backoff algorithm for 900B0 & 635 M/B
2375  */
2376 
2377 static void sis900_reset(struct net_device *net_dev)
2378 {
2379 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2380 	void __iomem *ioaddr = sis_priv->ioaddr;
2381 	u32 status = TxRCMP | RxRCMP;
2382 	int i;
2383 
2384 	sw32(ier, 0);
2385 	sw32(imr, 0);
2386 	sw32(rfcr, 0);
2387 
2388 	sw32(cr, RxRESET | TxRESET | RESET | sr32(cr));
2389 
2390 	/* Check that the chip has finished the reset. */
2391 	for (i = 0; status && (i < 1000); i++)
2392 		status ^= sr32(isr) & status;
2393 
2394 	if (sis_priv->chipset_rev >= SIS635A_900_REV ||
2395 	    sis_priv->chipset_rev == SIS900B_900_REV)
2396 		sw32(cfg, PESEL | RND_CNT);
2397 	else
2398 		sw32(cfg, PESEL);
2399 }
2400 
2401 /**
2402  *	sis900_remove - Remove sis900 device
2403  *	@pci_dev: the pci device to be removed
2404  *
2405  *	remove and release SiS900 net device
2406  */
2407 
2408 static void sis900_remove(struct pci_dev *pci_dev)
2409 {
2410 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2411 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2412 
2413 	unregister_netdev(net_dev);
2414 
2415 	while (sis_priv->first_mii) {
2416 		struct mii_phy *phy = sis_priv->first_mii;
2417 
2418 		sis_priv->first_mii = phy->next;
2419 		kfree(phy);
2420 	}
2421 
2422 	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2423 		sis_priv->rx_ring_dma);
2424 	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2425 		sis_priv->tx_ring_dma);
2426 	pci_iounmap(pci_dev, sis_priv->ioaddr);
2427 	free_netdev(net_dev);
2428 	pci_release_regions(pci_dev);
2429 }
2430 
2431 #ifdef CONFIG_PM
2432 
2433 static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state)
2434 {
2435 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2436 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2437 	void __iomem *ioaddr = sis_priv->ioaddr;
2438 
2439 	if(!netif_running(net_dev))
2440 		return 0;
2441 
2442 	netif_stop_queue(net_dev);
2443 	netif_device_detach(net_dev);
2444 
2445 	/* Stop the chip's Tx and Rx Status Machine */
2446 	sw32(cr, RxDIS | TxDIS | sr32(cr));
2447 
2448 	pci_set_power_state(pci_dev, PCI_D3hot);
2449 	pci_save_state(pci_dev);
2450 
2451 	return 0;
2452 }
2453 
2454 static int sis900_resume(struct pci_dev *pci_dev)
2455 {
2456 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2457 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2458 	void __iomem *ioaddr = sis_priv->ioaddr;
2459 
2460 	if(!netif_running(net_dev))
2461 		return 0;
2462 	pci_restore_state(pci_dev);
2463 	pci_set_power_state(pci_dev, PCI_D0);
2464 
2465 	sis900_init_rxfilter(net_dev);
2466 
2467 	sis900_init_tx_ring(net_dev);
2468 	sis900_init_rx_ring(net_dev);
2469 
2470 	set_rx_mode(net_dev);
2471 
2472 	netif_device_attach(net_dev);
2473 	netif_start_queue(net_dev);
2474 
2475 	/* Workaround for EDB */
2476 	sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2477 
2478 	/* Enable all known interrupts by setting the interrupt mask. */
2479 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
2480 	sw32(cr, RxENA | sr32(cr));
2481 	sw32(ier, IE);
2482 
2483 	sis900_check_mode(net_dev, sis_priv->mii);
2484 
2485 	return 0;
2486 }
2487 #endif /* CONFIG_PM */
2488 
2489 static struct pci_driver sis900_pci_driver = {
2490 	.name		= SIS900_MODULE_NAME,
2491 	.id_table	= sis900_pci_tbl,
2492 	.probe		= sis900_probe,
2493 	.remove		= sis900_remove,
2494 #ifdef CONFIG_PM
2495 	.suspend	= sis900_suspend,
2496 	.resume		= sis900_resume,
2497 #endif /* CONFIG_PM */
2498 };
2499 
2500 static int __init sis900_init_module(void)
2501 {
2502 /* when a module, this is printed whether or not devices are found in probe */
2503 #ifdef MODULE
2504 	printk(version);
2505 #endif
2506 
2507 	return pci_register_driver(&sis900_pci_driver);
2508 }
2509 
2510 static void __exit sis900_cleanup_module(void)
2511 {
2512 	pci_unregister_driver(&sis900_pci_driver);
2513 }
2514 
2515 module_init(sis900_init_module);
2516 module_exit(sis900_cleanup_module);
2517 
2518